Automatic remote-integration metering center. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philippidis, P.A.; Weinreb, M.; de Gil, B.F.
1988-11-01
The report documents a multi-phase program for the development and demonstration of a unique automatic and remote metering system. The system consists of a solid-state meter module to provide electrical consumption data, tamper detection, and load control functions; a central master station to interrogate the meter modules for their data and also to transmit load control signals; and a data display module to be accessible to tenants wishing to obtain their meter readings. The system has the capability to measure and allocate demand and to process time of use rates. It also has a meter accuracy self-test feature. The systemmore » is suitable for both direct metering of multi-family buildings and the sub-metering of master-metered apartment buildings. In addition to describing the system, the report documents the results of a 371-point field trial at Scott Tower, a cooperative apartment building in the Bronx, New York.« less
Image based automatic water meter reader
NASA Astrophysics Data System (ADS)
Jawas, N.; Indrianto
2018-01-01
Water meter is used as a tool to calculate water consumption. This tool works by utilizing water flow and shows the calculation result with mechanical digit counter. Practically, in everyday use, an operator will manually check the digit counter periodically. The Operator makes logs of the number shows by water meter to know the water consumption. This manual operation is time consuming and prone to human error. Therefore, in this paper we propose an automatic water meter digit reader from digital image. The digits sequence is detected by utilizing contour information of the water meter front panel.. Then an OCR method is used to get the each digit character. The digit sequence detection is an important part of overall process. It determines the success of overall system. The result shows promising results especially in sequence detection.
Distributed gas sensing with optical fibre photothermal interferometry.
Lin, Yuechuan; Liu, Fei; He, Xiangge; Jin, Wei; Zhang, Min; Yang, Fan; Ho, Hoi Lut; Tan, Yanzhen; Gu, Lijuan
2017-12-11
We report the first distributed optical fibre trace-gas detection system based on photothermal interferometry (PTI) in a hollow-core photonic bandgap fibre (HC-PBF). Absorption of a modulated pump propagating in the gas-filled HC-PBF generates distributed phase modulation along the fibre, which is detected by a dual-pulse heterodyne phase-sensitive optical time-domain reflectometry (OTDR) system. Quasi-distributed sensing experiment with two 28-meter-long HC-PBF sensing sections connected by single-mode transmission fibres demonstrated a limit of detection (LOD) of ∼10 ppb acetylene with a pump power level of 55 mW and an effective noise bandwidth (ENBW) of 0.01 Hz, corresponding to a normalized detection limit of 5.5ppb⋅W/Hz. Distributed sensing experiment over a 200-meter-long sensing cable made of serially connected HC-PBFs demonstrated a LOD of ∼ 5 ppm with 62.5 mW peak pump power and 11.8 Hz ENBW, or a normalized detection limit of 312ppb⋅W/Hz. The spatial resolution of the current distributed detection system is limited to ∼ 30 m, but it is possible to reduce down to 1 meter or smaller by optimizing the phase detection system.
Li, Yuancheng; Qiu, Rixuan; Jing, Sitong
2018-01-01
Advanced Metering Infrastructure (AMI) realizes a two-way communication of electricity data through by interconnecting with a computer network as the core component of the smart grid. Meanwhile, it brings many new security threats and the traditional intrusion detection method can't satisfy the security requirements of AMI. In this paper, an intrusion detection system based on Online Sequence Extreme Learning Machine (OS-ELM) is established, which is used to detecting the attack in AMI and carrying out the comparative analysis with other algorithms. Simulation results show that, compared with other intrusion detection methods, intrusion detection method based on OS-ELM is more superior in detection speed and accuracy.
Li, Yuancheng; Jing, Sitong
2018-01-01
Advanced Metering Infrastructure (AMI) realizes a two-way communication of electricity data through by interconnecting with a computer network as the core component of the smart grid. Meanwhile, it brings many new security threats and the traditional intrusion detection method can’t satisfy the security requirements of AMI. In this paper, an intrusion detection system based on Online Sequence Extreme Learning Machine (OS-ELM) is established, which is used to detecting the attack in AMI and carrying out the comparative analysis with other algorithms. Simulation results show that, compared with other intrusion detection methods, intrusion detection method based on OS-ELM is more superior in detection speed and accuracy. PMID:29485990
Rutten, C J; Steeneveld, W; Inchaisri, C; Hogeveen, H
2014-11-01
The technical performance of activity meters for automated detection of estrus in dairy farming has been studied, and such meters are already used in practice. However, information on the economic consequences of using activity meters is lacking. The current study analyzes the economic benefits of a sensor system for detection of estrus and appraises the feasibility of an investment in such a system. A stochastic dynamic simulation model was used to simulate reproductive performance of a dairy herd. The number of cow places in this herd was fixed at 130. The model started with 130 randomly drawn cows (in a Monte Carlo process) and simulated calvings and replacement of these cows in subsequent years. Default herd characteristics were a conception rate of 50%, an 8-wk dry-off period, and an average milk production level of 8,310 kg per cow per 305 d. Model inputs were derived from real farm data and expertise. For the analysis, visual detection by the farmer ("without" situation) was compared with automated detection with activity meters ("with" situation). For visual estrus detection, an estrus detection rate of 50% and a specificity of 100% were assumed. For automated estrus detection, an estrus detection rate of 80% and a specificity of 95% were assumed. The results of the cow simulation model were used to estimate the difference between the annual net cash flows in the "with" and "without" situations (marginal financial effect) and the internal rate of return (IRR) as profitability indicators. The use of activity meters led to improved estrus detection and, therefore, to a decrease in the average calving interval and subsequent increase in annual milk production. For visual estrus detection, the average calving interval was 419 d and average annual milk production was 1,032,278 kg. For activity meters, the average calving interval was 403 d and the average annual milk production was 1,043,398 kg. It was estimated that the initial investment in activity meters would cost €17,728 for a herd of 130 cows, with an additional cost of €90 per year for the replacement of malfunctioning activity meters. Changes in annual net cash flows arising from using an activity meter included extra revenues from increased milk production and number of calves sold, increased costs from more inseminations, calvings, and feed consumption, and reduced costs from fewer culled cows and less labor for estrus detection. These changes in cash flows were caused mainly by changes in the technical results of the simulated dairy herds, which arose from differences in the estrus detection rate and specificity between the "with" and "without" situations. The average marginal financial effect in the "with" and "without" situations was €2,827 for the baseline scenario, with an average IRR of 11%. The IRR is a measure of the return on invested capital. Investment in activity meters was generally profitable. The most influential assumptions on the profitability of this investment were the assumed culling rules and the increase in sensitivity of estrus detection between the "without" and the "with" situation. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Smart Grid Integrity Attacks: Characterizations and Countermeasures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annarita Giani; Eilyan Bitar; Miles McQueen
2011-10-01
Real power injections at loads and generators, and real power flows on selected lines in a transmission network are monitored, transmitted over a SCADA network to the system operator, and used in state estimation algorithms to make dispatch, re-balance and other energy management system [EMS] decisions. Coordinated cyber attacks of power meter readings can be arranged to be undetectable by any bad data detection algorithm. These unobservable attacks present a serious threat to grid operations. Of particular interest are sparse attacks that involve the compromise of a modest number of meter readings. An efficient algorithm to find all unobservable attacksmore » [under standard DC load flow approximations] involving the compromise of exactly two power injection meters and an arbitrary number of power meters on lines is presented. This requires O(n2m) flops for a power system with n buses and m line meters. If all lines are metered, there exist canonical forms that characterize all 3, 4, and 5-sparse unobservable attacks. These can be quickly detected in power systems using standard graph algorithms. Known secure phase measurement units [PMUs] can be used as countermeasures against an arbitrary collection of cyber attacks. Finding the minimum number of necessary PMUs is NP-hard. It is shown that p + 1 PMUs at carefully chosen buses are sufficient to neutralize a collection of p cyber attacks.« less
Laser Doppler technology applied to atmospheric environmental operating problems
NASA Technical Reports Server (NTRS)
Weaver, E. A.; Bilbro, J. W.; Dunkin, J. A.; Jeffreys, H. B.
1976-01-01
Carbon dioxide laser Doppler ground wind data were very favorably compared with data from standard anemometers. As a result of these measurements, two breadboard systems were developed for taking research data: a continuous wave velocimeter and a pulsed Doppler system. The scanning continuous wave laser Doppler velocimeter developed for detecting, tracking and measuring aircraft wake vortices was successfully tested at an airport where it located vortices to an accuracy of 3 meters at a range of 150 meters. The airborne pulsed laser Doppler system was developed to detect and measure clear air turbulence (CAT). This system was tested aboard an aircraft, but jet stream CAT was not encountered. However, low altitude turbulence in cumulus clouds near a mountain range was detected by the system and encountered by the aircraft at the predicted time.
Research on Operation Assessment Method for Energy Meter
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-03-01
The existing electric energy meter rotation maintenance strategy regularly checks the electric energy meter and evaluates the state. It only considers the influence of time factors, neglects the influence of other factors, leads to the inaccuracy of the evaluation, and causes the waste of resources. In order to evaluate the running state of the electric energy meter in time, a method of the operation evaluation of the electric energy meter is proposed. The method is based on extracting the existing data acquisition system, marketing business system and metrology production scheduling platform that affect the state of energy meters, and classified into error stability, operational reliability, potential risks and other factors according to the influencing factors, based on the above basic test score, inspecting score, monitoring score, score of family defect detection. Then, according to the evaluation model according to the scoring, we evaluate electric energy meter operating state, and finally put forward the corresponding maintenance strategy of rotation.
A Method of Evaluating Operation of Electric Energy Meter
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Li, Tianyang; Cao, Fei; Chu, Pengfei; Zhao, Xinwang; Huang, Rui; Liu, Liping; Zhang, Chenglin
2018-05-01
The existing electric energy meter rotation maintenance strategy regularly checks the electric energy meter and evaluates the state. It only considers the influence of time factors, neglects the influence of other factors, leads to the inaccuracy of the evaluation, and causes the waste of resources. In order to evaluate the running state of the electric energy meter in time, a method of the operation evaluation of the electric energy meter is proposed. The method is based on extracting the existing data acquisition system, marketing business system and metrology production scheduling platform that affect the state of energy meters, and classified into error stability, operational reliability, potential risks and other factors according to the influencing factors, based on the above basic test score, inspecting score, monitoring score, score of family defect detection. Then, according to the evaluation model according to the scoring, we evaluate electric energy meter operating state, and finally put forward the corresponding maintenance strategy of rotation.
High-Resolution Gas Metering and Nonintrusive Appliance Load Monitoring System
NASA Astrophysics Data System (ADS)
Tewolde, Mahder
This thesis deals with design and implementation of a high-resolution metering system for residential natural gas meters. Detailed experimental measurements are performed on the meter to characterize and understand its measurement properties. Results from these experiments are used to develop a simple, fast and accurate technique to non-intrusively monitor the gas consumption of individual appliances in homes by resolving small amounts of gas usage. The technique is applied on an existing meter retrofitted with a module that includes a high-resolution encoder to collect gas flow data and a microprocessor to analyze and identify appliance load profiles. This approach provides a number of appealing features including low cost, easy installation and integration with automated meter reading (AMR) systems. The application of this method to residential gas meters currently deployed is also given. This is done by performing a load simulation on realistic gas loads with the aim of identifying the necessary parameters that minimize the cost and complexity of the mechanical encoder module. The primary benefits of the system are efficiency analysis, appliance health monitoring and real-time customer feedback of gas usage. Additional benefits of include the ability to detect very small leaks and theft. This system has the potential for wide scale market adoption.
Combustion products generating and metering device
NASA Technical Reports Server (NTRS)
Wiberg, R. E.; Klisch, J. A.
1974-01-01
Device simulates incipient fire conditions in closely-controlled adjustable manner, to give predetermined degree of intensity at selected locations throughout area, and to verify that detection system will respond. Device can be used with and for cross calibration and experimentation in conjunction with commercially available products of combustion analyzing meters.
Rasmussen, A; Frimodt-Møller, N; Espersen, F; Roed, M; Frimodt-Møller, C
1996-08-01
To compare three different urine metering systems for their ability to prevent retrograde contamination in an in vitro model of a closed urinary drainage system and for qualities important to their practical handling in a clinical setting. Using three urine-meters (the Braun Ureofix 511, the Kendall Curity 4000 and the Unoplast Unometer 500) the in vitro model was constantly flushed with a solution of Mueller-Hinton broth diluted with saline. On the first day, the urine collecting bag was inoculated with 10(8) cells of Pseudomonas aeruginosa. The system was operated for 12 days with daily sampling of the model bladder to detect any contamination. After 12 days the experiment was stopped and sampling performed at various locations, including the urine-meter and the tubing. Nine of each type of urine-meter were tested, i.e. three in three different experiments. In the clinical study, 45 patients were randomized to each of the three urine-meters and the nurses attending them were asked to complete a questionnaire on the practical handling of the urine-meters. When the urine-meters was omitted from the model system, the 'bladder' became contaminated with the test bacteria within 3 days. None of the nine Unometer 500 systems became contaminated, compared with four of each of the other two systems (P < 0.05). In clinical use, the Unometer 500 and Ureofix 511 were easier to suspend and empty than was the Curity 4000. The Unometer 500 was significantly easier to handle when the collecting bag was emptied. Urine-meters can prevent retrograde contamination in a closed bladder-drainage model, but the degree of prevention depends upon the type of urine-meter. In daily practice, there were differences in the ease of suspension of the systems and in the emptying of the urine-meter and collecting bag.
Design and construction of portable survey meter
NASA Astrophysics Data System (ADS)
Singseeta, W.; Thong-aram, D.; Pencharee, S.
2017-09-01
This work was aimed to design and construction of portable survey meter for radiation dose measuring. The designed system consists of 4 main parts consisting of low voltage power supply, radiation detection, radiation measurement and data display part on android phone. The test results show that the ripple voltage of low voltage power supply is less than 1%, the maximum integral counts are found to be 104 counts per second and the maximum distance of wireless commination between the server and the client is about 10 meter. It was found that the developed system had small size and light weight for portable instrument.
Exploring the energy benefits of advanced water metering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Michael A.; Hans, Liesel; Piscopo, Kate
Recent improvements to advanced water metering and communications technologies have the potential to improve the management of water resources and utility infrastructure, benefiting both utilities and ratepayers. The highly granular, near-real-time data and opportunity for automated control provided by these advanced systems may yield operational benefits similar to those afforded by similar technologies in the energy sector. While significant progress has been made in quantifying the water-related benefits of these technologies, the research on quantifying the energy benefits of improved water metering is underdeveloped. Some studies have quantified the embedded energy in water in California, however these findings are basedmore » on data more than a decade old, and unanimously assert that more research is needed to further explore how topography, climate, water source, and other factors impact their findings. In this report, we show how water-related advanced metering systems may present a broader and more significant set of energy-related benefits. We review the open literature of water-related advanced metering technologies and their applications, discuss common themes with a series of water and energy experts, and perform a preliminary scoping analysis of advanced water metering deployment and use in California. We find that the open literature provides very little discussion of the energy savings potential of advanced water metering, despite the substantial energy necessary for water’s extraction, conveyance, treatment, distribution, and eventual end use. We also find that water AMI has the potential to provide water-energy co-efficiencies through improved water systems management, with benefits including improved customer education, automated leak detection, water measurement and verification, optimized system operation, and inherent water and energy conservation. Our findings also suggest that the adoption of these technologies in the water sector has been slow, due to structural economic and regulatory barriers. In California, we see examples of deployed advanced metering systems with demonstrated embedded energy savings through water conservation and leak detection. Finally, we also see substantial untapped opportunity in the agricultural sector for enabling electric demand response for both traditional peak shaving and more complex flexible and ancillary services through improved water tracking and farm automation.« less
DOT National Transportation Integrated Search
1991-01-01
Various geophysical electrical measuring techniques, i.e., spontaneous potential (SP) terrain conductivity meter (TCM), and conventional electrical resistivity/conductivity (ER), were tested to determine their effectiveness in detecting, delineating,...
Leveraging AMI data for distribution system model calibration and situational awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini
The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation andmore » regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.« less
Leveraging AMI data for distribution system model calibration and situational awareness
Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini; ...
2015-01-15
The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation andmore » regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.« less
Collaborative Point Paper on Border Surveillance Technology
2007-06-01
Systems PLC LORHIS (Long Range Hyperspectral Imaging System ) can be configured for either manned or unmanned aircraft to automatically detect and...Airships, and/or Aerostats, (RF, Electro-Optical, Infrared, Video) • Land- based Sensor Systems (Attended/Mobile and Unattended: e.g., CCD, Motion, Acoustic...electronic surveillance technologies for intrusion detection and warning. These ground- based systems are primarily short-range, up to around 500 meters
Two Meter Flight Path - Time of Flight Positron Annihilation Induced Auger Electron Spectrometer
NASA Astrophysics Data System (ADS)
Mukherjee, S.; Shastry, K.; Maddox, W.; Weiss, A. H.
2008-03-01
Details of the design and construction of a new time of flight positron annihilation induced Auger electron (TOF-PAES) spectrometer are presented. The new spectrometer will be equipped with a 2 meter long ``TOF'' tube that can be biased at a potential different from that of the sample in order to increase or decrease the kinetic energy of the electrons traveling through the tube. The time of flight will be determined from timing signals obtained from the detection of the annihilation gamma (signaling the start of the flight) and detection of the annihilation induced Auger electron at the end of the 2 meter flight path (signaling the end of the flight). The 2 meter long flight path is a factor of two longer than used in previous TOF-PAES systems. The longer flight path can be expected to result in a fractional energy width: delta E/ E that is .5ex1 -.1em/ -.15em.25ex2 as large as the current UTA lab based TOF-PAES spectrometer.
Accuracy of acoustic velocity metering systems for measurement of low velocity in open channels
Laenen, Antonius; Curtis, R. E.
1989-01-01
Acoustic velocity meter (AVM) accuracy depends on equipment limitations, the accuracy of acoustic-path length and angle determination, and the stability of the mean velocity to acoustic-path velocity relation. Equipment limitations depend on path length and angle, transducer frequency, timing oscillator frequency, and signal-detection scheme. Typically, the velocity error from this source is about +or-1 to +or-10 mms/sec. Error in acoustic-path angle or length will result in a proportional measurement bias. Typically, an angle error of one degree will result in a velocity error of 2%, and a path-length error of one meter in 100 meter will result in an error of 1%. Ray bending (signal refraction) depends on path length and density gradients present in the stream. Any deviation from a straight acoustic path between transducer will change the unique relation between path velocity and mean velocity. These deviations will then introduce error in the mean velocity computation. Typically, for a 200-meter path length, the resultant error is less than one percent, but for a 1,000 meter path length, the error can be greater than 10%. Recent laboratory and field tests have substantiated assumptions of equipment limitations. Tow-tank tests of an AVM system with a 4.69-meter path length yielded an average standard deviation error of 9.3 mms/sec, and the field tests of an AVM system with a 20.5-meter path length yielded an average standard deviation error of a 4 mms/sec. (USGS)
Study to develop improved methods to detect leakage in fluid systems, phase 2
NASA Technical Reports Server (NTRS)
Janus, J. C.; Cimerman, I.
1971-01-01
An ultrasonic contact sensor engineering prototype leak detection system was developed and its capabilities under cryogenic operations demonstrated. The results from tests indicate that the transducer performed well on liquid hydrogen plumbing, that flow and valve actuation could be monitored, and that the phase change from gaseous to liquid hydrogen could be detected by the externally mounted transducers. Tests also demonstrate the ability of the system to detect internal leaks past valve seats and to function as a flow meter. Such a system demonstrates that it is not necessary to break into welded systems to locate internal leaks.
Accuracy of mini peak flow meters in indicating changes in lung function in children with asthma.
Sly, P. D.; Cahill, P.; Willet, K.; Burton, P.
