Sample records for detection limits required

  1. An improved method for undertaking limiting dilution assays for in vitro cloning of Plasmodium falciparum parasites.

    PubMed

    Butterworth, Alice S; Robertson, Alan J; Ho, Mei-Fong; Gatton, Michelle L; McCarthy, James S; Trenholme, Katharine R

    2011-04-18

    Obtaining single parasite clones is required for many techniques in malaria research. Cloning by limiting dilution using microscopy-based assessment for parasite growth is an arduous and labor-intensive process. An alternative method for the detection of parasite growth in limiting dilution assays is using a commercial ELISA histidine-rich protein II (HRP2) detection kit. Detection of parasite growth was undertaken using HRP2 ELISA and compared to thick film microscopy. An HRP2 protein standard was used to determine the detection threshold of the HRP2 ELISA assay, and a HRP2 release model was used to extrapolate the amount of parasite growth required for a positive result. The HRP2 ELISA was more sensitive than microscopy for detecting parasite growth. The minimum level of HRP2 protein detection of the ELISA was 0.11 ng/ml. Modeling of HRP2 release determined that 2,116 parasites are required to complete a full erythrocytic cycle to produce sufficient HRP2 to be detected by the ELISA. Under standard culture conditions this number of parasites is likely to be reached between 8 to 14 days of culture. This method provides an accurate and simple way for the detection of parasite growth in limiting dilution assays, reducing time and resources required in traditional methods. Furthermore the method uses spent culture media instead of the parasite-infected red blood cells, enabling culture to continue. © 2011 Butterworth et al; licensee BioMed Central Ltd.

  2. Re-evaluation of groundwater monitoring data for glyphosate and bentazone by taking detection limits into account.

    PubMed

    Hansen, Claus Toni; Ritz, Christian; Gerhard, Daniel; Jensen, Jens Erik; Streibig, Jens Carl

    2015-12-01

    Current regulatory assessment of pesticide contamination of Danish groundwater is exclusively based on samples with pesticide concentrations above detection limit. Here we demonstrate that a realistic quantification of pesticide contamination requires the inclusion of "non-detect" samples i.e. samples with concentrations below the detection limit, as left-censored observations. The median calculated pesticide concentrations are shown to be reduced 10(4) to 10(5) fold for two representative herbicides (glyphosate and bentazone) relative to the median concentrations based upon observations above detection limits alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Performance limitations of label-free sensors in molecular diagnosis using complex samples

    NASA Astrophysics Data System (ADS)

    Varma, Manoj

    2016-03-01

    Label-free biosensors promised a paradigm involving direct detection of biomarkers from complex samples such as serum without requiring multistep sample processing typical of labelled methods such as ELISA or immunofluorescence assays. Label-free sensors have witnessed decades of development with a veritable zoo of techniques available today exploiting a multitude of physical effects. It is appropriate now to critically assess whether label-free technologies have succeeded in delivering their promise with respect to diagnostic applications, particularly, ambitious goals such as early cancer detection using serum biomarkers, which require low limits of detection (LoD). Comparison of nearly 120 limits of detection (LoD) values reported by labelled and label-free sensing approaches over a wide range of detection techniques and target molecules in serum revealed that labeled techniques achieve 2-3 orders of magnitude better LoDs. Data from experiments where labelled and label-free assays were performed simultaneously using the same assay parameters also confirm that the LoD achieved by labelled techniques is 2 to 3 orders of magnitude better than that by label-free techniques. Furthermore, label-free techniques required significant signal amplification, for e.g. using nanoparticle conjugated secondary antibodies, to achieve LoDs comparable to labelled methods substantially deviating from the original "direct detection" paradigm. This finding has important implications on the practical limits of applying label-free detection methods for molecular diagnosis.

  4. 40 CFR 63.7833 - How do I demonstrate continuous compliance with the emission limitations that apply to me?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... baghouse equipped with a bag leak detection system, operating and maintaining each bag leak detection... requirements. If you increase or decrease the sensitivity of the bag leak detection system beyond the limits... event of a bag leak detection system alarm or when the hourly average opacity exceeded 5 percent, the...

  5. THE USE AND LIMITATIONS OF DETECTION AND QUANTITATION LIMITS IN ENVIRONMENTAL ANALYSIS

    EPA Science Inventory

    Site assessment, remediation and compliance monitoring require the routine determination of the concentration of regulated substances in environmental samples. Each measurement methodology providing the concentration determinations, is required to specify key data quality elemen...

  6. A fuel-limited isothermal DNA machine for the sensitive detection of cellular deoxyribonucleoside triphosphates.

    PubMed

    Dong, Jiantong; Wu, Tongbo; Xiao, Yu; Xu, Lei; Fang, Simin; Zhao, Meiping

    2016-09-29

    A fuel-limited isothermal DNA machine has been built for the sensitive fluorescence detection of cellular deoxyribonucleoside triphosphates (dNTPs) at the fmol level, which greatly reduces the required sample cell number. Upon the input of the limiting target dNTP, the machine runs automatically at 37 °C without the need for higher temperature.

  7. 40 CFR 63.1452 - What are my monitoring requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... integrity, all electrical connections for continuity, and all mechanical connections for leakage. (6) Record... subject to the operating limit in § 63.1444(f) or § 63.1446(c) for the bag leak detection system alarm... detection system according to the requirements in paragraph (b)(1) of this section and conduct regular...

  8. Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection.

    PubMed

    Ashley, Jon; D'Aurelio, Roberta; Piekarska, Monika; Temblay, Jeff; Pleasants, Mike; Trinh, Linda; Rodgers, Thomas L; Tothill, Ibtisam E

    2018-03-27

    A sensitive and label-free surface plasmon resonance (SPR) based sensor was developed in this work for the detection of milk allergens. β-lactoglobulin (BLG) protein was used as the biomarker for cow milk detection. This is to be used directly in final rinse samples of cleaning in-place (CIP) systems of food manufacturers. The affinity assay was optimised and characterised before a standard curve was performed in pure buffer conditions, giving a detection limit of 0.164 µg mL -1 as a direct binding assay. The detection limit can be further enhanced through the use of a sandwich assay and amplification with nanomaterials. However, this was not required here, as the detection limit achieved exceeded the required allergen detection levels of 2 µg mL -1 for β-lactoglobulin. The binding affinities of the polyclonal antibody for BLG, expressed by the dissociation constant (K D ), were equal to 2.59 × 10 -9 M. The developed SPR-based sensor offers several advantages in terms of label-free detection, real-time measurements, potential on-line system and superior sensitivity when compared to ELISA-based techniques. The method is novel for this application and could be applied to wider food allergen risk management decision(s) in food manufacturing.

  9. Digital Holographic Microscopy, a Method for Detection of Microorganisms in Plume Samples from Enceladus and Other Icy Worlds

    PubMed Central

    Bedrossian, Manuel; Lindensmith, Chris

    2017-01-01

    Abstract Detection of extant microbial life on Earth and elsewhere in the Solar System requires the ability to identify and enumerate micrometer-scale, essentially featureless cells. On Earth, bacteria are usually enumerated by culture plating or epifluorescence microscopy. Culture plates require long incubation times and can only count culturable strains, and epifluorescence microscopy requires extensive staining and concentration of the sample and instrumentation that is not readily miniaturized for space. Digital holographic microscopy (DHM) represents an alternative technique with no moving parts and higher throughput than traditional microscopy, making it potentially useful in space for detection of extant microorganisms provided that sufficient numbers of cells can be collected. Because sample collection is expected to be the limiting factor for space missions, especially to outer planets, it is important to quantify the limits of detection of any proposed technique for extant life detection. Here we use both laboratory and field samples to measure the limits of detection of an off-axis digital holographic microscope (DHM). A statistical model is used to estimate any instrument's probability of detection at various bacterial concentrations based on the optical performance characteristics of the instrument, as well as estimate the confidence interval of detection. This statistical model agrees well with the limit of detection of 103 cells/mL that was found experimentally with laboratory samples. In environmental samples, active cells were immediately evident at concentrations of 104 cells/mL. Published estimates of cell densities for Enceladus plumes yield up to 104 cells/mL, which are well within the off-axis DHM's limits of detection to confidence intervals greater than or equal to 95%, assuming sufficient sample volumes can be collected. The quantitative phase imaging provided by DHM allowed minerals to be distinguished from cells. Off-axis DHM's ability for rapid low-level bacterial detection and counting shows its viability as a technique for detection of extant microbial life provided that the cells can be captured intact and delivered to the sample chamber in a sufficient volume of liquid for imaging. Key Words: In situ life detection—Extant microorganisms—Holographic microscopy—Ocean Worlds—Enceladus—Imaging. Astrobiology 17, 913–925. PMID:28708412

  10. 40 CFR 60.5225 - What are the monitoring and calibration requirements for compliance with my operating limits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... limited to the following: (i) Inspecting the fabric filter for air leaks, torn or broken bags or filter... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY... maintain your bag leak detection system in continuous operation according to your monitoring plan required...

  11. 40 CFR 60.5225 - What are the monitoring and calibration requirements for compliance with my operating limits?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... limited to the following: (i) Inspecting the fabric filter for air leaks, torn or broken bags or filter... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY... maintain your bag leak detection system in continuous operation according to your monitoring plan required...

  12. 40 CFR 60.4850 - What operating limits and requirements must I meet and by when?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) If you use a fabric filter to comply with the emission limits, you must install the bag leak detection system specified in §§ 60.4880(b) and 60.4905(b)(3)(i) and operate the bag leak detection system... filter, electrostatic precipitator, or activated carbon injection are listed in Table 3 to this subpart...

  13. An analysis of I/O efficient order-statistic-based techniques for noise power estimation in the HRMS sky survey's operational system

    NASA Technical Reports Server (NTRS)

    Zimmerman, G. A.; Olsen, E. T.

    1992-01-01

    Noise power estimation in the High-Resolution Microwave Survey (HRMS) sky survey element is considered as an example of a constant false alarm rate (CFAR) signal detection problem. Order-statistic-based noise power estimators for CFAR detection are considered in terms of required estimator accuracy and estimator dynamic range. By limiting the dynamic range of the value to be estimated, the performance of an order-statistic estimator can be achieved by simpler techniques requiring only a single pass of the data. Simple threshold-and-count techniques are examined, and it is shown how several parallel threshold-and-count estimation devices can be used to expand the dynamic range to meet HRMS system requirements with minimal hardware complexity. An input/output (I/O) efficient limited-precision order-statistic estimator with wide but limited dynamic range is also examined.

  14. Automating quantum dot barcode assays using microfluidics and magnetism for the development of a point-of-care device.

    PubMed

    Gao, Yali; Lam, Albert W Y; Chan, Warren C W

    2013-04-24

    The impact of detecting multiple infectious diseases simultaneously at point-of-care with good sensitivity, specificity, and reproducibility would be enormous for containing the spread of diseases in both resource-limited and rich countries. Many barcoding technologies have been introduced for addressing this need as barcodes can be applied to detecting thousands of genetic and protein biomarkers simultaneously. However, the assay process is not automated and is tedious and requires skilled technicians. Barcoding technology is currently limited to use in resource-rich settings. Here we used magnetism and microfluidics technology to automate the multiple steps in a quantum dot barcode assay. The quantum dot-barcoded microbeads are sequentially (a) introduced into the chip, (b) magnetically moved to a stream containing target molecules, (c) moved back to the original stream containing secondary probes, (d) washed, and (e) finally aligned for detection. The assay requires 20 min, has a limit of detection of 1.2 nM, and can detect genetic targets for HIV, hepatitis B, and syphilis. This study provides a simple strategy to automate the entire barcode assay process and moves barcoding technologies one step closer to point-of-care applications.

  15. 76 FR 37845 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... define a new time limit for restoring inoperable Reactor Coolant System (RCS) leakage detection... RCS leakage detection instrumentation. These changes are consistent with NRC-approved Revision 3 to...? Response: No. The proposed change clarifies the operability requirements for the RCS leakage detection...

  16. 30 CFR 250.1629 - Additional production and fuel gas system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... structure. (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed... explosive limit. One approved method of providing adequate ventilation is a change of air volume each 5... detection systems shall be capable of continuous monitoring. Fire-detection systems and portions of...

  17. 30 CFR 250.1629 - Additional production and fuel gas system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... structure. (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed... explosive limit. One approved method of providing adequate ventilation is a change of air volume each 5... detection systems shall be capable of continuous monitoring. Fire-detection systems and portions of...

  18. Microbial Diagnostic Microarrays for the Detection and Typing of Food- and Water-Borne (Bacterial) Pathogens

    PubMed Central

    Kostić, Tanja; Sessitsch, Angela

    2011-01-01

    Reliable and sensitive pathogen detection in clinical and environmental (including food and water) samples is of greatest importance for public health. Standard microbiological methods have several limitations and improved alternatives are needed. Most important requirements for reliable analysis include: (i) specificity; (ii) sensitivity; (iii) multiplexing potential; (iv) robustness; (v) speed; (vi) automation potential; and (vii) low cost. Microarray technology can, through its very nature, fulfill many of these requirements directly and the remaining challenges have been tackled. In this review, we attempt to compare performance characteristics of the microbial diagnostic microarrays developed for the detection and typing of food and water pathogens, and discuss limitations, points still to be addressed and issues specific for the analysis of food, water and environmental samples. PMID:27605332

  19. A Liquid Chromatography – Tandem Mass Spectrometry Approach for the Identification of Mebendazole Residue in Pork, Chicken, and Horse

    PubMed Central

    Lee, Ji Sun; Cho, Soo Hee; Lim, Chae Mi; Chang, Moon Ik; Joo, Hyun Jin; Park, Hyun Jin

    2017-01-01

    A confirmatory and quantitative method of liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the determination of mebendazole and its hydrolyzed and reduced metabolites in pork, chicken, and horse muscles was developed and validated in this study. Anthelmintic compounds were extracted with ethyl acetate after sample mixture was made alkaline followed by liquid chromatographic separation using a reversed phase C18 column. Gradient elution was performed with a mobile phase consisting of water containing 10 mM ammonium formate and methanol. This confirmatory method was validated according to EU requirements. Evaluated validation parameters included specificity, accuracy, precision (repeatability and within-laboratory reproducibility), analytical limits (decision limit and detection limit), and applicability. Most parameters were proved to be conforming to the EU requirements. The decision limit (CCα) and detection capability (CCβ) for all analytes ranged from 15.84 to 17.96 μgkg-1. The limit of detection (LOD) and the limit of quantification (LOQ) for all analytes were 0.07 μgkg-1 and 0.2 μgkg-1, respectively. The developed method was successfully applied to monitoring samples collected from the markets in major cities and proven great potential to be used as a regulatory tool to determine mebendazole residues in animal based foods. PMID:28085912

  20. Simple, rapid and sensitive detection of Orientia tsutsugamushi by loop-isothermal DNA amplification.

    PubMed

    Paris, Daniel H; Blacksell, Stuart D; Newton, Paul N; Day, Nicholas P J

    2008-12-01

    We present a loop-mediated isothermal PCR assay (LAMP) targeting the groEL gene, which encodes the 60kDa heat shock protein of Orientia tsutsugamushi. Evaluation included testing of 63 samples of contemporary in vitro isolates, buffy coats and whole blood samples from patients with fever. Detection limits for LAMP were assessed by serial dilutions and quantitation by real-time PCR assay based on the same target gene: three copies/microl for linearized plasmids, 26 copies/microl for VERO cell culture isolates, 14 copies/microl for full blood samples and 41 copies/microl for clinical buffy coats. Based on a limited sample number, the LAMP assay is comparable in sensitivity with conventional nested PCR (56kDa gene), with limits of detection well below the range of known admission bacterial loads of patients with scrub typhus. This inexpensive method requires no sophisticated equipment or sample preparation, and may prove useful as a diagnostic assay in financially poor settings; however, it requires further prospective validation in the field setting.

  1. The Need and Potential of Biosensors to Detect Dioxins and Dioxin-Like Polychlorinated Biphenyls along the Milk, Eggs and Meat Food Chain

    PubMed Central

    Chobtang, Jeerasak; de Boer, Imke J. M.; Hoogenboom, Ron L. A. P.; Haasnoot, Willem; Kijlstra, Aize; Meerburg, Bastiaan G.

    2011-01-01

    Dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs) are hazardous toxic, ubiquitous and persistent chemical compounds, which can enter the food chain and accumulate up to higher trophic levels. Their determination requires sophisticated methods, expensive facilities and instruments, well-trained personnel and expensive chemical reagents. Ideally, real-time monitoring using rapid detection methods should be applied to detect possible contamination along the food chain in order to prevent human exposure. Sensor technology may be promising in this respect. This review gives the state of the art for detecting possible contamination with dioxins and DL-PCBs along the food chain of animal-source foods. The main detection methods applied (i.e., high resolution gas-chromatography combined with high resolution mass-spectrometry (HRGC/HRMS) and the chemical activated luciferase gene expression method (CALUX bioassay)), each have their limitations. Biosensors for detecting dioxins and related compounds, although still under development, show potential to overcome these limitations. Immunosensors and biomimetic-based biosensors potentially offer increased selectivity and sensitivity for dioxin and DL-PCB detection, while whole cell-based biosensors present interpretable biological results. The main shortcoming of current biosensors, however, is their detection level: this may be insufficient as limits for dioxins and DL-PCBs for food and feedstuffs are in pg per gram level. In addition, these contaminants are normally present in fat, a difficult matrix for biosensor detection. Therefore, simple and efficient extraction and clean-up procedures are required which may enable biosensors to detect dioxins and DL-PCBs contamination along the food chain. PMID:22247688

  2. The need and potential of biosensors to detect dioxins and dioxin-like polychlorinated biphenyls along the milk, eggs and meat food chain.

    PubMed

    Chobtang, Jeerasak; de Boer, Imke J M; Hoogenboom, Ron L A P; Haasnoot, Willem; Kijlstra, Aize; Meerburg, Bastiaan G

    2011-01-01

    Dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs) are hazardous toxic, ubiquitous and persistent chemical compounds, which can enter the food chain and accumulate up to higher trophic levels. Their determination requires sophisticated methods, expensive facilities and instruments, well-trained personnel and expensive chemical reagents. Ideally, real-time monitoring using rapid detection methods should be applied to detect possible contamination along the food chain in order to prevent human exposure. Sensor technology may be promising in this respect. This review gives the state of the art for detecting possible contamination with dioxins and DL-PCBs along the food chain of animal-source foods. The main detection methods applied (i.e., high resolution gas-chromatography combined with high resolution mass-spectrometry (HRGC/HRMS) and the chemical activated luciferase gene expression method (CALUX bioassay)), each have their limitations. Biosensors for detecting dioxins and related compounds, although still under development, show potential to overcome these limitations. Immunosensors and biomimetic-based biosensors potentially offer increased selectivity and sensitivity for dioxin and DL-PCB detection, while whole cell-based biosensors present interpretable biological results. The main shortcoming of current biosensors, however, is their detection level: this may be insufficient as limits for dioxins and DL-PCBs for food and feedstuffs are in pg per gram level. In addition, these contaminants are normally present in fat, a difficult matrix for biosensor detection. Therefore, simple and efficient extraction and clean-up procedures are required which may enable biosensors to detect dioxins and DL-PCBs contamination along the food chain.

  3. Lower Limits on Aperture Size for an ExoEarth Detecting Coronagraphic Mission

    NASA Technical Reports Server (NTRS)

    Stark, Christopher C.; Roberge, Aki; Mandell, Avi; Clampin, Mark; Domagal-Goldman, Shawn D.; McElwain, Michael W.; Stapelfeldt, Karl R.

    2015-01-01

    The yield of Earth-like planets will likely be a primary science metric for future space-based missions that will drive telescope aperture size. Maximizing the exoEarth candidate yield is therefore critical to minimizing the required aperture. Here we describe a method for exoEarth candidate yield maximization that simultaneously optimizes, for the first time, the targets chosen for observation, the number of visits to each target, the delay time between visits, and the exposure time of every observation. This code calculates both the detection time and multiwavelength spectral characterization time required for planets. We also refine the astrophysical assumptions used as inputs to these calculations, relying on published estimates of planetary occurrence rates as well as theoretical and observational constraints on terrestrial planet sizes and classical habitable zones. Given these astrophysical assumptions, optimistic telescope and instrument assumptions, and our new completeness code that produces the highest yields to date, we suggest lower limits on the aperture size required to detect and characterize a statistically motivated sample of exoEarths.

  4. The Detection Method of Escherichia coli in Water Resources: A Review

    NASA Astrophysics Data System (ADS)

    Nurliyana, M. R.; Sahdan, M. Z.; Wibowo, K. M.; Muslihati, A.; Saim, H.; Ahmad, S. A.; Sari, Y.; Mansor, Z.

    2018-04-01

    This article reviews several approaches for Escherichia coli (E. coli) bacteria detection from conventional methods, emerging method and goes to biosensor-based techniques. Detection and enumeration of E. coli bacteria usually required long duration of time in obtaining the result since laboratory-based approach is normally used in its assessment. It requires 24 hours to 72 hours after sampling to process the culturing samples before results are available. Although faster technique for detecting E. coli in water such as Polymerase Chain Reaction (PCR) and Enzyme-Linked Immunosorbent Assay (ELISA) have been developed, it still required transporting the samples from water resources to the laboratory, high-cost, complicated equipment usage, complex procedures, as well as the requirement of skilled specialist to cope with the complexity which limit their wide spread practice in water quality detection. Recently, development of biosensor device that is easy to perform, portable, highly sensitive and selective becomes indispensable in detecting extremely lower consolidation of pathogenic E. coli bacteria in water samples.

  5. Plasmodium vivax molecular diagnostics in community surveys: pitfalls and solutions.

    PubMed

    Gruenberg, Maria; Moniz, Clara Antunes; Hofmann, Natalie Ellen; Wampfler, Rahel; Koepfli, Cristian; Mueller, Ivo; Monteiro, Wuelton Marcelo; Lacerda, Marcus; de Melo, Gisely Cardoso; Kuehn, Andrea; Siqueira, Andre M; Felger, Ingrid

    2018-01-30

    A distinctive feature of Plasmodium vivax infections is the overall low parasite density in peripheral blood. Thus, identifying asymptomatic infected individuals in endemic communities requires diagnostic tests with high sensitivity. The detection limits of molecular diagnostic tests are primarily defined by the volume of blood analysed and by the copy number of the amplified molecular marker serving as the template for amplification. By using mitochondrial DNA as the multi-copy template, the detection limit can be improved more than tenfold, compared to standard 18S rRNA targets, thereby allowing detection of lower parasite densities. In a very low transmission area in Brazil, application of a mitochondrial DNA-based assay increased prevalence from 4.9 to 6.5%. The usefulness of molecular tests in malaria epidemiological studies is widely recognized, especially when precise prevalence rates are desired. Of concern, however, is the challenge of demonstrating test accuracy and quality control for samples with very low parasite densities. In this case, chance effects in template distribution around the detection limit constrain reproducibility. Rigorous assessment of false positive and false negative test results is, therefore, required to prevent over- or under-estimation of parasite prevalence in epidemiological studies or when monitoring interventions.

  6. Technologies for autonomous integrated lab-on-chip systems for space missions

    NASA Astrophysics Data System (ADS)

    Nascetti, A.; Caputo, D.; Scipinotti, R.; de Cesare, G.

    2016-11-01

    Lab-on-chip devices are ideal candidates for use in space missions where experiment automation, system compactness, limited weight and low sample and reagent consumption are required. Currently, however, most microfluidic systems require external desktop instrumentation to operate and interrogate the chip, thus strongly limiting their use as stand-alone systems. In order to overcome the above-mentioned limitations our research group is currently working on the design and fabrication of "true" lab-on-chip systems that integrate in a single device all the analytical steps from the sample preparation to the detection without the need for bulky external components such as pumps, syringes, radiation sources or optical detection systems. Three critical points can be identified to achieve 'true' lab-on-chip devices: sample handling, analytical detection and signal transduction. For each critical point, feasible solutions are presented and evaluated. Proposed microfluidic actuation and control is based on electrowetting on dielectrics, autonomous capillary networks and active valves. Analytical detection based on highly specific chemiluminescent reactions is used to avoid external radiation sources. Finally, the integration on the same chip of thin film sensors based on hydrogenated amorphous silicon is discussed showing practical results achieved in different sensing tasks.

  7. Optimization and validation of moving average quality control procedures using bias detection curves and moving average validation charts.

    PubMed

    van Rossum, Huub H; Kemperman, Hans

    2017-02-01

    To date, no practical tools are available to obtain optimal settings for moving average (MA) as a continuous analytical quality control instrument. Also, there is no knowledge of the true bias detection properties of applied MA. We describe the use of bias detection curves for MA optimization and MA validation charts for validation of MA. MA optimization was performed on a data set of previously obtained consecutive assay results. Bias introduction and MA bias detection were simulated for multiple MA procedures (combination of truncation limits, calculation algorithms and control limits) and performed for various biases. Bias detection curves were generated by plotting the median number of test results needed for bias detection against the simulated introduced bias. In MA validation charts the minimum, median, and maximum numbers of assay results required for MA bias detection are shown for various bias. Their use was demonstrated for sodium, potassium, and albumin. Bias detection curves allowed optimization of MA settings by graphical comparison of bias detection properties of multiple MA. The optimal MA was selected based on the bias detection characteristics obtained. MA validation charts were generated for selected optimal MA and provided insight into the range of results required for MA bias detection. Bias detection curves and MA validation charts are useful tools for optimization and validation of MA procedures.

  8. Probabilistic pipe fracture evaluations for leak-rate-detection applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, S.; Ghadiali, N.; Paul, D.

    1995-04-01

    Regulatory Guide 1.45, {open_quotes}Reactor Coolant Pressure Boundary Leakage Detection Systems,{close_quotes} was published by the U.S. Nuclear Regulatory Commission (NRC) in May 1973, and provides guidance on leak detection methods and system requirements for Light Water Reactors. Additionally, leak detection limits are specified in plant Technical Specifications and are different for Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). These leak detection limits are also used in leak-before-break evaluations performed in accordance with Draft Standard Review Plan, Section 3.6.3, {open_quotes}Leak Before Break Evaluation Procedures{close_quotes} where a margin of 10 on the leak detection limit is used in determining the crackmore » size considered in subsequent fracture analyses. This study was requested by the NRC to: (1) evaluate the conditional failure probability for BWR and PWR piping for pipes that were leaking at the allowable leak detection limit, and (2) evaluate the margin of 10 to determine if it was unnecessarily large. A probabilistic approach was undertaken to conduct fracture evaluations of circumferentially cracked pipes for leak-rate-detection applications. Sixteen nuclear piping systems in BWR and PWR plants were analyzed to evaluate conditional failure probability and effects of crack-morphology variability on the current margins used in leak rate detection for leak-before-break.« less

  9. Perimeter intrusion detection and assessment system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, M.J.; Jacobs, J.; McGovern, D.E.

    1977-11-01

    To obtain an effective perimeter intrusion detection system requires careful sensor selection, procurement, and installation. The selection process involves a thorough understanding of the unique site features and how these features affect the performance of each type of sensor. It is necessary to develop procurement specifications to establish acceptable sensor performance limits. Careful explanation and inspection of critical installation dimensions is required during on-site construction. The implementation of these activities at a particular site is discussed.

  10. A sandwich-type optical immunosensor based on the alkaline phosphatase enzyme for Salmonella thypimurium detection

    NASA Astrophysics Data System (ADS)

    Widyastuti, E.; Puspitasari Schonherr, M. F.; Masruroh, A.; Anggraeni, R. A.; Nisak, Y. K.; Mursidah, S.

    2018-03-01

    Salmonella is pathogenic bacteria that caused foodborne diseases which being called Salmonellosis. Prevalence of Salmonellosis that being caused by Salmonella thypimurium in Indonesia is quite high. However, detection of Salmonella bacteria in food still limited, complicated, and required a lot time. Sensitive optical assay for Salmonella thypimurium paper based detection has been developed by integrating sandwich assay between antibody-antigen complex and alkaline phosphatase enzyme that produce visible bluish-purple colour with presence of NBT-BCIP substrate. The results showed that Limit of Quantitation of detection is 105 CFU mL-1 with detection time 15 minutes. Linearity test between Colour intensity that produced from Salmonella concentration presence on samples showed that detection has good linearity. Selectivity test exhibited excellent sensitivity with good discrimination against Escherichia coli.

  11. Cycling temperature capillary electrophoresis: A quantitative, fast and inexpensive method to detect mutations in mixed populations of human mitochondrial DNA.

    PubMed

    Refinetti, Paulo; Morgenthaler, Stephan; Ekstrøm, Per O

    2016-07-01

    Cycling temperature capillary electrophoresis has been optimised for mutation detection in 76% of the mitochondrial genome. The method was tested on a mixed sample and compared to mutation detection by next generation sequencing. Out of 152 fragments 90 were concordant, 51 discordant and in 11 were semi-concordant. Dilution experiments show that cycling capillary electrophoresis has a detection limit of 1-3%. The detection limit of routine next generation sequencing was in the ranges of 15 to 30%. Cycling temperature capillary electrophoresis detect and accurate quantify mutations at a fraction of the cost and time required to perform a next generation sequencing analysis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. [Quantitative spectrum analysis of characteristic gases of spontaneous combustion coal].

    PubMed

    Liang, Yun-Tao; Tang, Xiao-Jun; Luo, Hai-Zhu; Sun, Yong

    2011-09-01

    Aimed at the characteristics of spontaneous combustion gas such as a variety of gases, lou limit of detection, and critical requirement of safety, Fourier transform infrared (FTIR) spectral analysis is presented to analyze characteristic gases of spontaneous combustion In this paper, analysis method is introduced at first by combing characteristics of absorption spectra of analyte and analysis requirement. Parameter setting method, sample preparation, feature variable abstract and analysis model building are taken into consideration. The methods of sample preparation, feature abstraction and analysis model are introduced in detail. And then, eleven kinds of gases were tested with Tensor 27 spectrometer. CH4, C2H6, C3H8, iC4H10, nC4H10, C2 H4, C3 H6, C3 H2, SF6, CO and CO2 were included. The optical path length was 10 cm while the spectra resolution was set as 1 cm(-1). The testing results show that the detection limit of all analytes is less than 2 x 10(-6). All the detection limits fit the measurement requirement of spontaneous combustion gas, which means that FTIR may be an ideal instrument and the analysis method used in this paper is competent for spontaneous combustion gas measurement on line.

  13. Sniper detection using infrared camera: technical possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Dulski, R.; Trzaskawka, P.; Bieszczad, G.

    2010-04-01

    The paper discusses technical possibilities to build an effective system for sniper detection using infrared cameras. Descriptions of phenomena which make it possible to detect sniper activities in infrared spectra as well as analysis of physical limitations were performed. Cooled and uncooled detectors were considered. Three phases of sniper activities were taken into consideration: before, during and after the shot. On the basis of experimental data the parameters defining the target were determined which are essential in assessing the capability of infrared camera to detect sniper activity. A sniper body and muzzle flash were analyzed as targets. The simulation of detection ranges was done for the assumed scenario of sniper detection task. The infrared sniper detection system was discussed, capable of fulfilling the requirements. The discussion of the results of analysis and simulations was finally presented.

  14. Development and Measurements of a Mid-Infrared Multi-Gas Sensor System for CO, CO₂ and CH₄ Detection.

    PubMed

    Dong, Ming; Zheng, Chuantao; Miao, Shuzhuo; Zhang, Yu; Du, Qiaoling; Wang, Yiding; Tittel, Frank K

    2017-09-27

    A multi-gas sensor system was developed that uses a single broadband light source and multiple carbon monoxide (CO), carbon dioxide (CO₂) and methane (CH₄) pyroelectric detectors by use of the time division multiplexing (TDM) technique. A stepper motor-based rotating system and a single-reflection spherical optical mirror were designed and adopted to realize and enhance multi-gas detection. Detailed measurements under static detection mode (without rotation) and dynamic mode (with rotation) were performed to study the performance of the sensor system for the three gas species. Effects of the motor rotating period on sensor performances were also investigated and a rotation speed of 0.4π rad/s was required to obtain a stable sensing performance, corresponding to a detection period of ~10 s to realize one round of detection. Based on an Allan deviation analysis, the 1 σ detection limits under static operation are 2.96, 4.54 and 2.84 parts per million in volume (ppmv) for CO, CO₂ and CH₄, respectively and the 1 σ detection limits under dynamic operations are 8.83, 8.69 and 10.29 ppmv for the three gas species, respectively. The reported sensor has potential applications in various fields requiring CO, CO₂ and CH₄ detection such as in coal mines.

  15. Development and validation of a multiplex quantitative polymerase chain reaction assay for the detection of Mollicutes impurities in human cells, cultured under good manufacturing practice conditions, and following European Pharmacopoeia requirements and the International Conference on Harmonization guidelines.

    PubMed

    Vanni, Irene; Ugolotti, Elisabetta; Raso, Alessandro; Di Marco, Eddi; Melioli, Giovanni; Biassoni, Roberto

    2012-07-01

    The clinical applications of in vitro manipulated cultured cells and their precursors are often made use of in therapeutic trials. However, tissue cultures can be easily contaminated by the ubiquitous Mollicutes micro-organisms, which can cause various and severe alterations in cellular function. Thus methods able to detect and trace Mollicutes impurities contaminating cell cultures are required before starting any attempt to grow cells under good manufacturing practice (GMP) conditions. We developed a multiplex quantitative polymerase chain reaction (qPCR) assay specific for the 16S-23S rRNA intergenic spacer regions, for the Tuf and P1 cytoadhesin genes, able to detect contaminant Mollicutes species in a single tube reaction. The system was validated by analyzing different cell lines and the positive samples were confirmed by 16S and P1 cytoadhesin gene dideoxy sequencing. Our multiplex qPCR detection system was able to reach a sensitivity, specificity and robustness comparable with the culture and the indicator cell culture method, as required by the European Pharmacopoeia guidelines. We have developed a multiplex qPCR method, validated following International Conference on Harmonization (ICH) guidelines, as a qualitative limit test for impurities, assessing the validation characteristics of limit of detection and specificity. It also follows the European Pharmacopoeia guidelines and Food and Drug Administration (FDA) requirements.

  16. Detection of ATP and NADH: A Bioluminescent Experience.

    ERIC Educational Resources Information Center

    Selig, Ted C.; And Others

    1984-01-01

    Described is a bioluminescent assay for adenosine triphosphate (ATP) and reduced nicotineamide-adenine dinucleotide (NADH) that meets the requirements of an undergraduate biochemistry laboratory course. The 3-hour experiment provides students with experience in bioluminescence and analytical biochemistry yet requires limited instrumentation,…

  17. LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching

    PubMed Central

    Gerbich, Therese M.; Rana, Kishan; Suzuki, Aussie; Schaefer, Kristina N.; Heppert, Jennifer K.; Boothby, Thomas C.; Allbritton, Nancy L.; Gladfelter, Amy S.; Maddox, Amy S.

    2018-01-01

    Fluorescence microscopy is a powerful approach for studying subcellular dynamics at high spatiotemporal resolution; however, conventional fluorescence microscopy techniques are light-intensive and introduce unnecessary photodamage. Light-sheet fluorescence microscopy (LSFM) mitigates these problems by selectively illuminating the focal plane of the detection objective by using orthogonal excitation. Orthogonal excitation requires geometries that physically limit the detection objective numerical aperture (NA), thereby limiting both light-gathering efficiency (brightness) and native spatial resolution. We present a novel live-cell LSFM method, lateral interference tilted excitation (LITE), in which a tilted light sheet illuminates the detection objective focal plane without a sterically limiting illumination scheme. LITE is thus compatible with any detection objective, including oil immersion, without an upper NA limit. LITE combines the low photodamage of LSFM with high resolution, high brightness, and coverslip-based objectives. We demonstrate the utility of LITE for imaging animal, fungal, and plant model organisms over many hours at high spatiotemporal resolution. PMID:29490939

  18. Calculation of the detection limit in radiation measurements with systematic uncertainties

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. M.; Russ, W.; Venkataraman, R.; Young, B. M.

    2015-06-01

    The detection limit (LD) or Minimum Detectable Activity (MDA) is an a priori evaluation of assay sensitivity intended to quantify the suitability of an instrument or measurement arrangement for the needs of a given application. Traditional approaches as pioneered by Currie rely on Gaussian approximations to yield simple, closed-form solutions, and neglect the effects of systematic uncertainties in the instrument calibration. These approximations are applicable over a wide range of applications, but are of limited use in low-count applications, when high confidence values are required, or when systematic uncertainties are significant. One proposed modification to the Currie formulation attempts account for systematic uncertainties within a Gaussian framework. We have previously shown that this approach results in an approximation formula that works best only for small values of the relative systematic uncertainty, for which the modification of Currie's method is the least necessary, and that it significantly overestimates the detection limit or gives infinite or otherwise non-physical results for larger systematic uncertainties where such a correction would be the most useful. We have developed an alternative approach for calculating detection limits based on realistic statistical modeling of the counting distributions which accurately represents statistical and systematic uncertainties. Instead of a closed form solution, numerical and iterative methods are used to evaluate the result. Accurate detection limits can be obtained by this method for the general case.

  19. JAMES WEBB SPACE TELESCOPE CAN DETECT KILONOVAE IN GRAVITATIONAL WAVE FOLLOW-UP SEARCH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartos, I.; Márka, S.; Huard, T. L., E-mail: ibartos@phys.columbia.edu

    Kilonovae represent an important electromagnetic counterpart for compact binary mergers, which could become the most commonly detected gravitational-wave (GW) source. Follow-up observations of kilonovae, triggered by GW events, are nevertheless difficult due to poor localization by GW detectors and due to their faint near-infrared peak emission, which has limited observational capability. We show that the Near-Infrared Camera (NIRCam) on the James Webb Space Telescope will be able to detect kilonovae within the relevant GW-detection range of ∼200 Mpc in short (≲12-s) exposure times for a week following the merger. Despite this sensitivity, a kilonova search fully covering a fiducial localizedmore » area of 10 deg{sup 2} will not be viable with NIRCam due to its limited field of view. However, targeted surveys may be developed to optimize the likelihood of discovering kilonovae efficiently within limited observing time. We estimate that a survey of 10 deg{sup 2} focused on galaxies within 200 Mpc would require about 13 hr, dominated by overhead times; a survey further focused on galaxies exhibiting high star formation rates would require ∼5 hr. The characteristic time may be reduced to as little as ∼4 hr, without compromising the likelihood of detecting kilonovae, by surveying sky areas associated with 50%, rather than 90%, confidence regions of 3 GW events, rather than a single event. Upon the detection and identification of a kilonova, a limited number of NIRCam follow-up observations could constrain the properties of matter ejected by the binary and the equation of state of dense nuclear matter.« less

  20. 75 FR 79048 - Notice of Availability of the Models for Plant-Specific Adoption of Technical Specifications Task...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... Specifications (STS) to define a new time limit for restoring inoperable RCS leakage detection instrumentation to... operability of the RCS leakage detection instrumentation. The CLIIP model SE will facilitate expedited... Operability Requirements and Actions for RCS Leakage Instrumentation'' AGENCY: Nuclear Regulatory Commission...

  1. Technical aspects and limitations of fractional flow reserve measurement.

    PubMed

    Jerabek, Stepan; Kovarnik, Tomas

    2018-02-27

    The only indication for coronary revascularization is elimination of ischaemia. Invasive hemodynamic methods (fractional flow reserve - FFR and instantaneous wave-free ratio (iFR) are superior to coronary angiography in detection of lesions causing myocardial ischaemia. Current European guidelines for myocardial revascularization recommend using of FFR for detection of functional assessment of lesions severity in category IA and number of these procedures increases. However, routine usage of these methods requires knowledge of technical requirements and limitations. The aim of the study is to summarise good clinical practice for FFR and iFR measurements with explanation of possible technical challenges, that are necessary for increasing of measurement accuracy. Authors describe frequent technical mistakes and malpractice during invasive assessment of lesion severity in coronary arteries.

  2. Analysis of Eddy Current Capabilities for the Detection of Outer Diameter Stress Corrosion Cracking in Small Bore Metallic Structures

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Williams, Phillip; Simpson, John

    2007-01-01

    The use of eddy current techniques for the detection of outer diameter damage in tubing and many complex aerospace structures often requires the use of an inner diameter probe due to a lack of access to the outside of the part. In small bore structures the probe size and orientation are constrained by the inner diameter of the part, complicating the optimization of the inspection technique. Detection of flaws through a significant remaining wall thickness becomes limited not only by the standard depth of penetration, but also geometrical aspects of the probe. Recently, an orthogonal eddy current probe was developed for detection of such flaws in Space Shuttle Primary Reaction Control System (PRCS) Thrusters. In this case, the detection of deeply buried stress corrosion cracking by an inner diameter eddy current probe was sought. Probe optimization was performed based upon the limiting spatial dimensions, flaw orientation, and required detection sensitivity. Analysis of the probe/flaw interaction was performed through the use of finite and boundary element modeling techniques. Experimental data for the flaw detection capabilities, including a probability of detection study, will be presented along with the simulation data. The results of this work have led to the successful deployment of an inspection system for the detection of stress corrosion cracking in Space Shuttle Primary Reaction Control System (PRCS) Thrusters.

  3. Advancements of Data Anomaly Detection Research in Wireless Sensor Networks: A Survey and Open Issues

    PubMed Central

    Rassam, Murad A.; Zainal, Anazida; Maarof, Mohd Aizaini

    2013-01-01

    Wireless Sensor Networks (WSNs) are important and necessary platforms for the future as the concept “Internet of Things” has emerged lately. They are used for monitoring, tracking, or controlling of many applications in industry, health care, habitat, and military. However, the quality of data collected by sensor nodes is affected by anomalies that occur due to various reasons, such as node failures, reading errors, unusual events, and malicious attacks. Therefore, anomaly detection is a necessary process to ensure the quality of sensor data before it is utilized for making decisions. In this review, we present the challenges of anomaly detection in WSNs and state the requirements to design efficient and effective anomaly detection models. We then review the latest advancements of data anomaly detection research in WSNs and classify current detection approaches in five main classes based on the detection methods used to design these approaches. Varieties of the state-of-the-art models for each class are covered and their limitations are highlighted to provide ideas for potential future works. Furthermore, the reviewed approaches are compared and evaluated based on how well they meet the stated requirements. Finally, the general limitations of current approaches are mentioned and further research opportunities are suggested and discussed. PMID:23966182

  4. Use of a capillary electrophoresis instrument with laser-induced fluorescence detection for DNA quantitation. Comparison of YO-PRO-1 and PicoGreen assays.

    PubMed

    Guillo, Christelle; Ferrance, Jerome P; Landers, James P

    2006-04-28

    Highly selective and sensitive assays are required for detection and quantitation of the small masses of DNA typically encountered in clinical and forensic settings. High detection sensitivity is achieved using fluorescent labeling dyes and detection techniques such as spectrofluorometers, microplate readers and cytometers. This work describes the use of a laser-induced fluorescence (LIF) detector in conjunction with a commercial capillary electrophoresis instrument for DNA quantitation. PicoGreen and YO-PRO-1, two fluorescent DNA labeling dyes, were used to assess the potential of the system for routine DNA analysis. Linearity, reproducibility, sensitivity, limits of detection and quantitation, and sample stability were examined for the two assays. The LIF detector response was found to be linear (R2 > 0.999) and reproducible (RSD < 9%) in both cases. The PicoGreen assay displayed lower limits of detection and quantitation (20 pg and 60 pg, respectively) than the YO-PRO-1 assay (60 pg and 260 pg, respectively). Although a small variation in fluorescence was observed for the DNA/dye complexes over time, quantitation was not significantly affected and the solutions were found to be relatively stable for 80 min. The advantages of the technique include a 4- to 40-fold reduction in the volume of sample required compared to traditional assays, a 2- to 20-fold reduction in the volume of reagents consumed, fast and automated analysis, and low cost (no specific instrumentation required).

  5. Analytical requirements, perspectives and limits of immunological methods for drugs in hair.

    PubMed

    Cassani, M; Spiehler, V

    1993-12-01

    The analytical requirements for analysis of drugs in hair are sensitivity in the range of picograms per milligram of hair, specificity for lipophilic drugs and absence of matrix effects with hair digests. These requirements are met by immunoassays which are also inexpensive, rapid and easy to use. However, in applying immunoassays to hair testing, certain limitations of the assay and of interpretation of assay results should be kept in perspective. These limitations are illustrated in this review with examples of the analysis of opiates in hair from patients and opiate addicts. The first requirement for immunological analysis of hair digests is that the digest must not denature the antibody proteins of the immunoassay reagents. For this reason enzymatic digests are better for immunological assay than chemical digests. Strongly acidic or alkaline digests must be brought to a neutral pH before immunoassay. Immunoassays used for analysis of hair should be calibrated with spiked hair digest standards to correct for possible matrix effects. The second requirement is that the immunoassay have the sensitivity and specificity to detect the drug in hair. Drugs of abuse are found in hair in the range of 10 pg-10 ng/mg hair. Radioimmunoassays are capable of detection and quantitation in this concentration range. Although the mechanism of drug incorporation into hair is not known, it is now apparent that primarily the parent drug and lipophilic metabolites are found in hair. For example, the ratio of cocaine/benzoylecgonine averages 10 (range 2-50) in published reports of analysis of hair from cocaine users. Therefore, immunoassays which are highly sensitive for the parent drug are required and results of immunoassays should be expressed as equivalents. When spiking standards for calibration of hair digest immunoassays, parent drug known to be present in hair should be used, e.g. cocaine not benzoylecgonine. With immunoassays which are specific for the lipophilic metabolite found in hair such as 6-MAM, differential radioimmunoassay can be used to discriminate between medical and illicit sources for the opiate drugs found in hair. Because of the low concentrations of drugs encountered in hair, immunoassays for hair have been used at cutoff concentrations at their limits of detection. The limit of detection (LOD) has been determined by calculating the mean and standard deviation (S.D.) for the assay response for a number of negative hair samples. The cutoff was then set at a distance of 2, 3, or 5 S.D.s from the mean response.(ABSTRACT TRUNCATED AT 400 WORDS)

  6. Constraints on the Progenitor of SN 2010jl and Pre-existing Hot Dust in its Surrounding Medium

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Arendt, Richard G.; Fox, Ori D.; Kelly, Patrick L.; Smith, Nathan; Van Dyk, Schuyler D.; Filippenko, Alexei, V.; Andrews, Jennifer; Shivvers, Isaac

    2017-01-01

    A search for the progenitor of SN 2010jl, an unusually luminous core-collapse supernova of Type IIn, using pre-explosion Hubble/WFPC2 and Spitzer/IRAC images of the region, yielded upper limits on the UV and near infrared (IR) fluxes from any candidate star. These upper limits constrain the luminosity and effective temperature of the progenitor, the mass of any pre-existing dust in its surrounding circumstellar medium (CSM), and dust proximity to the star. A lower limit on the CSM dust mass is required to hide a luminous progenitor from detection by Hubble. Upper limits on the CSM dust mass and constraints on its proximity to the star are set by requiring that the absorbed and reradiated IR emission not exceed the IRAC upper limits. Using the combined extinction-IR emission constraints, we present viable M(sub d)-R(sub 1) combinations, where M(sub d) and R(sub 1) are the CSM dust mass and its inner radius. These depend on the CSM outer radius, dust composition and grain size, and the properties of the progenitor. The results constrain the pre-supernova evolution of the progenitor, and the nature and origin of the observed post-explosion IR emission from SN 2010jl. In particular, an eta Car-type progenitor will require at least 4 mag of visual extinction to avoid detection by Hubble. This can be achieved with dust masses greater than approximately equal to 10(exp -3) solar mass (less than the estimated 0.2-0.5 solar mass around eta Car), which must be located at distances of greater than approximately equal to 10(exp 16) cm from the star to avoid detection by Spitzer.

  7. Development and Measurements of a Mid-Infrared Multi-Gas Sensor System for CO, CO2 and CH4 Detection

    PubMed Central

    Dong, Ming; Zheng, Chuantao; Miao, Shuzhuo; Zhang, Yu; Du, Qiaoling; Wang, Yiding

    2017-01-01

    A multi-gas sensor system was developed that uses a single broadband light source and multiple carbon monoxide (CO), carbon dioxide (CO2) and methane (CH4) pyroelectric detectors by use of the time division multiplexing (TDM) technique. A stepper motor-based rotating system and a single-reflection spherical optical mirror were designed and adopted to realize and enhance multi-gas detection. Detailed measurements under static detection mode (without rotation) and dynamic mode (with rotation) were performed to study the performance of the sensor system for the three gas species. Effects of the motor rotating period on sensor performances were also investigated and a rotation speed of 0.4π rad/s was required to obtain a stable sensing performance, corresponding to a detection period of ~10 s to realize one round of detection. Based on an Allan deviation analysis, the 1σ detection limits under static operation are 2.96, 4.54 and 2.84 parts per million in volume (ppmv) for CO, CO2 and CH4, respectively and the 1σ detection limits under dynamic operations are 8.83, 8.69 and 10.29 ppmv for the three gas species, respectively. The reported sensor has potential applications in various fields requiring CO, CO2 and CH4 detection such as in coal mines. PMID:28953260

  8. ON COMPUTING UPPER LIMITS TO SOURCE INTENSITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashyap, Vinay L.; Siemiginowska, Aneta; Van Dyk, David A.

    2010-08-10

    A common problem in astrophysics is determining how bright a source could be and still not be detected in an observation. Despite the simplicity with which the problem can be stated, the solution involves complicated statistical issues that require careful analysis. In contrast to the more familiar confidence bound, this concept has never been formally analyzed, leading to a great variety of often ad hoc solutions. Here we formulate and describe the problem in a self-consistent manner. Detection significance is usually defined by the acceptable proportion of false positives (background fluctuations that are claimed as detections, or Type I error),more » and we invoke the complementary concept of false negatives (real sources that go undetected, or Type II error), based on the statistical power of a test, to compute an upper limit to the detectable source intensity. To determine the minimum intensity that a source must have for it to be detected, we first define a detection threshold and then compute the probabilities of detecting sources of various intensities at the given threshold. The intensity that corresponds to the specified Type II error probability defines that minimum intensity and is identified as the upper limit. Thus, an upper limit is a characteristic of the detection procedure rather than the strength of any particular source. It should not be confused with confidence intervals or other estimates of source intensity. This is particularly important given the large number of catalogs that are being generated from increasingly sensitive surveys. We discuss, with examples, the differences between these upper limits and confidence bounds. Both measures are useful quantities that should be reported in order to extract the most science from catalogs, though they answer different statistical questions: an upper bound describes an inference range on the source intensity, while an upper limit calibrates the detection process. We provide a recipe for computing upper limits that applies to all detection algorithms.« less

  9. Detection of Microbial Water Quality Indicators and Fecal Waterborne Pathogens in Environmental Waters: A Review of Methods, Applications, and Limitations

    EPA Science Inventory

    Environmental waters are important reservoirs of pathogenic microorganisms, many of which are of fecal origin. In most cases, the presence of pathogens is determined using surrogate bacterial indicators. In other cases, direct detection of the pathogen in question is required. M...

  10. 76 FR 189 - Notice of Availability of the Models for Plant-Specific Adoption of Technical Specifications Task...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... Specifications (STS) to define a new time limit for restoring inoperable RCS leakage detection instrumentation to... operability of the RCS leakage detection instrumentation. The CLIIP model SE will facilitate expedited... Operability Requirements and Actions for RCS Leakage Instrumentation'' AGENCY: U.S. Nuclear Regulatory...

  11. Explosive detection using a novel dielectric barrier discharge ionisation source for mass spectrometry.

    PubMed

    Fletcher, Carl; Sleeman, Richard; Luke, John; Luke, Peter; Bradley, James W

    2018-03-01

    The detection of explosives is of great importance, as is the need for sensitive, reliable techniques that require little or no sample preparation and short run times for high throughput analysis. In this work, a novel ionisation source is presented based on a dielectric barrier discharge (DBD). This not only affects desorption and ionisation but also forms an ionic wind, providing mass transportation of ions towards the mass spectrometer. Furthermore, the design incorporates 2 asymmetric alumina sheets, each containing 3 DBDs, so that a large surface area can be analysed. The DBD operates in ambient air, overcoming the limitation of other plasma-based techniques which typically analyse smaller surface areas and require solvents or gases. A range of explosives across 4 different functional groups was analysed using the DBD with low limits of detection for cyclotrimethylene trinitramine (RDX) (100 pg), pentaerythritol trinitrate (PETN) (100 pg), hexamethylene triperoxide diamide (HMTD) (1 ng), and trinitrotoluene (TNT) (5 ng). Detection was achieved without any sample preparation or the addition of reagents to facilitate adduct formation. Copyright © 2017 John Wiley & Sons, Ltd.

  12. An efficient probe for rapid detection of cyanide in water at parts per billion levels and naked-eye detection of endogenous cyanide.

    PubMed

    Kumari, Namita; Jha, Satadru; Bhattacharya, Santanu

    2014-03-01

    A new molecular probe based on an oxidized bis-indolyl skeleton has been developed for rapid and sensitive visual detection of cyanide ions in water and also for the detection of endogenously bound cyanide. The probe allows the "naked-eye" detection of cyanide ions in water with a visual color change from red to yellow (Δλmax =80 nm) with the immediate addition of the probe. It shows high selectivity towards the cyanide ion without any interference from other anions. The detection of cyanide by the probe is ratiometric, thus making the detection quantitative. A Michael-type addition reaction of the probe with the cyanide ion takes place during this chemodosimetric process. In water, the detection limit was found to be at the parts per million level, which improved drastically when a neutral micellar medium was employed, and it showed a parts-per-billion-level detection, which is even 25-fold lower than the permitted limits of cyanide in water. The probe could also efficiently detect the endogenously bound cyanide in cassava (a staple food) with a clear visual color change without requiring any sample pretreatment and/or any special reaction conditions such as pH or temperature. Thus the probe could serve as a practical naked-eye probe for "in-field" experiments without requiring any sophisticated instruments. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. 223Ra-dichloride spectrometric characterization: Searching for the presence of long-lived isotopes with radiological protection implications.

    PubMed

    Sánchez-Jiménez, J; López-Montes, A; Núñez-Martínez, L; Villa-Abaunza, A; Fraile, L M; Sánchez-Tembleque, V; Udías, J M

    2017-03-01

    223 Ra-dichloride was approved with the commercial name of Xofigo in 2014 for treatment of metastatic castration-resistant prostate cancer. 223 Ra is obtained by neutron irradiation of 226 Ra yielding 227 Ac, which decays to 227 Th and 223 Fr, both decaying to 223 Ra. Since 223 Ra is predominantly (95.3%) an alpha emitter with a 11.42days long half-life, the radiopharmaceutical, its remnants, the patient, and waste material can be managed and disposed with low radiation protection requirements. 227 Ac is a long-lived (T 1/2 =21.77years) beta emitter that demands strong radiation protection measures. In particular waste disposal has to follow the International Atomic Energy Agency (IAEA) and European Commission (EC) regulations. Since 227 Ac is involved in the production of 223 Ra, an impurity analysis of each batch is required after production. Due to time restrictions, the manufacturer's detection limit (<0.001%) exceeds the one required to assure that 227 Ac concentrations are below direct disposal levels. To improve the detection limit, long-term accurate spectroscopy is required. Alpha and gamma spectroscopy measurements were carried out at the Complutense University Nuclear Physics Laboratory. After twelve months follow up of a sample, 227 Ac concentration was found to be smaller than 10 -9 . This allows for direct waste disposal and no additional radiation protection restrictions than those required for 223 Ra. The presence of contamination by other radioisotopes was also ruled out by this experiment. Specifically 226 Ra, involved in 223 Ra production as the original parent and with a very long-lived (T 1/2 =1577years) alpha emitter, was also below the experimental detection limit. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Redundant Calibration: breaking the constraints of limited sky information

    NASA Astrophysics Data System (ADS)

    Joseph, Ronniy C.

    2018-05-01

    The latest generation of low frequency radio interferometers, e.g. LOFAR, MWA, PAPER, has been pushing down the detection limits on the hydrogen signal from the Epoch of Reionisation. However, due to the challenges posed by foregrounds and instrumental systematics the signal has eluded detection thus far. To overcome these challenges we require a detailed understanding of the calibration of these relatively new telescopes. This led to a renewed interest in redundant calibration. Classical calibration schemes depend on sky models based on limited knowledge of the low frequency sky. Redundant calibration, however, allows us to escape our ignorance as it is sky model independent. We will review the field of redundant calibration, and present work we have undertaken to understand the limitations of this calibration method.

  15. Evaluation of statistical treatments of left-censored environmental data using coincident uncensored data sets: I. Summary statistics

    USGS Publications Warehouse

    Antweiler, Ronald C.; Taylor, Howard E.

    2008-01-01

    The main classes of statistical treatment of below-detection limit (left-censored) environmental data for the determination of basic statistics that have been used in the literature are substitution methods, maximum likelihood, regression on order statistics (ROS), and nonparametric techniques. These treatments, along with using all instrument-generated data (even those below detection), were evaluated by examining data sets in which the true values of the censored data were known. It was found that for data sets with less than 70% censored data, the best technique overall for determination of summary statistics was the nonparametric Kaplan-Meier technique. ROS and the two substitution methods of assigning one-half the detection limit value to censored data or assigning a random number between zero and the detection limit to censored data were adequate alternatives. The use of these two substitution methods, however, requires a thorough understanding of how the laboratory censored the data. The technique of employing all instrument-generated data - including numbers below the detection limit - was found to be less adequate than the above techniques. At high degrees of censoring (greater than 70% censored data), no technique provided good estimates of summary statistics. Maximum likelihood techniques were found to be far inferior to all other treatments except substituting zero or the detection limit value to censored data.

  16. Stripping analysis of nanomolar perchlorate in drinking water with a voltammetric ion-selective electrode based on thin-layer liquid membrane.

    PubMed

    Kim, Yushin; Amemiya, Shigeru

    2008-08-01

    A highly sensitive analytical method is required for the assessment of nanomolar perchlorate contamination in drinking water as an emerging environmental problem. We developed the novel approach based on a voltammetric ion-selective electrode to enable the electrochemical detection of "redox-inactive" perchlorate at a nanomolar level without its electrolysis. The perchlorate-selective electrode is based on the submicrometer-thick plasticized poly(vinyl chloride) membrane spin-coated on the poly(3-octylthiophene)-modified gold electrode. The liquid membrane serves as the first thin-layer cell for ion-transfer stripping voltammetry to give low detection limits of 0.2-0.5 nM perchlorate in deionized water, commercial bottled water, and tap water under a rotating electrode configuration. The detection limits are not only much lower than the action limit (approximately 246 nM) set by the U.S. Environmental Protection Agency but also are comparable to the detection limits of the most sensitive analytical methods for detecting perchlorate, that is, ion chromatography coupled with a suppressed conductivity detector (0.55 nM) or electrospray ionization mass spectrometry (0.20-0.25 nM). The mass transfer of perchlorate in the thin-layer liquid membrane and aqueous sample as well as its transfer at the interface between the two phases were studied experimentally and theoretically to achieve the low detection limits. The advantages of ion-transfer stripping voltammetry with a thin-layer liquid membrane against traditional ion-selective potentiometry are demonstrated in terms of a detection limit, a response time, and selectivity.

  17. DETECT: Detection of Events in Continuous Time Toolbox: User’s Guide, Examples, and Function Reference Documentation

    DTIC Science & Technology

    2013-06-01

    benefitting from rapid, automated discrimination of specific predefined signals , and is free-standing (requiring no other plugins or packages). The...previously labeled dataset, and comparing two labeled datasets. 15. SUBJECT TERMS Artifact, signal detection, EEG, MATLAB, toolbox 16. SECURITY... CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 56 19a. NAME OF RESPONSIBLE PERSON W. David Hairston a. REPORT

  18. Fast Optical Hazard Detection for Planetary Rovers Using Multiple Spot Laser Triangulation

    NASA Technical Reports Server (NTRS)

    Matthies, L.; Balch, T.; Wilcox, B.

    1997-01-01

    A new laser-based optical sensor system that provides hazard detection for planetary rovers is presented. It is anticipated that the sensor can support safe travel at speeds up to 6cm/second for large (1m) rovers in full sunlight on Earth or Mars. The system overcomes limitations in an older design that require image differencing ot detect a laser stripe in full sun.

  19. Polymer microchip CE of proteins either off- or on-chip labeled with chameleon dye for simplified analysis.

    PubMed

    Yu, Ming; Wang, Hsiang-Yu; Woolley, Adam T

    2009-12-01

    Microchip CE of proteins labeled either off- or on-chip with the "chameleon" CE dye 503 using poly(methyl methacrylate) microchips is presented. A simple dynamic coating using the cationic surfactant CTAB prevented nonspecific adsorption of protein and dye to the channel walls. The labeling reactions for both off- and on-chip labeling proceeded at room temperature without requiring heating steps. In off-chip labeling, a 9 ng/mL concentration detection limit for BSA, corresponding to a approximately 7 fg (100 zmol) mass detection limit, was obtained. In on-chip tagging, the free dye and protein were placed in different reservoirs of the microchip, and an extra incubation step was not needed. A 1 microg/mL concentration detection limit for BSA, corresponding to a approximately 700 fg (10 amol) mass detection limit, was obtained from this protocol. The earlier elution time of the BSA peak in on-chip labeling resulted from fewer total labels on each protein molecule. Our on-chip labeling method is an important part of automation in miniaturized devices.

  20. Inflight Microbial Monitoring - An Alternative Method to Culture Based Detection Currently Used on the International Space Station

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Birmele, Michele N.; Hummerick, Mary E.; Roman, Monsi; Smith, David J.

    2015-01-01

    Microorganisms including potential human pathogens have been detected on the International Space Station (ISS). The potential to introduce new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Current microbial monitoring methods require enrichment of microorganisms and a 48-hour incubation time resulting in an increase in microbial load, detecting a limited number of unidentified microorganisms. An expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted.

  1. Development of a sensitive GC-C-IRMS method for the analysis of androgens.

    PubMed

    Polet, Michael; Van Gansbeke, Wim; Deventer, Koen; Van Eenoo, Peter

    2013-02-01

    The administration of anabolic steroids is one of the most important issues in doping control and is detectable through a change in the carbon isotopic composition of testosterone and/or its metabolites. Gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS), however, remains a very laborious and expensive technique and substantial amounts of urine are needed to meet the sensitivity requirements of the IRMS. This can be problematic because only a limited amount of urine is available for anti-doping analysis on a broad spectrum of substances. In this work we introduce a new type of injection that increases the sensitivity of GC-C-IRMS by a factor of 13 and reduces the limit of detection, simply by using solvent vent injections instead of splitless injection. This drastically reduces the amount of urine required. On top of that, by only changing the injection technique, the detection parameters of the IRMS are not affected and there is no loss in linearity. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Statistical Limits to Super Resolution

    NASA Astrophysics Data System (ADS)

    Lucy, L. B.

    1992-08-01

    The limits imposed by photon statistics on the degree to which Rayleigh's resolution limit for diffraction-limited images can be surpassed by applying image restoration techniques are investigated. An approximate statistical theory is given for the number of detected photons required in the image of an unresolved pair of equal point sources in order that its information content allows in principle resolution by restoration. This theory is confirmed by numerical restoration experiments on synthetic images, and quantitative limits are presented for restoration of diffraction-limited images formed by slit and circular apertures.

  3. Multidetection of antibiotics in liver tissue by ultra-high-pressure-liquid-chromatography-tandem mass spectrometry.

    PubMed

    Freitas, Andreia; Barbosa, Jorge; Ramos, Fernando

    2015-01-22

    A multiresidue quantitative screening method covering 39 antibiotics from 7 different families by ultra-high-pressure-liquid-chromatography-tandem mass spectrometry (UHPLC-MS/MS) is described. Sulfonamides, trimethoprim, tetracyclines, macrolides, quinolones, penicillins and chloramphenicol are simultaneously detected in liver tissue. A simple sample treatment method consisting of extraction with a mixture of acetonitrile and ethylenediaminetetraacetic acid (EDTA) followed by solid-phase extraction (SPE) with a hydrophilic-lipophilic balanced (HLB) cartridge was developed. The methodology was validated, in accordance with Decision 2002/657/EC, by evaluating the following required parameters: decision limit (CCα), detection capability (CCβ), specificity, repeatability and reproducibility. The precision, in terms of the relative standard deviation, was under 22% for all of the compounds, and the recoveries were between 80% and 110%. The CCα and CCβ were determined according to the maximum residue limit (MRL) or the minimum required performance limit (MRPL), when established. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Streak Imaging Flow Cytometer for Rare Cell Analysis.

    PubMed

    Balsam, Joshua; Bruck, Hugh Alan; Ossandon, Miguel; Prickril, Ben; Rasooly, Avraham

    2017-01-01

    There is a need for simple and affordable techniques for cytology for clinical applications, especially for point-of-care (POC) medical diagnostics in resource-poor settings. However, this often requires adapting expensive and complex laboratory-based techniques that often require significant power and are too massive to transport easily. One such technique is flow cytometry, which has great potential for modification due to the simplicity of the principle of optical tracking of cells. However, it is limited in that regard due to the flow focusing technique used to isolate cells for optical detection. This technique inherently reduces the flow rate and is therefore unsuitable for rapid detection of rare cells which require large volume for analysis.To address these limitations, we developed a low-cost, mobile flow cytometer based on streak imaging. In our new configuration we utilize a simple webcam for optical detection over a large area associated with a wide-field flow cell. The new flow cell is capable of larger volume and higher throughput fluorescence detection of rare cells than the flow cells with hydrodynamic focusing used in conventional flow cytometry. The webcam is an inexpensive, commercially available system, and for fluorescence analysis we use a 1 W 450 nm blue laser to excite Syto-9 stained cells with emission at 535 nm. We were able to detect low concentrations of stained cells at high flow rates of 10 mL/min, which is suitable for rapidly analyzing larger specimen volumes to detect rare cells at appropriate concentration levels. The new rapid detection capabilities, combined with the simplicity and low cost of this device, suggest a potential for clinical POC flow cytometry in resource-poor settings associated with global health.

  5. Investigation of the Sensitivity of Transmission Raman Spectroscopy for Polymorph Detection in Pharmaceutical Tablets.

    PubMed

    Feng, Hanzhou; Bondi, Robert W; Anderson, Carl A; Drennen, James K; Igne, Benoît

    2017-08-01

    Polymorph detection is critical for ensuring pharmaceutical product quality in drug substances exhibiting polymorphism. Conventional analytical techniques such as X-ray powder diffraction and solid-state nuclear magnetic resonance are utilized primarily for characterizing the presence and identity of specific polymorphs in a sample. These techniques have encountered challenges in analyzing the constitution of polymorphs in the presence of other components commonly found in pharmaceutical dosage forms. Laborious sample preparation procedures are usually required to achieve satisfactory data interpretability. There is a need for alternative techniques capable of probing pharmaceutical dosage forms rapidly and nondestructively, which is dictated by the practical requirements of applications such as quality monitoring on production lines or when quantifying product shelf lifetime. The sensitivity of transmission Raman spectroscopy for detecting polymorphs in final tablet cores was investigated in this work. Carbamazepine was chosen as a model drug, polymorph form III is the commercial form, whereas form I is an undesired polymorph that requires effective detection. The concentration of form I in a direct compression tablet formulation containing 20% w/w of carbamazepine, 74.00% w/w of fillers (mannitol and microcrystalline cellulose), and 6% w/w of croscarmellose sodium, silicon dioxide, and magnesium stearate was estimated using transmission Raman spectroscopy. Quantitative models were generated and optimized using multivariate regression and data preprocessing. Prediction uncertainty was estimated for each validation sample by accounting for all the main variables contributing to the prediction. Multivariate detection limits were calculated based on statistical hypothesis testing. The transmission Raman spectroscopic model had an absolute prediction error of 0.241% w/w for the independent validation set. The method detection limit was estimated at 1.31% w/w. The results demonstrated that transmission Raman spectroscopy is a sensitive tool for polymorphs detection in pharmaceutical tablets.

  6. 40 CFR 63.2262 - How do I conduct performance tests and establish operating requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... method detection limit is less than or equal to 1 parts per million by volume, dry basis (ppmvd..., percent (determined for reconstituted wood product presses and board coolers as required in Table 4 to... = capture efficiency, percent (determined for reconstituted wood product presses and board coolers as...

  7. 40 CFR 63.2262 - How do I conduct performance tests and establish operating requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... method detection limit is less than or equal to 1 parts per million by volume, dry basis (ppmvd..., percent (determined for reconstituted wood product presses and board coolers as required in Table 4 to... = capture efficiency, percent (determined for reconstituted wood product presses and board coolers as...

  8. 40 CFR 63.2262 - How do I conduct performance tests and establish operating requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... method detection limit is less than or equal to 1 parts per million by volume, dry basis (ppmvd..., percent (determined for reconstituted wood product presses and board coolers as required in Table 4 to... = capture efficiency, percent (determined for reconstituted wood product presses and board coolers as...

  9. Step-scan T cell-based differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) for detection of ambient air contaminants

    NASA Astrophysics Data System (ADS)

    Liu, Lixian; Mandelis, Andreas; Huan, Huiting; Melnikov, Alexander

    2016-10-01

    A step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) using a commercial FTIR spectrometer was developed theoretically and experimentally for air contaminant monitoring. The configuration comprises two identical, small-size and low-resonance-frequency T cells satisfying the conflicting requirements of low chopping frequency and limited space in the sample compartment. Carbon dioxide (CO2) IR absorption spectra were used to demonstrate the capability of the DFTIR-PAS method to detect ambient pollutants. A linear amplitude response to CO2 concentrations from 100 to 10,000 ppmv was observed, leading to a theoretical detection limit of 2 ppmv. The differential mode was able to suppress the coherent noise, thereby imparting the DFTIR-PAS method with a better signal-to-noise ratio and lower theoretical detection limit than the single mode. The results indicate that it is possible to use step-scan DFTIR-PAS with T cells as a quantitative method for high sensitivity analysis of ambient contaminants.

  10. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens

    PubMed Central

    de Jonge, Martin D.; Ryan, Christopher G.; Jacobsen, Chris J.

    2014-01-01

    X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer. PMID:25177992

  11. Optical filter requirements in an EML-based single-sideband PAM4 intensity-modulation and direct-detection transmission system.

    PubMed

    Chen, Hsing-Yu; Kaneda, Noriaki; Lee, Jeffrey; Chen, Jyehong; Chen, Young-Kai

    2017-03-20

    The feasibility of a single sideband (SSB) PAM4 intensity-modulation and direct-detection (IM/DD) transmission based on a CMOS ADC and DAC is experimentally demonstrated in this work. To cost effectively build a >50 Gb/s system as well as to extend the transmission distance, a low cost EML and a passive optical filter are utilized to generate the SSB signal. However, the EML-induced chirp and dispersion-induced power fading limit the requirements of the SSB filter. To separate the effect of signal-signal beating interference, filters with different roll-off factors are employed to demonstrate the performance tolerance at different transmission distance. Moreover, a high resolution spectrum analysis is proposed to depict the system limitation. Experimental results show that a minimum roll-off factor of 7 dB/10GHz is required to achieve a 51.84Gb/s 40-km transmission with only linear feed-forward equalization.

  12. Validation of shortened 2-day sterility testing of mesenchymal stem cell-based therapeutic preparation on an automated culture system.

    PubMed

    Lysák, Daniel; Holubová, Monika; Bergerová, Tamara; Vávrová, Monika; Cangemi, Giuseppina Cristina; Ciccocioppo, Rachele; Kruzliak, Peter; Jindra, Pavel

    2016-03-01

    Cell therapy products represent a new trend of treatment in the field of immunotherapy and regenerative medicine. Their biological nature and multistep preparation procedure require the application of complex release criteria and quality control. Microbial contamination of cell therapy products is a potential source of morbidity in recipients. The automated blood culture systems are widely used for the detection of microorganisms in cell therapy products. However the standard 2-week cultivation period is too long for some cell-based treatments and alternative methods have to be devised. We tried to verify whether a shortened cultivation of the supernatant from the mesenchymal stem cell (MSC) culture obtained 2 days before the cell harvest could sufficiently detect microbial growth and allow the release of MSC for clinical application. We compared the standard Ph. Eur. cultivation method and the automated blood culture system BACTEC (Becton Dickinson). The time to detection (TTD) and the detection limit were analyzed for three bacterial and two fungal strains. The Staphylococcus aureus and Pseudomonas aeruginosa were recognized within 24 h with both methods (detection limit ~10 CFU). The time required for the detection of Bacillus subtilis was shorter with the automated method (TTD 10.3 vs. 60 h for 10-100 CFU). The BACTEC system reached significantly shorter times to the detection of Candida albicans and Aspergillus brasiliensis growth compared to the classical method (15.5 vs. 48 and 31.5 vs. 48 h, respectively; 10-100 CFU). The positivity was demonstrated within 48 h in all bottles, regardless of the size of the inoculum. This study validated the automated cultivation system as a method able to detect all tested microorganisms within a 48-h period with a detection limit of ~10 CFU. Only in case of B. subtilis, the lowest inoculum (~10 CFU) was not recognized. The 2-day cultivation technique is then capable of confirming the microbiological safety of MSC and allows their timely release for clinical application.