1994-01-01
OBJECTIVE--To assess whether mini flow meters used to measure peak expiratory flow can track changes in lung function and indicate clinically important changes. DESIGN--Comparison of measurements with a spirometer and different brands of mini flow meter; the meters were allocated to subjects haphazardly. SUBJECTS--12 boys with asthma aged 11 to 17 attending boarding school. MAIN OUTCOME MEASURES--Peak expiratory flow measured twice daily for three months with a spirometer and at least one of four brands of mini flow meter. RESULTS--The relation between changes in lung function measured with the spirometer and those measured with the mini flow meters was generally poor. In all, 26 episodes (range 1-3 in an individual child) of clinically important deterioration in lung function were detected from the records obtained with the spirometer. One mini flow meter detected six of 19 episodes, one detected six of 15, one detected six of 18, and one detected three of 21. CONCLUSIONS--Not only are the absolute values of peak expiratory flow obtained with mini flow meters inaccurate but the clinical message may also be incorrect. These findings do not imply that home monitoring of peak expiratory flow has no place in the management of childhood asthma but that the values obtained should be interpreted cautiously. PMID:8148680
Source detection at 100 meter standoff with a time-encoded imaging system
NASA Astrophysics Data System (ADS)
Brennan, J.; Brubaker, E.; Gerling, M.; Marleau, P.; Monterial, M.; Nowack, A.; Schuster, P.; Sturm, B.; Sweany, M.
2018-01-01
We present the design, characterization, and testing of a laboratory prototype radiological search and localization system. The system, based on time-encoded imaging, uses the attenuation signature of neutrons in time, induced by the geometrical layout and motion of the system. We have demonstrated the ability to detect a ∼ 1mCi252Cf radiological source at 100m standoff with 90% detection efficiency and 10% false positives against background in 12min. This same detection efficiency is met at 15s for a 40m standoff, and 1 . 2s for a 20m standoff.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
... satisfactory quality] to the City for the purchase of ORION [supreg] Water Meter Monitor with Leak Detection... Leak Detection Indicator in-home water meter monitors manufactured in Malaysia by Escatech, Inc., under... conservation through the early detection and remediation of leaks. The City has used residential water meters...
A novel variable baseline visibility detection system and its measurement method
NASA Astrophysics Data System (ADS)
Li, Meng; Jiang, Li-hui; Xiong, Xing-long; Zhang, Guizhong; Yao, JianQuan
2017-10-01
As an important meteorological observation instrument, the visibility meter can ensure the safety of traffic operation. However, due to the optical system contamination as well as sample error, the accuracy and stability of the equipment are difficult to meet the requirement in the low-visibility environment. To settle this matter, a novel measurement equipment was designed based upon multiple baseline, which essentially acts as an atmospheric transmission meter with movable optical receiver, applying weighted least square method to process signal. Theoretical analysis and experiments in real atmosphere environment support this technique.
Method for curing polymers using variable-frequency microwave heating
Lauf, R.J.; Bible, D.W.; Paulauskas, F.L.
1998-02-24
A method for curing polymers incorporating a variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity is disclosed. By varying the frequency of the microwave signal, non-uniformities within the cavity are minimized, thereby achieving a more uniform cure throughout the workpiece. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. The furnace cavity may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing. 15 figs.
NASA Astrophysics Data System (ADS)
Krämer, Sebastian G. M.; Wiesent, Benjamin; Müller, Mathias S.; Puente León, Fernando; Méndez Hernández, Yarú
2008-04-01
Wind turbine blades are made of composite materials and reach a length of more than 42 meters. Developments for modern offshore turbines are working on about 60 meters long blades. Hence, with the increasing height of the turbines and the remote locations of the structures, health monitoring systems are becoming more and more important. Therefore, fiber-optic sensor systems are well-suited, as they are lightweight, immune against electromagnetic interference (EMI), and as they can be multiplexed. Based on two separately existing concepts for strain measurements and lightning detection on wind turbines, a fused system is presented. The strain measurement system is based on a reflective fiber-Bragg-grating (FBG) network embedded in the composite structure of the blade. For lightning detection, transmissive &fiber-optic magnetic field sensors based on the Faraday effect are used to register the lightning parameters and estimate the impact point. Hence, an existing lightning detection system will be augmented, due to the fusion, by the capability to measure strain, temperature and vibration. Load, strain, temperature and impact detection information can be incorporated into the turbine's monitoring or SCADA system and remote controlled by operators. Data analysis techniques allow dynamic maintenance scheduling to become a reality, what is of special interest for the cost-effective maintenance of large offshore or badly attainable onshore wind parks. To prove the feasibility of this sensor fusion on one optical fiber, interferences between both sensor systems are investigated and evaluated.
Remote Measurement of Atmospheric Temperatures By Raman Lidar
NASA Technical Reports Server (NTRS)
Salzman, Jack A.; Coney, Thom A.
1973-01-01
The Raman shifted return of a lidar, or optical radar, system has been utilized to make atmospheric temperature measurements. These measurements were made along a horizontal path at temperatures between -20 C and +30 C and at ranges of about 100 meters. The temperature data were acquired by recording the intensity ratio of two portions of the Raman spectrum which were simultaneously sampled from a preset range. The lidar unit employed in this testing consisted of a 4 joule-10ppm laser operating at 694.3 nm, a 10-inch Schmidt-Cassegrain telescope, and a system of time-gated detection and signal processing electronics. The detection system processed three return signal wavelength intervals - two intervals along the rotational Raman scattered spectrum and one interval centered at the Rayleigh-Mie scattered wavelength. The wavelength intervals were resolved by using a pellicle beam splitter and three optical interference filters. Raman return samples were taken from one discrete range segment during each test shot and the signal intensities were displayed in digital format. The Rayleigh-Mie techniques. The test site utilized to evaluate this measurement technique encompassed a total path length of 200 meters. Major components of the test site included a trailer-van housing the lidar unit, a controlled environment test zone, and a beam terminator. The control zone which was located about 100 meters from the trailer was 12 meters in length, 2.4 meters in diameter, and was equipped with hinged doors at each end. The temperature of the air inside the zone could be either raised or lowered with respect to ambient air through the use of infrared heaters or a liquid-nitrogen cooling system. Conditions inside the zone were continuously monitored with a thermocouple rake assembly. The test path length was terminated by a 1.2 meter square array of energy absorbing cones and a flat black screen. Tests were initially conducted at strictly ambient conditions utilizing the normal outside air temperatures as a test parameter. These tests provided a calibration of the Raman intensity ratio as a function of' temperature for the particular optical-filter arrangement used in this system while also providing a test of' the theoretical prediction formulated in the design of the system. Later tests utilized zone temperatures above and below ambient to provide temperature gradient data. These tests indicate that ten shots, or one minute of' data acquisition, from a 100 meter range can provide absolute temperature measurements with an accuracy of + 30 C and a range resolution of about 5 meters. Because this measurement accuracy compares well with that predicted for this particular unit, it is suggested that a field-application system could be built with signif'icant improvements in both absolute accuracy and range.
Velocity profile survey in a 16-in. custody-transfer orifice meter for natural gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, J.J.S.
1991-02-01
This paper describes a research project conducted at Chevron U.S.A. Inc.'s Venice, LA, facility to ascertain that the flow condition inside a nominal 16-in. (406-mm) custody-transfer orifice meter was in compliance with American Gas Assn. (AGA) requirements. The survey was conducted at four flow rates ranging from 160 to 200 MMscf/D (4.53 {times} 10{sup 6} to 5.66 {times} 10{sup 6} std m{sup 3}/d) of processed natural gas at 880 psia (6.1 MPa). Experimental data were collected by a portable data-acquisition system driven by a lap-top microcomputer. The measured profiles indicated that the flow was nearly fully developed at the orificemore » plate location, and no significant swirling motion was detected. This test successfully demonstrated the techniques and equipment developed for determining actual flow distributions inside orifice meters in the field under normal operating conditions. This technology can be used to detect detrimental flow profiles and to verify compliance with AGA requirements on flow conditions in custody-transfer orifice meters.« less
40 CFR 63.1383 - Monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... manufacturer to be capable of detecting PM emissions at concentrations of 10 milligrams per actual cubic meter (0.0044 grains per actual cubic foot) or less. (ii) The bag leak detection system sensor must produce... be monitored and recorded once per day. (2) On any new glass-melting furnace, the owner or operator...
Detecting Defects Within Soil-Bentonite Slurry Cutoff Walls Using Electrical Resistivity Methods
NASA Astrophysics Data System (ADS)
Aborn, L.; Jacob, R. W.; Mucelli, A.
2016-12-01
Installed in the subsurface, vertical cutoff walls may limit groundwater movement. The effectiveness of these walls can be undermined by defects, for example high permeability material, within the wall. An efficient way of detecting these defects in a soil-bentonite slurry cutoff wall has yet to be established. We installed an approximately 200-meter long and 7-meter deep soil-bentonite slurry cutoff wall for the purposes of research. The wall was constructed adjacent to a natural wetland, the Montandon Marsh near Lewisburg, PA. The wall is composed of soil-bentonite backfill and was designed to be a typical low permeability material. We evaluate the capability of non-invasive geophysical techniques, specifically electrical resistivity, to detect high permeability defects that are expected to have higher electrical resistivity values than the backfill material. The laboratory measured electrical resistivity of the backfill used for construction was 12.27-ohm meters. During construction, designed defects of saturated fine-grained sand bags were deployed at different positions and depths within the wall. To create larger defects multiple bags were tied together. Laboratory resistivity testing of the sand and the filled sand bags indicates values between 125-ohm meters at full saturation and 285-ohm meters at partial saturation. Post construction, we collected electrical resistivity data using a 28-channel system along the centerline of the cutoff wall, which indicated the backfill material to have a resistivity value of 15-ohm meters. The electrical resistivity profile was affected by the sidewalls of the trench, as expected, which may explain the difference between laboratory results and field measurements. To minimize the sidewalls obscuring the defects, we developed electrodes that are pushed into the backfill at different depths to collect subsurface resistivity. Different arrays and electrode spacings are being tested. Our presentation will report the most effective method for detecting defects within a soil-bentonite cutoff wall.
Source detection at 100 meter standoff with a time-encoded imaging system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennan, J.; Brubaker, E.; Gerling, M.
Here, we present the design, characterization, and testing of a laboratory prototype radiological search and localization system. The system, based on time-encoded imaging, uses the attenuation signature of neutrons in time, induced by the geometrical layout and motion of the system. We have demonstrated the ability to detect a ~1 mCi 252 Cf radiological source at 100 m standoff with 90% detection efficiency and 10% false positives against background in 12 min. As a result, this same detection efficiency is met at 15 s for a 40 m standoff, and 1.2 s for a 20 m standoff.
Source detection at 100 meter standoff with a time-encoded imaging system
Brennan, J.; Brubaker, E.; Gerling, M.; ...
2017-09-28
Here, we present the design, characterization, and testing of a laboratory prototype radiological search and localization system. The system, based on time-encoded imaging, uses the attenuation signature of neutrons in time, induced by the geometrical layout and motion of the system. We have demonstrated the ability to detect a ~1 mCi 252 Cf radiological source at 100 m standoff with 90% detection efficiency and 10% false positives against background in 12 min. As a result, this same detection efficiency is met at 15 s for a 40 m standoff, and 1.2 s for a 20 m standoff.
Acoustic velocity meter systems
Laenen, Antonius
1985-01-01
Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.
Lamb, Brian K; Edburg, Steven L; Ferrara, Thomas W; Howard, Touché; Harrison, Matthew R; Kolb, Charles E; Townsend-Small, Amy; Dyck, Wesley; Possolo, Antonio; Whetstone, James R
2015-04-21
Fugitive losses from natural gas distribution systems are a significant source of anthropogenic methane. Here, we report on a national sampling program to measure methane emissions from 13 urban distribution systems across the U.S. Emission factors were derived from direct measurements at 230 underground pipeline leaks and 229 metering and regulating facilities using stratified random sampling. When these new emission factors are combined with estimates for customer meters, maintenance, and upsets, and current pipeline miles and numbers of facilities, the total estimate is 393 Gg/yr with a 95% upper confidence limit of 854 Gg/yr (0.10% to 0.22% of the methane delivered nationwide). This fraction includes emissions from city gates to the customer meter, but does not include other urban sources or those downstream of customer meters. The upper confidence limit accounts for the skewed distribution of measurements, where a few large emitters accounted for most of the emissions. This emission estimate is 36% to 70% less than the 2011 EPA inventory, (based largely on 1990s emission data), and reflects significant upgrades at metering and regulating stations, improvements in leak detection and maintenance activities, as well as potential effects from differences in methodologies between the two studies.
Method for curing polymers using variable-frequency microwave heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lauf, R.J.; Bible, D.W.; Paulauskas, F.L.
1998-02-24
A method for curing polymers incorporating a variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity is disclosed. By varying the frequency of the microwave signal, non-uniformities within the cavity are minimized, thereby achieving a more uniform cure throughout the workpiece. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Themore » furnace cavity may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing. 15 figs.« less
Method for curing polymers using variable-frequency microwave heating
Lauf, Robert J.; Bible, Don W.; Paulauskas, Felix L.
1998-01-01
A method for curing polymers (11) incorporating a variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34). By varying the frequency of the microwave signal, non-uniformities within the cavity (34) are minimized, thereby achieving a more uniform cure throughout the workpiece (36). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. The furnace cavity (34) may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing.
Detection of smoldering combustion of coal with an odor meter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, J.C.
1995-05-01
A commercially available odor meter was evaluated as a detector of smoldering coal combustion, and compared with incipient carbon monoxide (CO) and hydrogen sulfide (H{sub 2}S) detection and a commercially available ionization-type smoke detector. Ten smoldering coal combustion experiments were conducted. For eight of the experiments, Pittsburgh seam coal with an average particle diameter of approximately 5 cm was heated by embedded electrical strip heaters. For two of the experiments mine size Pittsburgh seam coal was heated. Heating rates of 0.5, 0.8, and 1.1. kw were selected to provide experimental conditions characteristic of very slow and moderately fast heating formore » coal sample mass between 3 and 10 kg. It was found that the odor meter and smoke detector alarm had a good correlation, with the odor meter alarm occurring prior to the smoke alarm in four of the ten experiments. The odor meter gave an increase in its output signal above ambient equivalent to detecting 1 ppm of H{sub 2}S (ten times the odor threshold of H{sub 2}S) as an alarm value. This observed odor meter response occurred prior to the electrochemical detection of H{sub 2}S for five of the six experiments for which it was evaluated. In all six experiments for which the smoke optical density was evaluated, it was less than 0.023 m{sup -1} prior to the odor meter reaching alarm. In each of the eight experiments with 5 cm diameter coal particles the CO exceeded 5 ppm at odor meter alarm, while for the two experiments with mine size coal the CO was less than 3 ppm at odor meter alarm. The odor meter, as tested, is not a significant improvement over smoke and CO detectors. Because the odor meter responds to a variety of chemical compounds, with suitable modification and increased sensitivity it may be useful for detection of mine fires and thereby enhance mine safety.« less
Remote detection of explosives using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Fulton, Jack
2011-05-01
Stand-off detection of potentially hazardous small molecules at distances that allow the user to be safe has many applications, including explosives and chemical threats. The Naval Surface Warfare Center, Crane Division, with EYZtek, Inc. of Ohio, developed a prototype stand-off, eye-safe Raman spectrometer. With a stand-off distance greater than twenty meters and scanning optics, this system has the potential of addressing particularly difficult challenges in small molecule detection. An overview of the system design and desired application space is presented.
Cross-cultural differences in meter perception.
Kalender, Beste; Trehub, Sandra E; Schellenberg, E Glenn
2013-03-01
We examined the influence of incidental exposure to varied metrical patterns from different musical cultures on the perception of complex metrical structures from an unfamiliar musical culture. Adults who were familiar with Western music only (i.e., simple meters) and those who also had limited familiarity with non-Western music were tested on their perception of metrical organization in unfamiliar (Turkish) music with simple and complex meters. Adults who were familiar with Western music detected meter-violating changes in Turkish music with simple meter but not in Turkish music with complex meter. Adults with some exposure to non-Western music that was unmetered or metrically complex detected meter-violating changes in Turkish music with both simple and complex meters, but they performed better on patterns with a simple meter. The implication is that familiarity with varied metrical structures, including those with a non-isochronous tactus, enhances sensitivity to the metrical organization of unfamiliar music.
The Value of Advanced Smart Metering in the Management of Urban Water Supply Services
NASA Astrophysics Data System (ADS)
Guardiola, J.; Pulido-Velazquez, M.; Giuliani, M.; Castelletti, A.; Cominola, A.; Arregui de la Cruz, F.; Escriva-Bou, A.; Soriano, J.; Pérez, J. J.; Castillo, J.; Barba, J.; González, V.; Rizzoli, A. E.
2016-12-01
This work intends to outline the experience of the implementation and further exploitation of an extensive network of smart meters (SM) in the city of Valencia by Aguas de Valencia, the water utility that offers water supply and sanitation services to the city of Valencia and its metropolitan area. Valencia has become the first large city in Europe fully equipped with a point-to-point fixed network of SM (currently with more than 430,000 units, about 90% of the meters of the city). The shift towards a water supply management system based on SM is a complex process that entails changes and impacts on different management areas of the water supply organization. A new data management and processing platform has been developed and is already proving notable benefits in the operation of the system. For example, a tool allows to automatically issue and manage work orders when abnormalities such as internal leaks (constant consumption) or meter alarms are detected. Another tool has been developed to reduce levels of non-revenue water by continuously balancing supply and demand in district metered areas. Improving leak detection and adjusting pressure levels has significantly increased the efficiency of the water distribution network. Finally, a service of post-meter leak detection has been also implemented. But the SM also contribute to improve demand management. The customers now receive detailed information on their water consumption, valuable for improving household water management and assessing the value of water conservation strategies. SM are also key tools for improving the level of understanding of demand patterns. Users have been categorized into different clusters depending in their consumption patterns characteristics. Within the EU SmartH2O project, a high resolution and frequency monitoring of residential uses has been conducted in a selected sample of households for a precise disaggregation of residential end-uses. The disaggregation of end-uses allows for a better characterization and modelling of residential water demand, and, ultimately, designing efficient user-oriented water management strategies.
Variable frequency microwave furnace system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bible, D.W.; Lauf, R.J.
1994-06-14
A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal inputmore » to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.« less
Variable frequency microwave furnace system
Bible, D.W.; Lauf, R.J.
1994-06-14
A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.
NASA Technical Reports Server (NTRS)
Baxter, W. J., Jr.; Frant, M. S.; West, S. J.
1978-01-01
Solid-state sensing unit developed for use with NASA's Water-Quality Monitoring System can detect small velocity changes in slow moving fluid. Nonprotruding sensor is applicable to numerous other uses requiring sensitive measurement of slow flows.
Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 764
2006-04-01
Attainable accuracy of depth (z) ± 0.3 meter Detection performance for ferrous and nonferrous metals : will detect ammunition components 20-mm...ASSOCIATES, INC. 6832 OLD DOMINION DRIVE MCLEAN, VA 22101 TECHNOLOGY TYPE/PLATFORM: MULTI CHANNEL DETECTOR SYSTEM (AMOS)/TOWED PREPARED BY: U.S...Multi Channel Detector System (AMOS)/Towed, MEC 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON a. REPORT Unclassified b. ABSTRACT
Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.
Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylene moderator. In the following year, we developed the field-programmable gate array and associated DAQ software. Finally, this SDRD effort successfully produced a prototype NMC with ~33% detection efficiency compared to a commercial fission meter.« less
Neutron multiplicity measurements with 3He alternative: Straw neutron detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Sanjoy; Wolff, Ronald; Detwiler, Ryan
Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originatingmore » from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylenemoderator. In the following year, we developed the field-programmable gate array and associated DAQ software. This SDRD effort successfully produced a prototype NMC with*33% detection efficiency compared to a commercial fission meter.« less
Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors
Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.; ...
2015-01-27
Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylene moderator. In the following year, we developed the field-programmable gate array and associated DAQ software. Finally, this SDRD effort successfully produced a prototype NMC with ~33% detection efficiency compared to a commercial fission meter.« less
Hand tremor and activity sensor
NASA Technical Reports Server (NTRS)
Konigsberg, E.
1975-01-01
System detects hand tremor and activity and transmitting signals over distance of at least 3 meters to receiver system. Designed for use in studies of effect of fatigue on individual's judgement or reaction time, sensor is installed within mounting of finger-ring; no external wiring or power source is needed.
Visible Contrast Energy Metrics for Detection and Discrimination
NASA Technical Reports Server (NTRS)
Ahumada, Albert; Watson, Andrew
2013-01-01
Contrast energy was proposed by Watson, Robson, & Barlow as a useful metric for representing luminance contrast target stimuli because it represents the detectability of the stimulus in photon noise for an ideal observer. Like the eye, the ear is a complex transducer system, but relatively simple sound level meters are used to characterize sounds. These meters provide a range of frequency sensitivity functions and integration times depending on the intended use. We propose here the use of a range of contrast energy measures with different spatial frequency contrast sensitivity weightings, eccentricity sensitivity weightings, and temporal integration times. When detection threshold are plotting using such measures, the results show what the eye sees best when these variables are taken into account in a standard way. The suggested weighting functions revise the Standard Spatial Observer for luminance contrast detection and extend it into the near periphery. Under the assumption that the detection is limited only by internal noise, discrimination performance can be predicted by metrics based on the visible energy of the difference images
46 CFR 181.400 - Where required.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Where required. 181.400 Section 181.400 Shipping COAST... PROTECTION EQUIPMENT Fixed Fire Extinguishing and Detecting Systems § 181.400 Where required. (a) The... cubic meters (6,000 cubic feet); (2) A pre-engineered fixed gas fire extinguishing system must be in...
46 CFR 28.375 - Emergency source of electrical power.
Code of Federal Regulations, 2011 CFR
2011-10-01
... COMMERCIAL FISHING INDUSTRY VESSELS Requirements for Vessels Which Have Their Keel Laid or Are at a Similar... systems; (3) Bilge pumps; (4) Fire protection and detection systems, including fire pumps; (5... (11.0 meters) in length need only supply communication equipment by an emergency source of electrical...
46 CFR 28.375 - Emergency source of electrical power.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COMMERCIAL FISHING INDUSTRY VESSELS Requirements for Vessels Which Have Their Keel Laid or Are at a Similar... systems; (3) Bilge pumps; (4) Fire protection and detection systems, including fire pumps; (5... (11.0 meters) in length need only supply communication equipment by an emergency source of electrical...
46 CFR 28.375 - Emergency source of electrical power.
Code of Federal Regulations, 2012 CFR
2012-10-01
... COMMERCIAL FISHING INDUSTRY VESSELS Requirements for Vessels Which Have Their Keel Laid or Are at a Similar... systems; (3) Bilge pumps; (4) Fire protection and detection systems, including fire pumps; (5... (11.0 meters) in length need only supply communication equipment by an emergency source of electrical...
46 CFR 28.375 - Emergency source of electrical power.
Code of Federal Regulations, 2013 CFR
2013-10-01
... COMMERCIAL FISHING INDUSTRY VESSELS Requirements for Vessels Which Have Their Keel Laid or Are at a Similar... systems; (3) Bilge pumps; (4) Fire protection and detection systems, including fire pumps; (5... (11.0 meters) in length need only supply communication equipment by an emergency source of electrical...
46 CFR 28.375 - Emergency source of electrical power.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COMMERCIAL FISHING INDUSTRY VESSELS Requirements for Vessels Which Have Their Keel Laid or Are at a Similar... systems; (3) Bilge pumps; (4) Fire protection and detection systems, including fire pumps; (5... (11.0 meters) in length need only supply communication equipment by an emergency source of electrical...
McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M
2016-06-01
Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter(®). Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas.
A history of radiation detection instrumentation.
Frame, Paul W
2004-08-01
A review is presented of the history of radiation detection instrumentation. Specific radiation detection systems that are discussed include the human senses, photography, calorimetry, color dosimetry, ion chambers, electrometers, electroscopes, proportional counters, Geiger Mueller counters, scalers and rate meters, barium platinocyanide, scintillation counters, semiconductor detectors, radiophotoluminescent dosimeters, thermoluminescent dosimeters, optically stimulated luminescent dosimeters, direct ion storage, electrets, cloud chambers, bubble chambers, and bubble dosimeters. Given the broad scope of this review, the coverage is limited to a few key events in the development of a given detection system and some relevant operating principles. The occasional anecdote is included for interest.
A history of radiation detection instrumentation.
Frame, Paul W
2005-06-01
A review is presented of the history of radiation detection instrumentation. Specific radiation detection systems that are discussed include the human senses, photography, calorimetry, color dosimetry, ion chambers, electrometers, electroscopes, proportional counters, Geiger Mueller counters, scalers and rate meters, barium platinocyanide, scintillation counters, semiconductor detectors, radiophotoluminescent dosimeters, thermoluminescent dosimeters, optically stimulated luminescent dosimeters, direct ion storage, electrets, cloud chambers, bubble chambers, and bubble dosimeters. Given the broad scope of this review, the coverage is limited to a few key events in the development of a given detection system and some relevant operating principles. The occasional anecdote is included for interest.
Spinning Reserve from Responsive Load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kueck, John D; Kirby, Brendan J; Laughner, T
2009-01-01
As power system costs rise and capacity is strained demand response can provide a significant system reliability benefit at a potentially attractive cost. The 162 room Music Road Hotel in Pigeon Forge Tennessee agreed to host a spinning reserve test. The Tennessee Valley Authority (TVA) supplied real-time metering and monitoring expertise to record total hotel load during both normal operations and testing. Preliminary testing showed that hotel load can be curtailed by 22% to 37% depending on the outdoor temperature and the time of day. The load drop was very rapid, essentially as fast as the 2 second metering couldmore » detect.« less
Irrigated lands: Monitoring by remote sensing
NASA Technical Reports Server (NTRS)
Epiphanio, J. C. N.; Vitorelli, I.
1983-01-01
The use of remote sensing for irrigated areas, especially in the region of Guaira, Brazil (state of Sao Paulo), is examined. Major principles of utilizing LANDSAT data for the detection and mapping of irrigated lands are discussed. In addition, initial results obtained by computer processing of digital data, use of MSS (Multispectral Scanner System)/LANDSAT products, and the availability of new remote sensing products are highlighted. Future activities include the launching of the TM (Thematic Mapper)/LANDSAT 4 with 30 meters of resolution and SPOT (Systeme Probatorie d'Observation de la Terre) with 10 to 20 meters of resolution, to be operational in 1984 and 1986 respectively.
Cui, Xingye; Hu, Jie; Choi, Jane Ru; Huang, Yalin; Wang, Xuemin; Lu, Tian Jian; Xu, Feng
2016-09-07
A volumetric meter chip was developed for quantitative point-of-care (POC) analysis of bovine catalase, a bioindicator of bovine mastitis, in milk samples. The meter chip displays multiplexed quantitative results by presenting the distance of ink bar advancement that is detectable by the naked eye. The meter chip comprises a poly(methyl methacrylate) (PMMA) layer, a double-sided adhesive (DSA) layer and a glass slide layer fabricated by the laser-etching method, which is typically simple, rapid (∼3 min per chip), and cost effective (∼$0.2 per chip). Specially designed "U shape" reaction cells are covered by an adhesive tape that serves as an on-off switch, enabling the simple operation of the assay. As a proof of concept, we employed the developed meter chip for the quantification of bovine catalase in raw milk samples to detect catalase concentrations as low as 20 μg/mL. The meter chip has great potential to detect various target analytes for a wide range of POC applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Rapid response radiation sensors for homeland security applications
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul
2014-09-01
The National Security Technologies, LLC, Remote Sensing Laboratory is developing a rapid response radiation detection system for homeland security field applications. The intelligence-driven system is deployed only when non-radiological information about the target is verifiable. The survey area is often limited, so the detection range is small; in most cases covering a distance of 10 meters or less suffices. Definitive response is required in no more than 3 seconds and should minimize false negative alarms, but can err on the side of positive false alarms. The detection system is rapidly reconfigurable in terms of size, shape, and outer appearance; it is a plug-and-play system. Multiple radiation detection components (viz., two or more sodium iodide scintillators) are used to independently "over-determine" the existence of the threat object. Rapid response electronic dose rate meters are also included in the equipment suite. Carefully studied threat signatures are the basis of the decision making. The use of Rad-Detect predictive modeling provides information on the nature of the threat object. Rad-Detect provides accurate dose rate from heavily shielded large sources; for example those lost in Mexico were Category 1 radiation sources (~3,000 Ci of 60Co), the most dangerous of five categories defined by the International Atomic Energy Agency. Taken out of their shielding containers, Category 1 sources can kill anyone who is exposed to them at close range for a few minutes to an hour. Whenever possible sub-second data acquisition will be attempted, and, when deployed, the system will be characterized for false alarm rates. Although the radiation detection materials selected are fast (viz., faster scintillators), their speed is secondary to sensitivity, which is of primary importance. Results from these efforts will be discussed and demonstrated.
Zhu, Xuena; Sarwar, Mehenur; Yue, Qiaoli; Chen, Chunying; Li, Chen-Zhong
2017-01-01
Non-glucose biomarker-DNA oxidative damage biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG) has been successfully detected using a smartphone-enabled glucose meter. Through a series of immune reactions and enzymatic reactions on a solid lateral flow platform, 8-OHdG concentration has been converted to a relative amount of glucose, and therefore can be detected by conventional glucose meter directly. The device was able to detect 8-OHdG concentrations in phosphate buffer saline as low as 1.73 ng mL -1 with a dynamic range of 1-200 ng mL -1 . Considering the inherent advantages of the personal glucose meter, the demonstration of this device, therefore, should provide new opportunities for the monitoring of a wide range of biomarkers and various target analytes in connection with different molecular recognition events.
Using aerial infrared thermography to detect utility theft of service
NASA Astrophysics Data System (ADS)
Stockton, Gregory R.; Lucas, R. Gillem
2012-06-01
Natural gas and electric utility companies, public utility commissions, consumer advocacy groups, city governments, state governments and the federal government United States continue to turn a blind eye towards utility energy theft of service which we conservatively estimate is in excess of 10 billion a year. Why? Many in the United States have exhausted their unemployment benefits. The amounts for federal funding for low income heating assistance programs (LIHEAP) funds were cut by nearly 40% for 2012 to 3.02 billion. "At peak funding ($5.1 billion in 2009), the program was national in scale but still only had enough resources to support roughly 1/4 of the eligible households.i" Contributions to charities are down and the number of families below the poverty line who are unable to pay to heat their houses continues to rise. Many of the less fortunate in our society now consider theft and fraud to be an attractive option for their supply of natural gas and/or electricity. A record high mild winter in 2011-2012 coupled with 10-year low natural gas prices temporarily obscured the need for low income heating assistance programs (LIHEAPs) from the news and federal budgets, but cold winters will return. The proliferation of smart meters and automated meter infrastructures across our nation can do little to detect energy theft because the thieves can simply by-pass the meters, jumper around the meters and/or steal meters from abandoned houses and use them. Many utility systems were never set-up to stop these types of theft. Even with low-cost per identified thief method using aerial infrared thermography, utilities continue to ignore theft detection.
Variable frequency microwave furnace system
Bible, Don W.; Lauf, Robert J.
1994-01-01
A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).
Combining hyperspectral imaging and Raman spectroscopy for remote chemical sensing
NASA Astrophysics Data System (ADS)
Ingram, John M.; Lo, Edsanter
2008-04-01
The Photonics Research Center at the United States Military Academy is conducting research to demonstrate the feasibility of combining hyperspectral imaging and Raman spectroscopy for remote chemical detection over a broad area of interest. One limitation of future trace detection systems is their ability to analyze large areas of view. Hyperspectral imaging provides a balance between fast spectral analysis and scanning area. Integration of a hyperspectral system capable of remote chemical detection will greatly enhance our soldiers' ability to see the battlefield to make threat related decisions. It can also queue the trace detection systems onto the correct interrogation area saving time and reconnaissance/surveillance resources. This research develops both the sensor design and the detection/discrimination algorithms. The one meter remote detection without background radiation is a simple proof of concept.
McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M
2016-01-01
Aim: Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Materials & methods: Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter®. Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. Results: MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. Conclusion: MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas. PMID:27337298
Acoustic leak-detection system for railroad transportation security
NASA Astrophysics Data System (ADS)
Womble, P. C.; Spadaro, J.; Harrison, M. A.; Barzilov, A.; Harper, D.; Hopper, L.; Houchins, E.; Lemoff, B.; Martin, R.; McGrath, C.; Moore, R.; Novikov, I.; Paschal, J.; Rogers, S.
2007-04-01
Pressurized rail tank cars transport large volumes of volatile liquids and gases throughout the country, much of which is hazardous and/or flammable. These gases, once released in the atmosphere, can wreak havoc with the environment and local populations. We developed a system which can non-intrusively and non-invasively detect and locate pinhole-sized leaks in pressurized rail tank cars using acoustic sensors. The sound waves from a leak are produced by turbulence from the gas leaking to the atmosphere. For example, a 500 μm hole in an air tank pressurized to 689 kPa produces a broad audio frequency spectrum with a peak near 40 kHz. This signal is detectable at 10 meters with a sound pressure level of 25 dB. We are able to locate a leak source using triangulation techniques. The prototype of the system consists of a network of acoustic sensors and is located approximately 10 meters from the center of the rail-line. The prototype has two types of acoustic sensors, each with different narrow frequency response band: 40 kHz and 80 kHz. The prototype is connected to the Internet using WiFi (802.11g) transceiver and can be remotely operated from anywhere in the world. The paper discusses the construction, operation and performance of the system.
NASA Astrophysics Data System (ADS)
Gottfried, Jennifer L.; De Lucia, Frank C.; Munson, Chase A.; Miziolek, Andrzej W.
2007-12-01
We have developed a double-pulse standoff laser-induced breakdown spectroscopy (ST-LIBS) system capable of detecting a variety of hazardous materials at tens of meters. The use of a double-pulse laser improves the sensitivity and selectivity of ST-LIBS, especially for the detection of energetic materials. In addition to various metallic and plastic materials, the system has been used to detect bulk explosives RDX and Composition-B, explosive residues, biological species such as the anthrax surrogate Bacillus subtilis, and chemical warfare simulants at 20 m. We have also demonstrated the discrimination of explosive residues from various interferents on an aluminum substrate.
Sarmaga, Don; DuBois, Jeffrey A; Lyon, Martha E
2011-01-01
Background Off-meter dosed photometric glucose-oxidase-based glucose meters have been reported to be susceptible to interference by hydrogen-peroxide-based disinfecting agents. The objective of this study was to determine if a single application of hydrogen-peroxide-containing Accel® wipe to disinfect an on-meter dosed amperometric glucose-oxidase-based glucose meter will influence its performance. Method The performance of five on-meter dosed amperometric glucose-oxidase-based glucose meters was determined before and after disinfecting the devices with a single application of either CaviWipes® (14.3% isopropanol and 0.23% diisobutyl-phenoxy-ethoxyethyl dimethyl benzyl ammonium chloride) or Accel (0.5% hydrogen peroxide) wipes. Replicate glucose measurements were conducted before disinfecting the devices, immediately after disinfecting, and then 1 and 2 min postdisinfecting, with measurements in triplicate. Analysis was sequentially completed for five different meters. Results were analyzed by a two-way analysis of variance (Analyze-it software). Results No clinical (<0.3 mmol/liter) or statistical differences (p > .05) in glucose concentration were detected when the on-meter dosed amperometric glucose-oxidase-based glucose meters were disinfected with either CaviWipes or Accel wipes and measured immediately or 1 or 2 min postdisinfecting. No clinically significant difference in glucose concentration was detected between meters (<0.3 mmol/liter). Conclusion The on-meter dosed glucose oxidase amperometric-based glucose meters are not analytically susceptible to interference by a single application of hydrogen-peroxide-containing Accel disinfectant wipes. PMID:22226263
Sarmaga, Don; Dubois, Jeffrey A; Lyon, Martha E
2011-11-01
Off-meter dosed photometric glucose-oxidase-based glucose meters have been reported to be susceptible to interference by hydrogen-peroxide-based disinfecting agents. The objective of this study was to determine if a single application of hydrogen-peroxide-containing Accel® wipe to disinfect an on-meter dosed amperometric glucose-oxidase-based glucose meter will influence its performance. The performance of five on-meter dosed amperometric glucose-oxidase-based glucose meters was determined before and after disinfecting the devices with a single application of either CaviWipes® (14.3% isopropanol and 0.23% diisobutyl-phenoxy-ethoxyethyl dimethyl benzyl ammonium chloride) or Accel (0.5% hydrogen peroxide) wipes. Replicate glucose measurements were conducted before disinfecting the devices, immediately after disinfecting, and then 1 and 2 min postdisinfecting, with measurements in triplicate. Analysis was sequentially completed for five different meters. Results were analyzed by a two-way analysis of variance (Analyze-it software). No clinical (<0.3 mmol/liter) or statistical differences (p > .05) in glucose concentration were detected when the on-meter dosed amperometric glucose-oxidase-based glucose meters were disinfected with either CaviWipes or Accel wipes and measured immediately or 1 or 2 min postdisinfecting. No clinically significant difference in glucose concentration was detected between meters (<0.3 mmol/liter). The on-meter dosed glucose oxidase amperometric-based glucose meters are not analytically susceptible to interference by a single application of hydrogen-peroxide-containing Accel disinfectant wipes. © 2011 Diabetes Technology Society.
NASA Astrophysics Data System (ADS)
Waszczak, Adam; Prince, Thomas A.; Laher, Russ; Masci, Frank; Bue, Brian; Rebbapragada, Umaa; Barlow, Tom; Surace, Jason; Helou, George; Kulkarni, Shrinivas
2017-03-01
Near-Earth asteroids (NEAs) in the 1-100 meter size range are estimated to be ˜1,000 times more numerous than the ˜15,000 currently cataloged NEAs, most of which are in the 0.5-10 kilometer size range. Impacts from 10-100 meter size NEAs are not statistically life-threatening, but may cause significant regional damage, while 1-10 meter size NEAs with low velocities relative to Earth are compelling targets for space missions. We describe the implementation and initial results of a real-time NEA-discovery system specialized for the detection of small, high angular rate (visually streaked) NEAs in Palomar Transient Factory (PTF) images. PTF is a 1.2-m aperture, 7.3 deg2 field of view (FOV) optical survey designed primarily for the discovery of extragalactic transients (e.g., supernovae) in 60-second exposures reaching ˜20.5 visual magnitude. Our real-time NEA discovery pipeline uses a machine-learned classifier to filter a large number of false-positive streak detections, permitting a human scanner to efficiently and remotely identify real asteroid streaks during the night. Upon recognition of a streaked NEA detection (typically within an hour of the discovery exposure), the scanner triggers follow-up with the same telescope and posts the observations to the Minor Planet Center for worldwide confirmation. We describe our 11 initial confirmed discoveries, all small NEAs that passed 0.3-15 lunar distances from Earth. Lastly, we derive useful scaling laws for comparing streaked-NEA-detection capabilities of different surveys as a function of their hardware and survey-pattern characteristics. This work most directly informs estimates of the streak-detection capabilities of the Zwicky Transient Facility (ZTF, planned to succeed PTF in 2017), which will apply PTF’s current resolution and sensitivity over a 47-deg2 FOV.
Reis, Leonardo F.; Minervino, Antonio H. H.; Araújo, Carolina A. S. C.; Sousa, Rejane S.; Oliveira, Francisco L. C.; Rodrigues, Frederico A. M. L.; Meira-Júnior, Enoch B. S.; Barrêto-Júnior, Raimundo A.; Mori, Clara S.; Ortolani, Enrico L.
2014-01-01
We aimed to compare the measurements of sheep ruminal pH using a continuous telemetry system or a bench pH meter using sheep with different degrees of ruminal pH. Ruminal lactic acidosis was induced in nine adult crossbred Santa Ines sheep by the administration of 15 g of sucrose per kg/BW. Samples of rumen fluid were collected at the baseline, before the induction of acidosis (T 0) and at six, 12, 18, 24, 48, and 72 hours after the induction for pH measurement using a bench pH meter. During this 72-hour period, all animals had electrodes for the continuous measurement of pH. The results were compared using the Bland-Altman analysis of agreement, Pearson coefficients of correlation and determination, and paired analysis of variance with Student's t-test. The measurement methods presented a strong correlation (r = 0.94, P < 0.05) but the rumen pH that was measured continuously using a telemetry system resulted in lower values than the bench pH meter (overall mean of 5.38 and 5.48, resp., P = 0.0001). The telemetry system was able to detect smaller changes in rumen fluid pH and was more accurate in diagnosing both subacute ruminal lactic acidosis and acute ruminal lactic acidosis in sheep. PMID:24967422
Instrumentation and methodology for quantifying GFP fluorescence in intact plant organs
NASA Technical Reports Server (NTRS)
Millwood, R. J.; Halfhill, M. D.; Harkins, D.; Russotti, R.; Stewart, C. N. Jr
2003-01-01
The General Fluorescence Plant Meter (GFP-Meter) is a portable spectrofluorometer that utilizes a fiber-optic cable and a leaf clip to gather spectrofluorescence data. In contrast to traditional analytical systems, this instrument allows for the rapid detection and fluorescence measurement of proteins under field conditions with no damage to plant tissue. Here we discuss the methodology of gathering and standardizing spectrofluorescence data from tobacco and canola plants expressing GFP. Furthermore, we demonstrate the accuracy and effectiveness of the GFP-Meter. We first compared GFP fluorescence measurements taken by the GFP-Meter to those taken by a standard laboratory-based spectrofluorometer, the FluoroMax-2. Spectrofluorescence measurements were taken from the same location on intact leaves. When these measurements were tested by simple linear regression analysis, we found that there was a positive functional relationship between instruments. Finally, to exhibit that the GFP-Meter recorded accurate measurements over a span of time, we completed a time-course analysis of GFP fluorescence measurements. We found that only initial measurements were accurate; however, subsequent measurements could be used for qualitative purposes.