  13. Progressive data transmission for anatomical landmark detection in a cloud.

    PubMed

    Sofka, M; Ralovich, K; Zhang, J; Zhou, S K; Comaniciu, D

    2012-01-01

    In the concept of cloud-computing-based systems, various authorized users have secure access to patient records from a number of care delivery organizations from any location. This creates a growing need for remote visualization, advanced image processing, state-of-the-art image analysis, and computer aided diagnosis. This paper proposes a system of algorithms for automatic detection of anatomical landmarks in 3D volumes in the cloud computing environment. The system addresses the inherent problem of limited bandwidth between a (thin) client, data center, and data analysis server. The problem of limited bandwidth is solved by a hierarchical sequential detection algorithm that obtains data by progressively transmitting only image regions required for processing. The client sends a request to detect a set of landmarks for region visualization or further analysis. The algorithm running on the data analysis server obtains a coarse level image from the data center and generates landmark location candidates. The candidates are then used to obtain image neighborhood regions at a finer resolution level for further detection. This way, the landmark locations are hierarchically and sequentially detected and refined. Only image regions surrounding landmark location candidates need to be trans- mitted during detection. Furthermore, the image regions are lossy compressed with JPEG 2000. Together, these properties amount to at least 30 times bandwidth reduction while achieving similar accuracy when compared to an algorithm using the original data. The hierarchical sequential algorithm with progressive data transmission considerably reduces bandwidth requirements in cloud-based detection systems.

  14. Linear segmentation algorithm for detecting layer boundary with lidar.

    PubMed

    Mao, Feiyue; Gong, Wei; Logan, Timothy

    2013-11-04

    The automatic detection of aerosol- and cloud-layer boundary (base and top) is important in atmospheric lidar data processing, because the boundary information is not only useful for environment and climate studies, but can also be used as input for further data processing. Previous methods have demonstrated limitations in defining the base and top, window-size setting, and have neglected the in-layer attenuation. To overcome these limitations, we present a new layer detection scheme for up-looking lidars based on linear segmentation with a reasonable threshold setting, boundary selecting, and false positive removing strategies. Preliminary results from both real and simulated data show that this algorithm cannot only detect the layer-base as accurate as the simple multi-scale method, but can also detect the layer-top more accurately than that of the simple multi-scale method. Our algorithm can be directly applied to uncalibrated data without requiring any additional measurements or window size selections.

  15. Detection and quantification of beef and pork materials in meat products by duplex droplet digital PCR.

    PubMed

    Cai, Yicun; He, Yuping; Lv, Rong; Chen, Hongchao; Wang, Qiang; Pan, Liangwen

    2017-01-01

    Meat products often consist of meat from multiple animal species, and inaccurate food product adulteration and mislabeling can negatively affect consumers. Therefore, a cost-effective and reliable method for identification and quantification of animal species in meat products is required. In this study, we developed a duplex droplet digital PCR (dddPCR) detection and quantification system to simultaneously identify and quantify the source of meat in samples containing a mixture of beef (Bos taurus) and pork (Sus scrofa) in a single digital PCR reaction tube. Mixed meat samples of known composition were used to test the accuracy and applicability of this method. The limit of detection (LOD) and the limit of quantification (LOQ) of this detection and quantification system were also identified. We conclude that our dddPCR detection and quantification system is suitable for quality control and routine analyses of meat products.

  16. Identification of Fitness Determinants during Energy-Limited Growth Arrest in Pseudomonas aeruginosa

    PubMed Central

    Basta, David W.; Bergkessel, Megan

    2017-01-01

    ABSTRACT Microbial growth arrest can be triggered by diverse factors, one of which is energy limitation due to scarcity of electron donors or acceptors. Genes that govern fitness during energy-limited growth arrest and the extent to which they overlap between different types of energy limitation are poorly defined. In this study, we exploited the fact that Pseudomonas aeruginosa can remain viable over several weeks when limited for organic carbon (pyruvate) as an electron donor or oxygen as an electron acceptor. ATP values were reduced under both types of limitation, yet more severely in the absence of oxygen. Using transposon-insertion sequencing (Tn-seq), we identified fitness determinants in these two energy-limited states. Multiple genes encoding general functions like transcriptional regulation and energy generation were required for fitness during carbon or oxygen limitation, yet many specific genes, and thus specific activities, differed in their relevance between these states. For instance, the global regulator RpoS was required during both types of energy limitation, while other global regulators such as DksA and LasR were required only during carbon or oxygen limitation, respectively. Similarly, certain ribosomal and tRNA modifications were specifically required during oxygen limitation. We validated fitness defects during energy limitation using independently generated mutants of genes detected in our screen. Mutants in distinct functional categories exhibited different fitness dynamics: regulatory genes generally manifested a phenotype early, whereas genes involved in cell wall metabolism were required later. Together, these results provide a new window into how P. aeruginosa survives growth arrest. PMID:29184024

  17. Detection of shigella in lettuce by the use of a rapid molecular assay with increased sensitivity

    PubMed Central

    Jiménez, Kenia Barrantes; McCoy², Clyde B.; Achí, Rosario

    2010-01-01

    A Multiplex Polymerase Chain Reaction (PCR) assay to be used as an alternative to the conventional culture method in detecting Shigella and enteroinvasive Escherichia coli (EIEC) virulence genes ipaH and ial in lettuce was developed. Efficacy and rapidity of the molecular method were determined as compared to the conventional culture. Lettuce samples were inoculated with different Shigella flexneri concentrations (from 10 CFU/ml to 107 CFU/ml). DNA was extracted directly from lettuce after inoculation (direct-PCR) and after an enrichment step (enrichment PCR). Multiplex PCR detection limit was 104CFU/ml, diagnostic sensitivity and specificity were 100% accurate. An internal amplification control (IAC) of 100 bp was used in order to avoid false negative results. This method produced results in 1 to 2 days while the conventional culture method required 5 to 6 days. Also, the culture method detection limit was 106 CFU/ml, diagnostic sensitivity was 53% and diagnostic specificity was 100%. In this study a Multiplex PCR method for detection of virulence genes in Shigella and EIEC was shown to be effective in terms of diagnostic sensitivity, detection limit and amount of time as compared to Shigella conventional culture. PMID:24031579

  18. Dielectrophoretic label-free immunoassay for rare-analyte quantification in biological samples

    NASA Astrophysics Data System (ADS)

    Velmanickam, Logeeshan; Laudenbach, Darrin; Nawarathna, Dharmakeerthi

    2016-10-01

    The current gold standard for detecting or quantifying target analytes from blood samples is the ELISA (enzyme-linked immunosorbent assay). The detection limit of ELISA is about 250 pg/ml. However, to quantify analytes that are related to various stages of tumors including early detection requires detecting well below the current limit of the ELISA test. For example, Interleukin 6 (IL-6) levels of early oral cancer patients are <100 pg/ml and the prostate specific antigen level of the early stage of prostate cancer is about 1 ng/ml. Further, it has been reported that there are significantly less than 1 pg /mL of analytes in the early stage of tumors. Therefore, depending on the tumor type and the stage of the tumors, it is required to quantify various levels of analytes ranging from ng/ml to pg/ml. To accommodate these critical needs in the current diagnosis, there is a need for a technique that has a large dynamic range with an ability to detect extremely low levels of target analytes (

  19. Wavefront control methods for high-contrast integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Groff, Tyler D.; Mejia Prada, Camilo; Cady, Eric; Rizzo, Maxime J.; Mandell, Avi; Gong, Qian; McElwain, Michael; Zimmerman, Neil; Saxena, Prabal; Guyon, Olivier

    2017-09-01

    Direct Imaging of exoplanets using a coronagraph has become a major field of research both on the ground and in space. Key to the science of direct imaging is the spectroscopic capabilities of the instrument, our ability to fit spectra, and understanding the composition of the observed planets. Direct imaging instruments generally use an integral field spectrograph (IFS), which encodes the spectrum into a two-dimensional image on the detector. This results in more efficient detection and characterization of targets, and the spectral information is critical to achieving detection limits below the speckle floor of the imager. The most mature application of these techniques is at more modest contrast ratios on ground-based telescopes, achieving approximately 5-6 orders of magnitude suppression. In space, where we are attempting to detect Earth-analogs, the contrast requirements are more severe and the IFS must be incorporated into the wavefront control loop to reach 1e-10 detection limits required for Earth-like planet detection. We present the objectives and application of IFS imagery for both a speckle control loop and post-processing of images. Results, tested methodologies, and the future work using the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) and the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) at the JPL High Contrast Imaging Testbed are presented.

  20. Laser-Induced Fluorescence Emission (L.I.F.E.): searching for Mars organics with a UV-enhanced PanCam.

    PubMed

    Storrie-Lombardi, Michael C; Muller, Jan-Peter; Fisk, Martin R; Cousins, Claire; Sattler, Birgit; Griffiths, Andrew D; Coates, Andrew J

    2009-12-01

    The European Space Agency will launch the ExoMars mission in 2016 with a primary goal of surveying the martian subsurface for evidence of organic material. We have recently investigated the utility of including either a 365 nm light-emitting diode or a 375 nm laser light source in the ExoMars rover panoramic camera (PanCam). Such a modification would make it feasible to monitor rover drill cuttings optically for the fluorescence signatures of aromatic organic molecules and map the distribution of polycyclic aromatic hydrocarbons (PAHs) as a function of depth to the 2 m limit of the ExoMars drill. The technique described requires no sample preparation, does not consume irreplaceable resources, and would allow mission control to prioritize deployment of organic detection experiments that require sample destruction, expenditure of non-replaceable consumables, or both. We report here for the first time laser-induced fluorescence emission (L.I.F.E.) imaging detection limits for anthracene, pyrene, and perylene targets doped onto a Mars analog granular peridotite with a 375 nm Nichia laser diode in optically uncorrected wide-angle mode. Data were collected via the Beagle 2 PanCam backup filter wheel fitted with original blue (440 nm), green (530 nm), and red (670 nm) filters. All three PAH species can be detected with the PanCam green (530 nm) filter. Detection limits in the green band for signal-to-noise ratios (S/N) > 10 are 49 parts per million (ppm) for anthracene, 145 ppm for pyrene, and 20 ppm for perylene. The anthracene detection limit improves to 7 ppm with use of the PanCam blue filter. We discuss soil-dependent detection limit constraints; use of UV excitation with other rover cameras, which provides higher spatial resolution; and the advantages of focused and wide-angle laser modes. Finally, we discuss application of L.I.F.E. techniques at multiple wavelengths for exploration of Mars analog extreme environments on Earth, including Icelandic hydrothermally altered basalts and the ice-covered lakes and glaciers of Dronning Maud Land, Antarctica.

  1. Development and evaluation of an off-the-slide genotyping technique for identifying Giardia cysts and Cryptosporidium oocysts directly from US EPA Method 1623 slides.

    PubMed

    Ware, M W; Keely, S P; Villegas, E N

    2013-07-01

    This study developed and systematically evaluated performance and limit of detection of an off-the-slide genotyping procedure for both Cryptosporidium oocysts and Giardia cysts. Slide standards containing flow-sorted (oo)cysts were used to evaluate the off-the-slide genotyping procedure by microscopy and PCR. Results show approximately 20% of cysts and oocysts are lost during staining. Although transfer efficiency from the slide to the PCR tube could not be determined by microscopy, it was observed that the transfer process aided in the physical lysis of the (oo)cysts likely releasing DNA. PCR detection rates for a single event on a slide were 44% for Giardia and 27% for Cryptosporidium, and a minimum of five cysts and 20 oocysts are required to achieve a 90% PCR detection rate. A Poisson distribution analysis estimated the relative PCR target densities and limits of detection, it showed that 18 Cryptosporidium and five Giardia replicates are required for a 95% probability of detecting a single (oo)cyst on a slide. This study successfully developed and evaluated recovery rates and limits of detection of an off-the-slide genotyping procedure for both Cryptosporidium and Giardia (oo)cysts from the same slide. This off-the-slide genotyping technique is a simple and low cost tool that expands the applications of US EPA Method 1623 results by identifying the genotypes and assemblages of the enumerated Cryptosporidium and Giardia. This additional information will be useful for microbial risk assessment models and watershed management decisions. Journal of Applied Microbiology Published [2013]. This article is a U.S. Government work and is in the public domain in the USA.

  2. Rapid detection and quantification of 2,4-dichlorophenoxyacetic acid in milk using molecularly imprinted polymers-surface-enhanced Raman spectroscopy.

    PubMed

    Hua, Marti Z; Feng, Shaolong; Wang, Shuo; Lu, Xiaonan

    2018-08-30

    We report the development of a molecularly imprinted polymers-surface-enhanced Raman spectroscopy (MIPs-SERS) method for rapid detection and quantification of a herbicide residue 2,4-dichlorophenoxyacetic acid (2,4-D) in milk. MIPs were synthesized via bulk polymerization and utilized as solid phase extraction sorbent to selectively extract and enrich 2,4-D from milk. Silver nanoparticles were synthesized to facilitate the collection of SERS spectra of the extracts. Based on the characteristic band intensity of 2,4-D (391 cm -1 ), the limit of detection was 0.006 ppm and the limit of quantification was 0.008 ppm. A simple logarithmic working range (0.01-1 ppm) was established, satisfying the sensitivity requirement referring to the maximum residue level of 2,4-D in milk in both Europe and North America. The overall test of 2,4-D for each milk sample required only 20 min including sample preparation. This MIPs-SERS method has potential for practical applications in detecting 2,4-D in agri-foods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Compatibility of a Diffractive Pupil and Coronagraphic Imaging

    NASA Technical Reports Server (NTRS)

    Bendek, Eduardo; Belikov, Rusian; Pluzhnyk, Yevgeniy; Guyon, Olivier

    2013-01-01

    Detection and characterization of exo-earths require direct-imaging techniques that can deliver contrast ratios of 10(exp 10) at 100 milliarc-seconds or smaller angular separation. At the same time, astrometric data is required to measure planet masses and can help detect planets and constrain their orbital parameters. To minimize costs, a single space mission can be designed using a high efficiency coronograph to perform direct imaging and a diffractive pupil to calibrate wide-field distortions to enable high precision astrometric measurements. This paper reports the testing of a diffractive pupil on the high-contrast test bed at the NASA Ames Research Center to assess the compatibility of using a diffractive pupil with coronographic imaging systems. No diffractive contamination was found within our detectability limit of 2x10(exp -7) contrast outside a region of 12lambda/D and 2.5x10(exp -6) within a region spanning from 2 to 12lambda/D. Morphology of the image features suggests that no contamination exists even beyond the detectability limit specified or at smaller working angles. In the case that diffractive contamination is found beyond these stated levels, active wavefront control would be able to mitigate its intensity to 10(exp -7) or better contrast.

  4. Improved Sensor Fault Detection, Isolation, and Mitigation Using Multiple Observers Approach

    PubMed Central

    Wang, Zheng; Anand, D. M.; Moyne, J.; Tilbury, D. M.

    2017-01-01

    Traditional Fault Detection and Isolation (FDI) methods analyze a residual signal to detect and isolate sensor faults. The residual signal is the difference between the sensor measurements and the estimated outputs of the system based on an observer. The traditional residual-based FDI methods, however, have some limitations. First, they require that the observer has reached its steady state. In addition, residual-based methods may not detect some sensor faults, such as faults on critical sensors that result in an unobservable system. Furthermore, the system may be in jeopardy if actions required for mitigating the impact of the faulty sensors are not taken before the faulty sensors are identified. The contribution of this paper is to propose three new methods to address these limitations. Faults that occur during the observers' transient state can be detected by analyzing the convergence rate of the estimation error. Open-loop observers, which do not rely on sensor information, are used to detect faults on critical sensors. By switching among different observers, we can potentially mitigate the impact of the faulty sensor during the FDI process. These three methods are systematically integrated with a previously developed residual-based method to provide an improved FDI and mitigation capability framework. The overall approach is validated mathematically, and the effectiveness of the overall approach is demonstrated through simulation on a 5-state suspension system. PMID:28924303

  5. Isothermal Amplification Methods for the Detection of Nucleic Acids in Microfluidic Devices

    PubMed Central

    Zanoli, Laura Maria; Spoto, Giuseppe

    2012-01-01

    Diagnostic tools for biomolecular detection need to fulfill specific requirements in terms of sensitivity, selectivity and high-throughput in order to widen their applicability and to minimize the cost of the assay. The nucleic acid amplification is a key step in DNA detection assays. It contributes to improving the assay sensitivity by enabling the detection of a limited number of target molecules. The use of microfluidic devices to miniaturize amplification protocols reduces the required sample volume and the analysis times and offers new possibilities for the process automation and integration in one single device. The vast majority of miniaturized systems for nucleic acid analysis exploit the polymerase chain reaction (PCR) amplification method, which requires repeated cycles of three or two temperature-dependent steps during the amplification of the nucleic acid target sequence. In contrast, low temperature isothermal amplification methods have no need for thermal cycling thus requiring simplified microfluidic device features. Here, the use of miniaturized analysis systems using isothermal amplification reactions for the nucleic acid amplification will be discussed. PMID:25587397

  6. Wide-Field Imaging Using Nitrogen Vacancies

    NASA Technical Reports Server (NTRS)

    Englund, Dirk Robert (Inventor); Trusheim, Matthew Edwin (Inventor)

    2017-01-01

    Nitrogen vacancies in bulk diamonds and nanodiamonds can be used to sense temperature, pressure, electromagnetic fields, and pH. Unfortunately, conventional sensing techniques use gated detection and confocal imaging, limiting the measurement sensitivity and precluding wide-field imaging. Conversely, the present sensing techniques do not require gated detection or confocal imaging and can therefore be used to image temperature, pressure, electromagnetic fields, and pH over wide fields of view. In some cases, wide-field imaging supports spatial localization of the NVs to precisions at or below the diffraction limit. Moreover, the measurement range can extend over extremely wide dynamic range at very high sensitivity.

  7. Development of an enzyme-linked immunosorbent assay for the detection of dicamba.

    PubMed

    Clegg, B S; Stephenson, G R; Hall, J C

    2001-05-01

    A competitive indirect enzyme-linked immunosorbent assay (CI-ELISA) was developed to quantitate the herbicide dicamba (3,6-dichloro-2-methoxybenzoic acid) in water. The CI-ELISA has a detection limit of 2.3 microg L(-1) and a linear working range of 10--10000 microg L(-1) with an IC(50) value of 195 microg L(-1). The dicamba polyclonal antisera did not cross-react with a number of other herbicides tested but did cross-react with a dicamba metabolite, 5-hydroxydicamba, and structurally related chlorobenzoic acids. The assay was used to estimate quantitatively dicamba concentrations in water samples. Water samples were analyzed directly, and no sample preparation was required. To improve detection limits, a C(18) (reversed phase) column concentration step was devised prior to analysis, and the detection limits were increased by at least by 10-fold. After the sample preconcentration, the detection limit, IC(50), and linear working range were 0.23, 19.5, and 5-200 microg L(-1), respectively. The CI-ELISA estimations in water correlated well with those from gas chromatography-mass spectrometry (GC-MS) analysis (r(2) = 0.9991). This assay contributes to reducing laboratory costs associated with the conventional GC-MS residue analysis techniques for the quantitation of dicamba in water.

  8. Sensing the deadliest toxin: technologies for botulinum neurotoxin detection.

    PubMed

    Capek, Petr; Dickerson, Tobin J

    2010-01-01

    Sensitive and rapid detection of botulinum neurotoxins (BoNTs), the most poisonous substances known to date, is essential for studies of medical applications of BoNTs and detection of poisoned food, as well as for response to potential bioterrorist threats. Currently, the most common method of BoNT detection is the mouse bioassay. While this assay is sensitive, it is slow, quite expensive, has limited throughput and requires sacrificing animals. Herein, we discuss and compare recently developed alternative in vitro detection methods and assess their ability to supplement or replace the mouse bioassay in the analysis of complex matrix samples.

  9. Characterizing bio-optical and ecological features of algal bloom waters for detection and tracking from space

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Amin, R.; Gladkova, I.; Gilerson, A.; Grossberg, M.; Hlaing, S.; Shariar, F.; Alabi, P.

    2010-04-01

    The detection and monitoring of harmful algal blooms using in-situ field measurements is both labor intensive and is practically limited on achievable temporal and spatial resolutions, since field measurements are typically carried out at a series of discrete points and at discrete times, with practical limitations on temporal continuity. The planning and preparation of remedial measures to reduce health risks, etc., requires detection approaches which can effectively cover larger areas with contiguous spatial resolutions, and at the same time offer a more comprehensive and contemporaneous snapshot of entire blooms as they occur. This is beyond capabilities of in-situ measurements and it is in this context that satellite Ocean Color sensors offer potential advantages for bloom detection and monitoring. In this paper we examine the applications and limitations of an approach we have recently developed for the detection of K. brevis blooms from satellite Ocean Color Sensors measurements, the Red Band Difference Technique, and compare it to other detection algorithm approaches, including a new statistical based approach also proposed here. To achieve more uniform standards of comparisons, the performance of different techniques for detection are applied to the same specific verified blooms occurring off the West Florida Shelf (WFS) that have been verified by in-situ measurements.

  10. Aggregated silver nanoparticles based surface-enhanced Raman scattering enzyme-linked immunosorbent assay for ultrasensitive detection of protein biomarkers and small molecules.

    PubMed

    Liang, Jiajie; Liu, Hongwu; Huang, Caihong; Yao, Cuize; Fu, Qiangqiang; Li, Xiuqing; Cao, Donglin; Luo, Zhi; Tang, Yong

    2015-06-02

    Lowering the detection limit is critical to the design of bioassays required for medical diagnostics, environmental monitoring, and food safety regulations. The current sensitivity of standard color-based analyte detection limits the further use of enzyme-linked immunosorbent assays (ELISAs) in research and clinical diagnoses. Here, we demonstrate a novel method that uses the Raman signal as the signal-generating system of an ELISA and combines surface-enhanced Raman scattering (SERS) with silver nanoparticles aggregation for ultrasensitive analyte detection. The enzyme label of the ELISA controls the dissolution of Raman reporter-labeled silver nanoparticles through hydrogen peroxide and generates a strong Raman signal when the analyte is present. Using this assay, prostate-specific antigen (PSA) and the adrenal stimulant ractopamine (Rac) were detected in whole serum and urine at the ultralow concentrations of 10(-9) and 10(-6) ng/mL, respectively. The methodology proposed here could potentially be applied to other molecules detection as well as PSA and Rac.

  11. Nanoparticle Enhancement Cascade for Sensitive Multiplex Measurements of Biomarkers in Complex Fluids with Surface Plasmon Resonance Imaging.

    PubMed

    Hendriks, Jan; Stojanovic, Ivan; Schasfoort, Richard B M; Saris, Daniël B F; Karperien, Marcel

    2018-06-05

    There is a large unmet need for reliable biomarker measurement systems for clinical application. Such systems should meet challenging requirements for large scale use, including a large dynamic detection range, multiplexing capacity, and both high specificity and sensitivity. More importantly, these requirements need to apply to complex biological samples, which require extensive quality control. In this paper, we present the development of an enhancement detection cascade for surface plasmon resonance imaging (SPRi). The cascade applies an antibody sandwich assay, followed by neutravidin and a gold nanoparticle enhancement for quantitative biomarker measurements in small volumes of complex fluids. We present a feasibility study both in simple buffers and in spiked equine synovial fluid with four cytokines, IL-1β, IL-6, IFN-γ, and TNF-α. Our enhancement cascade leads to an antibody dependent improvement in sensitivity up to 40 000 times, resulting in a limit of detection as low as 50 fg/mL and a dynamic detection range of more than 7 logs. Additionally, measurements at these low concentrations are highly reliable with intra- and interassay CVs between 2% and 20%. We subsequently showed this assay is suitable for multiplex measurements with good specificity and limited cross-reactivity. Moreover, we demonstrated robust detection of IL-6 and IL-1β in spiked undiluted equine synovial fluid with small variation compared to buffer controls. In addition, the availability of real time measurements provides extensive quality control opportunities, essential for clinical applications. Therefore, we consider this method is suitable for broad application in SPRi for multiplex biomarker detection in both research and clinical settings.

  12. Polymer microchip capillary electrophoresis of proteins either off- or on-chip labeled with chameleon dye for simplified analysis

    PubMed Central

    Yu, Ming; Wang, Hsiang-Yu; Woolley, Adam

    2009-01-01

    Microchip capillary electrophoresis of proteins labeled either off- or on-chip with the “chameleon” CE dye 503 using poly(methyl methacrylate) microchips is presented. A simple dynamic coating using the cationic surfactant cetyltrimethyl ammonium bromide prevented nonspecific adsorption of protein and dye to the channel walls. The labeling reactions for both off- and on-chip labeling proceeded at room temperature without requiring heating steps. In off-chip labeling, a 9 ng/mL concentration detection limit for bovine serum albumin (BSA), corresponding to a ~7 fg (100 zmol) mass detection limit, was obtained. In on-chip tagging, the free dye and protein were placed in different reservoirs of the microchip, and an extra incubation step was not needed. A 1 μg/mL concentration detection limit for BSA, corresponding to a ~700 fg (10 amol) mass detection limit, was obtained from this protocol. The earlier elution time of the BSA peak in on-chip labeling resulted from fewer total labels on each protein molecule. Our on-chip labeling method is an important part of automation in miniaturized devices. PMID:19924700

  13. 40 CFR 60.5170 - What operating limits and requirements must I meet and by when?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wet scrubber, fabric filter, electrostatic precipitator, or activated carbon injection are listed in... pollution control device. (c) If you use a fabric filter to comply with the emission limits, you must install the bag leak detection system specified in §§ 60.5200(b) and 60.5225(b)(3)(i) and operate the bag...

  14. Evolution of the Ultrasonic Inspection Requirements of Heavy Rotor Forgings Over the Past Decades

    NASA Astrophysics Data System (ADS)

    Vrana, J.; Zimmer, A.; Bailey, K.; Angal, R.; Zombo, P.; Büchner, U.; Buschmann, A.; Shannon, R. E.; Lohmann, H.-P.; Heinrich, W.

    2010-02-01

    Heavy rotor forgings for land-based power generation turbines and generators are inspected ultrasonically. Several decades ago the first inspections were conducted using manual, straight beam, contact transducers with simple, non-descript reporting requirements. The development of ultrasonic inspection capabilities, the change in design engineer requirements, improvements of fracture mechanics calculations, experience with turbine operation, experience with the inspection technology, and probability of detection drove the changes that have resulted in the current day inspection requirements: sizing technologies were implemented, detection limits were lowered, angle and pitch/catch (dual crystal) scans were introduced, and most recently automated equipment for the inspection was required. Due to all these changes, model based sizing techniques, like DGS, and modern ultrasonic techniques, like phased array, are being introduced globally. This paper describes the evolution of the ultrasonic inspection requirements over the last decades and presents an outlook for tomorrow.

  15. Discrimination Report: ESTCP UXO Discrimination Study, ESTCPProject #MM-0437

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasperikova, Erika; Smith, J. Torquil; Morrison, H. Frank

    2007-12-21

    The FY06 Defense Appropriation contains funding for the 'Development of Advanced, Sophisticated, Discrimination Technologies for UXO Cleanup' in the Environmental Security Technology Certification Program. In 2003, the Defense Science Board observed: 'The problem is that instruments that can detect the buried UXOs also detect numerous scrap metal objects and other artifacts, which leads to an enormous amount of expensive digging. Typically 100 holes may be dug before a real UXO is unearthed! The Task Force assessment is that much of this wasteful digging can be eliminated by the use of more advanced technology instruments that exploit modern digital processing andmore » advanced multi-mode sensors to achieve an improved level of discrimination of scrap from UXOs.' Significant progress has been made in discrimination technology. To date, testing of these approaches has been primarily limited to test sites with only limited application at live sites. Acceptance of discrimination technologies requires demonstration of system capabilities at real UXO sites under real world conditions. Any attempt to declare detected anomalies to be harmless and requiring no further investigation require demonstration to regulators of not only individual technologies, but of an entire decision making process. This discrimination study was be the first phase in what is expected to be a continuing effort that will span several years.« less

  16. Anodic Stripping Voltammetry with Pencil Graphite Electrode for Determination of Chromium (III)

    NASA Astrophysics Data System (ADS)

    Wyantuti, S.; Hafidza, R. A.; Ishmayana, S.; Hartati, Y. W.

    2017-02-01

    Chromium is required as micronutrient that has roles in insulin metabolism and blood glucose level regulation. Chromium (III) deficiency can cause hyperglycemia and glycosuria. However, a high amount of chromium in body can cause allergic reaction, organ damage, and even death because of its toxicity. Chromium is commonly used in steel industries. Simultaneously with the development of industry, the waste disposal that can endanger environment also increased. Therefore, a sensitive and specific analysis method for chromium detection is required. Stripping voltammetry is one of the voltammetric methods that is commonly used for heavy metal analysis due to the very low limit of detection (sub ppb). The present study was conducted to develop an analysis method for chromium (III) determination using pencil graphite electrode. Quantitative determination was performed for chromium (III) which measured at -0.8 to +1.0 V with deposition time for 60 s and 50 mV/s scan rate. Stripping voltammetric analysis of chromium (III) using pencil graphite electrode gave linear range at 12.5 to 75 ppm with limit of detection of 0.31 ppm.

  17. Sub-micron materials characterization using near-field optics

    NASA Astrophysics Data System (ADS)

    Blodgett, David Wesley

    1998-12-01

    High-resolution sub-surface materials characterization and inspection are critical in the microelectronics and thin films industries. To this end, a technique is described that couples the bulk property measurement capabilities of high-frequency ultrasound with the high-resolution surface imaging capabilities of the near-field optical microscope. Sensing bulk microstructure variations in the material, such as grain boundaries, requires a detection footprint smaller than the variation itself. The near-field optical microscope, with the ability to exceed the diffraction limit in optical resolution, meets this requirement. Two apertureless near-field optical microscopes, on-axis and off-axis illumination, have been designed and built. Near-field and far-field approach curves for both microscopes are presented. The sensitivity of the near-field approach curve was 8.3 muV/nm. Resolution studies for the near-field microscope indicate optical resolutions on the order of 50 nm, which exceeds the diffraction limit. The near-field microscope has been adapted to detect both contact-transducer-generated and laser-generated ultrasound. The successful detection of high-frequency ultrasound with the near-field optical microscope demonstrates the potential of this technique.

  18. Detecting Chemical Weapons: Threats, Requirements, Solutions, and Future Challenges

    NASA Astrophysics Data System (ADS)

    Boso, Brian

    2011-03-01

    Although chemicals have been reportedly used as weapons for thousands of years, it was not until 1915 at Ypres, France that an industrial chemical, chlorine, was used in World War I as an offensive weapon in significant quantity, causing mass casualties. From that point until today the development, detection, production and protection from chemical weapons has be an organized endeavor of many of the world's armed forces and in more recent times, non-governmental terrorist organizations. The number of Chemical Warfare Agents (CWAs) has steadily increased as research into more toxic substances continued for most of the 20 th century. Today there are over 70 substances including harassing agents like tear gas, incapacitating agents, and lethal agents like blister, blood, chocking, and nerve agents. The requirements for detecting chemical weapons vary depending on the context in which they are encountered and the concept of operation of the organization deploying the detection equipment. The US DoD, for example, has as a requirement, that US forces be able to continue their mission, even in the event of a chemical attack. This places stringent requirements on detection equipment. It must be lightweight (<2 lbs), detect a large array of chemical warfare agents and toxic industrial chemicals, detect and warn at concentration levels and time duration to prevent acute health effects, meet military ruggedness specifications and work over a wide range of temperature and humidity, and have a very high probability of detection with a similarly low probability of false positives. The current technology of choice to meet these stringent requirements is Ion Mobility Spectrometry. Many technologies are capable of detecting chemicals at the trace levels required and have been extensively developed for this application, including, but not limited to: mass spectroscopy, IR spectroscopy, RAMAN spectroscopy, MEMs micro-cantilever sensors, surface acoustic wave sensors, differential mobility spectrometry, and amplifying fluorescence polymers. In the future the requirements for detection equipment will continue to become even more stringent. The continuing increase in the sheer number of threats that will need to be detected, the development of binary agents requiring that even the precursor chemicals be detected, the development of new types of agents unlike any of the current chemistries, and the expansion of the list of toxic industrial chemical will require new techniques with higher specificity and more sensitivity.

  19. Using Public Network Infrastructures for UAV Remote Sensing in Civilian Security Operations

    DTIC Science & Technology

    2011-03-01

    leveraging public wireless communication networks for UAV-based sensor networks with respect to existing constraints and user requirements...Detection with an Autonomous Micro UAV Mesh Network . In the near future police departments, fire brigades and other homeland security ...UAV-based sensor networks with respect to existing constraints and user requirements. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION

  20. Microscale Concentration Measurements Using Laser Light Scattering Methods

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles; Miller, Fletcher

    2004-01-01

    The development of lab-on-a-chip devices for microscale biochemical assays has led to the need for microscale concentration measurements of specific analyses. While fluorescence methods are the current choice, this method requires developing fluorophore-tagged conjugates for each analyte of interest. In addition, fluorescent imaging is also a volume-based method, and can be limiting as smaller detection regions are required.

  1. Sensitive detection of capsaicinoids using a surface plasmon resonance sensor with anti-homovanillic Acid polyclonal antibodies.

    PubMed

    Nakamura, Shingo; Yatabe, Rui; Onodera, Takeshi; Toko, Kiyoshi

    2013-11-13

    Recently, highly functional biosensors have been developed in preparation for possible large-scale terrorist attacks using chemical warfare agents. Practically applicable sensors are required to have various abilities, such as high portability and operability, the capability of performing rapid and continuous measurement, as well as high sensitivity and selectivity. We developed the detection method of capsaicinoids, the main component of some lachrymators, using a surface plasmon resonance (SPR) immunosensor as an on-site detection sensor. Homovanillic acid, which has a vanillyl group similar to capsaicinoids such as capsaicin and dihydrocapsaicin, was bound to Concholepas concholepas hemocyanin (CCH) for use as an immunogen to generate polyclonal antibodies. An indirect competitive assay was carried out to detect capsaicinoids using SPR sensor chips on which different capsaicin analogues were immobilized. For the sensor chip on which 4-hydroxy-3-methoxybenzylamine hydrochloride was immobilized, a detection limit of 150 ppb was achieved. We found that the incubation time was not required and the detection can be completed in five minutes.

  2. Ground Validation Assessments of GPM Core Observatory Science Requirements

    NASA Astrophysics Data System (ADS)

    Petersen, Walt; Huffman, George; Kidd, Chris; Skofronick-Jackson, Gail

    2017-04-01

    NASA Global Precipitation Measurement (GPM) Mission science requirements define specific measurement error standards for retrieved precipitation parameters such as rain rate, raindrop size distribution, and falling snow detection on instantaneous temporal scales and spatial resolutions ranging from effective instrument fields of view [FOV], to grid scales of 50 km x 50 km. Quantitative evaluation of these requirements intrinsically relies on GPM precipitation retrieval algorithm performance in myriad precipitation regimes (and hence, assumptions related to physics) and on the quality of ground-validation (GV) data being used to assess the satellite products. We will review GPM GV products, their quality, and their application to assessing GPM science requirements, interleaving measurement and precipitation physical considerations applicable to the approaches used. Core GV data products used to assess GPM satellite products include 1) two minute and 30-minute rain gauge bias-adjusted radar rain rate products and precipitation types (rain/snow) adapted/modified from the NOAA/OU multi-radar multi-sensor (MRMS) product over the continental U.S.; 2) Polarimetric radar estimates of rain rate over the ocean collected using the K-Pol radar at Kwajalein Atoll in the Marshall Islands and the Middleton Island WSR-88D radar located in the Gulf of Alaska; and 3) Multi-regime, field campaign and site-specific disdrometer-measured rain/snow size distribution (DSD), phase and fallspeed information used to derive polarimetric radar-based DSD retrievals and snow water equivalent rates (SWER) for comparison to coincident GPM-estimated DSD and precipitation rates/types, respectively. Within the limits of GV-product uncertainty we demonstrate that the GPM Core satellite meets its basic mission science requirements for a variety of precipitation regimes. For the liquid phase, we find that GPM radar-based products are particularly successful in meeting bias and random error requirements associated with retrievals of rain rate and required +/- 0.5 millimeter error bounds for mass-weighted mean drop diameter. Version-04 (V4) GMI GPROF radiometer-based rain rate products exhibit reasonable agreement with GV, but do not completely meet mission science requirements over the continental U.S. for lighter rain rates (e.g., 1 mm/hr) due to excessive random error ( 75%). Importantly, substantial corrections were made to the V4 GPROF algorithm and preliminary analysis of Version 5 (V5) rain products indicates more robust performance relative to GV. For the frozen phase and a modest GPM requirement to "demonstrate detection of snowfall", DPR products do successfully identify snowfall within the sensitivity and beam sampling limits of the DPR instrument ( 12 dBZ lower limit; lowest clutter-free bins). Similarly, the GPROF algorithm successfully "detects" falling snow and delineates it from liquid precipitation. However, the GV approach to computing falling-snow "detection" statistics is intrinsically tied to GPROF Bayesian algorithm-based thresholds of precipitation "detection" and model analysis temperature, and is not sufficiently tied to SWER. Hence we will also discuss ongoing work to establish the lower threshold SWER for "detection" using combined GV radar, gauge and disdrometer-based case studies.

  3. Quantum-limited Terahertz detection without liquid cryogens

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Under this contract, we have successfully designed, fabricated and tested a revolutionary new type of detector for Terahertz (THz) radiation, the tunable antenna-coupled intersubband Terahertz (TACIT) detector. The lowest-noise THz detectors used in the astrophysics community require cooling to temperatures below 4K. This deep cryogenic requirement forces satellites launched for THz- observing missions to include either large volumes of liquid Helium, complex cryocoolers, or both. Cryogenic requirements thus add significantly to the cost, complexity and mass of satellites and limit the duration of their missions. It hence desirable to develop new detector technologies with less stringent cryogenic requirements. Such detectors will not only be important in space-based astrophysics, but also respond to a growing demand for THz technology for earth-based scientific and commercial applications.

  4. Observing Strategies for the Detection of Jupiter Analogs

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Tinney, C. G.; Horner, J.; Butler, R. P.; Jones, H. R. A.; O'Toole, S. J.; Bailey, J.; Carter, B. D.; Salter, G. S.; Wright, D.

    2013-04-01

    To understand the frequency, and thus the formation and evolution, of planetary systems like our own solar system, it is critical to detect Jupiter-like planets in Jupiter-like orbits. For long-term radial-velocity monitoring, it is useful to estimate the observational effort required to reliably detect such objects, particularly in light of severe competition for limited telescope time. We perform detailed simulations of observational campaigns, maximizing the realism of the sampling of a set of simulated observations. We then compute the detection limits for each campaign to quantify the effect of increasing the number of observational epochs and varying their time coverage. We show that once there is sufficient time baseline to detect a given orbital period, it becomes less effective to add further time coverage—rather, the detectability of a planet scales roughly as the square root of the number of observations, independently of the number of orbital cycles included in the data string. We also show that no noise floor is reached, with a continuing improvement in detectability at the maximum number of observations N = 500 tested here.

  5. Automated detection of diabetic retinopathy: barriers to translation into clinical practice.

    PubMed

    Abramoff, Michael D; Niemeijer, Meindert; Russell, Stephen R

    2010-03-01

    Automated identification of diabetic retinopathy (DR), the primary cause of blindness and visual loss for those aged 18-65 years, from color images of the retina has enormous potential to increase the quality, cost-effectiveness and accessibility of preventative care for people with diabetes. Through advanced image analysis techniques, retinal images are analyzed for abnormalities that define and correlate with the severity of DR. Translating automated DR detection into clinical practice will require surmounting scientific and nonscientific barriers. Scientific concerns, such as DR detection limits compared with human experts, can be studied and measured. Ethical, legal and political issues can be addressed, but are difficult or impossible to measure. The primary objective of this review is to survey the methods, potential benefits and limitations of automated detection in order to better manage translation into clinical practice, based on extensive experience with the systems we have developed.

  6. Singular value decomposition metrics show limitations of detector design in diffuse fluorescence tomography

    PubMed Central

    Leblond, Frederic; Tichauer, Kenneth M.; Pogue, Brian W.

    2010-01-01

    The spatial resolution and recovered contrast of images reconstructed from diffuse fluorescence tomography data are limited by the high scattering properties of light propagation in biological tissue. As a result, the image reconstruction process can be exceedingly vulnerable to inaccurate prior knowledge of tissue optical properties and stochastic noise. In light of these limitations, the optimal source-detector geometry for a fluorescence tomography system is non-trivial, requiring analytical methods to guide design. Analysis of the singular value decomposition of the matrix to be inverted for image reconstruction is one potential approach, providing key quantitative metrics, such as singular image mode spatial resolution and singular data mode frequency as a function of singular mode. In the present study, these metrics are used to analyze the effects of different sources of noise and model errors as related to image quality in the form of spatial resolution and contrast recovery. The image quality is demonstrated to be inherently noise-limited even when detection geometries were increased in complexity to allow maximal tissue sampling, suggesting that detection noise characteristics outweigh detection geometry for achieving optimal reconstructions. PMID:21258566

  7. A practical approach to determination of laboratory GC-MS limits of detection.

    PubMed

    Underwood, P J; Kananen, G E; Armitage, E K

    1997-01-01

    Determination of limit of detection (LOD) values in a forensic laboratory serves a fundamental forensic requirement for assay performance. In addition to demonstrating assay capability, LOD values can also be used to fulfill certification requirements of a high-volume forensic drug laboratory. The LOD was defined as the lowest concentration of drug that the laboratory can detect in a specimen with forensic certainty at a minimum of 85% of the time. Overall batch acceptance criteria included acceptable quantitation of control materials (within 20% of target), acceptable chromatography (symmetry, peak integration, peak shape, peak, and baseline resolution), retention time within +/-1% of the extracted standard, and mass ion ratios within +/-20% of the extracted standard mass ion ratios. Individual specimen acceptance criteria were the same as the batch acceptance criteria excluding the quantitation requirement. Data were collected from all instruments on different runs. A minimum of ten data points was required for each certified instrument, and a minimum of 85% of data points was acceptable. Quantitation within +/-20% of the LOD concentration was not required, but acceptable mass ratios were required. Data points with poor chromatography (internal standard failed mass ratios; interference of the baseline, for example, shoulders; asymmetry; and baseline resolution) was omitted from the acceptable rate calculation. Data points with good chromatography with failed mass ion ratios were included in the acceptable rate calculation. With these criteria, we established the following LODs: 11-nor-delta 9-tetrahydrocannabinol-9-carboxylic acid, 2 ng/mL; benzoylecgonine, 5 ng/mL; phencyclidine, 2.5 ng/mL; amphetamine, 150 ng/mL; methamphetamine, 100 ng/mL; codeine, 500 ng/mL; and morphine, 1000 ng/mL.

  8. Determination of trace metals in spirits by total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Siviero, G.; Cinosi, A.; Monticelli, D.; Seralessandri, L.

    2018-06-01

    Eight spirituous samples were analyzed for trace metal content with Horizon Total Reflection X-Ray Fluorescence (TXRF) Spectrometer. The expected single metal amount is at the ng/g level in a mixed aqueous/organic matrix, thus requiring a sample preparation method capable of achieving suitable limits of detection. On-site enrichment and Atmospheric Pressure-Vapor Phase Decomposition allowed to detect Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Sr and Pb with detection limits ranging from 0.1 ng/g to 4.6 ng/g. These results highlight how the synergy between instrument and sample preparation strategy may foster the use of TXRF as a fast and reliable technique for the determination of trace elements in spirituous samples, either for quality control or risk assessment purposes.

  9. Volcanic eruption detection with TOMS

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.

    1987-01-01

    The Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) is designed for mapping of the atmospheric ozone distribution. Absorption by sulfur dioxide at the same ultraviolet spectral wavelengths makes it possible to observe and resolve the size of volcanic clouds. The sulfur dioxide absorption is discriminated from ozone and water clouds in the data processing by their spectral signatures. Thus, the sulfur dioxide can serve as a tracer which appears in volcanic eruption clouds because it is not present in other clouds. The detection limit with TOMS is close to the theoretical limit due to telemetry signal quantization of 1000 metric tons (5-sigma threshold) within the instrument field of view (50 by 50 km near the nadir). Requirements concerning the use of TOMS in detection of eruptions, geochemical cycles, and volcanic climatic effects are discussed.

  10. Smartphone-Based Mobile Detection Platform for Molecular Diagnostics and Spatiotemporal Disease Mapping.

    PubMed

    Song, Jinzhao; Pandian, Vikram; Mauk, Michael G; Bau, Haim H; Cherry, Sara; Tisi, Laurence C; Liu, Changchun

    2018-04-03

    Rapid and quantitative molecular diagnostics in the field, at home, and at remote clinics is essential for evidence-based disease management, control, and prevention. Conventional molecular diagnostics requires extensive sample preparation, relatively sophisticated instruments, and trained personnel, restricting its use to centralized laboratories. To overcome these limitations, we designed a simple, inexpensive, hand-held, smartphone-based mobile detection platform, dubbed "smart-connected cup" (SCC), for rapid, connected, and quantitative molecular diagnostics. Our platform combines bioluminescent assay in real-time and loop-mediated isothermal amplification (BART-LAMP) technology with smartphone-based detection, eliminating the need for an excitation source and optical filters that are essential in fluorescent-based detection. The incubation heating for the isothermal amplification is provided, electricity-free, with an exothermic chemical reaction, and incubation temperature is regulated with a phase change material. A custom Android App was developed for bioluminescent signal monitoring and analysis, target quantification, data sharing, and spatiotemporal mapping of disease. SCC's utility is demonstrated by quantitative detection of Zika virus (ZIKV) in urine and saliva and HIV in blood within 45 min. We demonstrate SCC's connectivity for disease spatiotemporal mapping with a custom-designed website. Such a smart- and connected-diagnostic system does not require any lab facilities and is suitable for use at home, in the field, in the clinic, and particularly in resource-limited settings in the context of Internet of Medical Things (IoMT).

  11. Use of Imipenem To Detect KPC, NDM, OXA, IMP, and VIM Carbapenemase Activity from Gram-Negative Rods in 75 Minutes Using Liquid Chromatography-Tandem Mass Spectrometry

    PubMed Central

    Kulkarni, M. V.; Zurita, A. N.; Pyka, J. S.; Murray, T. S.; Hodsdon, M. E.

    2014-01-01

    Resistance to extended-spectrum β-lactam antibiotics has led to a greater reliance upon carbapenems, but the expression of carbapenemases threatens to limit the utility of these drugs. Current methods to detect carbapenemase activity are suboptimal, requiring prolonged incubations during which ineffective therapy may be prescribed. We previously described a sensitive and specific assay for the detection of carbapenemase activity using ertapenem and liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this study, we assessed 402 Gram-negative rods, including both Enterobacteriaceae and non-Enterobacteriaceae expressing IMP, VIM, KPC, NDM, and/or OXA carbapenemases, by using imipenem, meropenem, and ertapenem with LC-MS/MS assays. LC-MS/MS methods for the detection of intact and hydrolyzed carbapenems from an enrichment broth were developed. No ion suppression was observed, and the limits of detection for all three drugs were below 0.04 μg/ml. The sensitivity and specificity of meropenem and ertapenem for carbapenemase activity among non-Enterobacteriaceae were low, but imipenem demonstrated a sensitivity and specificity of 96% and 95%, respectively, among all Gram-negative rods (GNR) tested, including both Enterobacteriaceae and non-Enterobacteriaceae. LC-MS/MS allows for the analysis of more complex matrices, and this LC-MS/MS assay could easily be adapted for use with primary specimens requiring growth enrichment. PMID:24789180

  12. A universal DNA-based protein detection system.

    PubMed

    Tran, Thua N N; Cui, Jinhui; Hartman, Mark R; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C; Lis, John T; Cui, Haixin; Luo, Dan

    2013-09-25

    Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability.

  13. A Universal DNA-Based Protein Detection System

    PubMed Central

    Tran, Thua N. N.; Cui, Jinhui; Hartman, Mark R.; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C.; Lis, John T.; Cui, Haixin; Luo, Dan

    2014-01-01

    Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability. PMID:23978265

  14. A fluorescent immunochromatographic strip test using a quantum dot-antibody probe for rapid and quantitative detection of 1-aminohydantoin in edible animal tissues.

    PubMed

    Le, Tao; Zhang, Zhihao; Wu, Juan; Shi, Haixing; Cao, Xudong

    2018-01-01

    A rapid, simple, and sensitive fluorescent immunochromatographic strip test (ICST) based on quantum dots (QDs) has been developed to detect 1-aminohydantoin (AHD), a major metabolite of nitrofurantoin in animal tissues. To achieve this, QD-labeled antibody conjugates, which consist of CdSe/ZnS QDs and monoclonal antibodies, were prepared by an activated ester method. Under optimal conditions, with the nitrophenyl derivative of AHD as the target, the ICST had a linear range from 0.1 to 100 ng/mL, with a correlation coefficient of 0.9656 and a 50% inhibitory concentration of 4.51 ng/mL. The limit of detection was 0.14 ng/g, which was below the minimum required performance limit of 1 μg/kg for AHD established by the European Commission. The recoveries for AHD ranged from 81.5% to 108.2%, with coefficients of variation below 13%, based on intraday and interday analysis. Furthermore, for AHD in real samples, the ICST showed high reliability and high correlation with liquid chromatography-tandem mass spectrometry (correlation coefficient of 0.9916). To the best of our knowledge, this is the first report of a novel and sensitive method based on a fluorescent ICST to detect AHD below the minimum required performance limit. The ICST demonstrated high reliability, and could be ideally suited for rapid, simple, and on-site screening of AHD contamination in animal tissues. Graphical abstract A rapid, simple, and sensitive fluorescent immunochromatographic strip test that is based on quantum dots was developed to detect 1-aminohydantoin (AHD), a major metabolite of nitrofurantoin in animal tissues. 2-NBA 2-nitrobenzaldehyde, NP nitrophenyl.

  15. Determining the 95% limit of detection for waterborne pathogen analyses from primary concentration to qPCR.

    PubMed

    Stokdyk, Joel P; Firnstahl, Aaron D; Spencer, Susan K; Burch, Tucker R; Borchardt, Mark A

    2016-06-01

    The limit of detection (LOD) for qPCR-based analyses is not consistently defined or determined in studies on waterborne pathogens. Moreover, the LODs reported often reflect the qPCR assay alone rather than the entire sample process. Our objective was to develop an approach to determine the 95% LOD (lowest concentration at which 95% of positive samples are detected) for the entire process of waterborne pathogen detection. We began by spiking the lowest concentration that was consistently positive at the qPCR step (based on its standard curve) into each procedural step working backwards (i.e., extraction, secondary concentration, primary concentration), which established a concentration that was detectable following losses of the pathogen from processing. Using the fraction of positive replicates (n = 10) at this concentration, we selected and analyzed a second, and then third, concentration. If the fraction of positive replicates equaled 1 or 0 for two concentrations, we selected another. We calculated the LOD using probit analysis. To demonstrate our approach we determined the 95% LOD for Salmonella enterica serovar Typhimurium, adenovirus 41, and vaccine-derived poliovirus Sabin 3, which were 11, 12, and 6 genomic copies (gc) per reaction (rxn), respectively (equivalent to 1.3, 1.5, and 4.0 gc L(-1) assuming the 1500 L tap-water sample volume prescribed in EPA Method 1615). This approach limited the number of analyses required and was amenable to testing multiple genetic targets simultaneously (i.e., spiking a single sample with multiple microorganisms). An LOD determined this way can facilitate study design, guide the number of required technical replicates, aid method evaluation, and inform data interpretation. Published by Elsevier Ltd.

  16. Determining the 95% limit of detection for waterborne pathogen analyses from primary concentration to qPCR

    USGS Publications Warehouse

    Stokdyk, Joel P.; Firnstahl, Aaron; Spencer, Susan K.; Burch, Tucker R; Borchardt, Mark A.

    2016-01-01

    The limit of detection (LOD) for qPCR-based analyses is not consistently defined or determined in studies on waterborne pathogens. Moreover, the LODs reported often reflect the qPCR assay alone rather than the entire sample process. Our objective was to develop an approach to determine the 95% LOD (lowest concentration at which 95% of positive samples are detected) for the entire process of waterborne pathogen detection. We began by spiking the lowest concentration that was consistently positive at the qPCR step (based on its standard curve) into each procedural step working backwards (i.e., extraction, secondary concentration, primary concentration), which established a concentration that was detectable following losses of the pathogen from processing. Using the fraction of positive replicates (n = 10) at this concentration, we selected and analyzed a second, and then third, concentration. If the fraction of positive replicates equaled 1 or 0 for two concentrations, we selected another. We calculated the LOD using probit analysis. To demonstrate our approach we determined the 95% LOD for Salmonella enterica serovar Typhimurium, adenovirus 41, and vaccine-derived poliovirus Sabin 3, which were 11, 12, and 6 genomic copies (gc) per reaction (rxn), respectively (equivalent to 1.3, 1.5, and 4.0 gc L−1 assuming the 1500 L tap-water sample volume prescribed in EPA Method 1615). This approach limited the number of analyses required and was amenable to testing multiple genetic targets simultaneously (i.e., spiking a single sample with multiple microorganisms). An LOD determined this way can facilitate study design, guide the number of required technical replicates, aid method evaluation, and inform data interpretation.

  17. Remote detection of buried explosives by fluorescent and bioluminescent microbial sensors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Belkin, Shimshon; Yagur-Kroll, Sharon; Zohar, Cheinat; Rabinovitz, Zahi; Nussinovitch, Amos; Kabessa, Yossi; Agranat, Aharon J.

    2017-06-01

    Current landmine detection methodologies are not much different in principle from those employed 75 years ago, in that they require actual presence in the minefield, with obvious risks to personnel and equipment. Other limitations include an extremely large ratio of false positives, as well as a very limited ability to detect non-metallic landmines. In this lecture a microbial-based solution for the remote detection of buried landmines described. The small size requirements, rapid responses and sensing versatility of bacterial bioreporters allow their integration into diverse types of devices, for laboratory as well as field applications. The relative ease by which molecular sensing and reporting elements can be fused together to generate dose-dependent quantifiable physical (luminescent, fluorescent, colorimetric, electrochemical) responses to pre-determined conditions allows the construction of diverse classes of sensors. Over the last two decades we and others have employed this principle to design and construct microbial bioreporter strains for the sensitive detection of (a) specific chemicals of environmental concern (heavy metals, halogenated organics etc.) or (b) their deleterious biological effects on living systems (such as toxicity or genotoxicity). In many of these cases, additional molecular manipulations beyond the initial sensor-reporter fusion may be highly beneficial for enhancing the performance of the engineered sensor systems. This presentation highlights several of the approaches we have adopted over the years to achieve this aim, while focusing on the application of live cell microbeads for the remote detection of buried landmines and other explosive devices.

  18. Monitoring of Total Type II Pyrethroid Pesticides in Citrus Oils and Water by Converting to a Common Product 3-Phenoxybenzoic Acid

    PubMed Central

    McCoy, Mark R.; Yang, Zheng; Fu, Xun; Ahn, Ki Chang; Gee, Shirley J.; Bom, David C.; Zhong, Ping; Chang, Dan; Hammock, Bruce D.

    2012-01-01

    Pyrethroids are a class of insecticides that are becoming increasingly popular in agricultural and home use applications. Sensitive assays for pyrethroid insecticides in complex matrices are difficult both with instrumental and immunochemical methods. Environmental analysis of the pyrethroids by immunoassay requires either knowing which pyrethroids contaminate the source or the use of non-specific antibodies with cross reactivities to a class of compounds. We describe an alternative method that converts the type-II-pyrethroids to a common chemical product, 3-phenoxybenzoic acid (3-PBA), prior to analysis. This method is much more sensitive than detecting the parent compound, and it is much easier to detect a single compound rather than an entire class of compounds. This is useful in screening for pyrethroids as a class or in situations where a single type of pyrethroid is used. We demonstrated this technique in both citrus oils and environmental water samples with conversion rates of the pyrethroid to 3-PBA that range from 45%-75% and methods that require no extraction steps for either the immunoassay or LC-MS/MS techniques. Limits of detection for this technique applied to orange oil are 5 nM, 2 μM, and 0.8 μM when detected by LC-MS/MS, GC-MS, and immunoassay respectively. The limit of detection for pyrethroids in water when detected by immunoassay was 2 nM. PMID:22486225

  19. Ultra trace determination of 31 pesticides in water samples by direct injection-rapid resolution liquid chromatography-electrospray tandem mass spectrometry.

    PubMed

    Díaz, Laura; Llorca-Pórcel, Julio; Valor, Ignacio

    2008-08-22

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for the detection of pesticides in tap and treated wastewater was developed and validated according to the ISO/IEC 17025:1999. Key features of this method include direct injection of 100 microL of sample, an 11 min separation by means of a rapid resolution liquid chromatography system with a 4.6 mm x 50 mm, 1.8 microm particle size reverse phase column and detection by electrospray ionization (ESI) MS-MS. The limits of detection were below 15 ng L(-1) and correlation coefficients for the calibration curves in the range of 30-2000 ng L(-1) were higher than 0.99. Precision was always below 20% and accuracy was confirmed by external evaluation. The main advantages of this method are direct injection of sample without preparative procedures and low limits of detection that fulfill the requirements established by the current European regulations governing pesticide detection.

  20. Failure Detecting Method of Fault Current Limiter System with Rectifier

    NASA Astrophysics Data System (ADS)

    Tokuda, Noriaki; Matsubara, Yoshio; Asano, Masakuni; Ohkuma, Takeshi; Sato, Yoshibumi; Takahashi, Yoshihisa

    A fault current limiter (FCL) is extensively needed to suppress fault current, particularly required for trunk power systems connecting high-voltage transmission lines, such as 500kV class power system which constitutes the nucleus of the electric power system. We proposed a new type FCL system (rectifier type FCL), consisting of solid-state diodes, DC reactor and bypass AC reactor, and demonstrated the excellent performances of this FCL by developing the small 6.6kV and 66kV model. It is important to detect the failure of power devices used in the rectifier under the normal operating condition, for keeping the excellent reliability of the power system. In this paper, we have proposed a new failure detecting method of power devices most suitable for the rectifier type FCL. This failure detecting system is simple and compact. We have adapted the proposed system to the 66kV prototype single-phase model and successfully demonstrated to detect the failure of power devices.

  1. Remembering Complex Objects in Visual Working Memory: Do Capacity Limits Restrict Objects or Features?

    PubMed Central

    Hardman, Kyle; Cowan, Nelson

    2014-01-01

    Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli which possessed multiple features per stimulus item. We manipulated the number of relevant features of the stimulus objects in order to vary feature load. In all of our experiments, we found that increased feature load led to a reduction in change-detection accuracy. However, we found that feature load alone could not account for the results, but that a consideration of the number of relevant objects was also required. This study supports capacity limits for both feature and object storage in visual working memory. PMID:25089739

  2. Capability of detecting ultraviolet counterparts of gravitational waves with GLUV

    NASA Astrophysics Data System (ADS)

    Ridden-Harper, Ryan; Tucker, B. E.; Sharp, R.; Gilbert, J.; Petkovic, M.

    2017-12-01

    With the discovery of gravitational waves (GWs), attention has turned towards detecting counterparts to these sources. In discussions on counterpart signatures and multimessenger follow-up strategies to the GW detections, ultraviolet (UV) signatures have largely been neglected, due to UV facilities being limited to SWIFT, which lacks high-cadence UV survey capabilities. In this paper, we examine the UV signatures from merger models for the major GW sources, highlighting the need for further modelling, while presenting requirements and a design for an effective UV survey telescope. Using the u΄-band models as an analogue, we find that a UV survey telescope requires a limiting magnitude of m_{u^' }}(AB)≈ 24 to fully complement the aLIGO range and sky localization. We show that a network of small, balloon-based UV telescopes with a primary mirror diameter of 30 cm could be capable of covering the aLIGO detection distance from ∼60 to 100 per cent for BNS events and ∼40 per cent for the black hole and a neutron star events. The sensitivity of UV emission to initial conditions suggests that a UV survey telescope would provide a unique data set, which can act as an effective diagnostic to discriminate between models.

  3. Passive detection of copy-move forgery in digital images: state-of-the-art.

    PubMed

    Al-Qershi, Osamah M; Khoo, Bee Ee

    2013-09-10

    Currently, digital images and videos have high importance because they have become the main carriers of information. However, the relative ease of tampering with images and videos makes their authenticity untrustful. Digital image forensics addresses the problem of the authentication of images or their origins. One main branch of image forensics is passive image forgery detection. Images could be forged using different techniques, and the most common forgery is the copy-move, in which a region of an image is duplicated and placed elsewhere in the same image. Active techniques, such as watermarking, have been proposed to solve the image authenticity problem, but those techniques have limitations because they require human intervention or specially equipped cameras. To overcome these limitations, several passive authentication methods have been proposed. In contrast to active methods, passive methods do not require any previous information about the image, and they take advantage of specific detectable changes that forgeries can bring into the image. In this paper, we describe the current state-of-the-art of passive copy-move forgery detection methods. The key current issues in developing a robust copy-move forgery detector are then identified, and the trends of tackling those issues are addressed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Surface plasmon resonance biosensor for enzymatic detection of small analytes

    NASA Astrophysics Data System (ADS)

    Massumi Miyazaki, Celina; Makoto Shimizu, Flávio; Mejía-Salazar, J. R.; Oliveira, Osvaldo N., Jr.; Ferreira, Marystela

    2017-04-01

    Surface plasmon resonance (SPR) biosensing is based on the detection of small changes in the refractive index on a gold surface modified with molecular recognition materials, thus being mostly limited to detecting large molecules. In this paper, we report on a SPR biosensing platform suitable to detect small molecules by making use of the mediator-type enzyme microperoxidase-11 (MP11) in layer-by-layer films. By depositing a top layer of glucose oxidase or uricase, we were able to detect glucose or uric acid with limits of detection of 3.4 and 0.27 μmol l-1, respectively. Measurable SPR signals could be achieved because of the changes in polarizability of MP11, as it is oxidized upon interaction with the analyte. Confirmation of this hypothesis was obtained with finite difference time domain simulations, which also allowed us to discard the possible effects from film roughness changes observed in atomic force microscopy images. The main advantage of this mediator-type enzyme approach is in the simplicity of the experimental method that does not require an external potential, unlike similar approaches for SPR biosensing of small molecules. The detection limits reported here were achieved without optimizing the film architecture, and therefore the performance can in principle be further enhanced, while the proposed SPR platform may be extended to any system where hydrogen peroxide is generated in enzymatic reactions.

  5. Enhanced speed in fluorescence imaging using beat frequency multiplexing

    NASA Astrophysics Data System (ADS)

    Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke

    2016-03-01

    Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.

  6. Developing the Cleanliness Requirements for an Organic-detection Instrument MOMA-MS

    NASA Technical Reports Server (NTRS)

    Perry, Radford; Canham, John; Lalime, Erin

    2015-01-01

    The cleanliness requirements for an organic-detection instrument, like the Mars Organic Molecule Analyzer Mass Spectrometer (MOMA-MS), on a Planetary Protection Class IVb mission can be extremely stringent. These include surface molecular and particulate, outgassing, and bioburden. The prime contractor for the European Space Agencys ExoMars 2018 project, Thales Alenia Space Italy, provided requirements based on a standard, conservative approach of defining limits which yielded levels that are unverifiable by standard cleanliness verification methods. Additionally, the conservative method for determining contamination surface area uses underestimation while conservative bioburden surface area relies on overestimation, which results in inconsistencies for the normalized reporting. This presentation will provide a survey of the challenge to define requirements that can be reasonably verified and still remain appropriate to the core science of the ExoMars mission.

  7. Sparse aperture masking at the VLT. II. Detection limits for the eight debris disks stars β Pic, AU Mic, 49 Cet, η Tel, Fomalhaut, g Lup, HD 181327 and HR 8799

    NASA Astrophysics Data System (ADS)

    Gauchet, L.; Lacour, S.; Lagrange, A.-M.; Ehrenreich, D.; Bonnefoy, M.; Girard, J. H.; Boccaletti, A.

    2016-10-01

    Context. The formation of planetary systems is a common, yet complex mechanism. Numerous stars have been identified to possess a debris disk, a proto-planetary disk or a planetary system. The understanding of such formation process requires the study of debris disks. These targets are substantial and particularly suitable for optical and infrared observations. Sparse aperture masking (SAM) is a high angular resolution technique strongly contributing to probing the region from 30 to 200 mas around the stars. This area is usually unreachable with classical imaging, and the technique also remains highly competitive compared to vortex coronagraphy. Aims: We aim to study debris disks with aperture masking to probe the close environment of the stars. Our goal is either to find low-mass companions, or to set detection limits. Methods: We observed eight stars presenting debris disks (β Pictoris, AU Microscopii, 49 Ceti, η Telescopii, Fomalhaut, g Lupi, HD 181327, and HR 8799) with SAM technique on the NaCo instrument at the Very Large Telescope (VLT). Results: No close companions were detected using closure phase information under 0.5'' of separation from the parent stars. We obtained magnitude detection limits that we converted to Jupiter masses detection limits using theoretical isochrones from evolutionary models. Conclusions: We derived upper mass limits on the presence of companions in the area of a few times the telescope's diffraction limits around each target star. Based on observations collected at the European Southern Observatory (ESO) during runs 087.C-0450(A), 087.C-0450(B) 087.C-0750(A), 088.C-0358(A).All magnitude detection limits maps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A31

  8. Development of an automated on-line electrochemical chlorite ion sensor.

    PubMed

    Myers, John N; Steinecker, William H; Sandlin, Zechariah D; Cox, James A; Gordon, Gilbert; Pacey, Gilbert E

    2012-05-30

    A sensor system for the automatic, in-line, determination of chlorite ion is reported. Electroanalytical measurements were performed in electrolyte-free liquids by using an electrochemical probe (EC), which enables in-line detection in high-resistance media such as disinfected water. Cyclic voltammetry scan rate studies suggest that the current arising from the oxidation of chlorite ion at an EC probe is mass-transfer limited. By coupling FIA with an EC probe amperometric cell, automated analysis was achieved. This sensor is intended to fulfill the daily monitoring requirements of the EPA DBP regulations for chlorite ion. Detection limits of 0.02-0.13 mg/L were attained, which is about one order of magnitude below the MRDL. The sensor showed no faradaic signal for perchlorate, chlorate, or nitrate. The lifetime and stability of the sensor were investigated by measuring calibration curves over time under constant-flow conditions. Detection limits of <0.1 mg/L were repeatedly achieved over a period of three weeks. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. “Development of an Automated On-line Electrochemical Chlorite Ion Sensor”

    PubMed Central

    Myers, John N.; Steinecker, William H.; Sandlin, Zechariah D.; Cox, James A.; Gordon, Gilbert; Pacey, Gilbert E.

    2012-01-01

    A sensor system for the automatic, in-line, determination of chlorite ion is reported. Electroanalytical measurements were performed in electrolyte-free liquids by using an electrochemical probe (EC), which enables in-line detection in high-resistance media such as disinfected water. Cyclic voltammetry scan rate studies suggest that the current arising from the oxidation of chlorite ion at an EC probe is mass-transfer limited. By coupling FIA with an EC probe amperometric cell, automated analysis was achieved. This sensor is intended to fulfill the daily monitoring requirements of the EPA DBP regulations for chlorite ion. Detection limits of 0.02-0.13 mg/L were attained, which is about one order of magnitude below the MRDL. The sensor showed no faradaic signal for perchlorate, chlorate, or nitrate. The lifetime and stability of the sensor were investigated by measuring calibration curves over time under constant-flow conditions. Detection limits of <0.1 mg/L were repeatedly achieved over a period of three weeks. PMID:22608440

  10. Candidate eco-friendly gas mixtures for MPGDs

    NASA Astrophysics Data System (ADS)

    Benussi, L.; Bianco, S.; Saviano, G.; Muhammad, S.; Piccolo, D.; Ferrini, M.; Parvis, M.; Grassini, S.; Colafranceschi, S.; Kjølbro, J.; Sharma, A.; Yang, D.; Chen, G.; Ban, Y.; Li, Q.

    2018-02-01

    Modern gas detectors for detection of particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This review studies properties of potential eco-friendly gas candidate replacements.

  11. Learning in Neural Networks: VLSI Implementation Strategies

    NASA Technical Reports Server (NTRS)

    Duong, Tuan Anh

    1995-01-01

    Fully-parallel hardware neural network implementations may be applied to high-speed recognition, classification, and mapping tasks in areas such as vision, or can be used as low-cost self-contained units for tasks such as error detection in mechanical systems (e.g. autos). Learning is required not only to satisfy application requirements, but also to overcome hardware-imposed limitations such as reduced dynamic range of connections.

  12. Use of x-ray fluorescence for in-situ detection of metals

    NASA Astrophysics Data System (ADS)

    Elam, W. T. E.; Whitlock, Robert R.; Gilfrich, John V.

    1995-01-01

    X-ray fluorescence (XRF) is a well-established, non-destructive method of determining elemental concentrations at ppm levels in complex samples. It can operate in atmosphere with no sample preparation, and provides accuracies of 1% or better under optimum conditions. This report addresses two sets of issues concerning the use of x-ray fluorescence as a sensor technology for the cone penetrometer, for shipboard waste disposal, or for other in-situ, real- time environmental applications. The first issue concerns the applicability of XRF to these applications, and includes investigation of detection limits and matrix effects. We have evaluated the detection limits and quantitative accuracy of a sensor mock-up for metals in soils under conditions expected in the field. In addition, several novel ways of improving the lower limits of detection to reach the drinking water regulatory limits have been explored. The second issue is the engineering involved with constructing a spectrometer within the 1.75 inch diameter of the penetrometer pipe, which is the most rigorous physical constraint. Only small improvements over current state-of-the-art are required. Additional advantages of XRF are that no radioactive sources or hazardous materials are used in the sensor design, and no reagents or any possible sources of ignition are involved.

  13. Airborne Doppler radar detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.; Jones, William R.; Britt, Charles L.

    1990-01-01

    As part of an integrated windshear program, the Federal Aviation Administration, jointly with NASA, is sponsoring a research effort to develop airborne sensor technology for the detection of low altitude windshear during aircraft take-off and landing. One sensor being considered is microwave Doppler radar operating at X-band or above. Using a Microburst/Clutter/Radar simulation program, a preliminary feasibility study was conducted to assess the performance of Doppler radars for this application. Preliminary results from this study are presented. Analysis show, that using bin-to-bin Automatic Gain Control (AGC), clutter filtering, limited detection range, and suitable antenna tilt management, windshear from a wet microburst can be accurately detected 10 to 65 seconds (.75 to 5 km) in front of the aircraft. Although a performance improvement can be obtained at higher frequency, the baseline X-band system that was simulated detected the presence of a windshear hazard for the dry microburst. Although this study indicates the feasibility of using an airborne Doppler radar to detect low altitude microburst windshear, further detailed studies, including future flight experiments, will be required to completely characterize the capabilities and limitations.

  14. Sensitive singular-phase optical detection without phase measurements with Tamm plasmons.

    PubMed

    Boriskina, Svetlana V; Tsurimaki, Yoichiro

    2018-06-06

    Spectrally-tailored interactions of light with material interfaces offer many exciting applications in sensing, photo-detection, and optical energy conversion. In particular, complete suppression of light reflectance at select frequencies accompanied by sharp phase variations in the reflected signal forms the basis for the development of ultra-sensitive singular-phase optical detection schemes such as Brewster and surface plasmon interferometry. However, both the Brewster effect and surface-plasmon-mediated absorption on planar interfaces are limited to one polarization of the incident light and oblique excitation angles, and may have limited bandwidth dictated by the material dielectric index and plasma frequency. To alleviate these limitations, we design narrow-band super-absorbers composed of plasmonic materials embedded into dielectric photonic nanostructures with topologically-protected interfacial Tamm plasmon states. These structures have planar geometry and do not require nanopatterning to achieve perfect absorption of both polarizations of the incident light in a wide range of incident angles, including the normal incidence. Their absorption lines are tunable across a very broad spectral range via engineering of the photon bandstructure of the dielectric photonic nanostructures to achieve reversal of the geometrical phase across the interface with the plasmonic absorber. We outline the design strategy to achieve perfect absorptance in Tamm structures with dissipative losses via conjugate impedance matching. We further demonstrate via modeling how these structures can be engineered to support sharp asymmetric amplitude resonances, which can be used to improve the sensitivity of optical sensors in the amplitude-only detection scheme that does not require use of bulky and expensive ellipsometry equipment.

  15. Sensitive singular-phase optical detection without phase measurements with Tamm plasmons

    NASA Astrophysics Data System (ADS)

    Boriskina, Svetlana V.; Tsurimaki, Yoichiro

    2018-06-01

    Spectrally-tailored interactions of light with material interfaces offer many exciting applications in sensing, photo-detection, and optical energy conversion. In particular, complete suppression of light reflectance at select frequencies accompanied by sharp phase variations in the reflected signal forms the basis for the development of ultra-sensitive singular-phase optical detection schemes such as Brewster and surface plasmon interferometry. However, both the Brewster effect and surface-plasmon-mediated absorption on planar interfaces are limited to one polarization of the incident light and oblique excitation angles, and may have limited bandwidth dictated by the material dielectric index and plasma frequency. To alleviate these limitations, we design narrow-band super-absorbers composed of plasmonic materials embedded into dielectric photonic nanostructures with topologically-protected interfacial Tamm plasmon states. These structures have planar geometry and do not require nanopatterning to achieve perfect absorption of both polarizations of the incident light in a wide range of incident angles, including the normal incidence. Their absorption lines are tunable across a very broad spectral range via engineering of the photon bandstructure of the dielectric photonic nanostructures to achieve reversal of the geometrical phase across the interface with the plasmonic absorber. We outline the design strategy to achieve perfect absorptance in Tamm structures with dissipative losses via conjugate impedance matching. We further demonstrate via modeling how these structures can be engineered to support sharp asymmetric amplitude resonances, which can be used to improve the sensitivity of optical sensors in the amplitude-only detection scheme that does not require use of bulky and expensive ellipsometry equipment.

  16. The limit of detection in scintigraphic imaging with I-131 in patients with differentiated thyroid carcinoma

    NASA Astrophysics Data System (ADS)

    Hänscheid, H.; Lassmann, M.; Buck, A. K.; Reiners, C.; Verburg, F. A.

    2014-05-01

    Radioiodine scintigraphy influences staging and treatment in patients with differentiated thyroid carcinoma. The limit of detection for fractional uptake in an iodine avid focus in a scintigraphic image was determined from the number of lesion net counts and the count density of the tissue background. The count statistics were used to calculate the diagnostic activity required to elevate the signal from a lesion with a given uptake significantly above a homogeneous background with randomly distributed counts per area. The dependences of the minimal uptake and the minimal size of lesions visible in a scan on several parameters of influence were determined by linking the typical biokinetics observed in iodine avid tissue to the lesion mass and to the absorbed dose received in a radioiodine therapy. The detection limits for fractional uptake in a neck lesion of a typical patient are about 0.001% after therapy with 7000 MBq, 0.01% for activities typically administered in diagnostic assessments (74-185 MBq), and 0.1% after the administration of 10 MBq I-131. Lesions at the limit of detection in a diagnostic scan with biokinetics eligible for radioiodine therapy are small with diameters of a few millimeters. Increasing the diagnostic activity by a factor of 4 reduces the diameter of visible lesions by 25% or about 1 mm. Several other determinants have a comparable or higher influence on the limit of detection than the administered activity; most important are the biokinetics in both blood pool and target tissue and the time of measurement. A generally valid recommendation for the timing of the scan is impossible as the time of the highest probability to detect iodine avid tissue depends on the administered activity as well as on the biokinetics in the lesion and background in the individual patient.

  17. Efficient colorimetric and fluorescent detection of fluoride in DMSO-water mixtures with arylaldoximes.

    PubMed

    Rosen, Christian B; Hansen, Dennis J; Gothelf, Kurt V

    2013-12-07

    Fluoride detection through hydrogen bonding or deprotonation is most commonly achieved using amide, urea or pyrrole derivatives. The sensor molecules are often complex constructs and several synthetic steps are required for their preparation. Here we report the discovery that simple arylaldoximes have remarkable properties as fluoride anion sensors, providing distinct colorimetric or fluorescent readouts, depending on the structure of the arylaldoxime. The oximes showed exceptional selectivity towards fluoride over other typical anions, and low detection limits for fluoride in both DMSO and DMSO-water mixtures were obtained.

  18. Highly sensitive and specific on-site detection of serum cocaine by a low cost aptasensor.

    PubMed

    Oueslati, Rania; Cheng, Cheng; Wu, Jayne; Chen, Jiangang

    2018-06-15

    Cocaine is one of the most used illegal recreational drugs. Developing an on-site test for cocaine use detection has been a focus of research effort, since it is essential to the control and legal action against drug abuse. Currently most of cocaine detection methods are time-consuming and require special or expensive equipment, and the detection often suffers from high cross-reactivity with cocaine metabolites and relative low sensitivity with the best limit of detection reported at sub nanomolar (nM) level. In this work, an aptasensor has been developed using capacitive monitoring of sensor surface incorporating alternating current electrokinetics effects to speed up molecular transport and minimize matrix effects. The aptasensor is rapid, low cost, highly sensitive and specific as well as simple-to-use for the detection of cocaine from serum. The assay has a sample-to-result time of 30 s, a limit of detection of 7.8 fM, and a linear response for cocaine ranging from 14.5fM to 14.5pM in standard buffer, which are great improvements from other reported cocaine sensors. Special buffer is used for serum cocaine detection, and a limit of detection of 13.4 fM is experimentally demonstrated for cocaine spiked in human serum (equivalent to 1.34pM cocaine in neat serum). The specificity of the biosensor is also demonstrated with structurally similar chemicals, ecgonine ethyl ester and methylecgonidine. This biosensor shows high promise in detection of low levels of cocaine from complex matrices. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Wide field-of-view dual-band multispectral muzzle flash detection

    NASA Astrophysics Data System (ADS)

    Montoya, J.; Melchor, J.; Spiliotis, P.; Taplin, L.

    2013-06-01

    Sensor technologies are undergoing revolutionary advances, as seen in the rapid growth of multispectral methodologies. Increases in spatial, spectral, and temporal resolution, and in breadth of spectral coverage, render feasible sensors that function with unprecedented performance. A system was developed that addresses many of the key hardware requirements for a practical dual-band multispectral acquisition system, including wide field of view and spectral/temporal shift between dual bands. The system was designed using a novel dichroic beam splitter and dual band-pass filter configuration that creates two side-by-side images of a scene on a single sensor. A high-speed CMOS sensor was used to simultaneously capture data from the entire scene in both spectral bands using a short focal-length lens that provided a wide field-of-view. The beam-splitter components were arranged such that the two images were maintained in optical alignment and real-time intra-band processing could be carried out using only simple arithmetic on the image halves. An experiment related to limitations of the system to address multispectral detection requirements was performed. This characterized the system's low spectral variation across its wide field of view. This paper provides lessons learned on the general limitation of key hardware components required for multispectral muzzle flash detection, using the system as a hardware example combined with simulated multispectral muzzle flash and background signatures.

  20. From nature to MEMS: towards the detection-limit of crickets' hair sensors

    NASA Astrophysics Data System (ADS)

    Dagamseh, A. M. K.

    2013-05-01

    Crickets use highly sensitive mechanoreceptor hairs to detect approaching spiders. The high sensitivity of these hairs enables perceiving tiny air-movements which are only just distinguishable from noise. This forms our source of inspiration to design sensitive arrays made of artificial hair sensors for flow pattern observation i.e. Flow camera. The realization of such high-sensitive hair sensor requires designs with low thermo-mechanical noise to match the detection-limit of crickets' hairs. Here we investigate the damping factor in our artificial hair-sensor using different models as it is the source of the thermo-mechanical noise in MEMS structures. The results show that the damping factor estimated in air is in the range of 10-12 N.m/rad.s-1 which translates into a 52 μm/s threshold flow velocity.

  1. Validation of Passive Sampling Devices for Monitoring of Munitions Constituents in Underwater Environments

    DTIC Science & Technology

    2017-09-01

    this project, we launched at Esperanza pier (Figure 5-4), which required a minimum of 2 hours of travel time , including transit from Camp Garcia to the...concentrations of emerging contaminants by providing a time -integrated sample with low detection limits and in situ extraction. PSDs are fairly well...A continuous sampling approach allows detection and quantification of chemicals in an integrated manner, providing time - weighted average (TWA

  2. Singlet oxygen detection in biological systems: Uses and limitations.

    PubMed

    Koh, Eugene; Fluhr, Robert

    2016-07-02

    The study of singlet oxygen in biological systems is challenging in many ways. Singlet oxygen is a relatively unstable ephemeral molecule, and its properties make it highly reactive with many biomolecules, making it difficult to quantify accurately. Several methods have been developed to study this elusive molecule, but most studies thus far have focused on those conditions that produce relatively large amounts of singlet oxygen. However, the need for more sensitive methods is required as one begins to explore the levels of singlet oxygen required in signaling and regulatory processes. Here we discuss the various methods used in the study of singlet oxygen, and outline their uses and limitations.

  3. Energy-dispersive X-ray fluorescence systems as analytical tool for assessment of contaminated soils.

    PubMed

    Vanhoof, Chris; Corthouts, Valère; Tirez, Kristof

    2004-04-01

    To determine the heavy metal content in soil samples at contaminated locations, a static and time consuming procedure is used in most cases. Soil samples are collected and analyzed in the laboratory at high quality and high analytical costs. The demand by government and consultants for a more dynamic approach and by customers requiring performances in which analyses are performed in the field with immediate feedback of the analytical results, is growing. Especially during the follow-up of remediation projects or during the determination of the sampling strategy, field analyses are advisable. For this purpose four types of ED-XRF systems, ranging from portable up to high performance laboratory systems, have been evaluated. The evaluation criteria are based on the performance characteristics for all the ED-XRF systems such as limit of detection, accuracy and the measurement uncertainty on one hand, and also the influence of the sample pretreatment on the obtained results on the other hand. The study proved that the field portable system and the bench top system, placed in a mobile van, can be applied as field techniques, resulting in semi-quantitative analytical results. A limited homogenization of the analyzed sample significantly increases the representativeness of the soil sample. The ED-XRF systems can be differentiated by their limits of detection which are a factor of 10 to 20 higher for the portable system. The accuracy of the results and the measurement uncertainty also improved using the bench top system. Therefore, the selection criteria for applicability of both field systems are based on the required detection level and also the required accuracy of the results.

  4. Self-interacting inelastic dark matter: a viable solution to the small scale structure problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blennow, Mattias; Clementz, Stefan; Herrero-Garcia, Juan, E-mail: emb@kth.se, E-mail: scl@kth.se, E-mail: juan.herrero-garcia@adelaide.edu.au

    2017-03-01

    Self-interacting dark matter has been proposed as a solution to the small-scale structure problems, such as the observed flat cores in dwarf and low surface brightness galaxies. If scattering takes place through light mediators, the scattering cross section relevant to solve these problems may fall into the non-perturbative regime leading to a non-trivial velocity dependence, which allows compatibility with limits stemming from cluster-size objects. However, these models are strongly constrained by different observations, in particular from the requirements that the decay of the light mediator is sufficiently rapid (before Big Bang Nucleosynthesis) and from direct detection. A natural solution tomore » reconcile both requirements are inelastic endothermic interactions, such that scatterings in direct detection experiments are suppressed or even kinematically forbidden if the mass splitting between the two-states is sufficiently large. Using an exact solution when numerically solving the Schrödinger equation, we study such scenarios and find regions in the parameter space of dark matter and mediator masses, and the mass splitting of the states, where the small scale structure problems can be solved, the dark matter has the correct relic abundance and direct detection limits can be evaded.« less

  5. Empirically Optimized Flow Cytometric Immunoassay Validates Ambient Analyte Theory

    PubMed Central

    Parpia, Zaheer A.; Kelso, David M.

    2010-01-01

    Ekins’ ambient analyte theory predicts, counter intuitively, that an immunoassay’s limit of detection can be improved by reducing the amount of capture antibody. In addition, it also anticipates that results should be insensitive to the volume of sample as well as the amount of capture antibody added. The objective of this study is to empirically validate all of the performance characteristics predicted by Ekins’ theory. Flow cytometric analysis was used to detect binding between a fluorescent ligand and capture microparticles since it can directly measure fractional occupancy, the primary response variable in ambient analyte theory. After experimentally determining ambient analyte conditions, comparisons were carried out between ambient and non-ambient assays in terms of their signal strengths, limits of detection, and their sensitivity to variations in reaction volume and number of particles. The critical number of binding sites required for an assay to be in the ambient analyte region was estimated to be 0.1VKd. As predicted, such assays exhibited superior signal/noise levels and limits of detection; and were not affected by variations in sample volume and number of binding sites. When the signal detected measures fractional occupancy, ambient analyte theory is an excellent guide to developing assays with superior performance characteristics. PMID:20152793

  6. Lower limits of spin detection efficiency for two-parameter two-qubit (TPTQ) states with non-ideal ferromagnetic detectors

    NASA Astrophysics Data System (ADS)

    Majd, Nayereh; Ghasemi, Zahra

    2016-10-01

    We have investigated a TPTQ state as an input state of a non-ideal ferromagnetic detectors. Minimal spin polarization required to demonstrate spin entanglement according to entanglement witness and CHSH inequality with respect to (w.r.t.) their two free parameters have been found, and we have numerically shown that the entanglement witness is less stringent than the direct tests of Bell's inequality in the form of CHSH in the entangled limits of its free parameters. In addition, the lower limits of spin detection efficiency fulfilling secure cryptographic key against eavesdropping have been derived. Finally, we have considered TPTQ state as an output of spin decoherence channel and the region of ballistic transmission time w.r.t. spin relaxation time and spin dephasing time has been found.

  7. Be-7 as a tracer for short-term soil surface changes - opportunities and limitations

    NASA Astrophysics Data System (ADS)

    Baumgart, Philipp

    2013-04-01

    Within the last 20 years the cosmogenic nuclide Beryllium-7 was successfully established as a suitable tracer element to detect soil surface changes with a high accuracy. Particularly soil erosion rates from single precipitation events are in the focus of different studies due to the short radioactive half-life of the Be-7 isotope. High sorption at topmost soil particles and immobility at given pH-values enable fine-scaled erosion modelling down to 2 mm increments. But some important challenging limitations require particular attention, starting from sampling up to the final data evaluation. E.g. these are the realisation of the fine increment soil collection, the limiting amount of measurable samples per campaign due to the short radioactive half-life and the specific requirements for the detector measurements. Both, the high potential and the challenging limitations are presented as well as future perspectives of that tracer method.

  8. Sensitive Detection of Capsaicinoids Using a Surface Plasmon Resonance Sensor with Anti-Homovanillic Acid Polyclonal Antibodies

    PubMed Central

    Nakamura, Shingo; Yatabe, Rui; Onodera, Takeshi; Toko, Kiyoshi

    2013-01-01

    Recently, highly functional biosensors have been developed in preparation for possible large-scale terrorist attacks using chemical warfare agents. Practically applicable sensors are required to have various abilities, such as high portability and operability, the capability of performing rapid and continuous measurement, as well as high sensitivity and selectivity. We developed the detection method of capsaicinoids, the main component of some lachrymators, using a surface plasmon resonance (SPR) immunosensor as an on-site detection sensor. Homovanillic acid, which has a vanillyl group similar to capsaicinoids such as capsaicin and dihydrocapsaicin, was bound to Concholepas concholepas hemocyanin (CCH) for use as an immunogen to generate polyclonal antibodies. An indirect competitive assay was carried out to detect capsaicinoids using SPR sensor chips on which different capsaicin analogues were immobilized. For the sensor chip on which 4-hydroxy-3-methoxybenzylamine hydrochloride was immobilized, a detection limit of 150 ppb was achieved. We found that the incubation time was not required and the detection can be completed in five minutes. PMID:25586413

  9. A novel Laser Ion Mobility Spectrometer

    NASA Astrophysics Data System (ADS)

    Göbel, J.; Kessler, M.; Langmeier, A.

    2009-05-01

    IMS is a well know technology within the range of security based applications. Its main advantages lie in the simplicity of measurement, along with a fast and sensitive detection method. Contemporary technology often fails due to interference substances, in conjunction with saturation effects and a low dynamic detection range. High throughput facilities, such as airports, require the analysis of many samples at low detection limits within a very short timeframe. High detection reliability is a requirement for safe and secure operation. In our present work we developed a laser based ion-mobility-sensor which shows several advantages over known IMS sensor technology. The goal of our research was to increase the sensitivity compared to the range of 63Ni based instruments. This was achieved with an optimised geometric drift tube design and a pulsed UV laser system at an efficient intensity. In this intensity range multi-photon ionisation is possible, which leads to higher selectivity in the ion-formation process itself. After high speed capturing of detection samples, a custom designed pattern recognition software toolbox provides reliable auto-detection capability with a learning algorithm and a graphical user interface.

  10. Polarization-dependent optical reflection ultrasonic detection

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyi; Huang, Zhiyu; Wang, Guohe; Li, Wenzhao; Li, Changhui

    2017-03-01

    Although ultrasound transducers based on commercial piezoelectric-material have been widely used, they generally have limited bandwidth centered at the resonant frequency. Currently, several pure-optical ultrasonic detection methods have gained increasing interest due to their wide bandwidth and high sensitivity. However, most of them require customized components (such as micro-ring, SPR, Fabry-Perot film, etc), which limit their broad implementations. In this study, we presented a simple pure-optical ultrasound detection method, called "Polarization-dependent Reflection Ultrasonic Detection" (PRUD). It detects the intensity difference between two polarization components of the probe beam that is modulated by ultrasound waves. PRUD detect the two components by using a balanced detector, which effectively suppressed much of the unwanted noise. We have achieved the sensitivity (noise equivalent pressure) to be 1.7kPa, and this can be further improved. In addition, like many other pure-optical ultrasonic detection methods, PRUD also has a flat and broad bandwidth from almost zero to over 100MHz. Besides theoretical analysis, we did a phantom study by imaging a tungsten filament to demonstrate the performance of PRUD. We believe this simple and economic method will attract both researchers and engineers in optical and ultrasound fields.

  11. Detection of Hepatitis B Virus DNA among Chronic and potential Occult HBV patients in resource-limited settings by Loop-Mediated Isothermal Amplification assay.

    PubMed

    Akram, Arifa; Islam, S M Rashedul; Munshi, Saif Ullah; Tabassum, Shahina

    2018-05-16

    Transmission of Hepatitis B Virus (HBV) usually occurs due to the transfusion of blood or blood products from chronic HBV (CHB) or occult HBV infected (OBI) patients. Besides serological tests e.g. HBsAg and anti-HBc (total), detection of HBV-DNA is necessary for the diagnosis of OBI patients. Different nucleic acid tests (NATs) including real-time-Polymerase Chain Reaction (qPCR) are used for the detect HBV-DNA. The NATs are expensive and require technical expertise which are barriers to introducing them in resource-limited settings. This study was undertaken to evaluate the use of Loop-Mediated Isothermal Amplification (LAMP) assay as an alternative to qPCR for the detection of HBV-DNA in CHB and potential OBI patients in resource-limited settings. Following the published protocols with some modifications, a LAMP assay was developed for detection of HBV-DNA by either using a heat block followed by detection in an agarose gel or using a qPCR thermocycler. The LAMP assay was applied to supernatant prepared from heat treated serum collected from CHB and potential OBI patients. HBV viral load in serum was measured by qPCR using a single step HBV-DNA quantification kit. Among 200 samples tested, qPCR was capable to detect HBV-DNA in 25.5% of cases, whereas LAMP assay detected HBV-DNA in 43.5% cases. The qPCR was able to detect 11 (9.16%) potential OBI cases, whereas LAMP assay identified HBV-DNA in 43 (35.83%) cases. In addition to tests for HBsAg and/or anti-HBc (total), detection of HBV-DNA by LAMP assay may aid in preventing post-transfusion HBV infection in resource-limited settings. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Dual chamber arrhythmia detection in the implantable cardioverter defibrillator.

    PubMed

    Dijkman, B; Wellens, H J

    2000-10-01

    Dual chamber implantable cardioverter defibrillator (ICD) technology extended ICD therapy to more than termination of hemodynamically unstable ventricular tachyarrhythmias. It created the basis for dual chamber arrhythmia management in which dependable detection is important for treatment and prevention of both ventricular and atrial arrhythmias. Dual chamber detection algorithms were investigated in two Medtronic dual chamber ICDs: the 7250 Jewel AF (33 patients) and the 7271 Gem DR (31 patients). Both ICDs use the same PR Logic algorithm to interpret tachycardia as ventricular tachycardia (VT), supraventricular tachycardia (SVT), or dual (VT+ SVT). The accuracy of dual chamber detection was studied in 310 of 1,367 spontaneously occurring tachycardias in which rate criterion only was not sufficient for arrhythmia diagnosis. In 78 episodes there was a double tachycardia, in 223 episodes SVT was detected in the VT or ventricular fibrillation zone, and in 9 episodes arrhythmia was detected outside the boundaries of the PR Logic functioning. In 100% of double tachycardias the VT was correctly diagnosed and received priority treatment. SVT was seen in 59 (19%) episodes diagnosed as VT. The causes of inappropriate detection were (1) algorithm failure (inability to fulfill the PR

  13. The design of broadband radar absorbing surfaces

    NASA Astrophysics Data System (ADS)

    Suk, Go H.

    1990-09-01

    There has been a growing and widespread interest in radar absorbing material technology. As the name implies, radar absorbing materials or RAM's are coatings whose electric and magnetic properties have been selected to allow the absorption of microwave energy at discrete or broadband frequencies. In military applications low radar cross section (RCS) of a vehicle may be required in order to escape detection while a covert mission is being carried on. These requirements have led to the very low observable or stealth technology that reduces the probability of detection of an aircraft. The design of radar absorbing materials is limited by constraints on the allowable volume and weight of the surface coating, and it is difficult to design a broadband radar absorbing structure in limited volume. This thesis investigates the use of lossy dielectric materials of high dielectric permittivity in multilayer composites for the production of low radar cross section (RCS). The analysis is done by computing the plane wave reflection coefficient at the exterior surface of the composite coating by means of a computer program which selects layer parameters which determine low reflection coefficients for electromagnetic radiation under constraint of limited layer thickness as well as maximum frequency bandwidth.

  14. An SPR based sensor for allergens detection.

    PubMed

    Ashley, J; Piekarska, M; Segers, C; Trinh, L; Rodgers, T; Willey, R; Tothill, I E

    2017-02-15

    A simple, sensitive and label-free optical sensor method was developed for allergens analysis using α-casein as the biomarker for cow's milk detection, to be used directly in final rinse samples of cleaning in place systems (CIP) of food manufacturers. A Surface Plasmon Resonance (SPR) sensor chip consisting of four sensing arrays enabling the measurement of samples and control binding events simultaneously on the sensor surface was employed in this work. SPR offers several advantages in terms of label free detection, real time measurements and superior sensitivity when compared to ELISA based techniques. The gold sensor chip was used to immobilise α-casein-polyclonal antibody using EDC/NHS coupling procedure. The performance of the assay and the sensor was first optimised and characterised in pure buffer conditions giving a detection limit of 58ngmL -1 as a direct binding assay. The assay sensitivity can be further improved by using sandwich assay format and amplified with nanoparticles. However, at this stage this is not required as the detection limit achieved exceeded the required allergens detection levels of 2µgmL -1 for α-S1-casein. The sensor demonstrated good selectivity towards the α-casein as the target analyte and adequate recoveries from CIP final rinse wash samples. The sensor would be useful tool for monitoring allergen levels after cleaning procedures, providing additional data that may better inform upon wider food allergen risk management decision(s) that are made by food manufacturer. In particular, this sensor could potentially help validate or optimise cleaning practices for a given food manufacturing process. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. USEPA PERSPECTIVE ON CONTROLLING PATHOGENS

    EPA Science Inventory

    EPA minimizes the risk of infectious diseases from the beneficial use of sludge by requiring its treatment to reduce pathogen levels below the detection limit. How new treatment processes can be shown equivalent to ones specified in 40CFR503 will be discussed together with ways t...

  16. Test Operations Procedure (TOP) 01-1-025 Camouflage Performance Testing Using Observers

    DTIC Science & Technology

    2016-05-05

    15. SUBJECT TERMS camouflage, detection, blending , signatures 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...21 6.2 Blending Data... learning effect on observers. If military personnel are required for testing, determine if Military Occupational Specialty (MOS) qualified Soldier

  17. New calorimeters for space experiments: physics requirements and technological challenges

    NASA Astrophysics Data System (ADS)

    Marrocchesi, Pier Simone

    2015-07-01

    Direct measurements of charged cosmic radiation with instruments in Low Earth Orbit (LEO), or flying on balloons above the atmosphere, require the identification of the incident particle, the measurement of its energy and possibly the determination of its sign-of-charge. The latter information can be provided by a magnetic spectrometer together with a measurement of momentum. However, magnetic deflection in space experiments is at present limited to values of the Maximum Detectable Rigidity (MDR) hardly exceeding a few TV. Advanced calorimetric techniques are, at present, the only way to measure charged and neutral radiation at higher energies in the multi-TeV range. Despite their mass limitation, calorimeters may achieve a large geometric factor and provide an adequate proton background rejection factor, taking advantage of a fine granularity and imaging capabilities. In this lecture, after a brief introduction on electromagnetic and hadronic calorimetry, an innovative approach to the design of a space-borne, large acceptance, homogeneous calorimeter for the detection of high energy cosmic rays will be described.

  18. The detection of malingered post-traumatic stress disorder.

    PubMed

    Knoll, James; Resnick, Phillip J

    2006-09-01

    The detection of malingered PTSD is made particularly challenging by the subjective nature of PTSD criteria and requires a thorough, systematic approach. The psychiatrist must gather and analyze evidence from the evaluation, clinical records, psychologic testing, third parties, and other sources. Although some individuals may malinger PTSD to avoid criminal sanctions, the most common motivation for malingering PTSD is financial gain. Clinical nuances may help distinguish genuine from malingered PTSD. The psychiatrist should be aware of the differences observed between civilian and combat-related PTSD. Although special effort is required, the psychiatrist bears considerable responsibility to assist society in differentiating true PTSD from malingering.Undetected malingering is not limited simply to fraudulent monetary awards, but can involve misuse of limited mental health resources, leading to negative consequences for the mental health system. As Burkett aptly notes, malingered combat PTSD cases "take time, energy, and financial resources away from treating true combat veterans with PTSD. And real combat vets who truly need help end up in group therapy with phonies, get disgusted, and quit treatment".

  19. Supporting secure programming in web applications through interactive static analysis.

    PubMed

    Zhu, Jun; Xie, Jing; Lipford, Heather Richter; Chu, Bill

    2014-07-01

    Many security incidents are caused by software developers' failure to adhere to secure programming practices. Static analysis tools have been used to detect software vulnerabilities. However, their wide usage by developers is limited by the special training required to write rules customized to application-specific logic. Our approach is interactive static analysis, to integrate static analysis into Integrated Development Environment (IDE) and provide in-situ secure programming support to help developers prevent vulnerabilities during code construction. No additional training is required nor are there any assumptions on ways programs are built. Our work is motivated in part by the observation that many vulnerabilities are introduced due to failure to practice secure programming by knowledgeable developers. We implemented a prototype interactive static analysis tool as a plug-in for Java in Eclipse. Our technical evaluation of our prototype detected multiple zero-day vulnerabilities in a large open source project. Our evaluations also suggest that false positives may be limited to a very small class of use cases.

  20. Layered Location-Based Security Mechanism for Mobile Sensor Networks: Moving Security Areas.

    PubMed

    Wang, Ze; Zhang, Haijuan; Wu, Luqiang; Zhou, Chang

    2015-09-25

    Network security is one of the most important issues in mobile sensor networks (MSNs). Networks are particularly vulnerable in hostile environments because of many factors, such as uncertain mobility, limitations on computation, and the need for storage in mobile nodes. Though some location-based security mechanisms can resist some malicious attacks, they are only suitable for static networks and may sometimes require large amounts of storage. To solve these problems, using location information, which is one of the most important properties in outdoor wireless networks, a security mechanism called a moving security area (MSA) is proposed to resist malicious attacks by using mobile nodes' dynamic location-based keys. The security mechanism is layered by performing different detection schemes inside or outside the MSA. The location-based private keys will be updated only at the appropriate moments, considering the balance of cost and security performance. By transferring parts of the detection tasks from ordinary nodes to the sink node, the memory requirements are distributed to different entities to save limited energy.

  1. Supporting secure programming in web applications through interactive static analysis

    PubMed Central

    Zhu, Jun; Xie, Jing; Lipford, Heather Richter; Chu, Bill

    2013-01-01

    Many security incidents are caused by software developers’ failure to adhere to secure programming practices. Static analysis tools have been used to detect software vulnerabilities. However, their wide usage by developers is limited by the special training required to write rules customized to application-specific logic. Our approach is interactive static analysis, to integrate static analysis into Integrated Development Environment (IDE) and provide in-situ secure programming support to help developers prevent vulnerabilities during code construction. No additional training is required nor are there any assumptions on ways programs are built. Our work is motivated in part by the observation that many vulnerabilities are introduced due to failure to practice secure programming by knowledgeable developers. We implemented a prototype interactive static analysis tool as a plug-in for Java in Eclipse. Our technical evaluation of our prototype detected multiple zero-day vulnerabilities in a large open source project. Our evaluations also suggest that false positives may be limited to a very small class of use cases. PMID:25685513

  2. Whispering gallery mode resonators for rapid label-free biosensing in small volume droplets.

    PubMed

    Wildgen, Sarah M; Dunn, Robert C

    2015-03-23

    Rapid biosensing requires fast mass transport of the analyte to the surface of the sensing element. To optimize analysis times, both mass transport in solution and the geometry and size of the sensing element need to be considered. Small dielectric spheres, tens of microns in diameter, can act as label-free biosensors using whispering gallery mode (WGM) resonances. WGM resonances are sensitive to the effective refractive index, which changes upon analyte binding to recognition sites on functionalized resonators. The spherical geometry and tens of microns diameter of these resonators provides an efficient target for sensing while their compact size enables detection in limited volumes. Here, we explore conditions leading to rapid analyte detection using WGM resonators as label-free sensors in 10 μL sample droplets. Droplet evaporation leads to potentially useful convective mixing, but also limits the time over which analysis can be completed. We show that active droplet mixing combined with initial binding rate measurements is required for accurate nanomolar protein quantification within the first minute following injection.

  3. Homeland Security and Contraband Detection

    NASA Astrophysics Data System (ADS)

    Lanza, R. C.

    Detection of contraband and illicit materials has become increasingly important, especially since the terrorist attacks in the United States on September 11, 2001. The nature of the detection problem embodies both physics issues and a set of operational constraints that limit the practical application of neutrons. The issue under consideration is detection of materials that are considered serious threats; these may include explosives; radioactive materials, fissile materials, and other materials associated with nuclear weapons, often referred to as special nuclear material (SNM). The overriding constraint is in the physics: systems must be based on clean physics; but unlike physics experiments, detection systems work under the limitation that materials must be identified nonintrusively, without interrupting the normal flow of commerce and with a high probability of detection and a low probability of false alarms. A great deal of work has been reported in the literature on neutron-based techniques for detecting explosives and drugs. The largest impetus by far for detecting explosives comes from aviation industry requirements for inspecting luggage and, to a lesser extent, cargo. The major alternative techniques are either X-ray-based or chemical trace detection methods that look for small traces of explosive residues. The limitations of the X-ray and trace methods in detecting explosives are well known, but currently (2008) it is safe to say that no neutron- or nuclear-based technique is being used routinely for security inspection, despite extensive development of these methods. Smuggling of nuclear materials has become a concern, and neutron techniques are particularly attractive for detecting them. Given the limitations of X-ray techniques and the need for SNM detection, it is now useful to reexamine neutron methodologies, particularly imaging. A significant number of neutron-based techniques have been proposed and are under development for security applications, especially SNM detection, but describing how they work is beyond the scope of the chapter. Instead, one particular approach to neutron imaging, neutron resonance radiography (NRR), is discussed in detail as it illustrates many of the issues connected with imaging and detection.

  4. Active sampling technique to enhance chemical signature of buried explosives

    NASA Astrophysics Data System (ADS)

    Lovell, John S.; French, Patrick D.

    2004-09-01

    Deminers and dismounted countermine engineers commonly use metal detectors, ground penetrating radar and probes to locate mines. Many modern landmines have a very low metal content, which severely limits the effectiveness of metal detectors. Canines have also been used for landmine detection for decades. Experiments have shown that canines smell the explosives which are known to leak from most types of landmines. The fact that dogs can detect landmines indicates that vapor sensing is a viable approach to landmine detection. Several groups are currently developing systems to detect landmines by "sniffing" for the ultra-trace explosive vapors above the soil. The amount of material that is available to passive vapor sensing systems is limited to no more than the vapor in equilibrium with the explosive related chemicals (ERCs) distributed in the surface soils over and near the landmine. The low equilibrium vapor pressure of TNT in the soil/atmosphere boundary layer and the limited volume of the boundary layer air imply that passive chemical vapor sensing systems require sensitivities in the picogram range, or lower. ADA is working to overcome many of the limitations of passive sampling methods, by the use of an active sampling method that employs a high-powered (1,200+ joules) strobe lamp to create a highly amplified plume of vapor and/or ERC-bearing fine particulates. Initial investigations have demonstrated that this approach can amplify the detectability of TNT by two or three orders of magnitude. This new active sampling technique could be used with any suitable explosive sensor.

  5. A direct detection of Escherichia coli genomic DNA using gold nanoprobes

    PubMed Central

    2012-01-01

    Background In situation like diagnosis of clinical and forensic samples there exists a need for highly sensitive, rapid and specific DNA detection methods. Though conventional DNA amplification using PCR can provide fast results, it is not widely practised in diagnostic laboratories partially because it requires skilled personnel and expensive equipment. To overcome these limitations nanoparticles have been explored as signalling probes for ultrasensitive DNA detection that can be used in field applications. Among the nanomaterials, gold nanoparticles (AuNPs) have been extensively used mainly because of its optical property and ability to get functionalized with a variety of biomolecules. Results We report a protocol for the use of gold nanoparticles functionalized with single stranded oligonucleotide (AuNP- oligo probe) as visual detection probes for rapid and specific detection of Escherichia coli. The AuNP- oligo probe on hybridization with target DNA containing complementary sequences remains red whereas test samples without complementary DNA sequences to the probe turns purple due to acid induced aggregation of AuNP- oligo probes. The color change of the solution is observed visually by naked eye demonstrating direct and rapid detection of the pathogenic Escherichia coli from its genomic DNA without the need for PCR amplification. The limit of detection was ~54 ng for unamplified genomic DNA. The method requires less than 30 minutes to complete after genomic DNA extraction. However, by using unamplified enzymatic digested genomic DNA, the detection limit of 11.4 ng was attained. Results of UV-Vis spectroscopic measurement and AFM imaging further support the hypothesis of aggregation based visual discrimination. To elucidate its utility in medical diagnostic, the assay was validated on clinical strains of pathogenic Escherichia coli obtained from local hospitals and spiked urine samples. It was found to be 100% sensitive and proves to be highly specific without any cross reaction with non-Escherichia coli strains. Conclusion This work gives entry into a new class of DNA/gold nanoparticles hybrid materials which might have optical property that can be controlled for application in diagnostics. We note that it should be possible to extend this strategy easily for developing new types of DNA biosensor for point of care detection. The salient feature of this approach includes low-cost, robust reagents and simple colorimetric detection of pathogen. PMID:22309695

  6. Colorimetric Detection of Small Molecules in Complex Matrixes via Target-Mediated Growth of Aptamer-Functionalized Gold Nanoparticles.

    PubMed

    Soh, Jun Hui; Lin, Yiyang; Rana, Subinoy; Ying, Jackie Y; Stevens, Molly M

    2015-08-04

    A versatile and sensitive colorimetric assay that allows the rapid detection of small-molecule targets using the naked eye is demonstrated. The working principle of the assay integrates aptamer-target recognition and the aptamer-controlled growth of gold nanoparticles (Au NPs). Aptamer-target interactions modulate the amount of aptamer strands adsorbed on the surface of aptamer-functionalized Au NPs via desorption of the aptamer strands when target molecules bind with the aptamer. Depending on the resulting aptamer coverage, Au NPs grow into morphologically varied nanostructures, which give rise to different colored solutions. Au NPs with low aptamer coverage grow into spherical NPs, which produce red-colored solutions, whereas Au NPs with high aptamer coverage grow into branched NPs, which produce blue-colored solutions. We achieved visible colorimetric response and nanomolar detection limits for the detection of ochratoxin A (1 nM) in red wine samples, as well as cocaine (1 nM) and 17β-estradiol (0.2 nM) in spiked synthetic urine and saliva, respectively. The detection limits were well within clinically and physiologically relevant ranges, and below the maximum food safety limits. The assay is highly sensitive, specific, and able to detect an array of analytes rapidly without requiring sophisticated equipment, making it relevant for many applications, such as high-throughput drug and clinical screening, food sampling, and diagnostics. Furthermore, the assay is easily adapted as a chip-based platform for rapid and portable target detection.

  7. Shifted termination assay (STA) fragment analysis to detect BRAF V600 mutations in papillary thyroid carcinomas

    PubMed Central

    2013-01-01

    Background BRAF mutation is an important diagnostic and prognostic marker in patients with papillary thyroid carcinoma (PTC). To be applicable in clinical laboratories with limited equipment, diverse testing methods are required to detect BRAF mutation. Methods A shifted termination assay (STA) fragment analysis was used to detect common V600 BRAF mutations in 159 PTCs with DNAs extracted from formalin-fixed paraffin-embedded tumor tissue. The results of STA fragment analysis were compared to those of direct sequencing. Serial dilutions of BRAF mutant cell line (SNU-790) were used to calculate limit of detection (LOD). Results BRAF mutations were detected in 119 (74.8%) PTCs by STA fragment analysis. In direct sequencing, BRAF mutations were observed in 118 (74.2%) cases. The results of STA fragment analysis had high correlation with those of direct sequencing (p < 0.00001, κ = 0.98). The LOD of STA fragment analysis and direct sequencing was 6% and 12.5%, respectively. In PTCs with pT3/T4 stages, BRAF mutation was observed in 83.8% of cases. In pT1/T2 carcinomas, BRAF mutation was detected in 65.9% and this difference was statistically significant (p = 0.007). Moreover, BRAF mutation was more frequent in PTCs with extrathyroidal invasion than tumors without extrathyroidal invasion (84.7% versus 62.2%, p = 0.001). To prepare and run the reactions, direct sequencing required 450 minutes while STA fragment analysis needed 290 minutes. Conclusions STA fragment analysis is a simple and sensitive method to detect BRAF V600 mutations in formalin-fixed paraffin-embedded clinical samples. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5684057089135749 PMID:23883275

  8. Mini-column assay for rapid detection of malachite green in fish.

    PubMed

    Shalaby, Ali R; Emam, Wafaa H; Anwar, Mervat M

    2017-07-01

    A simple, rapid and economical mini-column method for detecting malachite green (MG) residue in fish was developed. The method used a column with 2mm ID that was tightly packed with silica gel followed by alumina. Detection of MG was performed by viewing the developed mini-column at visible light by naked eye; where MG was seen as compact green band at the confluence of the silica gel layer with alumina layer. The limit of detection of the assay was 2ng which conform the minimum required performance limit (MRPL). Evaluation utility of the method indicated that all blank and spiked samples at levels below MRPL were assessed as accepted. The intensity of the green band increased whenever MG level in the extract increased; indicated that suggested mini-column technique could be used for semi-quantitative determination of MG in fish samples. The method can be used to select the questionable samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Rapid Detection of Human Immunodeficiency Virus Types 1 and 2 by Use of an Improved Piezoelectric Biosensor

    PubMed Central

    Severns, Virginia; Branch, Darren W.; Edwards, Thayne L.; Larson, Richard S.

    2013-01-01

    Disasters can create situations in which blood donations can save lives. However, in emergency situations and when resources are depleted, on-site blood donations require the rapid and accurate detection of blood-borne pathogens, including human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2). Techniques such as PCR and antibody capture by an enzyme-linked immunosorbent assay (ELISA) for HIV-1 and HIV-2 are precise but time-consuming and require sophisticated equipment that is not compatible with emergency point-of-care requirements. We describe here a prototype biosensor based on piezoelectric materials functionalized with specific antibodies against HIV-1 and HIV-2. We show the rapid and accurate detection of HIV-1 and HIV-2 in both simple and complex solutions, including human serum, and in the presence of a cross-confounding virus. We report detection limits of 12 50% tissue culture infective doses (TCID50s) for HIV-1 and 87 TCID50s for HIV-2. The accuracy, precision of measurements, and operation of the prototype biosensor compared favorably to those for nucleic acid amplification. We conclude that the biosensor has significant promise as a successful point-of-care diagnostic device for use in emergency field applications requiring rapid and reliable testing for blood-borne pathogens. PMID:23515541

  10. Project Cyclops: a Design Study of a System for Detecting Extraterrestrial Intelligent Life

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The requirements in hardware, manpower, time and funding to conduct a realistic effort aimed at detecting the existence of extraterrestrial intelligent life are examined. The methods used are limited to present or near term future state-of-the-art techniques. Subjects discussed include: (1) possible methods of contact, (2) communication by electromagnetic waves, (3) antenna array and system facilities, (4) antenna elements, (5) signal processing, (6) search strategy, and (7) radio and radar astronomy.

  11. Innovative qPCR using interfacial effects to enable low threshold cycle detection and inhibition relief

    PubMed Central

    Harshman, Dustin K.; Rao, Brianna M.; McLain, Jean E.; Watts, George S.; Yoon, Jeong-Yeol

    2015-01-01

    Molecular diagnostics offers quick access to information but fails to operate at a speed required for clinical decision-making. Our novel methodology, droplet-on-thermocouple silhouette real-time polymerase chain reaction (DOTS qPCR), uses interfacial effects for droplet actuation, inhibition relief, and amplification sensing. DOTS qPCR has sample-to-answer times as short as 3 min 30 s. In infective endocarditis diagnosis, DOTS qPCR demonstrates reproducibility, differentiation of antibiotic susceptibility, subpicogram limit of detection, and thermocycling speeds of up to 28 s/cycle in the presence of tissue contaminants. Langmuir and Gibbs adsorption isotherms are used to describe the decreasing interfacial tension upon amplification. Moreover, a log-linear relationship with low threshold cycles is presented for real-time quantification by imaging the droplet-on-thermocouple silhouette with a smartphone. DOTS qPCR resolves several limitations of commercially available real-time PCR systems, which rely on fluorescence detection, have substantially higher threshold cycles, and require expensive optical components and extensive sample preparation. Due to the advantages of low threshold cycle detection, we anticipate extending this technology to biological research applications such as single cell, single nucleus, and single DNA molecule analyses. Our work is the first demonstrated use of interfacial effects for sensing reaction progress, and it will enable point-of-care molecular diagnosis of infections. PMID:26601245

  12. Collection of quantitative chemical release field data.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demirgian, J.; Macha, S.; Loyola Univ.

    1999-01-01

    Detection and quantitation of chemicals in the environment requires Fourier-transform infrared (FTIR) instruments that are properly calibrated and tested. This calibration and testing requires field testing using matrices that are representative of actual instrument use conditions. Three methods commonly used for developing calibration files and training sets in the field are a closed optical cell or chamber, a large-scale chemical release, and a small-scale chemical release. There is no best method. The advantages and limitations of each method should be considered in evaluating field results. Proper calibration characterizes the sensitivity of an instrument, its ability to detect a component inmore » different matrices, and the quantitative accuracy and precision of the results.« less

  13. Fraunhofer filters to reduce solar background for optical communications

    NASA Technical Reports Server (NTRS)

    Kerr, E. L.

    1986-01-01

    A wavelength that lies within a spectral interval of reduced solar emission (a Fraunhofer line) can carry optical communications with reduced interference from direct or reflected background sunlight. Suitable Fraunhofer lines are located within the tuning range of good candidate lasers. The laser should be tunable dynamically to track Doppler shifts in the sunlight incident on any solar system body that may appear in the background as viewed by the receiver. A Fraunhofer filter used with a direct-detection receiver should be tuned to match the Doppler shifts of the source and background. The required tuning calculated here for various situations is also required if, instead, one uses a heterodyne receiver with limited post-detection bandwidth.

  14. Small UAS Detect and Avoid Requirements Necessary for Limited Beyond Visual Line of Sight (BVLOS) Operations

    DOT National Transportation Integrated Search

    2017-05-19

    Potential sUAS BVLOS operational scenarios/use cases and DAA approaches were collected through a number of industry wide data calls. Every 333 Exemption holder was solicited for this same information. Summary information from more than 5,000 exemptio...

  15. Evaluation on the detection limit of blood hemoglobin using photolepthysmography based on path-length optimization

    NASA Astrophysics Data System (ADS)

    Sun, Di; Guo, Chao; Zhang, Ziyang; Han, Tongshuai; Liu, Jin

    2016-10-01

    The blood hemoglobin concentration's (BHC) measurement using Photoplethysmography (PPG), which gets blood absorption to near infrared light from the instantaneous pulse of transmitted light intensity, has not been applied to the clinical use due to the non-enough precision. The main challenge might be caused of the non-enough stable pulse signal when it's very weak and it often varies in different human bodies or in the same body with different physiological states. We evaluated the detection limit of BHC using PPG as the measurement precision level, which can be considered as a best precision result because we got the relative stable subject's pulse signals recorded by using a spectrometer with high signal-to-noise ratio (SNR) level, which is about 30000:1 in short term. Moreover, we optimized the used pathlength using the theory based on optimum pathlength to get a better sensitivity to the absorption variation in blood. The best detection limit was evaluated as about 1 g/L for BHC, and the best SNR of pulse for in vivo measurement was about 2000:1 at 1130 and 1250 nm. Meanwhile, we conclude that the SNR of pulse signal should be better than 400:1 when the required detection limit is set to 5 g/L. Our result would be a good reference to the BHC measurement to get a desired BHC measurement precision of real application.

  16. Determination of 235U/238U Ratio on Urine by ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, L; Gobaleza, A; Langston, R

    2011-10-19

    LLNL Internal Dosimetry Program - The new procedure satisfies the requirement to determine {sup 235}U/{sup 238}U ratio in bioassay urine samples. MDA - The L{sub C} and MDA{sub 95} for {sup 235}U are well below the required detection limit of 0.00035 {mu}g/L. Turn around time - Analysis of 10 samples plus 2 QCs can be completed in one work day (8 hours).

  17. Sensitive indoor air monitoring of formaldehyde and other carbonyl compounds using the 2,4-dinitrophenylhydrazine method.

    PubMed

    Sandner, F; Dott, W; Hollender, J

    2001-03-01

    The toxic potential of formaldehyde and other aliphatic/aromatic carbonyl compounds requires the determination of even low amounts of these compounds in indoor air. The existing DFG-method for workplace monitoring using adsorption at 2,4-dinitrophenylhydrazine (DNPH)-coated sorbents followed by HPLC-UV/DAD analysis of the extract was modified in order to decrease detection limits. The improvement included an increase in volume and rate of the air sampling, testing applicability of different adsorption materials and a decrease of the extraction volume of the hydrazones. 13 DNPH-derivatives could be separated well on a RP18-column followed by UV/DAD-detection at 365 nm. Recovery rates of 70-100% were determined (apart from acetone with 19%) using dynamically produced artifical carbonyl atmospheres. Detection limits of 0.05-0.4 microgram/m3 were reached by this method which are sufficient for indoor air monitoring.

  18. Fabrications and Performance of Wireless LC Pressure Sensors through LTCC Technology.

    PubMed

    Lin, Lin; Ma, Mingsheng; Zhang, Faqiang; Liu, Feng; Liu, Zhifu; Li, Yongxiang

    2018-01-25

    This paper presents a kind of passive wireless pressure sensor comprised of a planar spiral inductor and a cavity parallel plate capacitor fabricated through low-temperature co-fired ceramic (LTCC) technology. The LTCC material with a low Young's modulus of ~65 GPa prepared by our laboratory was used to obtain high sensitivity. A three-step lamination process was applied to construct a high quality cavity structure without using any sacrificial materials. The effects of the thickness of the sensing membranes on the sensitivity and detection range of the pressure sensors were investigated. The sensor with a 148 μm sensing membrane showed the highest sensitivity of 3.76 kHz/kPa, and the sensor with a 432 μm sensing membrane presented a high detection limit of 2660 kPa. The tunable sensitivity and detection limit of the wireless pressure sensors can meet the requirements of different scenes.

  19. Detection limits of organic compounds achievable with intense, short-pulse lasers.

    PubMed

    Miles, Jordan; De Camillis, Simone; Alexander, Grace; Hamilton, Kathryn; Kelly, Thomas J; Costello, John T; Zepf, Matthew; Williams, Ian D; Greenwood, Jason B

    2015-06-21

    Many organic molecules have strong absorption bands which can be accessed by ultraviolet short pulse lasers to produce efficient ionization. This resonant multiphoton ionization scheme has already been exploited as an ionization source in time-of-flight mass spectrometers used for environmental trace analysis. In the present work we quantify the ultimate potential of this technique by measuring absolute ion yields produced from the interaction of 267 nm femtosecond laser pulses with the organic molecules indole and toluene, and gases Xe, N2 and O2. Using multiphoton ionization cross sections extracted from these results, we show that the laser pulse parameters required for real-time detection of aromatic molecules at concentrations of one part per trillion in air and a limit of detection of a few attomoles are achievable with presently available commercial laser systems. The potential applications for the analysis of human breath, blood and tissue samples are discussed.

  20. Shallow Reflection Method for Water-Filled Void Detection and Characterization

    NASA Astrophysics Data System (ADS)

    Zahari, M. N. H.; Madun, A.; Dahlan, S. H.; Joret, A.; Hazreek, Z. A. M.; Mohammad, A. H.; Izzaty, R. A.

    2018-04-01

    Shallow investigation is crucial in enhancing the characteristics of subsurface void commonly encountered in civil engineering, and one such technique commonly used is seismic-reflection technique. An assessment of the effectiveness of such an approach is critical to determine whether the quality of the works meets the prescribed requirements. Conventional quality testing suffers limitations including: limited coverage (both area and depth) and problems with resolution quality. Traditionally quality assurance measurements use laboratory and in-situ invasive and destructive tests. However geophysical approaches, which are typically non-invasive and non-destructive, offer a method by which improvement of detection can be measured in a cost-effective way. Of this seismic reflection have proved useful to assess void characteristic, this paper evaluates the application of shallow seismic-reflection method in characterizing the water-filled void properties at 0.34 m depth, specifically for detection and characterization of void measurement using 2-dimensional tomography.

  1. Remembering complex objects in visual working memory: do capacity limits restrict objects or features?

    PubMed

    Hardman, Kyle O; Cowan, Nelson

    2015-03-01

    Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli that possessed multiple features per stimulus item. We manipulated the number of relevant features of the stimulus objects in order to vary feature load. In all of our experiments, we found that increased feature load led to a reduction in change-detection accuracy. However, we found that feature load alone could not account for the results but that a consideration of the number of relevant objects was also required. This study supports capacity limits for both feature and object storage in visual working memory. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  2. Redundancy management of inertial systems.

    NASA Technical Reports Server (NTRS)

    Mckern, R. A.; Musoff, H.

    1973-01-01

    The paper reviews developments in failure detection and isolation techniques applicable to gimballed and strapdown systems. It examines basic redundancy management goals of improved reliability, performance and logistic costs, and explores mechanizations available for both input and output data handling. The meaning of redundant system reliability in terms of available coverage, system MTBF, and mission time is presented and the practical hardware performance limitations of failure detection and isolation techniques are explored. Simulation results are presented illustrating implementation coverages attainable considering IMU performance models and mission detection threshold requirements. The implications of a complete GN&C redundancy management method on inertial techniques are also explored.

  3. Advances in Assays and Analytical Approaches for Botulinum Toxin Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grate, Jay W.; Ozanich, Richard M.; Warner, Marvin G.

    2010-08-04

    Methods to detect botulinum toxin, the most poisonous substance known, are reviewed. Current assays are being developed with two main objectives in mind: 1) to obtain sufficiently low detection limits to replace the mouse bioassay with an in vitro assay, and 2) to develop rapid assays for screening purposes that are as sensitive as possible while requiring an hour or less to process the sample an obtain the result. This review emphasizes the diverse analytical approaches and devices that have been developed over the last decade, while also briefly reviewing representative older immunoassays to provide background and context.

  4. Improvement of the energy resolution of pixelated CdTe detectors for applications in 0νββ searches

    NASA Astrophysics Data System (ADS)

    Gleixner, T.; Anton, G.; Filipenko, M.; Seller, P.; Veale, M. C.; Wilson, M. D.; Zang, A.; Michel, T.

    2015-07-01

    Experiments trying to detect 0νββ are very challenging. Their requirements include a good energy resolution and a good detection efficiency. With current fine pixelated CdTe detectors there is a trade off between the energy resolution and the detection efficiency, which limits their performance. It will be shown with simulations that this problem can be mostly negated by analysing the cathode signal which increases the optimal sensor thickness. We will compare different types of fine pixelated CdTe detectors (Timepix, Dosepix, HEXITEC) from this point of view.

  5. Quantum cascade laser-based analyzer for hydrogen sulfide detection at sub-parts-per-million levels

    NASA Astrophysics Data System (ADS)

    Nikodem, Michal; Krzempek, Karol; Stachowiak, Dorota; Wysocki, Gerard

    2018-01-01

    Due to its high toxicity, monitoring of hydrogen sulfide (H2S) concentration is essential in many industrial sites (such as natural gas extraction sites, petroleum refineries, geothermal power plants, or waste water treatment facilities), which require sub-parts-per-million sensitivities. We report on a quantum cascade laser-based spectroscopic system for detection of H2S in the midinfrared at ˜7.2 μm. We present a sensor design utilizing Herriott multipass cell and a wavelength modulation spectroscopy to achieve a detection limit of 140 parts per billion for 1-s integration time.

  6. Detecting Visually Observable Disease Symptoms from Faces.

    PubMed

    Wang, Kuan; Luo, Jiebo

    2016-12-01

    Recent years have witnessed an increasing interest in the application of machine learning to clinical informatics and healthcare systems. A significant amount of research has been done on healthcare systems based on supervised learning. In this study, we present a generalized solution to detect visually observable symptoms on faces using semi-supervised anomaly detection combined with machine vision algorithms. We rely on the disease-related statistical facts to detect abnormalities and classify them into multiple categories to narrow down the possible medical reasons of detecting. Our method is in contrast with most existing approaches, which are limited by the availability of labeled training data required for supervised learning, and therefore offers the major advantage of flagging any unusual and visually observable symptoms.

  7. Geologic Carbon Sequestration Leakage Detection: A Physics-Guided Machine Learning Approach

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Harp, D. R.; Chen, B.; Pawar, R.

    2017-12-01

    One of the risks of large-scale geologic carbon sequestration is the potential migration of fluids out of the storage formations. Accurate and fast detection of this fluids migration is not only important but also challenging, due to the large subsurface uncertainty and complex governing physics. Traditional leakage detection and monitoring techniques rely on geophysical observations including pressure. However, the resulting accuracy of these methods is limited because of indirect information they provide requiring expert interpretation, therefore yielding in-accurate estimates of leakage rates and locations. In this work, we develop a novel machine-learning technique based on support vector regression to effectively and efficiently predict the leakage locations and leakage rates based on limited number of pressure observations. Compared to the conventional data-driven approaches, which can be usually seem as a "black box" procedure, we develop a physics-guided machine learning method to incorporate the governing physics into the learning procedure. To validate the performance of our proposed leakage detection method, we employ our method to both 2D and 3D synthetic subsurface models. Our novel CO2 leakage detection method has shown high detection accuracy in the example problems.

  8. Broadband noise limit in the photodetection of ultralow jitter optical pulses.

    PubMed

    Sun, Wenlu; Quinlan, Franklyn; Fortier, Tara M; Deschenes, Jean-Daniel; Fu, Yang; Diddams, Scott A; Campbell, Joe C

    2014-11-14

    Applications with optical atomic clocks and precision timing often require the transfer of optical frequency references to the electrical domain with extremely high fidelity. Here we examine the impact of photocarrier scattering and distributed absorption on the photocurrent noise of high-speed photodiodes when detecting ultralow jitter optical pulses. Despite its small contribution to the total photocurrent, this excess noise can determine the phase noise and timing jitter of microwave signals generated by detecting ultrashort optical pulses. A Monte Carlo simulation of the photodetection process is used to quantitatively estimate the excess noise. Simulated phase noise on the 10 GHz harmonic of a photodetected pulse train shows good agreement with previous experimental data, leading to the conclusion that the lowest phase noise photonically generated microwave signals are limited by photocarrier scattering well above the quantum limit of the optical pulse train.

  9. Singlet oxygen detection in biological systems: Uses and limitations

    PubMed Central

    Koh, Eugene; Fluhr, Robert

    2016-01-01

    ABSTRACT The study of singlet oxygen in biological systems is challenging in many ways. Singlet oxygen is a relatively unstable ephemeral molecule, and its properties make it highly reactive with many biomolecules, making it difficult to quantify accurately. Several methods have been developed to study this elusive molecule, but most studies thus far have focused on those conditions that produce relatively large amounts of singlet oxygen. However, the need for more sensitive methods is required as one begins to explore the levels of singlet oxygen required in signaling and regulatory processes. Here we discuss the various methods used in the study of singlet oxygen, and outline their uses and limitations. PMID:27231787

  10. Lightweight autonomous chemical identification system (LACIS)

    NASA Astrophysics Data System (ADS)

    Lozos, George; Lin, Hai; Burch, Timothy

    2012-06-01

    Smiths Detection and Intelligent Optical Systems have developed prototypes for the Lightweight Autonomous Chemical Identification System (LACIS) for the US Department of Homeland Security. LACIS is to be a handheld detection system for Chemical Warfare Agents (CWAs) and Toxic Industrial Chemicals (TICs). LACIS is designed to have a low limit of detection and rapid response time for use by emergency responders and could allow determination of areas having dangerous concentration levels and if protective garments will be required. Procedures for protection of responders from hazardous materials incidents require the use of protective equipment until such time as the hazard can be assessed. Such accurate analysis can accelerate operations and increase effectiveness. LACIS is to be an improved point detector employing novel CBRNE detection modalities that includes a militaryproven ruggedized ion mobility spectrometer (IMS) with an array of electro-resistive sensors to extend the range of chemical threats detected in a single device. It uses a novel sensor data fusion and threat classification architecture to interpret the independent sensor responses and provide robust detection at low levels in complex backgrounds with minimal false alarms. The performance of LACIS prototypes have been characterized in independent third party laboratory tests at the Battelle Memorial Institute (BMI, Columbus, OH) and indoor and outdoor field tests at the Nevada National Security Site (NNSS). LACIS prototypes will be entering operational assessment by key government emergency response groups to determine its capabilities versus requirements.

  11. Photo-vibrational spectroscopy using quantum cascade laser and laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Hu, Qi; Xie, Jiecheng; Fu, Yu

    2017-06-01

    Photoacoustic/photothermal spectroscopy is an established technique for detection of chemicals and explosives. However, prior sample preparation is required and the analysis is conducted in a sealed space with a high-sensitivity sensor coupled with a lock-in amplifier, limiting the technique to applications in a controllable laboratory environment. Hence, this technique may not be suitable for defense and security applications where the detection of explosives or hazardous chemicals is required in an open environment at a safe standoff distance. In this study, chemicals in various forms were excited by an intensity-modulated quantum cascade laser (QCL), while a laser Doppler vibrometer (LDV) was applied to detect the vibration signal resulting from the photocoustic/photothermal effect. The photo-vibrational spectrum obtained by scanning the QCL's wavelength in MIR range, coincides well with the corresponding spectrum obtained using typical FTIR equipment. The experiment in short and long standoff distances demonstrated that the LDV is a capable sensor for chemical detection in an open environment.

  12. Hybrid Model-Based and Data-Driven Fault Detection and Diagnostics for Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Stephen; Heaney, Michael; Jin, Xin

    Commercial buildings often experience faults that produce undesirable behavior in building systems. Building faults waste energy, decrease occupants' comfort, and increase operating costs. Automated fault detection and diagnosis (FDD) tools for buildings help building owners discover and identify the root causes of faults in building systems, equipment, and controls. Proper implementation of FDD has the potential to simultaneously improve comfort, reduce energy use, and narrow the gap between actual and optimal building performance. However, conventional rule-based FDD requires expensive instrumentation and valuable engineering labor, which limit deployment opportunities. This paper presents a hybrid, automated FDD approach that combines building energymore » models and statistical learning tools to detect and diagnose faults noninvasively, using minimal sensors, with little customization. We compare and contrast the performance of several hybrid FDD algorithms for a small security building. Our results indicate that the algorithms can detect and diagnose several common faults, but more work is required to reduce false positive rates and improve diagnosis accuracy.« less

  13. Hybrid Model-Based and Data-Driven Fault Detection and Diagnostics for Commercial Buildings: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Stephen; Heaney, Michael; Jin, Xin

    Commercial buildings often experience faults that produce undesirable behavior in building systems. Building faults waste energy, decrease occupants' comfort, and increase operating costs. Automated fault detection and diagnosis (FDD) tools for buildings help building owners discover and identify the root causes of faults in building systems, equipment, and controls. Proper implementation of FDD has the potential to simultaneously improve comfort, reduce energy use, and narrow the gap between actual and optimal building performance. However, conventional rule-based FDD requires expensive instrumentation and valuable engineering labor, which limit deployment opportunities. This paper presents a hybrid, automated FDD approach that combines building energymore » models and statistical learning tools to detect and diagnose faults noninvasively, using minimal sensors, with little customization. We compare and contrast the performance of several hybrid FDD algorithms for a small security building. Our results indicate that the algorithms can detect and diagnose several common faults, but more work is required to reduce false positive rates and improve diagnosis accuracy.« less

  14. The Gaia On-Board Scientific Data Handling

    NASA Astrophysics Data System (ADS)

    Arenou, F.; Babusiaux, C.; Chéreau, F.; Mignot, S.

    2005-01-01

    Because Gaia will perform a continuous all-sky survey at a medium (Spectro) or very high (Astro) angular resolution, the on-board processing needs to cope with a high variety of objects and densities which calls for generic and adaptive algorithms at the detection level, but not only. Consequently, the Pyxis scientific algorithms developed for the on-board data handling cover a large range of application: detection and confirmation of astronomical objects, background sky estimation, classification of detected objects, Near-Earth Objects onboard detection, and window selection and positioning. Very dense fields, where the real-time computing requirements should remain within fixed bounds, are particularly challenging. Another constraint stems from the limited telemetry bandwidth and an additional compromise has to be found between scientific requirements and constraints in terms of the mass, volume and power budgets of the satellite. The rationale for the on-board data handling procedure is described here, together with the developed algorithms, the main issues and the expected scientific performances in the Astro and Spectro instruments.

  15. Advanced Speckle Sensing for Internal Coronagraphs

    NASA Technical Reports Server (NTRS)

    Noecker, Charley; Shaklan, Stuart B.; Wallace, James K.; Kern, Brian D.; Give'on, Amir; Kasdin, Jeremy; Belikov, Ruslan; Kendrick, Steve

    2011-01-01

    A 4-8m telescope carrying a coronagraph instrument is a leading candidate for an anticipated flagship mission to detect and characterize Earth-size exoplanets in the 2020s. Many candidate coronagraph instruments have been proposed, and one has met many of the principal requirements for that mission. But the telescope and instrument will need exquisite stability and precise control of the incoming wavefront to enable detection of faint companions (10(exp -10) of the star) at an angular separation of 2-4 Airy radii. In particular, wavefront errors cause speckles in the image, and variations in those speckles can confound the exoplanet detection. This challenge is compounded by the background light from zodiacal dust around our Sun and the target star, which limits the speed with which we can estimate and correct the speckles. We are working on developing coherent speckle detection techniques that will allow rapid calibration of speckles on the science detector, allowing subtraction in post-processing or correction with deformable mirrors. The expected speed improvement allows a much quicker timeline for measurement & calibration, which reduces the required telescope stability requirement and eases both the flight system design and the challenge of ground testing. We will describe the experiments and summarize progress to date.

  16. Refinement of planetary protection policy for Mars missions

    NASA Technical Reports Server (NTRS)

    DeVincenzi, D. L.; Stabekis, P.; Barengoltz, J.

    1996-01-01

    Under existing COSPAR policy adopted in 1984, missions to Mars (landers, probes, and some orbiters) are designated as Category IV missions. As such, the procedures for implementing planetary protection requirements could include trajectory biasing, cleanrooms, bioload reduction, sterilization of hardware, and bioshields. In 1992, a U.S. National Research Council study recommended that controls on forward contamination of Mars be tied to specific mission objectives. The report recommended that Mars landers with life detection instruments be subject to at least Viking-level sterilization procedures for bioload reduction, while spacecraft (including orbiters) without life detection instruments be subject to at least Viking-level pre-sterilization procedures for bioload reduction but need not be sterilized. In light of this, it is proposed that the current policy's Category IV and its planetary protection requirements be divided into two sub-categories as follows: Category IVa, for missions comprising landers and probes without life detection experiments, which will meet a specified bioburden limit for exposed surfaces, and Category IVb, for landers and probes with life detection experiments, which will require sterilization of landed systems. In addition, Category III orbiter mission specifications are expanded to be consistent with these recommendations.

  17. Development of a Screening Approach to Detect Thyroid Disrupting Chemicals that Inhibit the Human Sodium/Iodide Symporter (NIS)

    EPA Science Inventory

    Thyroid hormone synthesis requires active iodide uptake mediated by the sodium/iodide symporter (NIS). Monovalent anions, such as the environmental contaminant perchlorate, have been well characterized as competitive inhibitors of NIS, yet limited information exists for more stru...

  18. 19 CFR 171.51 - Application and definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... evidence of illicit drug trafficking or distribution such as, but not limited to the factors set forth in... drug trafficking or distribution exists. (A) One gram of a mixture of substance containing a detectable... designed to establish and implement procedures required by section 6079 of the Anti-Drug Abuse Act of 1988...

  19. 19 CFR 171.51 - Application and definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... evidence of illicit drug trafficking or distribution such as, but not limited to the factors set forth in... drug trafficking or distribution exists. (A) One gram of a mixture of substance containing a detectable... designed to establish and implement procedures required by section 6079 of the Anti-Drug Abuse Act of 1988...

  20. Nucleic Acids for Ultra-Sensitive Protein Detection

    PubMed Central

    Janssen, Kris P. F.; Knez, Karel; Spasic, Dragana; Lammertyn, Jeroen

    2013-01-01

    Major advancements in molecular biology and clinical diagnostics cannot be brought about strictly through the use of genomics based methods. Improved methods for protein detection and proteomic screening are an absolute necessity to complement to wealth of information offered by novel, high-throughput sequencing technologies. Only then will it be possible to advance insights into clinical processes and to characterize the importance of specific protein biomarkers for disease detection or the realization of “personalized medicine”. Currently however, large-scale proteomic information is still not as easily obtained as its genomic counterpart, mainly because traditional antibody-based technologies struggle to meet the stringent sensitivity and throughput requirements that are required whereas mass-spectrometry based methods might be burdened by significant costs involved. However, recent years have seen the development of new biodetection strategies linking nucleic acids with existing antibody technology or replacing antibodies with oligonucleotide recognition elements altogether. These advancements have unlocked many new strategies to lower detection limits and dramatically increase throughput of protein detection assays. In this review, an overview of these new strategies will be given. PMID:23337338

  1. A microRNA detection system based on padlock probes and rolling circle amplification

    PubMed Central

    Jonstrup, Søren Peter; Koch, Jørn; Kjems, Jørgen

    2006-01-01

    The differential expression and the regulatory roles of microRNAs (miRNAs) are being studied intensively these years. Their minute size of only 19–24 nucleotides and strong sequence similarity among related species call for enhanced methods for reliable detection and quantification. Moreover, miRNA expression is generally restricted to a limited number of specific cells within an organism and therefore requires highly sensitive detection methods. Here we present a simple and reliable miRNA detection protocol based on padlock probes and rolling circle amplification. It can be performed without specialized equipment and is capable of measuring the content of specific miRNAs in a few nanograms of total RNA. PMID:16888321

  2. Investigation of an EMI sensor for detection of large metallic objects in the presence of metallic clutter

    NASA Astrophysics Data System (ADS)

    Black, Christopher; McMichael, Ian; Riggs, Lloyd

    2005-06-01

    Electromagnetic induction (EMI) sensors and magnetometers have successfully detected surface laid, buried, and visually obscured metallic objects. Potential military activities could require detection of these objects at some distance from a moving vehicle in the presence of metallic clutter. Results show that existing EMI sensors have limited range capabilities and suffer from false alarms due to clutter. This paper presents results of an investigation of an EMI sensor designed for detecting large metallic objects on a moving platform in a high clutter environment. The sensor was developed by the U.S. Army RDECOM CERDEC NVESD in conjunction with the Johns Hopkins University Applied Physics Laboratory.

  3. Quantum Cascade Laser-Based Photoacoustic Sensor for Trace Detection of Formaldehyde Gas

    PubMed Central

    Elia, Angela; Di Franco, Cinzia; Spagnolo, Vincenzo; Lugarà, Pietro Mario; Scamarcio, Gaetano

    2009-01-01

    We report on the development of a photoacoustic sensor for the detection of formaldehyde (CH2O) using a thermoelectrically cooled distributed-feedback quantum cascade laser operating in pulsed mode at 5.6 μm. A resonant photoacoustic cell, equipped with four electret microphones, is excited in its first longitudinal mode at 1,380 Hz. The absorption line at 1,778.9 cm−1 is selected for CH2O detection. A detection limit of 150 parts per billion in volume in nitrogen is achieved using a 10 seconds time constant and 4 mW laser power. Measurements in ambient air will require water vapour filters. PMID:22574040

  4. A microRNA detection system based on padlock probes and rolling circle amplification.

    PubMed

    Jonstrup, Søren Peter; Koch, Jørn; Kjems, Jørgen

    2006-09-01

    The differential expression and the regulatory roles of microRNAs (miRNAs) are being studied intensively these years. Their minute size of only 19-24 nucleotides and strong sequence similarity among related species call for enhanced methods for reliable detection and quantification. Moreover, miRNA expression is generally restricted to a limited number of specific cells within an organism and therefore requires highly sensitive detection methods. Here we present a simple and reliable miRNA detection protocol based on padlock probes and rolling circle amplification. It can be performed without specialized equipment and is capable of measuring the content of specific miRNAs in a few nanograms of total RNA.

  5. Effects of liquid chromatography mobile phases and buffer salts on phosphorus inductively coupled plasma atomic emission and mass spectrometries utilizing ultrasonic nebulization and membrane desolvation.