Testing the Wildlink activity-detection system on wolves and white-tailed deer
Kunkel, K.E.; Chapman, R.C.; Mech, L.D.; Gese, E.M.
1991-01-01
We tested the reliability and predictive capabilities of the activity meter in the new Wildlink Data Acquisition and Recapture System by comparing activity counts with concurrent observations of captive wolf (Canis lupus) and free-ranging white-tailed deer (Odocoileus virginianus) activity. The Wildlink system stores activity data in a computer within a radio collar with which a biologist can communicate. Three levels of activity could be detected. The Wildlink system provided greater activity discrimination and was more reliable, adaptable, and efficient and was easier to use than conventional telemetry activity systems. The Wildlink system could be highly useful for determining wildlife energy budgets.
Rowland, Mark S [Alamo, CA; Snyderman, Neal J [Berkeley, CA
2012-04-10
A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.
39 CFR 501.15 - Computerized Meter Resetting System.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AND DISTRIBUTE POSTAGE EVIDENCING SYSTEMS § 501.15 Computerized Meter Resetting System. (a) Description. The Computerized Meter Resetting System (CMRS) permits customers to reset their postage meters at... 39 Postal Service 1 2010-07-01 2010-07-01 false Computerized Meter Resetting System. 501.15...
Laser rangefinders for autonomous intelligent cruise control systems
NASA Astrophysics Data System (ADS)
Journet, Bernard A.; Bazin, Gaelle
1998-01-01
THe purpose of this paper is to show to what kind of application laser range-finders can be used inside Autonomous Intelligent Cruise Control systems. Even if laser systems present good performances the safety and technical considerations are very restrictive. As the system is used in the outside, the emitted average output power must respect the rather low level of 1A class. Obstacle detection or collision avoidance require a 200 meters range. Moreover bad weather conditions, like rain or fog, ar disastrous. We have conducted measurements on laser rangefinder using different targets and at different distances. We can infer that except for cooperative targets low power laser rangefinder are not powerful enough for long distance measurement. Radars, like 77 GHz systems, are better adapted to such cases. But in case of short distances measurement, range around 10 meters, with a minimum distance around twenty centimeters, laser rangefinders are really useful with good resolution and rather low cost. Applications can have the following of white lines on the road, the target being easily cooperative, detection of vehicles in the vicinity, that means car convoy traffic control or parking assistance, the target surface being indifferent at short distances.
Results from field tests of the one-dimensional Time-Encoded Imaging System.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marleau, Peter; Brennan, James S.; Brubaker, Erik
2014-09-01
A series of field experiments were undertaken to evaluate the performance of the one dimensional time encoded imaging system. The significant detection of a Cf252 fission radiation source was demonstrated at a stand-off of 100 meters. Extrapolations to different quantities of plutonium equivalent at different distances are made. Hardware modifications to the system for follow on work are suggested.
The Smart Mine Simulator User’s Guide and Algorithm Description
1993-12-01
meters control kill range tank 2 meters * APC 1.5 meters other ground 1 meter munition burst type projectile 105APDS detonator M739 155mm C-1 WAM...in range 15 meters munition launch burst type projectile TOW detonator M739 155mm WAM Sublet: component parameter Index value sublet regular update...detonator M739 155mm sensor detection range 50 meters control firing angle -55 degrees munition fire burst type projectile TOW detonator M739 155mm
Development and practice of a Telehealthcare Expert System (TES).
Lin, Hanjun; Hsu, Yeh-Liang; Hsu, Ming-Shinn; Cheng, Chih-Ming
2013-07-01
Expert systems have been widely used in medical and healthcare practice for various purposes. In addition to vital sign data, important concerns in telehealthcare include the compliance with the measurement prescription, the accuracy of vital sign measurements, and the functioning of vital sign meters and home gateways. However, few expert system applications are found in the telehealthcare domain to address these issues. This article presents an expert system application for one of the largest commercialized telehealthcare practices in Taiwan by Min-Sheng General Hospital. The main function of the Telehealthcare Expert System (TES) developed in this research is to detect and classify events based on the measurement data transmitted to the database at the call center, including abnormality of vital signs, violation of vital sign measurement prescriptions, and malfunction of hardware devices (home gateway and vital sign meter). When the expert system detects an abnormal event, it assigns an "urgent degree" and alerts the nursing team in the call center to take action, such as phoning the patient for counseling or to urge the patient to return to the hospital for further tests. During 2 years of clinical practice, from 2009 to 2011, 19,182 patients were served by the expert system. The expert system detected 41,755 events, of which 22.9% indicated abnormality of vital signs, 75.2% indicated violation of measurement prescription, and 1.9% indicated malfunction of devices. On average, the expert system reduced by 76.5% the time that the nursing team in the call center spent in handling the events. The expert system helped to reduce cost and improve quality of the telehealthcare service.
Absorption coefficients for water vapor at 193 nm from 300 to 1073 K
NASA Technical Reports Server (NTRS)
Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.
1993-01-01
Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.
Photogrammetry research for FAST eleven-meter reflector panel surface shape measurement
NASA Astrophysics Data System (ADS)
Zhou, Rongwei; Zhu, Lichun; Li, Weimin; Hu, Jingwen; Zhai, Xuebing
2010-10-01
In order to design and manufacture the Five-hundred-meter Aperture Spherical Radio Telescope (FAST) active reflector measuring equipment, measurement on each reflector panel surface shape was presented, static measurement of the whole neutral spherical network of nodes was performed, real-time dynamic measurement at the cable network dynamic deformation was undertaken. In the implementation process of the FAST, reflector panel surface shape detection was completed before eleven-meter reflector panel installation. Binocular vision system was constructed based on the method of binocular stereo vision in machine vision, eleven-meter reflector panel surface shape was measured with photogrammetry method. Cameras were calibrated with the feature points. Under the linearity camera model, the lighting spot array was used as calibration standard pattern, and the intrinsic and extrinsic parameters were acquired. The images were collected for digital image processing and analyzing with two cameras, feature points were extracted with the detection algorithm of characteristic points, and those characteristic points were matched based on epipolar constraint method. Three-dimensional reconstruction coordinates of feature points were analyzed and reflective panel surface shape structure was established by curve and surface fitting method. The error of reflector panel surface shape was calculated to realize automatic measurement on reflector panel surface shape. The results show that unit reflector panel surface inspection accuracy was 2.30mm, within the standard deviation error of 5.00mm. Compared with the requirement of reflector panel machining precision, photogrammetry has fine precision and operation feasibility on eleven-meter reflector panel surface shape measurement for FAST.
Radon detection system, design, test and performance
NASA Astrophysics Data System (ADS)
Balcázar, M.; Chávez, A.; Piña-Villalpando, G.; Navarrete, M.
1999-02-01
A portable radon detection system (α-Inin) has been designed and constructed for using it in adverse environmental conditions where humidity, temperature and chemical vaporous are present. The minimum integration time is in periods of 15 min during 41 days. A 12 V battery and a photovoltaic module allow the α-Inin autonomy in field measurements. Data is collected by means of a laptop computer where data processing and α-Inin programming are carried out. α-Inin performance was simultaneously tested in a controlled radon chamber, together with a commercial α-Meter.
Fission meter and neutron detection using poisson distribution comparison
Rowland, Mark S; Snyderman, Neal J
2014-11-18
A neutron detector system and method for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. Comparison of the observed neutron count distribution with a Poisson distribution is performed to distinguish fissile material from non-fissile material.
Stratospheric Observatory For Infrared Astronomy (SOFIA). Phase A: System concept description
NASA Technical Reports Server (NTRS)
1995-01-01
Infrared astronomers have made significant discoveries using the NASA/Ames Research Center C-141 Kuiper airborne Observatory (KAO) with its 0.91-meter telescope. The need for a 3-meter class airborne observatory has been established to improve astronomy data gathering capability. The new system envisioned by NASA and the international community of astronomers will be known as the Stratospheric Observatory for Infrared Astronomy (SOFIA). The platform of choice for SOFIA is a modified Boeing 747SP. SOFIA is viewed as a logical progression from the KAO. Potentially, a 3-meter telescope operating at the altitude achievable by the 747SP aircraft can be 11 times more sensitive than the KAO, can have 3.3 times better angular resolution, and will allow observations of compact sources in a volume of space up to 36 times that of the KAO. The KAO has enabled detection of about 15 percent of the far infrared IRAS survey point-sources; SOFIA should be able to detect them all. This document presents the results of in-house ARC and contracted concept definition studies for SOFIA. Using the ARC-based Kuiper Airborne Observatory as a basis for both SOFIA design and operations concepts, the SOFIA system concept has been developed with a view toward demonstrating mission and technical feasibility, and preparing preliminary cost estimates. The reference concept developed is not intended to represent final design, and should be treated accordingly. The most important products of this study, other than demonstration of system feasibility, are the understanding of system trade-offs and the development of confidence in the technology base that exists to move forward with a program leading to implementation of the Stratospheric Observatory for Infrared Astronomy (SOFIA).
Design of Remote Heat-Meter System Based on Trusted Technology
NASA Astrophysics Data System (ADS)
Yu, Changgeng; Lai, Liping
2018-03-01
This article presents a proposal of a heat meter and remote meter reading system for the disadvantages of the hackers very easily using eavesdropping, tampering, replay attack of traditional remote meter reading system. The system selects trusted technology such as, the identity authentication, integrity verifying, and data protection. By the experiments, it is proved that the remote meter reading system of the heat meter can be used to verify the feasibility of the technology, and verify the practicability and operability of data protection technology.
Iwasaki, Wataru; Nogami, Hirofumi; Ito, Hiroki; Gotanda, Takeshi; Peng, Yao; Takeuchi, Satoshi; Furue, Masutaka; Higurashi, Eiji; Sawada, Renshi
2012-10-01
Alcohol has a variety of effects on the human body, affecting both the sympathetic and parasympathetic nervous system. We examined the peripheral blood flow of alcohol drinkers using a micro-integrated laser Doppler blood flow meter (micro-electromechanical system blood flow sensor). An increased heart rate and blood flow was recorded at the earlobe after alcohol ingestion, and we observed strong correlation between blood flow, heart rate, and breath alcohol content in light drinkers; but not heavy drinkers. We also found that the amplitude of pulse waves measured at the fingertip during an arm-raising test significantly decreased on alcohol consumption, regardless of the individual's alcohol tolerance. Our micro-electromechanical system blood flow sensor successfully detected various physiological changes in peripheral blood circulation induced by alcohol consumption.
1-Meter Digital Elevation Model specification
Arundel, Samantha T.; Archuleta, Christy-Ann M.; Phillips, Lori A.; Roche, Brittany L.; Constance, Eric W.
2015-10-21
In January 2015, the U.S. Geological Survey National Geospatial Technical Operations Center began producing the 1-Meter Digital Elevation Model data product. This new product was developed to provide high resolution bare-earth digital elevation models from light detection and ranging (lidar) elevation data and other elevation data collected over the conterminous United States (lower 48 States), Hawaii, and potentially Alaska and the U.S. territories. The 1-Meter Digital Elevation Model consists of hydroflattened, topographic bare-earth raster digital elevation models, with a 1-meter x 1-meter cell size, and is available in 10,000-meter x 10,000-meter square blocks with a 6-meter overlap. This report details the specifications required for the production of the 1-Meter Digital Elevation Model.
NASA Astrophysics Data System (ADS)
Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter
2015-05-01
The need for advanced techniques to detect improvised explosive devices (IED) at stand-off distances greater than ten (10) meters has driven AMI Research and Development (AMI) to develop a solution to detect and identify the threat utilizing a forward looking Synthetic Aperture Radar (SAR) combined with our CW radar technology Nuclear Quadrupole Resonance (NQR) detection system. The novel features include a near-field sub-wavelength focusing antenna, a wide band 300 KHz to 300 MHz rapidly scanning CW radar facilitated by a high Q antenna/tuner, and an advanced processor utilizing Rabi transitions where the nucleus oscillates between states under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. AMI's Sub-wavelength Focusing Wide Band Super Lens uses a Near-Field SAR, making detection possible at distances greater than ten (10) meters. This super lens is capable of operating on the near-field and focusing electromagnetic waves to resolutions beyond the diffraction limit. When applied to the case of a vehicle approaching an explosive hazard the methodologies of synthetic aperture radar is fused with the array based super resolution and the NQR data processing detecting the explosive hazard.
Unmanned Aircraft Systems (UAS) Sensor and Targeting
2010-07-27
4.7.1 Objective. The objective of this subtest is to determine the detection performance of the Synthetic Aperture Radar (SAR) with the radar...Detection SAR – Synthetic Aperture Radar 4.7.3 Data Required. Section 5.1 outlines general test data required. The following additional data may...m – meter No. – Number PC – Probability of Classification SAR – Synthetic Aperture Radar 4.8.3 Data Required. Section 5.1 outlines
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Stoll, Jeremy D.; Cook, William B.; Ondrusek, Michael; Stengel, Eric; Brunt, Kelly
2016-01-01
The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532-nanometer laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in ice caps, sea ice, and vegetation, the polar-orbiting satellite will observe global surface water during its designed three-year life span, including inland waterbodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype, the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high-altitude aircraft experiments over a range of inland and near-shore targets. The purpose was to test the ATLAS concept and to provide a database for developing an algorithm that detects along track surface water height and light penetration under a range of atmospheric and water conditions. The current analysis examines the data sets of three MABEL transects observed from 20 kilometers above ground of coastal and inland waters conducted in 2012 and 2013. Transects ranged from about 2 to 12 kilometers in length and included the middle Chesapeake Bay, the near-shore Atlantic coast at Virginia Beach, and Lake Mead. Results indicate MABEL's high capability for retrieving surface water height statistics with a mean height precision ofapproximately 5-7 centimeters per 100-meter segment length. Profiles of attenuated subsurface backscatter, characterized using a Signal to Background Ratio written in Log10 base, or LSBR (sub 0), were observed over a range of 1.3 to 9.3 meters, depending on water clarity and atmospheric background. Results indicate that observable penetration depth, although primarily dependent on water properties, was greatest when the solar background rate was low. Near-shore bottom reflectance was detected only at the Lake Mead site down to a maximum of 10 meters under a clear night sky and low turbidity of approximately 1.6 Nephelometric Turbidity Units (NTU). The overall results suggest that the feasibility of retrieving operational surface water height statistics from space-based photon counting systems such as ATLAS is very high for resolutions down to about 100 meters, even in partly cloudy conditions. The capability to observe subsurface backscatterprofiles is achievable but requires much longer transects of several hundreds of meters.
Fatigue crack identification method based on strain amplitude changing
NASA Astrophysics Data System (ADS)
Guo, Tiancai; Gao, Jun; Wang, Yonghong; Xu, Youliang
2017-09-01
Aiming at the difficulties in identifying the location and time of crack initiation in the castings of helicopter transmission system during fatigue tests, by introducing the classification diagnostic criteria of similar failure mode to find out the similarity of fatigue crack initiation among castings, an engineering method and quantitative criterion for detecting fatigue cracks based on strain amplitude changing is proposed. This method is applied on the fatigue test of a gearbox housing, whose results indicates: during the fatigue test, the system alarms when SC strain meter reaches the quantitative criterion. The afterwards check shows that a fatigue crack less than 5mm is found at the corresponding location of SC strain meter. The test result proves that the method can provide accurate test data for strength life analysis.
Raman scattering spectroscopy for explosives identification
NASA Astrophysics Data System (ADS)
Nagli, L.; Gaft, M.
2007-04-01
Real time detection and identification of explosives at a standoff distance is a major issue in efforts to develop defense against so-called Improvised Explosive Devices (IED). It is recognized that the only technique, which is potentially capable to standoff detection of minimal amounts of explosives is laser-based spectroscopy. LDS technique belongs to trace detection, namely to its micro-particles variety. We applied gated Raman and time-resolved luminescence spectroscopy for detection of main explosive materials, both factory and homemade. Raman system was developed and tested by LDS for field remote detection and identification of minimal amounts of explosives on relevant surfaces at a distance of up to 30 meters.
NASA Astrophysics Data System (ADS)
Troch, Peter A.; Pangle, Luke; Niu, Guo-Yue; Dontsova, Katerina; Barron-Gafford, Greg; van Haren, Joost; Pavao-Zuckerman, Mitch
2014-05-01
The Landscape Evolution Observatory (LEO) at Biosphere 2-The University of Arizona consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1-meter depth of basaltic tephra, ground to homogenous loamy sand that will undergo physical, chemical, and mineralogical changes over many years. Each landscape contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. The density of sensors and frequency at which they can be polled allows for data collection at spatial and temporal scales that are impossible in natural field settings. Embedded solution and gas samplers allow for quantification of biogeochemical processes, and facilitate the use of chemical tracers to study water movement at very high spatial resolutions. Each ~600 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation). This facilitates the real time accounting of hydrological partitioning at the hillslope scale. Each hillslope is equipped with an engineered rain system capable of raining at rates between 3 and 45 mm/hr in a range of spatial patterns. The rain systems are capable of creating long-term steady state conditions or running complex simulations. The precipitation water supply storage system is flexibly designed to facilitate addition of tracers at constant or time-varying rates for any of the three hillslopes. This presentation will discuss detection of early landscape evolution in terms of hydrological, geochemical and microbial processes through controlled experimentation, data analysis, and numerical modeling during the commissioning phase of the first hillslope at LEO.
Handheld Multi-Gas Meters Market Survey Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Gustavious; Wald-Hopkins, Mark David; Obrey, Stephen J.
2016-06-23
Handheld multi-gas meters (MGMs) are equipped with sensors to monitor oxygen (O2) levels and additional sensors to detect the presence of combustible or toxic gases in the environment. This report is limited to operational response-type MGMs that include at least four different sensors. These sensors can vary by type and by the chemical monitored. In real time, the sensors report the concentration of monitored gases in the atmosphere near the MGM. To provide emergency responders with information on handheld multi-gas meters, the System Assessment and Validation for Emergency Responders (SAVER) Program conducted a market survey. This market survey report ismore » based on information gathered between November 2015 and February 2016 from vendors, Internet research, industry publications, an emergency responder focus group, and a government issued Request for Information (RFI) that was posted on the Federal Business Opportunities website.« less
46 CFR 118.400 - Where required.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Where required. 118.400 Section 118.400 Shipping COAST... Extinguishing and Detecting Systems § 118.400 Where required. (a) The following spaces must be equipped with a... unoccupied space with a gross volume of not more than 170 cubic meters (6,000 cubic feet); (2) A pre...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duren, Mike; Aldridge, Hal; Abercrombie, Robert K
2013-01-01
Compromises attributable to the Advanced Persistent Threat (APT) highlight the necessity for constant vigilance. The APT provides a new perspective on security metrics (e.g., statistics based cyber security) and quantitative risk assessments. We consider design principals and models/tools that provide high assurance for energy delivery systems (EDS) operations regardless of the state of compromise. Cryptographic keys must be securely exchanged, then held and protected on either end of a communications link. This is challenging for a utility with numerous substations that must secure the intelligent electronic devices (IEDs) that may comprise complex control system of systems. For example, distribution andmore » management of keys among the millions of intelligent meters within the Advanced Metering Infrastructure (AMI) is being implemented as part of the National Smart Grid initiative. Without a means for a secure cryptographic key management system (CKMS) no cryptographic solution can be widely deployed to protect the EDS infrastructure from cyber-attack. We consider 1) how security modeling is applied to key management and cyber security concerns on a continuous basis from design through operation, 2) how trusted models and key management architectures greatly impact failure scenarios, and 3) how hardware-enabled trust is a critical element to detecting, surviving, and recovering from attack.« less
Whole-field digital vibrometer system for buried landmine detection
NASA Astrophysics Data System (ADS)
Lal, Amit; Hess, Cecil; Scott, Eddie; Dang, Michael; Nichols, Robert
2005-06-01
Previous results have shown the potential of acoustic-to-seismic coupling with Laser Doppler Vibrometry for the detection of buried landmines. An important objective of the present technology is to improve the spatial resolution and the speed of the measurement. In this paper, MetroLaser reports on a whole-field digital vibrometer (WDV) that measures an entire one meter area with sub-centimeter spatial resolution in just a few seconds. The WDV is based on a dual-pulsed laser such that each pulse illuminates a one meter area on the ground, and the temporal separation between the two laser pulses can be adjusted to match the ground excitation frequency. By sweeping this excitation frequency, a displacement map of the ground at each frequency can be quickly generated. In addition, an innovative speckle repositioning strategy allows for movement of the measurement platform at reasonable speeds while still obtaining measurements with interferometric precision. This paper describes the WDV instrument and presents preliminary experimental results obtained with this system. This research is being supported by the U.S. Army RDECOM CERDEC NVESD under Contract W909MY04-C-0004.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brewster, S.B.
The U.S. Department of Energy's Remote Sensing Laboratory developed the geometric correction system (GCS) as a state-of-the-art solution for removing distortions from multispectral line scanner data caused by aircraft motion. The system operates on Daedalus AADS-1268 scanner data acquired from fixed-wing and helicopter platforms. The aircraft attitude, altitude, acceleration, and location are recorded and applied to the data, thereby determining the location of the earth with respect to a given datum and projection. The GCS has yielded a positional accuracy of 0.5 meters when used with a 1-meter digital elevation model. Data at this level of accuracy are invaluable inmore » making precise areal estimates and as input into a geographic information system. The combination of high-spatial resolution and accurate geo-rectification makes the GCS a unique tool in identifying and locating environmental conditions, finding targets of interest, and detecting changes as they occur over time.« less
First demonstration of a vehicle mounted 250GHz real time passive imager
NASA Astrophysics Data System (ADS)
Mann, Chris
2009-05-01
This paper describes the design and performance of a ruggedized passive Terahertz imager, the frequency of operation is a 40GHz band centred around 250GHz. This system has been specifically targeted at vehicle mounted operation, outdoors in extreme environments. The unit incorporates temperature stabilization along with an anti-vibration chassis and is sealed to allow it to be used in a dusty environment. Within the system, a 250GHz heterodyne detector array is mated with optics and scanner to allow real time imaging out to 100 meters. First applications are envisaged to be stand-off, person borne IED detection to 30 meters but the unique properties in this frequency band present other potential uses such as seeing through smoke and fog. The possibility for use as a landing aid is discussed. A detailed description of the system design and video examples of typical imaging output will be presented.
Optical biosensor system with integrated microfluidic sample preparation and TIRF based detection
NASA Astrophysics Data System (ADS)
Gilli, Eduard; Scheicher, Sylvia R.; Suppan, Michael; Pichler, Heinz; Rumpler, Markus; Satzinger, Valentin; Palfinger, Christian; Reil, Frank; Hajnsek, Martin; Köstler, Stefan
2013-05-01
There is a steadily growing demand for miniaturized bioanalytical devices allowing for on-site or point-of-care detection of biomolecules or pathogens in applications like diagnostics, food testing, or environmental monitoring. These, so called labs-on-a-chip or micro-total analysis systems (μ-TAS) should ideally enable convenient sample-in - result-out type operation. Therefore, the entire process from sample preparation, metering, reagent incubation, etc. to detection should be performed on a single disposable device (on-chip). In the early days such devices were mainly fabricated using glass or silicon substrates and adapting established fabrication technologies from the electronics and semiconductor industry. More recently, the development focuses on the use of thermoplastic polymers as they allow for low-cost high volume fabrication of disposables. One of the most promising materials for the development of plastic based lab-on-achip systems are cyclic olefin polymers and copolymers (COP/COC) due to their excellent optical properties (high transparency and low autofluorescence) and ease of processing. We present a bioanalytical system for whole blood samples comprising a disposable plastic chip based on TIRF (total internal reflection fluorescence) optical detection. The chips were fabricated by compression moulding of COP and microfluidic channels were structured by hot embossing. These microfluidic structures integrate several sample pretreatment steps. These are the separation of erythrocytes, metering of sample volume using passive valves, and reagent incubation for competitive bioassays. The surface of the following optical detection zone is functionalized with specific capture probes in an array format. The plastic chips comprise dedicated structures for simple and effective coupling of excitation light from low-cost laser diodes. This enables TIRF excitation of fluorescently labeled probes selectively bound to detection spots at the microchannel surface. The fluorescence of these detection arrays is imaged using a simple set-up based on a digital consumer camera. Image processing for spot detection and intensity calculation is accomplished using customized software. Using this combined TIRF excitation and imaging based detection approach allowes for effective suppression of background fluorescence from the sample, multiplexed detection in an array format, as well as internal calibration and background correction.
Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets
Xiang, Yu; Lu, Yi
2012-01-01
Portable, low-cost and quantitative detection of a broad range of targets at home and in the field has the potential to revolutionize medical diagnostics and environmental monitoring. Despite many years of research, very few such devices are commercially available. Taking advantage of the wide availability and low cost of the pocket-sized personal glucose meter—used worldwide by diabetes sufferers—we demonstrate a method to use such meters to quantify non-glucose targets, ranging from a recreational drug (cocaine, 3.4 μM detection limit) to an important biological cofactor (adenosine, 18 μM detection limit), to a disease marker (interferon-gamma of tuberculosis, 2.6 nM detection limit) and a toxic metal ion (uranium, 9.1 nM detection limit). The method is based on the target-induced release of invertase from a functional-DNA–invertase conjugate. The released invertase converts sucrose into glucose, which is detectable using the meter. The approach should be easily applicable to the detection of many other targets through the use of suitable functional-DNA partners (aptamers DNAzymes or aptazymes). PMID:21860458
Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets
NASA Astrophysics Data System (ADS)
Xiang, Yu; Lu, Yi
2011-09-01
Portable, low-cost and quantitative detection of a broad range of targets at home and in the field has the potential to revolutionize medical diagnostics and environmental monitoring. Despite many years of research, very few such devices are commercially available. Taking advantage of the wide availability and low cost of the pocket-sized personal glucose meter—used worldwide by diabetes sufferers—we demonstrate a method to use such meters to quantify non-glucose targets, ranging from a recreational drug (cocaine, 3.4 µM detection limit) to an important biological cofactor (adenosine, 18 µM detection limit), to a disease marker (interferon-gamma of tuberculosis, 2.6 nM detection limit) and a toxic metal ion (uranium, 9.1 nM detection limit). The method is based on the target-induced release of invertase from a functional-DNA-invertase conjugate. The released invertase converts sucrose into glucose, which is detectable using the meter. The approach should be easily applicable to the detection of many other targets through the use of suitable functional-DNA partners (aptamers, DNAzymes or aptazymes).
Research on Integrated Geophysics Detect Potential Ground Fissure in City
NASA Astrophysics Data System (ADS)
Qian, R.
2017-12-01
North China confined aquifer lied 70 to 200 meters below the earth's surface has been exploited for several decades, which resulted in confined water table declining and has generated a mass of ground fissure. Some of them has reached the surface and the other is developing. As it is very difficult to stop the ground fissure coming into being, measures of avoiding are often taken. It brings great potential risk to urban architecture and municipal engineering. It is very important to find out specific distribution and characteristic of potential ground fissure in city with high resolution. The ground fissure is concealed, therefor, geophysical method is an important technology to detecting concealed ground fissure. However, it is very difficult to detect the characteristics of the superficial part of ground fissure directly, as it lies dozens of meters below and has only scores of centimeters fault displacement. This paper studies applied ground penetration radar, surface wave and shallow refleciton seismic to detect ground fissure. It sets up model of surface by taking advantage of high resolution of ground penetrating radar data, constrains Reilay wave inversion and improves its resolution. The high resolution reflection seismic is good at detecting the geology structure. The data processing and interpretation technique is developmented to avoid the pitfall and improve the aliability of the rusult. The experiment has been conducted in Shunyi District, Beijing in 2016. 5 lines were settled to collect data of integrated geophysical method. Development zone of concealed ground fissure was found and its ultra shallow layer location was detected by ground penetrating radar. A trial trench of 6 meters in depth was dug and obvious ground fissure development was found. Its upper end was 1.5 meters beneath the earth's surface with displacement of 0.3 meters. The favorable effect of this detection has provided a new way for detecting ground fissure in cities of China, such as Beijing and Xi'an etc. Keyword: Ground Fissure, GPR, Surface Wave; Shallow Reflection Seismic
Direct IR Interferometric Detection of Extra Solar Planets
NASA Technical Reports Server (NTRS)
Shao, Michael
1989-01-01
This paper describes a concept for the direct detection of extra solar planets. The concept is based on a decade old idea from Bracewell but expanded. A long baseline interferometer is examined with two three meter telescopes, cooled to 70K and a baseline of 30-50 meters. In space, this instrument would be able to detect an Earth sized planet around a solar like star at 10 parsec in approximately 1 hour of integration (5 sigma). The total number of candidate stars with detectable "Earths" number in the thousands.
NASA Astrophysics Data System (ADS)
Hug, W. F.; Reid, R. D.; Bhartia, R.; Lane, A. L.
2008-04-01
Improvised explosive devices (IEDs), vehicle-borne improvised explosive devices (VBIEDs), and suicide bombers are a major threat to many countries and their citizenry. The ability to detect trace levels of these threats with a miniature, hand-held, reagentless, standoff sensor represents a major improvement in the state of the art of CBE surface sensors. Photon Systems, Inc., in collaboration with Jet Propulsion Laboratory, recently demonstrated a new technology hand-held sensor for reagentless, close-range, standoff detection and identification of trace levels CBE materials on surfaces. This targeted ultraviolet CBE (TUCBE) sensor is the result of an Army Phase I STTR program. The resulting 5lb, 5W, flashlight-sized sensor can discriminate CBE from background materials using a combination of deep UV excited resonance Raman (RR) and laser induced native fluorescence (LINF) emissions resulting from excitation by a new technology deep UV laser. Detection and identification is accomplished in less than 1ms. Standoff excitation of suspicious packages, vehicles, persons, and other objects that may contain hazardous materials is accomplished using wavelengths below 250nm where Raman and native fluorescence emissions occupy distinctly different wavelength regions. This enables simultaneous detection of RR and LINF emissions with no interferences. The sensor employs fused RR/LINF chemometric methods to extract the identity of targeted materials from background clutter. Photon Systems has demonstrated detection and identification of 100ng/cm2 of explosives materials at a distance of 1 meter using a sensor with 3.8 cm optical aperture. Expansion of the optical aperture to 38 cm in a lantern-sized sensor will enable similar detection and identification of CBE materials at standoff distances of 10 meters. As a result of excitation and detection in the deep UV and the use of a gated detection system, the sensor is solar blind and can operate in full daylight conditions.
NASA Astrophysics Data System (ADS)
Arosio, Diego; Munda, Stefano; Tresoldi, Greta; Papini, Monica; Longoni, Laura; Zanzi, Luigi
2017-10-01
This work is based on the assumption that a resistivity meter can effectively monitor water saturation in earth levees and can be used as a warning system when saturation exceeds the expected seasonal maxima. We performed time-lapse ERT measurements to assess the capability of this method to detect areas where seepage is critical. These measurements were also very useful to design a prototype monitoring system with remarkable savings by customizing the specifications according to field observations. The prototype consists of a remotely controlled low-power resistivity meter with a spread of 48 stainless steel 20 × 20 cm plate electrodes buried at half-meter depth. We deployed the newly-designed permanent monitoring system on a critical levee segment. A weather station and an ultrasonic water level sensor were also installed in order to analyse the correlation of resistivity with temperature, rainfalls and water level seasonal variations. The preliminary analysis of the monitoring data shows that the resistivity maps follow a very reasonable trend related with the saturation/drying cycle of the levee caused by the seasonal variations of the water level in the irrigation channel. Sharp water level changes cause delayed and smooth resistivity variations. Rainfalls and, to a lesser extent, temperature seem to have an influence on the collected data but effects are apparently negligible beyond 1 m depth. The system is currently operating and results are continuously monitored.
How Should Blood Glucose Meter System Analytical Performance Be Assessed?
Simmons, David A
2015-08-31
Blood glucose meter system analytical performance is assessed by comparing pairs of meter system and reference instrument blood glucose measurements measured over time and across a broad array of glucose values. Consequently, no single, complete, and ideal parameter can fully describe the difference between meter system and reference results. Instead, a number of assessment tools, both graphical (eg, regression plots, modified Bland-Altman plots, and error grid analysis) and tabular (eg, International Organization for Standardization guidelines, mean absolute difference, and mean absolute relative difference) have been developed to evaluate meter system performance. The strengths and weaknesses of these methods of presenting meter system performance data, including a new method known as Radar Plots, are described here. © 2015 Diabetes Technology Society.
Electro-optical system for gunshot detection: analysis, concept, and performance
NASA Astrophysics Data System (ADS)
Kastek, M.; Dulski, R.; Madura, H.; Trzaskawka, P.; Bieszczad, G.; Sosnowski, T.
2011-08-01
The paper discusses technical possibilities to build an effective electro-optical sensor unit for sniper detection using infrared cameras. This unit, comprising of thermal and daylight cameras, can operate as a standalone device but its primary application is a multi-sensor sniper and shot detection system. At first, the analysis was presented of three distinguished phases of sniper activity: before, during and after the shot. On the basis of experimental data the parameters defining the relevant sniper signatures were determined which are essential in assessing the capability of infrared camera to detect sniper activity. A sniper body and muzzle flash were analyzed as targets and the descriptions of phenomena which make it possible to detect sniper activities in infrared spectra as well as analysis of physical limitations were performed. The analyzed infrared systems were simulated using NVTherm software. The calculations for several cameras, equipped with different lenses and detector types were performed. The simulation of detection ranges was performed for the selected scenarios of sniper detection tasks. After the analysis of simulation results, the technical specifications of infrared sniper detection system were discussed, required to provide assumed detection range. Finally the infrared camera setup was proposed which can detected sniper from 1000 meters range.
Investigation of Source of Irritant Gas Produced by PATRIOT Missile System Air Conditioners
1986-03-31
is the mass fragment CF3 . It is a common fragment of perfluorinated hydrocarbons, and is found to be present in most of the compounds detected by...used would allow detection of the target par3meters acrolein, aromatics, a broad range of organic compounds ,. formaldehyde, and hydrogen cyanide...organic compounds were observed. Thus, aromatic organic compounds were not produced by or from any of the four new units tested. 4 1CZ 3) With the
I-35w incident management and impact of incidents on freeway operations. Final report, 1976-1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lari, A.; Christianson, D.; Porter, S.
1982-01-01
I-35W and I-94 Traffic Management System have been in operation since 1974. As of December 1979, the TMS operation included six principal functional subsystems. These are (1) a 24 camera closed circuit television network (2) 38 ramp meter signals, (3) eleven express bus and/or carpool meter bypass ramps, (4) a motorist information program including changeable message signs, lane control signals, highway advisory radio and a traffic grade information sign, (5) the Traffic Management Center and (6) an incident detection and response program. The purpose of this study was twofold: first, available incident records accumulated on the TMS were analyzed tomore » develop a comprehensive view of the types and quantities of incidents that have occurred. Second, the incident data base and companion volume and occupancy data was used to determine the impact of 'typical' incidents and the impact of the total incident problem. Included in the report is an analysis of incident types detected, mode of incident detection, duration of incidents, and incident response activities.« less
Proton recoil scintillator neutron rem meter
Olsher, Richard H.; Seagraves, David T.
2003-01-01
A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.
NASA Astrophysics Data System (ADS)
Hug, W. F.; Reid, R. D.; Bhartia, R.; Lane, A. L.
2009-05-01
Photon Systems and JPL are continuing development of a new technology robot-mounted or hand-held sensor for reagentless, short-range, standoff detection and identification of trace levels CBE materials on surfaces. This deep ultraviolet CBE sensor is the result of ongoing Army STTR and DTRA programs. The evolving 6 lb, 15W, lantern-size sensor can discriminate CBE from background clutter materials using a combination of deep UV excited resonance Raman (RR) and laser induced native fluorescence (LINF) emissions resulting from excitation by a new technology deep UV laser. Standoff excitation of suspicious packages, vehicles, persons, and other objects that may contain hazardous materials is accomplished using wavelengths below 250nm where RR and LINF emissions occupy distinctly different wavelength regions. This enables simultaneous detection of RR and LINF emissions with no spectral overlap or interference of LINF over RR or RR over LINF. The new eye-safe targeted ultraviolet chemical, biological, and explosives (TUCBE) sensor can detect and identify less than 1 μg/cm2 of explosives or 104 bacterial spores at 10 meters standoff, or 10 ng/cm2 of explosives or 102 bacterial spores/cm2 at 1 meter standoff. Detection and identification requires less than 1 ms and has a sample rate up to 20 Hz. Lower concentrations of contamination can be detected and identified as closer ranges and higher concentrations at longer ranges. The sensor is solar blind and can be operated in full daylight conditions as a result of excitation and detection in the deep UV and the use of a gated detection system.
On improving IED object detection by exploiting scene geometry using stereo processing
NASA Astrophysics Data System (ADS)
van de Wouw, Dennis W. J. M.; Dubbelman, Gijs; de With, Peter H. N.
2015-03-01
Detecting changes in the environment with respect to an earlier data acquisition is important for several applications, such as finding Improvised Explosive Devices (IEDs). We explore and evaluate the benefit of depth sensing in the context of automatic change detection, where an existing monocular system is extended with a second camera in a fixed stereo setup. We then propose an alternative frame registration that exploits scene geometry, in particular the ground plane. Furthermore, change characterization is applied to localized depth maps to distinguish between 3D physical changes and shadows, which solves one of the main challenges of a monocular system. The proposed system is evaluated on real-world acquisitions, containing geo-tagged test objects of 18 18 9 cm up to a distance of 60 meters. The proposed extensions lead to a significant reduction of the false-alarm rate by a factor of 3, while simultaneously improving the detection score with 5%.
Calibration and testing of selected portable flowmeters for use on large irrigation systems
Luckey, Richard R.; Heimes, Frederick J.; Gaggiani, Neville G.
1980-01-01
Existing methods for measuring discharge of irrigation systems in the High Plains region are not suitable to provide the pumpage data required by the High Plains Regional Aquifer System Analysis. Three portable flowmeters that might be suitable for obtaining fast and accurate discharge measure-ments on large irrigation systems were tested during 1979 under both laboratory and field conditions: propeller type gated-pipe meter, a Doppler meter, and a transient-time meter.The gated-pipe meter was found to be difficult to use and sensitive to particulate matter in the fluid. The Doppler meter, while easy to use, would not function suitably on steel pipe 6 inches or larger in diameter, or on aluminum pipe larger than 8 inches in diameter. The transient-time meter was more difficult to use than the other two meters; however, this instrument provided a high degree of accuracy and reliability under a variety of conditions. Of the three meters tested, only the transient-time meter was found to be suitable for providing reliable discharge measurements on the variety of irrigation systems used in the High Plains region.
Tuning time-frequency methods for the detection of metered HF speech
NASA Astrophysics Data System (ADS)
Nelson, Douglas J.; Smith, Lawrence H.
2002-12-01
Speech is metered if the stresses occur at a nearly regular rate. Metered speech is common in poetry, and it can occur naturally in speech, if the speaker is spelling a word or reciting words or numbers from a list. In radio communications, the CQ request, call sign and other codes are frequently metered. In tactical communications and air traffic control, location, heading and identification codes may be metered. Moreover metering may be expected to survive even in HF communications, which are corrupted by noise, interference and mistuning. For this environment, speech recognition and conventional machine-based methods are not effective. We describe Time-Frequency methods which have been adapted successfully to the problem of mitigation of HF signal conditions and detection of metered speech. These methods are based on modeled time and frequency correlation properties of nearly harmonic functions. We derive these properties and demonstrate a performance gain over conventional correlation and spectral methods. Finally, in addressing the problem of HF single sideband (SSB) communications, the problems of carrier mistuning, interfering signals, such as manual Morse, and fast automatic gain control (AGC) must be addressed. We demonstrate simple methods which may be used to blindly mitigate mistuning and narrowband interference, and effectively invert the fast automatic gain function.