    PubMed

    Carr, John E; Kwok, Kaho; Webster, Gregory K; Carnahan, Jon W

    2006-01-23

    Atomic spectrometry, specifically inductively coupled plasma atomic emission spectrometry (ICP-AES) and mass spectrometry (ICP-MS) show promise for heteroatom-based detection of pharmaceutical compounds. The combination of ultrasonic nebulization (USN) with membrane desolvation (MD) greatly enhances detection limits with these approaches. Because pharmaceutical analyses often incorporate liquid chromatography, the study herein was performed to examine the effects of solvent composition on the analytical behaviors of these approaches. The target analyte was phosphorus, introduced as phosphomycin. AES response was examined at the 253.7 nm atom line and mass 31 ions were monitored for the MS experiments. With pure aqueous solutions, detection limits of 5 ppb (0.5 ng in 0.1 mL injection volumes) were obtained with ICP-MS. The ICP-AES detection limit was 150 ppb. Solvent compositions were varied from 0 to 80% organic (acetonitrile and methanol) with nine buffers at concentrations typically used in liquid chromatography. In general, solvents and buffers had statistically significant, albeit small, effects on ICP-AES sensitivities. A few exceptions occurred in cases where typical liquid chromatography buffer concentrations produced higher mass loadings on the plasma. Indications are that isocratic separations can be reliably performed. Within reasonable accuracy tolerances, it appears that gradient chromatography can be performed without the need for signal response normalization. Organic solvent and buffer effects were more significant with ICP-MS. Sensitivities varied significantly with different buffers and organic solvent content. In these cases, gradient chromatography will require careful analytical calibration as solvent and buffer content is varied. However, for most buffer and solvent combinations, signal and detection limits are only moderately affected. Isocratic separations and detection are feasible.

  6. Cooperative Robotics and the Search for Extraterrestrial Life

    NASA Technical Reports Server (NTRS)

    Lupisella, M. L.

    2000-01-01

    If we think tenuous abodes of life may be hiding in remote extraterrestrial environmental niches, and if we want to assess the biological status of a given locale or entire planet before sending humans (perhaps because of contamination concerns or other motivations) then we face the challenge of robotically exploring a large space efficiently and in enough detail to have confidence in our assessment of the biological status of the environment in question. On our present schedule of perhaps two or so missions per opportunity, we will likely need a different exploratory approach than singular stationary landers or singular rover missions or sample return, because there appear to be fundamental limitations in these mission profiles to obtain the many samples we will likely need if we want to have confidence in assessing the biological status of an environment in which life could be hiding in remote environmental niches. Singular rover missions can potentially accommodate sampling over a fairly large area, but are still limited by range and can be a single point of failure. More importantly, such mission profiles have limited payload capabilities which are unlikely to meet the demanding requirements of life-detection. Sample return has the advantage of allowing sophisticated analysis of the sample, but also has the severe limitations associated with only being able to bring back a few samples. This presentation will suggest two cooperative robotic approaches for exploration that have the potential to overcome these difficulties and facilitate efficient and thorough life-detecting exploration of a large space. Given the two premises stated above, it appears at least two fundamental challenges have to be met simultaneously: (1) coverage of a large space and (2) bringing to bear a sophisticated suite of detection and experimental payloads on any specific location in order to address a major challenge in looking for extraterrestrial life: namely, executing a wide variety of detection scenarios and in situ experiments in order to gather the required data for a confident assessment that life has been detected and to, more generally, cover a wide range of extraterrestrial life possibilities. Cooperative robotics lends itself to this kind of problem because cooperation among the combined capabilities of a variety of simple single function agents can give rise to fairly complex task execution such as the search for and detection of extraterrestrial life.

  7. Cooperative Robotics and the Search for Extraterrestrial Life

    NASA Technical Reports Server (NTRS)

    Lupisella, Mark L.

    2000-01-01

    If we think tenuous abodes of life may be hiding in remote extraterrestrial environmental niches, and if we want to assess the biological status of a given locale or entire planet before sending humans (perhaps because of contamination concerns or other motivations) then we face the challenge of robotically exploring a large space efficiently and in enough detail to have confidence in our assessment of the biological status of the environment in question. On our present schedule of perhaps two or so missions per opportunity, we will likely need a different exploratory approach than singular stationary landers or singular rover missions or sample return, because there appear to be fundamental limitations in these mission profiles to-obtain the many samples we will likely need if we want to have confidence in assessing the biological status of an environment in which life could be hiding in remote environmental niches. Singular rover missions can potentially accommodate sampling over a fairly large area, but are still limited by range and can be a single point of failure. More importantly, such mission profiles have limited payload capabilities which are unlikely to meet the demanding requirements of life-detection. Sample return has the advantage of allowing sophisticated analysis of the sample, but also has the severe limitations associated with only being able to bring back a few samples. This presentation will suggest two cooperative robotic approaches for exploration that have the potential to overcome these difficulties and facilitate efficient and thorough life-detecting exploration of a large space. Given the two premises state above, it appears at least two fundamental challenges have to be met simultaneously: coverage of a large space and bringing to bear a sophisticated suite of detection and experimental payloads on any specific location in order to address a major challenge in looking for extraterrestrial life: namely, executing a wide variety of detection scenarios and in situ experiments in order to gather the required data for a confident assessment that life has been detected and to, more generally, cover a wide range of extraterrestrial life possibilities. Cooperative robotics ]ends itself to this kind of problem because cooperation among the combined capabilities of a variety of simple single function agents can give rise to fairly complex task execution such as the search for and detection of extraterrestrial life.

  8. Detection and Quantification of Graphene-Family Nanomaterials in the Environment.

    PubMed

    Goodwin, David G; Adeleye, Adeyemi S; Sung, Lipiin; Ho, Kay T; Burgess, Robert M; Petersen, Elijah J

    2018-04-17

    An increase in production of commercial products containing graphene-family nanomaterials (GFNs) has led to concern over their release into the environment. The fate and potential ecotoxicological effects of GFNs in the environment are currently unclear, partially due to the limited analytical methods for GFN measurements. In this review, the unique properties of GFNs that are useful for their detection and quantification are discussed. The capacity of several classes of techniques to identify and/or quantify GFNs in different environmental matrices (water, soil, sediment, and organisms), after environmental transformations, and after release from a polymer matrix of a product is evaluated. Extraction and strategies to combine methods for more accurate discrimination of GFNs from environmental interferences as well as from other carbonaceous nanomaterials are recommended. Overall, a comprehensive review of the techniques available to detect and quantify GFNs are systematically presented to inform the state of the science, guide researchers in their selection of the best technique for the system under investigation, and enable further development of GFN metrology in environmental matrices. Two case studies are described to provide practical examples of choosing which techniques to utilize for detection or quantification of GFNs in specific scenarios. Because the available quantitative techniques are somewhat limited, more research is required to distinguish GFNs from other carbonaceous materials and improve the accuracy and detection limits of GFNs at more environmentally relevant concentrations.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Meiye; Davis, Ryan Wesley; Hatch, Anson

    In the early stages of infection, patients develop non-specific or no symptoms at all. While waiting for identification of the infectious agent, precious window of opportunity for early intervention is lost. The standard diagnostics require affinity reagents and sufficient pathogen titers to reach the limit of detection. In the event of a disease outbreak, triaging the at-risk population rapidly and reliably for quarantine and countermeasure is more important than the identification of the pathogen by name. To expand Sandia's portfolio of Biological threat management capabilities, we will utilize Raman spectrometry to analyze immune subsets in whole blood to rapidly distinguishmore » infected from non-infected, and bacterial from viral infection, for the purpose of triage during an emergency outbreak. The goal of this one year LDRD is to determine whether Raman spectroscopy can provide label-free detection of early disease signatures, and define a miniaturized Raman detection system meeting requirements for low- resource settings.« less

  10. Detecting metrologically useful asymmetry and entanglement by a few local measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Yadin, Benjamin; Hou, Zhi-Bo; Cao, Huan; Liu, Bi-Heng; Huang, Yun-Feng; Maity, Reevu; Vedral, Vlatko; Li, Chuan-Feng; Guo, Guang-Can; Girolami, Davide

    2017-10-01

    Important properties of a quantum system are not directly measurable, but they can be disclosed by how fast the system changes under controlled perturbations. In particular, asymmetry and entanglement can be verified by reconstructing the state of a quantum system. Yet, this usually requires experimental and computational resources which increase exponentially with the system size. Here we show how to detect metrologically useful asymmetry and entanglement by a limited number of measurements. This is achieved by studying how they affect the speed of evolution of a system under a unitary transformation. We show that the speed of multiqubit systems can be evaluated by measuring a set of local observables, providing exponential advantage with respect to state tomography. Indeed, the presented method requires neither the knowledge of the state and the parameter-encoding Hamiltonian nor global measurements performed on all the constituent subsystems. We implement the detection scheme in an all-optical experiment.

  11. In-Flight Microbial Monitor

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Mullenix, Pamela; Wheeler, Raymond M.; Ruby, Anna Maria

    2015-01-01

    Previous research has shown that potential human pathogens have been detected on the International Space Station (ISS). New microorganisms are introduced with every exchange of crew and cargo. Microorganisms introduced to the ISS are readily transferred between crew and subsystems (i.e., ECLSS, environmental control and life support systems). Current microbial characterization methods require a culture-based enrichment of microorganisms and at least a 48-hour incubation time. This increases the microbial load while detecting only a limited number of microorganisms. The culture-based method detects approximately 1-10% of the total organisms present and provides no identification. To identify and enumerate ISS samples requires that the microbes be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, inflight method of microbial detection, identification, and enumeration is needed. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganisms at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction.

  12. Discussion about photodiode architectures for space applications

    NASA Astrophysics Data System (ADS)

    Gravrand, O.; Destefanis, G.; Cervera, C.; Zanatta, J.-P.; Baier, N.; Ferron, A.; Boulade, O.

    2017-11-01

    Detection for space application is very demanding on the IR detector: all wavelengths, from visible-NIR (2- 3um cutoff) to LWIR (10-12.5um cutoff), even sometimes VLWIR (15um cutoff) may be of interest. Moreover, various scenarii are usually considered. Some are imaging applications where the focal plane array (FPA) is used as an optical element to sense an image. However, the FPA may also be used in spectrometric applications where light is triggered on the different pixels depending on its wavelength. In some cases, star pointing is another use of FPAs where the retina is used to sense the position of the satellite. In all those configurations, we might distinguish several categories of applications: • low flux applications where the FPA is staring at space and the detection occurs with only a few number of photons. • high flux applications where the FPA is usually staring at the earth. In this case, the black body emission of the earth and its atmosphere ensures usually a large number of photons to perform the detection. Those two different categories are highly dimensioning for the detector as it usually determines the level of dark current and quantum efficiency (QE) requirements. Indeed, high detection performance usually requires a large number of integrated photons such that high QE is needed for low flux applications, in order to limit the integration time as much as possible. Moreover, dark current requirement is also directly linked to the expected incoming flux, in order to limit as much as possible the SNR degradation due to dark charges vs photocharges. Note that in most cases, this dark current is highly depending on operating temperature which dominates detector consumption. A classical way to mitigate dark current is to cool down the detector to very low temperatures. This paper won't discuss the need for wavefront sensing where the number of detected photons is low because of a very narrow integration window. Rigorously, this kind of configuration is a low flux application but the need for speed distinguishes it from other low flux applications as it usually requires a different ROIC architecture and a photodiode optimized for high response speed.

  13. Fundamentals and practice for ultrasensitive laser-induced fluorescence detection in microanalytical systems.

    PubMed

    Johnson, Mitchell E; Landers, James P

    2004-11-01

    Laser-induced fluorescence is an extremely sensitive method for detection in chemical separations. In addition, it is well-suited to detection in small volumes, and as such is widely used for capillary electrophoresis and microchip-based separations. This review explores the detailed instrumental conditions required for sub-zeptomole, sub-picomolar detection limits. The key to achieving the best sensitivity is to use an excitation and emission volume that is matched to the separation system and that, simultaneously, will keep scattering and luminescence background to a minimum. We discuss how this is accomplished with confocal detection, 90 degrees on-capillary detection, and sheath-flow detection. It is shown that each of these methods have their advantages and disadvantages, but that all can be used to produce extremely sensitive detectors for capillary- or microchip-based separations. Analysis of these capabilities allows prediction of the optimal means of achieving ultrasensitive detection on microchips.

  14. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens.

    PubMed

    Kim, Tae-Hyeong; Park, Juhee; Kim, Chi-Ju; Cho, Yoon-Kyoung

    2014-04-15

    This paper describes a micro total analysis system for molecular analysis of Salmonella, a major food-borne pathogen. We developed a centrifugal microfluidic device, which integrated the three main steps of pathogen detection, DNA extraction, isothermal recombinase polymerase amplification (RPA), and detection, onto a single disc. A single laser diode was utilized for wireless control of valve actuation, cell lysis, and noncontact heating in the isothermal amplification step, thereby yielding a compact and miniaturized system. To achieve high detection sensitivity, rare cells in large volumes of phosphate-buffered saline (PBS) and milk samples were enriched before loading onto the disc by using antibody-coated magnetic beads. The entire procedure, from DNA extraction through to detection, was completed within 30 min in a fully automated fashion. The final detection was carried out using lateral flow strips by direct visual observation; detection limit was 10 cfu/mL and 10(2) cfu/mL in PBS and milk, respectively. Our device allows rapid molecular diagnostic analysis and does not require specially trained personnel or expensive equipment. Thus, we expect that it would have an array of potential applications, including in the detection of food-borne pathogens, environmental monitoring, and molecular diagnostics in resource-limited settings.

  15. Novel optical strategies for biodetection

    NASA Astrophysics Data System (ADS)

    Sakamuri, Rama M.; Wolfenden, Mark S.; Anderson, Aaron S.; Swanson, Basil I.; Schmidt, Jurgen S.; Mukundan, Harshini

    2013-09-01

    Although bio-detection strategies have significantly evolved in the past decade, they still suffer from many disadvantages. For one, current approaches still require confirmation of pathogen viability by culture, which is the `gold-standard' method, and can take several days to result. Second, current methods typically target protein and nucleic acid signatures and cannot be applied to other biochemical categories of biomarkers (e.g.; lipidated sugars). Lipidated sugars (e.g.; lipopolysaccharide, lipoarabinomannan) are bacterial virulence factors that are significant to pathogenicity. Herein, we present two different optical strategies for biodetection to address these two limitations. We have exploited bacterial iron sequestration mechanisms to develop a simple, specific assay for the selective detection of viable bacteria, without the need for culture. We are currently working on the use of this technology for the differential detection of two different bacteria, using siderophores. Second, we have developed a novel strategy termed `membrane insertion' for the detection of amphiphilic biomarkers (e.g. lipidated glycans) that cannot be detected by conventional approaches. We have extended this technology to the detection of small molecule amphiphilic virulence factors, such as phenolic glycolipid-1 from leprosy, which could not be directly detected before. Together, these strategies address two critical limitations in current biodetection approaches. We are currently working on the optimization of these methods, and their extension to real-world clinical samples.

  16. Evaluating detection limits of next-generation sequencing for the surveillance and monitoring of international marine pests.

    PubMed

    Pochon, Xavier; Bott, Nathan J; Smith, Kirsty F; Wood, Susanna A

    2013-01-01

    Most surveillance programmes for marine invasive species (MIS) require considerable taxonomic expertise, are laborious, and are unable to identify species at larval or juvenile stages. Therefore, marine pests may go undetected at the initial stages of incursions when population densities are low. In this study, we evaluated the ability of the benchtop GS Junior™ 454 pyrosequencing system to detect the presence of MIS in complex sample matrices. An initial in-silico evaluation of the mitochondrial cytochrome c oxidase subunit I (COI) and the nuclear small subunit ribosomal DNA (SSU) genes, found that multiple primer sets (targeting a ca. 400 base pair region) would be required to obtain species level identification within the COI gene. In contrast a single universal primer set was designed to target the V1-V3 region of SSU, allowing simultaneous PCR amplification of a wide taxonomic range of MIS. To evaluate the limits of detection of this method, artificial contrived communities (10 species from 5 taxonomic groups) were created using varying concentrations of known DNA samples and PCR products. Environmental samples (water and sediment) spiked with one or five 160 hr old Asterias amurensis larvae were also examined. Pyrosequencing was able to recover DNA/PCR products of individual species present at greater than 0.64% abundance from all tested contrived communities. Additionally, single A. amurensis larvae were detected from both water and sediment samples despite the co-occurrence of a large array of environmental eukaryotes, indicating an equivalent sensitivity to quantitative PCR. NGS technology has tremendous potential for the early detection of marine invasive species worldwide.

  17. Highly sensitive and selective hyphenated technique (molecularly imprinted polymer solid-phase microextraction-molecularly imprinted polymer sensor) for ultra trace analysis of aspartic acid enantiomers.

    PubMed

    Prasad, Bhim Bali; Srivastava, Amrita; Tiwari, Mahavir Prasad

    2013-03-29

    The present work is related to combination of molecularly imprinted solid-phase microextraction and complementary molecularly imprinted polymer-sensor. The molecularly imprinted polymer grafted on titanium dioxide modified silica fiber was used for microextraction, while the same polymer immobilized on multiwalled carbon nanotubes/titanium dioxide modified pencil graphite electrode served as a detection tool. In both cases, the surface initiated polymerization was found to be advantageous to obtain a nanometer thin imprinted film. The modified silica fiber exhibited high adsorption capacity and enantioselective diffusion of aspartic acid isomers into respective molecular cavities. This combination enabled double preconcentrations of d- and l-aspartic acid that helped sensing both isomers in real samples, without any cross-selectivity and matrix complications. Taking into account 6×10(4)-fold dilution of serum and 2×10(3)-fold dilution of cerebrospinal fluid required by the proposed method, the limit of detection for l-aspartic acid is 0.031ngmL(-1). Also, taking into account 50-fold dilution required by the proposed method, the limit of detection for d-aspartic acid is 0.031ngmL(-1) in cerebrospinal fluid. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution.

    PubMed

    Peña, José M; Torres-Sánchez, Jorge; Serrano-Pérez, Angélica; de Castro, Ana I; López-Granados, Francisca

    2015-03-06

    In order to optimize the application of herbicides in weed-crop systems, accurate and timely weed maps of the crop-field are required. In this context, this investigation quantified the efficacy and limitations of remote images collected with an unmanned aerial vehicle (UAV) for early detection of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery spectral (type of camera), spatial (flight altitude) and temporal (the date of the study) resolutions. The colour-infrared images captured at 40 m and 50 days after sowing (date 2), when plants had 5-6 true leaves, had the highest weed detection accuracy (up to 91%). At this flight altitude, the images captured before date 2 had slightly better results than the images captured later. However, this trend changed in the visible-light images captured at 60 m and higher, which had notably better results on date 3 (57 days after sowing) because of the larger size of the weed plants. Our results showed the requirements on spectral and spatial resolutions needed to generate a suitable weed map early in the growing season, as well as the best moment for the UAV image acquisition, with the ultimate objective of applying site-specific weed management operations.

  19. A new tactics for the detection of S. aureus via paper based geno-interface incorporated with graphene nano dots and zeolites.

    PubMed

    Mathur, Ashish; Gupta, Rathin; Kondal, Sidharth; Wadhwa, Shikha; Pudake, Ramesh N; Shivani; Kansal, Ruby; Pundir, C S; Narang, Jagriti

    2018-06-01

    Staphylococcus aureus (S. aureus) is a pathogenic bacteria which causes infectious diseases and food poisoning. Current diagnostic methods for infectious disease require sophisticated instruments, long analysis time and expensive reagents which restrict their application in resource-limited settings. Electrochemical paper based analytical device (EPAD) was developed by integrating graphene nano dots (GNDs) and zeolite (Zeo) using specific DNA probe. The ssDNA/GNDs-Zeo modified paper based analytical device (PAD) was characterized using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The genosensor was optimized at pH7.4 and incubation temperature of 30°C. A linear current response with respect to target DNA concentrations was obtained. The limit of detection (LOD) of the proposed sensor was found out to be 0.1nM. The specificity was confirmed by introducing non-complimentary target DNA to ssDNA/GNDs-Zeo modified PAD. The suitability of the proposed EPAD genosensor was demonstrated with fruit juice samples mixed with S. aureus. The proposed EPAD genosensor is a low cost, highly specific, easy to fabricate diagnostic device for detection of S. aureus bacteria which requires very low sample volume and minimum analysis time of 10s. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Quantifying Efficacy and Limits of Unmanned Aerial Vehicle (UAV) Technology for Weed Seedling Detection as Affected by Sensor Resolution

    PubMed Central

    Peña, José M.; Torres-Sánchez, Jorge; Serrano-Pérez, Angélica; de Castro, Ana I.; López-Granados, Francisca

    2015-01-01

    In order to optimize the application of herbicides in weed-crop systems, accurate and timely weed maps of the crop-field are required. In this context, this investigation quantified the efficacy and limitations of remote images collected with an unmanned aerial vehicle (UAV) for early detection of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery spectral (type of camera), spatial (flight altitude) and temporal (the date of the study) resolutions. The colour-infrared images captured at 40 m and 50 days after sowing (date 2), when plants had 5–6 true leaves, had the highest weed detection accuracy (up to 91%). At this flight altitude, the images captured before date 2 had slightly better results than the images captured later. However, this trend changed in the visible-light images captured at 60 m and higher, which had notably better results on date 3 (57 days after sowing) because of the larger size of the weed plants. Our results showed the requirements on spectral and spatial resolutions needed to generate a suitable weed map early in the growing season, as well as the best moment for the UAV image acquisition, with the ultimate objective of applying site-specific weed management operations. PMID:25756867

  1. A bottom-up model of spatial attention predicts human error patterns in rapid scene recognition.

    PubMed

    Einhäuser, Wolfgang; Mundhenk, T Nathan; Baldi, Pierre; Koch, Christof; Itti, Laurent

    2007-07-20

    Humans demonstrate a peculiar ability to detect complex targets in rapidly presented natural scenes. Recent studies suggest that (nearly) no focal attention is required for overall performance in such tasks. Little is known, however, of how detection performance varies from trial to trial and which stages in the processing hierarchy limit performance: bottom-up visual processing (attentional selection and/or recognition) or top-down factors (e.g., decision-making, memory, or alertness fluctuations)? To investigate the relative contribution of these factors, eight human observers performed an animal detection task in natural scenes presented at 20 Hz. Trial-by-trial performance was highly consistent across observers, far exceeding the prediction of independent errors. This consistency demonstrates that performance is not primarily limited by idiosyncratic factors but by visual processing. Two statistical stimulus properties, contrast variation in the target image and the information-theoretical measure of "surprise" in adjacent images, predict performance on a trial-by-trial basis. These measures are tightly related to spatial attention, demonstrating that spatial attention and rapid target detection share common mechanisms. To isolate the causal contribution of the surprise measure, eight additional observers performed the animal detection task in sequences that were reordered versions of those all subjects had correctly recognized in the first experiment. Reordering increased surprise before and/or after the target while keeping the target and distractors themselves unchanged. Surprise enhancement impaired target detection in all observers. Consequently, and contrary to several previously published findings, our results demonstrate that attentional limitations, rather than target recognition alone, affect the detection of targets in rapidly presented visual sequences.

  2. The optimum measurement precision evaluation for blood components using near-infrared spectra on 1000-2500 nm

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyang; Sun, Di; Han, Tongshuai; Guo, Chao; Liu, Jin

    2016-10-01

    In the non-invasive blood components measurement using near infrared spectroscopy, the useful signals caused by the concentration variation in the interested components, such as glucose, hemoglobin, albumin etc., are relative weak. Then the signals may be greatly disturbed by a lot of noises in various ways. We improved the signals by using the optimum path-length for the used wavelength to get a maximum variation of transmitted light intensity when the concentration of a component varies. And after the path-length optimization for every wavelength in 1000-2500 nm, we present the detection limits for the components, including glucose, hemoglobin and albumin, when measuring them in a tissue phantom. The evaluated detection limits could be the best reachable precision level since it assumed the measurement uses a high signal-to-noise ratio (SNR) signal and the optimum path-length. From the results, available wavelengths in 1000-2500 nm for the three component measurements can be screened by comparing their detection limit values with their measurement limit requirements. For other blood components measurement, the evaluation their detection limits could also be designed using the method proposed in this paper. Moreover, we use an equation to estimate the absorbance at the optimum path-length for every wavelength in 1000-2500 nm caused by the three components. It could be an easy way to realize the evaluation because adjusting the sample cell's size to the precise path-length value for every wavelength is not necessary. This equation could also be referred to other blood components measurement using the optimum path-length for every used wavelength.

  3. Optimization of a two-dimensional liquid chromatography-supercritical fluid chromatography-mass spectrometry (2D-LC-SFS-MS) system to assess "in-vivo" inter-conversion of chiral drug molecules.

    PubMed

    Goel, Meenakshi; Larson, Eli; Venkatramani, C J; Al-Sayah, Mohammad A

    2018-05-01

    Enantioselective analysis is an essential requirement during the pharmaceutical development of chiral drug molecules. In pre-clinical and clinical studies, the Food and Drug Administration (FDA) mandates the assessment of "in vivo" inter-conversion of chiral drugs to determine their physiological effects. In-vivo analysis of the active pharmaceutical ingredient (API) and its potential metabolites could be quite challenging due to their low abundance (ng/mL levels) and matrix interferences. Therefore, highly selective and sensitive analytical techniques are required to separate the API and its metabolites from the matrix components and one another. Additionally, for chiral APIs, further analytical separation is required to resolve the API and its potential metabolites from their corresponding enantiomers. In this work, we demonstrate the optimization of our previously designed two-dimensional liquid chromatography-supercritical fluid chromatography-mass spectrometry (2D-LC-SFC -MS) system to achieve 10 ng/mL detection limit [1]. The first LC dimension, used as a desalting step, could efficiently separate the API from its potential metabolites and matrix components. The API and its metabolites were then trapped/focused on small trapping columns and transferred onto the second SFC dimension for chiral separation. Detection can be achieved by ultra-violet (UV) or MS detection. Different system parameters such as column dimensions, transfer volumes, trapping column stationary phase, system tubing internal diameter (i.d.), and detection techniques, were optimized to enhance the sensitivity of the 2D-LC-SFC-MS system. The limit of detection was determined to be 10 ng/mL. An application is described where a mouse hepatocyte treated sample was analyzed using the optimized 2D-LC-SFC-MS system with successful assessment of the ratio of API to its metabolite (1D-LC), as well as the corresponding enantiomeric excess values (% e.e.) of each (2D-SFC). Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Next Generation MUT-MAP, a High-Sensitivity High-Throughput Microfluidics Chip-Based Mutation Analysis Panel

    PubMed Central

    Patel, Rajesh; Tsan, Alison; Sumiyoshi, Teiko; Fu, Ling; Desai, Rupal; Schoenbrunner, Nancy; Myers, Thomas W.; Bauer, Keith; Smith, Edward; Raja, Rajiv

    2014-01-01

    Molecular profiling of tumor tissue to detect alterations, such as oncogenic mutations, plays a vital role in determining treatment options in oncology. Hence, there is an increasing need for a robust and high-throughput technology to detect oncogenic hotspot mutations. Although commercial assays are available to detect genetic alterations in single genes, only a limited amount of tissue is often available from patients, requiring multiplexing to allow for simultaneous detection of mutations in many genes using low DNA input. Even though next-generation sequencing (NGS) platforms provide powerful tools for this purpose, they face challenges such as high cost, large DNA input requirement, complex data analysis, and long turnaround times, limiting their use in clinical settings. We report the development of the next generation mutation multi-analyte panel (MUT-MAP), a high-throughput microfluidic, panel for detecting 120 somatic mutations across eleven genes of therapeutic interest (AKT1, BRAF, EGFR, FGFR3, FLT3, HRAS, KIT, KRAS, MET, NRAS, and PIK3CA) using allele-specific PCR (AS-PCR) and Taqman technology. This mutation panel requires as little as 2 ng of high quality DNA from fresh frozen or 100 ng of DNA from formalin-fixed paraffin-embedded (FFPE) tissues. Mutation calls, including an automated data analysis process, have been implemented to run 88 samples per day. Validation of this platform using plasmids showed robust signal and low cross-reactivity in all of the newly added assays and mutation calls in cell line samples were found to be consistent with the Catalogue of Somatic Mutations in Cancer (COSMIC) database allowing for direct comparison of our platform to Sanger sequencing. High correlation with NGS when compared to the SuraSeq500 panel run on the Ion Torrent platform in a FFPE dilution experiment showed assay sensitivity down to 0.45%. This multiplexed mutation panel is a valuable tool for high-throughput biomarker discovery in personalized medicine and cancer drug development. PMID:24658394

  5. Using routine surveillance data to estimate the epidemic potential of emerging zoonoses: application to the emergence of US swine origin influenza A H3N2v virus.

    PubMed

    Cauchemez, Simon; Epperson, Scott; Biggerstaff, Matthew; Swerdlow, David; Finelli, Lyn; Ferguson, Neil M

    2013-01-01

    Prior to emergence in human populations, zoonoses such as SARS cause occasional infections in human populations exposed to reservoir species. The risk of widespread epidemics in humans can be assessed by monitoring the reproduction number R (average number of persons infected by a human case). However, until now, estimating R required detailed outbreak investigations of human clusters, for which resources and expertise are not always available. Additionally, existing methods do not correct for important selection and under-ascertainment biases. Here, we present simple estimation methods that overcome many of these limitations. Our approach is based on a parsimonious mathematical model of disease transmission and only requires data collected through routine surveillance and standard case investigations. We apply it to assess the transmissibility of swine-origin influenza A H3N2v-M virus in the US, Nipah virus in Malaysia and Bangladesh, and also present a non-zoonotic example (cholera in the Dominican Republic). Estimation is based on two simple summary statistics, the proportion infected by the natural reservoir among detected cases (G) and among the subset of the first detected cases in each cluster (F). If detection of a case does not affect detection of other cases from the same cluster, we find that R can be estimated by 1-G; otherwise R can be estimated by 1-F when the case detection rate is low. In more general cases, bounds on R can still be derived. We have developed a simple approach with limited data requirements that enables robust assessment of the risks posed by emerging zoonoses. We illustrate this by deriving transmissibility estimates for the H3N2v-M virus, an important step in evaluating the possible pandemic threat posed by this virus. Please see later in the article for the Editors' Summary.

  6. Probabilistic model for quick detection of dissimilar binary images

    NASA Astrophysics Data System (ADS)

    Mustafa, Adnan A. Y.

    2015-09-01

    We present a quick method to detect dissimilar binary images. The method is based on a "probabilistic matching model" for image matching. The matching model is used to predict the probability of occurrence of distinct-dissimilar image pairs (completely different images) when matching one image to another. Based on this model, distinct-dissimilar images can be detected by matching only a few points between two images with high confidence, namely 11 points for a 99.9% successful detection rate. For image pairs that are dissimilar but not distinct-dissimilar, more points need to be mapped. The number of points required to attain a certain successful detection rate or confidence depends on the amount of similarity between the compared images. As this similarity increases, more points are required. For example, images that differ by 1% can be detected by mapping fewer than 70 points on average. More importantly, the model is image size invariant; so, images of any sizes will produce high confidence levels with a limited number of matched points. As a result, this method does not suffer from the image size handicap that impedes current methods. We report on extensive tests conducted on real images of different sizes.

  7. Advanced DNA- and Protein-based Methods for the Detection and Investigation of Food Allergens.

    PubMed

    Prado, M; Ortea, I; Vial, S; Rivas, J; Calo-Mata, P; Barros-Velázquez, J

    2016-11-17

    Currently, food allergies are an important health concern worldwide. The presence of undeclared allergenic ingredients or the presence of traces of allergens due to contamination during food processing poses a great health risk to sensitized individuals. Therefore, reliable analytical methods are required to detect and identify allergenic ingredients in food products. The present review addresses the recent developments regarding the application of DNA- and protein-based methods for the detection of allergenic ingredients in foods. The fitness-for-purpose of reviewed methodology will be discussed, and future trends will be highlighted. Special attention will be given to the evaluation of the potential of newly developed and promising technologies that can improve the detection and identification of allergenic ingredients in foods, such as the use of biosensors and/or nanomaterials to improve detection limits, specificity, ease of use, or to reduce the time of analysis. Such rapid food allergen test methods are required to facilitate the reliable detection of allergenic ingredients by control laboratories, to give the food industry the means to easily determine whether its product has been subjected to cross-contamination and, simultaneously, to identify how and when this cross-contamination occurred.

  8. Detection limits of intraoperative near infrared imaging for tumor resection.

    PubMed

    Thurber, Greg M; Figueiredo, Jose-Luiz; Weissleder, Ralph

    2010-12-01

    The application of fluorescent molecular imaging to surgical oncology is a developing field with the potential to reduce morbidity and mortality. However, the detection thresholds and other requirements for successful intervention remain poorly understood. Here we modeled and experimentally validated depth and size of detection of tumor deposits, trade-offs in coverage and resolution of areas of interest, and required pharmacokinetics of probes based on differing levels of tumor target presentation. Three orthotopic tumor models were imaged by widefield epifluorescence and confocal microscopes, and the experimental results were compared with pharmacokinetic models and light scattering simulations to determine detection thresholds. Widefield epifluorescence imaging can provide sufficient contrast to visualize tumor margins and detect tumor deposits 3-5  mm deep based on labeled monoclonal antibodies at low objective magnification. At higher magnification, surface tumor deposits at cellular resolution are detectable at TBR ratios achieved with highly expressed antigens. A widefield illumination system with the capability for macroscopic surveying and microscopic imaging provides the greatest utility for varying surgical goals. These results have implications for system and agent designs, which ultimately should aid complete resection in most surgical beds and provide real-time feedback to obtain clean margins. © 2010 Wiley-Liss, Inc.

  9. Integrated Magneto-Chemical Sensor For On-Site Food Allergen Detection.

    PubMed

    Lin, Hsing-Ying; Huang, Chen-Han; Park, Jongmin; Pathania, Divya; Castro, Cesar M; Fasano, Alessio; Weissleder, Ralph; Lee, Hakho

    2017-10-24

    Adverse food reactions, including food allergies, food sensitivities, and autoimmune reaction (e.g., celiac disease) affect 5-15% of the population and remain a considerable public health problem requiring stringent food avoidance and epinephrine availability for emergency events. Avoiding problematic foods is practically difficult, given current reliance on prepared foods and out-of-home meals. In response, we developed a portable, point-of-use detection technology, termed integrated exogenous antigen testing (iEAT). The system consists of a disposable antigen extraction device coupled with an electronic keychain reader for rapid sensing and communication. We optimized the prototype iEAT system to detect five major food antigens in peanuts, hazelnuts, wheat, milk, and eggs. Antigen extraction and detection with iEAT requires <10 min and achieves high-detection sensitivities (e.g., 0.1 mg/kg for gluten, lower than regulatory limits of 20 mg/kg). When testing under restaurant conditions, we were able to detect hidden food antigens such as gluten within "gluten-free" food items. The small size and rapid, simple testing of the iEAT system should help not only consumers but also other key stakeholders such as clinicians, food industries, and regulators to enhance food safety.

  10. Nanoribbon field-effect transistors as direct and label-free sensors of enzyme-substrate interactions

    NASA Astrophysics Data System (ADS)

    Mu, Luye; Droujinine, Ilia; Rajan, Nitin; Sawtelle, Sonya; Reed, Mark

    2015-03-01

    The ability to measure enzyme-substrate interactions is essential in areas such as diagnostics, treatment, and biochemical screens. Many enzymatic reactions alter the pH of its environment, suggesting of a simple and direct method for detection. We show the ability of Al2O3-coated Si nanoribbon field-effect transistor biosensors to sensitively measure various aspects of enzyme-substrate interactions through measuring the pH. Urea in phosphate buffered saline (PBS) and penicillinase in PBS and urine were measured to limits of <200 μM and 0.02 units/mL, respectively. We also show the ability to extract accurate kinetics from the interaction of acetylcholine and its esterase. Prior work on FET sensors has been limited by the use of surface functionalization, which not only alters enzyme-substrate affinity, but also makes enzyme activity quantification difficult. Our method involves direct detection of reactions in solution without requiring alteration to the reactants, allowing us to obtain repeatable results and sensitive limits of detection. This method is a simple, inexpensive, and effective platform for detection of enzymatic reactions, and can be readily generalized to many unrelated classes of reactants. This work was supported in part by U.S. Army Research Office and Air Force Research Laboratory.

  11. Prospects for small cryocoolers. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radebaugh, R.

    1982-01-01

    Small cryocoolers are commonly used in the areas of infrared detection, satellite communication, and cryopumps. Some emerging application areas deal with SQUID and Josephson junction devices, which require temperatures of about 8 K or below. The need for high reliability in these small cryocoolers has dictated the use of regenerative-cycle machines, but such machines are presently limited to temperatures above about 8 K. This paper discusses some of the research being done to improve reliability, decrease noise, and reduce the low-temperature limit of small cryocoolers.

  12. Detection of total and A1c-glycosylated hemoglobin in human whole blood using sandwich immunoassays on polydimethylsiloxane-based antibody microarrays.

    PubMed

    Chen, Huang-Han; Wu, Chih-Hsing; Tsai, Mei-Ling; Huang, Yi-Jing; Chen, Shu-Hui

    2012-10-16

    The percentage of glycosylated hemoglobin A1c (%GHbA1c) in human whole blood indicates the average plasma glucose concentration over a prolonged period of time and is used to diagnose diabetes. However, detecting GHbA1c in the whole blood using immunoassays has limited detection sensitivity due to its low percentage in total hemoglobin (tHb) and interference from various glycan moieties in the sample. We have developed a sandwich immunoassay using an antibody microarray on a polydimethylsiloxane (PDMS) substrate modified with fluorinated compounds to detect tHb and glycosylated hemoglobin A1c (GHbA1c) in human whole blood without sample pretreatment. A polyclonal antibody against hemoglobin (Hb) immobilized on PDMS is used as a common capture probe to enrich all forms of Hb followed by detection via monoclonal anti-Hb and specific monoclonal anti-GHbA1c antibodies for tHb and GHbA1c detection, respectively. This method prevents the use of glycan binding molecules and dramatically reduces the background interference, yielding a detection limit of 3.58 ng/mL for tHb and 0.20 ng/mL for GHbA1c. The fluorinated modification on PDMS is superior to the glass substrate and eliminates the need for the blocking step which is required in commercial enzyme linked immunosorbent assay (ELISA) kits. Moreover, the detection sensitivity for GHbA1c is 4-5 orders of magnitude higher, but the required sample amount is 25 times less than the commercial method. On the basis of patient sample data, a good linear correlation between %GHbA1c values determined by our method and the certified high performance liquid chromatography (HPLC) standard method is shown with R(2) > 0.98, indicating the great promise of the developed method for clinical applications.

  13. Identification of Fitness Determinants during Energy-Limited Growth Arrest in Pseudomonas aeruginosa.

    PubMed

    Basta, David W; Bergkessel, Megan; Newman, Dianne K

    2017-11-28

    Microbial growth arrest can be triggered by diverse factors, one of which is energy limitation due to scarcity of electron donors or acceptors. Genes that govern fitness during energy-limited growth arrest and the extent to which they overlap between different types of energy limitation are poorly defined. In this study, we exploited the fact that Pseudomonas aeruginosa can remain viable over several weeks when limited for organic carbon (pyruvate) as an electron donor or oxygen as an electron acceptor. ATP values were reduced under both types of limitation, yet more severely in the absence of oxygen. Using transposon-insertion sequencing (Tn-seq), we identified fitness determinants in these two energy-limited states. Multiple genes encoding general functions like transcriptional regulation and energy generation were required for fitness during carbon or oxygen limitation, yet many specific genes, and thus specific activities, differed in their relevance between these states. For instance, the global regulator RpoS was required during both types of energy limitation, while other global regulators such as DksA and LasR were required only during carbon or oxygen limitation, respectively. Similarly, certain ribosomal and tRNA modifications were specifically required during oxygen limitation. We validated fitness defects during energy limitation using independently generated mutants of genes detected in our screen. Mutants in distinct functional categories exhibited different fitness dynamics: regulatory genes generally manifested a phenotype early, whereas genes involved in cell wall metabolism were required later. Together, these results provide a new window into how P. aeruginosa survives growth arrest. IMPORTANCE Growth-arrested bacteria are ubiquitous in nature and disease yet understudied at the molecular level. For example, growth-arrested cells constitute a major subpopulation of mature biofilms, serving as an antibiotic-tolerant reservoir in chronic infections. Identification of the genes required for survival of growth arrest (encompassing entry, maintenance, and exit) is an important first step toward understanding the physiology of bacteria in this state. Using Tn-seq, we identified and validated genes required for fitness of Pseudomonas aeruginosa when energy limited for organic carbon or oxygen, which represent two common causes of growth arrest for P. aeruginosa in diverse habitats. This unbiased, genome-wide survey is the first to reveal essential activities for a pathogen experiencing different types of energy limitation, finding both shared and divergent activities that are relevant at different survival stages. Future efforts can now be directed toward understanding how the biomolecules responsible for these activities contribute to fitness under these conditions. Copyright © 2017 Basta et al.

  14. Novel approaches in diagnosing tuberculosis

    NASA Astrophysics Data System (ADS)

    Kolk, Arend H. J.; Dang, Ngoc A.; Kuijper, Sjoukje; Gibson, Tim; Anthony, Richard; Claassens, Mareli M.; Kaal, Erwin; Janssen, Hans-Gerd

    2011-06-01

    The WHO declared tuberculosis (TB) a global emergency. An estimated 8-9 million new cases occur each year with 2-3 million deaths. Currently, TB is diagnosed mostly by chest-X ray and staining of the mycobacteria in sputum with a detection limit of 1x104 bacteria /ml. There is an urgent need for better diagnostic tools for TB especially for developing countries. We have validated the electronic nose from TD Technology for the detection of Mycobacterium tuberculosis by headspace analysis of 284 sputum samples from TB patients. We used linear discriminant function analysis resulting in a sensitivity of 75% a specificity of 67% and an accuracy of 69%. Further research is still required to improve the results by choosing more selective sensors and sampling techniques. We used a fast gas chromatography- mass spectrometry method (GC-MS). The automated procedure is based on the injection of sputum samples which are methylated inside the GC injector using thermally assisted hydrolysis and methylation (THM-GC-MS). Hexacosanoic acid in combination with tuberculostearic acid was found to be specific for the presence of M. tuberculosis. The detection limit was similar to microscopy. We found no false positives, all microscopy and culture positive samples were also found positive with the THM-GC-MS method. The detection of ribosomal RNA from the infecting organism offers great potential since rRNA molecules outnumber chromosomal DNA by a factor 1000. It thus may possible to detect the organism without amplification of the nucleic acids (NA). We used a capture and a tagged detector probe for the direct detection of M. tuberculosis in sputum. So far the detection limit is 1x106 bacteria / ml. Currently we are testing a Lab-On-A-Chip Interferometer detection system.

  15. Ultra-sensitive detection of leukemia by graphene

    NASA Astrophysics Data System (ADS)

    Akhavan, Omid; Ghaderi, Elham; Hashemi, Ehsan; Rahighi, Reza

    2014-11-01

    Graphene oxide nanoplatelets (GONPs) with extremely sharp edges (lateral dimensions ~20-200 nm and thicknesses <2 nm) were applied in extraction of the overexpressed guanine synthesized in the cytoplasm of leukemia cells. The blood serums containing the extracted guanine were used in differential pulse voltammetry (DPV) with reduced graphene oxide nanowall (rGONW) electrodes to develop fast and ultra-sensitive electrochemical detection of leukemia cells at leukemia fractions (LFs) of ~10-11 (as the lower detection limit). The stability of the DPV signals obtained by oxidation of the extracted guanine on the rGONWs was studied after 20 cycles. Without the guanine extraction, the DPV peaks relating to guanine oxidation of normal and abnormal cells overlapped at LFs <10-9, and consequently, the performance of rGONWs alone was limited at this level. As a benchmark, the DPV using glassy carbon electrodes was able to detect only LFs ~ 10-2. The ultra-sensitivity obtained by this combination method (guanine extraction by GONPs and then guanine oxidation by rGONWs) is five orders of magnitude better than the sensitivity of the best current technologies (e.g., specific mutations by polymerase chain reaction) which not only are expensive, but also require a few days for diagnosis.Graphene oxide nanoplatelets (GONPs) with extremely sharp edges (lateral dimensions ~20-200 nm and thicknesses <2 nm) were applied in extraction of the overexpressed guanine synthesized in the cytoplasm of leukemia cells. The blood serums containing the extracted guanine were used in differential pulse voltammetry (DPV) with reduced graphene oxide nanowall (rGONW) electrodes to develop fast and ultra-sensitive electrochemical detection of leukemia cells at leukemia fractions (LFs) of ~10-11 (as the lower detection limit). The stability of the DPV signals obtained by oxidation of the extracted guanine on the rGONWs was studied after 20 cycles. Without the guanine extraction, the DPV peaks relating to guanine oxidation of normal and abnormal cells overlapped at LFs <10-9, and consequently, the performance of rGONWs alone was limited at this level. As a benchmark, the DPV using glassy carbon electrodes was able to detect only LFs ~ 10-2. The ultra-sensitivity obtained by this combination method (guanine extraction by GONPs and then guanine oxidation by rGONWs) is five orders of magnitude better than the sensitivity of the best current technologies (e.g., specific mutations by polymerase chain reaction) which not only are expensive, but also require a few days for diagnosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/C4NR04589K

  16. Ion microscopy with resonant ionization mass spectrometry : time-of-flight depth profiling with improved isotopic precision.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellin, M. J.; Veryovkin, I. V.; Levine, J.

    2010-01-01

    There are four generally mutually exclusive requirements that plague many mass spectrometric measurements of trace constituents: (1) the small size (limited by the depth probed) of many interesting materials requires high useful yields to simply detect some trace elements, (2) the low concentrations of interesting elements require efficient discrimination from isobaric interferences, (3) it is often necessary to measure the depth distribution of elements with high surface and low bulk contributions, and (4) many applications require precise isotopic analysis. Resonant ionization mass spectrometry has made dramatic progress in addressing these difficulties over the past five years.

  17. Revision to Planetary Protection Policy for Mars Missions

    NASA Technical Reports Server (NTRS)

    DeVincenzi, D. L.; Stabekis, P.; Barengoltz, J.; Morrison, David (Technical Monitor)

    1994-01-01

    Under existing COSPAR policy adopted in 1984, missions to Mars (landers, probes, and some orbiters) are designated as Category IV missions. As such, the procedures for implementing planetary protection requirements could include trajectory biasing, cleanrooms, bioload reduction, sterilization of hardware, and bioshields, i. e. requirements could be similar to Viking. However, in 1992, a U. S. National Academy of Sciences study recommended that controls on forward contamination of Mars be tied to specific mission objectives. The report recommended that Mars landers with life detection instruments be subject to at least Viking-level sterilization procedures for bioload reduction, while spacecraft (including orbiters) without life detection instruments be subject to at least Viking-level pre sterilization procedures for bioload reduction but need not be sterilized. In light of this, it is proposed that the current policy's Category IV missions and their planetary protection requirements be divided into two subcategories as follows: Category IV A, for missions comprising landers and probes without life detection experiments and some orbiters, which will meet a specified bioburden limit for exposed surfaces; Category IV B, for landers and probes with life detection experiments, which will require complete system sterilization. For Category IV A missions, bioburden specifications will be proposed and implementing procedures discussed. A resolution will be proposed to modify the existing COSPAR policy to reflect these changes. Similar specifications, procedures, and resolution for Category IV B missions will be the subject of a later study.

  18. Performance monitor system functional simulator, environmental data, orbiter 101(HFT)

    NASA Technical Reports Server (NTRS)

    Parker, F. W.

    1974-01-01

    Information concerning the environment component of the space shuttle performance monitor system simulator (PMSS) and those subsystems operational on the shuttle orbiter 101 used for horizontal flight test (HFT) is provided, along with detailed data for the shuttle performance monitor system (PMS) whose software requirements evolve from three basic PMS functions: (1) fault detection and annunciation; (2) subsystem measurement management; and (3) subsystem configuration management. Information relative to the design and operation of Orbiter systems for HFT is also presented, and the functional paths are identified to the lowest level at which the crew can control the system functions. Measurement requirements are given which are necessary to adequately monitor the health status of the system. PMS process requirements, relative to the measurements which are necessary for fault detection and annunciation of a failed functional path, consist of measurement characteristics, tolerance limits, precondition tests, and correlation measurements.

  19. An accurate and inexpensive color-based assay for detecting severe anemia in a limited-resource setting

    PubMed Central

    McGann, Patrick T.; Tyburski, Erika A.; de Oliveira, Vysolela; Santos, Brigida; Ware, Russell E.; Lam, Wilbur A.

    2016-01-01

    Severe anemia is an important cause of morbidity and mortality among children in resource-poor settings, but laboratory diagnostics are often limited in these locations. To address this need, we developed a simple, inexpensive, and color-based point-of-care (POC) assay to detect severe anemia. The purpose of this study was to evaluate the accuracy of this novel POC assay to detect moderate and severe anemia in a limited-resource setting. The study was a cross-sectional study conducted on children with sickle cell anemia in Luanda, Angola. The hemoglobin concentrations obtained by the POC assay were compared to reference values measured by a calibrated automated hematology analyzer. A total of 86 samples were analyzed (mean hemoglobin concentration 6.6 g/dL). There was a strong correlation between the hemoglobin concentrations obtained by the POC assay and reference values obtained from an automated hematology analyzer (r=0.88, P<0.0001). The POC assay demonstrated excellent reproducibility (r=0.93, P<0.0001) and the reagents appeared to be durable in a tropical setting (r=0.93, P<0.0001). For the detection of severe anemia that may require blood transfusion (hemoglobin <5 g/dL), the POC assay had sensitivity of 88.9% and specificity of 98.7%. These data demonstrate that an inexpensive (<$0.25 USD) POC assay accurately estimates low hemoglobin concentrations and has the potential to become a transformational diagnostic tool for severe anemia in limited-resource settings. PMID:26317494

  20. Meta-analysis of genome-wide association from genomic prediction models

    USDA-ARS?s Scientific Manuscript database

    A limitation of many genome-wide association studies (GWA) in animal breeding is that there are many loci with small effect sizes; thus, larger sample sizes (N) are required to guarantee suitable power of detection. To increase sample size, results from different GWA can be combined in a meta-analys...

  1. 78 FR 54380 - Airworthiness Directives; Eurocopter France Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... they are misaligned. This AD is prompted by the discovery of a loose nut on the tail rotor control stop... nut or a misaligned stop screw, which, if not corrected, could limit yaw authority, and consequently... adjusting the screws if they are misaligned. The proposed requirements were intended to detect a loose nut...

  2. Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters

    EPA Science Inventory

    Modern techniques for tracking fecal pollution in environmental waters require investing in DNA-based methods to determine the presence of specific fecal sources. To help water quality managers decide whether to employ routine polymerase chain reaction (PCR) or quantitative PC...

  3. Photodetectors with passive thermal radiation control

    DOEpatents

    Lin, Shawn-Yu; Fleming, James G.; Dodson, Brian W.

    2001-10-02

    A new class of photodetectors which include means for passive shielding against undesired thermal radiation is disclosed. Such devices can substitute in applications currently requiring cooled optical sensors, such as IR detection and imaging. This description is included for purposes of searching, and is not intended to limit or otherwise influence the interpretation of the present invention.

  4. 40 CFR Table 4 of Subpart Aaaaaaa... - Operating Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Roofing Manufacturing Other Requirements and Information Who implements and enforces this subpart? Pt. 63... filter or fiber bed filter a. Inlet gas temperature b, andb. Pressure drop across device b The 3-hour... temperature and pressure drop, you can use a leak detection system that identifies when the filter media has...

  5. 40 CFR Table 4 of Subpart Aaaaaaa... - Operating Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Roofing Manufacturing Other Requirements and Information Who implements and enforces this subpart? Pt. 63... filter or fiber bed filter a. Inlet gas temperature b, andb. Pressure drop across device b The 3-hour... temperature and pressure drop, you can use a leak detection system that identifies when the filter media has...

  6. ACCELERATED SOLVENT EXTRACTION COMBINED WITH AUTOMATED SOLID PHASE EXTRACTION-GC/MS FOR ANALYSIS OF SEMIVOLATILE COMPOUNDS IN HIGH MOISTURE CONTENT SOLID SAMPLES

    EPA Science Inventory

    A research project was initiated to address a recurring problem of elevated detection limits above required risk-based concentrations for the determination of semivolatile organic compounds in high moisture content solid samples. This project was initiated, in cooperation with t...

  7. Biofunctionalized self-propelled micromotors as an alternative on-chip concentrating system.

    PubMed

    Restrepo-Pérez, Laura; Soler, Lluís; Martínez-Cisneros, Cynthia; Sánchez, Samuel; Schmidt, Oliver G

    2014-08-21

    Sample pre-concentration is crucial to achieve high sensitivity and low detection limits in lab-on-a-chip devices. Here, we present a system in which self-propelled catalytic micromotors are biofunctionalized and trapped acting as an alternative concentrating mechanism. This system requires no external energy source, which facilitates integration and miniaturization.

  8. Whispering Gallery Mode Resonators for Rapid Label-Free Biosensing in Small Volume Droplets

    PubMed Central

    Wildgen, Sarah M.; Dunn, Robert C.

    2015-01-01

    Rapid biosensing requires fast mass transport of the analyte to the surface of the sensing element. To optimize analysis times, both mass transport in solution and the geometry and size of the sensing element need to be considered. Small dielectric spheres, tens of microns in diameter, can act as label-free biosensors using whispering gallery mode (WGM) resonances. WGM resonances are sensitive to the effective refractive index, which changes upon analyte binding to recognition sites on functionalized resonators. The spherical geometry and tens of microns diameter of these resonators provides an efficient target for sensing while their compact size enables detection in limited volumes. Here, we explore conditions leading to rapid analyte detection using WGM resonators as label-free sensors in 10 μL sample droplets. Droplet evaporation leads to potentially useful convective mixing, but also limits the time over which analysis can be completed. We show that active droplet mixing combined with initial binding rate measurements is required for accurate nanomolar protein quantification within the first minute following injection. PMID:25806835

  9. Backscatter particle image velocimetry via optical time-of-flight sectioning

    DOE PAGES

    Paciaroni, Megan E.; Chen, Yi; Lynch, Kyle Patrick; ...

    2018-01-11

    Conventional particle image velocimetry (PIV) configurations require a minimum of two optical access ports, inherently restricting the technique to a limited class of flows. Here, the development and application of a novel method of backscattered time-gated PIV requiring a single-optical-access port is described along with preliminary results. The light backscattered from a seeded flow is imaged over a narrow optical depth selected by an optical Kerr effect (OKE) time gate. The picosecond duration of the OKE time gate essentially replicates the width of the laser sheet of conventional PIV by limiting detected photons to a narrow time-of-flight within the flow.more » Thus, scattering noise from outside the measurement volume is eliminated. In conclusion, this PIV via the optical time-of-flight sectioning technique can be useful in systems with limited optical access and in flows near walls or other scattering surfaces.« less

  10. Backscatter particle image velocimetry via optical time-of-flight sectioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paciaroni, Megan E.; Chen, Yi; Lynch, Kyle Patrick

    Conventional particle image velocimetry (PIV) configurations require a minimum of two optical access ports, inherently restricting the technique to a limited class of flows. Here, the development and application of a novel method of backscattered time-gated PIV requiring a single-optical-access port is described along with preliminary results. The light backscattered from a seeded flow is imaged over a narrow optical depth selected by an optical Kerr effect (OKE) time gate. The picosecond duration of the OKE time gate essentially replicates the width of the laser sheet of conventional PIV by limiting detected photons to a narrow time-of-flight within the flow.more » Thus, scattering noise from outside the measurement volume is eliminated. In conclusion, this PIV via the optical time-of-flight sectioning technique can be useful in systems with limited optical access and in flows near walls or other scattering surfaces.« less

  11. Influence of atmospheric properties on detection of wood-warbler nocturnal flight calls

    NASA Astrophysics Data System (ADS)

    Horton, Kyle G.; Stepanian, Phillip M.; Wainwright, Charlotte E.; Tegeler, Amy K.

    2015-10-01

    Avian migration monitoring can take on many forms; however, monitoring active nocturnal migration of land birds is limited to a few techniques. Avian nocturnal flight calls are currently the only method for describing migrant composition at the species level. However, as this method develops, more information is needed to understand the sources of variation in call detection. Additionally, few studies examine how detection probabilities differ under varying atmospheric conditions. We use nocturnal flight call recordings from captive individuals to explore the dependence of flight call detection on atmospheric temperature and humidity. Height or distance from origin had the largest influence on call detection, while temperature and humidity also influenced detectability at higher altitudes. Because flight call detection varies with both atmospheric conditions and flight height, improved monitoring across time and space will require correction for these factors to generate standardized metrics of songbird migration.

  12. Chlorine-trapped CVD bilayer graphene for resistive pressure sensor with high detection limit and high sensitivity

    NASA Astrophysics Data System (ADS)

    Phuong Pham, Viet; Triet Nguyen, Minh; Park, Jin Woo; Kwak, Sung Soo; Nguyen, Dieu Hien Thi; Kyeom Mun, Mu; Danh Phan, Hoang; San Kim, Doo; Kim, Ki Hyun; Lee, Nae-Eung; Yeom, Geun Young

    2017-06-01

    Pressure sensing is one of the key functions for smart electronics. Considerably more effort is required to achieve the fabrication of pressure sensors that can imitate and overcome the sophisticated pressure sensing characteristics in nature and industry, especially in the innovation of materials and structures. Almost all of the pressure sensors reported until now have a high sensitivity at a low-pressure detection limit (<10 kPa). While the exploration of a pressure sensor with a high sensitivity and a high responsivity at a high-pressure is challenging, it is required for next generation smart electronics. Here, we report an exotic heterostructure pressure sensor based on ZnO/chlorine radical-trap doped bilayer graphene (ZGClG) as an ideal channel for pressure sensors. Using this ZGClG as the channel, this study shows the possibility of forming a pressure sensor with a high sensitivity (0.19 kPa-1) and a high responsivity (0.575 s) at V  =  1 V on glass substrate. Further, the pressure detection limit of this device was as high as 98 kPa. The investigation of the sensing mechanism under pressure has revealed that the significant improved sensing effect is related to the heavy p-type chlorine trap doping in the channel graphene with chlorine radicals without damaging the graphene. This work indicates that the ZGClG channel used for the pressure sensing device could also provide a simple and essential sensing platform for chemical-, medical-, and biological-sensing for future smart electronics.

  13. Development and application of absolute quantitative detection by duplex chamber-based digital PCR of genetically modified maize events without pretreatment steps.

    PubMed

    Zhu, Pengyu; Fu, Wei; Wang, Chenguang; Du, Zhixin; Huang, Kunlun; Zhu, Shuifang; Xu, Wentao

    2016-04-15

    The possibility of the absolute quantitation of GMO events by digital PCR was recently reported. However, most absolute quantitation methods based on the digital PCR required pretreatment steps. Meanwhile, singleplex detection could not meet the demand of the absolute quantitation of GMO events that is based on the ratio of foreign fragments and reference genes. Thus, to promote the absolute quantitative detection of different GMO events by digital PCR, we developed a quantitative detection method based on duplex digital PCR without pretreatment. Moreover, we tested 7 GMO events in our study to evaluate the fitness of our method. The optimized combination of foreign and reference primers, limit of quantitation (LOQ), limit of detection (LOD) and specificity were validated. The results showed that the LOQ of our method for different GMO events was 0.5%, while the LOD is 0.1%. Additionally, we found that duplex digital PCR could achieve the detection results with lower RSD compared with singleplex digital PCR. In summary, the duplex digital PCR detection system is a simple and stable way to achieve the absolute quantitation of different GMO events. Moreover, the LOQ and LOD indicated that this method is suitable for the daily detection and quantitation of GMO events. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Inflight Microbial Monitoring- An Alternative Method to Culture Based Detection Currently Used on the International Space Station

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Birmele, Michele N.; Roman, Monsi; Hummerick, Mary E.; Smith, David J.; Wheeler, Raymond M.

    2015-01-01

    Previous research has shown that potentially destructive microorganisms and human pathogens have been detected on the International Space Station (ISS). The likelihood of introducing new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Microorganisms introduced to the ISS are readily transferred between crew and subsystems (i.e. ECLSS, environmental control and life support systems). Current microbial characterization methods require enrichment of microorganisms and at least a 48-hour incubation time. This increases the microbial load while detecting only a limited number of the total microorganisms. The culture based method detects approximately 1-10% of the total organisms present and provides no identification. To identify and enumerate ISS microbes requires that samples be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganisms at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction.

  15. Inflight Microbial Monitoring-An Alternative Method to Culture Based Detection Currently Used on International Space Station

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Birmele, Michele N.; Roman, Monsi; Hummerick, Mary E.; Smith, David J.; Wheeler, Raymond M.

    2015-01-01

    Previous research has shown that microorganisms and potential human pathogens have been detected on the International Space Station (ISS). The potential to introduce new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Previous research has shown that microorganisms introduced to the ISS are readily transferred between crew and subsystems and back (i.e. ECLSS, environmental control and life support systems). Current microbial characterization methods require enrichment of microorganisms and a 48-hour incubation time. This increases the microbial load while detecting a limited number of microorganisms. The culture based method detects approximately 1-10% of the total organisms present and provides no identification, To identify and enumerate ISS samples requires that samples to be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganism at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction.

  16. Development of an innovative immunoassay for CP4EPSPS and Cry1AB genetically modified protein detection and quantification.

    PubMed

    Ermolli, M; Prospero, A; Balla, B; Querci, M; Mazzeo, A; Van Den Eede, G

    2006-09-01

    An innovative immunoassay, called enzyme-linked immunoabsorbant assay (ELISA) Reverse, based on a new conformation of the solid phase, was developed. The solid support was expressly designed to be immersed directly in liquid samples to detect the presence of protein targets. Its application is proposed in those cases where a large number of samples have to be screened simultaneously or when the simultaneous detection of different proteins is required. As a first application, a quantitative immunoassay for Cry1AB protein in genetically modified maize was optimized. The method was tested using genetically modified organism concentrations from 0.1 to 2.0%. The limit of detection and limit of quantitation of the method were determined as 0.0056 and 0.0168 (expressed as the percentage of genetically modified organisms content), respectively. A qualitative multiplex assay to assess the presence of two genetically modified proteins simultaneously was also established for the case of the Cry1AB and the CP4EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) present in genetically modified maize and soy, respectively.

  17. The Development of Lyophilized Loop-mediated Isothermal Amplification Reagents for the Detection of Coxiella burnetii.

    PubMed

    Chen, Hua-Wei; Ching, Wei-Mei

    2016-04-18

    Coxiella burnetii, the agent causing Q fever, is an obligate intracellular bacterium. PCR based diagnostic assays have been developed for detecting C. burnetii DNA in cell cultures and clinical samples. PCR requires specialized equipment and extensive end user training, and therefore, it is not suitable for routine work especially in a resource-constrained area. We have developed a loop-mediated isothermal amplification (LAMP) assay to detect the presence of C. burnetii in patient samples. This method is performed at a single temperature around 60 °C in a water bath or heating block. The sensitivity of this LAMP assay is very similar to PCR with a detection limit of about 25 copies per reaction. This report describes the preparation of the reaction using lyophilized reagents and visualization of results using hydroxynaphthol blue (HNB) or a UV lamp with fluorescent intercalating dye in the reaction. The LAMP reagents were lyophilized and stored at room temperature (RT) for one month without loss of detection sensitivity. This LAMP assay is particularly robust because the reaction mixture preparation does not involve complex steps. This method is ideal for use in resource-limited settings where Q fever is endemic.

  18. Relative saliency in change signals affects perceptual comparison and decision processes in change detection.

    PubMed

    Yang, Cheng-Ta

    2011-12-01

    Change detection requires perceptual comparison and decision processes on different features of multiattribute objects. How relative salience between two feature-changes influences the processes has not been addressed. This study used the systems factorial technology to investigate the processes when detecting changes in a Gabor patch with visual inputs from orientation and spatial frequency channels. Two feature-changes were equally salient in Experiment 1, but a frequency-change was more salient than an orientation-change in Experiment 2. Results showed that all four observers adopted parallel self-terminating processing with limited- to unlimited-capacity processing in Experiment 1. In Experiment 2, one observer used parallel self-terminating processing with unlimited-capacity processing, and the others adopted serial self-terminating processing with limited- to unlimited-capacity processing to detect changes. Postexperimental interview revealed that subjective utility of feature information underlay the adoption of a decision strategy. These results highlight that observers alter decision strategies in change detection depending on the relative saliency in change signals, with relative saliency being determined by both physical salience and subjective weight of feature information. When relative salience exists, individual differences in the process characteristics emerge.

  19. Application of capability indices and control charts in the analytical method control strategy.

    PubMed

    Oliva, Alexis; Llabres Martinez, Matías

    2017-08-01

    In this study, we assessed the usefulness of control charts in combination with the process capability indices, C pm and C pk , in the control strategy of an analytical method. The traditional X-chart and moving range chart were used to monitor the analytical method over a 2-year period. The results confirmed that the analytical method is in-control and stable. Different criteria were used to establish the specifications limits (i.e. analyst requirements) for fixed method performance (i.e. method requirements). If the specification limits and control limits are equal in breadth, the method can be considered "capable" (C pm  = 1), but it does not satisfy the minimum method capability requirements proposed by Pearn and Shu (2003). Similar results were obtained using the C pk index. The method capability was also assessed as a function of method performance for fixed analyst requirements. The results indicate that the method does not meet the requirements of the analytical target approach. A real-example data of a SEC with light-scattering detection method was used as a model whereas previously published data were used to illustrate the applicability of the proposed approach. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Wind Power Ramping Product for Increasing Power System Flexibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Mingjian; Zhang, Jie; Wu, Hongyu

    With increasing penetrations of wind power, system operators are concerned about a potential lack of system flexibility and ramping capacity in real-time dispatch stages. In this paper, a modified dispatch formulation is proposed considering the wind power ramping product (WPRP). A swinging door algorithm (SDA) and dynamic programming are combined and used to detect WPRPs in the next scheduling periods. The detected WPRPs are included in the unit commitment (UC) formulation considering ramping capacity limits, active power limits, and flexible ramping requirements. The modified formulation is solved by mixed integer linear programming. Numerical simulations on a modified PJM 5-bus Systemmore » show the effectiveness of the model considering WPRP, which not only reduces the production cost but also does not affect the generation schedules of thermal units.« less

  1. Improvement of tritium accountancy technology for ITER fuel cycle safety enhancement

    NASA Astrophysics Data System (ADS)

    O'hira, S.; Hayashi, T.; Nakamura, H.; Kobayashi, K.; Tadokoro, T.; Nakamura, H.; Itoh, T.; Yamanishi, T.; Kawamura, Y.; Iwai, Y.; Arita, T.; Maruyama, T.; Kakuta, T.; Konishi, S.; Enoeda, M.; Yamada, M.; Suzuki, T.; Nishi, M.; Nagashima, T.; Ohta, M.

    2000-03-01

    In order to improve the safe handling and control of tritium for the ITER fuel cycle, effective in situ tritium accounting methods have been developed at the Tritium Process Laboratory in the Japan Atomic Energy Research Institute under one of the ITER-EDA R&D tasks. The remote and multilocation analysis of process gases by an application of laser Raman spectroscopy developed and tested could provide a measurement of hydrogen isotope gases with a detection limit of 0.3 kPa analytical periods of 120 s. An in situ tritium inventory measurement by application of a `self-assaying' storage bed with 25 g tritium capacity could provide a measurement with the required detection limit of less than 1% and a design proof of a bed with 100 g tritium capacity.

  2. Development of a highly sensitive PCR/DNA chip method to detect mycoplasmas in a veterinary modified live vaccine.

    PubMed

    Mbelo, Sylvie; Gay, Virginie; Blanchard, Stephanie; Abachin, Eric; Falque, Stephanie; Lechenet, Jacques; Poulet, Hervé; de Saint-Vis, Blandine

    2018-05-09

    Mycoplasmas are potential contaminants that introduce undesirable changes in mammalian cell cultures. They frequently contaminate cell substrates and other starting materials used for manufacturing cell-derived biologics, such as vaccines and pharmaceutical products. Mycoplasma purity testing of live vaccines, active ingredients, raw material, and seed lots is required during vaccine production. Previously, testing using a time-consuming, costly 28-day culture assay, which lacks sensitivity for species that do not grow in culture, was required in the European Pharmacopoeia (Ph. Eur). But now nucleic acid amplification techniques (NATs) can be used. NATs provide rapid results and are sensitive. We evaluated the sensitivity and specificity of a commercially-available NAT to detect individual mycoplasma DNA in a veterinary modified live vaccine using five reference strains recommended by the Ph. Eur. Our results showed that this NAT-based method can be used to detect mycoplasma in spiked live vaccine, without interference from the vaccine components, with a limit of detection of 10 CFU/mL, as required by the Ph. Eur. Its specificity was demonstrated since no mycoplasmas were detected in non-spiked vaccine. This method is undergoing validation as a replacement for the conventional culture method in the production of veterinary live vaccines. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Capillary ion chromatography with on-column focusing for ultra-trace analysis of methanesulfonate and inorganic anions in limited volume Antarctic ice core samples.

    PubMed

    Rodriguez, Estrella Sanz; Poynter, Sam; Curran, Mark; Haddad, Paul R; Shellie, Robert A; Nesterenko, Pavel N; Paull, Brett

    2015-08-28

    Preservation of ionic species within Antarctic ice yields a unique proxy record of the Earth's climate history. Studies have been focused until now on two proxies: the ionic components of sea salt aerosol and methanesulfonic acid. Measurement of the all of the major ionic species in ice core samples is typically carried out by ion chromatography. Former methods, whilst providing suitable detection limits, have been based upon off-column preconcentration techniques, requiring larger sample volumes, with potential for sample contamination and/or carryover. Here, a new capillary ion chromatography based analytical method has been developed for quantitative analysis of limited volume Antarctic ice core samples. The developed analytical protocol applies capillary ion chromatography (with suppressed conductivity detection) and direct on-column sample injection and focusing, thus eliminating the requirement for off-column sample preconcentration. This limits the total sample volume needed to 300μL per analysis, allowing for triplicate sample analysis with <1mL of sample. This new approach provides a reliable and robust analytical method for the simultaneous determination of organic and inorganic anions, including fluoride, methanesulfonate, chloride, sulfate and nitrate anions. Application to composite ice-core samples is demonstrated, with coupling of the capillary ion chromatograph to high resolution mass spectrometry used to confirm the presence and purity of the observed methanesulfonate peak. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Linear chirp phase perturbing approach for finding binary phased codes

    NASA Astrophysics Data System (ADS)

    Li, Bing C.

    2017-05-01

    Binary phased codes have many applications in communication and radar systems. These applications require binary phased codes to have low sidelobes in order to reduce interferences and false detection. Barker codes are the ones that satisfy these requirements and they have lowest maximum sidelobes. However, Barker codes have very limited code lengths (equal or less than 13) while many applications including low probability of intercept radar, and spread spectrum communication, require much higher code lengths. The conventional techniques of finding binary phased codes in literatures include exhaust search, neural network, and evolutionary methods, and they all require very expensive computation for large code lengths. Therefore these techniques are limited to find binary phased codes with small code lengths (less than 100). In this paper, by analyzing Barker code, linear chirp, and P3 phases, we propose a new approach to find binary codes. Experiments show that the proposed method is able to find long low sidelobe binary phased codes (code length >500) with reasonable computational cost.

  5. A label-free aptamer-fluorophore assembly for rapid and specific detection of cocaine in biofluids.

    PubMed

    Roncancio, Daniel; Yu, Haixiang; Xu, Xiaowen; Wu, Shuo; Liu, Ran; Debord, Joshua; Lou, Xinhui; Xiao, Yi

    2014-11-18

    We report a rapid and specific aptamer-based method for one-step cocaine detection with minimal reagent requirements. The feasibility of aptamer-based detection has been demonstrated with sensors that operate via target-induced conformational change mechanisms, but these have generally exhibited limited target sensitivity. We have discovered that the cocaine-binding aptamer MNS-4.1 can also bind the fluorescent molecule 2-amino-5,6,7-trimethyl-1,8-naphthyridine (ATMND) and thereby quench its fluorescence. We subsequently introduced sequence changes into MNS-4.1 to engineer a new cocaine-binding aptamer (38-GC) that exhibits higher affinity to both ligands, with reduced background signal and increased signal gain. Using this aptamer, we have developed a new sensor platform that relies on the cocaine-mediated displacement of ATMND from 38-GC as a result of competitive binding. We demonstrate that our sensor can detect cocaine within seconds at concentrations as low as 200 nM, which is 50-fold lower than existing assays based on target-induced conformational change. More importantly, our assay achieves successful cocaine detection in body fluids, with a limit of detection of 10.4, 18.4, and 36 μM in undiluted saliva, urine, and serum samples, respectively.