Shared Perception for Autonomous Systems
2015-08-24
minivan or sport utility vehicle (SUV) may be around 1.8 meters tall. Next, a height distribution of ~ 1.5, 0.3 was used to project the car detections...Vision, vol. 60, no. 2, 2004, pp. 91–110. 4. N. Snavely, S.M. Seitz, and R. Szeliski, “Photo Tourism : Exploring Photo Collections in 3D,” Proceedings of
A proposal of optimal sampling design using a modularity strategy
NASA Astrophysics Data System (ADS)
Simone, A.; Giustolisi, O.; Laucelli, D. B.
2016-08-01
In real water distribution networks (WDNs) are present thousands nodes and optimal placement of pressure and flow observations is a relevant issue for different management tasks. The planning of pressure observations in terms of spatial distribution and number is named sampling design and it was faced considering model calibration. Nowadays, the design of system monitoring is a relevant issue for water utilities e.g., in order to manage background leakages, to detect anomalies and bursts, to guarantee service quality, etc. In recent years, the optimal location of flow observations related to design of optimal district metering areas (DMAs) and leakage management purposes has been faced considering optimal network segmentation and the modularity index using a multiobjective strategy. Optimal network segmentation is the basis to identify network modules by means of optimal conceptual cuts, which are the candidate locations of closed gates or flow meters creating the DMAs. Starting from the WDN-oriented modularity index, as a metric for WDN segmentation, this paper proposes a new way to perform the sampling design, i.e., the optimal location of pressure meters, using newly developed sampling-oriented modularity index. The strategy optimizes the pressure monitoring system mainly based on network topology and weights assigned to pipes according to the specific technical tasks. A multiobjective optimization minimizes the cost of pressure meters while maximizing the sampling-oriented modularity index. The methodology is presented and discussed using the Apulian and Exnet networks.
Quakefinder: A scalable data mining system for detecting earthquakes from space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolorz, P.; Dean, C.
1996-12-31
We present an application of novel massively parallel datamining techniques to highly precise inference of important physical processes from remote sensing imagery. Specifically, we have developed and applied a system, Quakefinder, that automatically detects and measures tectonic activity in the earth`s crust by examination of satellite data. We have used Quakefinder to automatically map the direction and magnitude of ground displacements due to the 1992 Landers earthquake in Southern California, over a spatial region of several hundred square kilometers, at a resolution of 10 meters, to a (sub-pixel) precision of 1 meter. This is the first calculation that has evermore » been able to extract area-mapped information about 2D tectonic processes at this level of detail. We outline the architecture of the Quakefinder system, based upon a combination of techniques drawn from the fields of statistical inference, massively parallel computing and global optimization. We confirm the overall correctness of the procedure by comparison of our results with known locations of targeted faults obtained by careful and time-consuming field measurements. The system also performs knowledge discovery by indicating novel unexplained tectonic activity away from the primary faults that has never before been observed. We conclude by discussing the future potential of this data mining system in the broad context of studying subtle spatio-temporal processes within massive image streams.« less
Autonomous control of roving vehicles for unmanned exploration of the planets
NASA Technical Reports Server (NTRS)
Yerazunis, S. W.
1978-01-01
The guidance of an autonomous rover for unmanned planetary exploration using a short range (0.5 - 3.0 meter) hazard detection system was studied. Experimental data derived from a one laser/one detector system were used in the development of improved algorithms for the guidance of the rover. The new algorithms which account for the dynamic characteristics of the Rensselaer rover can be applied to other rover concepts provided that the rover dynamic parameters are modified appropriately. The new algorithms will also be applicable to the advanced scanning system. The design of an elevation scanning laser/multisensor hazard detection system was completed. All mechanical and electronic hardware components with the exception of the sensor optics and electronic components were constructed and tested.
NASA Technical Reports Server (NTRS)
Fraser, A. S.; Wells, A. F.; Tenoso, H. J.
1975-01-01
A monitoring system developed to test the capability of a water recovery system to reject the passage of viruses into the recovered water is described. A nonpathogenic marker virus, bacteriophage F2, is fed into the process stream before the recovery unit and the reclaimed water is assayed for its presence. Detection of the marker virus consists of two major components, concentration and isolation of the marker virus, and detection of the marker virus. The concentration system involves adsorption of virus to cellulose acetate filters in the presence of trivalent cations and low pH with subsequent desorption of the virus using volumes of high pH buffer. The detection of the virus is performed by a passive immune agglutination test utilizing specially prepared polystyrene particles. An engineering preliminary design was performed as a parallel effort to the laboratory development of the marker virus test system. Engineering schematics and drawings of a fully functional laboratory prototype capable of zero-G operation are presented. The instrument consists of reagent pump/metering system, reagent storage containers, a filter concentrator, an incubation/detector system, and an electronic readout and control system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; Abdelaziz, Omar; LaClair, Tim L.
A refrigerant charge meter and a method for determining the actual refrigerant charge in HVAC systems are described. The meter includes means for determining an optimum refrigerant charge from system subcooling and system component parameters. The meter also includes means for determining the ratio of the actual refrigerant charge to the optimum refrigerant charge. Finally, the meter includes means for determining the actual refrigerant charge from the optimum refrigerant charge and the ratio of the actual refrigerant charge to the optimum refrigerant charge.
A feasibility study to determine if there is a market for automatic meter-reading devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilberg, G.R.
1996-08-01
For many utilities the cost of manually reading meters is increasing due to personnel expenses and equipment costs. The current system of manual meters provides little ability for the utility to reduce costs. To reduce meter reading costs the utility must automate the manual system and reduce personnel expenses. A water utility in San Diego county was studied to calculate the cost of reading individual water meters. This would allow for the selective replacement of {open_quotes}high-cost{close_quotes} meters to quickly reduce meter-reading costs while limiting the necessary capital investments. As the {open_quotes}high-cost{close_quotes} meters are selectively replaced, a utility with a significantmore » difference in individual meter reading costs could save three to five dollars per meter per year. This study showed that the {open_quotes}high-cost{close_quotes} meters were six times more expensive to read than the average meter. Additionally, AMR systems increase the information available to consumers and to the utility on usage patterns and problems. The challenge was to cost effectively identify the {open_quotes}high-cost{close_quotes} meters. The costs to collect these data were less than $500.« less
A glucose meter evaluation co-designed with both health professional and consumer input.
Thompson, Harmony; Chan, Huan; Logan, Florence J; Heenan, Helen F; Taylor, Lynne; Murray, Chris; Florkowski, Christopher M; Frampton, Christopher M A; Lunt, Helen
2013-11-22
Health consumer's input into assessment of medical device safety is traditionally given either as part of study outcome (trial participants) or during post marketing surveillance. Direct consumer input into the methodological design of device assessment is less common. We discuss the difference in requirements for assessment of a measuring device from the consumer and clinician perspectives, using the example of hand held glucose meters. Around 80,000 New Zealanders with diabetes recently changed their glucose meter system, to enable ongoing access to PHARMAC subsidised meters and strips. Consumers were most interested in a direct comparison of their 'old' meter system (Accu-Chek Performa) with their 'new' meter system (CareSens brand, including the CareSens N POP), rather than comparisons against a laboratory standard. This direct comparison of meter/strip systems showed that the CareSens N POP meter read around 0.6 mmol/L higher than the Performa system. Whilst this difference is unlikely to result in major errors in clinical decision making such as major insulin dosing errors, this information is nevertheless of interest to consumers who switched meters so that they could maintain access to PHARMAC subsidised meters and strips. We recommend that when practical, the consumer perspective be incorporated into study design related to medical device assessment.
Low-Frequency Electromagnetic Exploration for Groundwater on Mars
NASA Technical Reports Server (NTRS)
Grimm, Robert E.
2002-01-01
Water with even a small amount of dissolved solids has an electrical conductivity orders of magnitude higher than dry rock and is therefore a near-ideal exploration target on Mars for low frequency, diffusive electromagnetic methods. Models of the temperature- and frequency-dependent electrical properties of rock-ice-water mixtures are used to predict the electromagnetic response of the Martian subsurface. Detection of ice is difficult unless it is massively segregated. In contrast, liquid water profoundly affects soundings, and even a small amount of adsorbed water in the cryosphere can be detected. Subcryospheric water is readily distinguishable at frequencies as low as 100 Hz for fresh water to 10 mHz for brines. These responses can be measured using either natural or artificial sources. Ultra low frequency signals from solar wind and diurnal-heating perturbations of the ionosphere are likely, and disturbances of regional crustal magnetic fields may also be observable. Spherics, or extremely to very low frequency signals from lightning discharge, would provide optimal soundings; however, lightning may be the least likely of the possible natural sources. Among the active techniques, only the time-domain electromagnetic (TDEM) method can accommodate a closely spaced transmitter and receiver and sound to depths of hundreds of meters or more. A ground- or aircraft-based TDEM system of several kilograms can detect water to a depth of several hundred meters, and a system of tens of kilograms featuring a large, fixed, rover- or ballistically deployed loop can detect water to several kilometers depth.
Microfluidics-based integrated airborne pathogen detection systems
NASA Astrophysics Data System (ADS)
Northrup, M. Allen; Alleman-Sposito, Jennifer; Austin, Todd; Devitt, Amy; Fong, Donna; Lin, Phil; Nakao, Brian; Pourahmadi, Farzad; Vinas, Mary; Yuan, Bob
2006-09-01
Microfluidic Systems is focused on building microfluidic platforms that interface front-end mesofluidics to handle real world sample volumes for optimal sensitivity coupled to microfluidic circuitry to process small liquid volumes for complex reagent metering, mixing, and biochemical analysis, particularly for pathogens. MFSI is the prime contractor on two programs for the US Department of Homeland Security: BAND (Bioagent Autonomous Networked Detector) and IBADS (Instantaneous Bio-Aerosol Detection System). The goal of BAND is to develop an autonomous system for monitoring the air for known biological agents. This consists of air collection, sample lysis, sample purification, detection of DNA, RNA, and toxins, and a networked interface to report the results. For IBADS, MFSI is developing the confirmatory device which must verify the presence of a pathogen with 5 minutes of an air collector/trigger sounding an alarm. Instrument designs and biological assay results from both BAND and IBADS will be presented.
Advanced Metering Infrastructure based on Smart Meters
NASA Astrophysics Data System (ADS)
Suzuki, Hiroshi
By specifically designating penetrations rates of advanced meters and communication technologies, devices and systems, this paper introduces that the penetration of advanced metering is important for the future development of electric power system infrastructure. It examines the state of the technology and the economical benefits of advanced metering. One result of the survey is that advanced metering currently has a penetration of about six percent of total installed electric meters in the United States. Applications to the infrastructure differ by type of organization. Being integrated with emerging communication technologies, smart meters enable several kinds of features such as, not only automatic meter reading but also distribution management control, outage management, remote switching, etc.
Extreme Adaptive Optics for the Thirty Meter Telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macintosh, B; al., e
2006-05-02
Direct detection of extrasolar Jovian planets is a major scientific motivation for the construction of future extremely large telescopes such as the Thirty Meter Telescope (TMT). Such detection will require dedicated high-contrast AO systems. Since the properties of Jovian planets and their parent stars vary enormously between different populations, the instrument must be designed to meet specific scientific needs rather than a simple metric such as maximum Strehl ratio. We present a design for such an instrument, the Planet Formation Imager (PFI) for TMT. It has four key science missions. The first is the study of newly-formed planets on 5-10more » AU scales in regions such as Taurus and Ophiucus--this requires very small inner working distances that are only possible with a 30m or larger telescope. The second is a robust census of extrasolar giant planets orbiting mature nearby stars. The third is detailed spectral characterization of the brightest extrasolar planets. The final targets are circumstellar dust disks, including Zodiacal light analogs in the inner parts of other solar systems. To achieve these, PFI combines advanced wavefront sensors, high-order MEMS deformable mirrors, a coronagraph optimized for a finely-segmented primary mirror, and an integral field spectrograph.« less
DOT National Transportation Integrated Search
2008-12-01
A System-Wide Adaptive Ramp Metering (SWARM) system has been implemented in the Portland, Oregon metropolitan area, replacing the previous pre-timed ramp-metering system that had been in operation since 1981. SWARM has been deployed on six major corr...
Bluetooth technology for prevention of dental caries.
Kolahi, Jafar; Fazilati, Mohamad
2009-12-01
Caries is caused when the pH at the tooth surface drops below 5.5. A miniaturized and autonomous pH monitoring nodes can be attached to the tooth surface, like a tooth jewel. This intelligent sensor includes three components: (a) digital micro pH meter, (b) power supply, (c) wireless communicating device. The micro pH meter facilitates long term tooth surface pH monitoring and providing real time feedback to the patients and dental experts. Power supply of this system will be microfabricated biocatalytic fuel cell (enzymatic micro-battery) using organic compounds (e.g. formate or glucose) as the fuel to generate electricity. When micro pH meter detects the pH lower than 5.5, wireless Bluetooth device sends a caution (e.g. "you are at risk of dental caries") to external monitoring equipment such as mobile phone or a hands-free heads. After reception of the caution, subjects should use routine brushing and flossing procedure or use a medicated chewing gum (e.g. chlorhexidine containing chewing gum) or rinse with a mouthwash.
Kasaya, Takafumi; Mitsuzawa, Kyohiko; Goto, Tada-Nori; Iwase, Ryoichi; Sayanagi, Keizo; Araki, Eiichiro; Asakawa, Kenichi; Mikada, Hitoshi; Watanabe, Tomoki; Takahashi, Ichiro; Nagao, Toshiyasu
2009-01-01
Sagami Bay is an active tectonic area in Japan. In 1993, a real-time deep sea floor observatory was deployed at 1,175 m depth about 7 km off Hatsushima Island, Sagami Bay to monitor seismic activities and other geophysical phenomena. Video cameras monitored biological activities associated with tectonic activities. The observation system was renovated completely in 2000. An ocean bottom electromagnetic meter (OBEM), an ocean bottom differential pressure gauge (DPG) system, and an ocean bottom gravity meter (OBG) were installed January 2005; operations began in February of that year. An earthquake (M5.4) in April 2006, generated a submarine landslide that reached the Hatsushima Observatory, moving some sensors. The video camera took movies of mudflows; OBEM and other sensors detected distinctive changes occurring with the mudflow. Although the DPG and OBG were recovered in January 2008, the OBEM continues to obtain data.
Extended range radiation dose-rate monitor
Valentine, Kenneth H.
1988-01-01
An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.
Development of Bottom Oil Recovery Systems. Revised
2014-02-01
designed a recovery system based on dredging technology. It could handle harsh wind /wave conditions but has significant logistical requirements, due...Knots m/s Meter(s) per second M/T Motor tanker M/V Motor vessel m Meter or meters m2 Square meters m3 Cubic meters MBTA Migratory Bird ...usable for some bottom types. Wind 30 kts (45-kt gusts) Wave 0-2m (0-5ft) Current 0-2 kts Lightning ɝmiles Minimum depth of about 9m (30 ft
Detection and dispersal of explosives by ants
NASA Astrophysics Data System (ADS)
McFee, John E.; Achal, Steve; Faust, Anthony A.; Puckrin, Eldon; House, Andrew; Reynolds, Damon; McDougall, William; Asquini, Adam
2009-05-01
The ability of animals to detect explosives is well documented. Mammalian systems, insects and even single celled organisms have all been studied and in a few cases employed to detect explosives. This paper will describe the potential ability of ants to detect, disperse and possibly neutralize bulk explosives. In spring 2008 a team of DRDC and Itres scientists conducted experiments on detecting surface-laid and buried landmines, improvised explosive devices (IEDs) and their components. Measurements were made using state-of-the-art short wave and thermal infrared hyperspectral imagers mounted on a personnel lift. During one of the early morning measurement sessions, a wispy, long linear trail was seen to emanate several meters from piles of explosives that were situated on the ground. Upon close visual inspection, it was observed that ants had found the piles of explosives and were carrying it to their ant hill, a distance of almost 20 meters from the piles. Initial analysis of the hyperspectral images clearly revealed the trail to the ant hill of explosives, despite being present in quantities not visible to the unaided eye. This paper details these observations and discusses them in the context of landmine and IED detection and neutralization. Possible reasons for such behaviour are presented. A number of questions regarding the behaviour, many pertinent to the use of ants in a counter-landmine/IED role, are presented and possible methods of answering them are discussed. Anecdotal evidence from deminers of detection and destruction of explosives by ants are presented.
Hybrid TLC-pair meter for the Sphinx Project
NASA Technical Reports Server (NTRS)
Wada, T.; Yamamoto, I.; Takahashi, N.; Misaki, A.
1985-01-01
The chief aims in THE SPHINX PROJECT are research of super lepton physics and new detector experiments. At the second phase of THE SPHINX PROJECT, a hybrid TLC-PAIR METER was designed for measuring high energy neutrino sources (E upsilon * TeV), searching high energy muon sources (E mu TeV) and measuring muon group (E mu 1 TeV). The principle of PAIR METER has been already proposed. In this TLC-PAIR METER, electromagnetic shower induced by cosmic ray muons are detected using TL (Thermoluminescence) sheets with position counters.
Schwab, William C.; Baldwin, Wayne E.; Denny, Jane F.
2016-01-15
This report documents the changes in seabed morphology and modern sediment thickness detected on the inner continental shelf offshore of Fire Island, New York, before and after Hurricanes Irene and Sandy made landfall. Comparison of acoustic backscatter imagery, seismic-reflection profiles, and bathymetry collected in 2011 and in 2014 show that sedimentary structures and depositional patterns moved alongshore to the southwest in water depths up to 30 meters during the 3-year period. The measured lateral offset distances range between about 1 and 450 meters with a mean of 20 meters. The mean distances computed indicate that change tended to decrease with increasing water depth. Comparison of isopach maps of modern sediment thickness show that a series of shoreface-attached sand ridges, which are the dominant sedimentary structures offshore of Fire Island, migrated toward the southwest because of erosion of the ridge crests and northeast-facing flanks as well as deposition on the southwest-facing flanks and in troughs between individual ridges. Statistics computed suggest that the modern sediment volume across the about 81 square kilometers of common sea floor mapped in both surveys decreased by 2.8 million cubic meters, which is a mean change of –0.03 meters, which is smaller than the resolution limit of the mapping systems used.
The Direct Georeferencing Application and Performance Analysis of Uav Helicopter in Gcp-Free Area
NASA Astrophysics Data System (ADS)
Lo, C. F.; Tsai, M. L.; Chiang, K. W.; Chu, C. H.; Tsai, G. J.; Cheng, C. K.; El-Sheimy, N.; Ayman, H.
2015-08-01
There are many disasters happened because the weather changes extremely in these years. To facilitate applications such as environment detection or monitoring becomes very important. Therefore, the development of rapid low cost systems for collecting near real-time spatial information is very critical. Rapid spatial information collection has become an emerging trend for remote sensing and mapping applications. This study develops a Direct Georeferencing (DG) based Unmanned Aerial Vehicle (UAV) helicopter photogrammetric platform where an Inertial Navigation System (INS)/Global Navigation Satellite System (GNSS) integrated Positioning and Orientation System (POS) system is implemented to provide the DG capability of the platform. The performance verification indicates that the proposed platform can capture aerial images successfully. A flight test is performed to verify the positioning accuracy in DG mode without using Ground Control Points (GCP). The preliminary results illustrate that horizontal DG positioning accuracies in the x and y axes are around 5 meter with 100 meter flight height. The positioning accuracy in the z axis is less than 10 meter. Such accuracy is good for near real-time disaster relief. The DG ready function of proposed platform guarantees mapping and positioning capability even in GCP free environments, which is very important for rapid urgent response for disaster relief. Generally speaking, the data processing time for the DG module, including POS solution generalization, interpolation, Exterior Orientation Parameters (EOP) generation, and feature point measurements, is less than 1 hour.
Integrating an embedded system in a microwave moisture meter
USDA-ARS?s Scientific Manuscript database
The conversion of a PC- or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter measures the attenuation and phase shift of low power microwaves traversing the sample, from which the dielectric properties are calculated. T...
Integrating an Embedded System within a Microwave Moisture Meter
USDA-ARS?s Scientific Manuscript database
In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter uses low-power microwaves to measure the attenuation and phase shift of the sample, from which the dielectric properties are cal...
A heat-pulse flowmeter for measuring minimal discharge rates in boreholes
Hess, A.E.