  6. Protein Chips for Detection of Salmonella spp. from Enrichment Culture

    PubMed Central

    Poltronieri, Palmiro; Cimaglia, Fabio; De Lorenzis, Enrico; Chiesa, Maurizio; Mezzolla, Valeria; Reca, Ida Barbara

    2016-01-01

    Food pathogens are the cause of foodborne epidemics, therefore there is a need to detect the pathogens in food productions rapidly. A pre-enrichment culture followed by selective agar plating are standard detection methods. Molecular methods such as qPCR have provided a first rapid protocol for detection of pathogens within 24 h of enrichment culture. Biosensors also may provide a rapid tool to individuate a source of Salmonella contamination at early times of pre-enrichment culture. Forty mL of Salmonella spp. enrichment culture were processed by immunoseparation using the Pathatrix, as in AFNOR validated qPCR protocols. The Salmonella biosensor combined with immunoseparation showed a limit of detection of 100 bacteria/40 mL, with a 400 fold increase to previous results. qPCR analysis requires processing of bead-bound bacteria with lysis buffer and DNA clean up, with a limit of detection of 2 cfu/50 μL. Finally, a protein chip was developed and tested in screening and identification of 5 common pathogen species, Salmonella spp., E. coli, S. aureus, Campylobacter spp. and Listeria spp. The protein chip, with high specificity in species identification, is proposed to be integrated into a Lab-on-Chip system, for rapid and reproducible screening of Salmonella spp. and other pathogen species contaminating food productions. PMID:27110786

  7. Semi-automated solid phase extraction method for the mass spectrometric quantification of 12 specific metabolites of organophosphorus pesticides, synthetic pyrethroids, and select herbicides in human urine.

    PubMed

    Davis, Mark D; Wade, Erin L; Restrepo, Paula R; Roman-Esteva, William; Bravo, Roberto; Kuklenyik, Peter; Calafat, Antonia M

    2013-06-15

    Organophosphate and pyrethroid insecticides and phenoxyacetic acid herbicides represent important classes of pesticides applied in commercial and residential settings. Interest in assessing the extent of human exposure to these pesticides exists because of their widespread use and their potential adverse health effects. An analytical method for measuring 12 biomarkers of several of these pesticides in urine has been developed. The target analytes were extracted from one milliliter of urine by a semi-automated solid phase extraction technique, separated from each other and from other urinary biomolecules by reversed-phase high performance liquid chromatography, and detected using tandem mass spectrometry with isotope dilution quantitation. This method can be used to measure all the target analytes in one injection with similar repeatability and detection limits of previous methods which required more than one injection. Each step of the procedure was optimized to produce a robust, reproducible, accurate, precise and efficient method. The required selectivity and sensitivity for trace-level analysis (e.g., limits of detection below 0.5ng/mL) was achieved using a narrow diameter analytical column, higher than unit mass resolution for certain analytes, and stable isotope labeled internal standards. The method was applied to the analysis of 55 samples collected from adult anonymous donors with no known exposure to the target pesticides. This efficient and cost-effective method is adequate to handle the large number of samples required for national biomonitoring surveys. Published by Elsevier B.V.

  8. Monopole search below the Parker limit with the MACRO detector at Gran Sasso

    NASA Technical Reports Server (NTRS)

    Tarle, G.

    1985-01-01

    The MACRO detector approved for the Gran Sasso Underground Laboratory in Italy will be the first capable of performing a definitive search for super-massive grand unified theory (GUT) monopoles at a level significantly below the Parker flux limit of 10 to the minus 15th power square centimeters Sr(-1) 5(-1). GUT monopoles will move at very low velocities (V approx. 0.001 c) relative to the Earth and a multifaceted detection technique is required to assume their unambiguous identification. Calculations of scintillator response to slow monopoles and measurements of scintillation efficiency for low energy protons have shown that bare monopoles and electrically charged monopoles moving at velocities as low as 5 x .0001 c will produce detectable scintillation signals. The time-of-flight between two thick (25 cm) liquid scintillation layers separated by 4.3m will be used in conjunction with waveform digitization of signals of extended duration in each thick scintillator to provide a redundant signature for slow penetrating particles. Limited streamer tubes filled with He and n-pentane will detect bare monopoles with velocities as low as 1 x 0.0001 c by exploiting monopole induced level mixing and the Penning effect.

  9. Influence of the vibro-acoustic sensor position on cavitation detection in a Kaplan turbine

    NASA Astrophysics Data System (ADS)

    Schmidt, H.; Kirschner, O.; Riedelbauch, S.; Necker, J.; Kopf, E.; Rieg, M.; Arantes, G.; Wessiak, M.; Mayrhuber, J.

    2014-03-01

    Hydraulic turbines can be operated close to the limits of the operating range to meet the demand of the grid. When operated close to the limits, the risk increases that cavitation phenomena may occur at the runner and / or at the guide vanes of the turbine. Cavitation in a hydraulic turbine can cause material erosion on the runner and other turbine parts and reduce the durability of the machine leading to required outage time and related repair costs. Therefore it is important to get reliable information about the appearance of cavitation during prototype operation. In this experimental investigation the high frequency acoustic emissions and vibrations were measured at 20 operating points with different cavitation behaviour at different positions in a large prototype Kaplan turbine. The main goal was a comparison of the measured signals at different sensor positions to identify the sensitivity of the location for cavitation detection. The measured signals were analysed statistically and specific values were derived. Based on the measured signals, it is possible to confirm the cavitation limit of the examined turbine. The result of the investigation shows that the position of the sensors has a significant influence on the detection of cavitation.

  10. Molecular diagnosis of protozoan parasites by Recombinase Polymerase Amplification.

    PubMed

    Castellanos-Gonzalez, A; White, A C; Melby, P; Travi, B

    2018-06-01

    Infections caused by protozoan parasites affect millions of people around the world. Traditionally, diagnosis was made by microscopy, which is insensitive and in some cases not specific. Molecular methods are highly sensitive and specific, but equipment costs and personnel training limit its availability only to specialized centers, usually far from populations with the highest risk of infection. Inexpensive methods that can be applied at the point of care (POC), especially in places with limited health infrastructure, would be a major advantage. Isothermal amplification of nucleic acids does not require thermocyclers and is relatively inexpensive and easy to implement. Among isothermal methods, recombinase polymerase amplification (RPA) is sensitive and potentially applicable at POC. We and others have developed RPA diagnostic tests to detect protozoan parasites of medical importance. Overall, our results have shown high specificity with limits of detection similar to PCR. Currently, the optimization of RPA for use at the POC is under development, and in the near future the tests should become available to detect protozoan infections in the field. In this review we discuss the current status, challenges, and future of RPA in the field of molecular diagnosis of protozoan parasites. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA

    USGS Publications Warehouse

    Hunter, Margaret; Dorazio, Robert M.; Butterfield, John S.; Meigs-Friend, Gaia; Nico, Leo; Ferrante, Jason A.

    2017-01-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species’ presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty – indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis, and forensic and clinical diagnostics.

  12. Advanced speckle sensing for internal coronagraphs

    NASA Astrophysics Data System (ADS)

    Noecker, Charley; Shaklan, Stuart; Wallace, James K.; Kern, Brian; Give'on, Amir; Kasdin, Jeremy; Belikov, Ruslan; Kendrick, Steve

    2011-10-01

    A 4-8m diameter telescope carrying a coronagraph instrument is a leading candidate for an anticipated flagship mission to detect and characterize Earth-size exoplanets in the 2020s.1 Many candidate coronagraph instruments have been proposed, and one is close to meeting some of the principal requirements for that mission. But the telescope and instrument will need exquisite stability and precise control of the incoming wavefront to enable detection of faint companions (10-10of the star) at an angular separation of 2-4 Airy radii. In particular, wavefront errors cause speckles in the image, and variations in those speckles can confound the exoplanet detection. This challenge is compounded by the background light from zodiacal dust around our Sun and the target star, which limits the speed with which we can estimate and correct the speckles. We are working on developing coherent speckle detection techniques that will allow rapid calibration of speckles on the science detector, allowing subtraction in post-processing or correction with deformable mirrors. The expected speed improvement allows a much quicker timeline for measurement & calibration, which reduces the required telescope stability requirement and eases both the flight system design and the challenge of ground testing. We will describe the experiments and summarize progress to date.

  13. Quantification of susceptibility change at high-concentrated SPIO-labeled target by characteristic phase gradient recognition.

    PubMed

    Zhu, Haitao; Nie, Binbin; Liu, Hua; Guo, Hua; Demachi, Kazuyuki; Sekino, Masaki; Shan, Baoci

    2016-05-01

    Phase map cross-correlation detection and quantification may produce highlighted signal at superparamagnetic iron oxide nanoparticles, and distinguish them from other hypointensities. The method may quantify susceptibility change by performing least squares analysis between a theoretically generated magnetic field template and an experimentally scanned phase image. Because characteristic phase recognition requires the removal of phase wrap and phase background, additional steps of phase unwrapping and filtering may increase the chance of computing error and enlarge the inconsistence among algorithms. To solve problem, phase gradient cross-correlation and quantification method is developed by recognizing characteristic phase gradient pattern instead of phase image because phase gradient operation inherently includes unwrapping and filtering functions. However, few studies have mentioned the detectable limit of currently used phase gradient calculation algorithms. The limit may lead to an underestimation of large magnetic susceptibility change caused by high-concentrated iron accumulation. In this study, mathematical derivation points out the value of maximum detectable phase gradient calculated by differential chain algorithm in both spatial and Fourier domain. To break through the limit, a modified quantification method is proposed by using unwrapped forward differentiation for phase gradient generation. The method enlarges the detectable range of phase gradient measurement and avoids the underestimation of magnetic susceptibility. Simulation and phantom experiments were used to quantitatively compare different methods. In vivo application performs MRI scanning on nude mice implanted by iron-labeled human cancer cells. Results validate the limit of detectable phase gradient and the consequent susceptibility underestimation. Results also demonstrate the advantage of unwrapped forward differentiation compared with differential chain algorithms for susceptibility quantification at high-concentrated iron accumulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Glucose-oxidase label-based redox cycling for an incubation period-free electrochemical immunosensor.

    PubMed

    Singh, Amardeep; Park, Seonhwa; Yang, Haesik

    2013-05-21

    Catalytic reactions of enzyme labels in enzyme-linked immunosorbent assays require a long incubation period to obtain high signal amplification. We present herein a simple immunosensing scheme in which the incubation period is minimized without a large increase in the detection limit. This scheme is based on electrochemical-enzymatic (EN) redox cycling using glucose oxidase (GOx) as an enzyme label, Ru(NH3)6(3+) as a redox mediator, and glucose as an enzyme substrate. Fast electron mediation of Ru(NH3)6(3+) between the electrode and the GOx label attached to the electrode allows high signal amplification. The acquisition of chronocoulometric charges at a potential in the mass transfer-controlled region excludes the influence of the kinetics of Ru(NH3)6(2+) electrooxidation and also facilitates high signal-to-background ratios. The reaction between reduced GOx and Ru(NH3)6(3+) is rapid even in air-saturated Tris buffer, where the faster competitive reaction between reduced GOx and dissolved oxygen also occurs. The direct electrooxidation of glucose at the electrode and the direct electron transfer between glucose and Ru(NH3)6(3+) that undesirably increase background levels occur relatively slowly. The detection limit for the EN redox cycling-based detection of cancer antigen 125 (CA-125) in human serum is slightly higher than 0.1 U/mL for the incubation period of 0 min, and the detection limits for the incubation periods of 5 and 10 min are slightly lower than 0.1 U/mL, indicating that the detection limits are almost similar irrespective of the incubation period and that the immunosensor is highly sensitive.

  15. Lowering thresholds for speed limit enforcement impairs peripheral object detection and increases driver subjective workload.

    PubMed

    Bowden, Vanessa K; Loft, Shayne; Tatasciore, Monica; Visser, Troy A W

    2017-01-01

    Speed enforcement reduces incidences of speeding, thus reducing traffic accidents. Accordingly, it has been argued that stricter speed enforcement thresholds could further improve road safety. Effective speed monitoring however requires driver attention and effort, and human information-processing capacity is limited. Emphasizing speed monitoring may therefore reduce resource availability for other aspects of safe vehicle operation. We investigated whether lowering enforcement thresholds in a simulator setting would introduce further competition for limited cognitive and visual resources. Eighty-four young adult participants drove under conditions where they could be fined for travelling 1, 6, or 11km/h over a 50km/h speed-limit. Stricter speed enforcement led to greater subjective workload and significant decrements in peripheral object detection. These data indicate that the benefits of reduced speeding with stricter enforcement may be at least partially offset by greater mental demands on drivers, reducing their responses to safety-critical stimuli on the road. It is likely these results under-estimate the impact of stricter speed enforcement on real-world drivers who experience significantly greater pressures to drive at or above the speed limit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. One-pot synthesis of a multi-template molecularly imprinted polymer for the extraction of six sulfonamide residues from milk before high-performance liquid chromatography with diode array detection.

    PubMed

    Kechagia, Maria; Samanidou, Victoria; Kabir, Abuzar; Furton, Kenneth G

    2018-02-01

    A highly selective molecularly imprinted polymer sorbent was synthesized and employed for the simultaneous determination of six sulfonamide antibiotic residues (sulfanilamide, sulfacetamide, sulfadiazine, sulfathiazole, sulfamerazine, and sulfamethizole) in milk samples. Multi-analyte imprinted particles were used as a sorbent in solid-phase extraction. Sulfonamides were separated on a high-performance liquid chromatography column (Merck-Lichrospher RP18e, 5 μm 250 × 4 mm) and further identified and quantified by diode array detection. Several parameters including required loading of the molecularly imprinted polymer sorbent, mass of milk, volume, and type of elution solvent, as well as time for absorption and elution were investigated to obtain optimal experimental conditions. For comparison purpose, a non-imprinted polymer was applied under the optimum conditions. The validation study according to the European Union Decision 2002/657/EC was based on the investigation of linearity, selectivity, stability, limits of detection and quantitation, decision limit, detection capability, trueness, precision, and ruggedness according to Youden's approach. The decision limit and detection capability values in the milk were achieved from 101.9 to 113.5 μg/kg and from 114.4 to 135.4 μg/kg, respectively, depending on the target sulfonamide drug. Finally, the optimized protocol was successfully applied to commercial milk samples and human breast milk. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fault detection techniques for complex cable shield topologies

    NASA Astrophysics Data System (ADS)

    Coonrod, Kurt H.; Davis, Stuart L.; McLemore, Donald P.

    1994-09-01

    This document presents the results of a basic principles study which investigated technical approaches for developing fault detection techniques for use on cables with complex shielding topologies. The study was limited to those approaches which could realistically be implemented on a fielded cable, i.e., approaches which would require partial disassembly of a cable were not pursued. The general approach used was to start with present transfer impedance measurement techniques and modify their use to achieve the best possible measurement range. An alternative test approach, similar to a sniffer type test, was also investigated.

  18. Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models.

    PubMed

    Burgués, Javier; Jiménez-Soto, Juan Manuel; Marco, Santiago

    2018-07-12

    The limit of detection (LOD) is a key figure of merit in chemical sensing. However, the estimation of this figure of merit is hindered by the non-linear calibration curve characteristic of semiconductor gas sensor technologies such as, metal oxide (MOX), gasFETs or thermoelectric sensors. Additionally, chemical sensors suffer from cross-sensitivities and temporal stability problems. The application of the International Union of Pure and Applied Chemistry (IUPAC) recommendations for univariate LOD estimation in non-linear semiconductor gas sensors is not straightforward due to the strong statistical requirements of the IUPAC methodology (linearity, homoscedasticity, normality). Here, we propose a methodological approach to LOD estimation through linearized calibration models. As an example, the methodology is applied to the detection of low concentrations of carbon monoxide using MOX gas sensors in a scenario where the main source of error is the presence of uncontrolled levels of humidity. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Continuous flow nanoparticle concentration using alternating current-electroosmotic flow.

    PubMed

    Hoettges, Kai F; McDonnell, Martin B; Hughes, Michael P

    2014-02-01

    Achieving real-time detection of environmental pathogens such as viruses and bacterial spores requires detectors with both rapid action and a suitable detection threshold. However, most biosensors have detection limits of an order of magnitude or more above the potential infection threshold, limiting their usefulness. This can be improved through the use of automated sample preparation techniques such as preconcentration. In this paper, we describe the use of AC electroosmosis to concentrate nanoparticles from a continuous flow. Electrodes at an optimized angle across a flow cell, and energized by a 1 kHz signal, were used to push nanoparticles to one side of a flow cell, and to extract the resulting stream with a high particle concentration from that side of the flow cell. A simple model of the behavior of particles in the flow cell has been developed, which shows good agreement with experimental results. The method indicates potential for higher concentration factors through cascading devices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Measurement of curium in marine samples

    NASA Astrophysics Data System (ADS)

    Schneider, D. L.; Livingston, H. D.

    1984-06-01

    Measurement of environmentally small but detectable amounts of curium requires reliable, accureate, and sensitive analytical methods. The radiochemical separation developed at Woods Hole is briefly reviewed with specific reference to radiochemical interferences in the alpha spectrometric measurement of curium nuclides and to the relative amounts of interferences expected in different oceanic regimes and sample types. Detection limits for 242 Cm and 244 Cm are ultimately limited by their presence in the 243Am used as curium yield monitor. Environmental standard reference materials are evaluated with regard to curium. The marine literature is reviewed and curium measurements are discussed in relation to their source of introduction to the environment. Sources include ocean dumping of low-level radioactive wastes and discharges from nuclear fuel reporcessing activities, In particular, the question of a detectable presence of 244Cm in global fallout from nuclear weapons testing is addressed and shown to be essentially negligible. Analyses of Scottish coastal sedimantes show traces of 242Cm and 244Cm activity which are believed to originate from transport from sources in the Irish Sea.

  1. Evaluation of Total Nitrite Pattern Visualization as an Improved Method for Gunshot Residue Detection and its Application to Casework Samples.

    PubMed

    Berger, Jason; Upton, Colin; Springer, Elyah

    2018-04-23

    Visualization of nitrite residues is essential in gunshot distance determination. Current protocols for the detection of nitrites include, among other tests, the Modified Griess Test (MGT). This method is limited as nitrite residues are unstable in the environment and limited to partially burned gunpowder. Previous research demonstrated the ability of alkaline hydrolysis to convert nitrates to nitrites, allowing visualization of unburned gunpowder particles using the MGT. This is referred to as Total Nitrite Pattern Visualization (TNV). TNV techniques were modified and a study conducted to streamline the procedure outlined in the literature to maximize the efficacy of the TNV in casework, while reducing the required time from 1 h to 5 min, and enhancing effectiveness on blood-soiled samples. The TNV method was found to provide significant improvement in the ability to detect significant nitrite residues, without sacrificing efficiency, that would allow for the determination of the muzzle-to-target distance. © 2018 American Academy of Forensic Sciences.

  2. Mass Spectrometry Based Ultrasensitive DNA Methylation Profiling Using Target Fragmentation Assay.

    PubMed

    Lin, Xiang-Cheng; Zhang, Ting; Liu, Lan; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui

    2016-01-19

    Efficient tools for profiling DNA methylation in specific genes are essential for epigenetics and clinical diagnostics. Current DNA methylation profiling techniques have been limited by inconvenient implementation, requirements of specific reagents, and inferior accuracy in quantifying methylation degree. We develop a novel mass spectrometry method, target fragmentation assay (TFA), which enable to profile methylation in specific sequences. This method combines selective capture of DNA target from restricted cleavage of genomic DNA using magnetic separation with MS detection of the nonenzymatic hydrolysates of target DNA. This method is shown to be highly sensitive with a detection limit as low as 0.056 amol, allowing direct profiling of methylation using genome DNA without preamplification. Moreover, this method offers a unique advantage in accurately determining DNA methylation level. The clinical applicability was demonstrated by DNA methylation analysis using prostate tissue samples, implying the potential of this method as a useful tool for DNA methylation profiling in early detection of related diseases.

  3. Noise detection in heart sound recordings.

    PubMed

    Zia, Mohammad K; Griffel, Benjamin; Fridman, Vladimir; Saponieri, Cesare; Semmlow, John L

    2011-01-01

    Coronary artery disease (CAD) is the leading cause of death in the United States. Although progression of CAD can be controlled using drugs and diet, it is usually detected in advanced stages when invasive treatment is required. Current methods to detect CAD are invasive and/or costly, hence not suitable as a regular screening tool to detect CAD in early stages. Currently, we are developing a noninvasive and cost-effective system to detect CAD using the acoustic approach. This method identifies sounds generated by turbulent flow through partially narrowed coronary arteries to detect CAD. The limiting factor of this method is sensitivity to noises commonly encountered in the clinical setting. Because the CAD sounds are faint, these noises can easily obscure the CAD sounds and make detection impossible. In this paper, we propose a method to detect and eliminate noise encountered in the clinical setting using a reference channel. We show that our method is effective in detecting noise, which is essential to the success of the acoustic approach.

  4. Single-Plex Quantitative Assays for the Detection and Quantification of Most Pneumococcal Serotypes

    PubMed Central

    Chochua, Sopio; Satzke, Catherine; Dunne, Eileen M.; Mulholland, Kim; Klugman, Keith P.

    2015-01-01

    Streptococcus pneumoniae globally kills more children than any other infectious disease every year. A prerequisite for pneumococcal disease and transmission is colonization of the nasopharynx. While the introduction of pneumococcal conjugate vaccines has reduced the burden of pneumococcal disease, understanding the impact of vaccination on nasopharyngeal colonization has been hampered by the lack of sensitive quantitative methods for the detection of >90 known S. pneumoniae serotypes. In this work, we developed 27 new quantitative (q)PCR reactions and optimized 26 for a total of 53 qPCR reactions targeting pneumococcal serotypes or serogroups, including all vaccine types. Reactions proved to be target-specific with a limit of detection of 2 genome equivalents per reaction. Given the number of probes required for these assays and their unknown shelf-life, the stability of cryopreserved reagents was evaluated. Our studies demonstrate that two-year cryopreserved probes had similar limit of detection as freshly-diluted probes. Moreover, efficiency and limit of detection of 1-month cryopreserved, ready-to-use, qPCR reaction mixtures were similar to those of freshly prepared mixtures. Using these reactions, our proof-of-concept studies utilizing nasopharyngeal samples (N=30) collected from young children detected samples containing ≥2 serotypes/serogroups. Samples colonized by multiple serotypes/serogroups always had a serotype that contributes at least 50% of the pneumococcal load. In addition, a molecular approach called S6-q(PCR)2 was developed and proven to individually detect and quantify epidemiologically-important serogroup 6 strains including 6A, 6B, 6C and 6D. This technology will be useful for epidemiological studies, diagnostic platforms and to study the pneumobiome. PMID:25798884

  5. Study of the use of axial viewed inductively coupled plasma atomic emission spectrometry with ultrasonic nebulization for the determination of select elemental impurities in oral drug products.

    PubMed

    Menoutis, James; Parisi, Angela; Verma, Natasha

    2018-04-15

    In efforts to control the potential presence of heavy metals in pharmaceuticals, the United States Pharmacopeia (USP) and International Conference on Harmonization (ICH) have put forth new requirements and guidelines for their control. The new requirements and guidelines establish specific daily exposures (PDE) for 24 heavy metals/elemental impurities (EI) based upon their toxicological properties. USP General Chapter 〈233〉 provides a general reference procedure for preparing pharmaceutical samples for analysis employing microwave assisted digestion (MWAD). It also provides two Compendial Procedures, Procedure 1 employing ICP-AES, and Procedure 2 employing ICP-MS. Given the extremely low detection limits afforded by ICP-MS, much work has been done in developing and evaluating analytical methods to support the analysis of elemental impurities in finished pharmaceutical products, active pharmaceutical ingredients, and excipients by this analytical technique. In this study, we have evaluated the use of axial ICP-AES. This employs ultrasonic nebulization (UN) for the determination of Class 1 and 2 EI, instead of traditional pneumatic nebulization. The study also employed closed vessel MWAD to prepare samples for analysis. Limits of quantitation were element specific and significantly lower than the PDEs for oral drugs. Spike recoveries for the elements studied ranged between 89.3% and 109.25%, except for Os, which was subject to OsO4 formation during MWAD. The use of axial ICP-AES UN provides an alternative to ICP-MS in the analysis of EI requiring low detection limits. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Hallmarks in prostate cancer imaging with Ga68-PSMA-11-PET/CT with reference to detection limits and quantitative properties.

    PubMed

    Sanchez-Crespo, Alejandro; Jussing, Emma; Björklund, Ann-Charlotte; Pokrovskaja Tamm, Katja

    2018-04-04

    Gallium-68-labeled prostate-specific antigen positron emission tomography/computed tomography imaging (Ga68-PSMA-11-PET/CT) has emerged as a potential gold standard for prostate cancer (PCa) diagnosis. However, the imaging limitations of this technique at the early state of PCa recurrence/metastatic spread are still not well characterized. The aim of this study was to determine the quantitative properties and the fundamental imaging limits of Ga68-PSMA-11-PET/CT in localizing small PCa cell deposits. The human PCa LNCaP cells (PSMA expressing) were grown and collected as single cell suspension or as 3D-spheroids at different cell numbers and incubated with Ga68-PSMA-11. Thereafter, human HCT116 cells (PSMA negative) were added to a total cell number of 2 × 10 5 cells per tube. The tubes were then pelleted and the supernatant aspirated. A whole-body PET/CT scanner with a clinical routine protocol was used for imaging the pellets inside of a cylindrical water phantom with increasing amounts of background activity. The actual activity bound to the cells was also measured in an automatic gamma counter. Imaging detection limits and activity recovery coefficients as a function of LNCaP cell number were obtained. The effect of Ga68-PSMA-11 mass concentration on cell binding was also investigated in samples of LnCaP cells incubated with increasing concentrations of radioligand. A total of 1 × 10 4 LNCaP cells mixed in a pellet of 2 × 10 5 cells were required to reach a 50% detection probability with Ga68-PSMA-11-PET/CT without background. With a background level of 1 kBq/ml, between 4 × 10 5 and 1 × 10 6 cells are required. The radioligand equilibrium dissociation constant was 27.05 nM, indicating high binding affinity. Hence, the specific activity of the radioligand has a profound effect on image quantification. Ga68-PSMA-11-PET detects a small number of LNCaP cells even when they are mixed in a population of non-PSMA expressing cells and in the presence of background. The obtained image detection limits and characteristic quantification properties of Ga68-PSMA-11-PET/CT are essential hallmarks for the individualization of patient management. The use of the standardized uptake value for Ga68-PSMA-11-PET/CT image quantification should be precluded.

  7. Report for Batch Leach Analyses on Sediments at 100-HR-3 Operable Unit, Boreholes C7620, C7621, C7622, C7623, C7626, C7627, C7628, C7629, C7630, and C7866. Revision 1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindberg, Michael J.

    2012-04-25

    This is a revision to a previously released report. This revision contains additional analytical results for the sample with HEIS number B2H4X7. Between November 4, 2010 and October 26, 2011 sediment samples were received from 100-HR-3 Operable Unit for geochemical studies. The analyses for this project were performed at the 331 building located in the 300 Area of the Hanford Site. The analyses were performed according to Pacific Northwest National Laboratory (PNNL) approved procedures and/or nationally recognized test procedures. The data sets include the sample identification numbers, analytical results, estimated quantification limits (EQL), and quality control data. The preparatory andmore » analytical quality control requirements, calibration requirements, acceptance criteria, and failure actions are defined in the on-line QA plan 'Conducting Analytical Work in Support of Regulatory Programs' (CAW). This QA plan implements the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD) for PNNL. Samples were received with a chain of custody (COC) and were analyzed according to the sample identification numbers supplied by the client. All Samples were refrigerated upon receipt until prepared for analysis. All samples were received with custody seals intact unless noted in the Case Narrative. Holding time is defined as the time from sample preparation to the time of analyses. The prescribed holding times were met for all analytes unless noted in the Case Narrative. All reported analytical results meet the requirements of the CAW or client specified SOW unless noted in the case narrative. Due to the requirements of the statement of work and sampling events in the field, the 28 day and the 48 hr requirements cannot be met. The statement of work requires samples to be selected at the completion of the borehole. It is not always possible to complete a borehole and have the samples shipped to the laboratory within the hold time requirements. Duplicate RPD for Uranium 238 (38.9%) was above the acceptance limit (35) in 1E05003-DUP1 for ICPMS-Tc-U-WE The sample result is less than 10 times the detection limits. Duplicate recoveries are not applicable to this analyte. Duplicate RPD for Silver 107 (68.2%) was above the acceptance limit (35) in 2C06004-DUP1 for ICPMS-RCRA-AE The sample result is less than 10 times the detection limits. Duplicate recoveries are not applicable to this analyte. Matrix Spike Recovery for Chromium, Hexavalent (48.8%) was outside acceptance limits (75-125) in 1E23001-MS1 for Hexavalent Chromium/Soil. Potential Matrix interference. Sample results associated with this batch are below the EQL. There should be no impact to the data as reported. Matrix Spike Recovery for Chromium, Hexavalent (50.2%) was outside acceptance limits (75-125) in 2B22010-MS1 for Hexavalent Chromium/Soil. Potential Matrix interference. Sample results associated with this batch are below the EQL. There should be no impact to the data as reported.« less

  8. VizieR Online Data Catalog: The PMM USNO-A1.0 Catalogue (Monet 1997)

    NASA Astrophysics Data System (ADS)

    Monet, D.; Canzian, B.; Harris, H.; Reid, N.; Rhodes, A.; Sell, S.

    1998-07-01

    USNO-A1.0 is a catalog of 488,006,860 sources whose positions can be used for astrometric references. These sources were detected by the Precision Measuring Machine (PMM) built and operated by the U. S. Naval Observatory Flagstaff Station during the scanning and processing of the Palomar Observatory Sky Survey I (POSS-I) O and E plates, the UK Science Research Council SRC-J survey plates, and the European Southern Observatory ESO-R survey plates. The PMM detects and processes at and beyond the nominal limiting magnitude of these surveys, but the large number of spurious detections requires that a filter be used to eliminate as many as possible. USNO-A's sole inclusion requirement was that there be spatially coincident detections (within a 2 arcsecond radius aperture) on the blue and red survey plate. For field centers of -30 degrees and above, data come from POSS-I plates, while data from field centers of -35 and below come from SRC-J and ESO-R plates. (1 data file).

  9. Tandem mass spectrometry for the detection of plant pathogenic fungi and the effects of database composition on protein inferences.

    PubMed

    Padliya, Neerav D; Garrett, Wesley M; Campbell, Kimberly B; Tabb, David L; Cooper, Bret

    2007-11-01

    LC-MS/MS has demonstrated potential for detecting plant pathogens. Unlike PCR or ELISA, LC-MS/MS does not require pathogen-specific reagents for the detection of pathogen-specific proteins and peptides. However, the MS/MS approach we and others have explored does require a protein sequence reference database and database-search software to interpret tandem mass spectra. To evaluate the limitations of database composition on pathogen identification, we analyzed proteins from cultured Ustilago maydis, Phytophthora sojae, Fusarium graminearum, and Rhizoctonia solani by LC-MS/MS. When the search database did not contain sequences for a target pathogen, or contained sequences to related pathogens, target pathogen spectra were reliably matched to protein sequences from nontarget organisms, giving an illusion that proteins from nontarget organisms were identified. Our analysis demonstrates that when database-search software is used as part of the identification process, a paradox exists whereby additional sequences needed to detect a wide variety of possible organisms may lead to more cross-species protein matches and misidentification of pathogens.

  10. Evaluating Detection Limits of Next-Generation Sequencing for the Surveillance and Monitoring of International Marine Pests

    PubMed Central

    Pochon, Xavier; Bott, Nathan J.; Smith, Kirsty F.; Wood, Susanna A.

    2013-01-01

    Most surveillance programmes for marine invasive species (MIS) require considerable taxonomic expertise, are laborious, and are unable to identify species at larval or juvenile stages. Therefore, marine pests may go undetected at the initial stages of incursions when population densities are low. In this study, we evaluated the ability of the benchtop GS Junior™ 454 pyrosequencing system to detect the presence of MIS in complex sample matrices. An initial in-silico evaluation of the mitochondrial cytochrome c oxidase subunit I (COI) and the nuclear small subunit ribosomal DNA (SSU) genes, found that multiple primer sets (targeting a ca. 400 base pair region) would be required to obtain species level identification within the COI gene. In contrast a single universal primer set was designed to target the V1–V3 region of SSU, allowing simultaneous PCR amplification of a wide taxonomic range of MIS. To evaluate the limits of detection of this method, artificial contrived communities (10 species from 5 taxonomic groups) were created using varying concentrations of known DNA samples and PCR products. Environmental samples (water and sediment) spiked with one or five 160 hr old Asterias amurensis larvae were also examined. Pyrosequencing was able to recover DNA/PCR products of individual species present at greater than 0.64% abundance from all tested contrived communities. Additionally, single A. amurensis larvae were detected from both water and sediment samples despite the co-occurrence of a large array of environmental eukaryotes, indicating an equivalent sensitivity to quantitative PCR. NGS technology has tremendous potential for the early detection of marine invasive species worldwide. PMID:24023913

  11. On spurious detection of linear response and misuse of the fluctuation-dissipation theorem in finite time series

    NASA Astrophysics Data System (ADS)

    Gottwald, Georg A.; Wormell, J. P.; Wouters, Jeroen

    2016-09-01

    Using a sensitive statistical test we determine whether or not one can detect the breakdown of linear response given observations of deterministic dynamical systems. A goodness-of-fit statistics is developed for a linear statistical model of the observations, based on results for central limit theorems for deterministic dynamical systems, and used to detect linear response breakdown. We apply the method to discrete maps which do not obey linear response and show that the successful detection of breakdown depends on the length of the time series, the magnitude of the perturbation and on the choice of the observable. We find that in order to reliably reject the assumption of linear response for typical observables sufficiently large data sets are needed. Even for simple systems such as the logistic map, one needs of the order of 106 observations to reliably detect the breakdown with a confidence level of 95 %; if less observations are available one may be falsely led to conclude that linear response theory is valid. The amount of data required is larger the smaller the applied perturbation. For judiciously chosen observables the necessary amount of data can be drastically reduced, but requires detailed a priori knowledge about the invariant measure which is typically not available for complex dynamical systems. Furthermore we explore the use of the fluctuation-dissipation theorem (FDT) in cases with limited data length or coarse-graining of observations. The FDT, if applied naively to a system without linear response, is shown to be very sensitive to the details of the sampling method, resulting in erroneous predictions of the response.

  12. Real-time traffic sign detection and recognition

    NASA Astrophysics Data System (ADS)

    Herbschleb, Ernst; de With, Peter H. N.

    2009-01-01

    The continuous growth of imaging databases increasingly requires analysis tools for extraction of features. In this paper, a new architecture for the detection of traffic signs is proposed. The architecture is designed to process a large database with tens of millions of images with a resolution up to 4,800x2,400 pixels. Because of the size of the database, a high reliability as well as a high throughput is required. The novel architecture consists of a three-stage algorithm with multiple steps per stage, combining both color and specific spatial information. The first stage contains an area-limitation step which is performance critical in both the detection rate as the overall processing time. The second stage locates suggestions for traffic signs using recently published feature processing. The third stage contains a validation step to enhance reliability of the algorithm. During this stage, the traffic signs are recognized. Experiments show a convincing detection rate of 99%. With respect to computational speed, the throughput for line-of-sight images of 800×600 pixels is 35 Hz and for panorama images it is 4 Hz. Our novel architecture outperforms existing algorithms, with respect to both detection rate and throughput

  13. Quality control for federal clean water act and safe drinking water act regulatory compliance.

    PubMed

    Askew, Ed

    2013-01-01

    QC sample results are required in order to have confidence in the results from analytical tests. Some of the AOAC water methods include specific QC procedures, frequencies, and acceptance criteria. These are considered to be the minimum controls needed to perform the method successfully. Some regulatory programs, such as those in 40 CFR Part 136.7, require additional QC or have alternative acceptance limits. Essential QC measures include method calibration, reagent standardization, assessment of each analyst's capabilities, analysis of blind check samples, determination of the method's sensitivity (method detection level or quantification limit), and daily evaluation of bias, precision, and the presence of laboratory contamination or other analytical interference. The details of these procedures, their performance frequency, and expected ranges of results are set out in this manuscript. The specific regulatory requirements of 40 CFR Part 136.7 for the Clean Water Act, the laboratory certification requirements of 40 CFR Part 141 for the Safe Drinking Water Act, and the ISO 17025 accreditation requirements under The NELAC Institute are listed.

  14. Detection of ricin contamination in ground beef by electrochemiluminescence immunosorbent assay.

    PubMed

    Brandon, David L

    2011-04-01

    Ricin is a highly toxic protein present in the seeds of Ricinus communis (castor), grown principally as a source of high quality industrial lubricant and as an ornamental. Because ricin has been used for intentional poisoning in the past and could be used to contaminate food, there is a need for analytical methodology to detect ricin in food matrices. A monoclonal antibody-based method was developed for detecting and quantifying ricin in ground beef, a complex, fatty matrix. The limit of detection was 0.5 ng/g for the electrochemiluminescence (ECL) method and 1.5 ng/g for enzyme-linked immunosorbent assay (ELISA). The detection of nanogram per gram quantities of ricin spiked into retail samples of ground beef provides approximately 10,000-fold greater sensitivity than required to detect a toxic dose of ricin (>1 mg) in a 100 g sample.

  15. Detection of Ricin Contamination in Ground Beef by Electrochemiluminescence Immunosorbent Assay

    PubMed Central

    Brandon, David L.

    2011-01-01

    Ricin is a highly toxic protein present in the seeds of Ricinus communis (castor), grown principally as a source of high quality industrial lubricant and as an ornamental. Because ricin has been used for intentional poisoning in the past and could be used to contaminate food, there is a need for analytical methodology to detect ricin in food matrices. A monoclonal antibody-based method was developed for detecting and quantifying ricin in ground beef, a complex, fatty matrix. The limit of detection was 0.5 ng/g for the electrochemiluminescence (ECL) method and 1.5 ng/g for enzyme-linked immunosorbent assay (ELISA). The detection of nanogram per gram quantities of ricin spiked into retail samples of ground beef provides approximately 10,000-fold greater sensitivity than required to detect a toxic dose of ricin (>1 mg) in a 100 g sample. PMID:22069715

  16. Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, A.; André, M.; Anton, G.

    2017-04-01

    ANTARES is currently the largest neutrino telescope operating in the Northern Hemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources. Neutrino telescopes constantly monitor at least one complete hemisphere of the sky, and are thus well-suited to detect neutrinos produced in transient astrophysical sources. A time-dependent search has been applied to a list of 33 X-ray binaries undergoing high flaring activities in satellite data (RXTE/ASM, MAXI and Swift/BAT) and during hardness transition states in the 2008–2012 period. The background originating from interactions of charged cosmic rays in the Earth's atmosphere is drastically reduced by requiring a directional andmore » temporal coincidence with astrophysical phenomena. The results of this search are presented together with comparisons between the neutrino flux upper limits and the neutrino flux predictions from astrophysical models. The neutrino flux upper limits resulting from this search limit the jet parameter space for some astrophysical models.« less

  17. Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.

    2017-04-01

    ANTARES is currently the largest neutrino telescope operating in the Northern Hemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources. Neutrino telescopes constantly monitor at least one complete hemisphere of the sky, and are thus well-suited to detect neutrinos produced in transient astrophysical sources. A time-dependent search has been applied to a list of 33 X-ray binaries undergoing high flaring activities in satellite data (RXTE/ASM, MAXI and Swift/BAT) and during hardness transition states in the 2008-2012 period. The background originating from interactions of charged cosmic rays in the Earth's atmosphere is drastically reduced by requiring a directional and temporal coincidence with astrophysical phenomena. The results of this search are presented together with comparisons between the neutrino flux upper limits and the neutrino flux predictions from astrophysical models. The neutrino flux upper limits resulting from this search limit the jet parameter space for some astrophysical models.

  18. The Limitations of a Prospective Study of Memories for Child Sexual Abuse

    ERIC Educational Resources Information Center

    Cheit, Ross E.

    2003-01-01

    Prospective studies have been held out as a kind of Holy Grail in research about remembering or forgetting child sexual abuse. They seem to hold the perfect answer to the verification problems that plague retrospective self-reports in the clinical literature. Prospective studies begin with verified cases of abuse. Then they require detective work…

  19. 47 CFR 15.517 - Technical requirements for indoor UWB systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... detection of persons about to enter a building. (3) The use of outdoor mounted antennas, e.g., antennas... 1559-1610 −85.3 (e) There is a limit on the peak level of the emissions contained within a 50 MHz... EIRP. It is acceptable to employ a different resolution bandwidth, and a correspondingly different peak...

  20. 47 CFR 15.517 - Technical requirements for indoor UWB systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... detection of persons about to enter a building. (3) The use of outdoor mounted antennas, e.g., antennas... 1559-1610 −85.3 (e) There is a limit on the peak level of the emissions contained within a 50 MHz... EIRP. It is acceptable to employ a different resolution bandwidth, and a correspondingly different peak...

  1. 47 CFR 15.517 - Technical requirements for indoor UWB systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... detection of persons about to enter a building. (3) The use of outdoor mounted antennas, e.g., antennas... 1559-1610 −85.3 (e) There is a limit on the peak level of the emissions contained within a 50 MHz... EIRP. It is acceptable to employ a different resolution bandwidth, and a correspondingly different peak...

  2. 47 CFR 15.517 - Technical requirements for indoor UWB systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... detection of persons about to enter a building. (3) The use of outdoor mounted antennas, e.g., antennas... 1559-1610 −85.3 (e) There is a limit on the peak level of the emissions contained within a 50 MHz... EIRP. It is acceptable to employ a different resolution bandwidth, and a correspondingly different peak...

  3. 40 CFR 141.23 - Inorganic chemical sampling and analytical requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Inorganic Contaminants Contaminant MCL (mg/l) Methodology Detection limit (mg/l) Antimony 0.006 Atomic... January 23, 2006. Unit then, the MCL is 0.05 mg/L. 7 The MDL reported for EPA method 200.9 (Atomic... higher. Using multiple depositions, EPA 200.9 is capable of obtaining MDL of 0.0001 mg/L. 8 Using...

  4. Some Observations on Damage Tolerance Analyses in Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Dawicke, David S.; Hampton, Roy W.

    2017-01-01

    AIAA standards S080 and S081 are applicable for certification of metallic pressure vessels (PV) and composite overwrap pressure vessels (COPV), respectively. These standards require damage tolerance analyses with a minimum reliable detectible flaw/crack and demonstration of safe life four times the service life with these cracks at the worst-case location in the PVs and oriented perpendicular to the maximum principal tensile stress. The standards require consideration of semi-elliptical surface cracks in the range of aspect ratios (crack depth a to half of the surface length c, i.e., (a/c) of 0.2 to 1). NASA-STD-5009 provides the minimum reliably detectible standard crack sizes (90/95 probability of detection (POD) for several non-destructive evaluation (NDE) methods (eddy current (ET), penetrant (PT), radiography (RT) and ultrasonic (UT)) for the two limits of the aspect ratio range required by the AIAA standards. This paper tries to answer the questions: can the safe life analysis consider only the life for the crack sizes at the two required limits, or endpoints, of the (a/c) range for the NDE method used or does the analysis need to consider values within that range? What would be an appropriate method to interpolate 90/95 POD crack sizes at intermediate (a/c) values? Several procedures to develop combinations of a and c within the specified range are explored. A simple linear relationship between a and c is chosen to compare the effects of seven different approaches to determine combinations of aj and cj that are between the (a/c) endpoints. Two of the seven are selected for evaluation: Approach I, the simple linear relationship, and a more conservative option, Approach III. For each of these two Approaches, the lives are computed for initial semi-elliptic crack configurations in a plate subjected to remote tensile fatigue loading with an R-ratio of 0.1, for an assumed material evaluated using NASGRO (registered 4) version 8.1. These calculations demonstrate that for this loading, using Approach I and the initial detectable crack sizes at the (a/c) endpoints in 5009 specified for the ET and UT NDE methods, the smallest life is not at the two required limits of the (a/c) range, but rather is at an intermediate configuration in the range (a/c) of 0.4 to 0.6. Similar analyses using both Approach I and III with the initial detectable crack size at the (a/c) endpoints in 5009 for PT NDE showed the smallest life may be at an (a/c) endpoint or an intermediate (a/c), depending upon which Approach is used. As such, analyses that interrogate only the two (a/c) values of 0.2 and 1 may result in unconservative life predictions. The standard practice may need to be revised based on these results.

  5. Active Radiation Detectors for Use in Space Beyond Low Earth Orbit: Spatial and Energy Resolution Requirements and Methods for Heavy Ion Charge Classification

    NASA Astrophysics Data System (ADS)

    McBeth, Rafe A.

    Space radiation exposure to astronauts will need to be carefully monitored on future missions beyond low earth orbit. NASA has proposed an updated radiation risk framework that takes into account a significant amount of radiobiological and heavy ion track structure information. These models require active radiation detection systems to measure the energy and ion charge Z. However, current radiation detection systems cannot meet these demands. The aim of this study was to investigate several topics that will help next generation detection systems meet the NASA objectives. Specifically, this work investigates the required spatial resolution to avoid coincident events in a detector, the effects of energy straggling and conversion of dose from silicon to water, and methods for ion identification (Z) using machine learning. The main results of this dissertation are as follows: 1. Spatial resolution on the order of 0.1 cm is required for active space radiation detectors to have high confidence in identifying individual particles, i.e., to eliminate coincident events. 2. Energy resolution of a detector system will be limited by energy straggling effects and the conversion of dose in silicon to dose in biological tissue (water). 3. Machine learning methods show strong promise for identification of ion charge (Z) with simple detector designs.

  6. CO and CO2 dual-gas detection based on mid-infrared wideband absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Dong, Ming; Zhong, Guo-qiang; Miao, Shu-zhuo; Zheng, Chuan-tao; Wang, Yi-ding

    2018-03-01

    A dual-gas sensor system is developed for CO and CO2 detection using a single broadband light source, pyroelectric detectors and time-division multiplexing (TDM) technique. A stepper motor based rotating system and a single-reflection spherical optical mirror are designed and adopted for realizing and enhancing dual-gas detection. Detailed measurements under static detection mode (without rotation) and dynamic mode (with rotation) are performed to study the performance of the sensor system for the two gas samples. The detection period is 7.9 s in one round of detection by scanning the two detectors. Based on an Allan deviation analysis, the 1σ detection limits under static operation are 3.0 parts per million (ppm) in volume and 2.6 ppm for CO and CO2, respectively, and those under dynamic operation are 9.4 ppm and 10.8 ppm for CO and CO2, respectively. The reported sensor has potential applications in various fields requiring CO and CO2 detection such as in the coal mine.

  7. Edge-directed inference for microaneurysms detection in digital fundus images

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Yan, Michelle; Aviyente, Selin

    2007-03-01

    Microaneurysms (MAs) detection is a critical step in diabetic retinopathy screening, since MAs are the earliest visible warning of potential future problems. A variety of algorithms have been proposed for MAs detection in mass screening. Different methods have been proposed for MAs detection. The core technology for most of existing methods is based on a directional mathematical morphological operation called "Top-Hat" filter that requires multiple filtering operations at each pixel. Background structure, uneven illumination and noise often cause confusion between MAs and some non-MA structures and limits the applicability of the filter. In this paper, a novel detection framework based on edge directed inference is proposed for MAs detection. The candidate MA regions are first delineated from the edge map of a fundus image. Features measuring shape, brightness and contrast are extracted for each candidate MA region to better exclude false detection from true MAs. Algorithmic analysis and empirical evaluation reveal that the proposed edge directed inference outperforms the "Top-Hat" based algorithm in both detection accuracy and computational speed.

  8. Validation of the LacTek test applied to spiked extracts of tissue samples: determination of performance characteristics.

    PubMed

    Mitchell, J M; Yee, A J; McNab, W B; Griffiths, M W; McEwen, S A

    1999-01-01

    LacTek tests are competitive enzyme-linked immunosorbent assays intended for rapid detection of antimicrobial residues in bovine milk. In this study, the LacTek test protocol was modified for use with extracts of bovine tissue to detect beta-lactam, tetracycline, and sulfamethazine residues. Test performance characteristics--precision, accuracy, ruggedness, practicability, and analytical specificity and sensitivity--were investigated. Results suggest that LacTek tests can be easily adapted to detect antimicrobial residues in extracts of lean ground beef. However, positive samples may not contain residues at violative concentrations (i.e., Canadian maximum residue limits), and therefore, additional analysis would be required for final confirmation and quantitation (e.g., chromatography).

  9. Sensor Data Qualification System (SDQS) Implementation Study

    NASA Technical Reports Server (NTRS)

    Wong, Edmond; Melcher, Kevin; Fulton, Christopher; Maul, William

    2009-01-01

    The Sensor Data Qualification System (SDQS) is being developed to provide a sensor fault detection capability for NASA s next-generation launch vehicles. In addition to traditional data qualification techniques (such as limit checks, rate-of-change checks and hardware redundancy checks), SDQS can provide augmented capability through additional techniques that exploit analytical redundancy relationships to enable faster and more sensitive sensor fault detection. This paper documents the results of a study that was conducted to determine the best approach for implementing a SDQS network configuration that spans multiple subsystems, similar to those that may be implemented on future vehicles. The best approach is defined as one that most minimizes computational resource requirements without impacting the detection of sensor failures.

  10. Detection Angle Calibration of Pressure-Sensitive Paints

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    2000-01-01

    Uses of the pressure-sensitive paint (PSP) techniques in areas other than external aerodynamics continue to expand. The NASA Glenn Research Center has become a leader in the application of the global technique to non-conventional aeropropulsion applications including turbomachinery testing. The use of the global PSP technique in turbomachinery applications often requires detection of the luminescent paint in confined areas. With the limited viewing usually available, highly oblique illumination and detection angles are common in the confined areas in these applications. This paper will describe the results of pressure, viewing and excitation angle dependence calibrations using three popular PSP formulations to get a better understanding of the errors associated with these non-traditional views.

  11. UltraSensitive Mycotoxin Detection by STING Sensors

    PubMed Central

    Actis, Paolo; Jejelowo, Olufisayo; Pourmand, Nader

    2010-01-01

    Signal Transduction by Ion Nano Gating (STING) technology is a label-free biosensor capable of identifying DNA and proteins. Based on a functionalized quartz nanopipette, the STING sensor includes specific recognition elements for analyte discrimination based on size, shape and charge density. A key feature of this technology is that it doesn't require any nanofabrication facility; each nanopipette can be easily, reproducibly, and inexpensively fabricated and tailored at the bench, thus reducing the cost and the turnaround time. Here, we show that STING sensors are capable of the ultrasensitive detection of HT-2 toxin with a detection limit of 100 fg/ml and compare the STING capabilities with respect to conventional sandwich assay techniques. PMID:20829024

  12. Detection limits for nanoparticles in solution with classical turbidity spectra

    NASA Astrophysics Data System (ADS)

    Le Blevennec, G.

    2013-09-01

    Detection of nanoparticles in solution is required to manage safety and environmental problems. Spectral transmission turbidity method has now been known for a long time. It is derived from the Mie Theory and can be applied to any number of spheres, randomly distributed and separated by large distance compared to wavelength. Here, we describe a method for determination of size, distribution and concentration of nanoparticles in solution using UV-Vis transmission measurements. The method combines Mie and Beer Lambert computation integrated in a best fit approximation. In a first step, a validation of the approach is completed on silver nanoparticles solution. Verification of results is realized with Transmission Electronic Microscopy measurements for size distribution and an Inductively Coupled Plasma Mass Spectrometry for concentration. In view of the good agreement obtained, a second step of work focuses on how to manage the concentration to be the most accurate on the size distribution. Those efficient conditions are determined by simple computation. As we are dealing with nanoparticles, one of the key points is to know what the size limits reachable are with that kind of approach based on classical electromagnetism. In taking into account the transmission spectrometer accuracy limit we determine for several types of materials, metals, dielectrics, semiconductors the particle size limit detectable by such a turbidity method. These surprising results are situated at the quantum physics frontier.

  13. Integrated hollow microneedle-optofluidic biosensor for therapeutic drug monitoring in sub-nanoliter volumes

    NASA Astrophysics Data System (ADS)

    Ranamukhaarachchi, Sahan A.; Padeste, Celestino; Dübner, Matthias; Häfeli, Urs O.; Stoeber, Boris; Cadarso, Victor J.

    2016-07-01

    Therapeutic drug monitoring (TDM) typically requires painful blood drawn from patients. We propose a painless and minimally-invasive alternative for TDM using hollow microneedles suitable to extract extremely small volumes (<1 nL) of interstitial fluid to measure drug concentrations. The inner lumen of a microneedle is functionalized to be used as a micro-reactor during sample collection to trap and bind target drug candidates during extraction, without requirements of sample transfer. An optofluidic device is integrated with this microneedle to rapidly quantify drug analytes with high sensitivity using a straightforward absorbance scheme. Vancomycin is currently detected by using volumes ranging between 50-100 μL with a limit of detection (LoD) of 1.35 μM. The proposed microneedle-optofluidic biosensor can detect vancomycin with a sample volume of 0.6 nL and a LoD of <100 nM, validating this painless point of care system with significant potential to reduce healthcare costs and patients suffering.

  14. Detection of influenza antigenic variants directly from clinical samples using polyclonal antibody based proximity ligation assays

    PubMed Central

    Martin, Brigitte E.; Jia, Kun; Sun, Hailiang; Ye, Jianqiang; Hall, Crystal; Ware, Daphne; Wan, Xiu-Feng

    2016-01-01

    Identification of antigenic variants is the key to a successful influenza vaccination program. The empirical serological methods to determine influenza antigenic properties require viral propagation. Here a novel quantitative PCR-based antigenic characterization method using polyclonal antibody and proximity ligation assays, or so-called polyPLA, was developed and validated. This method can detect a viral titer that is less than 1000 TCID50/mL. Not only can this method differentiate between different HA subtypes of influenza viruses but also effectively identify antigenic drift events within the same HA subtype of influenza viruses. Applications in H3N2 seasonal influenza data showed that the results from this novel method are consistent with those from the conventional serological assays. This method is not limited to the detection of antigenic variants in influenza but also other pathogens. It has the potential to be applied through a large-scale platform in disease surveillance requiring minimal biosafety and directly using clinical samples. PMID:25546251

  15. A Novel Thermal Sensor for the Sensitive Measurement of Chemical Oxygen Demand

    PubMed Central

    Yao, Na; Liu, Zhuan; Chen, Ying; Zhou, Yikai; Xie, Bin

    2015-01-01

    A novel rapid methodology for determining the chemical oxygen demand (COD) based on a thermal sensor with a flow injection analysis system was proposed and experimentally validated. The ability of this sensor to detect and monitor COD was based on the degree of enthalpy increase when sodium hypochlorite reacted with the organic content in water samples. The measurement results were correlated with COD and were compared against the conventional method using potassium dichromate. The assay required only 5–7 min rather than the 2 h required for evaluation by potassium dichromate. The linear range was 5–1000 mg/L COD, and the limit of detection was very low, 0.74 mg/L COD. Moreover, this method exhibited high tolerance to chloride ions; 0.015 mol/L chloride ions had no influence on the response. Finally, the sensor was used to detect the COD of different water samples; the results were verified by the standard dichromate method. PMID:26295397

  16. Advancing Peptide-Based Biorecognition Elements for Biosensors Using in-Silico Evolution.

    PubMed

    Xiao, Xingqing; Kuang, Zhifeng; Slocik, Joseph M; Tadepalli, Sirimuvva; Brothers, Michael; Kim, Steve; Mirau, Peter A; Butkus, Claire; Farmer, Barry L; Singamaneni, Srikanth; Hall, Carol K; Naik, Rajesh R

    2018-05-25

    Sensors for human health and performance monitoring require biological recognition elements (BREs) at device interfaces for the detection of key molecular biomarkers that are measurable biological state indicators. BREs, including peptides, antibodies, and nucleic acids, bind to biomarkers in the vicinity of the sensor surface to create a signal proportional to the biomarker concentration. The discovery of BREs with the required sensitivity and selectivity to bind biomarkers at low concentrations remains a fundamental challenge. In this study, we describe an in-silico approach to evolve higher sensitivity peptide-based BREs for the detection of cardiac event marker protein troponin I (cTnI) from a previously identified BRE as the parental affinity peptide. The P2 affinity peptide, evolved using our in-silico method, was found to have ∼16-fold higher affinity compared to the parent BRE and ∼10 fM (0.23 pg/mL) limit of detection. The approach described here can be applied towards designing BREs for other biomarkers for human health monitoring.

  17. Integrated hollow microneedle-optofluidic biosensor for therapeutic drug monitoring in sub-nanoliter volumes

    PubMed Central

    Ranamukhaarachchi, Sahan A.; Padeste, Celestino; Dübner, Matthias; Häfeli, Urs O.; Stoeber, Boris; Cadarso, Victor J.

    2016-01-01

    Therapeutic drug monitoring (TDM) typically requires painful blood drawn from patients. We propose a painless and minimally-invasive alternative for TDM using hollow microneedles suitable to extract extremely small volumes (<1 nL) of interstitial fluid to measure drug concentrations. The inner lumen of a microneedle is functionalized to be used as a micro-reactor during sample collection to trap and bind target drug candidates during extraction, without requirements of sample transfer. An optofluidic device is integrated with this microneedle to rapidly quantify drug analytes with high sensitivity using a straightforward absorbance scheme. Vancomycin is currently detected by using volumes ranging between 50–100 μL with a limit of detection (LoD) of 1.35 μM. The proposed microneedle-optofluidic biosensor can detect vancomycin with a sample volume of 0.6 nL and a LoD of <100 nM, validating this painless point of care system with significant potential to reduce healthcare costs and patients suffering. PMID:27380889

  18. Ultrafast detection in particle physics and positron emission tomography using SiPMs

    NASA Astrophysics Data System (ADS)

    Dolenec, R.; Korpar, S.; Križan, P.; Pestotnik, R.

    2017-12-01

    Silicon photomultiplier (SiPM) photodetectors perform well in many particle and medical physics applications, especially where good efficiency, insensitivity to magnetic field and precise timing are required. In Cherenkov time-of-flight positron emission tomography the requirements for photodetector performance are especially high. On average only a couple of photons are available for detection and the best possible timing resolution is needed. Using SiPMs as photodetectors enables good detection efficiency, but the large sensitive area devices needed have somewhat limited time resolution for single photons. We have observed an additional degradation of the timing at very low light intensities due to delayed events in distribution of signals resulting from multiple fired micro cells. In this work we present the timing properties of AdvanSiD ASD-NUV3S-P-40 SiPM at single photon level picosecond laser illumination and a simple modification of the time-walk correction algorithm, that resulted in reduced degradation of timing resolution due to the delayed events.

  19. Determination of failure limits for sterilizable solid rocket motor

    NASA Technical Reports Server (NTRS)

    Lambert, W. L.; Mastrolia, E. J.; Mcconnell, J. D.

    1974-01-01

    A structural evaluation to establish probable failure limits and a series of environmental tests involving temperature cycling, sustained acceleration, and vibration were conducted on an 18-inch diameter solid rocket motor. Despite the fact that thermal, acceleration and vibration loads representing a severe overtest of conventional environmental requirements were imposed on the sterilizable motor, no structural failure of the grain or flexible support system was detected. The following significant conclusions are considered justified. It is concluded that: (1) the flexible grain retention system, which permitted heat sterilization at 275 F on the test motor, can readily be adopted to meet the environmental requirements of an operational motor design, and (2) if further substantiation of structural integrity is desired, the motor used is considered acceptable for static firing.

  20. A Deep Herschel/PACS Observation of CO(40-39) in NGC 1068: A Search for the Molecular Torus

    NASA Astrophysics Data System (ADS)

    Janssen, A. W.; Bruderer, S.; Sturm, E.; Contursi, A.; Davies, R.; Hailey-Dunsheath, S.; Poglitsch, A.; Genzel, R.; Graciá-Carpio, J.; Lutz, D.; Tacconi, L.; Fischer, J.; González-Alfonso, E.; Sternberg, A.; Veilleux, S.; Verma, A.; Burtscher, L.

    2015-10-01

    Emission from high-J CO lines in galaxies has long been proposed as a tracer of X-ray dominated regions (XDRs) produced by active galactic nuclei (AGNs). Of particular interest is the question of whether the obscuring torus, which is required by AGN unification models, can be observed via high-J CO cooling lines. Here we report on the analysis of a deep Herschel/PACS observation of an extremely high-J CO transition (40-39) in the Seyfert 2 galaxy NGC 1068. The line was not detected, with a derived 3σ upper limit of 2× {10}-17 {{W}} {{{m}}}-2. We apply an XDR model in order to investigate whether the upper limit constrains the properties of a molecular torus in NGC 1068. The XDR model predicts the CO spectral line energy distributions for various gas densities and illuminating X-ray fluxes. In our model, the CO(40-39) upper limit is matched by gas with densities of ˜ {10}6-{10}7 {{cm}}-3, located at 1.6-5 pc from the AGN, with column densities of at least {10}25 {{cm}}-2. At such high column densities, however, dust absorbs most of the CO(40-39) line emission at λ =65.69 μ {{m}}. Therefore, even if NGC 1068 has a molecular torus that radiates in the CO(40-39) line, the dust can attenuate the line emission to below the PACS detection limit. The upper limit is thus consistent with the existence of a molecular torus in NGC 1068. In general, we expect that the CO(40-39) is observable in only a few AGN nuclei (if at all), because of the required high gas column density, and absorption by dust.

  1. New approaches to photothermal spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amer, N.M.

    1984-02-01

    In recent years, the small rise in temperature associated with the absorption of light has provided the basis for a new class of spectrotroscopy which can be loosely called photothermal spectroscopy. Until recently, the more familiar member of this family has been photoacoustic spectroscopy where the optical heating is converted into sound and is detected with a suitable transducer. Although this approach has proven to be useful, the ultimate sensitivity of photoacoustics can be limited by the scattering of light on the transducer. Furthermore, in the case of experiments requiring a wide range of temperatures and pressures, or involving hostilemore » environment, both microphone and piezoelectric photoacoustic detections cannot be employed. To overcome these limitations the optical heating has to be exploited in different ways. The principles of photothermal deflection spectroscopy and photothermal displacement spectroscopy are described.« less

  2. A novel assay method for the trace determination of Th and U in copper and lead using inductively coupled plasma mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFerriere, Brian D.; Maiti, Tapas C.; Arnquist, Isaac J.

    2015-03-01

    This study describes a novel sample preparation and assay method developed in support of the MAJORANA DEMONSTRATOR experiment for the determination of thorium and uranium levels in copper and lead shielding components. Meticulously clean sample preparation methods combined with novel anion exchange separations for analyte pre-concentration and matrix removal were developed. Quantification was performed by inductively coupled plasma mass spectrometry. Detection limits of 0.0084 pg 232Th/g and 0.0106 pg 238U/g were determined for copper, while detection limits of 0.23 pg 232Th/g and 0.46 pg 238U/g were achieved for lead. These methods allow the Majorana Collaboration to accurately assay detector componentsmore » and ensure that the experiment’s stringent radiopurity requirements are met.« less

  3. MO detector (MOD): a dual-function optical modulator-detector for on-chip communication

    NASA Astrophysics Data System (ADS)

    Sun, Shuai; Zhang, Ruoyu; Peng, Jiaxin; Narayana, Vikram K.; Dalir, Hamed; El-Ghazawi, Tarek; Sorger, Volker J.

    2018-04-01

    Physical challenges at the device and interconnect level limit both network and computing energy efficiency. While photonics is being considered to address interconnect bottlenecks, optical routing is still limited by electronic circuitry, requiring substantial overhead for optical-electrical-optical conversion. Here we show a novel design of an integrated broadband photonic-plasmonic hybrid device termed MODetector featuring dual light modulation and detection function to act as an optical transceiver in the photonic network-on-chip. With over 10 dB extinction ratio and 0.8 dB insertion loss at the modulation state, this MODetector provides 0.7 W/A responsivity in the detection state with 36 ps response time. This multi-functional device: (i) eliminates OEO conversion, (ii) reduces optical losses from photodetectors when not needed, and (iii) enables cognitive routing strategies for network-on-chips.

  4. Performance of a Borehole X-ray Fluorescence Spectrometer for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Carlberg, Ingrid A.; Elam, W. T.; Willard-Schmoe, Ella

    2008-01-01

    We have designed and constructed a borehole X-ray Fluorescence Spectrometer (XRFS) as part of the Mars Subsurface Access program [1]. It can be used to determine the composition of the Mars regolith at various depths by insertion into a pre-drilled borehole. The primary requirements and performance metrics for the instrument are to obtain parts-per-million (ppm) lower limits of detection over a wide range of elements in the periodic table (Magnesium to Lead). Power consumption during data collection was also measured. The prototype instrument is complete and preliminary testing has been performed. Terrestrial soil Standard Reference Materials were used as the test samples. Detection limits were about 10 weight ppm for most elements, with light elements being higher, up to 1.4 weight percent for magnesium. Power consumption (excluding ground support components) was 12 watts.

  5. Alarm characterization for a continuous glucose monitor that replaces traditional blood glucose monitoring.

    PubMed

    McGarraugh, Geoffrey

    2010-01-01

    Continuous glucose monitoring (CGM) devices available in the United States are approved for use as adjuncts to self-monitoring of blood glucose (SMBG); all CGM alarms require SMBG confirmation before treatment. In this report, an analysis method is proposed to determine the CGM threshold alarm accuracy required to eliminate SMBG confirmation. The proposed method builds on the Clinical and Laboratory Standards Institute (CLSI) guideline for evaluating CGM threshold alarms using data from an in-clinic study of subjects with type 1 diabetes. The CLSI method proposes a maximum time limit of +/-30 minutes for the detection of hypo- and hyperglycemic events but does not include limits for glucose measurement accuracy. The International Standards Organization (ISO) standard for SMBG glucose measurement accuracy (ISO 15197) is +/-15 mg/dl for glucose <75 mg/dl and +/-20% for glucose > or = 75 mg/dl. This standard was combined with the CLSI method to more completely characterize the accuracy of CGM alarms. Incorporating the ISO 15197 accuracy margins, FreeStyle Navigator CGM system alarms detected 70 mg/dl hypoglycemia within 30 minutes at a rate of 70.3%, with a false alarm rate of 11.4%. The device detected high glucose in the range of 140-300 mg/dl within 30 minutes at an average rate of 99.2%, with a false alarm rate of 2.1%. Self-monitoring of blood glucose confirmation is necessary for detecting and treating hypoglycemia with the FreeStyle Navigator CGM system, but at high glucose levels, SMBG confirmation adds little incremental value to CGM alarms. 2010 Diabetes Technology Society.

  6. Digital Microarrays: Single-Molecule Readout with Interferometric Detection of Plasmonic Nanorod Labels.

    PubMed

    Sevenler, Derin; Daaboul, George G; Ekiz Kanik, Fulya; Ünlü, Neşe Lortlar; Ünlü, M Selim

    2018-05-21

    DNA and protein microarrays are a high-throughput technology that allow the simultaneous quantification of tens of thousands of different biomolecular species. The mediocre sensitivity and limited dynamic range of traditional fluorescence microarrays compared to other detection techniques have been the technology's Achilles' heel and prevented their adoption for many biomedical and clinical diagnostic applications. Previous work to enhance the sensitivity of microarray readout to the single-molecule ("digital") regime have either required signal amplifying chemistry or sacrificed throughput, nixing the platform's primary advantages. Here, we report the development of a digital microarray which extends both the sensitivity and dynamic range of microarrays by about 3 orders of magnitude. This technique uses functionalized gold nanorods as single-molecule labels and an interferometric scanner which can rapidly enumerate individual nanorods by imaging them with a 10× objective lens. This approach does not require any chemical signal enhancement such as silver deposition and scans arrays with a throughput similar to commercial fluorescence scanners. By combining single-nanoparticle enumeration and ensemble measurements of spots when the particles are very dense, this system achieves a dynamic range of about 6 orders of magnitude directly from a single scan. As a proof-of-concept digital protein microarray assay, we demonstrated detection of hepatitis B virus surface antigen in buffer with a limit of detection of 3.2 pg/mL. More broadly, the technique's simplicity and high-throughput nature make digital microarrays a flexible platform technology with a wide range of potential applications in biomedical research and clinical diagnostics.

  7. Neural networks improve brain cancer detection with Raman spectroscopy in the presence of operating room light artifacts

    NASA Astrophysics Data System (ADS)

    Jermyn, Michael; Desroches, Joannie; Mercier, Jeanne; Tremblay, Marie-Andrée; St-Arnaud, Karl; Guiot, Marie-Christine; Petrecca, Kevin; Leblond, Frederic

    2016-09-01

    Invasive brain cancer cells cannot be visualized during surgery and so they are often not removed. These residual cancer cells give rise to recurrences. In vivo Raman spectroscopy can detect these invasive cancer cells in patients with grade 2 to 4 gliomas. The robustness of this Raman signal can be dampened by spectral artifacts generated by lights in the operating room. We found that artificial neural networks (ANNs) can overcome these spectral artifacts using nonparametric and adaptive models to detect complex nonlinear spectral characteristics. Coupling ANN with Raman spectroscopy simplifies the intraoperative use of Raman spectroscopy by limiting changes required to the standard neurosurgical workflow. The ability to detect invasive brain cancer under these conditions may reduce residual cancer remaining after surgery and improve patient survival.

  8. Event-specific real-time detection and quantification of genetically modified Roundup Ready soybean.

    PubMed

    Huang, Chia-Chia; Pan, Tzu-Ming

    2005-05-18

    The event-specific real-time detection and quantification of Roundup Ready soybean (RRS) using an ABI PRISM 7700 sequence detection system with light upon extension (LUX) primer was developed in this study. The event-specific primers were designed, targeting the junction of the RRS 5' integration site and the endogenous gene lectin1. Then, a standard reference plasmid was constructed that carried both of the targeted sequences for quantitative analysis. The detection limit of the LUX real-time PCR system was 0.05 ng of 100% RRS genomic DNA, which was equal to 20.5 copies. The range of quantification was from 0.1 to 100%. The sensitivity and range of quantification successfully met the requirement of the labeling rules in the European Union and Taiwan.

  9. Evaluation of sensitivity of TaqMan RT-PCR for rubella virus detection in clinical specimens.

    PubMed

    Okamoto, Kiyoko; Mori, Yoshio; Komagome, Rika; Nagano, Hideki; Miyoshi, Masahiro; Okano, Motohiko; Aoki, Yoko; Ogura, Atsushi; Hotta, Chiemi; Ogawa, Tomoko; Saikusa, Miwako; Kodama, Hiroe; Yasui, Yoshihiro; Minagawa, Hiroko; Kurata, Takako; Kanbayashi, Daiki; Kase, Tetsuo; Murata, Sachiko; Shirabe, Komei; Hamasaki, Mitsuhiro; Kato, Takashi; Otsuki, Noriyuki; Sakata, Masafumi; Komase, Katsuhiro; Takeda, Makoto

    2016-07-01

    An easy and reliable assay for detection of the rubella virus is required to strengthen rubella surveillance. Although a TaqMan RT-PCR assay for detection of the rubella virus has been established in Japan, its utility for diagnostic purposes has not been tested. To allow introduction of the TaqMan RT-PCR into the rubella surveillance system in Japan, the sensitivity of the assay was determined using representative strains for all genotypes and clinical specimens. The detection limits of the method for individual genotypes were examined using viral RNA extracted from 13 representative strains. The assay was also tested at 10 prefectural laboratories in Japan, designated as local reference laboratories for measles and rubella, to allow nationwide application of the assay. The detection limits and amplification efficiencies of the assay were similar among all the representative strains of the 13 genotypes. The TaqMan RT-PCR could detect approximately 90% of throat swab and urine samples taken up to 5days of illness. These samples were determined positive by a highly sensitive nested RT-PCR. The TaqMan RT-PCR could detect at least 10 pfu of rubella virus. Although the sensitivity was somewhat lower than that of the conventional nested RT-PCR, the TaqMan RT-PCR could be more practical to routine tests for rubella laboratory diagnosis and detection in view of the rapid response and reducing risks of contamination. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Quantifying environmental limiting factors on tree cover using geospatial data.

    PubMed

    Greenberg, Jonathan A; Santos, Maria J; Dobrowski, Solomon Z; Vanderbilt, Vern C; Ustin, Susan L

    2015-01-01

    Environmental limiting factors (ELFs) are the thresholds that determine the maximum or minimum biological response for a given suite of environmental conditions. We asked the following questions: 1) Can we detect ELFs on percent tree cover across the eastern slopes of the Lake Tahoe Basin, NV? 2) How are the ELFs distributed spatially? 3) To what extent are unmeasured environmental factors limiting tree cover? ELFs are difficult to quantify as they require significant sample sizes. We addressed this by using geospatial data over a relatively large spatial extent, where the wall-to-wall sampling ensures the inclusion of rare data points which define the minimum or maximum response to environmental factors. We tested mean temperature, minimum temperature, potential evapotranspiration (PET) and PET minus precipitation (PET-P) as potential limiting factors on percent tree cover. We found that the study area showed system-wide limitations on tree cover, and each of the factors showed evidence of being limiting on tree cover. However, only 1.2% of the total area appeared to be limited by the four (4) environmental factors, suggesting other unmeasured factors are limiting much of the tree cover in the study area. Where sites were near their theoretical maximum, non-forest sites (tree cover < 25%) were primarily limited by cold mean temperatures, open-canopy forest sites (tree cover between 25% and 60%) were primarily limited by evaporative demand, and closed-canopy forests were not limited by any particular environmental factor. The detection of ELFs is necessary in order to fully understand the width of limitations that species experience within their geographic range.

  11. Direct injection GC method for measuring light hydrocarbon emissions from cooling-tower water.

    PubMed

    Lee, Max M; Logan, Tim D; Sun, Kefu; Hurley, N Spencer; Swatloski, Robert A; Gluck, Steve J

    2003-12-15

    A Direct Injection GC method for quantifying low levels of light hydrocarbons (C6 and below) in cooling water has been developed. It is intended to overcome the limitations of the currently available technology. The principle of this method is to use a stripper column in a GC to strip waterfrom the hydrocarbons prior to entering the separation column. No sample preparation is required since the water sample is introduced directly into the GC. Method validation indicates that the Direct Injection GC method offers approximately 15 min analysis time with excellent precision and recovery. The calibration studies with ethylene and propylene show that both liquid and gas standards are suitable for routine calibration and calibration verification. The sampling method using zero headspace traditional VOA (Volatile Organic Analysis) vials and a sample chiller has also been validated. It is apparent that the sampling method is sufficient to minimize the potential for losses of light hydrocarbons, and samples can be held at 4 degrees C for up to 7 days with more than 93% recovery. The Direct Injection GC method also offers <1 ppb (w/v) level method detection limits for ethylene, propylene, and benzene. It is superior to the existing El Paso stripper method. In addition to lower detection limits for ethylene and propylene, the Direct Injection GC method quantifies individual light hydrocarbons in cooling water, provides better recoveries, and requires less maintenance and setup costs. Since the instrumentation and supplies are readily available, this technique could easily be established as a standard or alternative method for routine emission monitoring and leak detection of light hydrocarbons in cooling-tower water.

  12. Leapfrog diagnostics: Demonstration of a broad spectrum pathogen identification platform in a resource-limited setting

    PubMed Central

    2012-01-01

    Background Resource-limited tropical countries are home to numerous infectious pathogens of both human and zoonotic origin. A capability for early detection to allow rapid outbreak containment and prevent spread to non-endemic regions is severely impaired by inadequate diagnostic laboratory capacity, the absence of a “cold chain” and the lack of highly trained personnel. Building up detection capacity in these countries by direct replication of the systems existing in developed countries is not a feasible approach and instead requires “leapfrogging” to the deployment of the newest diagnostic systems that do not have the infrastructure requirements of systems used in developed countries. Methods A laboratory for molecular diagnostics of infectious agents was established in Bo, Sierra Leone with a hybrid solar/diesel/battery system to ensure stable power supply and a satellite modem to enable efficient communication. An array of room temperature stabilization and refrigeration technologies for reliable transport and storage of reagents and biological samples were also tested to ensure sustainable laboratory supplies for diagnostic assays. Results The laboratory demonstrated its operational proficiency by conducting an investigation of a suspected avian influenza outbreak at a commercial poultry farm at Bo using broad range resequencing microarrays and real time RT-PCR. The results of the investigation excluded influenza viruses as a possible cause of the outbreak and indicated a link between the outbreak and the presence of Klebsiella pneumoniae. Conclusions This study demonstrated that by application of a carefully selected set of technologies and sufficient personnel training, it is feasible to deploy and effectively use a broad-range infectious pathogen detection technology in a severely resource-limited setting. PMID:22759725

  13. Highly Sensitive Immunoassay Based on Controlled Rehydration of Patterned Reagents in a 2-Dimensional Paper Network

    PubMed Central

    2015-01-01

    We have demonstrated a multistep 2-dimensional paper network immunoassay based on controlled rehydration of patterned, dried reagents. Previous work has shown that signal enhancement improves the limit of detection in 2-dimensional paper network assays, but until now, reagents have only been included as wet or dried in separate conjugate pads placed at the upstream end of the assay device. Wet reagents are not ideal for point-of-care because they must be refrigerated and typically limit automation and require more user steps. Conjugate pads allow drying but do not offer any control of the reagent distribution upon rehydration and can be a source of error when pads do not contact the assay membrane uniformly. Furthermore, each reagent is dried on a separate pad, increasing the fabrication complexity when implementing multistep assays that require several different reagents. Conversely, our novel method allows for consistent, controlled rehydration from patterned reagent storage depots directly within the paper membrane. In this assay demonstration, four separate reagents were patterned in different regions of the assay device: a gold-antibody conjugate used for antigen detection and three different signal enhancement components that must not be mixed until immediately before use. To show the viability of patterning and drying reagents directly onto a paper device for dry reagent storage and subsequent controlled release, we tested this device with the malaria antigen Plasmodium falciparum histidine-rich protein 2 (PfHRP2) as an example of target analyte. In this demonstration, the signal enhancement step increases the visible signal by roughly 3-fold and decreases the analytical limit of detection by 2.75-fold. PMID:24882058

  14. Plant genotyping using fluorescently tagged inter-simple sequence repeats (ISSRs): basic principles and methodology.

    PubMed

    Prince, Linda M

    2015-01-01

    Inter-simple sequence repeat PCR (ISSR-PCR) is a fast, inexpensive genotyping technique based on length variation in the regions between microsatellites. The method requires no species-specific prior knowledge of microsatellite location or composition. Very small amounts of DNA are required, making this method ideal for organisms of conservation concern, or where the quantity of DNA is extremely limited due to organism size. ISSR-PCR can be highly reproducible but requires careful attention to detail. Optimization of DNA extraction, fragment amplification, and normalization of fragment peak heights during fluorescent detection are critical steps to minimizing the downstream time spent verifying and scoring the data.

  15. Microbial Habitability in Gale Crater: Sample Analysis at Mars (SAM) Instrument Detection of Microbial Essential Carbon and Nitrogen

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Ming, D. W.; Eigenbrode, J. E.; Steele, A.; Stern, J. C.; Gonzalez, R. N.; McAdam, A. C.; Mahaffy, P. R.

    2016-01-01

    Chemical analyses of Mars soils and sediments from previous landed missions have demonstrated that Mars surface materials possessed major (e.g., P, K, Ca, Mg, S) and minor (e.g., Fe, Mn, Zn, Ni, Cl) elements essential to support microbial life. However, the detection of microbial essential organic-carbon (C) and nitrate have been more elusive until the Mars Science Laboratory (MSL) rover mission. Nitrate and organic-C in Gale Crater, Mars have been detected by the Sample Analysis at Mars (SAM) instrument onboard the MSL Curiosity rover. Eolian fines and drilled sedimentary rock samples were heated in the SAM oven from approximately 30 to 860 degrees Centigrade where evolved gases (e.g., nitrous oxide (NO) and CO2) were released and analyzed by SAM’s quadrupole mass spectrometer (MS). The temperatures of evolved NO was assigned to nitrate while evolved CO2 was assigned to organic-C and carbonate. The CO2 releases in several samples occurred below 450 degrees Centigrade suggesting organic-C dominated in those samples. As much as 7 micromoles NO3-N per gram and 200 micromoles CO2-C per gram have been detected in the Gale Crater materials. These N and C levels coupled with assumed microbial biomass (9 x 10 (sup -7) micrograms per cell) C (0.5 micrograms C per micrograms cell) and N (0.14 micrograms N per micrograms cell) requirements, suggests that less than 1 percent and less than 10 percent of Gale Crater C and N, respectively, would be required if available, to accommodate biomass requirements of 1 by 10 (sup 5) cells per gram sediment. While nitrogen is the limiting nutrient, the potential exists that sufficient N and organic-C were present to support limited heterotrophic microbial populations that may have existed on ancient Mars.

  16. Limited angle tomographic breast imaging: A comparison of parallel beam and pinhole collimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wessell, D.E.; Kadrmas, D.J.; Frey, E.C.

    1996-12-31

    Results from clinical trials have suggested no improvement in lesion detection with parallel hole SPECT scintimammography (SM) with Tc-99m over parallel hole planar SM. In this initial investigation, we have elucidated some of the unique requirements of SPECT SM. With these requirements in mind, we have begun to develop practical data acquisition and reconstruction strategies that can reduce image artifacts and improve image quality. In this paper we investigate limited angle orbits for both parallel hole and pinhole SPECT SM. Singular Value Decomposition (SVD) is used to analyze the artifacts associated with the limited angle orbits. Maximum likelihood expectation maximizationmore » (MLEM) reconstructions are then used to examine the effects of attenuation compensation on the quality of the reconstructed image. All simulations are performed using the 3D-MCAT breast phantom. The results of these simulation studies demonstrate that limited angle SPECT SM is feasible, that attenuation correction is needed for accurate reconstructions, and that pinhole SPECT SM may have an advantage over parallel hole SPECT SM in terms of improved image quality and reduced image artifacts.« less

  17. Systematic Evaluation of In Vitro and In Vivo Adventitious Virus Assays for the Detection of Viral Contamination of Cell Banks and Biological Products1

    PubMed Central

    Gombold, James; Karakasidis, Stephen; Niksa, Paula; Podczasy, John; Neumann, Kitti; Richardson, James; Sane, Nandini; Johnson-Leva, Renita; Randolph, Valerie; Sadoff, Jerald; Minor, Phillip; Schmidt, Alexander; Duncan, Paul; Sheets, Rebecca L.

    2015-01-01

    Viral vaccines and the cell substrates used to manufacture them are subjected to tests for adventitious agents, including viruses, which might contaminant them. Some of the compendial methods (in vivo and in vitro in cell culture) were established in the mid-20th century. These methods have not been subjected to current assay validation, as new methods would need to be. This study was undertaken to provide insight into the breadth (selectivity) and sensitivity (limit of detection) of the routine methods, two such validation parameters. Sixteen viral stocks were prepared and characterized. These stocks were tested in serial dilutions by the routine methods to establish which viruses were detected by which methods and above what limit of detection. Sixteen out of sixteen viruses were detected in vitro, though one (bovine viral diarrhea virus) required special conditions to detect and another (rubella virus) was detected with low sensitivity. Many were detected at levels below 1 TCID50 or PFU (titers were established on the production cell line in most cases). In contrast, in vivo, only 6/11 viruses were detected, and 4 of these were detected only at amounts one or more logs above 1 TCID50 or PFU. Only influenza virus and vesicular stomatitis virus were detected at lower amounts in vivo than in vitro. Given the call to reduce, refine, or replace (3 R's) the use of animals in product safety testing and the emergence of new technologies for the detection of viruses, a re-examination of the current adventitious virus testing strategies seems warranted. Suggested pathways forward are offered. PMID:24681273

  18. Multiplexed detection of anthrax-related toxin genes.

    PubMed

    Moser, Michael J; Christensen, Deanna R; Norwood, David; Prudent, James R

    2006-02-01

    Simultaneous analysis of three targets in three colors on any real-time polymerase chain reaction (PCR) instrument would increase the flexibility of real-time PCR. For the detection of Bacillus strains that can cause inhalation anthrax-related illness, this ability would be valuable because two plasmids confer virulence, and internal positive controls are needed to monitor the testing in cases lacking target-specific signals. Using a real-time PCR platform called MultiCode-RTx, multiple assays were developed that specifically monitor the presence of Bacillus anthracis-specific virulence plasmid-associated genes. In particular for use on LightCycler-1, two triplex RTx systems demonstrated high sensitivity with limits of detection nearing single-copy levels for both plasmids. Specificity was established using a combination of Ct values and correct amplicon melting temperatures. All reactions were further verified by detection of an internal positive control. For these two triplex RTx assays, the analytical detection limit was one to nine plasmid copy equivalents, 100% analytical specificity with a 95% confidence interval (CI) of 9%, and 100% analytical sensitivity with a CI of 2%. Although further testing using clinical or environmental samples will be required to assess diagnostic sensitivity and specificity, the RTx platform achieves similar results to those of probe-based real-time systems.

  19. Novel approach based on one-tube nested PCR and a lateral flow strip for highly sensitive diagnosis of tuberculous meningitis.

    PubMed

    Sun, Yajuan; Chen, Jiajun; Li, Jia; Xu, Yawei; Jin, Hui; Xu, Na; Yin, Rui; Hu, Guohua

    2017-01-01

    Rapid and sensitive detection of Mycobacterium tuberculosis (M. Tb) in cerebrospinal fluid is crucial in the diagnosis of tuberculous meningitis (TBM), but conventional diagnostic technologies have limited sensitivity and specificity or are time-consuming. In this work, a novel, highly sensitive molecular diagnostic method, one-tube nested PCR-lateral flow strip test (OTNPCR-LFST), was developed for detecting M. tuberculosis. This one-tube nested PCR maintains the sensitivity of conventional two-step nested PCR and reduces both the chance of cross-contamination and the time required for analysis. The PCR product was detected by a lateral flow strip assay, which provided a basis for migration of the test to a point-of-care (POC) microfluidic format. The developed assay had an improved sensitivity compared with traditional PCR, and the limit of detection was up to 1 fg DNA isolated from M. tuberculosis. The assay was also specific for M. tuberculosis, and no cross-reactions were found in other non-target bacteria. The application of this technique to clinical samples was successfully evaluated, and OTNPCR-LFST showed 89% overall sensitivity and 100% specificity for TBM patients. This one-tube nested PCR-lateral flow strip assay is useful for detecting M. tuberculosis in TBM due to its rapidity, high sensitivity and simple manipulation.

  20. Validation of a near infrared microscopy method for the detection of animal products in feedingstuffs: results of a collaborative study.

    PubMed

    Boix, A; Fernández Pierna, J A; von Holst, C; Baeten, V

    2012-01-01

    The performance characteristics of a near infrared microscopy (NIRM) method, when applied to the detection of animal products in feedingstuffs, were determined via a collaborative study. The method delivers qualitative results in terms of the presence or absence of animal particles in feed and differentiates animal from vegetable feed ingredients on the basis of the evaluation of near infrared spectra obtained from individual particles present in the sample. The specificity ranged from 86% to 100%. The limit of detection obtained on the analysis of the sediment fraction, prepared as for the European official method, was 0.1% processed animal proteins (PAPs) in feed, since all laboratories correctly identified the positive samples. This limit has to be increased up to 2% for the analysis of samples which are not sedimented. The required sensitivity for the official control is therefore achieved in the analysis of the sediment fraction of the samples where the method can be applied for the detection of the presence of animal meal. Criteria for the classification of samples, when fewer than five spectra are found, as being of animal origin needs to be set up in order to harmonise the approach taken by the laboratories when applying NIRM for the detection of the presence of animal meal in feed.

  1. Shoulder Strength Requirements for Upper Limb Functional Tasks: Do Age and Rotator Cuff Tear Status Matter?

    PubMed

    Santago, Anthony C; Vidt, Meghan E; Li, Xiaotong; Tuohy, Christopher J; Poehling, Gary G; Freehill, Michael T; Saul, Katherine R

    2017-12-01

    Understanding upper limb strength requirements for daily tasks is imperative for early detection of strength loss that may progress to disability due to age or rotator cuff tear. We quantified shoulder strength requirements for 5 upper limb tasks performed by 3 groups: uninjured young adults and older adults, and older adults with a degenerative supraspinatus tear prior to repair. Musculoskeletal models were developed for each group representing age, sex, and tear-related strength losses. Percentage of available strength used was quantified for the subset of tasks requiring the largest amount of shoulder strength. Significant differences in strength requirements existed across tasks: upward reach 105° required the largest average strength; axilla wash required the largest peak strength. However, there were limited differences across participant groups. Older adults with and without a tear used a larger percentage of their shoulder elevation (p < .001, p < .001) and external rotation (p < .001, p = .017) strength than the young adults, respectively. Presence of a tear significantly increased percentage of internal rotation strength compared to young (p < .001) and uninjured older adults (p = .008). Marked differences in strength demand across tasks indicate the need for evaluating a diversity of functional tasks to effectively detect early strength loss, which may lead to disability.

  2. Limits of Spatial Attention in Three-Dimensional Space and Dual-task Driving Performance

    PubMed Central

    Andersen, George J.; Ni, Rui; Bian, Zheng; Kang, Julie

    2010-01-01

    The present study examined the limits of spatial attention while performing two driving relevant tasks that varied in depth. The first task was to maintain a fixed headway distance behind a lead vehicle that varied speed. The second task was to detect a light-change target in an array of lights located above the roadway. In Experiment 1 the light detection task required drivers to encode color and location. The results indicated that reaction time to detect a light-change target increased and accuracy decreased as a function of the horizontal location of the light-change target and as a function of the distance from the driver. In a second experiment the light change task was changed to a singleton search (detect the onset of a yellow light) and the workload of the car following task was systematically varied. The results of Experiment 2 indicated that RT increased as a function of task workload, the 2D position of the light-change target and the distance of the light-change target. A multiple regression analysis indicated that the effect of distance on light detection performance was not due to changes in the projected size of the light target. In Experiment 3 we found that the distance effect in detecting a light change could not be explained by the location of eye fixations. The results demonstrate that when drivers attend to a roadway scene attention is limited in three-dimensional space. These results have important implications for developing tests for assessing crash risk among drivers as well as the design of in vehicle technologies such as head-up displays. PMID:21094336

  3. Rapid detection of all known ebolavirus species by reverse transcription-loop-mediated isothermal amplification (RT-LAMP).

    PubMed

    Oloniniyi, Olamide K; Kurosaki, Yohei; Miyamoto, Hiroko; Takada, Ayato; Yasuda, Jiro

    2017-08-01

    Ebola virus disease (EVD), a highly virulent infectious disease caused by ebolaviruses, has a fatality rate of 25-90%. Without a licensed chemotherapeutic agent or vaccine for the treatment and prevention of EVD, control of outbreaks requires accurate and rapid diagnosis of cases. In this study, five sets of six oligonucleotide primers targeting the nucleoprotein gene were designed for specific identification of each of the five ebolavirus species using reverse transcription-loop mediated isothermal amplification (RT-LAMP) assay. The detection limits of the ebolavirus species-specific primer sets were evaluated using in vitro transcribed RNAs. The detection limit of species-specific RT-LAMP assays for Zaire ebolavirus, Sudan ebolavirus, Taï Forest ebolavirus, and Bundibugyo ebolavirus was 256 copies/reaction, while the detection limit for Reston ebolavirus was 64 copies/reaction, and the detection time for each of the RT-LAMP assays was 13.3±3.0, 19.8±4.6, 14.3±0.6, 16.1±4.7, and 19.8±2.4min (mean±SD), respectively. The sensitivity of the species-specific RT-LAMP assays were similar to that of the established RT-PCR and quantitative RT-PCR assays for diagnosis of EVD and are suitable for field or point-of-care diagnosis. The RT-LAMP assays were specific for the detection of the respective species of ebolavirus with no cross reaction with other species of ebolavirus and other viral hemorrhagic fever viruses such as Marburg virus, Lassa fever virus, and Dengue virus. The species-specific RT-LAMP assays developed in this study are rapid, sensitive, and specific and could be useful in case of an EVD outbreak. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Fully automated analytical procedure for propofol determination by sequential injection technique with spectrophotometric and fluorimetric detections.

    PubMed

    Šrámková, Ivana; Amorim, Célia G; Sklenářová, Hana; Montenegro, Maria C B M; Horstkotte, Burkhard; Araújo, Alberto N; Solich, Petr

    2014-01-01

    In this work, an application of an enzymatic reaction for the determination of the highly hydrophobic drug propofol in emulsion dosage form is presented. Emulsions represent a complex and therefore challenging matrix for analysis. Ethanol was used for breakage of a lipid emulsion, which enabled optical detection. A fully automated method based on Sequential Injection Analysis was developed, allowing propofol determination without the requirement of tedious sample pre-treatment. The method was based on spectrophotometric detection after the enzymatic oxidation catalysed by horseradish peroxidase and subsequent coupling with 4-aminoantipyrine leading to a coloured product with an absorbance maximum at 485 nm. This procedure was compared with a simple fluorimetric method, which was based on the direct selective fluorescence emission of propofol in ethanol at 347 nm. Both methods provide comparable validation parameters with linear working ranges of 0.005-0.100 mg mL(-1) and 0.004-0.243 mg mL(-1) for the spectrophotometric and fluorimetric methods, respectively. The detection and quantitation limits achieved with the spectrophotometric method were 0.0016 and 0.0053 mg mL(-1), respectively. The fluorimetric method provided the detection limit of 0.0013 mg mL(-1) and limit of quantitation of 0.0043 mg mL(-1). The RSD did not exceed 5% and 2% (n=10), correspondingly. A sample throughput of approx. 14 h(-1) for the spectrophotometric and 68 h(-1) for the fluorimetric detection was achieved. Both methods proved to be suitable for the determination of propofol in pharmaceutical formulation with average recovery values of 98.1 and 98.5%. © 2013 Elsevier B.V. All rights reserved.

  5. Evaluation of a manual DNA extraction protocol and an isothermal amplification assay for detecting HIV-1 DNA from dried blood spots for use in resource-limited settings.

    PubMed

    Jordan, Jeanne A; Ibe, Christine O; Moore, Miranda S; Host, Christel; Simon, Gary L

    2012-05-01

    In resource-limited settings (RLS) dried blood spots (DBS) are collected on infants and transported through provincial laboratories to a central facility where HIV-1 DNA PCR testing is performed using specialized equipment. Implementing a simpler approach not requiring such equipment or skilled personnel could allow the more numerous provincial laboratories to offer testing, improving turn-around-time to identify and treat infected infants sooner. Assess performances of a manual DNA extraction method and helicase-dependent amplification (HDA) assay for detecting HIV-1 DNA from DBS. 60 HIV-1 infected adults were enrolled, blood samples taken and DBS made. DBS extracts were assessed for DNA concentration and beta globin amplification using PCR and melt-curve analysis. These same extracts were then tested for HIV-1 DNA using HDA and compared to results generated by PCR and pyrosequencing. Finally, HDA limit of detection (LOD) studies were performed using DBS extracts prepared with known numbers of 8E5 cells. The manual extraction protocol consistently yielded high concentrations of amplifiable DNA from DBS. LOD assessment demonstrated HDA detected ∼470 copies/ml of HIV-1 DNA extracts in 4/4 replicates. No statistical difference was found using the McNemar's test when comparing HDA to PCR for detecting HIV-1 DNA from DBS. Using just a magnet, heat block and pipettes, the manual extraction protocol and HDA assay detected HIV-1 DNA from DBS at levels that would be useful for early infant diagnosis. Next steps will include assessing HDA for non-B HIV-1 subtypes recognition and comparison to Roche HIV-1 DNA v1.5 PCR assay. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA.

    PubMed

    Hunter, Margaret E; Dorazio, Robert M; Butterfield, John S S; Meigs-Friend, Gaia; Nico, Leo G; Ferrante, Jason A

    2017-03-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low-concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species' presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty-indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis and forensic and clinical diagnostics. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  7. VCSEL based Faraday rotation spectroscopy at 762nm for battery powered trace molecular oxygen detection

    NASA Astrophysics Data System (ADS)

    So, Stephen; Wysocki, Gerard

    2010-02-01

    Faraday Rotation Spectroscopy (FRS) is a polarization based spectroscopic technique which can provide higher sensitivity concentration measurements of paramagnetic gases and free radicals than direct absorption spectroscopic techniques. We have developed sensor systems which require only 0.2W to perform TDLAS (tunable diode laser absorption spectroscopy), and can additionally be quickly duty cycled, enabling operation in wireless sensor networks of laser-based trace gas sensors We adapted our integrated TDLAS electronics to perform FRS in a compact and more sensitive system for quantification of molecular oxygen (O2) using a 762.3nm VCSEL in the A band. Using an AC magnetic field, we demonstrate detector noise dominated performance, achieving 2.1×10-6/Hz1/2 equivalent detectable fractional absorption and a minimum detection limit of 462 ppmv O2 in 1 second in a 15cm path. At longer paths and integration times, such a sensor will enable oxygen measurements at biotic respiration levels (<1ppmv) to measure CO2 - O2 exchange for mapping natural exchange of greenhouse gases. Potential improvement of detection limits by increasing various system performance parameters is described.

  8. Relationship between LiDAR-derived forest canopy height and Landsat images

    Treesearch

    Cristina Pascual; Antonio Garcia-Abril; Warren B. Cohen; Susana Martin-Fernandez

    2010-01-01

    The mean and standard deviation (SD) of light detection and ranging (LiDAR)-derived canopy height are related to forest structure. However, LiDAR data typically cover a limited area and have a high economic cost compared with satellite optical imagery. Optical images may be required to extrapolate LiDAR height measurements across a broad landscape. Different spectral...

  9. Fabrication of two-dimensional visible wavelength nanoscale plasmonic structures using hydrogen silsesquioxane based resist

    NASA Astrophysics Data System (ADS)

    Smith, Kyle Z.; Gadde, Akshitha; Kadiyala, Anand; Dawson, Jeremy M.

    2016-03-01

    In recent years, the global market for biosensors has continued to increase in combination with their expanding use in areas such as biodefense/detection, home diagnostics, biometric identification, etc. A constant necessity for inexpensive, portable bio-sensing methods, while still remaining simple to understand and operate, is the motivation behind novel concepts and designs. Labeled visible spectrum bio-sensing systems provide instant feedback that is both simple and easy to work with, but are limited by the light intensity thresholds required by the imaging systems. In comparison, label-free bio-sensing systems and other detection modalities like electrochemical, frequency resonance, thermal change, etc., can require additional technical processing steps to convey the final result, increasing the system's complexity and possibly the time required for analysis. Further decrease in the detection limit can be achieved through the addition of plasmonic structures into labeled bio-sensing systems. Nano-structures that operate in the visible spectrum have feature sizes typically in the order of the operating wavelength, calling for high aspect ratio nanoscale fabrication capabilities. In order to achieve these dimensions, electron beam lithography (EBL) is used due to its accurate feature production. Hydrogen silsesquioxane (HSQ) based electron beam resist is chosen for one of its benefits, which is after exposure to oxygen plasma, the patterned resist cures into silicon dioxide (SiO2). These cured features in conjunction with nanoscale gold particles help in producing a high electric field through dipole generation. In this work, a detailed process flow of the fabrication of square lattice of plasmonic structures comprising of gold coated silicon dioxide pillars designed to operate at 560 nm wavelength and produce an intensity increase of roughly 100 percent will be presented.

  10. Rapid and simultaneous detection of ricin, staphylococcal enterotoxin B and saxitoxin by chemiluminescence-based microarray immunoassay.

    PubMed

    Szkola, A; Linares, E M; Worbs, S; Dorner, B G; Dietrich, R; Märtlbauer, E; Niessner, R; Seidel, M

    2014-11-21

    Simultaneous detection of small and large molecules on microarray immunoassays is a challenge that limits some applications in multiplex analysis. This is the case for biosecurity, where fast, cheap and reliable simultaneous detection of proteotoxins and small toxins is needed. Two highly relevant proteotoxins, ricin (60 kDa) and bacterial toxin staphylococcal enterotoxin B (SEB, 30 kDa) and the small phycotoxin saxitoxin (STX, 0.3 kDa) are potential biological warfare agents and require an analytical tool for simultaneous detection. Proteotoxins are successfully detected by sandwich immunoassays, whereas competitive immunoassays are more suitable for small toxins (<1 kDa). Based on this need, this work provides a novel and efficient solution based on anti-idiotypic antibodies for small molecules to combine both assay principles on one microarray. The biotoxin measurements are performed on a flow-through chemiluminescence microarray platform MCR3 in 18 minutes. The chemiluminescence signal was amplified by using a poly-horseradish peroxidase complex (polyHRP), resulting in low detection limits: 2.9 ± 3.1 μg L(-1) for ricin, 0.1 ± 0.1 μg L(-1) for SEB and 2.3 ± 1.7 μg L(-1) for STX. The developed multiplex system for the three biotoxins is completely novel, relevant in the context of biosecurity and establishes the basis for research on anti-idiotypic antibodies for microarray immunoassays.

  11. Colorimetric method for the detection of melamine using in-situ formed silver nanoparticles via tannic acid

    NASA Astrophysics Data System (ADS)

    Alam, Md. Fazle; Laskar, Amaj Ahmed; Ahmed, Shahbaz; Shaida, Mohd. Azfar; Younus, Hina

    2017-08-01

    Melamine toxicity has recently attracted worldwide attention as it causes renal failure and the death of humans and animals. Therefore, developing a simple, fast and sensitive method for the routine detection of melamine is the need of the hour. Herein, we have developed a selective colorimetric method for the detection of melamine in milk samples based upon in-situ formation of silver nanoparticles (AgNPs) via tannic acid. The AgNPs thus formed were characterized by UV-Visible spectrophotometer, transmission electron microscope (TEM), zetasizer and dynamic light scattering (DLS). The AgNPs were used to detect melamine under in vitro condition and in raw milk spiked with melamine. Under optimal conditions, melamine could be selectively detected in vitro within the concentration range of 0.05-1.4 μM with a limit of detection (LOD) of 0.01 μM, which is lower than the strictest melamine safety requirement of 1 ppm. In spiked raw milk, the recovery percentage range was 99.5-106.5% for liquid milk and 98.5-105.5% for powdered milk. The present method shows extreme selectivity with no significant interference with other substances like urea, glucose, glycine, ascorbic acid etc. This assay method does not utilize organic cosolvents, enzymatic reactions, light sensitive dye molecules and sophisticated instrumentation, thereby overcoming some of the limitations of the other conventional methods.

  12. Detection of methicillin-resistant Staphylococcus aureus using a specific anti-PBP2a chicken IgY antibody.

    PubMed

    Yamada, Keiko; Wanchun, Jin; Ohkura, Teruko; Murai, Atsushi; Hayakawa, Reina; Kinoshita, Keiji; Mizutani, Makoto; Okamoto, Akira; Namikawa, Takao; Ohta, Michio

    2013-01-01

    Immunodetection of methicillin-resistant Staphylococcus aureus (MRSA) by conventional methods employing mammalian immunoglobulins has unknown detection limits, and often yields false-positive results because of the presence of S. aureus protein A, which binds the Fc region of mammalian IgG. In this study, a new PBP2a-specific chicken IgY antibody was developed in inbred and conventional chickens, and used for the detection of MRSA using whole cell lysate samples. Our results showed that this chicken IgY antibody minimized the side effects of protein A. Moreover, enzyme-linked immunosorbent assay and immunochromatography systems were used with a monoclonal and polyclonal anti-PBP2a IgY antibody, clearly differentiating MRSA from methicillin-sensitive S. aureus and other methicillin-sensitive Staphylococcus spp. The detection limit of the immunochromatography was 10(8) colony-forming units; therefore, 1 colony on an agar plate was adequate to distinguish MRSA from non-MRSA. The specificity and sensitivity of this assay were almost similar to that of a commercially available latex agglutination test; however, the procedure used in this study was less complicated. The entire detection procedure, including sample preparation, takes only 20 min and does not require special equipment. Therefore, the use of this IgY antibody as a new tool for the detection of MRSA is highly recommended.

  13. Quantification of NS1 dengue biomarker in serum via optomagnetic nanocluster detection

    NASA Astrophysics Data System (ADS)

    Antunes, Paula; Watterson, Daniel; Parmvi, Mattias; Burger, Robert; Boisen, Anja; Young, Paul; Cooper, Matthew A.; Hansen, Mikkel F.; Ranzoni, Andrea; Donolato, Marco

    2015-11-01

    Dengue is a tropical vector-borne disease without cure or vaccine that progressively spreads into regions with temperate climates. Diagnostic tools amenable to resource-limited settings would be highly valuable for epidemiologic control and containment during outbreaks. Here, we present a novel low-cost automated biosensing platform for detection of dengue fever biomarker NS1 and demonstrate it on NS1 spiked in human serum. Magnetic nanoparticles (MNPs) are coated with high-affinity monoclonal antibodies against NS1 via bio-orthogonal Cu-free ‘click’ chemistry on an anti-fouling surface molecular architecture. The presence of the target antigen NS1 triggers MNP agglutination and the formation of nanoclusters with rapid kinetics enhanced by external magnetic actuation. The amount and size of the nanoclusters correlate with the target concentration and can be quantified using an optomagnetic readout method. The resulting automated dengue fever assay takes just 8 minutes, requires 6 μL of serum sample and shows a limit of detection of 25 ng/mL with an upper detection range of 20000 ng/mL. The technology holds a great potential to be applied to NS1 detection in patient samples. As the assay is implemented on a low-cost microfluidic disc the platform is suited for further expansion to multiplexed detection of a wide panel of biomarkers.

  14. Rapid detection of Cyprinid herpesvirus-3 (CyHV-3) using a gold nanoparticle-based hybridization assay.

    PubMed

    Saleh, Mona; El-Matbouli, Mansour

    2015-06-01

    Cyprinid herpesvirus-3 (CyHV-3) is a highly infectious pathogen that causes fatal disease in common and koi carp Cyprinus carpio L. CyHV-3 detection is usually based on virus propagation or amplification of the viral DNA using the PCR or LAMP techniques. However, due to the limited susceptibility of cells used for propagation, it is not always possible to successfully isolate CyHV-3 even from tissue samples that have high virus titres. All previously described detection methods including PCR-based assays are time consuming, laborious and require specialized equipment. To overcome these limitations, gold nanoparticles (AuNPs) have been explored for direct and sensitive detection of DNA. In this study, a label-free colorimetric nanodiagnostic method for direct detection of unamplified CyHV-3 DNA using gold nanoparticles is introduced. Under appropriate conditions, DNA probes hybridize with their complementary target sequences in the sample DNA, which results in aggregation of the gold nanoparticles and a concomitant colour change from red to blue, whereas test samples with non complementary DNA sequences remain red. In this study, gold nanoparticles were used to develop and evaluate a specific and sensitive hybridization assay for direct and rapid detection of the highly infectious pathogen termed Cyprinid herpesvirus-3. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Advance in plasma SEPT9 gene methylation assay for colorectal cancer early detection

    PubMed Central

    Wang, Yu; Chen, Pei-Min; Liu, Rong-Bin

    2018-01-01

    This review article summarizes the research advances of the plasma-based SEPT9 gene methylation assay for the clinical detection of colorectal cancer and its limitations. Colorectal cancer is a common malignancy with a poor prognosis and a high mortality, for which early detection and diagnosis are particularly crucial for the high-risk groups. Increasing evidence supported that SEPT9 gene methylation is associated with the pathogenesis of colorectal cancer and that detecting the level of methylation of SEPT9 in the peripheral blood can be used for screening of colorectal cancer in susceptible populations. In recent years, the data obtained in clinical studies demonstrated that the SEPT9 gene methylation assay has a good diagnostic performance with regard to both sensitivity and specificity with the advantage of better acceptability, convenience and compliance with serological testing compared with fecal occult blood tests and carcinoembryonic antigen for colorectal cancer (CRC). Furthermore, the combination of multiple methods or markers has become a growing trend for CRC detection and screening. Nevertheless, the clinical availability of the methylated SEPT9 assay is still limited because of the large degree of sample heterogeneity caused by demographic characteristics, pathological features, comorbidities and/or technique selection. Another factor is the cost-effectiveness of colorectal cancer screening strategies that hinders its large-scale application. In addition, improvements in its accuracy in detecting adenomas and premalignant polyps are required. PMID:29375744

  16. Visual detection of nucleic acids based on Mie scattering and the magnetophoretic effect.

    PubMed

    Zhao, Zichen; Chen, Shan; Ho, John Kin Lim; Chieng, Ching-Chang; Chen, Ting-Hsuan

    2015-12-07

    Visual detection of nucleic acid biomarkers is a simple and convenient approach to point-of-care applications. However, issues of sensitivity and the handling of complex bio-fluids have posed challenges. Here we report on a visual method detecting nucleic acids using Mie scattering of polystyrene microparticles and the magnetophoretic effect. Magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) were surface-functionalised with oligonucleotide probes, which can hybridise with target oligonucleotides in juxtaposition and lead to the formation of MMPs-targets-PMPs sandwich structures. Using an externally applied magnetic field, the magnetophoretic effect attracts the sandwich structure to the sidewall, which reduces the suspended PMPs and leads to a change in the light transmission via the Mie scattering. Based on the high extinction coefficient of the Mie scattering (∼3 orders of magnitude greater than that of the commonly used gold nanoparticles), our results showed the limit of detection to be 4 pM using a UV-Vis spectrometer or 10 pM by direct visual inspection. Meanwhile, we also demonstrated that this method is compatible with multiplex assays and detection in complex bio-fluids, such as whole blood or a pool of nucleic acids, without purification in advance. With a simplified operation procedure, low instrumentation requirement, high sensitivity and compatibility with complex bio-fluids, this method provides an ideal solution for visual detection of nucleic acids in resource-limited settings.

  17. Advance in plasma SEPT9 gene methylation assay for colorectal cancer early detection.

    PubMed

    Wang, Yu; Chen, Pei-Min; Liu, Rong-Bin

    2018-01-15

    This review article summarizes the research advances of the plasma-based SEPT9 gene methylation assay for the clinical detection of colorectal cancer and its limitations. Colorectal cancer is a common malignancy with a poor prognosis and a high mortality, for which early detection and diagnosis are particularly crucial for the high-risk groups. Increasing evidence supported that SEPT9 gene methylation is associated with the pathogenesis of colorectal cancer and that detecting the level of methylation of SEPT9 in the peripheral blood can be used for screening of colorectal cancer in susceptible populations. In recent years, the data obtained in clinical studies demonstrated that the SEPT9 gene methylation assay has a good diagnostic performance with regard to both sensitivity and specificity with the advantage of better acceptability, convenience and compliance with serological testing compared with fecal occult blood tests and carcinoembryonic antigen for colorectal cancer (CRC). Furthermore, the combination of multiple methods or markers has become a growing trend for CRC detection and screening. Nevertheless, the clinical availability of the methylated SEPT9 assay is still limited because of the large degree of sample heterogeneity caused by demographic characteristics, pathological features, comorbidities and/or technique selection. Another factor is the cost-effectiveness of colorectal cancer screening strategies that hinders its large-scale application. In addition, improvements in its accuracy in detecting adenomas and premalignant polyps are required.

  18. Rapid diagnosis of Theileria annulata by recombinase polymerase amplification combined with a lateral flow strip (LF-RPA) in epidemic regions.

    PubMed

    Yin, Fangyuan; Liu, Junlong; Liu, Aihong; Li, Youquan; Luo, Jianxun; Guan, Guiquan; Yin, Hong

    2017-04-15

    Rapid and accurate diagnosis of Theileria annulata infection contributes to the formulation of strategies to eradicate this parasite. A simple and efficient diagnostic tool, recombinase polymerase amplification (RPA) combined with a lateral flow (LF) strip, was used in detection of Theileria and compared to other methods that require expensive instruments and skilled personnel. Herein, we established and optimized an LF-RPA method to detect the cytochrome b gene of T. annulata mitochondrial DNA from experimentally infected and field-collected blood samples. This method has many unparalleled characteristics, including that it is rapid (clear detection in 5min at constant temperature), sensitive (the limitation of detection is at least 2pg genomic DNA), and specific (no cross-reaction with other piroplasms that infect cattle). The LF-RPA assay was evaluated via testing 17 field blood samples and comparing the results of that of a PCR, showing 100% agreement, which demonstrates the ability of the LF-RPA assay to detect T. annulata infections in small number of samples (n=17). Taken together, the results indicate that this method could be used as an ideal diagnostic tool for detecting T. annulata in endemic regions with limited to fewer and local resources and could also be a potential technique for the surveillance and control of blood protozoa. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Development of a real-time microchip PCR system for portable plant disease diagnosis.

    PubMed

    Koo, Chiwan; Malapi-Wight, Martha; Kim, Hyun Soo; Cifci, Osman S; Vaughn-Diaz, Vanessa L; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3) in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample.

  20. Development of a Real-Time Microchip PCR System for Portable Plant Disease Diagnosis

    PubMed Central

    Kim, Hyun Soo; Cifci, Osman S.; Vaughn-Diaz, Vanessa L.; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C.; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25×16×8 cm3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample. PMID:24349341

  1. Antibody-Mediated Small Molecule Detection Using Programmable DNA-Switches.

    PubMed

    Rossetti, Marianna; Ippodrino, Rudy; Marini, Bruna; Palleschi, Giuseppe; Porchetta, Alessandro

    2018-06-13

    The development of rapid, cost-effective, and single-step methods for the detection of small molecules is crucial for improving the quality and efficiency of many applications ranging from life science to environmental analysis. Unfortunately, current methodologies still require multiple complex, time-consuming washing and incubation steps, which limit their applicability. In this work we present a competitive DNA-based platform that makes use of both programmable DNA-switches and antibodies to detect small target molecules. The strategy exploits both the advantages of proximity-based methods and structure-switching DNA-probes. The platform is modular and versatile and it can potentially be applied for the detection of any small target molecule that can be conjugated to a nucleic acid sequence. Here the rational design of programmable DNA-switches is discussed, and the sensitive, rapid, and single-step detection of different environmentally relevant small target molecules is demonstrated.

  2. Functional requirements for an intelligent RPC. [remote power controller for spaceborne electrical distribution system

    NASA Technical Reports Server (NTRS)

    Aucoin, B. M.; Heller, R. P.

    1990-01-01

    An intelligent remote power controller (RPC) based on microcomputer technology can implement advanced functions for the accurate and secure detection of all types of faults on a spaceborne electrical distribution system. The intelligent RPC will implement conventional protection functions such as overcurrent, under-voltage, and ground fault protection. Advanced functions for the detection of soft faults, which cannot presently be detected, can also be implemented. Adaptive overcurrent protection changes overcurrent settings based on connected load. Incipient and high-impedance fault detection provides early detection of arcing conditions to prevent fires, and to clear and reconfigure circuits before soft faults progress to a hard-fault condition. Power electronics techniques can be used to implement fault current limiting to prevent voltage dips during hard faults. It is concluded that these techniques will enhance the overall safety and reliability of the distribution system.

  3. An SPR based immunoassay for the sensitive detection of the soluble epithelial marker E-cadherin.

    PubMed

    Vergara, Daniele; Bianco, Monica; Pagano, Rosanna; Priore, Paola; Lunetti, Paola; Guerra, Flora; Bettini, Simona; Carallo, Sonia; Zizzari, Alessandra; Pitotti, Elena; Giotta, Livia; Capobianco, Loredana; Bucci, Cecilia; Valli, Ludovico; Maffia, Michele; Arima, Valentina; Gaballo, Antonio

    2018-06-11

    Protein biomarkers are important diagnostic tools for cancer and several other diseases. To be validated in a clinical context, a biomarker should satisfy some requirements including the ability to provide reliable information on a pathological state by measuring its expression levels. In parallel, the development of an approach capable of detecting biomarkers with high sensitivity and specificity would be ideally suited for clinical applications. Here, we performed an immune-based label free assay using Surface Plasmon Resonance (SPR)-based detection of the soluble form of E-cadherin, a cell-cell contact protein that is involved in the maintaining of tissue integrity. With this approach, we obtained a specific and quantitative detection of E-cadherin from a few hundred μl of serum of breast cancer patients by obtaining a 10-fold enhancement in the detection limit over a traditional colorimetric ELISA. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. A novel vacuum spectrometer for total reflection x-ray fluorescence analysis with two exchangeable low power x-ray sources for the analysis of low, medium, and high Z elements in sequence

    NASA Astrophysics Data System (ADS)

    Wobrauschek, P.; Prost, J.; Ingerle, D.; Kregsamer, P.; Misra, N. L.; Streli, C.

    2015-08-01

    The extension of the detectable elemental range with Total Reflection X-ray Fluorescence (TXRF) analysis is a challenging task. In this paper, it is demonstrated how a TXRF spectrometer is modified to analyze elements from carbon to uranium. Based on the existing design of a vacuum TXRF spectrometer with a 12 specimen sample changer, the following components were renewed: the silicon drift detector with 20 mm2 active area and having a special ultra-thin polymer window allowing the detection of elements from carbon upwards. Two exchangeable X-ray sources guarantee the efficient excitation of both low and high Z elements. These X-ray sources were two light-weighted easily mountable 35 W air-cooled low-power tubes with Cr and Rh anodes, respectively. The air cooled tubes and the Peltier-cooled detector allowed to construct a transportable tabletop spectrometer with compact dimensions, as neither liquid nitrogen cooling for the detector nor a water cooling circuit and a bulky high voltage generator for the X-ray tubes are required. Due to the excellent background conditions as a result of the TXRF geometry, detection limits of 150 ng for C, 12 ng for F, and 3.3 ng for Na have been obtained using Cr excitation in vacuum. For Rh excitation, the detection limits of 90 pg could be achieved for Sr. Taking 10 to 20 μl of sample volume, extrapolated detection limits in the ng/g (ppb) range are resulting in terms of concentration.

  5. The Importance of Bacterial Culture to Food Microbiology in the Age of Genomics.

    PubMed

    Gill, Alexander

    2017-01-01

    Culture-based and genomics methods provide different insights into the nature and behavior of bacteria. Maximizing the usefulness of both approaches requires recognizing their limitations and employing them appropriately. Genomic analysis excels at identifying bacteria and establishing the relatedness of isolates. Culture-based methods remain necessary for detection and enumeration, to determine viability, and to validate phenotype predictions made on the bias of genomic analysis. The purpose of this short paper is to discuss the application of culture-based analysis and genomics to the questions food microbiologists routinely need to ask regarding bacteria to ensure the safety of food and its economic production and distribution. To address these issues appropriate tools are required for the detection and enumeration of specific bacterial populations and the characterization of isolates for, identification, phylogenetics, and phenotype prediction.

  6. A new method for detection of distant supernova neutrino bursts

    NASA Astrophysics Data System (ADS)

    Cline, D.; Fenyves, E.; Foshe, T.; Fuller, G.; Meyer, B.; Wilson, J.

    1990-03-01

    The feasibility of astrophysical neutrino detectors is studied, which is based on the detection of neutrons produced in neutrino-nucleus inelastic scattering events. Collective nuclear effects greatly enhancing the relevant interaction cross sections over those of single particle interactions are discussed. These effects can help to reduce the mass required for neutrino detectors. An example of a simple detector based on CaCO3 neutrino targets and BF3 neutron counters is presented. Neutron background limitations are discussed and the possibility of forming a coincidence between neutrino detectors and future gravity wave detectors is also considered.

  7. Microfluidic photoinduced chemical oxidation for Ru(bpy)33+ chemiluminescence - A comprehensive experimental comparison with on-chip direct chemical oxidation.

    PubMed

    Kadavilpparampu, Afsal Mohammed; Al Lawati, Haider A J; Suliman, Fakhr Eldin O

    2017-08-05

    For the first time, the analytical figures of merit in detection capabilities of the very less explored photoinduced chemical oxidation method for Ru(bpy) 3 2+ CL has been investigated in detail using 32 structurally different analytes. It was carried out on-chip using peroxydisulphate and visible light and compared with well-known direct chemical oxidation approaches using Ce(IV). The analytes belong to various chemical classes such as tertiary amine, secondary amine, sulphonamide, betalactam, thiol and benzothiadiazine. Influence of detection environment on CL emission with respect to method of oxidation was evaluated by changing the buffers and pH. The photoinduced chemical oxidation exhibited more universal nature for Ru(bpy) 3 2+ CL in detection towards selected analytes. No additional enhancers, reagents, or modification in instrumental configuration were required. Wide detectability and enhanced emission has been observed for analytes from all the chemical classes when photoinduced chemical oxidation was employed. Some of these analytes are reported for the first time under photoinduced chemical oxidation like compounds from sulphonamide, betalactam, thiol and benzothiadiazine class. On the other hand, many of the selected analytes including tertiary and secondary amines such as cetirizine, azithromycin fexofenadine and proline did not produced any analytically useful CL signal (S/N=3 or above for 1μgmL -1 analyte) under chemical oxidation. The most fascinating observations was in the detection limits; for example ofloxacin was 15 times more intense with a detection limit of 5.81×10 -10 M compared to most lowest ever reported 6×10 -9 M. Earlier, penicillamine was detected at 0.1μgmL -1 after derivatization using photoinduced chemical oxidation, but in this study, we improved it to 5.82ngmL -1 without any prior derivatization. The detection limits of many other analytes were also found to be improved by several orders of magnitude under photoinduced chemical oxidation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Microfluidic photoinduced chemical oxidation for Ru(bpy)33 + chemiluminescence - A comprehensive experimental comparison with on-chip direct chemical oxidation

    NASA Astrophysics Data System (ADS)

    Kadavilpparampu, Afsal Mohammed; Al Lawati, Haider A. J.; Suliman, Fakhr Eldin O.

    2017-08-01

    For the first time, the analytical figures of merit in detection capabilities of the very less explored photoinduced chemical oxidation method for Ru(bpy)32 + CL has been investigated in detail using 32 structurally different analytes. It was carried out on-chip using peroxydisulphate and visible light and compared with well-known direct chemical oxidation approaches using Ce(IV). The analytes belong to various chemical classes such as tertiary amine, secondary amine, sulphonamide, betalactam, thiol and benzothiadiazine. Influence of detection environment on CL emission with respect to method of oxidation was evaluated by changing the buffers and pH. The photoinduced chemical oxidation exhibited more universal nature for Ru(bpy)32 + CL in detection towards selected analytes. No additional enhancers, reagents, or modification in instrumental configuration were required. Wide detectability and enhanced emission has been observed for analytes from all the chemical classes when photoinduced chemical oxidation was employed. Some of these analytes are reported for the first time under photoinduced chemical oxidation like compounds from sulphonamide, betalactam, thiol and benzothiadiazine class. On the other hand, many of the selected analytes including tertiary and secondary amines such as cetirizine, azithromycin fexofenadine and proline did not produced any analytically useful CL signal (S/N = 3 or above for 1 μgmL- 1 analyte) under chemical oxidation. The most fascinating observations was in the detection limits; for example ofloxacin was 15 times more intense with a detection limit of 5.81 × 10- 10 M compared to most lowest ever reported 6 × 10- 9 M. Earlier, penicillamine was detected at 0.1 μg mL- 1 after derivatization using photoinduced chemical oxidation, but in this study, we improved it to 5.82 ng mL- 1 without any prior derivatization. The detection limits of many other analytes were also found to be improved by several orders of magnitude under photoinduced chemical oxidation.

  9. Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering: possibilities, challenges and analytical limitations.

    PubMed

    Correia, Manuel; Loeschner, Katrin

    2018-02-06

    We tested the suitability of asymmetric flow field-flow fractionation (AF4) coupled to multi-angle light scattering (MALS) for detection of nanoplastics in fish. A homogenized fish sample was spiked with 100 nm polystyrene nanoparticles (PSNPs) (1.3 mg/g fish). Two sample preparation strategies were tested: acid digestion and enzymatic digestion with proteinase K. Both procedures were found suitable for degradation of the organic matrix. However, acid digestion resulted in large PSNPs aggregates/agglomerates (> 1 μm). The presence of large particulates was not observed after enzymatic digestion, and consequently it was chosen as a sample preparation method. The results demonstrated that it was possible to use AF4 for separating the PSNPs from the digested fish and to determine their size by MALS. The PSNPs could be easily detected by following their light scattering (LS) signal with a limit of detection of 52 μg/g fish. The AF4-MALS method could also be exploited for another type of nanoplastics in solution, namely polyethylene (PE). However, it was not possible to detect the PE particles in fish, due to the presence of an elevated LS background. Our results demonstrate that an analytical method developed for a certain type of nanoplastics may not be directly applicable to other types of nanoplastics and may require further adjustment. This work describes for the first time the detection of nanoplastics in a food matrix by AF4-MALS. Despite the current limitations, this is a promising methodology for detecting nanoplastics in food and in experimental studies (e.g., toxicity tests, uptake studies). Graphical abstract Basic concept for the detection of nanoplastics in fish by asymmetric flow field-flow fractionation coupled to multi-angle light scattering.

  10. Detection of Salmonella sp in chicken cuts using immunomagnetic separation

    PubMed Central

    de Cássia dos Santos da Conceição, Rita; Moreira, Ângela Nunes; Ramos, Roberta Juliano; Goularte, Fabiana Lemos; Carvalhal, José Beiro; Aleixo, José Antonio Guimarães

    2008-01-01

    The immunomagnetic separation (IMS) is a technique that has been used to increase sensitivity and specificity and to decrease the time required for detection of Salmonella in foods through different methodologies. In this work we report on the development of a method for detection of Salmonella in chicken cuts using in house antibody-sensitized microspheres associated to conventional plating in selective agar (IMS-plating). First, protein A-coated microspheres were sensitized with polyclonal antibodies against lipopolysacharide and flagella from salmonellae and used to standardize a procedure for capturing Salmonella Enteritidis from pure cultures and detection in selective agar. Subsequently, samples of chicken meat experimentally contaminated with S. Enteritidis were analyzed immediately after contamination and after 24h of refrigeration using three enrichment protocols. The detection limit of the IMS-plating procedure after standardization with pure culture was about 2x10 CFU/mL. The protocol using non-selective enrichment for 6-8h, selective enrichment for 16-18h and a post-enrichment for 4h gave the best results of S. Enteritidis detection by IMS-plating in experimentally contaminated meat. IMS-plating using this protocol was compared to the standard culture method for salmonellae detection in naturally contaminated chicken cuts and yielded 100% sensitivity and 94% specificity. The method developed using in house prepared magnetic microespheres for IMS and plating in selective agar was able to diminish by at least one day the time required for detection of Salmonella in chicken products by the conventional culture method. PMID:24031199

  11. Facile and rapid DNA extraction and purification from food matrices using IFAST (immiscible filtration assisted by surface tension).

    PubMed

    Strotman, Lindsay N; Lin, Guangyun; Berry, Scott M; Johnson, Eric A; Beebe, David J

    2012-09-07

    Extraction and purification of DNA is a prerequisite to detection and analytical techniques. While DNA sample preparation methods have improved over the last few decades, current methods are still time consuming and labor intensive. Here we demonstrate a technology termed IFAST (Immiscible Filtration Assisted by Surface Tension), that relies on immiscible phase filtration to reduce the time and effort required to purify DNA. IFAST replaces the multiple wash and centrifugation steps required by traditional DNA sample preparation methods with a single step. To operate, DNA from lysed cells is bound to paramagnetic particles (PMPs) and drawn through an immiscible fluid phase barrier (i.e. oil) by an external handheld magnet. Purified DNA is then eluted from the PMPs. Here, detection of Clostridium botulinum type A (BoNT/A) in food matrices (milk, orange juice), a bioterrorism concern, was used as a model system to establish IFAST's utility in detection assays. Data validated that the DNA purified by IFAST was functional as a qPCR template to amplify the bont/A gene. The sensitivity limit of IFAST was comparable to the commercially available Invitrogen ChargeSwitch® method. Notably, pathogen detection via IFAST required only 8.5 μL of sample and was accomplished in five-fold less time. The simplicity, rapidity and portability of IFAST offer significant advantages when compared to existing DNA sample preparation methods.

  12. Unsupervised building detection from irregularly spaced LiDAR and aerial imagery

    NASA Astrophysics Data System (ADS)

    Shorter, Nicholas Sven

    As more data sources containing 3-D information are becoming available, an increased interest in 3-D imaging has emerged. Among these is the 3-D reconstruction of buildings and other man-made structures. A necessary preprocessing step is the detection and isolation of individual buildings that subsequently can be reconstructed in 3-D using various methodologies. Applications for both building detection and reconstruction have commercial use for urban planning, network planning for mobile communication (cell phone tower placement), spatial analysis of air pollution and noise nuisances, microclimate investigations, geographical information systems, security services and change detection from areas affected by natural disasters. Building detection and reconstruction are also used in the military for automatic target recognition and in entertainment for virtual tourism. Previously proposed building detection and reconstruction algorithms solely utilized aerial imagery. With the advent of Light Detection and Ranging (LiDAR) systems providing elevation data, current algorithms explore using captured LiDAR data as an additional feasible source of information. Additional sources of information can lead to automating techniques (alleviating their need for manual user intervention) as well as increasing their capabilities and accuracy. Several building detection approaches surveyed in the open literature have fundamental weaknesses that hinder their use; such as requiring multiple data sets from different sensors, mandating certain operations to be carried out manually, and limited functionality to only being able to detect certain types of buildings. In this work, a building detection system is proposed and implemented which strives to overcome the limitations seen in existing techniques. The developed framework is flexible in that it can perform building detection from just LiDAR data (first or last return), or just nadir, color aerial imagery. If data from both LiDAR and aerial imagery are available, then the algorithm will use them both for improved accuracy. Additionally, the proposed approach does not employ severely limiting assumptions thus enabling the end user to apply the approach to a wider variety of different building types. The proposed approach is extensively tested using real data sets and it is also compared with other existing techniques. Experimental results are presented.

  13. Development and Applications of Portable Biosensors.

    PubMed

    Srinivasan, Balaji; Tung, Steve

    2015-08-01

    The significance of microfluidics-based and microelectromechanical systems-based biosensors has been widely acknowledged, and many reviews have explored their potential applications in clinical diagnostics, personalized medicine, global health, drug discovery, food safety, and forensics. Because health care costs are increasing, there is an increasing need to remotely monitor the health condition of patients by point-of-care-testing. The demand for biosensors for detection of biological warfare agents has increased, and research is focused on ways of producing small portable devices that would allow fast, accurate, and on-site detection. In the past decade, the demand for rapid and accurate on-site detection of plant disease diagnosis has increased due to emerging pathogens with resistance to pesticides, increased human mobility, and regulations limiting the application of toxic chemicals to prevent spread of diseases. The portability of biosensors for on-site diagnosis is limited due to various issues, including sample preparation techniques, fluid-handling techniques, the limited lifetime of biological reagents, device packaging, integrating electronics for data collection/analysis, and the requirement of external accessories and power. Many microfluidic, electronic, and biological design strategies, such as handling liquids in biosensors without pumps/valves, the application of droplet-based microfluidics, paper-based microfluidic devices, and wireless networking capabilities for data transmission, are being explored. © 2015 Society for Laboratory Automation and Screening.

  14. Nanotechnology: moving from microarrays toward nanoarrays.

    PubMed

    Chen, Hua; Li, Jun

    2007-01-01

    Microarrays are important tools for high-throughput analysis of biomolecules. The use of microarrays for parallel screening of nucleic acid and protein profiles has become an industry standard. A few limitations of microarrays are the requirement for relatively large sample volumes and elongated incubation time, as well as the limit of detection. In addition, traditional microarrays make use of bulky instrumentation for the detection, and sample amplification and labeling are quite laborious, which increase analysis cost and delays the time for obtaining results. These problems limit microarray techniques from point-of-care and field applications. One strategy for overcoming these problems is to develop nanoarrays, particularly electronics-based nanoarrays. With further miniaturization, higher sensitivity, and simplified sample preparation, nanoarrays could potentially be employed for biomolecular analysis in personal healthcare and monitoring of trace pathogens. In this chapter, it is intended to introduce the concept and advantage of nanotechnology and then describe current methods and protocols for novel nanoarrays in three aspects: (1) label-free nucleic acids analysis using nanoarrays, (2) nanoarrays for protein detection by conventional optical fluorescence microscopy as well as by novel label-free methods such as atomic force microscopy, and (3) nanoarray for enzymatic-based assay. These nanoarrays will have significant applications in drug discovery, medical diagnosis, genetic testing, environmental monitoring, and food safety inspection.

  15. Real-time label-free biosensing with integrated planar waveguide ring resonators

    NASA Astrophysics Data System (ADS)

    Sohlström, Hans; Gylfason, Kristinn B.; Hill, Daniel

    2010-05-01

    We review the use of planar integrated optical waveguide ring resonators for label free bio-sensing and present recent results from two European biosensor collaborations: SABIO and InTopSens. Planar waveguide ring resonators are attractive for label-free biosensing due to their small footprint, high Q-factors, and compatibility with on-chip optics and microfluidics. This enables integrated sensor arrays for compact labs-on-chip. One application of label-free sensor arrays is for point-of-care medical diagnostics. Bringing such powerful tools to the single medical practitioner is an important step towards personalized medicine, but requires addressing a number of issues: improving limit of detection, managing the influence of temperature, parallelization of the measurement for higher throughput and on-chip referencing, efficient light-coupling strategies to simplify alignment, and packaging of the optical chip and integration with microfluidics. From the SABIO project we report refractive index measurement and label-free biosensing in an 8-channel slotwaveguide ring resonator sensor array, within a compact cartridge with integrated microfluidics. The sensors show a volume sensing detection limit of 5 x 10-6 RIU and a surface sensing detection limit of 0.9 pg/mm2. From the InTopSens project we report early results on silicon-on-insulator racetrack resonators.

  16. Optical Vector Receiver Operating Near the Quantum Limit

    NASA Astrophysics Data System (ADS)

    Vilnrotter, V. A.; Lau, C.-W.

    2005-05-01

    An optical receiver concept for binary signals with performance approaching the quantum limit at low average-signal energies is developed and analyzed. A conditionally nulling receiver that reaches the quantum limit in the absence of background photons has been devised by Dolinar. However, this receiver requires ideal optical combining and complicated real-time shaping of the local field; hence, it tends to be difficult to implement at high data rates. A simpler nulling receiver that approaches the quantum limit without complex optical processing, suitable for high-rate operation, had been suggested earlier by Kennedy. Here we formulate a vector receiver concept that incorporates the Kennedy receiver with a physical beamsplitter, but it also utilizes the reflected signal component to improve signal detection. It is found that augmenting the Kennedy receiver with classical coherent detection at the auxiliary beamsplitter output, and optimally processing the vector observations, always improves on the performance of the Kennedy receiver alone, significantly so at low average-photon rates. This is precisely the region of operation where modern codes approach channel capacity. It is also shown that the addition of background radiation has little effect on the performance of the coherent receiver component, suggesting a viable approach for near-quantum-limited performance in high background environments.

  17. A Limit on the Warm Dark Matter Particle Mass from the Redshifted 21 cm Absorption Line

    NASA Astrophysics Data System (ADS)

    Safarzadeh, Mohammadtaher; Scannapieco, Evan; Babul, Arif

    2018-06-01

    The recent Experiment to Detect the Global Epoch of Reionization Signature (EDGES) collaboration detection of an absorption signal at a central frequency of ν = 78 ± 1 MHz points to the presence of a significant Lyα background by a redshift of z = 18. The timing of this signal constrains the dark matter particle mass (m χ ) in the warm dark matter (WDM) cosmological model. WDM delays the formation of small-scale structures, and therefore a stringent lower limit can be placed on m χ based on the presence of a sufficiently strong Lyα background due to star formation at z = 18. Our results show that coupling the spin temperature to the gas through Lyα pumping requires a minimum mass of m χ > 3 keV if atomic cooling halos dominate the star formation rate at z = 18, and m χ > 2 keV if {{{H}}}2 cooling halos also form stars efficiently at this redshift. These limits match or exceed the most stringent limits cited to date in the literature, even in the face of the many uncertainties regarding star formation at high redshift.

  18. 40 CFR Appendix B to Part 136 - Definition and Procedure for the Determination of the Method Detection Limit-Revision 1.11

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... calculated method detection limit. To insure that the estimate of the method detection limit is a good...) where: MDL = the method detection limit t(n-1,1- α=.99) = the students' t value appropriate for a 99... Determination of the Method Detection Limit-Revision 1.11 B Appendix B to Part 136 Protection of Environment...

  19. Material limitations on the detection limit in refractometry.

    PubMed

    Skafte-Pedersen, Peder; Nunes, Pedro S; Xiao, Sanshui; Mortensen, Niels Asger

    2009-01-01

    We discuss the detection limit for refractometric sensors relying on high-Q optical cavities and show that the ultimate classical detection limit is given by min {Δn} ≳ η, with n + iη being the complex refractive index of the material under refractometric investigation. Taking finite Q factors and filling fractions into account, the detection limit declines. As an example we discuss the fundamental limits of silicon-based high-Q resonators, such as photonic crystal resonators, for sensing in a bio-liquid environment, such as a water buffer. In the transparency window (λ ≳ 1100 nm) of silicon the detection limit becomes almost independent on the filling fraction, while in the visible, the detection limit depends strongly on the filling fraction because the silicon absorbs strongly.

  20. From orphan virus to pathogen: the path to the clinical lab.

    PubMed

    Li, Linlin; Delwart, Eric

    2011-10-01

    Viral metagenomics has recently yielded numerous previously uncharacterized viral genomes from human and animal samples. We review some of the metagenomics tools and strategies to determine which orphan viruses are likely pathogens. Disease association studies compare viral prevalence in patients with unexplained symptoms versus healthy individuals but require these case and control groups to be closely matched epidemiologically. The development of an antibody response in convalescent serum can temporarily link symptoms with a recent infection. Neutralizing antibody detection require often difficult cell culture virus amplification. Antibody binding assays require proper antigen synthesis and positive control sera to set assay thresholds. High levels of viral genetic diversity within orphan viral groups, frequent co-infections, low or rare pathogenicity, and chronic virus shedding, can all complicate disease association studies. The limited availability of matched cases and controls sample sets from different age groups and geographic origins is a major block for estimating the pathogenic potential of recently characterized orphan viruses. Current limitations on the practical use of deep sequencing for viral diagnostics are listed.

  1. Vertically Aligned Nitrogen-Doped Carbon Nanotube Carpet Electrodes: Highly Sensitive Interfaces for the Analysis of Serum from Patients with Inflammatory Bowel Disease.

    PubMed

    Wang, Qian; Subramanian, Palaniappan; Schechter, Alex; Teblum, Eti; Yemini, Reut; Nessim, Gilbert Daniel; Vasilescu, Alina; Li, Musen; Boukherroub, Rabah; Szunerits, Sabine

    2016-04-20

    The number of patients suffering from inflammatory bowel disease (IBD) is increasing worldwide. The development of noninvasive tests that are rapid, sensitive, specific, and simple would allow preventing patient discomfort, delay in diagnosis, and the follow-up of the status of the disease. Herein, we show the interest of vertically aligned nitrogen-doped carbon nanotube (VA-NCNT) electrodes for the required sensitive electrochemical detection of lysozyme in serum, a protein that is up-regulated in IBD. To achieve selective lysozyme detection, biotinylated lysozyme aptamers were covalently immobilized onto the VA-NCNTs. Detection of lysozyme in serum was achieved by measuring the decrease in the peak current of the Fe(CN)6(3-/4-) redox couple by differential pulse voltammetry upon addition of the analyte. We achieved a detection limit as low as 100 fM with a linear range up to 7 pM, in line with the required demands for the determination of lysozyme level in patients suffering from IBD. We attained the sensitive detection of biomarkers in clinical samples of healthy patients and individuals suffering from IBD and compared the results to a classical turbidimetric assay. The results clearly indicate that the newly developed sensor allows for a reliable and efficient analysis of lysozyme in serum.

  2. A review of illicit psychoactive drug use in elective surgery patients: Detection, effects, and policy.

    PubMed

    Selvaggi, Gennaro; Spagnolo, Antonio G; Elander, Anna

    2017-12-01

    Limited information is present in literature regarding detection of illicit drug users visiting physicians when planning elective surgery; also, there is no update manuscript that is illustrating the effects of illicit drugs use that require reconstructive surgery interventions. Aims of this manuscript are: 1) to summarize existing knowledge, and give surgeons information how to detect patients who might possible use illicit drugs; 2) to review the effects of illicit drug use that specifically require reconstructive surgery interventions; 3) to assess on existing policies on asymptomatic illicit drug users when planning elective surgery. Studies were identified by searching systematically in the electronic databases PubMed, Medline, The Cochrane Library and SveMed+. Because of the nature of research questions to be investigated (drug policy and surgery), a "systematic review" was not possible. In spite of some existing policies to detect illicit drug use in specific situations such as workplaces or acute trauma patients, there is a lack of data and lack of information, and subsequently no policy has ever been made, for detection and management of illicit drug use asymptomatic patients requesting or referred for plastic surgery interventions. This manuscript poses questions for further ethical evaluations and future policy. Copyright © 2017 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Wildlife Multispecies Remote Sensing Using Visible and Thermal Infrared Imagery Acquired from AN Unmanned Aerial Vehicle (uav)

    NASA Astrophysics Data System (ADS)

    Chrétien, L.-P.; Théau, J.; Ménard, P.

    2015-08-01

    Wildlife aerial surveys require time and significant resources. Multispecies detection could reduce costs to a single census for species that coexist spatially. Traditional methods are demanding for observers in terms of concentration and are not adapted to multispecies censuses. The processing of multispectral aerial imagery acquired from an unmanned aerial vehicle (UAV) represents a potential solution for multispecies detection. The method used in this study is based on a multicriteria object-based image analysis applied on visible and thermal infrared imagery acquired from a UAV. This project aimed to detect American bison, fallow deer, gray wolves, and elks located in separate enclosures with a known number of individuals. Results showed that all bison and elks were detected without errors, while for deer and wolves, 0-2 individuals per flight line were mistaken with ground elements or undetected. This approach also detected simultaneously and separately the four targeted species even in the presence of other untargeted ones. These results confirm the potential of multispectral imagery acquired from UAV for wildlife census. Its operational application remains limited to small areas related to the current regulations and available technology. Standardization of the workflow will help to reduce time and expertise requirements for such technology.

  4. Detecting declines in the abundance of a bull trout (Salvelinus confluentus) population: Understanding the accuracy, precision, and costs of our efforts

    USGS Publications Warehouse

    Al-Chokhachy, R.; Budy, P.; Conner, M.

    2009-01-01

    Using empirical field data for bull trout (Salvelinus confluentus), we evaluated the trade-off between power and sampling effort-cost using Monte Carlo simulations of commonly collected mark-recapture-resight and count data, and we estimated the power to detect changes in abundance across different time intervals. We also evaluated the effects of monitoring different components of a population and stratification methods on the precision of each method. Our results illustrate substantial variability in the relative precision, cost, and information gained from each approach. While grouping estimates by age or stage class substantially increased the precision of estimates, spatial stratification of sampling units resulted in limited increases in precision. Although mark-resight methods allowed for estimates of abundance versus indices of abundance, our results suggest snorkel surveys may be a more affordable monitoring approach across large spatial scales. Detecting a 25% decline in abundance after 5 years was not possible, regardless of technique (power = 0.80), without high sampling effort (48% of study site). Detecting a 25% decline was possible after 15 years, but still required high sampling efforts. Our results suggest detecting moderate changes in abundance of freshwater salmonids requires considerable resource and temporal commitments and highlight the difficulties of using abundance measures for monitoring bull trout populations.

  5. Photoacoustic spectroscopy of CO2 laser in the detection of gaseous molecules

    NASA Astrophysics Data System (ADS)

    Lima, G. R.; Sthel, M. S.; da Silva, M. G.; Schramm, D. U. S.; de Castro, M. P. P.; Vargas, H.

    2011-01-01

    The detection of trace gases is very important for a variety of applications, including the monitoring of atmospheric pollutants, industrial process control, measuring air quality in workplaces, research into fruits physiological processes and medical diagnosis of diseases through the analysis of exhaled gases. The implementation of these and many other applications requiring gas sensors able to meet high sensitivity and selectivity. In this work, a photoacoustic laser spectrometer with CO2 emission in the infrared range and a resonant photoacoustic cell was used. We obtain the resonance frequency of 2.4 kHz to photoacoustic cell, was estimated detection limit of the spectrometer for molecules of ethylene (C2H4), 16 ppbV and ammonia (NH3) 42 ppbV.

  6. Influence of enrichment broths on multiplex PCR detection of total coliform bacteria, Escherichia coli and Clostridium perfringens, in spiked water samples.