1982-01-01
The U.S. Geological Survey has tested a borehole-configured heat-pulse flowmeter which has good low-velocity flow-measuring sensitivity. The flowmeter was tested in the laboratory in 51-, 102-, and 152-millimeter-diameter columns using water velocities ranging from 0.35 to 250 millimeters per second. The heat-pulse flowmeter also was tested in a 15-meter-deep granite test pit with controlled water flow, and in a 58-meter-deep borehole in sedimentary materials. The flowmeter's capability to detect and measure naturally occurring, low-velocity, thermally induced convection currents in boreholes was demonstrated. Further improvements to the heat-pulse-flowmeter system are needed to increase its reliability and improve its response through four-conductor logging cable.
Zakian, A; Tehrani-Sharif, M; Mokhber-Dezfouli, M R; Nouri, M; Constable, P D
2017-04-01
To evaluate and validate a hand-held electrochemical meter (Precision Xtra®) as a screening test for subclinical ketosis and hypoglycaemia in lactating dairy cattle. Method comparison study using a convenience sample. Blood samples were collected into plain tubes from the coccygeal vessels of 181 Holstein cows at 2-4 weeks of lactation during summer in Iran. Blood β-hydroxybutyrate concentration (BHB) and glucose concentration were immediately measured by the electrochemical meter after applying 20 μL of blood to the reagent strip. Passing-Bablok regression and Bland-Altman plots were used to determine the accuracy of the meter against laboratory reference methods (BHB dehydrogenase and glucose oxidase). Serum BHB ranged from 0.1 to 7.3 mmol/L and serum glucose ranged from 0.9 to 5.1 mmol/L. Passing-Bablok regression analysis indicated that the electrochemical meter and reference methods were linearly related for BHB and glucose, with a slope estimate that was not significantly different from 1.00. Clinically minor, but statistically significant, differences were present for the intercept value for Passing-Bablok regression analysis for BHB and glucose, and bias estimates in the Bland-Altman plots for BHB and glucose. The electrochemical meter provided a clinically useful method to detect subclinical ketosis and hypoglycaemia in lactating dairy cows. Compared with other method validation studies using the meter, we attributed the improved performance of the electrochemical meter to application of a fixed volume of blood (20 μL) to the reagent strip, use of the meter in hot ambient conditions and use of glucose oxidase as the reference method for glucose analysis. © 2017 Australian Veterinary Association.
Miller, M R; Atkins, P R; Pedersen, O F
2003-05-01
Recent evidence suggests that the frequency response requirements for peak expiratory flow (PEF) meters are higher than was first thought and that the American Thoracic Society (ATS) waveforms to test PEF meters may not be adequate for the purpose. The dynamic response of mini-Wright (MW), Vitalograph (V), TruZone (TZ), MultiSpiro (MS) and pneumotachograph (PT) flow meters was tested by delivering two differently shaped flow-time profiles from a computer controlled explosive decompression device fitted with a fast response solenoid valve. These profiles matched population 5th and 95th centiles for rise time from 10% to 90% of PEF and dwell time of flow above 90% PEF. Profiles were delivered five times with identical chamber pressure and solenoid aperture at PEF. Any difference in recorded PEF for the two profiles indicates a poor dynamic response. The absolute (% of mean) flow differences in l/min for the V, MW, and PT PEF meters were 25 (4.7), 20 (3.9), and 2 (0.3), respectively, at PEF approximately 500 l/min, and 25 (10.5), 20 (8.7) and 6 (3.0) at approximately 200 l/min. For TZ and MS meters at approximately 500 l/min the differences were 228 (36.1) and 257 (39.2), respectively, and at approximately 200 l/min they were 51 (23.9) and 1 (0.5). All the meters met ATS accuracy requirements when tested with their waveforms. An improved method for testing the dynamic response of flow meters detects marked overshoot (underdamping) of TZ and MS responses not identified by the 26 ATS waveforms. This error could cause patient misclassification when using such meters with asthma guidelines.
Methods of measuring pumpage through closed-conduit irrigation systems
Kjelstrom, L.C.
1991-01-01
Methods of measuring volumes of water withdrawn from the Snake River and its tributaries and pumped through closed-conduit irrigation systems were needed for equitable management of and resolution of conflicts over water use. On the basis of evaluations and field tests by researchers from the University of Idaho, Water Resources Research Institute, Moscow, Idaho, an impeller meter was selected to monitor pumpage through closed-conduit systems. In 1988, impeller meters were installed at 20 pumping stations along the Snake River between the Upper Salmon Falls and C.J. Strike Dams. Impeller-derived pumpage data were adjusted if they differed substantially from ultrasonic flow-meter- or current-meter-derived values. Comparisons of pumpage data obtained by ultrasonic flow-meter and current-meter measurements indicated that the ultrasonic flow meter was a reliable means to check operation of impeller meters. The equipment generally performed satisfactorily, and reliable pumpage data could be obtained using impeller meters in closed-conduit irrigation systems. Many pumping stations that divert water from the Snake River for irrigation remain unmeasured; however, regression analyses indicate that total pumpage can be reasonably estimated on the basis of electrical power consumption data, an approximation of total head at a pumping station, and a derived coefficient.
40 CFR 280.43 - Methods of release detection for tanks.
Code of Federal Regulations, 2013 CFR
2013-07-01
... dispensing is metered and recorded within the local standards for meter calibration or an accuracy of 6 cubic... immiscible in water and has a specific gravity of less than one; (2) Ground water is never more than 20 feet...
40 CFR 280.43 - Methods of release detection for tanks.
Code of Federal Regulations, 2014 CFR
2014-07-01
... dispensing is metered and recorded within the local standards for meter calibration or an accuracy of 6 cubic... immiscible in water and has a specific gravity of less than one; (2) Ground water is never more than 20 feet...
Use of a spacecraft borne altimeter for determining the mean sea surface and the geopotential
NASA Technical Reports Server (NTRS)
Kahn, W. D.; Bryan, J. W.
1972-01-01
An experiment is proposed to test a first generation spacecraft-borne radar altimeter's capability to measure the topography of the sea surface. The initial radar altimeter will have an instrumental error of one meter and an overall accuracy to two to five meters. This instrument will thus improve the accuracy of the geoid from the present 10 to 20 meters to better than 5 meters. In order to detect storm surges, tidal forces, and ocean currents, an altimeter with an overall accuracy of at least ?1 meter will be required. The overall accuracy of the initial radar altimeter will thus primarily provide geodetic information and possible oceanographic information such as sea state.
Ground Penetrating Radar Survey at Yoros Fortesss,Istanbul
NASA Astrophysics Data System (ADS)
Kucukdemirci, M.; Yalçın, A. B.
2016-12-01
Geophysical methods are effective tool to detect the archaeological remains and materials, which were hidden under the ground. One of the most frequently used methods for archaeological prospection is Ground Penetrating Radar (GPR). This paper illustrates the small scale GPR survey to determine the buried archaeological features around the Yoros Fortress, located on shores of the Bosporus strait in Istanbul, during the archaeological excavations. The survey was carried out with a GSSI SIR 3000 system, using 400 Mhz center frequency bistatic antenna with the configuration of 16 bits dynamic range and 512 samples per scan. The data were collected along parallel profiles with an interval of 0.50 meters with zigzag profile configuration on the survey grids. The GPR data were processed by GPR-Slice V.7 (Ground Penetrating Radar Imaging Software). As a result, in the first shallow depths, some scattered anomalies were detected. These can be related to a small portion of archaeological ruins close to the surface. In the deeper levels, the geometry of the anomalies related to the possible archaeological ruins, looks clearer. Two horizontal and parallel anomalies were detected, with the direction NS in the depth of 1.45 meters, possibly related to the ancient channels.
NASA Technical Reports Server (NTRS)
1991-01-01
The Ultraprobe 2000, manufactured by UE Systems, Inc., Elmsford, NY, is a hand-held ultrasonic system that detects indications of bearing failure by analyzing changes in amplitude. It employs the technology of a prototype ultrasonic bearing-failure monitoring system developed by Mechanical Technology, Inc., Latham, New York and Marshall Space Flight Center (which was based on research into Skylab's gyroscope bearings). Bearings on the verge of failure send ultrasonic signals indicating their deterioration; the Ultraprobe changes these to audible signals. The operator hears the signals and gages their intensity with a meter in the unit.
An Optical System for Body Imaging from a Distance Using Near-TeraHertz Frequencies
NASA Astrophysics Data System (ADS)
Duncan, W. D.; Schwall, R. E.; Irwin, K. D.; Beall, J. A.; Reintsema, C. D.; Doriese, William; Cho, Hsiao-Mei; Estey, Brian; Chattopadhyay, Goutam; Ade, Peter; Tucker, Carole
2008-05-01
We present the outline of the optical design of a TeraHertz (THz) imager for the detection of shrapnel-loaded improvised explosive devices (IED) devices at “stand-off” distances of 14 26 meters. The system will use 4 antenna-coupled TES detector arrays of 16 by 16 pixels cooled in a cryogen-free system with microwave readout to see beneath clothing at non-lethal detonation distances. A spatial resolution of ˜10 mm and close to video frame rates is anticipated.
Analysing Smart Metering Systems from a Consumer Perspective
NASA Astrophysics Data System (ADS)
Yesudas, Rani
Many countries are deploying smart meters and Advanced Metering Infrastructure systems as part of demand management and grid modernisation efforts. Several of these projects are facing consumer resistance. The advertised benefits to the consumer appear mainly monetary but detailed analysis shows that financial benefits are hard to realise since the fixed services charges are high. Additionally, the data collected from smart meters have security and privacy implications for the consumer. These projects failed to consider end-users as an important stakeholder group during planning stages resulting in the design and roll-out of expensive systems, which do not demonstrate clear consumer benefits. The overall goal of the research reported in this thesis was to improve the smart metering system to deliver consumer benefits that increase confidence and acceptance of these projects. The smart metering system was examined from an end-user perspective for realistic insights into consumer concerns. Processes from Design Science Research methodology were utilised to conduct this research due to the utilitarian nature of the objective. Consumer segmentation was central to the proposed measures. Initially, a consumer-friendly risk analysis framework was devised, and appropriate requirement elicitation techniques were identified. Control options for smart meter data transfer and storage were explored. Various scenarios were analysed to determine consumer-friendly features in the smart metering system, including control options for smart meter data transfer and storage. Proposed functionalities (billing choices, feedback information and specific configurations to match the needs of different user segments) were studied using the Australian smart metering system. Smart meters vary in capabilities depending on the manufacturer, mode and place of deployment. The research showed that features proposed in this thesis are implementable in smart meters, by examining their applicability to those used in Victoria (Australia). This study demonstrated that intelligent systems for demand and distribution-side management can be built without the use of detailed consumption data from the consumer. Many issues related to smart meter data could be avoided by distributing intelligent metering devices across the network. A check-list was generated to guide project proponents to achieve a consumer-friendly outcome. This research establishes that by applying well-established theories during the planning process, in particular, requirement elicitation and risk analysis, consumer support can be gained leading to the deployment of user-friendly and sustainable systems. The check-list generated will help the industry to appropriately plan and develop systems that can avoid opposition and even stimulate adoption. Options proposed provide choices for different consumer segments without affecting major operations such as billing. On evaluation, it has been identified that the proposed measures do not affect the quality attributes of the system. Since the proposals presented in this thesis were based on smart meters used in Victoria (Australia), smart meters used in other areas may require upgrades or revisions to support these functions. The scope of this research is limited to identifying improvements in the system that will benefit the residential consumer and does not extend to the analysis of the effects of these improvements on the profitability of the investors.
Design of an autonomous exterior security robot
NASA Technical Reports Server (NTRS)
Myers, Scott D.
1994-01-01
This paper discusses the requirements and preliminary design of robotic vehicle designed for performing autonomous exterior perimeter security patrols around warehouse areas, ammunition supply depots, and industrial parks for the U.S. Department of Defense. The preliminary design allows for the operation of up to eight vehicles in a six kilometer by six kilometer zone with autonomous navigation and obstacle avoidance. In addition to detection of crawling intruders at 100 meters, the system must perform real-time inventory checking and database comparisons using a microwave tags system.
2004-08-01
base station Attitude Measurement Ashtech ADU-2 Bartington MAG03ML7ONT 3-axis fluxgate magnetometer , Navigation Picodas PNAV100 Model P141-E Real...BBR Test Grid, horizontal difference (outer coil minus scaled inner coil). 46 22 Analytic signal derived from ground-based magnetometer bottom...one meter over UXO-contaminated terrain. As with the magnetic systems, GPS and laser altimetry provide precise positioning to within a few tens of
A Vision-Based System for Object Identification and Information Retrieval in a Smart Home
NASA Astrophysics Data System (ADS)
Grech, Raphael; Monekosso, Dorothy; de Jager, Deon; Remagnino, Paolo
This paper describes a hand held device developed to assist people to locate and retrieve information about objects in a home. The system developed is a standalone device to assist persons with memory impairments such as people suffering from Alzheimer's disease. A second application is object detection and localization for a mobile robot operating in an ambient assisted living environment. The device relies on computer vision techniques to locate a tagged object situated in the environment. The tag is a 2D color printed pattern with a detection range and a field of view such that the user may point from a distance of over 1 meter.
NASA Astrophysics Data System (ADS)
Labonte, Alison Louise
Detecting seafloor deformation events in the offshore convergent margin environment is of particular importance considering the significant seismic hazard at subduction zones. Efforts to gain insight into the earthquake cycle have been made at the Cascadia and Costa Rica subduction margins through recent expansions of onshore GPS and seismic networks. While these studies have given scientists the ability to quantify and locate slip events in the seismogenic zone, there is little technology available for adequately measuring offshore aseismic slip. This dissertation introduces an improved flow meter for detecting seismic and aseismic deformation in submarine environments. The value of such hydrologic measurements for quantifying the geodetics at offshore margins is verified through a finite element modeling (FEM) study in which the character of deformation in the shallow subduction zone is determined from previously recorded hydrologic events at the Costa Rica Pacific margin. Accurately sensing aseismic events is one key to determining the stress state in subduction zones as these slow-slip events act to load or unload the seismogenic zone during the interseismic period. One method for detecting seismic and aseismic strain events is to monitor the hydrogeologic response to strain events using fluid flow meters. Previous instrumentation, the Chemical Aqueous Transport (CAT) meter which measures flow rates through the sediment-water interface, can detect transient events at very low flowrates, down to 0.0001 m/yr. The CAT meter performs well in low flow rate environments and can capture gradual changes in flow rate, as might be expected during ultra slow slip events. However, it cannot accurately quantify high flow rates through fractures and conduits, nor does it have the temporal resolution and accuracy required for detecting transient flow events associated with rapid deformation. The Optical Tracer Injection System (OTIS) developed for this purpose is an electronic flow meter that can measure flow rates of 0.1 to >500 m/yr at a temporal resolution of 30 minutes to 0.5 minutes, respectively. Test deployments of the OTIS at cold seeps in the transpressional Monterey Bay demonstrated the OTIS functionality over this range of flow environments. Although no deformation events were detected during these test deployments, the OTIS's temporally accurate measurements at the vigorously flowing Monterey Bay cold seep rendered valuable insight into the plumbing of the seep system. In addition to the capability to detect transient flow events, a primary functional requirement of the OTIS was the ability to communicate and transfer data for long-term real-time monitoring deployments. Real-time data transfer from the OTIS to the desktop was successful during a test deployment of the Nootka Observatory, an acoustically-linked moored-buoy system. A small array of CAT meters was also deployed at the Nootka transform-Cascadia subduction zone triple junction. Four anomalous flow rate events were observed across all four meters during the yearlong deployment. Although the records have low temporal accuracy, a preliminary explanation for the regional changes in flow rate is made through comparison between flow rate records and seismic records. The flow events are thought to be a result of a tectonic deformation event, possibly with an aseismic component. Further constraints are not feasible given the unknown structure of faulting near the triple junction. In a final proof of concept study, I find that use these hydrologic instruments, which capture unique aseismic flow rate patterns, is a valuable method for extracting information about deformation events on the decollement in the offshore subduction zone margin. Transient flow events observed in the frontal prism during a 1999--2000 deployment of CAT meters on the Costa Rica Pacific margin suggest episodic slow-slip deformation events may be occurring in the shallow subduction zone. The FEM study to infer the character of the hypothetical deformation event driving flow transients verify that indeed, a shallow slow-slip event can reproduce the unique flow rate patterns observed. Along (trench) strike variability in the rupture initiation location, and bidirectional propagation, is one way to explain the opposite sign of flow rate transients observed at different along-strike distances. The larger question stimulated by this dissertation project, is: What are the controls on fault mechanics in offshore subduction zone environments? It appears the shallow subduction zone plate interface doesn't behave solely in response to frictional properties of the sediment lining the decollement. Shallow episodic slip at the Costa Rica Pacific margin and further north off Nicaragua, where a slow earthquake broke through the shallow 'stable-sliding' zone and resulted in a tsunami, are potentially conceived through the normally faulted incoming basement topography. Scientists should seek to map out the controls of faulting mechanics, whatever they may be, at all temporal and spatial scales in order to understand these dynamic subduction zone systems. The quest to understanding these controls, in part, requires the characterization of aseismic and seismic strain occurring over time and space. The techniques presented in this dissertation advance scientists' capability for quantifying such strains. With the new instrumentation presented here, long-term real-time observatory networks on the seafloor, and modeling for characterization of deformation events, the pieces of the subduction zone earthquake cycle puzzle may start to come together.
Preliminary study of the use of radiotracers for leak detection in industrial applications
NASA Astrophysics Data System (ADS)
Wetchagarun, S.; Petchrak, A.; Tippayakul, C.
2015-05-01
One of the most widespread uses of radiotracers in the industrial applications is the leak detection of the systems. This technique can be applied, for example, to detect leak in heat exchangers or along buried industrial pipelines. The ability to perform online investigation is one of the most important advantages of the radiotracer technique over other non-radioactive leak detection methods. In this paper, a preliminary study of the leak detection using radiotracer in the laboratory scale was presented. Br-82 was selected for this work due to its chemical property, its suitable half-life and its on-site availability. The NH4Br in the form of aqueous solution was injected into the experimental system as the radiotracer. Three NaI detectors were placed along the pipelines to measure system flow rate and to detect the leakage from the piping system. The results obtained from the radiotracer technique were compared to those measured by other methods. It is found that the flow rate obtained from the radiotracer technique agreed well with the one obtained from the flow meter. The leak rate result, however, showed discrepancy between results obtained from two different measuring methods indicating further study on leak detection was required before applying this technique in the industrial system.
A custom-tailored FAMOS burn-up meter for VVER 440 fuel assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, G.G.; Golochtchapov, S.; Glazov, A.G.
1995-12-31
The FAMOS fuel assembly monitoring system had been originally developed for monitoring irradiated fuel assemblies of the Karlsruhe Nuclear Research Center concentrating on neutron detection systems for special applications.The measurements in the past had demonstrated that FAMOS can perform precise measurements to control or measure with accuracy the main physical parameters of spent fuel. The FAMOS 3 system is specialized for burn-up determination of fuel assemblies. Thus it is possible to take into account the burn-up for the purposes of storage and transportation. The Kola NPP VVER 440 requirements necessitated developing an especially adopted FAMOS 3 system. In addition tomore » the passive neutron measurement, a gross gamma detection and a boron concentration monitoring system are implemented. The new system was constructed as well as tested in laboratory experiments. The monitoring system has been delivered to the customer and is ready for use.« less
LSST system analysis and integration task for an advanced science and application space platform
NASA Technical Reports Server (NTRS)
1980-01-01
To support the development of an advanced science and application space platform (ASASP) requirements of a representative set of payloads requiring large separation distances selected from the Science and Applications Space Platform data base. These payloads were a 100 meter diameter atmospheric gravity wave antenna, a 100 meter by 100 meter particle beam injection experiment, a 2 meter diameter, 18 meter long astrometric telescope, and a 15 meter diameter, 35 meter long large ambient deployable IR telescope. A low earth orbit at 500 km altitude and 56 deg inclination was selected as being the best compromise for meeting payload requirements. Platform subsystems were defined which would support the payload requirements and a physical platform concept was developed. Structural system requirements which included utilities accommodation, interface requirements, and platform strength and stiffness requirements were developed. An attitude control system concept was also described. The resultant ASASP concept was analyzed and technological developments deemed necessary in the area of large space systems were recommended.
Dead-time compensation for a logarithmic display rate meter
Larson, John A.; Krueger, Frederick P.