    PubMed

    Worakhunpiset, S; Tharnpoophasiam, P

    2009-07-01

    Although multiplex PCR amplification condition for simultaneous detection of total coliform bacteria, Escherichia coli and Clostridium perfringens in water sample has been developed, results with high sensitivity are obtained when amplifying purified DNA, but the sensitivity is low when applied to spiked water samples. An enrichment broth culture prior PCR analysis increases sensitivity of the test but the specific nature of enrichment broth can affect the PCR results. Three enrichment broths, lactose broth, reinforced clostridial medium and fluid thioglycollate broth, were compared for their influence on sensitivity and on time required with multiplex PCR assay. Fluid thioglycollate broth was the most effective with shortest enrichment time and lowest detection limit.

  7. Recent advances in chemiluminescence detection coupled with capillary electrophoresis and microchip capillary electrophoresis.

    PubMed

    Liu, Yuxuan; Huang, Xiangyi; Ren, Jicun

    2016-01-01

    CE is an ideal analytical method for extremely volume-limited biological microenvironments. However, the small injection volume makes it a challenge to achieve highly sensitive detection. Chemiluminescence (CL) detection is characterized by providing low background with excellent sensitivity because of requiring no light source. The coupling of CL with CE and MCE has become a powerful analytical method. So far, this method has been widely applied to chemical analysis, bioassay, drug analysis, and environment analysis. In this review, we first introduce some developments for CE-CL and MCE-CL systems, and then put the emphasis on the applications in the last 10 years. Finally, we discuss the future prospects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Epilepsy surgery in developing countries.

    PubMed

    Williamson, P D; Jobst, B C

    2000-01-01

    Epilepsy surgery (ES) is a well-accepted treatment for medically intractable epilepsy patients in developed countries, but it is highly technology dependent. Such technology is not usually available in developing countries. For presurgical evaluation, magnetic resonance imaging (MRI) and electroencephalogram recording while videotaping the patient have been important. High technology equipment will, in conjunction with MRI, identify approximately 70% of ES candidates. Introducing ES into developing countries will require determining the candidates that are appropriate for the existing medical infrastructure. This article reviews ES and its possible introduction into conditions existing in developing countries. The authors address (a) the types of patients to be considered for resective ES (some patients require a fairly standard series of noninvasive studies: others will require extensive invasive studies), (b) ways to determine which patients might be appropriate for the existing situation (unilateral mesial temporal lobe epilepsy detected with MRI, epilepsy with a circumscribed MRI lesion, hemispheric lesions, circumscribed MRI detected neuronal migration, and development disorders), (c) surgical procedures (local resection, functional hemispherectomy, multiple subpial transections, corpus callosotomy, and implantation of a vagal nerve stimulator), (d) special considerations for introducing ES into developing countries (medical infrastructure, technology, seizure monitoring systems, selective intracarotid/carotid Amytal testing, and surgical equipment), and (e) the limitations, realistic expectations, personnel requirements, and educational function for selected professionals. Delivery of the technology and expertise to perform ES in developing regions of the world is a realizable project, but it would be limited by available technology and existing medical infrastructure. It should be possible in most areas to train local personnel and thereby leave a lasting legacy.

  9. Failure Control Techniques for the SSME

    NASA Technical Reports Server (NTRS)

    Taniguchi, M. H.

    1987-01-01

    Since ground testing of the Space Shuttle Main Engine (SSME) began in 1975, the detection of engine anomalies and the prevention of major damage have been achieved by a multi-faceted detection/shutdown system. The system continues the monitoring task today and consists of the following: sensors, automatic redline and other limit logic, redundant sensors and controller voting logic, conditional decision logic, and human monitoring. Typically, on the order of 300 to 500 measurements are sensed and recorded for each test, while on the order of 100 are used for control and monitoring. Despite extensive monitoring by the current detection system, twenty-seven (27) major incidents have occurred. This number would appear insignificant compared with over 1200 hot-fire tests which have taken place since 1976. However, the number suggests the requirement for and future benefits of a more advanced failure detection system.

  10. Replacement Condition Detection of Railway Point Machines Using an Electric Current Sensor.

    PubMed

    Sa, Jaewon; Choi, Younchang; Chung, Yongwha; Kim, Hee-Young; Park, Daihee; Yoon, Sukhan

    2017-01-29

    Detecting replacement conditions of railway point machines is important to simultaneously satisfy the budget-limit and train-safety requirements. In this study, we consider classification of the subtle differences in the aging effect-using electric current shape analysis-for the purpose of replacement condition detection of railway point machines. After analyzing the shapes of after-replacement data and then labeling the shapes of each before-replacement data, we can derive the criteria that can handle the subtle differences between "does-not-need-to-be-replaced" and "needs-to-be-replaced" shapes. On the basis of the experimental results with in-field replacement data, we confirmed that the proposed method could detect the replacement conditions with acceptable accuracy, as well as provide visual interpretability of the criteria used for the time-series classification.

  11. Replacement Condition Detection of Railway Point Machines Using an Electric Current Sensor

    PubMed Central

    Sa, Jaewon; Choi, Younchang; Chung, Yongwha; Kim, Hee-Young; Park, Daihee; Yoon, Sukhan

    2017-01-01

    Detecting replacement conditions of railway point machines is important to simultaneously satisfy the budget-limit and train-safety requirements. In this study, we consider classification of the subtle differences in the aging effect—using electric current shape analysis—for the purpose of replacement condition detection of railway point machines. After analyzing the shapes of after-replacement data and then labeling the shapes of each before-replacement data, we can derive the criteria that can handle the subtle differences between “does-not-need-to-be-replaced” and “needs-to-be-replaced” shapes. On the basis of the experimental results with in-field replacement data, we confirmed that the proposed method could detect the replacement conditions with acceptable accuracy, as well as provide visual interpretability of the criteria used for the time-series classification. PMID:28146057

  12. Low-mass dark matter search using ionization signals in XENON100

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Buss, A.; Bütikofer, L.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Duchovni, E.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Galloway, M.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Gross, E.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Levinson, L.; Le Calloch, M.; Levy, C.; Linde, F.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Lyashenko, A.; Manfredini, A.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Melgarejo Fernandez, A. J.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Simgen, H.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C. D.; von Sivers, M.; Wall, R.; Wang, H.; Weber, M.; Wei, Y.; Weinheimer, C.; Wulf, J.; Zhang, Y.; Xenon Collaboration

    2016-11-01

    We perform a low-mass dark matter search using an exposure of 30 kg ×yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7 keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be constructed without a primary scintillation signal. Instead, we compute an upper limit on the WIMP-nucleon scattering cross section under the assumption that every event passing our selection criteria could be a signal event. Using an energy interval from 0.7 keV to 9.1 keV, we derive a limit on the spin-independent WIMP-nucleon cross section that excludes WIMPs with a mass of 6 GeV /c2 above 1.4 ×10-41 cm2 at 90% confidence level.

  13. Nonlinear mechanical resonators for ultra-sensitive mass detection

    NASA Astrophysics Data System (ADS)

    Datskos, P. G.; Lavrik, N. V.

    2014-10-01

    The fundamental sensitivity limit of an appropriately scaled down mechanical resonator can approach one atomic mass unit when only thermal noise is present in the system. However, operation of such nanoscale mechanical resonators is very challenging due to minuteness of their oscillation amplitudes and presence of multiple noise sources in real experimental environments. In order to surmount these challenges, we use microscale cantilever resonators driven to large amplitudes, far beyond their nonlinear instability onset. Our experiments show that such a nonlinear cantilever resonator, described analytically as a Duffing oscillator, has mass sensing performance comparable to that of much smaller resonators operating in a linear regime. We demonstrate femtogram level mass sensing that relies on a bifurcation point tracking that does not require any complex readout means. Our approaches enable straightforward detection of mass changes that are near the fundamental limit imposed by thermo-mechanical fluctuations.

  14. Development and validation of a hydrophilic interaction chromatography-mass spectrometry assay for taurine and methionine in matrices rich in carbohydrates.

    PubMed

    de Person, Marine; Hazotte, Aurélie; Elfakir, Claire; Lafosse, Michel

    2005-07-22

    A new procedure based on hydrophilic interaction chromatography coupled to tandem mass spectrometry (ionisation process by pneumatically assisted electrospray in negative ion mode), is developed and validated for the simultaneous determination of underivatised taurine and methionine in beverages rich in carbohydrates such as energy drinks. No initial clean-up procedure and no sample derivatisation are required. Satisfactory analysis was obtained on an Astec apHera NH2 (150 mm x 4.6 mm; 5 microm) column with methanol-water (60/40) as mobile phase. The method was validated in terms of specificity, detection limits, linearity, accuracy, precision and stability, using threonine as internal standard. The potential effects of matrix and endogenous amino acid content were also examined. The limits of detection in the beverage varied from 20 microg L(-1) for taurine to 50 micro L(-1) for methionine.

  15. Signal Detection Theory Applied to Helicopter Transmission Diagnostic Thresholds

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Keller, Jonathan A.; Wade, Daniel R.

    2008-01-01

    Helicopter Health Usage Monitoring Systems (HUMS) have potential for providing data to support increasing the service life of a dynamic mechanical component in the transmission of a helicopter. Data collected can demonstrate the HUMS condition indicator responds to a specific component fault with appropriate alert limits and minimal false alarms. Defining thresholds for specific faults requires a tradeoff between the sensitivity of the condition indicator (CI) limit to indicate damage and the number of false alarms. A method using Receiver Operating Characteristic (ROC) curves to assess CI performance was demonstrated using CI data collected from accelerometers installed on several UH60 Black Hawk and AH64 Apache helicopters and an AH64 helicopter component test stand. Results of the analysis indicate ROC curves can be used to reliably assess the performance of commercial HUMS condition indicators to detect damaged gears and bearings in a helicopter transmission.

  16. Environmental applications of single collector high resolution ICP-MS.

    PubMed

    Krachler, Michael

    2007-08-01

    The number of environmental applications of single collector high resolution ICP-MS (HR-ICP-MS) has increased rapidly in recent years. There are many factors that contribute to make HR-ICP-MS a very powerful tool in environmental analysis. They include the extremely low detection limits achievable, tremendously high sensitivity, the ability to separate ICP-MS signals of the analyte from spectral interferences, enabling the reliable determination of many trace elements, and the reasonable precision of isotope ratio measurements. These assets are improved even further using high efficiency sample introduction systems. Therefore, external factors such as the stability of laboratory blanks are frequently the limiting factor in HR-ICP-MS analysis rather than the detection power. This review aims to highlight the most recent applications of HR-ICP-MS in this sector, focusing on matrices and applications where the superior capabilities of the instrumental technique are most useful and often ultimately required.

  17. Views from EPOXI. Colors in Our Solar System as an Analog for Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Crow, Carolyn A.; McFadden, L. A.; Robinson, T.; Livengood, T. A.; Hewagama, T.; Barry, R. K.; Deming, L. D.; Meadows, V.; Lisse, C. M.

    2010-01-01

    With extrasolar planet detection becoming more common place, the frontiers of extrasolar planet science have moved beyond detection to the observations required to determine planetary properties. Once the existing observational challenges have been overcome, the first visible-light studies of extrasolar Earth-sized planets will likely employ filter photometry or low-resolution. spectroscopy to observe disk-integrated radiation from the unresolved planet. While spectroscopy of these targets is highly desirable, and provides the most robust form of characterization. S/N considerations presently limit spectroscopic measurements of extrasolar worlds. Broadband filter photometry will thus serve as a first line of characterization. In this paper we use Extrasolar Observation and Characterization (EPOCh) filter photometry of the Earth. Moon and Mars model spectra. and previous photometric and spectroscopic observations of a range the solar system planets. Titan, and Moon to explore the limitations of using color as a baseline for understanding extrasolar planets

  18. A review of cellphone microscopy for disease detection.

    PubMed

    Dendere, R; Myburg, N; Douglas, T S

    2015-12-01

    The expansion in global cellphone network coverage coupled with advances in cellphone imaging capabilities present an opportunity for the advancement of cellphone microscopy as a low-cost alternative to conventional microscopy for disease detection in resource-limited regions. The development of cellphone microscopy has also benefitted from the availability of low-cost miniature microscope components such as low-power light-emitting diodes and ball lenses. As a result, researchers are developing hardware and software techniques that would enable such microscopes to produce high-resolution, diagnostic-quality images. This approach may lead to more widespread delivery of diagnostic services in resource-limited areas where there is a shortage of the skilled labour required for conventional microscopy and where prevalence of infectious and other diseases is still high. In this paper, we review current techniques, clinical applications and challenges faced in the field of cellphone microscopy. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  19. A sensitive gas chromatography detector based on atmospheric pressure chemical ionization by a dielectric barrier discharge.

    PubMed

    Kirk, Ansgar T; Last, Torben; Zimmermann, Stefan

    2017-02-03

    In this work, we present a novel concept for a gas chromatography detector utilizing an atmospheric pressure chemical ionization which is initialized by a dielectric barrier discharge. In general, such a detector can be simple and low-cost, while achieving extremely good limits of detection. However, it is non-selective apart from the use of chemical dopants. Here, a demonstrator manufactured entirely from fused silica capillaries and printed circuit boards is shown. It has a size of 75×60×25mm 3 and utilizes only 2W of power in total. Unlike other known discharge detectors, which require high-purity helium, this detector can theoretically be operated using any gas able to form stable ion species. Here, purified air is used. With this setup, limits of detection in the low parts-per-billion range have been obtained for acetone. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Heterogeneity, histological features and DNA ploidy in oral carcinoma by image-based analysis.

    PubMed

    Diwakar, N; Sperandio, M; Sherriff, M; Brown, A; Odell, E W

    2005-04-01

    Oral squamous carcinomas appear heterogeneous on DNA ploidy analysis. However, this may be partly a result of sample dilution or the detection limit of techniques. The aim of this study was to determine whether oral squamous carcinomas are heterogeneous for ploidy status using image-based ploidy analysis and to determine whether ploidy status correlates with histological parameters. Multiple samples from 42 oral squamous carcinomas were analysed for DNA ploidy using an image-based system and scored for histological parameters. 22 were uniformly aneuploid, 1 uniformly tetraploid and 3 uniformly diploid. 16 appeared heterogeneous but only 8 appeared to be genuinely heterogeneous when minor ploidy histogram peaks were taken into account. Ploidy was closely related to nuclear pleomorphism but not differentiation. Sample variation, detection limits and diagnostic criteria account for much of the ploidy heterogeneity observed. Confident diagnosis of diploid status in an oral squamous cell carcinoma requires a minimum of 5 samples.

  1. Signal Detection Theory Applied to Helicopter Transmission Diagnostic Thresholds

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Keller, Jonathan A.; Wade, Daniel R.

    2009-01-01

    Helicopter Health Usage Monitoring Systems (HUMS) have potential for providing data to support increasing the service life of a dynamic mechanical component in the transmission of a helicopter. Data collected can demonstrate the HUMS condition indicator responds to a specific component fault with appropriate alert limits and minimal false alarms. Defining thresholds for specific faults requires a tradeoff between the sensitivity of the condition indicator (CI) limit to indicate damage and the number of false alarms. A method using Receiver Operating Characteristic (ROC) curves to assess CI performance was demonstrated using CI data collected from accelerometers installed on several UH60 Black Hawk and AH64 Apache helicopters and an AH64 helicopter component test stand. Results of the analysis indicate ROC curves can be used to reliably assess the performance of commercial HUMS condition indicators to detect damaged gears and bearings in a helicopter transmission.

  2. High-performance liquid chromatographic assay for the determination of Aloe Emodin in mouse plasma.

    PubMed

    Zaffaroni, M; Mucignat, C; Pecere, T; Zagotto, G; Frapolli, R; D'Incalci, M; Zucchetti, M

    2003-10-25

    An isocratic high-performance liquid chromatography (HPLC) method was developed and validated to determine Aloe Emodin (AE) in mouse plasma. The analysis required 0.3 ml of plasma and involves extraction with dichloromethane. The HPLC separation was carried out on Symmetry Shield RP18, a mobile phase of methanol-water-acetic acid (65:35:0.2) and fluorescence detection at lambda(ex)=410 nm and lambda(em)=510 nm. The retention time of AE was 11.7 min. The assay was linear from 10 to 1,000 ng/ml (r2 > or = 0.999), showed intra- and inter-day precision within 7.8 and 4.7%, and accuracy of 87.3-105.7%. Detection limit (LOD) and quantification limit (LOQ) were 4.5 and 5 ng/ml, respectively. The method was applied to determine for the first time the pharmacokinetic of AE in mice.

  3. Diagnosis of toxic alcohols: limitations of present methods.

    PubMed

    Kraut, Jeffrey A

    2015-01-01

    Methanol, ethylene glycol, diethylene glycol, and propylene glycol intoxications are associated with cellular dysfunction and an increased risk of death. Adverse effects can develop quickly; thus, there is a need for methods for rapidly detecting their presence. To examine the value and limitations of present methods to diagnose patients with possible toxic alcohol exposure. I searched MEDLINE for articles published between 1969 and 2014 using the terms: toxic alcohols, serum osmolality, serum osmol gap, serum anion gap, metabolic acidosis, methanol, ethylene glycol, diethylene glycol, propylene glycol, and fomepizole. Each article was reviewed for additional references. The diagnosis of toxic alcohol exposure is often made on the basis of this history and physical findings along with an increase in the serum osmol and anion gaps. However, an increase in the osmol and/or anion gaps is not always present. Definitive detection in blood requires gas or liquid chromatography, laborious and expensive procedures which are not always available. Newer methods including a qualitative colorimetric test for detection of all alcohols or enzymatic tests for a specific alcohol might allow for more rapid diagnosis. Exposure to toxic alcohols is associated with cellular dysfunction and increased risk of death. Treatment, if initiated early, can markedly improve outcome, but present methods of diagnosis including changes in serum osmol and anion gap, and use of gas or liquid chromatography have important limitations. Development of more rapid and effective tests for detection of these intoxications is essential for optimal care of patients.

  4. Characterizing nonconstant instrumental variance in emerging miniaturized analytical techniques.

    PubMed

    Noblitt, Scott D; Berg, Kathleen E; Cate, David M; Henry, Charles S

    2016-04-07

    Measurement variance is a crucial aspect of quantitative chemical analysis. Variance directly affects important analytical figures of merit, including detection limit, quantitation limit, and confidence intervals. Most reported analyses for emerging analytical techniques implicitly assume constant variance (homoskedasticity) by using unweighted regression calibrations. Despite the assumption of constant variance, it is known that most instruments exhibit heteroskedasticity, where variance changes with signal intensity. Ignoring nonconstant variance results in suboptimal calibrations, invalid uncertainty estimates, and incorrect detection limits. Three techniques where homoskedasticity is often assumed were covered in this work to evaluate if heteroskedasticity had a significant quantitative impact-naked-eye, distance-based detection using paper-based analytical devices (PADs), cathodic stripping voltammetry (CSV) with disposable carbon-ink electrode devices, and microchip electrophoresis (MCE) with conductivity detection. Despite these techniques representing a wide range of chemistries and precision, heteroskedastic behavior was confirmed for each. The general variance forms were analyzed, and recommendations for accounting for nonconstant variance discussed. Monte Carlo simulations of instrument responses were performed to quantify the benefits of weighted regression, and the sensitivity to uncertainty in the variance function was tested. Results show that heteroskedasticity should be considered during development of new techniques; even moderate uncertainty (30%) in the variance function still results in weighted regression outperforming unweighted regressions. We recommend utilizing the power model of variance because it is easy to apply, requires little additional experimentation, and produces higher-precision results and more reliable uncertainty estimates than assuming homoskedasticity. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Coherent Doppler lidar for automated space vehicle rendezvous, stationkeeping and capture

    NASA Technical Reports Server (NTRS)

    Bilbro, James A.

    1991-01-01

    The inherent spatial resolution of laser radar makes ladar or lidar an attractive candidate for Automated Rendezvous and Capture application. Previous applications were based on incoherent lidar techniques, requiring retro-reflectors on the target vehicle. Technology improvements (reduced size, no cryogenic cooling requirement) have greatly enhanced the construction of coherent lidar systems. Coherent lidar permits the acquisition of non-cooperative targets at ranges that are limited by the detection capability rather than by the signal-to-noise ratio (SNR) requirements. The sensor can provide translational state information (range, velocity, and angle) by direct measurement and, when used with any array detector, also can provide attitude information by Doppler imaging techniques. Identification of the target is accomplished by scanning with a high pulse repetition frequency (dependent on the SNR). The system performance is independent of range and should not be constrained by sun angle. An initial effort to characterize a multi-element detection system has resulted in a system that is expected to work to a minimum range of 1 meter. The system size, weight and power requirements are dependent on the operating range; 10 km range requires a diameter of 3 centimeters with overall size at 3 x 3 x 15 to 30 cm, while 100 km range requires a 30 cm diameter.

  6. Multi-colored immunochromatography using nanobeads for rapid and sensitive typing of seasonal influenza viruses.

    PubMed

    Sakurai, Akira; Takayama, Katsuyoshi; Nomura, Namiko; Yamamoto, Naoki; Sakoda, Yoshihiro; Kobayashi, Yukuharu; Kida, Hiroshi; Shibasaki, Futoshi

    2014-12-01

    Immunochromatography (IC) is an antigen-detection assay that plays an important role in the rapid diagnosis of influenza viruses because of its rapid turnaround and ease of use. Despite the usefulness of IC, the limit of detection of common IC kits is as high as 10(3)-10(4) plaque forming units (pfu) per reaction, resulting in their limited sensitivities. Early diagnosis within 24h would provide more appropriate timing of treatment. In this study, a multi-colored NanoAct™ bead IC was established to detect seasonal influenza viruses. This method has approximately 10-fold higher sensitivity than that of colloidal gold or colored latex bead IC assays, and does not require specific instruments. More notably, NanoAct™ bead IC can distinguish influenza A and B viruses from clinical samples with a straightforward readout composed of colored lines. Our results will provide new strategies for the diagnosis, treatment, and a chance to survey of influenza viruses in developing countries and in the field research. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effect of Detector Dead Time on the Performance of Optical Direct-Detection Communication Links

    NASA Technical Reports Server (NTRS)

    Chen, C.-C.

    1988-01-01

    Avalanche photodiodes (APDs) operating in the Geiger mode can provide a significantly improved single-photon detect ion sensitivity over conventional photodiodes. However, the quenching circuit required to remove the excess charge carriers after each photon event can introduce an undesirable dead time into the detection process. The effect of this detector dead time on the performance of a binary pulse-position-modulted (PPM) channel is studied by analyzing the error probability. It is shown that, when back- ground noise is negligible, the performance of the detector with dead time is similar to that o f a quantum-limited receiver. For systems with increasing background intensities, the error rate of the receiver starts to degrade rapidly with increasing dead time. The power penalty due to detector dead time is also evaluated and shown to depend critically on background intensity as well as dead time. Given the expected background strength in an optical channel, therefore, a constraint must be placed on the bandwidth of the receiver to limit the amount of power penalty due to detector dead time.

  8. Antibiotic use in heavy pigs: Comparison between urine and muscle samples from food chain animals analysed by HPLC-MS/MS.

    PubMed

    Chiesa, Luca Maria; Nobile, Maria; Panseri, Sara; Arioli, Francesco

    2017-11-15

    The antibiotic overuse in zoothechnics, due to prophylactic and therapeutic treatments, or to their growth-promoting activity, is a major cause for the onset of widespread antibiotic resistance. Of particular relevance to this study, is the antibiotic abuse in pig breeding. Despite the comprehensive literature on residue controls in pig muscle, data on pig urine, a non-invasive, on-farm collectable matrix, are lacking. Therefore, we validated an HPLC-MS/MS method to detect 29 antimicrobials from eight classes and applied it to 43 anonymous pig urine and muscle paired samples and fulfilled the parameters in agreement with the Commission Decision 2002/657/UE. The analytical limits were moreover much lower than the maximum residue limits (MRLs) required by the Commission Regulation 37/2010/UE. In the samples, antibiotics were usually detected at higher frequencies and concentrations in urine than muscle. Urine proved a useful tool to detect antibiotic administration and their excessive use in pig farming is depicted. Copyright © 2017. Published by Elsevier Ltd.

  9. Taking Halo-Independent Dark Matter Methods Out of the Bin

    DOE PAGES

    Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2014-10-30

    We develop a new halo-independent strategy for analyzing emerging DM hints, utilizing the method of extended maximum likelihood. This approach does not require the binning of events, making it uniquely suited to the analysis of emerging DM direct detection hints. It determines a preferred envelope, at a given confidence level, for the DM velocity integral which best fits the data using all available information and can be used even in the case of a single anomalous scattering event. All of the halo-independent information from a direct detection result may then be presented in a single plot, allowing simple comparisons betweenmore » multiple experiments. This results in the halo-independent analogue of the usual mass and cross-section plots found in typical direct detection analyses, where limit curves may be compared with best-fit regions in halo-space. The method is straightforward to implement, using already-established techniques, and its utility is demonstrated through the first unbinned halo-independent comparison of the three anomalous events observed in the CDMS-Si detector with recent limits from the LUX experiment.« less

  10. Explosives signatures and analysis

    NASA Astrophysics Data System (ADS)

    Fountain, Augustus Way, III; Oyler, Jonathan M.; Ostazeski, Stanley A.

    2008-04-01

    The challenge of sampling explosive materials for various high threat military and civilian operational scenarios requires the community to identify and exploit other chemical compounds within the mixtures that may be available to support stand-off detection techniques. While limited surface and vapor phase characterization of IEDs exist, they are insufficient to guide the future development and evaluation of field deployable explosives detection (proximity and standoff) capabilities. ECBC has conducted a limited investigation of three artillery ammunition types to determine what chemical vapors, if any, are available for sensing; the relative composition of the vapors which includes the more volatile compounds in munitions, i.e., plastersizers and binders; and the sensitivity needed detect these vapors at stand-off. Also in partnership with MIT-Lincoln Laboratory, we performed a background measurement campaign at the National Training Center to determine the baseline ambient amounts and variability of nitrates and nitro-ester compounds as vapors, particulates, and on surfaces; as well as other chemical compounds related to non-energetic explosive additives. Environmental persistence studies in contexts relevant to counter-IED sensing operations, such as surface residues, are still necessary.

  11. The Gaia–WISE Extragalactic Astrometric Catalog

    NASA Astrophysics Data System (ADS)

    Paine, Jennie; Darling, Jeremy; Truebenbach, Alexandra

    2018-06-01

    The Gaia mission has detected a large number of active galactic nuclei (AGNs) and galaxies, but these objects must be identified among the thousandfold more numerous stars. Extant astrometric AGN catalogs do not have the uniform sky coverage required to detect and characterize the all-sky, low-multipole proper motion signals produced by the barycenter motion, gravitational waves, and cosmological effects. To remedy this, we present an all-sky sample of 567,721 AGNs in Gaia Data Release 1, selected using WISE two-color criteria. The catalog has fairly uniform sky coverage beyond the Galactic plane, with a mean density of 12.8 AGNs per square degree. The objects have magnitudes ranging from G = 8.8 down to Gaia’s magnitude limit, G = 20.7. The catalog is approximately 50% complete but suffers from low stellar contamination, roughly 0.2%. We predict that the end-of-mission Gaia proper motions for this catalog will enable detection of the secular aberration drift to high significance (23σ) and will place an upper limit on the anisotropy of the Hubble expansion of about 2%.

  12. Effect of detector dead time on the performance of optical direct-detection communication links

    NASA Astrophysics Data System (ADS)

    Chen, C.-C.

    1988-05-01

    Avalanche photodiodes (APDs) operating in the Geiger mode can provide a significantly improved single-photon detection sensitivity over conventional photodiodes. However, the quenching circuit required to remove the excess charge carriers after each photon event can introduce an undesirable dead time into the detection process. The effect of this detector dead time on the performance of a binary pulse-position-modulated (PPM) channel is studied by analyzing the error probability. It is shown that, when background noise is negligible, the performance of the detector with dead time is similar to that of a quantum-limited receiver. For systems with increasing background intensities, the error rate of the receiver starts to degrade rapidly with increasing dead time. The power penalty due to detector dead time is also evaluated and shown to depend critically on badkground intensity as well as dead time. Given the expected background strength in an optical channel, therefore, a constraint must be placed on the bandwidth of the receiver to limit the amount of power penalty due to detector dead time.

  13. Comparision of ICP-OES and MP-AES in determing soil nutrients by Mechlich3 method

    NASA Astrophysics Data System (ADS)

    Tonutare, Tonu; Penu, Priit; Krebstein, Kadri; Rodima, Ako; Kolli, Raimo; Shanskiy, Merrit

    2014-05-01

    Accurate, routine testing of nutrients in soil samples is critical to understanding soil potential fertility. There are different factors which must be taken into account selecting the best analytical technique for soil laboratory analysis. Several techniques can provide adequate detection range for same analytical subject. In similar cases the choise of technique will depend on factors such as sample throughput, required infrastructure, ease of use, used chemicals and need for gas supply and operating costs. Mehlich 3 extraction method is widely used for the determination of the plant available nutrient elements contents in agricultural soils. For determination of Ca, K, and Mg from soil extract depending of laboratory ICP and AAS techniques are used, also flame photometry for K in some laboratories. For the determination of extracted P is used ICP or Vis spectrometry. The excellent sensitivity and wide working range for all extracted elements make ICP a nearly ideal method, so long as the sample throughput is big enough to justify the initial capital outlay. Other advantage of ICP techniques is the multiplex character (simultaneous acquisition of all wavelengths). Depending on element the detection limits are in range 0.1 - 1000 μg/L. For smaller laboratories with low sample throughput requirements the use of AAS is more common. Flame AAS is a fast, relatively cheap and easy technique for analysis of elements. The disadvantages of the method is single element analysis and use of flammable gas, like C2H2 and oxidation gas N2O for some elements. Detection limits of elements for AAS lays from 1 to 1000 μg/L. MP-AES offers a unique alternative to both, AAS and ICP-OES techniques with its detection power, speed of analysis. MP-AES is quite new, simple and relatively inexpensive multielemental technique, which is use self-sustained atmospheric pressure microwave plasma (MP) using nitrogen gas generated by nitrogen generator. Therefore not needs for argon and flammable (C2H2) gases, cylinder handling and the running costs of equipment are low. Detection limits of elements for MP-AES lays between the AAS and ICP ones. The objective of this study was to compare the results of soil analysis using two multielemental analytical methods - ICP-OES and MP-AES. In the experiment, different soil types with various texture, content of organic matter and pH were used. For the study soil samples of Albeluvisols, Leptosols, Cambisols, Regosols and Histosols were used . The plant available nutrients were estimated by Mehlich 3 extraction. The ICP-OES analysis were provided in the Estonian Agricultural Research Centre and MP-AES analysis in department of Soil Science and Agrochemistry at Estonian University of Life Sciences. The detection limits and limits of quantification of Ca, K, Mg and P in extracts are calculated and reported.

  14. Toward multimodal signal detection of adverse drug reactions.

    PubMed

    Harpaz, Rave; DuMouchel, William; Schuemie, Martijn; Bodenreider, Olivier; Friedman, Carol; Horvitz, Eric; Ripple, Anna; Sorbello, Alfred; White, Ryen W; Winnenburg, Rainer; Shah, Nigam H

    2017-12-01

    Improving mechanisms to detect adverse drug reactions (ADRs) is key to strengthening post-marketing drug safety surveillance. Signal detection is presently unimodal, relying on a single information source. Multimodal signal detection is based on jointly analyzing multiple information sources. Building on, and expanding the work done in prior studies, the aim of the article is to further research on multimodal signal detection, explore its potential benefits, and propose methods for its construction and evaluation. Four data sources are investigated; FDA's adverse event reporting system, insurance claims, the MEDLINE citation database, and the logs of major Web search engines. Published methods are used to generate and combine signals from each data source. Two distinct reference benchmarks corresponding to well-established and recently labeled ADRs respectively are used to evaluate the performance of multimodal signal detection in terms of area under the ROC curve (AUC) and lead-time-to-detection, with the latter relative to labeling revision dates. Limited to our reference benchmarks, multimodal signal detection provides AUC improvements ranging from 0.04 to 0.09 based on a widely used evaluation benchmark, and a comparative added lead-time of 7-22 months relative to labeling revision dates from a time-indexed benchmark. The results support the notion that utilizing and jointly analyzing multiple data sources may lead to improved signal detection. Given certain data and benchmark limitations, the early stage of development, and the complexity of ADRs, it is currently not possible to make definitive statements about the ultimate utility of the concept. Continued development of multimodal signal detection requires a deeper understanding the data sources used, additional benchmarks, and further research on methods to generate and synthesize signals. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A new high-performance thin layer chromatography-based assay of detergents and surfactants commonly used in membrane protein studies.

    PubMed

    Barret, Laurie-Anne; Polidori, Ange; Bonneté, Françoise; Bernard-Savary, Pierre; Jungas, Colette

    2013-03-15

    The hydrophobic nature of membrane proteins (MPs) necessitates the use of detergents for their extraction, solubilization and purification. Because the concentration of amphiphiles is crucial in the crystallization process, detergent quantification is essential to routine analysis. Here we describe a quantitative high-performance thin-layer chromatography (HPTLC) method we developed for the detection of small quantities of detergent bound to solubilized MPs. After optimization of aqueous deposit conditions, we show that most detergents widely used in membrane protein crystallography display distinctive mobilities in a mixture of dichloromethane, methanol and acetic acid 32:7.6:0.4 (v/v/v). Migration and derivatization conditions were optimized with n-dodecyl-β-D-maltoside (DDM), the most popular detergent for membrane protein crystallization. A linear calibration curve very well fits our data from 0.1 to 1.6 μg of DDM in water with a limit of detection of 0.05 μg. This limit of detection is the best achieved to date for a routine detergent assay, being not modified by the addition of NaCl, commonly used in protein buffers. With these chromatographic conditions, no prior treatment is required to assess the quantities of detergent bound to purified MPs, thus enabling the quantification of close structure detergents via a single procedure. This HPTLC method, which is fast and requires low sample volume, is fully suitable for routine measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Development of a rapid method to quantify Salmonella Typhimurium using a combination of MPN with qPCR and a shortened time incubation.

    PubMed

    Kim, Sun Ae; Park, Si Hong; Lee, Sang In; Ricke, Steven C

    2017-08-01

    A novel method was developed for the specific quantification of S. Typhimurium using a most-probable-number (MPN) combined with qPCR and a shortened incubation time (MPN-qPCR-SIT). For S. Typhimurium enumeration, dilutions of samples were transferred into three wells on a microtiter plate and the plate was incubated for 4 h. The S. Typhimurium presence in the wells was identified using a qPCR and populations were determined based on an MPN calculation. The R 2 between the MPN-qPCR-SIT and conventional MPN exhibited a high level of correlation (0.9335-0.9752), suggesting that the MPN-qPCR-SIT offers a reliable alternative method for S. Typhimurium quantification. Although plating and qPCR were limited in their ability to detect low levels of S. Typhimurium (e.g. 0.18 log MPN/ml), these levels could be successfully detected with the MPN-qPCR-SIT. Chicken breast samples inoculated with S. Typhimurium were incubated at 0, 4, and 24 h and incubated samples were subjected to microbiome analysis. Levels of Salmonella and Enterobacteriaceae increased significantly with incubation time. The obvious benefits of the MPN-qPCR-SIT are: 1) a further confirmation step is not required, 2) the detection limit is as low as conventional MPN, but 3) is more rapid, requiring approximately 7 h to simultaneously complete quantification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Rapid method for monitoring N-nitrosodimethylamine in drinking water at the ng/L level without pre-concentration using high-performance liquid chromatography-chemiluminescence detection.

    PubMed

    Kodamatani, Hitoshi; Yamasaki, Hitomi; Sakaguchi, Takeru; Itoh, Shinya; Iwaya, Yoshimi; Saga, Makoto; Saito, Keiitsu; Kanzaki, Ryo; Tomiyasu, Takashi

    2016-08-19

    As a contaminant in drinking water, N-nitrosodimethylamine (NDMA) is of great concern because of its carcinogenicity; it has been limited to levels of ng/L by regulatory bodies worldwide. Consequently, a rapid and sensitive method for monitoring NDMA in drinking water is urgently required. In this study, we report an improvement of our previously proposed HPLC-based system for NDMA determination. The approach consists of the HPLC separation of NDMA, followed by NDMA photolysis to form peroxynitrite and detection with a luminol chemiluminescence reaction. The detection limit for the improved HPLC method was 0.2ng/L, which is 10 times more sensitive than our previously reported system. For tap water measurements, only the addition of an ascorbic acid solution to eliminate residual chlorine and passage through an Oasis MAX solid-phase extraction cartridge are needed. The proposed NDMA determination method requires a sample volume of less than 2mL and a complete analysis time of less than 15min per sample. The method was utilized for the long-term monitoring of NDMA in tap water. The NDMA level measured in the municipal water survey was 4.9ng/L, and a seasonal change of the NDMA concentration in tap water was confirmed. The proposed method should constitute a useful NDMA monitoring method for protecting drinking water quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Material Limitations on the Detection Limit in Refractometry

    PubMed Central

    Skafte-Pedersen, Peder; Nunes, Pedro S.; Xiao, Sanshui; Mortensen, Niels Asger

    2009-01-01

    We discuss the detection limit for refractometric sensors relying on high-Q optical cavities and show that the ultimate classical detection limit is given by min {Δn} ≳ η, with n + iη being the complex refractive index of the material under refractometric investigation. Taking finite Q factors and filling fractions into account, the detection limit declines. As an example we discuss the fundamental limits of silicon-based high-Q resonators, such as photonic crystal resonators, for sensing in a bio-liquid environment, such as a water buffer. In the transparency window (λ ≳ 1100 nm) of silicon the detection limit becomes almost independent on the filling fraction, while in the visible, the detection limit depends strongly on the filling fraction because the silicon absorbs strongly. PMID:22291513

  19. Capillary zone electrophoresis for analysis of complex proteomes using an electrokinetically pumped sheath flow nanospray interface

    PubMed Central

    Sun, Liangliang; Zhu, Guijie; Yan, Xiaojing; Champion, Mathew M.

    2014-01-01

    The vast majority of proteomic studies employ reversed-phase high-performance liquid chromatography coupled with tandem mass spectrometry for analysis of the tryptic digest of a cellular lysate. This technology is quite mature, and typically provides identification of hundreds to thousands of peptides, which is used to infer the identity of hundreds to thousands of proteins. These approaches usually require milligrams to micrograms of starting material. Capillary zone electrophoresis provides an interesting alternative separation method based on a different separation mechanism than HPLC. Capillary electrophoresis received some attention for protein analysis beginning 25 years ago. Those efforts stalled because of the limited performance of the electrospray interfaces and the limited speed and sensitivity of mass spectrometers of that era. This review considers a new electrospray interface design coupled with Orbitrap Velos and linear Q-trap mass spectrometers. Capillary zone electrophoresis coupled with this interface and these detectors provides single shot detection of >1,250 peptides from an E. coli digest in less than one hour, identification of nearly 5,000 peptides from analysis of seven fractions produced by solid-phase extraction of the E. coli digest in a six hour total analysis time, low attomole detection limits for peptides generated from standard proteins, and high zeptomole detection limits for selected ion monitoring of peptides. Incorporation of an integrated on-line immobilized trypsin microreactor allows digestion and analysis of picogram amounts of a complex eukaryotic proteome. PMID:24277677

  20. From Pacemaker to Wearable: Techniques for ECG Detection Systems.

    PubMed

    Kumar, Ashish; Komaragiri, Rama; Kumar, Manjeet

    2018-01-11

    With the alarming rise in the deaths due to cardiovascular diseases (CVD), present medical research scenario places notable importance on techniques and methods to detect CVDs. As adduced by world health organization, technological proceeds in the field of cardiac function assessment have become the nucleus and heart of all leading research studies in CVDs in which electrocardiogram (ECG) analysis is the most functional and convenient tool used to test the range of heart-related irregularities. Most of the approaches present in the literature of ECG signal analysis consider noise removal, rhythm-based analysis, and heartbeat detection to improve the performance of a cardiac pacemaker. Advancements achieved in the field of ECG segments detection and beat classification have a limited evaluation and still require clinical approvals. In this paper, approaches on techniques to implement on-chip ECG detector for a cardiac pacemaker system are discussed. Moreover, different challenges regarding the ECG signal morphology analysis deriving from medical literature is extensively reviewed. It is found that robustness to noise, wavelet parameter choice, numerical efficiency, and detection performance are essential performance indicators required by a state-of-the-art ECG detector. Furthermore, many algorithms described in the existing literature are not verified using ECG data from the standard databases. Some ECG detection algorithms show very high detection performance with the total number of detected QRS complexes. However, the high detection performance of the algorithm is verified using only a few datasets. Finally, gaps in current advancements and testing are identified, and the primary challenge remains to be implementing bullseye test for morphology analysis evaluation.

  1. Drug detection in breath: non-invasive assessment of illicit or pharmaceutical drugs.

    PubMed

    Trefz, Phillip; Kamysek, Svend; Fuchs, Patricia; Sukul, Pritam; Schubert, Jochen K; Miekisch, Wolfram

    2017-03-20

    Breath analysis not only holds great potential for the development of new non-invasive diagnostic methods, but also for the identification and follow up of drug levels in breath. This is of interest for both, forensic and medical science. On the one hand, the detection of drugs of abuse in exhaled breath-similar to the well-known breath alcohol tests-would be highly desirable as an alternative to blood or urine analysis in situations such as police controls for drugged driving. The non-invasive detection of drugs and their metabolites is thus of great interest in forensic science, especially since marijuana is becoming legalized in certain parts of the US and the EU. The detection and monitoring of medical drugs in exhaled breath without the need of drawing blood samples on the other hand, is of high relevance in the clinical environment. This could facilitate a more precise medication and enable therapy control without any burden to the patient. Furthermore, it could be a step towards personalized medicine. This review gives an overview of the current state of drug detection in breath, including both volatile and non-volatile substances. The review is divided into two sections. The first section deals with qualitative detection of drugs (drugs of abuse), while the second is related to quantitative drug detection (medical drugs). Chances and limitations are discussed for both aspects. The detection of the intravenous anesthetic propofol is presented as a detailed example that demonstrates the potential, requirements, pitfalls and limitations of therapeutic drug monitoring by means of breath analysis.

  2. Augmented Reality for Real-Time Detection and Interpretation of Colorimetric Signals Generated by Paper-Based Biosensors.

    PubMed

    Russell, Steven M; Doménech-Sánchez, Antonio; de la Rica, Roberto

    2017-06-23

    Colorimetric tests are becoming increasingly popular in point-of-need analyses due to the possibility of detecting the signal with the naked eye, which eliminates the utilization of bulky and costly instruments only available in laboratories. However, colorimetric tests may be interpreted incorrectly by nonspecialists due to disparities in color perception or a lack of training. Here we solve this issue with a method that not only detects colorimetric signals but also interprets them so that the test outcome is understandable for anyone. It consists of an augmented reality (AR) app that uses a camera to detect the colored signals generated by a nanoparticle-based immunoassay, and that yields a warning symbol or message when the concentration of analyte is higher than a certain threshold. The proposed method detected the model analyte mouse IgG with a limit of detection of 0.3 μg mL -1 , which was comparable to the limit of detection afforded by classical densitometry performed with a nonportable device. When adapted to the detection of E. coli, the app always yielded a "hazard" warning symbol when the concentration of E. coli in the sample was above the infective dose (10 6 cfu mL -1 or higher). The proposed method could help nonspecialists make a decision about drinking from a potentially contaminated water source by yielding an unambiguous message that is easily understood by anyone. The widespread availability of smartphones along with the inexpensive paper test that requires no enzymes to generate the signal makes the proposed assay promising for analyses in remote locations and developing countries.

  3. A non-earthcentric approach to life detection

    NASA Technical Reports Server (NTRS)

    Conrad, P. G.; Nealson, K. H.

    2001-01-01

    The ultimate goal of a comprehensive life detection strategy is never to miss life when we encounter it. To accomplish this goal, we must define life in universal, that is, non-Earthcentric, measurable terms. Next, we must understand the nature of biosignatures observed from the measured parameters of life. And finally, we must have a clear idea of the end-member states for the search--what does life, past life, or no life look like (in terms of the measured parameters) at multiple spatial and temporal scales? If we can approach these problems both in the laboratory and in the field on Earth, then we have a chance of being able to detect life elsewhere in our solar system. What are the required limits of detection at each of those scales? What spatial, spectral, and temporal resolutions are necessary to detect life? These questions are actively being investigated in our group, and in this report, we present our strategy and approach to non-Earthcentric life detection.

  4. A sensitive electrochemical immunosensor for label-free detection of Zika-virus protein.

    PubMed

    Kaushik, Ajeet; Yndart, Adriana; Kumar, Sanjeev; Jayant, Rahul Dev; Vashist, Arti; Brown, Ashley N; Li, Chen-Zhong; Nair, Madhavan

    2018-06-26

    This work, as a proof of principle, presents a sensitive and selective electrochemical immunosensor for Zika-virus (ZIKV)-protein detection using a functionalized interdigitated micro-electrode of gold (IDE-Au) array. A miniaturized IDE-Au immunosensing chip was prepared via immobilization of ZIKV specific envelop protein antibody (Zev-Abs) onto dithiobis(succinimidyl propionate) i.e., (DTSP) functionalized IDE-Au (electrode gap/width of 10 µm). Electrochemical impedance spectroscopy (EIS) was performed to measure the electrical response of developed sensing chip as a function of ZIKV-protein concentrations. The results of EIS studies confirmed that sensing chip detected ZIKV-protein selectively and exhibited a detection range from 10 pM to 1 nM and a detection limit of 10 pM along with a high sensitivity of 12 kΩM -1 . Such developed ZIKV immune-sensing chip can be integrated with a miniaturized potentiostat (MP)-interfaced with a smartphone for rapid ZIKV-infection detection required for early stage diagnostics at point-of-care application.

  5. Development of a recombinase polymerase amplification assay for the detection of pathogenic Leptospira.

    PubMed

    Ahmed, Ahmed; van der Linden, Hans; Hartskeerl, Rudy A

    2014-05-08

    Detection of leptospires based on DNA amplification techniques is essential for the early diagnosis of leptospirosis when anti-Leptospira antibodies are below the detection limit of most serological tests. In middle and low income countries where leptospirosis is endemic, routine implementation of real-time PCR is financially and technically challenging due to the requirement of expensive thermocycler equipment. In this study we report the development and evaluation of a novel isothermal recombinase polymerase amplification assay (RPA) for detection of pathogenic Leptospira based on TwistAmp chemistry. RPA enabled the detection of less than two genome copies per reaction. Retrospective evaluation revealed a high diagnostic accuracy (sensitivity and specificity of 94.7% and 97.7%, respectively) compared to culturing as the reference standard. RPA presents a powerful tool for the early diagnosis of leptospirosis in humans and in animals. Furthermore, it enables the detection of the causative agent in reservoirs and environment, and as such is a valuable adjunct to current tools for surveillance and early outbreak warning.

  6. Development of a Recombinase Polymerase Amplification Assay for the Detection of Pathogenic Leptospira

    PubMed Central

    Ahmed, Ahmed; van der Linden, Hans; Hartskeerl, Rudy A.

    2014-01-01

    Detection of leptospires based on DNA amplification techniques is essential for the early diagnosis of leptospirosis when anti-Leptospira antibodies are below the detection limit of most serological tests. In middle and low income countries where leptospirosis is endemic, routine implementation of real-time PCR is financially and technically challenging due to the requirement of expensive thermocycler equipment. In this study we report the development and evaluation of a novel isothermal recombinase polymerase amplification assay (RPA) for detection of pathogenic Leptospira based on TwistAmp chemistry. RPA enabled the detection of less than two genome copies per reaction. Retrospective evaluation revealed a high diagnostic accuracy (sensitivity and specificity of 94.7% and 97.7%, respectively) compared to culturing as the reference standard. RPA presents a powerful tool for the early diagnosis of leptospirosis in humans and in animals. Furthermore, it enables the detection of the causative agent in reservoirs and environment, and as such is a valuable adjunct to current tools for surveillance and early outbreak warning. PMID:24814943

  7. Development of CO2 laser Doppler instrumentation for detection of clear air turbulence, volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Jelalian, A. V.

    1979-01-01

    Analyses of the mounting and mount support systems of the clear air turbulence transmitters verify that satisfactory shock and vibration isolation are attained. The mount support structure conforms to flight crash safety requirements with high margins of safety. Restraint cables reinforce the mounts in the critical loaded forward direction limiting maximum forward system deflection to 1 1/4 inches.

  8. Overcoming Vocabulary Limitations in Twitter Microblogs

    DTIC Science & Technology

    2012-11-01

    lence footer By BARRY WILNER AP Pro Football Writer - National Football League news Table 2: Sample expansion terms for tweets Tweet Type Number of...written by a different au- thor that was forwarded) or are non- English tweets are non- relevant. Additionally, document expansion requires detect- ing and...retweets as well. 3.4 Language Identification The Microblog Track guidelines stipulate that non- English tweets are non-relevant. Therefore, the

  9. Characterization Of Nuclear Materials Using Time-Of-Flight ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buerger, Stefan; Riciputi, Lee R; Bostick, Debra A

    2006-01-01

    The investigation of illicit trafficking of nuclear materials, nuclear safeguards analysis, and non-proliferation control requires sensitive and isotope-selective detection methods to gain crucial nuclear forensic information like isotope 'fingerprints' and multi-element signatures. The advantage of time-of-flight (TOF) mass spectrometry - quasi-simultaneous multi-mass analysis - combined with an inductively coupled plasma (ICP) ion source provides an analytical instrument with multi-element and multi-isotope capability and good detection limits. A TOF-ICP-MS system thus appears to be an advantageous choice for the investigation and characterization of nuclear materials. We present here results using a GBC OptiMass 8000 time-of-flight ICP-MS for the isotope screening ofmore » solid samples by laser ablation and the multi-element determination of impurities in uranium ore concentrates using matrix matched standards. A laser ablation system (New Wave Research, UP 213) coupled to the TOF-ICP-MS instrument has been used to optimize the system for analysis of non-radioactive metal samples of natural isotopic composition for a variety of elements including Cu, Sr, Zr, Mo, Cd, In, Ba, Ta, W, Re, Pt, and Pb in pure metals, alloys, and glasses to explore precision, accuracy, and detection limits. Similar methods were then applied to measure uranium. When the laser system is optimized, no mass bias correction is required. Precision and accuracy for the determination of the isotopic composition is typically 1 - 3% for elemental concentrations of as little as 50 ppm in the matrix, with no requirement for sample preparation. The laser ablation precision and accuracy are within ~10x of the instrumental limits for liquid analysis (0.1%). We have investigated the capabilities of the TOF-ICP-MS for the analysis of impurities in uranium matrices. Matrix matching has been used to develop calibration curves for a range of impurities (alkaline, earth-alkaline, transition metals, and rare earth elements). These calibration curves have been used to measure impurities in a number of uranium samples. The results from the TOF-ICP-MS will be compared with other mass spectrometric methods.« less

  10. A Portable Immunoassay Platform for Multiplexed Detection of Biotoxins in Clinical and Environmental Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koh, Chung-Yan; Piccini, Matthew Ernest; Schaff, Ulrich Y.

    Multiple cases of attempted bioterrorism events using biotoxins have highlighted the urgent need for tools capable of rapid screening of suspect samples in the field (e.g., mailroom and public events). We present a portable microfluidic device capable of analyzing environmental (e.g., white powder), food (e.g., milk) and clinical (e.g., blood) samples for multiplexed detection of biotoxins. The device is rapid (<15-30 min sample-to-answer), sensitive (< 0.08 pg/mL detection limit for botulinum toxin), multiplexed (up to 64 parallel assays) and capable of analyzing small volume samples (< 20 μL total sample input). The immunoassay approach (SpinDx) is based on binding ofmore » toxins in a sample to antibody-laden capture particles followed by sedimentation of particles through a density-media in a microfluidic disk and quantification using a laser-induced fluorescence detector. A direct, blinded comparison with a gold standard ELISA revealed a 5-fold more sensitive detection limit for botulinum toxin while requiring 250-fold less sample volume and a 30 minute assay time with a near unity correlation. A key advantage of the technique is its compatibility with a variety of sample matrices with no additional sample preparation required. Ultrasensitive quantification has been demonstrated from direct analysis of multiple clinical, environmental and food samples, including white powder, whole blood, saliva, salad dressing, whole milk, peanut butter, half and half, honey, and canned meat. We believe that this device can met an urgent need in screening both potentially exposed people as well as suspicious samples in mail-rooms, airports, public sporting venues and emergency rooms. The general-purpose immunodiagnostics device can also find applications in screening of infectious and systemic diseases or serve as a lab device for conducting rapid immunoassays.« less

  11. Spacecraft fault tolerance: The Magellan experience

    NASA Technical Reports Server (NTRS)

    Kasuda, Rick; Packard, Donna Sexton

    1993-01-01

    Interplanetary and earth orbiting missions are now imposing unique fault tolerant requirements upon spacecraft design. Mission success is the prime motivator for building spacecraft with fault tolerant systems. The Magellan spacecraft had many such requirements imposed upon its design. Magellan met these requirements by building redundancy into all the major subsystem components and designing the onboard hardware and software with the capability to detect a fault, isolate it to a component, and issue commands to achieve a back-up configuration. This discussion is limited to fault protection, which is the autonomous capability to respond to a fault. The Magellan fault protection design is discussed, as well as the developmental and flight experiences and a summary of the lessons learned.

  12. The influence of schizotypal traits on attention under high perceptual load.

    PubMed

    Stotesbury, Hanne; Gaigg, Sebastian B; Kirhan, Saim; Haenschel, Corinna

    2018-03-01

    Schizophrenia Spectrum Disorders (SSD) are known to be characterised by abnormalities in attentional processes, but there are inconsistencies in the literature that remain unresolved. This article considers whether perceptual resource limitations play a role in moderating attentional abnormalities in SSD. According to perceptual load theory, perceptual resource limitations can lead to attenuated or superior performance on dual-task paradigms depending on whether participants are required to process, or attempt to ignore, secondary stimuli. If SSD is associated with perceptual resource limitations, and if it represents the extreme end of an otherwise normally distributed neuropsychological phenotype, schizotypal traits in the general population should lead to disproportionate performance costs on dual-task paradigms as a function of the perceptual task demands. To test this prediction, schizotypal traits were quantified via the Schizotypal Personality Questionnaire (SPQ) in 74 healthy volunteers, who also completed a dual-task signal detection paradigm that required participants to detect central and peripheral stimuli across conditions that varied in the overall number of stimuli presented. The results confirmed decreasing performance as the perceptual load of the task increased. More importantly, significant correlations between SPQ scores and task performance confirmed that increased schizotypal traits, particularly in the cognitive-perceptual domain, are associated with greater performance decrements under increasing perceptual load. These results confirm that attentional difficulties associated with SSD extend sub-clinically into the general population and suggest that cognitive-perceptual schizotypal traits may represent a risk factor for difficulties in the regulation of attention under increasing perceptual load.

  13. Increased sensitivity of OSHA method analysis of diacetyl and 2,3-pentanedione in air

    PubMed Central

    LeBouf, Ryan; Simmons, Michael

    2018-01-01

    Gas chromatography/mass spectrometry (GC/MS) operated in selected ion monitoring mode was used to enhance the sensitivity of OSHA Methods 1013/1016 for measuring diacetyl and 2,3-pentanedione in air samples. The original methods use flame ionization detection which cannot achieve the required sensitivity to quantify samples at or below the NIOSH recommended exposure limits (REL: 5 ppb for diacetyl and 9.3 ppb for 2,3-pentanedione) when sampling for both diacetyl and 2,3-pentanedione. OSHA Method 1012 was developed to measure diacetyl at lower levels but requires an electron capture detector, and a sample preparation time of 36 hours. Using GC/MS allows detection of these two alpha-diketones at lower levels than OSHA Method 1012 for diacetyl and OSHA Method 1016 for 2,3-pentanedione. Acetoin and 2,3-hexanedione may also be measured using this technique. Method quantification limits were 1.1 ppb for diacetyl (22% of the REL), 1.1 ppb for 2,3-pentanedione (12% of the REL), 1.1 ppb for 2,3-hexanedione, and 2.1 ppb for acetoin. Average extraction efficiencies above the limit of quantitation were 100% for diacetyl, 92% for 2,3-pentanedione, 89% for 2,3-hexanedione, and 87% for acetoin. Mass spectrometry with OSHA Methods 1013/1016 could be used by analytical laboratories to provide more sensitive and accurate measures of exposure to diacetyl and 2,3-pentanedione. PMID:27792470

  14. Increased sensitivity of OSHA method analysis of diacetyl and 2,3-pentanedione in air.

    PubMed

    LeBouf, Ryan; Simmons, Michael

    2017-05-01

    Gas chromatography/mass spectrometry (GC/MS) operated in selected ion monitoring mode was used to enhance the sensitivity of OSHA Methods 1013/1016 for measuring diacetyl and 2,3-pentanedione in air samples. The original methods use flame ionization detection which cannot achieve the required sensitivity to quantify samples at or below the NIOSH recommended exposure limits (REL: 5 ppb for diacetyl and 9.3 ppb for 2,3-pentanedione) when sampling for both diacetyl and 2,3-pentanedione. OSHA Method 1012 was developed to measure diacetyl at lower levels but requires an electron capture detector, and a sample preparation time of 36 hours. Using GC/MS allows detection of these two alpha-diketones at lower levels than OSHA Method 1012 for diacetyl and OSHA Method 1016 for 2,3-pentanedione. Acetoin and 2,3-hexanedione may also be measured using this technique. Method quantification limits were 1.1 ppb for diacetyl (22% of the REL), 1.1 ppb for 2,3-pentanedione (12% of the REL), 1.1 ppb for 2,3-hexanedione, and 2.1 ppb for acetoin. Average extraction efficiencies above the limit of quantitation were 100% for diacetyl, 92% for 2,3-pentanedione, 89% for 2,3-hexanedione, and 87% for acetoin. Mass spectrometry with OSHA Methods 1013/1016 could be used by analytical laboratories to provide more sensitive and accurate measures of exposure to diacetyl and 2,3-pentanedione.

  15. Quantum cascade laser-based multipass absorption system for hydrogen peroxide detection

    NASA Astrophysics Data System (ADS)

    Cao, Yingchun; Sanchez, Nancy P.; Jiang, Wenzhe; Ren, Wei; Lewicki, Rafal; Jiang, Dongfang; Griffin, Robert J.; Tittel, Frank K.

    2015-01-01

    Hydrogen peroxide (H2O2) is a relevant molecular trace gas species, that is related to the oxidative capacity of the atmosphere, the production of radical species such as OH, the generation of sulfate aerosol via oxidation of S(IV) to S(VI), and the formation of acid rain. The detection of atmospheric H2O2 involves specific challenges due to its high reactivity and low concentration (ppbv to sub-ppbv level). Traditional methods for measuring atmospheric H2O2 concentration are often based on wet-chemistry methods that require a transfer from the gas- to liquid-phase for a subsequent determination by techniques such as fluorescence spectroscopy, which can lead to problems such as sampling artifacts and interference by other atmospheric constituents. A quartz-enhanced photoacoustic spectroscopy-based system for the measurement of atmospheric H2O2 with a detection limit of 75 ppb for 1-s integration time was previously reported. In this paper, an updated H2O2 detection system based on long-optical-path-length absorption spectroscopy by using a distributed feedback quantum cascade laser (DFB-QCL) will be described. A 7.73-μm CW-DFB-QCL and a thermoelectrically cooled infrared detector, optimized for a wavelength of 8 μm, are employed for theH2O2 sensor system. A commercial astigmatic Herriott multi-pass cell with an effective optical path-length of 76 m is utilized for the reported QCL multipass absorption system. Wavelength modulation spectroscopy (WMS) with second harmonic detection is used for enhancing the signal-to-noise-ratio. A minimum detection limit of 13.4 ppb is achieved with a 2 s sampling time. Based on an Allan-Werle deviation analysis the minimum detection limit can be improved to 1.5 ppb when using an averaging time of 300 s.

  16. Optimization of the solvent-based dissolution method to sample volatile organic compound vapors for compound-specific isotope analysis.

    PubMed

    Bouchard, Daniel; Wanner, Philipp; Luo, Hong; McLoughlin, Patrick W; Henderson, James K; Pirkle, Robert J; Hunkeler, Daniel

    2017-10-20

    The methodology of the solvent-based dissolution method used to sample gas phase volatile organic compounds (VOC) for compound-specific isotope analysis (CSIA) was optimized to lower the method detection limits for TCE and benzene. The sampling methodology previously evaluated by [1] consists in pulling the air through a solvent to dissolve and accumulate the gaseous VOC. After the sampling process, the solvent can then be treated similarly as groundwater samples to perform routine CSIA by diluting an aliquot of the solvent into water to reach the required concentration of the targeted contaminant. Among solvents tested, tetraethylene glycol dimethyl ether (TGDE) showed the best aptitude for the method. TGDE has a great affinity with TCE and benzene, hence efficiently dissolving the compounds during their transition through the solvent. The method detection limit for TCE (5±1μg/m 3 ) and benzene (1.7±0.5μg/m 3 ) is lower when using TGDE compared to methanol, which was previously used (385μg/m 3 for TCE and 130μg/m 3 for benzene) [2]. The method detection limit refers to the minimal gas phase concentration in ambient air required to load sufficient VOC mass into TGDE to perform δ 13 C analysis. Due to a different analytical procedure, the method detection limit associated with δ 37 Cl analysis was found to be 156±6μg/m 3 for TCE. Furthermore, the experimental results validated the relationship between the gas phase TCE and the progressive accumulation of dissolved TCE in the solvent during the sampling process. Accordingly, based on the air-solvent partitioning coefficient, the sampling methodology (e.g. sampling rate, sampling duration, amount of solvent) and the final TCE concentration in the solvent, the concentration of TCE in the gas phase prevailing during the sampling event can be determined. Moreover, the possibility to analyse for TCE concentration in the solvent after sampling (or other targeted VOCs) allows the field deployment of the sampling method without the need to determine the initial gas phase TCE concentration. The simplified field deployment approach of the solvent-based dissolution method combined with the conventional analytical procedure used for groundwater samples substantially facilitates the application of CSIA to gas phase studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Sample-ready multiplex qPCR assay for detection of malaria

    PubMed Central

    2014-01-01

    Background Microscopy and antigen detecting rapid diagnostic tests are the diagnostic tests of choice in management of clinical malaria. However, due to their limitations, the need to utilize more sensitive methods such as real-time PCR (qPCR) is evident as more studies are now utilizing molecular methods in detection of malaria. Some of the challenges that continue to limit the widespread utilization of qPCR include lack of assay standardization, assay variability, risk of contamination, and the need for cold-chain. Lyophilization of molecular assays can overcome some of these limitations and potentially enable widespread qPCR utilization. Methods A recently published multiplex malaria qPCR assay was lyophilized by freezing drying into Sample-Ready™ format (MMSR). MMSR assay contained all the required reagents for qPCR including primers and probes, requiring only the addition of water and sample to perform qPCR. The performance of the MMSR assay was compared to the non-freeze dried, “wet” assay. Stability studies were done by maintaining the MMSR assays at four different ambient temperatures of 4°C, room temperature (RT), 37°C and 42°C over a period of 42 days, tested at seven-day intervals. Plasmodium falciparum and Plasmodium vivax DNAs were used for analysis of the MMSR assay either as single or mixed parasites, at two different concentrations. The CT values and the standard deviations (SD) were used in the analysis of the assay performance. Results The limit of detection for the MMSR assay was 0.244 parasites/μL for Plasmodium spp. (PLU) and P. falciparum (FAL) assay targets compared to “wet” assay which was 0.39 and 3.13 parasites/μL for PLU and FAL assay targets, respectively. The MMSR assay performed with high efficiencies similar to those of the “wet” assay and was stable at 37°C for 42 days, with estimated shelf-life of 5 months. When used to analyse field clinical samples, MMSR assay performed with 100% sensitivity and specificity compared to the “wet” assay. Conclusion The MMSR assay has the same robust performance characteristics as the “wet” assay and is highly stable. Availability of MMSR assay allows flexibility and provides an option in choosing assay for malaria diagnostics depending on the application, needs and budget. PMID:24767409

  18. Sample-ready multiplex qPCR assay for detection of malaria.

    PubMed

    Kamau, Edwin; Alemayehu, Saba; Feghali, Karla C; Juma, Dennis W; Blackstone, George M; Marion, William R; Obare, Peter; Ogutu, Bernhards; Ockenhouse, Christian F

    2014-04-25

    Microscopy and antigen detecting rapid diagnostic tests are the diagnostic tests of choice in management of clinical malaria. However, due to their limitations, the need to utilize more sensitive methods such as real-time PCR (qPCR) is evident as more studies are now utilizing molecular methods in detection of malaria. Some of the challenges that continue to limit the widespread utilization of qPCR include lack of assay standardization, assay variability, risk of contamination, and the need for cold-chain. Lyophilization of molecular assays can overcome some of these limitations and potentially enable widespread qPCR utilization. A recently published multiplex malaria qPCR assay was lyophilized by freezing drying into Sample-Ready™ format (MMSR). MMSR assay contained all the required reagents for qPCR including primers and probes, requiring only the addition of water and sample to perform qPCR. The performance of the MMSR assay was compared to the non-freeze dried, "wet" assay. Stability studies were done by maintaining the MMSR assays at four different ambient temperatures of 4°C, room temperature (RT), 37°C and 42°C over a period of 42 days, tested at seven-day intervals. Plasmodium falciparum and Plasmodium vivax DNAs were used for analysis of the MMSR assay either as single or mixed parasites, at two different concentrations. The CT values and the standard deviations (SD) were used in the analysis of the assay performance. The limit of detection for the MMSR assay was 0.244 parasites/μL for Plasmodium spp. (PLU) and P. falciparum (FAL) assay targets compared to "wet" assay which was 0.39 and 3.13 parasites/μL for PLU and FAL assay targets, respectively. The MMSR assay performed with high efficiencies similar to those of the "wet" assay and was stable at 37°C for 42 days, with estimated shelf-life of 5 months. When used to analyse field clinical samples, MMSR assay performed with 100% sensitivity and specificity compared to the "wet" assay. The MMSR assay has the same robust performance characteristics as the "wet" assay and is highly stable. Availability of MMSR assay allows flexibility and provides an option in choosing assay for malaria diagnostics depending on the application, needs and budget.

  19. PLANET ENGULFMENT BY {approx}1.5-3 M{sub sun} RED GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunitomo, M.; Ikoma, M.; Sato, B.

    2011-08-20

    Recent radial-velocity surveys for GK clump giants have revealed that planets also exist around {approx}1.5-3 M{sub sun} stars. However, no planets have been found inside 0.6 AU around clump giants, in contrast to solar-type main-sequence stars, many of which harbor short-period planets such as hot Jupiters. In this study, we examine the possibility that planets were engulfed by host stars evolving on the red-giant branch (RGB). We integrate the orbital evolution of planets in the RGB and helium-burning phases of host stars, including the effects of stellar tide and stellar mass loss. Then we derive the critical semimajor axis (ormore » the survival limit) inside which planets are eventually engulfed by their host stars after tidal decay of their orbits. Specifically, we investigate the impact of stellar mass and other stellar parameters on the survival limit in more detail than previous studies. In addition, we make detailed comparisons with measured semimajor axes of planets detected so far, which no previous study has done. We find that the critical semimajor axis is quite sensitive to stellar mass in the range between 1.7 and 2.1 M{sub sun}, which suggests a need for careful comparison between theoretical and observational limits of the existence of planets. Our comparison demonstrates that all planets orbiting GK clump giants that have been detected are beyond the survival limit, which is consistent with the planet-engulfment hypothesis. However, on the high-mass side (>2.1M{sub sun}), the detected planets are orbiting significantly far from the survival limit, which suggests that engulfment by host stars may not be the main reason for the observed lack of short-period giant planets. To confirm our conclusion, the detection of more planets around clump giants, especially with masses {approx}> 2.5M{sub sun}, is required.« less

  20. A minimalist biosensor: Quantitation of cyclic di-GMP using the conformational change of a riboswitch aptamer.

    PubMed

    Kellenberger, Colleen A; Sales-Lee, Jade; Pan, Yuchen; Gassaway, Madalee M; Herr, Amy E; Hammond, Ming C

    2015-01-01

    Cyclic di-GMP (c-di-GMP) is a second messenger that is important in regulating bacterial physiology and behavior, including motility and virulence. Many questions remain about the role and regulation of this signaling molecule, but current methods of detection are limited by either modest sensitivity or requirements for extensive sample purification. We have taken advantage of a natural, high affinity receptor of c-di-GMP, the Vc2 riboswitch aptamer, to develop a sensitive and rapid electrophoretic mobility shift assay (EMSA) for c-di-GMP quantitation that required minimal engineering of the RNA.

  1. All optical logic for optical pattern recognition and networking applications

    NASA Astrophysics Data System (ADS)

    Khoury, Jed

    2017-05-01

    In this paper, we propose architectures for the implementation 16 Boolean optical gates from two inputs using externally pumped phase- conjugate Michelson interferometer. Depending on the gate to be implemented, some require single stage interferometer and others require two stages interferometer. The proposed optical gates can be used in several applications in optical networks including, but not limited to, all-optical packet routers switching, and all-optical error detection. The optical logic gates can also be used in recognition of noiseless rotation and scale invariant objects such as finger prints for home land security applications.

  2. Evaluation of Various Depainting Processes on Mechanical Properties of 2024-T3 Aluminum Substrate

    NASA Technical Reports Server (NTRS)

    McGill, P.

    2001-01-01

    Alternate alkaline and neutral chemical paint strippers have been identified that, with respect to corrosion requirements, perform as well as or better than a methylene chloride baseline. These chemicals also, in general, meet corrosion acceptance criteria as specified in SAE MA 4872. Alternate acid chemical paint strippers have been identified that, with respect to corrosion requirements, perform as well as or better than a methylene chloride baseline. However, these chemicals do not generally meet corrosion acceptance criteria as specified in SAE MA 4872, especially in the areas of non-clad material performance and hydrogen embrittlement. Media blast methods reviewed in the study do not, in general, adversely affect fatigue performance or crack detectability of 2024-T3 substrate. Sodium bicarbonate stripping exhibited a tendency towards inhibiting crack detectability. These generalizations are based on a limited sample size and additional testing should be performed to characterize the response of specific substrates to specific processes.

  3. Chemiluminescent DNA optical fibre sensor for Brettanomyces bruxellensis detection.

    PubMed

    Cecchini, Francesca; Manzano, Marisa; Mandabi, Yohai; Perelman, Eddie; Marks, Robert S

    2012-01-01

    Food and beverage industries require rapid tests to limit economic losses and one way to do so is via molecular tests. In the present work, DNA capture and secondary probes, were designed to target the ITS (Internal Transcribed) sequences of Brettanomyces bruxellensis, a yeast responsible for the production of off flavours in both wine and beer. ITS1 and ITS2 were found to contain distinct regions with sufficient sequence divergence to make them suitable as specific identification target sites. The dot blot technique was used to determine the sensitivity and specificity of the capture probe. Both probes were, thereafter, adapted to construct an optical fibre genosensor, which produced neither false positives nor false negatives, and was both repeatable and faster with respect to traditional methods, the latter requiring at least one week to detect B. bruxellensis. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Laminography using resonant neutron attenuation for detection of drugs and explosives

    NASA Astrophysics Data System (ADS)

    Loveman, R. A.; Feinstein, R. L.; Bendahan, J.; Gozani, T.; Shea, P.

    1997-02-01

    Resonant neutron attenuation has been shown to be usable for assaying elements which constitute explosives, cocaine, and heroin. By careful analysis of attenuation measurements, the determination of the presence or absence of explosives can be determined. Simple two dimensional radiographic techniques only give results for areal density and consequently will be limited in their effectiveness. Classical tomographic techniques are both computationally very intensive and place strict requirements on the quality and amount of data acquired. These requirements and computations take time and are likely to be very difficult to perform in real time. Simulation studies described in this article have shown that laminographic image reconstruction can be used effectively with resonant neutron attenuation measurements to interrogate luggage for explosives or drugs. The design of the system described in this article is capable of pseudo-three dimensional image reconstruction of all of the elemental densities pertinent to explosive and drug detection.

  5. A Detector for Cosmic Microwave Background Polarimetry

    NASA Technical Reports Server (NTRS)

    Wollack, E.; Cao, N.; Chuss, D.; Hsieh, W.-T.; Moseley, S. Harvey; Stevenson, T.; U-yen, K.

    2008-01-01

    We present preliminary design and development work on polarized detectors intended to enable Cosmic Microwave Background polarization measurements that will probe the first moments of the universe. The ultimate measurement will be challenging, requiring background-limited detectors and good control of systematic errors. Toward this end, we are integrating the beam control of HE-11 feedhorns with the sensitivity of transition-edge sensors. The coupling between these two devices is achieved via waveguide probe antennas and superconducting microstrip lines. This implementation allows band-pass filters to be incorporated on the detector chip. We believe that a large collection of single-mode polarized detectors will eventually be required for the reliable detection of the weak polarized signature that is expected to result from gravitational waves produced by cosmic inflation. This focal plane prototype is an important step along the path to this detection, resulting in a capability that will enable various future high performance instrument concepts.

  6. Design Tools for Cost-Effective Implementation of Planetary Protection Requirements

    NASA Technical Reports Server (NTRS)

    Hamlin, Louise; Belz, Andrea; Evans, Michael; Kastner, Jason; Satter, Celeste; Spry, Andy

    2006-01-01

    Since the Viking missions to Mars in the 1970s, accounting for the costs associated with planetary protection implementation has not been done systematically during early project formulation phases, leading to unanticipated costs during subsequent implementation phases of flight projects. The simultaneous development of more stringent planetary protection requirements, resulting from new knowledge about the limits of life on Earth, together with current plans to conduct life-detection experiments on a number of different solar system target bodies motivates a systematic approach to integrating planetary protection requirements and mission design. A current development effort at NASA's Jet Propulsion Laboratory is aimed at integrating planetary protection requirements more fully into the early phases of mission architecture formulation and at developing tools to more rigorously predict associated cost and schedule impacts of architecture options chosen to meet planetary protection requirements.

  7. Novel approach based on one-tube nested PCR and a lateral flow strip for highly sensitive diagnosis of tuberculous meningitis

    PubMed Central

    Sun, Yajuan; Chen, Jiajun; Li, Jia; Xu, Yawei; Jin, Hui; Xu, Na; Yin, Rui

    2017-01-01

    Rapid and sensitive detection of Mycobacterium tuberculosis (M. Tb) in cerebrospinal fluid is crucial in the diagnosis of tuberculous meningitis (TBM), but conventional diagnostic technologies have limited sensitivity and specificity or are time-consuming. In this work, a novel, highly sensitive molecular diagnostic method, one-tube nested PCR-lateral flow strip test (OTNPCR-LFST), was developed for detecting M. tuberculosis. This one-tube nested PCR maintains the sensitivity of conventional two-step nested PCR and reduces both the chance of cross-contamination and the time required for analysis. The PCR product was detected by a lateral flow strip assay, which provided a basis for migration of the test to a point-of-care (POC) microfluidic format. The developed assay had an improved sensitivity compared with traditional PCR, and the limit of detection was up to 1 fg DNA isolated from M. tuberculosis. The assay was also specific for M. tuberculosis, and no cross-reactions were found in other non-target bacteria. The application of this technique to clinical samples was successfully evaluated, and OTNPCR-LFST showed 89% overall sensitivity and 100% specificity for TBM patients. This one-tube nested PCR-lateral flow strip assay is useful for detecting M. tuberculosis in TBM due to its rapidity, high sensitivity and simple manipulation. PMID:29084241

  8. Simultaneous detection of perchlorate and bromate using rapid high-performance ion exchange chromatography-tandem mass spectrometry and perchlorate removal in drinking water.

    PubMed

    West, Danielle M; Mu, Ruipu; Gamagedara, Sanjeewa; Ma, Yinfa; Adams, Craig; Eichholz, Todd; Burken, Joel G; Shi, Honglan

    2015-06-01

    Perchlorate and bromate occurrence in drinking water causes health concerns due to their effects on thyroid function and carcinogenicity, respectively. The purpose of this study was threefold: (1) to advance a sensitive method for simultaneous rapid detection of perchlorate and bromate in drinking water system, (2) to systematically study the occurrence of these two contaminants in Missouri drinking water treatment systems, and (3) to examine effective sorbents for minimizing perchlorate in drinking water. A rapid high-performance ion exchange chromatography-tandem mass spectrometry (HPIC-MS/MS) method was advanced for simultaneous detection of perchlorate and bromate in drinking water. The HPIC-MS/MS method was rapid, required no preconcentration of the water samples, and had detection limits for perchlorate and bromate of 0.04 and 0.01 μg/L, respectively. The method was applied to determine perchlorate and bromate concentrations in total of 23 selected Missouri drinking water treatment systems during differing seasons. The water systems selected include different source waters: groundwater, lake water, river water, and groundwater influenced by surface water. The concentrations of perchlorate and bromate were lower than or near to method detection limits in most of the drinking water samples monitored. The removal of perchlorate by various adsorbents was studied. A cationic organoclay (TC-99) exhibited effective removal of perchlorate from drinking water matrices.

  9. Immobilized Biocatalyst for Detection and Destruction of the Insensitive Explosive, 2,4-Dinitroanisole (DNAN).

    PubMed

    Karthikeyan, Smruthi; Kurt, Zohre; Pandey, Gunjan; Spain, Jim C

    2016-10-18

    Accurate and convenient detection of explosive components is vital for a wide spectrum of applications ranging from national security and demilitarization to environmental monitoring and restoration. With the increasing use of DNAN as a replacement for 2,4,6-trinitrotoluene (TNT) in insensitive explosive formulations, there has been a growing interest in strategies to minimize its release and to understand and predict its behavior in the environment. Consequently, a convenient tool for its detection and destruction could enable development of more effective decontamination and demilitarization strategies. Biosensors and biocatalysts have limited applicability to the more traditional explosives because of the inherent limitations of the relevant enzymes. Here, we report a highly specific, convenient and robust biocatalyst based on a novel ether hydrolase enzyme, DNAN demethylase (that requires no cofactors), from a Nocardioides strain that can mineralize DNAN. Biogenic silica encapsulation was used to stabilize the enzyme and enable it to be packed into a model microcolumn for application as a biosensor or as a bioreactor for continuous destruction of DNAN. The immobilized enzyme was stable and not inhibited by other insensitive munitions constituents. An alternative method for DNAN detection involved coating the encapsulated enzyme on cellulose filter paper. The hydrolase based biocatalyst could provide the basis for a wide spectrum of applications including detection, identification, destruction or inertion of explosives containing DNAN (demilitarization operations), and for environmental restorations.

  10. Detection of radioactive particles offshore by γ-ray spectrometry Part I: Monte Carlo assessment of detection depth limits

    NASA Astrophysics Data System (ADS)

    Maučec, M.; de Meijer, R. J.; Rigollet, C.; Hendriks, P. H. G. M.; Jones, D. G.

    2004-06-01

    A joint research project between the British Geological Survey and Nuclear Geophysics Division of the Kernfysisch Versneller Instituut, Groningen, the Netherlands, was commissioned by the United Kingdom Atomic Energy Authority to establish the efficiency of a towed seabed γ-ray spectrometer for the detection of 137Cs-containing radioactive particles offshore Dounreay, Scotland. Using the MCNP code, a comprehensive Monte Carlo feasibility study was carried out to model various combinations of geological matrices, particle burial depth and lateral displacement, source activity and detector material. To validate the sampling and absolute normalisation procedures of MCNP for geometries including multiple (natural and induced) heterogeneous sources in environmental monitoring, a benchmark experiment was conducted. The study demonstrates the ability of seabed γ-ray spectrometry to locate radioactive particles offshore and to distinguish between γ count rate increases due to particles from those due to enhanced natural radioactivity. The information presented in this study will be beneficial for estimation of the inventory of 137Cs particles and their activity distribution and for the recovery of particles from the sea floor. In this paper, the Monte Carlo assessment of the detection limits is presented. The estimation of the required towing speed and acquisition times and their application to radioactive particle detection and discrimination offshore formed a supplementary part of this study.

  11. Comparison of direct and heterodyne detection optical intersatellite communication links

    NASA Technical Reports Server (NTRS)

    Chen, C. C.; Gardner, C. S.

    1987-01-01

    The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity.

  12. Development of a rapid and visual nucleotide detection method for a Chinese epidemic strain of Orientia tsutsugamushi based on recombinase polymerase amplification assay and lateral flow test.

    PubMed

    Qi, Yong; Yin, Qiong; Shao, Yinxiu; Cao, Min; Li, Suqin; Chen, Hongxia; Shen, Wanpeng; Rao, Jixian; Li, Jiameng; Li, Xiaoling; Sun, Yu; Lin, Yu; Deng, Yi; Zeng, Wenwen; Zheng, Shulong; Liu, Suyun; Li, Yuexi

    2018-05-01

    Orientia tsutsugamushi is an obligate intracellular pathogen that causes scrub typhus. Diagnosing scrub typhus remains a challenge, and a sensitive, specific, simple, and rapid diagnostic test is still needed. A recombinase polymerase amplification (RPA) assay combined with a lateral flow (LF) test targeting the 56-kDa gene of a Karp-like strain of O. tsutsugamushi was developed and optimized. The detection limits, sensitivity, specificity, and simulative clinical performance were evaluated. Primers and probe were screened to establish the RPA assay, and the reaction conditions were optimized. The detection limit was 10 copies/reaction in detecting plasmid DNA and 12 copies/reaction in detecting genomic DNA. The RPA-LF method could differentiate O. tsutsugamushi from other phylogenetically related bacteria. The sensitivity was 100% and specificity was over 90%, when evaluated using infected animal samples or simulative clinical samples. Furthermore, the method was completed in 20min at 37°C followed by a 3-5min incubation at room temperature for the development of an immunochromatographic strip, and the results could be determined visually. This method is promising for wide-ranging use in basic medical units considering that it requires minimal instruments and infrastructure and is highly time-efficient, sensitive, and specific for diagnosing scrub typhus. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Detecting peptidic drugs, drug candidates and analogs in sports doping: current status and future directions.

    PubMed

    Thevis, Mario; Thomas, Andreas; Schänzer, Wilhelm

    2014-12-01

    With the growing availability of mature systems and strategies in biotechnology and the continuously expanding knowledge of cellular processes and involved biomolecules, human sports drug testing has become a considerably complex field in the arena of analytical chemistry. Proving the exogenous origin of peptidic drugs and respective analogs at lowest concentration levels in biological specimens (commonly blood, serum and urine) of rather limited volume is required to pursue an action against cheating athletes. Therefore, approaches employing chromatographic-mass spectrometric, electrophoretic, immunological and combined test methods have been required and developed. These allow detecting the misuse of peptidic compounds of lower (such as growth hormone-releasing peptides, ARA-290, TB-500, AOD-9604, CJC-1295, desmopressin, luteinizing hormone-releasing hormones, synacthen, etc.), intermediate (e.g., insulins, IGF-1 and analogs, 'full-length' mechano growth factor, growth hormone, chorionic gonadotropin, erythropoietin, etc.) and higher (e.g., stamulumab) molecular mass with desired specificity and sensitivity. A gap between the technically possible detection and the day-to-day analytical practice, however, still needs to be closed.

  14. Impacts of Inverter-Based Advanced Grid Support Functions on Islanding Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Hoke, Anderson; Miller, Brian

    A long-standing requirement for inverters paired with distributed energy resources is that they are required to disconnect from the electrical power system (EPS) when an electrical island is formed. In recent years, advanced grid support controls have been developed for inverters to provide voltage and frequency support by integrating functions such as voltage and frequency ride-through, volt-VAr control, and frequency-Watt control. With these new capabilities integrated into the inverter, additional examination is needed to determine how voltage and frequency support will impact pre-existing inverter functions like island detection. This paper inspects how advanced inverter functions will impact its ability tomore » detect the formation of an electrical island. Results are presented for the unintentional islanding laboratory tests of three common residential-scale photovoltaic inverters performing various combinations of grid support functions. For the inverters tested, grid support functions prolonged island disconnection times slightly; however, it was found that in all scenarios the inverters disconnected well within two seconds, the limit imposed by IEEE Std 1547-2003.« less

  15. The potential of SNP-based PCR-RFLP capillary electrophoresis analysis to authenticate and detect admixtures of Mediterranean olive oils.

    PubMed

    Bazakos, Christos; Khanfir, Emna; Aoun, Mariem; Spano, Thodhoraq; Zein, Zeina El; Chalak, Lamis; Riachy, Milad El; Abou-Sleymane, Gretta; Ali, Sihem Ben; Grati Kammoun, Naziha; Kalaitzis, Panagiotis

    2016-07-01

    Authentication and traceability of extra virgin olive oil is a challenging research task due to the complexity of fraudulent practices. In this context, the monovarietal olive oils of Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI) require new tests and cutting edge analytical technologies to detect mislabeling and misleading origin. Toward this direction, DNA-based technologies could serve as a complementary to the analytical techniques assay. Single nucleotide polymorphisms are ideal molecular markers since they require short PCR analytical targets which are a prerequisite for forensic applications in olive oil sector. In the present study, a small number of polymorphic SNPs were used with an SNP-based PCR-RFLP capillary electrophoresis platform to discriminate six out of 13 monovarietal olive oils of Mediterranean origin from three different countries, Greece, Tunisia, and Lebanon. Moreover, the high sensitivity of capillary electrophoresis in combination with the DNA extraction protocol lowered the limit of detection to 10% in an admixture of Tsounati in a Koroneiki olive oil matrix. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Constraining the High-Energy Emission from Gamma-Ray Bursts with Fermi

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Harding, A. K.; Hays, E.; Racusin, J. L.; Sonbas, E.; Stamatikos, M.; Guirec, S.

    2012-01-01

    We examine 288 GRBs detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field-of-view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the nuF(sub v) spectra (E(sub pk)). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E(sub pk) than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cut-off in their high-energy spectra, which if assumed to be due to gamma gamma attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.

  17. A novel vacuum spectrometer for total reflection x-ray fluorescence analysis with two exchangeable low power x-ray sources for the analysis of low, medium, and high Z elements in sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wobrauschek, P., E-mail: wobi@ati.ac.at; Prost, J.; Ingerle, D.

    2015-08-15

    The extension of the detectable elemental range with Total Reflection X-ray Fluorescence (TXRF) analysis is a challenging task. In this paper, it is demonstrated how a TXRF spectrometer is modified to analyze elements from carbon to uranium. Based on the existing design of a vacuum TXRF spectrometer with a 12 specimen sample changer, the following components were renewed: the silicon drift detector with 20 mm{sup 2} active area and having a special ultra-thin polymer window allowing the detection of elements from carbon upwards. Two exchangeable X-ray sources guarantee the efficient excitation of both low and high Z elements. These X-raymore » sources were two light-weighted easily mountable 35 W air-cooled low-power tubes with Cr and Rh anodes, respectively. The air cooled tubes and the Peltier-cooled detector allowed to construct a transportable tabletop spectrometer with compact dimensions, as neither liquid nitrogen cooling for the detector nor a water cooling circuit and a bulky high voltage generator for the X-ray tubes are required. Due to the excellent background conditions as a result of the TXRF geometry, detection limits of 150 ng for C, 12 ng for F, and 3.3 ng for Na have been obtained using Cr excitation in vacuum. For Rh excitation, the detection limits of 90 pg could be achieved for Sr. Taking 10 to 20 μl of sample volume, extrapolated detection limits in the ng/g (ppb) range are resulting in terms of concentration.« less

  18. Constraining the high-energy emission from gamma-ray bursts with Fermi

    DOE PAGES

    Ackermann, M.; Ajello, M.; Baldini, L.; ...

    2012-07-17

    Here, we examine 288 gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field of view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We also compare these limits with the fluxes that would be expected from extrapolations of spectral fitsmore » presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the νF ν spectra (E pk). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E pk than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cutoff in their high-energy spectra, which if assumed to be due to γγ attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. Furthermore, all of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.« less

  19. Constraining the High-energy Emission from Gamma-Ray Bursts with Fermi

    NASA Astrophysics Data System (ADS)

    Fermi Large Area Telescope Team; Ackermann, M.; Ajello, M.; Baldini, L.; Barbiellini, G.; Baring, M. G.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Brigida, M.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cutini, S.; D'Ammando, F.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Granot, J.; Grenier, I. A.; Grove, J. E.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hays, E.; Horan, D.; Jóhannesson, G.; Kataoka, J.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J.; McGlynn, S.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Nymark, T.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Ritz, S.; Ryde, F.; Sgrò, C.; Siskind, E. J.; Sonbas, E.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Stawarz, Łukasz; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Tosti, G.; Uehara, T.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Fermi Gamma-ray Burst Monitor Team; Connaughton, V.; Briggs, M. S.; Guirec, S.; Goldstein, A.; Burgess, J. M.; Bhat, P. N.; Bissaldi, E.; Camero-Arranz, A.; Fishman, J.; Fitzpatrick, G.; Foley, S.; Gruber, D.; Jenke, P.; Kippen, R. M.; Kouveliotou, C.; McBreen, S.; Meegan, C.; Paciesas, W. S.; Preece, R.; Rau, A.; Tierney, D.; van der Horst, A. J.; von Kienlin, A.; Wilson-Hodge, C.; Xiong, S.

    2012-08-01

    We examine 288 gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field of view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the νF ν spectra (E pk). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E pk than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cutoff in their high-energy spectra, which if assumed to be due to γγ attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.

  20. MESSENGER Searches for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos

    2011-01-01

    Mercury's exosphere is composed of material that originates at the planet's surface, whether that material is native or delivered by the solar wind and micrometeoroids. Many exospheric species have been detected by remote sensing, including H and He by Mariner 10, Na, K, and Ca by ground-based observations, and H, Na, Ca, Mg, and Ca+ by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Other exospheric species, including Fe, AI, Si, 0, S, Mn, CI, Ti, OH, and their ions, are expected to be present on the basis of MESSENGER surface measurements and models of Mercury's surface chemistry. Here we report on searches for these species made with the Ultraviolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS). No obvious signatures of the listed species have yet been observed in Mercury's exosphere by the UVVS as of this writing. It is possible that detections are elusive because the optimum regions of the exosphere have not been sampled. The Sun-avoidance constraints on MESSENGER place tight limits on instrument boresight directions, and some regions are probed infrequently. If there are strong spatial gradients in the distribution of weakly emitting species, a high-resolution sampling of specific regions may be required to detect them. Summing spectra over time will also aid in the ability to detect weaker emission. Observations to date nonetheless permit strong upper limits to be placed on the abundances of many undetected species, in some cases as functions of time and space. As those limits are lowered with time, the absence of detections can provide insight into surface composition and the potential source mechanisms of exospheric material.

  1. Breast cancer detection in axillary sentinel lymph nodes: the impact of the method of pathologic examination.

    PubMed

    Calhoun, Benjamin C; Chambers, Karinn; Flippo-Morton, Teresa; Livasy, Chad A; Armstrong, Edward J; Symanowski, James T; Sarantou, Terry; Greene, Frederick L; White, Richard L

    2014-12-01

    At Carolinas Medical Center, before 2008, axillary sentinel lymph nodes (SLNs) from breast cancer patients were evaluated with a single hematoxylin and eosin-stained slide. In 2008, the protocol changed to include a limited step sectioning at 500 μm. In this study, we compared the intraoperative and permanent section pathologic findings for SLN biopsies from 2006 to 2007 to those from 2009 to 2010. We hypothesized that evaluating 2 slides would increase the detection of micrometastases and isolated tumor cells (ITCs) on permanent sections and correspondingly decrease the sensitivity of intraoperative touch preparation cytology (IOTPC). From 2006 to 2007, 140 (23.5%) of 597 of SLN permanent sections contained tumor cells: 92 macrometastases (65.7%), 36 micrometastases (25.7%), and 12 ITCs 0.2 mm or less (8.6%). The sensitivity of IOTPC for 2006 to 2007 was 51.4% for any tumor cells and 71.7% for macrometastases. From 2009 to 2010, 160 (21.9%) of 730 SLN permanent sections were positive for any tumor cells: 76 macrometastases (47.5%), 55 micrometastases (34.4%), and 29 ITCs (18.1%). The sensitivity of IOTPC for 2009 to 2010 was 39.4% for any tumor cells and 76.3% for macrometastases. With limited step sectioning, we observed an approximately 10% increase in the detection of both micrometastases and ITCs in SLN. The increased detection of ITCs on permanent sections reached statistical significance (P = .018). However, under current clinical guidelines, patients with limited SLN involvement may not be required to undergo completion axillary lymph node dissection. The ability to detect SLN tumor deposits less than 2 mm must be balanced with the clinical utility of doing so. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Multiplexed Paper Analytical Device for Quantification of Metals using Distance-Based Detection

    PubMed Central

    Cate, David M.; Noblitt, Scott D.; Volckens, John; Henry, Charles S.

    2015-01-01

    Exposure to metal-containing aerosols has been linked with adverse health outcomes for almost every organ in the human body. Commercially available techniques for quantifying particulate metals are time-intensive, laborious, and expensive; often sample analysis exceeds $100. We report a simple technique, based upon a distance-based detection motif, for quantifying metal concentrations of Ni, Cu, and Fe in airborne particulate matter using microfluidic paper-based analytical devices. Paper substrates are used to create sensors that are self-contained, self-timing, and require only a drop of sample for operation. Unlike other colorimetric approaches in paper microfluidics that rely on optical instrumentation for analysis, with distance-based detection, analyte is quantified visually based on the distance of a colorimetric reaction, similar to reading temperature on a thermometer. To demonstrate the effectiveness of this approach, Ni, Cu, and Fe were measured individually in single-channel devices; detection limits as low as 0.1, 0.1, and 0.05 µg were reported for Ni, Cu, and Fe. Multiplexed analysis of all three metals was achieved with detection limits of 1, 5, and 1 µg for Ni, Cu, and Fe. We also extended the dynamic range for multi-analyte detection by printing concentration gradients of colorimetric reagents using an off the shelf inkjet printer. Analyte selectivity was demonstrated for common interferences. To demonstrate utility of the method, Ni, Cu, and Fe were measured from samples of certified welding fume; levels measured with paper sensors matched known values determined gravimetrically. PMID:26009988

  3. Colorimetric TMPRSS2-ERG Gene Fusion Detection in Prostate Cancer Urinary Samples via Recombinase Polymerase Amplification.

    PubMed

    Koo, Kevin M; Wee, Eugene J H; Trau, Matt

    2016-01-01

    TMPRSS2 (Exon 1)-ERG (Exon 4) is the most frequent gene fusion event in prostate cancer (PC), and is highly PC-specific unlike the current serum prostate specific antigen (PSA) biomarker. However, TMPRSS2-ERG levels are currently measured with quantitative reverse-transcription PCR (RT-qPCR) which is time-consuming and requires costly equipment, thus limiting its use in clinical diagnostics. Herein, we report a novel rapid, cost-efficient and minimal-equipment assay named "FusBLU" for detecting TMPRSS2-ERG gene fusions from urine. TMPRSS2-ERG mRNA was amplified by isothermal reverse transcription-recombinase polymerase amplification (RT-RPA), magnetically-isolated, and detected through horseradish peroxidase (HRP)-catalyzed colorimetric reaction. FusBLU was specific for TMPRSS2-ERG mRNA with a low visual detection limit of 10(5) copies. We also demonstrated assay readout versatility on 3 potentially useful platforms. The colorimetric readout was detectable by naked eye for a quick yes/no evaluation of gene fusion presence. On the other hand, a more quantitative TMPRSS2-ERG detection was achievable by absorbance/electrochemical measurements. FusBLU was successfully applied to 12 urinary samples and results were validated by gold-standard RT-qPCR. We also showed that sediment RNA was likely the main source of TMPRSS2-ERG mRNA in urinary samples. We believe that our assay is a potential clinical screening tool for PC and could also have wide applications for other disease-related fusion genes.

  4. Rapid identification and quantification of tumor cells using an electrocatalytic method based on gold nanoparticles.

    PubMed

    de la Escosura-Muñiz, Alfredo; Sánchez-Espinel, Christian; Díaz-Freitas, Belén; González-Fernández, Africa; Maltez-da Costa, Marisa; Merkoçi, Arben

    2009-12-15

    There is a high demand for simple, rapid, efficient, and user-friendly alternative methods for the detection of cells in general and, in particular, for the detection of cancer cells. A biosensor able to detect cells would be an all-in-one dream device for such applications. The successful integration of nanoparticles into cell detection assays could allow for the development of this novel class of cell sensors. Indeed, their application could well have a great future in diagnostics, as well as other fields. As an example of a novel biosensor, we report here an electrocatalytic device for the specific identification of tumor cells that quantifies gold nanoparticles (AuNPs) coupled with an electrotransducing platform/sensor. Proliferation and adherence of tumor cells are achieved on the electrotransducer/detector, which consists of a mass-produced screen-printed carbon electrode (SPCE). In situ identification/quantification of tumor cells is achieved with a detection limit of 4000 cells per 700 microL of suspension. This novel and selective cell-sensing device is based on the reaction of cell surface proteins with specific antibodies conjugated with AuNPs. Final detection requires only a couple of minutes, taking advantage of the catalytic properties of AuNPs on hydrogen evolution. The proposed detection method does not require the chemical agents used in most existing assays for the detection of AuNPs. It allows for the miniaturization of the system and is much cheaper than other expensive and sophisticated methods used for tumor cell detection. We envisage that this device could operate in a simple way as an immunosensor or DNA sensor. Moreover, it could be used, even by inexperienced staff, for the detection of protein molecules or DNA strands.

  5. Low Z total reflection X-ray fluorescence analysis — challenges and answers

    NASA Astrophysics Data System (ADS)

    Streli, C.; Kregsamer, P.; Wobrauschek, P.; Gatterbauer, H.; Pianetta, P.; Pahlke, S.; Fabry, L.; Palmetshofer, L.; Schmeling, M.

    1999-10-01

    Low Z elements, like C, O, ... Al are difficult to measure, due to the lack of suitable low-energy photons for efficient excitation using standard X-ray tubes, as well as difficult to detect with an energy dispersive detector, if the entrance window is not thin enough. Special excitation sources and special energy dispersive detectors are required to increase the sensitivity and to increase the detected fluorescence signal and so to improve the detection limits. Synchrotron radiation, due to its features like high intensity and wide spectral range covering also the low-energy region, is the ideal source for TXRF, especially of low-Z elements. Experiments at a specific beamline (BL 3-4) at SSRL, Stanford, designed for the exclusive use of low-energy photons has been used as an excitation source. Detection limits <100 fg for Al, Mg and Na have been achieved using quasimonochromatic radiation of 1.7 keV. A Ge(HP) detector with an ultra-thin NORWAR entrance window is used. One application is the determination of low-Z surface contamination on Si-wafers. Sodium, as well as Al, are elements of interest for the semiconductor industry, both influencing the yield of ICs negatively. A detection capacity of 10 10 atoms/cm 2 is required which can be reached using synchrotron radiation as excitation source. Another promising application is the determination of low-Z atoms implanted in Si wafers. Sodium, Mg and Al were implanted in Si-wafers at various depths. From measuring the dependence of the fluorescence signal on the glancing angle, characteristic shapes corresponding to the depth profile and the relevant implantation depth are found. Calculations are compared with measurements. Finally, aerosols sampled on polycarbonate plates in a Battelle impactor were analyzed with LZ-TXRF using multilayer monochromatized Cr-Kα radiation from a 1300-W fine-focus tube for excitation. Results are presented.

  6. Requirements and limits for life in the context of exoplanets

    PubMed Central

    McKay, Christopher P.

    2014-01-01

    The requirements for life on Earth, its elemental composition, and its environmental limits provide a way to assess the habitability of exoplanets. Temperature is key both because of its influence on liquid water and because it can be directly estimated from orbital and climate models of exoplanetary systems. Life can grow and reproduce at temperatures as low as −15 °C, and as high as 122 °C. Studies of life in extreme deserts show that on a dry world, even a small amount of rain, fog, snow, and even atmospheric humidity can be adequate for photosynthetic production producing a small but detectable microbial community. Life is able to use light at levels less than 10−5 of the solar flux at Earth. UV or ionizing radiation can be tolerated by many microorganisms at very high levels and is unlikely to be life limiting on an exoplanet. Biologically available nitrogen may limit habitability. Levels of O2 over a few percent on an exoplanet would be consistent with the presence of multicellular organisms and high levels of O2 on Earth-like worlds indicate oxygenic photosynthesis. Other factors such as pH and salinity are likely to vary and not limit life over an entire planet or moon. PMID:24927538

  7. Requirements and limits for life in the context of exoplanets.

    PubMed

    McKay, Christopher P

    2014-09-02

    The requirements for life on Earth, its elemental composition, and its environmental limits provide a way to assess the habitability of exoplanets. Temperature is key both because of its influence on liquid water and because it can be directly estimated from orbital and climate models of exoplanetary systems. Life can grow and reproduce at temperatures as low as -15 °C, and as high as 122 °C. Studies of life in extreme deserts show that on a dry world, even a small amount of rain, fog, snow, and even atmospheric humidity can be adequate for photosynthetic production producing a small but detectable microbial community. Life is able to use light at levels less than 10(-5) of the solar flux at Earth. UV or ionizing radiation can be tolerated by many microorganisms at very high levels and is unlikely to be life limiting on an exoplanet. Biologically available nitrogen may limit habitability. Levels of O2 over a few percent on an exoplanet would be consistent with the presence of multicellular organisms and high levels of O2 on Earth-like worlds indicate oxygenic photosynthesis. Other factors such as pH and salinity are likely to vary and not limit life over an entire planet or moon.

  8. Detection of Influenza C Viruses Among Outpatients and Patients Hospitalized for Severe Acute Respiratory Infection, Minnesota, 2013-2016.

    PubMed

    Thielen, Beth K; Friedlander, Hannah; Bistodeau, Sarah; Shu, Bo; Lynch, Brian; Martin, Karen; Bye, Erica; Como-Sabetti, Kathryn; Boxrud, David; Strain, Anna K; Chaves, Sandra S; Steffens, Andrea; Fowlkes, Ashley L; Lindstrom, Stephen; Lynfield, Ruth

    2018-03-19

    Existing literature suggests that influenza C typically causes mild respiratory tract disease. However, clinical and epidemiological data are limited. Four outpatient clinics and 3 hospitals submitted clinical data and respiratory specimens through a surveillance network for acute respiratory infection (ARI) from May 2013 through December 2016. Specimens were tested using multitarget nucleic acid amplification for 19-22 respiratory pathogens, including influenza C. Influenza C virus was detected among 59 of 10 202 (0.58%) hospitalized severe ARI cases and 11 of 2282 (0.48%) outpatients. Most detections occurred from December to March, 73% during the 2014-2015 season. Influenza C detections occurred among patients of all ages, with rates being similar between inpatients and outpatients. The highest rate of detection occurred among children aged 6-24 months (1.2%). Among hospitalized cases, 7 required intensive care. Medical comorbidities were reported in 58% of hospitalized cases and all who required intensive care. At least 1 other respiratory pathogen was detected in 40 (66%) cases, most commonly rhinovirus/enterovirus (25%) and respiratory syncytial virus (20%). The hemagglutinin-esterase-fusion gene was sequenced in 37 specimens, and both C/Kanagawa and C/Sao Paulo lineages were detected in inpatients and outpatients. We found seasonal circulation of influenza C with year-to-year variability. Detection was most frequent among young children but occurred in all ages. Some cases that were positive for influenza C, particularly those with comorbid conditions, had severe disease, suggesting a need for further study of the role of influenza C virus in the pathogenesis of respiratory disease.

  9. Electro-optical system for gunshot detection: analysis, concept, and performance

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Dulski, R.; Madura, H.; Trzaskawka, P.; Bieszczad, G.; Sosnowski, T.

    2011-08-01

    The paper discusses technical possibilities to build an effective electro-optical sensor unit for sniper detection using infrared cameras. This unit, comprising of thermal and daylight cameras, can operate as a standalone device but its primary application is a multi-sensor sniper and shot detection system. At first, the analysis was presented of three distinguished phases of sniper activity: before, during and after the shot. On the basis of experimental data the parameters defining the relevant sniper signatures were determined which are essential in assessing the capability of infrared camera to detect sniper activity. A sniper body and muzzle flash were analyzed as targets and the descriptions of phenomena which make it possible to detect sniper activities in infrared spectra as well as analysis of physical limitations were performed. The analyzed infrared systems were simulated using NVTherm software. The calculations for several cameras, equipped with different lenses and detector types were performed. The simulation of detection ranges was performed for the selected scenarios of sniper detection tasks. After the analysis of simulation results, the technical specifications of infrared sniper detection system were discussed, required to provide assumed detection range. Finally the infrared camera setup was proposed which can detected sniper from 1000 meters range.

  10. [Arthroscopy-guided fracture management. Ankle joint and calcaneus].

    PubMed

    Schoepp, C; Rixen, D

    2013-04-01

    Arthroscopic fracture management of the ankle and calcaneus requires a differentiated approach. The aim is to minimize surgical soft tissue damage and to visualize anatomical fracture reduction arthroscopically. Moreover, additional cartilage damage can be detected and treated. The arthroscopic approach is limited by deep impressions of the joint surface needing cancellous bone grafting, by multiple fracture lines on the articular side and by high-grade soft tissue damage. An alternative to the minimally invasive arthroscopic approach is open arthroscopic reduction in conventional osteosynthesis. This facilitates correct assessment of surgical reduction of complex calcaneal fractures, otherwise remaining non-anatomical reduction might not be fluoroscopically detected during surgery.

  11. Evanescent field Sensors Based on Tantalum Pentoxide Waveguides – A Review

    PubMed Central

    Schmitt, Katrin; Oehse, Kerstin; Sulz, Gerd; Hoffmann, Christian

    2008-01-01

    Evanescent field sensors based on waveguide surfaces play an important role where high sensitivity is required. Particularly tantalum pentoxide (Ta2O5) is a suitable material for thin-film waveguides due to its high refractive index and low attenuation. Many label-free biosensor systems such as grating couplers and interferometric sensors as well as fluorescence-based systems benefit from this waveguide material leading to extremely high sensitivity. Some biosensor systems based on Ta2O5 waveguides already took the step into commercialization. This report reviews the various detection systems in terms of limit of detection, the applications, and the suitable surface chemistry. PMID:27879731

  12. [The determination of the herbicide glyphosate and its chief metabolite aminomethylphosphonic acid (AMPA) in drinking water with the aid of HPLC].

    PubMed

    Gauch, R; Leuenberger, U; Müller, U

    1989-01-01

    A method for the determination of glyphosate and its major metabolite aminomethylphosphonic acid (AMPA) is described. With a detection limit of 0.02 microgram/l, the method suitably fulfills the requirements of the Swiss legislation (tolerance value of 0.1 micrograms/l water). The compounds are derivatized directly in the original water sample with 9-fluorenylmethyl chloroformate (FMOCC1) in order to obtain extractable and fluorescent derivatives. These are extracted with organic solvents and determined by HPLC using a fluorescence detector. Neither of the compounds could be detected in 151 tap water samples from the Canton of Berne.

  13. A compact and portable optofluidic device for detection of liquid properties and label-free sensing

    NASA Astrophysics Data System (ADS)

    Lahoz, F.; Martín, I. R.; Walo, D.; Gil-Rostra, J.; Yubero, F.; Gonzalez-Elipe, A. R.

    2017-06-01

    Optofluidic lasers have been widely investigated over the last few years mainly because they can be easily integrated in sensor devices. However, high power pulse lasers are required as excitation sources, which, in practice, limit the portability of the system. Trying to overcome some of these limitations, in this paper we propose the combined use of a small CW laser with a Fabry-Perot optofluidic planar microcavity showing high sensitivity and versatility for detection of liquid properties and label-free sensing. Firstly, a fluorescein solution in ethanol is used to demonstrate the high performances of the FP microcavity as a temperature sensor both in the laser (high pump power above laser threshold) and in the fluorescence (low pump power) regimes. A shift in the wavelength of the resonant cavity modes is used to detect changes in the temperature and our results show that high sensitivities could be already obtained using cheap and portable CW diode lasers. In the second part of the paper, the demonstration of this portable device for label-free sensing is illustrated under low CW pumping. The wavelength positions of the optofluidic resonant modes are used to detect glucose concentrations in water solutions using a protein labelled with a fluorescent dye as the active medium.

  14. Highly Sensitive Detection of UV Radiation Using a Uranium Coordination Polymer.

    PubMed

    Liu, Wei; Dai, Xing; Xie, Jian; Silver, Mark A; Zhang, Duo; Wang, Yanlong; Cai, Yawen; Diwu, Juan; Wang, Jian; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2018-02-07

    The accurate detection of UV radiation is required in a wide range of chemical industries and environmental or biological related applications. Conventional methods taking advantage of semiconductor photodetectors suffer from several drawbacks such as sophisticated synthesis and manufacturing procedure, not being able to measure the accumulated UV dosage as well as high defect density in the material. Searching for new strategies or materials serving as precise UV dosage sensor with extremely low detection limit is still highly desirable. In this work, a radiation resistant uranium coordination polymer [UO 2 (L)(DMF)] (L = 5-nitroisophthalic acid, DMF = N,N-dimethylformamide, denoted as compound 1) was successfully synthesized through mild solvothermal method and investigated as a unique UV probe with the detection limit of 2.4 × 10 -7 J. On the basis of the UV dosage dependent luminescence spectra, EPR analysis, single crystal structure investigation, and the DFT calculation, the UV-induced radical quenching mechanism was confirmed. Importantly, the generated radicals are of significant stability which offers the opportunity for measuring the accumulated UV radiation dosage. Furthermore, the powder material of compound 1 was further upgraded into membrane material without loss in luminescence intensity to investigate the real application potentials. To the best of our knowledge, compound 1 represents the most sensitive coordination polymer based UV dosage probe reported to date.

  15. Receptor binding assay for paralytic shellfish poisoning toxins: optimization and interlaboratory comparison.

    PubMed

    Ruberu, Shryamalie R; Liu, Yun-Gang; Wong, Carolyn T; Perera, S Kusum; Langlois, Gregg W; Doucette, Gregory J; Powell, Christine L

    2003-01-01

    A receptor binding assay (RBA) for detection of paralytic shellfish poisoning (PSP) toxins was formatted for use in a high throughput detection system using microplate scintillation counting. The RBA technology was transferred from the National Ocean Service, which uses a Wallac TriLux 1450 MicroBeta microplate scintillation counter, to the California Department of Health Services, which uses a Packard TopCount scintillation counter. Due to differences in the detector arrangement between these 2 counters, markedly different counting efficiencies were exhibited, requiring optimization of the RBA protocol for the TopCount instrument. Precision, accuracy, and sensitivity [limit of detection = 0.2 microg saxitoxin (STX) equiv/100 g shellfish tissue] of the modified protocol were equivalent to those of the original protocol. The RBA robustness and adaptability were demonstrated by an interlaboratory study, in which STX concentrations in shellfish generated by the TopCount were consistent with MicroBeta-derived values. Comparison of STX reference standards obtained from the U.S. Food and Drug Administration and the National Research Council, Canada, showed no observable differences. This study confirms the RBA's value as a rapid, high throughput screen prior to testing by the conventional mouse bioassay (MBA) and its suitability for providing an early warning of increasing PSP toxicity when toxin levels are below the MBA limit of detection.

  16. Effects of different excitation waveforms on detection and characterisation of delamination in PV modules by active infrared thermography

    NASA Astrophysics Data System (ADS)

    Sinha, Archana; Gupta, Rajesh

    2017-10-01

    Delamination significantly affects the performance and reliability of photovoltaic (PV) modules. Recently, an active infrared thermography approach using step heating has been exploited for the detection and characterisation of delamination in PV modules. However, step heating takes longer observation time and causes overheating problems. This paper presents the effects of different thermal excitation waveforms namely rectangular, half-sine and short pulse, on the detection and characterisation of delamination in PV module by experiments and simulations. For simulation, a 3-dimensional electro-thermal model of heat conduction, based on resistance-capacitance network approach, has been exploited to study the variation in maximum thermal contrast and peak contrast time with the delamination thickness and heating parameters. Results show that the rectangular waveform provides better detection of delamination due to higher absolute contrast, while the half-sine waveform allows better characterisation of delamination in the PV modules with low-cost and low-power heat source. The high-energy short pulse enabled quick visualisation of delamination, but has limited practical implementation. The advantages and limitations of each waveform have been highlighted to assess the specific requirement for appropriate choice in the non-destructive thermographic inspection of delamination in PV modules at the manufacturing units or outdoor fields.

  17. A novel mechanism for direct real-time polymerase chain reaction that does not require DNA isolation from prokaryotic cells.

    PubMed

    Soejima, Takashi; Xiao, Jin-Zhong; Abe, Fumiaki

    2016-06-23

    Typically, polymerase chain reaction (PCR) is performed after DNA isolation. Real-time PCR (qPCR), also known as direct qPCR in mammalian cells with weak membranes, is a common technique using crude samples subjected to preliminary boiling to elute DNA. However, applying this methodology to prokaryotic cells, which have solid cell walls, in contrast to mammalian cells which immediately burst in water, can result in poor detection. We successfully achieved PCR elongation with the addition of 1.3 cfu of Cronobacter muytjensii to a newly developed direct qPCR master mix without performing any crude DNA extraction (detection limit of 1.6 × 10(0) cfu/ml for the test sample compared with a detection limit of 1.6 × 10(3) cfu/ml primarily for crude (boiling) or classical DNA isolation). We revealed that the chromosomal DNA retained in prokaryotic cells can function as a PCR template, similarly to the mechanism in in situ PCR. Elucidating this reaction mechanism may contribute to the development of an innovative master mix for direct qPCR to detect genes in a single bacterium with solid cell walls and might lead to numerous novel findings in prokaryotic genomics research.

  18. Data-driven fault detection, isolation and estimation of aircraft gas turbine engine actuator and sensors

    NASA Astrophysics Data System (ADS)

    Naderi, E.; Khorasani, K.

    2018-02-01

    In this work, a data-driven fault detection, isolation, and estimation (FDI&E) methodology is proposed and developed specifically for monitoring the aircraft gas turbine engine actuator and sensors. The proposed FDI&E filters are directly constructed by using only the available system I/O data at each operating point of the engine. The healthy gas turbine engine is stimulated by a sinusoidal input containing a limited number of frequencies. First, the associated system Markov parameters are estimated by using the FFT of the input and output signals to obtain the frequency response of the gas turbine engine. These data are then used for direct design and realization of the fault detection, isolation and estimation filters. Our proposed scheme therefore does not require any a priori knowledge of the system linear model or its number of poles and zeros at each operating point. We have investigated the effects of the size of the frequency response data on the performance of our proposed schemes. We have shown through comprehensive case studies simulations that desirable fault detection, isolation and estimation performance metrics defined in terms of the confusion matrix criterion can be achieved by having access to only the frequency response of the system at only a limited number of frequencies.

  19. On the use of positron counting for radio-Assay in nuclear pharmaceutical production.

    PubMed

    Maneuski, D; Giacomelli, F; Lemaire, C; Pimlott, S; Plenevaux, A; Owens, J; O'Shea, V; Luxen, A

    2017-07-01

    Current techniques for the measurement of radioactivity at various points during PET radiopharmaceutical production and R&D are based on the detection of the annihilation gamma rays from the radionuclide in the labelled compound. The detection systems to measure these gamma rays are usually variations of NaI or CsF scintillation based systems requiring costly and heavy lead shielding to reduce background noise. These detectors inherently suffer from low detection efficiency, high background noise and very poor linearity. They are also unable to provide any reasonably useful position information. A novel positron counting technique is proposed for the radioactivity assay during radiopharmaceutical manufacturing that overcomes these limitations. Detection of positrons instead of gammas offers an unprecedented level of position resolution of the radiation source (down to sub-mm) thanks to the nature of the positron interaction with matter. Counting capability instead of charge integration in the detector brings the sensitivity down to the statistical limits at the same time as offering very high dynamic range and linearity from zero to any arbitrarily high activity. This paper reports on a quantitative comparison between conventional detector systems and the proposed positron counting detector. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Detection of Plasmodium knowlesi, Plasmodium falciparum and Plasmodium vivax using loop-mediated isothermal amplification (LAMP) in a co-endemic area in Malaysia.

    PubMed

    Piera, Kim A; Aziz, Ammar; William, Timothy; Bell, David; González, Iveth J; Barber, Bridget E; Anstey, Nicholas M; Grigg, Matthew J

    2017-01-13

    Plasmodium knowlesi is the most common cause of malaria in Malaysia. However, microscopic diagnosis is inaccurate and rapid diagnostic tests (RDTs) are insufficiently sensitive. PCR is sensitive and specific but not feasible at a district level. Loop-mediated isothermal amplification (LAMP) shows potential with only basic requirements. A commercially available LAMP assay, the Eiken Loopamp™ MALARIA Pan Detection kit, is sensitive for Plasmodium falciparum and Plasmodium vivax, but has not previously been evaluated for P. knowlesi. This study aims to determine the sensitivity of this LAMP assay for detecting P. knowlesi infection. Study participants included 73 uncomplicated malaria patients with PCR species confirmation: 50 P. knowlesi, 20 P. falciparum and 3 P. vivax. Nineteen malaria-negative, non-endemic area controls were also included. The sensitivity of the Eiken Loopamp™ MALARIA Pan Detection kit (Pan LAMP) for detecting each Plasmodium species was evaluated. Sensitivity and specificity of the Eiken Loopamp™ MALARIA Pf Detection kit (Pf LAMP) for P. falciparum were also determined. The limit of detection for each LAMP assay was evaluated, with results compared to PCR. All P. knowlesi patients were also tested by CareStart™ (Pf/VOM) and OptiMAL-IT™ (Pan/Pf) RDTs. The sensitivity of the Pan LAMP assay was 100% for P. knowlesi (95% CI 92.9-100), P. falciparum (95% CI 83.2-100), and P. vivax (95% CI 29.2-100). The Pf LAMP was 100% sensitive and specific for P. falciparum detection, with all P. knowlesi samples having a negative reaction. LAMP sensitivity was superior to both RDTs, with only 10 and 28% of P. knowlesi samples testing positive to CareStart™ and OptiMAL-IT™, respectively. Limit of detection using the Pan LAMP for both P. knowlesi and P. vivax was 2 parasites/μL, comparable to PCR. For P. falciparum both the Pan LAMP and Pf LAMP demonstrated a limit of detection of 20 parasites/μL. The Eiken Loopamp™ MALARIA Pan Detection kit is sensitive for detection of P. knowlesi in low parasitaemia clinical infections, as well as P. falciparum and P. vivax. However, a P. knowlesi-specific field assay in a simpler format would assist correct species identification and initiation of optimal treatment for all malaria patients.

  1. Development of a rapid assay for the diagnosis of Myxobolus cerebralis in fish and oligochaetes using loop-mediated isothermal amplification.

    PubMed

    El-Matbouli, M; Soliman, H

    2005-09-01

    A loop-mediated isothermal amplification assay was developed for the rapid detection of Myxobolus cerebralis in both fish and oligochaete hosts. The assay was optimized to amplify parasitic DNA by incubation with Bst DNA polymerase and a set of six specially constructed primers at 65 degrees C for 60 min. The amplification products were detected visually using SYBR Green I dye which gave identical results to gel electrophoresis analysis. Parasite DNA was detected from infected oligochaetes, and from the anal fin, caudal fin, dorsal fin and operculum of clinically infected fish. This 'Myxo-LAMP' assay has a detection limit similar to that of a polymerase chain reaction assay (10(-6)), but is more rapid and only requires a water bath for amplification and is therefore practical for simple and rapid diagnosis of infected tissue.

  2. A Label-Free, Quantitative Fecal Hemoglobin Detection Platform for Colorectal Cancer Screening

    PubMed Central

    Soraya, Gita V.; Nguyen, Thanh C.; Abeyrathne, Chathurika D.; Huynh, Duc H.; Chan, Jianxiong; Nguyen, Phuong D.; Nasr, Babak; Chana, Gursharan; Kwan, Patrick; Skafidas, Efstratios

    2017-01-01

    The early detection of colorectal cancer is vital for disease management and patient survival. Fecal hemoglobin detection is a widely-adopted method for screening and early diagnosis. Fecal Immunochemical Test (FIT) is favored over the older generation chemical based Fecal Occult Blood Test (FOBT) as it does not require dietary or drug restrictions, and is specific to human blood from the lower digestive tract. To date, no quantitative FIT platforms are available for use in the point-of-care setting. Here, we report proof of principle data of a novel low cost quantitative fecal immunochemical-based biosensor platform that may be further developed into a point-of-care test in low-resource settings. The label-free prototype has a lower limit of detection (LOD) of 10 µg hemoglobin per gram (Hb/g) of feces, comparable to that of conventional laboratory based quantitative FIT diagnostic systems. PMID:28475117

  3. Sensitive Detection of Norovirus Using Phage Nanoparticle Reporters in Lateral-Flow Assay

    PubMed Central

    Hagström, Anna E. V.; Garvey, Gavin; Paterson, Andrew S.; Dhamane, Sagar; Adhikari, Meena; Estes, Mary K.; Strych, Ulrich; Kourentzi, Katerina; Atmar, Robert L.; Willson, Richard C.

    2015-01-01

    Noroviruses are recognized worldwide as the principal cause of acute, non-bacterial gastroenteritis, resulting in 19-21 million cases of disease every year in the United States. Noroviruses have a very low infectious dose, a short incubation period, high resistance to traditional disinfection techniques and multiple modes of transmission, making early, point-of-care detection essential for controlling the spread of the disease. The traditional diagnostic tools, electron microscopy, RT-PCR and ELISA require sophisticated and expensive instrumentation, and are considered too laborious and slow to be useful during severe outbreaks. In this paper we describe the development of a new, rapid and sensitive lateral-flow assay using labeled phage particles for the detection of the prototypical norovirus GI.1 (Norwalk), with a limit of detection of 107 virus-like particles per mL, one hundred-fold lower than a conventional gold nanoparticle lateral-flow assay using the same antibody pair. PMID:25978622

  4. Need for new technologies for detection of adventitious agents in vaccines and other biological products.

    PubMed

    Mallet, Laurent; Gisonni-Lex, Lucy

    2014-01-01

    From an industrial perspective, the conventional in vitro and in vivo assays used for detection of viral contaminants have shown their limitations, as illustrated by the unfortunate detection of porcine circovirus contamination in a licensed rotavirus vaccine. This contamination event illustrates the gaps within the existing adventitious agent strategy and the potential use of new broader molecular detection methods. This paper serves to summarize current testing approaches and challenges, along with opportunities for the use of these new technologies. Testing of biological products is required to ensure the safety of patients. Recently, a licensed vaccine was found to be contaminated with a virus. This contamination did not cause a safety concern to the patients; however, it highlights the need for using new testing methods to control our biological products. This paper introduces the benefits of these new tests and outlines the challenges with the current tests. © PDA, Inc. 2014.

  5. Quantum-statistical theory of microwave detection using superconducting tunnel junctions

    NASA Astrophysics Data System (ADS)

    Deviatov, I. A.; Kuzmin, L. S.; Likharev, K. K.; Migulin, V. V.; Zorin, A. B.

    1986-09-01

    A quantum-statistical theory of microwave and millimeter-wave detection using superconducting tunnel junctions is developed, with a rigorous account of quantum, thermal, and shot noise arising from fluctuation sources associated with the junctions, signal source, and matching circuits. The problem of the noise characterization in the quantum sensitivity range is considered and a general noise parameter Theta(N) is introduced. This parameter is shown to be an adequate figure of merit for most receivers of interest while some devices can require a more complex characterization. Analytical expressions and/or numerically calculated plots for Theta(N) are presented for the most promising detection modes including the parametric amplification, heterodyne mixing, and quadratic videodetection, using both the quasiparticle-current and the Cooper-pair-current nonlinearities. Ultimate minimum values of Theta(N) for each detection mode are compared and found to be in agreement with limitations imposed by the quantum-mechanical uncertainty principle.

  6. Biosensor-based microRNA detection: techniques, design, performance, and challenges.

    PubMed

    Johnson, Blake N; Mutharasan, Raj

    2014-04-07

    The current state of biosensor-based techniques for amplification-free microRNA (miRNA) detection is critically reviewed. Comparison with non-sensor and amplification-based molecular techniques (MTs), such as polymerase-based methods, is made in terms of transduction mechanism, associated protocol, and sensitivity. Challenges associated with miRNA hybridization thermodynamics which affect assay selectivity and amplification bias are briefly discussed. Electrochemical, electromechanical, and optical classes of miRNA biosensors are reviewed in terms of transduction mechanism, limit of detection (LOD), time-to-results (TTR), multiplexing potential, and measurement robustness. Current trends suggest that biosensor-based techniques (BTs) for miRNA assay will complement MTs due to the advantages of amplification-free detection, LOD being femtomolar (fM)-attomolar (aM), short TTR, multiplexing capability, and minimal sample preparation requirement. Areas of future importance in miRNA BT development are presented which include focus on achieving high measurement confidence and multiplexing capabilities.

  7. The fabrication of magnetic particle-based chemiluminescence immunoassay for human epididymis protein-4 detection in ovarian cancer.

    PubMed

    Fu, Xiaoling; Liu, Yangyang; Qiu, Ruiyun; Foda, Mohamed F; Zhang, Yong; Wang, Tao; Li, Jinshan

    2018-03-01

    The magnetic particles have a significant influence on the immunoassay detection and cancer therapy. Herein, the chemiluminescence immunoassay combined with the magnetic particles (MPCLIA) was presented for the clinical determination and analysis of human epididymis protein 4 (HE4) in the human serum. Under the optimized experiment conditions, the secure MPCLIA method can detect HE4 in the broader range of 0-1000 pmol/L, with a lower detection limit of 1.35 pmol/L. The satisfactory recovery rate of the method in the serum ranged from 83.62% to 105.10%, which was well within the requirement of clinical analysis. Moreover, the results showed the good correlation with enzyme-linked immunosorbent assay (ELISA), with the correlation coefficient of 0.9589. This proposed method has been successfully applied to the clinical determination of HE4 in the human serum.

  8. Autonomous microfluidic system for phosphate detection.

    PubMed

    McGraw, Christina M; Stitzel, Shannon E; Cleary, John; Slater, Conor; Diamond, Dermot

    2007-02-28

    Miniaturization of analytical devices through the advent of microfluidics and micro total analysis systems is an important step forward for applications such as medical diagnostics and environmental monitoring. The development of field-deployable instruments requires that the entire system, including all necessary peripheral components, be miniaturized and packaged in a portable device. A sensor for long-term monitoring of phosphate levels has been developed that incorporates sampling, reagent and waste storage, detection, and wireless communication into a complete, miniaturized system. The device employs a low-power detection and communication system, so the entire instrument can operate autonomously for 7 days on a single rechargeable, 12V battery. In addition, integration of a wireless communication device allows the instrument to be controlled and results to be downloaded remotely. This autonomous system has a limit of detection of 0.3mg/L and a linear dynamic range between 0 and 20mg/L.

  9. Intracardiac Shunting and Stroke in Children: A Systematic Review

    PubMed Central

    Dowling, Michael M.; Ikemba, Catherine M.

    2017-01-01

    In adults, patent foramen ovale or other potential intracardiac shunts are established risk factors for stroke via paradoxical embolization. Stroke is less common in children and risk factors differ. The authors examined the literature on intracardiac shunting and stroke in children, identifying the methods employed, the prevalence of detectible intracardiac shunts, associated conditions, and treatments. PubMed searches with keywords related to intracardiac shunting and stroke in children identified articles of interest. Additional articles were identified via citations in these articles or in reviews. The authors found that studies of intracardiac shunting in children with stroke are limited. No controlled studies were identified. Detection methods vary and the prevalence of echocardiographically detectible intracardiac shunting appears lower than reported in adults and autopsy studies. Defining the role of intracardiac shunting in pediatric stroke will require controlled studies with unified detection methods in populations stratified by additional risk factors for paradoxical embolization. Optimal treatment is unclear. PMID:21212453

  10. Application of infrared uncooled cameras in surveillance systems

    NASA Astrophysics Data System (ADS)

    Dulski, R.; Bareła, J.; Trzaskawka, P.; PiÄ tkowski, T.

    2013-10-01

    The recent necessity to protect military bases, convoys and patrols gave serious impact to the development of multisensor security systems for perimeter protection. One of the most important devices used in such systems are IR cameras. The paper discusses technical possibilities and limitations to use uncooled IR camera in a multi-sensor surveillance system for perimeter protection. Effective ranges of detection depend on the class of the sensor used and the observed scene itself. Application of IR camera increases the probability of intruder detection regardless of the time of day or weather conditions. It also simultaneously decreased the false alarm rate produced by the surveillance system. The role of IR cameras in the system was discussed as well as technical possibilities to detect human being. Comparison of commercially available IR cameras, capable to achieve desired ranges was done. The required spatial resolution for detection, recognition and identification was calculated. The simulation of detection ranges was done using a new model for predicting target acquisition performance which uses the Targeting Task Performance (TTP) metric. Like its predecessor, the Johnson criteria, the new model bounds the range performance with image quality. The scope of presented analysis is limited to the estimation of detection, recognition and identification ranges for typical thermal cameras with uncooled microbolometer focal plane arrays. This type of cameras is most widely used in security systems because of competitive price to performance ratio. Detection, recognition and identification range calculations were made, and the appropriate results for the devices with selected technical specifications were compared and discussed.

  11. Controlled biological and biomimetic systems for landmine detection.

    PubMed

    Habib, Maki K

    2007-08-30

    Humanitarian demining requires to accurately detect, locate and deactivate every single landmine and other buried mine-like objects as safely and as quickly as possible, and in the most non-invasive manner. The quality of landmine detection affects directly the efficiency and safety of this process. Most of the available methods to detect explosives and landmines are limited by their sensitivity and/or operational complexities. All landmines leak with time small amounts of their explosives that can be found on surrounding ground and plant life. Hence, explosive signatures represent the robust primary indicator of landmines. Accordingly, developing innovative technologies and efficient techniques to identify in real-time explosives residue in mined areas represents an attractive and promising approach. Biological and biologically inspired detection technology has the potential to compete with or be used in conjunction with other artificial technology to complement performance strengths. Biological systems are sensitive to many different scents concurrently, a property that has proven difficult to replicate artificially. Understanding biological systems presents unique opportunities for developing new capabilities through direct use of trained bio-systems, integration of living and non-living components, or inspiring new design by mimicking biological capabilities. It is expected that controlled bio-systems, biotechnology and microbial techniques will contribute to the advancement of mine detection and other application domains. This paper provides directions, evaluation and analysis on the progress of controlled biological and biomimetic systems for landmine detection. It introduces and discusses different approaches developed, underlining their relative advantages and limitations, and highlighting trends, safety and ecology concern, and possible future directions.

  12. Promising Nucleic Acid Lateral Flow Assay Plus PCR for Shiga Toxin-Producing Escherichia coli.

    PubMed

    Terao, Yoshitaka; Takeshita, Kana; Nishiyama, Yasutaka; Morishita, Naoki; Matsumoto, Takashi; Morimatsu, Fumiki

    2015-08-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) is a frequent cause of foodborne infections, and methods for rapid and reliable detection of STEC are needed. A nucleic acid lateral flow assay (NALFA) plus PCR was evaluated for detecting STEC after enrichment. When cell suspensions of 45 STEC strains, 14 non-STEC strains, and 13 non-E. coli strains were tested with the NALFA plus PCR, all of the STEC strains yielded positive results, and all of the non-STEC and non-E. coli strains yielded negative results. The lower detection limit for the STEC strains ranged from 0.1 to 1 pg of genomic DNA (about 20 to 200 CFU) per test, and the NALFA plus PCR was able to detect Stx1- and Stx2-producing E. coli strains with similar sensitivities. The ability of the NALFA plus PCR to detect STEC in enrichment cultures of radish sprouts, tomato, raw ground beef, and beef liver inoculated with 10-fold serially diluted STEC cultures was comparable to that of a real-time PCR assay (at a level of 100 to 100,000 CFU/ml in enrichment culture). The bacterial inoculation test in raw ground beef revealed that the lower detection limit of the NALFA plus PCR was also comparable to that obtained with a real-time PCR assay that followed the U.S. Department of Agriculture guidelines. Although further evaluation is required, these results suggest that the NALFA plus PCR is a specific and sensitive method for detecting STEC in a food manufacturing plant.

  13. European multicenter analytical evaluation of the Abbott ARCHITECT STAT high sensitive troponin I immunoassay.

    PubMed

    Krintus, Magdalena; Kozinski, Marek; Boudry, Pascal; Capell, Nuria Estañ; Köller, Ursula; Lackner, Karl; Lefèvre, Guillaume; Lennartz, Lieselotte; Lotz, Johannes; Herranz, Antonio Mora; Nybo, Mads; Plebani, Mario; Sandberg, Maria B; Schratzberger, Wolfgang; Shih, Jessie; Skadberg, Øyvind; Chargui, Ahmed Taoufik; Zaninotto, Martina; Sypniewska, Grazyna

    2014-11-01

    International recommendations highlight the superior value of cardiac troponins (cTns) for early diagnosis of myocardial infarction along with analytical requirements of improved precision and detectability. In this multicenter study, we investigated the analytical performance of a new high sensitive cardiac troponin I (hs-cTnI) assay and its 99th percentile upper reference limit (URL). Laboratories from nine European countries evaluated the ARCHITECT STAT high sensitive troponin I (hs-TnI) immunoassay on the ARCHITECT i2000SR/i1000SR immunoanalyzers. Imprecision, limit of blank (LoB), limit of detection (LoD), limit of quantitation (LoQ) linearity of dilution, interferences, sample type, method comparisons, and 99th percentile URLs were evaluated in this study. Total imprecision of 3.3%-8.9%, 2.0%-3.5% and 1.5%-5.2% was determined for the low, medium and high controls, respectively. The lowest cTnI concentration corresponding to a total CV of 10% was 5.6 ng/L. Common interferences, sample dilution and carryover did not affect the hs-cTnI results. Slight, but statistically significant, differences with sample type were found. Concordance between the investigated hs-cTnI assay and contemporary cTnI assay at 99th percentile cut-off was found to be 95%. TnI was detectable in 75% and 57% of the apparently healthy population using the lower (1.1 ng/L) and upper (1.9 ng/L) limit of the LoD range provided by the ARCHITECT STAT hs-TnI package insert, respectively. The 99th percentile values were gender dependent. The new ARCHITECT STAT hs-TnI assay with improved analytical features meets the criteria of high sensitive Tn test and will be a valuable diagnostic tool.

  14. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation

    NASA Astrophysics Data System (ADS)

    Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E.; Wang, Shaopeng; Tao, Nongjian

    2017-12-01

    Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (˜9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing.

  15. Wavelet-based higher-order neural networks for mine detection in thermal IR imagery

    NASA Astrophysics Data System (ADS)

    Baertlein, Brian A.; Liao, Wen-Jiao

    2000-08-01

    An image processing technique is described for the detection of miens in RI imagery. The proposed technique is based on a third-order neural network, which processes the output of a wavelet packet transform. The technique is inherently invariant to changes in signature position, rotation and scaling. The well-known memory limitations that arise with higher-order neural networks are addressed by (1) the data compression capabilities of wavelet packets, (2) protections of the image data into a space of similar triangles, and (3) quantization of that 'triangle space'. Using these techniques, image chips of size 28 by 28, which would require 0(109) neural net weights, are processed by a network having 0(102) weights. ROC curves are presented for mine detection in real and simulated imagery.

  16. Detection of ESKAPE Bacterial Pathogens at the Point of Care Using Isothermal DNA-Based Assays in a Portable Degas-Actuated Microfluidic Diagnostic Assay Platform

    PubMed Central

    Renner, Lars D.; Zan, Jindong; Hu, Linda I.; Martinez, Manuel; Resto, Pedro J.; Siegel, Adam C.; Torres, Clint; Hall, Sara B.; Slezak, Tom R.

    2016-01-01

    ABSTRACT An estimated 1.5 billion microbial infections occur globally each year and result in ∼4.6 million deaths. A technology gap associated with commercially available diagnostic tests in remote and underdeveloped regions prevents timely pathogen identification for effective antibiotic chemotherapies for infected patients. The result is a trial-and-error approach that is limited in effectiveness, increases risk for patients while contributing to antimicrobial drug resistance, and reduces the lifetime of antibiotics. This paper addresses this important diagnostic technology gap by describing a low-cost, portable, rapid, and easy-to-use microfluidic cartridge-based system for detecting the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) bacterial pathogens that are most commonly associated with antibiotic resistance. The point-of-care molecular diagnostic system consists of a vacuum-degassed microfluidic cartridge preloaded with lyophilized recombinase polymerase amplification (RPA) assays and a small portable battery-powered electronic incubator/reader. The isothermal RPA assays detect the targeted ESKAPE pathogens with high sensitivity (e.g., a limit of detection of ∼10 nucleic acid molecules) that is comparable to that of current PCR-based assays, and they offer advantages in power consumption, engineering, and robustness, which are three critical elements required for the point-of-care setting. IMPORTANCE This paper describes a portable system for rapidly identifying bacteria in resource-limited environments; we highlight the capabilities of the technology by detecting different pathogens within the ESKAPE collection, which cause nosocomial infections. The system is designed around isothermal DNA-based assays housed within an autonomous plastic cartridge that are designed with the end user in mind, who may have limited technological training. Displaying excellent sensitivity and specificity, the assay systems that we demonstrate may enable future diagnoses of bacterial infection to guide the development of effective chemotherapies and may have a role in areas beyond health where rapid detection is valuable, including in industrial processing and manufacturing, food security, agriculture, and water quality testing. PMID:27986722

  17. Detection of ESKAPE Bacterial Pathogens at the Point of Care Using Isothermal DNA-Based Assays in a Portable Degas-Actuated Microfluidic Diagnostic Assay Platform.

    PubMed

    Renner, Lars D; Zan, Jindong; Hu, Linda I; Martinez, Manuel; Resto, Pedro J; Siegel, Adam C; Torres, Clint; Hall, Sara B; Slezak, Tom R; Nguyen, Tuan H; Weibel, Douglas B

    2017-02-15

    An estimated 1.5 billion microbial infections occur globally each year and result in ∼4.6 million deaths. A technology gap associated with commercially available diagnostic tests in remote and underdeveloped regions prevents timely pathogen identification for effective antibiotic chemotherapies for infected patients. The result is a trial-and-error approach that is limited in effectiveness, increases risk for patients while contributing to antimicrobial drug resistance, and reduces the lifetime of antibiotics. This paper addresses this important diagnostic technology gap by describing a low-cost, portable, rapid, and easy-to-use microfluidic cartridge-based system for detecting the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) bacterial pathogens that are most commonly associated with antibiotic resistance. The point-of-care molecular diagnostic system consists of a vacuum-degassed microfluidic cartridge preloaded with lyophilized recombinase polymerase amplification (RPA) assays and a small portable battery-powered electronic incubator/reader. The isothermal RPA assays detect the targeted ESKAPE pathogens with high sensitivity (e.g., a limit of detection of ∼10 nucleic acid molecules) that is comparable to that of current PCR-based assays, and they offer advantages in power consumption, engineering, and robustness, which are three critical elements required for the point-of-care setting. This paper describes a portable system for rapidly identifying bacteria in resource-limited environments; we highlight the capabilities of the technology by detecting different pathogens within the ESKAPE collection, which cause nosocomial infections. The system is designed around isothermal DNA-based assays housed within an autonomous plastic cartridge that are designed with the end user in mind, who may have limited technological training. Displaying excellent sensitivity and specificity, the assay systems that we demonstrate may enable future diagnoses of bacterial infection to guide the development of effective chemotherapies and may have a role in areas beyond health where rapid detection is valuable, including in industrial processing and manufacturing, food security, agriculture, and water quality testing. Copyright © 2017 Renner et al.

  18. RF Tomography for Tunnel Detection: Principles and Inversion Schemes

    NASA Astrophysics Data System (ADS)

    Lo Monte, L.; Erricolo, D.; Inan, U. S.; Wicks, M. C.

    2008-12-01

    We propose a novel way to detect underground tunnels based on classical seismic tomography, Ground Penetrating Radar (GPR), inverse scattering principles, and the deployment of distributed sensors, which we call "Distributed RF Tomography". Tunnel detection has been a critical problem that cannot be considered fully solved. Presently, tunnel detection is performed by methods that include seismic sensors, electrical impedance, microgravity, boreholes, and GPR. All of these methods have drawbacks that make them not applicable for use in unfriendly environments, such as battlefields. Specifically, they do not cover wide surface areas, they are generally shallow, they are limited to vertical prospecting, and require the user to be in situ, which may jeopardize one's safety. Additional application of the proposed distributed RF tomography include monitoring sensitive areas, (e.g. banks, power plants, military bases, prisons, national borders) and civil applications (e.g. environmental engineering, mine safety, search and rescue, speleology, archaeology and geophysics). The novelty of a Distributed RF tomography system consists of the following. 1) Sensors are scattered randomly above the ground, thus saving time and money compared to the use of boreholes. 2) The use of lower operating frequency (around HF), which allows for deeper penetration. 3) The use of CW diffraction tomography, which increases the resolution to sub-wavelength values, independently from the sensor displacement, and increases the SNR. 4) Use of linear inversion schemes that are suited for tunnel detection. 5) The use of modulation schemes and signal processing algorithms to mitigate interferences and noise. This presentation will cover: 1. Current physical limits of existing techniques for tunnel detection. 2. Concept of Distributed RF Tomography. 3. Inversion theories and strategies a. Proper forward model for voids buried into an homogeneous medium b. Extended matched filtering inversion c. Near field formulation : Dyadic representation d. Fourier approach: principles and techniques aimed at improving the reconstructed image. e. Theoretical Limits f. Super-Resolution : Singular Values Decomposition and MUSIC 4. Propagation Model and theoretical limitations. 5. Transmitting and Receiving design, with signal processing and modulation. 6. Numerical Simulations using FDTD tools.

  19. Rapid Detection of Escherichia coli O157:H7 in Fresh Lettuce Based on Localized Surface Plasmon Resonance Combined with Immunomagnetic Separation.

    PubMed

    Lee, Nari; Choi, Sung-Wook; Chang, Hyun-Joo; Chun, Hyang Sook

    2018-05-01

    This study presents a method for rapid detection of Escherichia coli O157:H7 in fresh lettuce based on the properties of target separation and localized surface plasmon resonance of immunomagnetic nanoparticles. The multifunctional immunomagnetic nanoparticles enabling simultaneous separation and detection were prepared by synthesizing magnetic nanoparticles (ca. 10 nm in diameter) composed of an iron oxide (Fe 3 O 4 ) core and gold shell and then conjugating these nanoparticles with the anti- E. coli O157:H7 antibodies. The application of multifunctional immunomagnetic nanoparticles for detecting E. coli O157:H7 in a lettuce matrix allowed detection of the presence of <1 log CFU mL -1 without prior enrichment. In contrast, the detection limit of the conventional plating method was 2.74 log CFU mL -1 . The method, which requires no preenrichment, provides an alternative to conventional microbiological detection methods and can be used as a rapid screening tool for a large number of food samples.

  20. A colorimetric sensor array for detection of triacetone triperoxide vapor.

    PubMed

    Lin, Hengwei; Suslick, Kenneth S

    2010-11-10

    Triacetone triperoxide (TATP), one of the most dangerous primary explosives, has emerged as an explosive of choice for terrorists in recent years. Owing to the lack of UV absorbance, fluorescence, or facile ionization, TATP is extremely difficult to detect directly. Techniques that are able to detect generally require expensive instrumentation, need extensive sample preparation, or cannot detect TATP in the gas phase. Here we report a simple and highly sensitive colorimetric sensor for the detection of TATP vapor with semiquantitative analysis from 50 ppb to 10 ppm. By using a solid acid catalyst to pretreat a gas stream, we have discovered that a colorimetric sensor array of redox sensitive dyes can detect even very low levels of TATP vapor from its acid decomposition products (e.g., H(2)O(2)) with limits of detection (LOD) below 2 ppb (i.e., <0.02% of its saturation vapor pressure). Common potential interferences (e.g., humidity, personal hygiene products, perfume, laundry supplies, volatile organic compounds, etc.) do not generate an array response, and the array can also differentiate TATP from other chemical oxidants (e.g., hydrogen peroxide, bleach, tert-butylhydroperoxide, peracetic acid).

Top