1988-09-20
An improved circuit is provided for application to a radiation survey meter that uses a detector that is subject to dead time. The circuit compensates for dead time over a wide range of count rates by producing a dead-time pulse for each detected event, a live-time pulse that spans the interval between dead-time pulses, and circuits that average the value of these pulses over time. The logarithm of each of these values is obtained and the logarithms are subtracted to provide a signal that is proportional to a count rate that is corrected for the effects of dead time. The circuit produces a meter indication and is also capable of producing an audible indication of detected events.
Dead-time compensation for a logarithmic display rate meter
Larson, J.A.; Krueger, F.P.
1987-10-05
An improved circuit is provided for application to a radiation survey meter that uses a detector that is subject to dead time. The circuit compensates for dead time over a wide range of count rates by producing a dead-time pulse for each detected event, a live-time pulse that spans the interval between dead-time pulses, and circuits that average the value of these pulses over time. The logarithm of each of these values is obtained and the logarithms are subtracted to provide a signal that is proportional to a count rate that is corrected for the effects of dead time. The circuit produces a meter indication and is also capable of producing an audible indication of detected events. 5 figs.
Laser-induced breakdown spectroscopy for the remote detection of explosives at level of fingerprints
NASA Astrophysics Data System (ADS)
Almaviva, S.; Palucci, A.; Lazic, V.; Menicucci, I.; Nuvoli, M.; Pistilli, M.; De Dominicis, L.
2016-04-01
We report the results of the application of Laser-Induced Breakdown Spectroscopy (LIBS) for the detection of some common military explosives and theirs precursors deposited on white varnished car's external and black car's internal or external plastic. The residues were deposited by an artificial silicon finger, to simulate material manipulation by terrorists when preparing a car bomb, leaving traces of explosives on the parts of a car. LIBS spectra were acquired by using a first prototype laboratory stand-off device, developed in the framework of the EU FP7 313077 project EDEN (End-user driven DEmo for CBRNe). The system operates at working distances 8-30 m and collects the LIBS in the spectral range 240-840 nm. In this configuration, the target was moved precisely in X-Y direction to simulate the scanning system, to be implemented successively. The system is equipped with two colour cameras, one for wide scene view and another for imaging with a very high magnification, capable to discern fingerprints on a target. The spectral features of each examined substance were identified and compared to those belonging to the substrate and the surrounding air, and those belonging to possible common interferents. These spectral differences are discussed and interpreted. The obtained results show that the detection and discrimination of nitro-based compounds like RDX, PETN, ammonium nitrate (AN), and urea nitrate (UN) from organic interfering substances like diesel, greasy lubricants, greasy adhesives or oils in fingerprint concentration, at stand-off distance of some meters or tenths of meters is feasible.
Li, Weifeng; Ling, Wencui; Liu, Suoxiang; Zhao, Jing; Liu, Ruiping; Chen, Qiuwen; Qiang, Zhimin; Qu, Jiuhui
2011-01-01
Water leakage in drinking water distribution systems is a serious problem for many cities and a huge challenge for water utilities. An integrated system for the detection, early warning, and control of pipeline leakage has been developed and successfully used to manage the pipeline networks in selected areas of Beijing. A method based on the geographic information system has been proposed to quickly and automatically optimize the layout of the instruments which detect leaks. Methods are also proposed to estimate the probability of each pipe segment leaking (on the basis of historic leakage data), and to assist in locating the leakage points (based on leakage signals). The district metering area (DMA) strategy is used. Guidelines and a flowchart for establishing a DMA to manage the large-scale looped networks in Beijing are proposed. These different functions have been implemented into a central software system to simplify the day-to-day use of the system. In 2007 the system detected 102 non-obvious leakages (i.e., 14.2% of the total detected in Beijing) in the selected areas, which was estimated to save a total volume of 2,385,000 m3 of water. These results indicate the feasibility, efficiency and wider applicability of this system.
Energy Autonomous Wireless Water Meter with Integrated Turbine Driven Energy Harvester
NASA Astrophysics Data System (ADS)
Becker, P.; Folkmer, B.; Goepfert, R.; Hoffmann, D.; Willmann, A.; Manoli, Y.
2013-12-01
Accurate meter reading is the fundamental task of the home water system for the handling of payments. Meters need to be read correctly, to avoid an effect of adding events that increase unnecessary cost and create customer dissatisfaction. This paper presents a fully integrated wireless, energy autonomous water metering system based on the European Standard EN 13757 "Communication systems for meters and remote reading of meters". The system can be used in multiple water metering scenarios. No maintenance will be required and the system will provide precise and secure data transmission as well as timely and accurate recording of the consumption of water. The identification of any leakages will be improved through the analysis of the actual quantity supplied and recorded by the meters. The system is powered by an energy harvester, based on a water driven turbine wheel that is directly coupled to an electromagnetic energy transducer. The power delivered by the generator is dependent of the amount of flowing water and the pressure in the water pipes. Therefor the power is commonly non-continuous, fluctuant and unstable in the voltage amplitude. To be able to report the meter readings at all times, the system needs to be powered not only in times when the energy harvester delivers energy. Therefor an energy buffer, that stores the harvested energy, is installed to compensate the energy requirement between the actual generator output and the energy consumption of the application. Besides a complete system overview, the presentation will focus on the power management and energy aware battery charging circuitry. The design, fabrication, measuring results and the preparations for field tests in rural and urban environment will be presented and discussed.
[Development and test of a wheat chlorophyll, nitrogen and water content meter].
Yu, Bo; Sun, Ming; Han, Shu-Qing; Xia, Jin-Wen
2011-08-01
A portable meter was developed which can detect chlorophyll, nitrogen and moisture content of wheat leaf simultaneously, and can supply enough data for guiding fertilization and irrigation. This meter is composed of light path and electronic circuit. And this meter uses 660, 940 and 1450 nm LED together with narrow band filters as the active light source. The hardware circuit consists of micro-controller, LED drive circuit, detector, communication circuit, keyboard and LCD circuit. The meter was tested in the field and performed well with good repeatability and accuracy. The relative errors of chlorophyll and nitrogen test were about 10%, relative error for water content was 4%. The coefficients of variation of the three indices were all below 1.5%. All of these prove that the meter can be applied under the field condition to guide the wheat production.
Method and apparatus for reading meters from a video image
Lewis, Trevor J.; Ferguson, Jeffrey J.
1997-01-01
A method and system to enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relatively non-intrusive manner without making any complicated or expensive electronic connections, and without requiring intensive manpower.
Design of Smart-Meter data acquisition device based on Cloud Platform
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-05-01
In recent years, the government has attached great importance to ‘Four-Meter Unified’ Project. Under the call of national policy, State Grid is participate in building ‘Four-Meter Unified’ Project actively by making use of electricity information acquisition system. In this paper, a new type Smart-Meter data acquisition device based on Cloud Platform is designed according to the newest series of standards Energy Measure and Management System for Electric, Water, Gas and Heat Meter, and this paper introduces the general scheme, main hardware design and main software design for the Smart-Meter data acquisition device.
Capillary glucose meter accuracy and sources of error in the ambulatory setting.
Lunt, Helen; Florkowski, Christopher; Bignall, Michael; Budgen, Christopher
2010-03-05
Hand-held glucose meters are used throughout the health system by both patients with diabetes and also by health care practitioners. Glucose meter technology is constantly evolving. The current generation of meters and strips are quick to use and require a very small volume of blood. This review aims to describe meters currently available in New Zealand, for use in the ambulatory setting. It also aims to discuss the limits of meter performance and provide technical information that is relevant to the clinician, using locally available data. Commoner causes and consequences of end-user (patient and health professional) error are illustrated using clinical case examples. No meter offers definite advantages over other meters in all clinical situations, rather meters should be chosen because they fit the needs of individual patients and because the provider is able to offer appropriate educational and quality assurance backup to the meter user. A broad understanding of the advantages and disadvantages of the subsidised meter systems available in New Zealand will help the health practitioner decide when it is in the best interests of their patients to change or update meter technology.
Code of Federal Regulations, 2011 CFR
2011-07-01
... limited to postage meters and PC Postage systems. (b) A postage meter is a Postal Service-approved Postage... this part refers to a postage meter. (c) PC Postage products are Postal Service-approved Postage Evidencing Systems that use a personal computer as an integral part of the system. PC Postage products may...
NASA Astrophysics Data System (ADS)
Tanaka, S.; Sugimura, T.; Kameda, K.
1992-07-01
The environmental monitoring capacity by satellite depends upon the spatial resolution and the acquisition frequency it provides. The information on environmental change obtained by Landsat, the first earth observation satellite, was a rectangular reclamation area on Tokyo Bay meaning only a few square kilometers. However, multi-temporal SPOT/HRV data enables newly built small buildings meaning just ten square meters or so to be detected. Environmental changes of the global dimensions are today attracting world attention. In Japan, the major environmental problems are decaying cedar forests due to acid rain, decaying pine forests due to the pine beetle, landslides due to left-cut forests and problem resulting from agricultural chemicals on golf courses. All of these pose a national problem, but each is a phenomenon which covers an area of a few meters square at the largest. The existing earth observation satellites are unable to monitor these seemingly small sized environmental changes. For this, satellites with a spatial resolution of a few meters only or less than a meter are required. This situation becomes apparent when specific cases are examined, and it is expected considering the speed of past sensor development satellite observation systems providing this capacity will most probably be developed by the year 2020.
Hong, Lu; Zhou, Fu; Shi, Dongmin; Zhang, Xiaojun; Wang, Guangfeng
2017-09-15
Sensitive and rapid detection of platelet-derived growth factor BB (PDGF-BB), a cancer-related protein, could help early diagnosis, treatment, and prognosis of cancers. Although some methods have been developed to detect PDGF-BB, few can provide quantitative results using an affordable and portable device that is suitable for home use or field application. In this work, we report the first use of a portable kind of personal glucose meter (PGM) combining a catalytic and molecular beacon (CAMB) system with a cation exchange reaction (CX reaction) for ultrasensitive PDGF-BB assay. It realized the amplification of the detection in three ways, including greater aptamer payload on nanoparticles, CX reaction releasing thousands of Zn 2+ and the cycle by the catalyzing cleavage of 8-17 DNAzyme. In the process, with the addition of PDGF-BB into the aptasensor, the specific recognition between aptamer and protein was initiated resulting in the combination of ZnS NNC for further CX reaction to release thousands of Zn 2+ , which could cleave the substrate DNA in the CAMB system realizing multiple cycle. The cleaved DNA fragment was designed with invertase-labeled could convert sucrose into glucose which could be detected and quantified by PGM accompanying with the change of color of the control window from yellow to green. The enhanced signal of the PGM has a relationship with the concentration of PDGF-BB in the range of 3.16×10 -16 M to 3.16×10 -12 M, and the detection limit is 0.11fM. Moreover, the catalytic and cleavage activities of 8-17 DNAzyme can be achieved in solution; thus, no enzyme immobilization is needed for detection. The triply amplified strategy showed high selectivity, stability, and applicability for detecting the desired protein. Copyright © 2017. Published by Elsevier B.V.
Standoff detection of explosives: a challenging approach for optical technologies
NASA Astrophysics Data System (ADS)
Désilets, S.; Hô, N.; Mathieu, P.; Simard, J. R.; Puckrin, E.; Thériault, J. M.; Lavoie, H.; Théberge, F.; Babin, F.; Gay, D.; Forest, R.; Maheux, J.; Roy, G.; Châteauneuf, M.
2011-06-01
Standoff detection of explosives residues on surfaces at few meters was made using optical technologies based on Raman scattering, Laser-Induced Breakdown Spectroscopy (LIBS) and passive standoff FTIR radiometry. By comparison, detection and analysis of nanogram samples of different explosives was made with a microscope system where Raman scattering from a micron-size single point illuminated crystal of explosive was observed. Results from standoff detection experiments using a telescope were compared to experiments using a microscope to find out important parameters leading to the detection. While detection and spectral identification of the micron-size explosive particles was possible with a microscope, standoff detection of these particles was very challenging due to undesired light reflected and produced by the background surface or light coming from other contaminants. Results illustrated the challenging approach of detecting at a standoff distance the presence of low amount of micron or submicron explosive particles.
NASA Technical Reports Server (NTRS)
Slobin, S. D.
1987-01-01
The Deep Space Network (DSN) 64-meter antenna in Spain (DSN 63) has been calibrated prior to its upgrading to a 70-meter high efficiency configuration in preparation for the Voyager Neptune encounter in August 1989. The S-band (2285 MHz) and X-band (8420 MHz) effective area efficiency and system noise temperature calibrations were carried out during July 1986 to establish a baseline system performance for this station. It is expected that the 70-meter will result in at least a 1.9 dB G/T improvement at X-band relative to the 64-meter baseline reference.
N-nitrosamines as "special case" leachables in a metered dose inhaler drug product.
Norwood, Daniel L; Mullis, James O; Feinberg, Thomas N; Davis, Letha K
2009-01-01
N-nitrosamines are chemical entities, some of which are considered to be possible human carcinogens, which can be found at trace levels in some types of foods, tobacco smoke, certain cosmetics, and certain types of rubber. N-nitrosamines are of regulatory concern as leachables in inhalation drug products, particularly metered dose inhalers, which incorporate rubber seals into their container closure systems. The United States Food and Drug Administration considers N-nitrosamines (along with polycyclic aromatic hydrocarbons and 2-mercaptobenzothiazole) to be "special case" leachables in inhalation drug products, meaning that there are no recognized safety or analytical thresholds and these compounds must therefore be identified and quantitated at the lowest practical level. This report presents the development of a quantitative analytical method for target volatile N-nitrosamines in a metered dose inhaler drug product, Atrovent HFA. The method incorporates a target analyte recovery procedure from the drug product matrix with analysis by gas chromatography/thermal energy analysis detection. The capability of the method was investigated with respect to specificity, linearity/range, accuracy (linearity of recovery), precision (repeatability, intermediate precision), limits of quantitation, standard/sample stability, and system suitability. Sample analyses showed that Atrovent HFA contains no target N-nitrosamines at the trace level of 1 ng/canister.
Omidbakhsh, Navid; Ahmadpour, Faraz; Kenny, Nicole
2014-01-01
Background Meters based on adenosine triphosphate (ATP) bioluminescence measurements in relative light units (RLU) are often used to rapidly assess the level of cleanliness of environmental surfaces in healthcare and other settings. Can such ATP measurements be adversely affected by factors such as soil and cleaner-disinfectant chemistry? Objective This study tested a number of leading ATP meters for their sensitivity, linearity of the measurements, correlation of the readings to the actual microbial contamination, and the potential disinfectant chemicals’ interference in their readings. Methods First, solutions of pure ATP in various concentrations were used to construct a standard curve and determine linearity and sensitivity. Serial dilutions of a broth culture of Staphylococcus aureus, as a representative nosocomial pathogen, were then used to determine if a given meter’s ATP readings correlated with the actual CFUs. Next, various types of disinfectant chemistries were tested for their potential to interfere with the standard ATP readings. Results All four ATP meters tested herein demonstrated acceptable linearity and repeatability in their readings. However, there were significant differences in their sensitivity to detect the levels of viable microorganisms on experimentally contaminated surfaces. Further, most disinfectant chemistries tested here quenched the ATP readings variably in different ATP meters evaluated. Conclusions Apart from their limited sensitivity in detecting low levels of microbial contamination, the ATP meters tested were also prone to interference by different disinfectant chemistries. PMID:24940751
NASA Astrophysics Data System (ADS)
Klar, Assaf; Linker, Raphael
2009-05-01
Cross-borders smuggling tunnels enable unmonitored movement of people, drugs and weapons and pose a very serious threat to homeland security. Recent advances in strain measurements using optical fibers allow the development of smart underground security fences that could detect the excavation of smuggling tunnels. This paper presents the first stages in the development of such a fence using Brillouin Optical Time Domain Reflectometry (BOTDR). In the simulation study, two different ground displacement models are used in order to evaluate the robustness of the system against imperfect modeling. In both cases, soil-fiber interaction is considered. Measurement errors, and surface disturbances (obtained from a field test) are also included in the calibration and validation stages of the system. The proposed detection system is based on wavelet decomposition of the BOTDR signal, followed by a neural network that is trained to recognize the tunnel signature in the wavelet coefficients. The results indicate that the proposed system is capable of detecting even small tunnel (0.5m diameter) as deep as 20 meter.
A novel CUSUM-based approach for event detection in smart metering
NASA Astrophysics Data System (ADS)
Zhu, Zhicheng; Zhang, Shuai; Wei, Zhiqiang; Yin, Bo; Huang, Xianqing
2018-03-01
Non-intrusive load monitoring (NILM) plays such a significant role in raising consumer awareness on household electricity use to reduce overall energy consumption in the society. With regard to monitoring low power load, many researchers have introduced CUSUM into the NILM system, since the traditional event detection method is not as effective as expected. Due to the fact that the original CUSUM faces limitations given the small shift is below threshold, we therefore improve the test statistic which allows permissible deviation to gradually rise as the data size increases. This paper proposes a novel event detection and corresponding criterion that could be used in NILM systems to recognize transient states and to help the labelling task. Its performance has been tested in a real scenario where eight different appliances are connected to main line of electric power.
Measuring atmospheric visibility cavity attenuated phase shift spectroscopy
NASA Astrophysics Data System (ADS)
Jie, Guo; Ye, Shan-Shan; Yang, Xiao; Han, Ye-Xing; Tang, Huai-Wu; Yu, Zhi-Wei
2016-10-01
In the paper, an accurate and sensitive cavity attenuated phase shift spectroscopy (CAPS) system was used to monitor the atmospheric visibility coefficient in urban areas. The CAPS system, which detects the atmospheric visibility within a 10 nm bandpass centered at 532 nm, comprises a green LED with center wavelength in 532nm, a resonant optical cavity (36 cm length), a Photo Multiplier Tube detector and a lock in amplifier. The performance of the CAPS system was evaluated by measuring of the stability and response of the system. The minima ( 0.06 Mm-1) in the Allan plots show the optimum average time( 80s) for optimum detection performance of the CAPS system. The 2L/min flow rate, the CAPS system rise and fall response time is about 15 s, so as to realize the fast measurement of visibility. By comparing the forward scatter visibility meter measurement results, the CAPS system measurement results are verified reliably, and have high precision measurement. These figures indicate that this method has the potential to become one of the most sensitive on-line analytical techniques for atmospheric visibility detection.
Information Metering: Paving the Way for Pay-per-View Information.
ERIC Educational Resources Information Center
Hawkins, Donald T.
1996-01-01
Describes information metering technology as a method that information providers use to provide information collections to users in encrypted form and charge them only for the parts actually used. Discusses how two current information metering systems (Wave Systems Corporation and CD-MAX) operate, the institutions using their systems, and the…
24 CFR 965.407 - Reevaluations of master-meter systems.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Reevaluations of master-meter systems. 965.407 Section 965.407 Housing and Urban Development REGULATIONS RELATING TO HOUSING AND URBAN... Existing PHA-Owned Projects § 965.407 Reevaluations of master-meter systems. Because of changes in the cost...
NASA Technical Reports Server (NTRS)
Young, Roy M.; Adams, Charles L.
2010-01-01
The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.
Nguyen, Hung P; Ayachi, Fouaz; Lavigne-Pelletier, Catherine; Blamoutier, Margaux; Rahimi, Fariborz; Boissy, Patrick; Jog, Mandar; Duval, Christian
2015-04-11
Recently, much attention has been given to the use of inertial sensors for remote monitoring of individuals with limited mobility. However, the focus has been mostly on the detection of symptoms, not specific activities. The objective of the present study was to develop an automated recognition and segmentation algorithm based on inertial sensor data to identify common gross motor patterns during activity of daily living. A modified Time-Up-And-Go (TUG) task was used since it is comprised of four common daily living activities; Standing, Walking, Turning, and Sitting, all performed in a continuous fashion resulting in six different segments during the task. Sixteen healthy older adults performed two trials of a 5 and 10 meter TUG task. They were outfitted with 17 inertial motion sensors covering each body segment. Data from the 10 meter TUG were used to identify pertinent sensors on the trunk, head, hip, knee, and thigh that provided suitable data for detecting and segmenting activities associated with the TUG. Raw data from sensors were detrended to remove sensor drift, normalized, and band pass filtered with optimal frequencies to reveal kinematic peaks that corresponded to different activities. Segmentation was accomplished by identifying the time stamps of the first minimum or maximum to the right and the left of these peaks. Segmentation time stamps were compared to results from two examiners visually segmenting the activities of the TUG. We were able to detect these activities in a TUG with 100% sensitivity and specificity (n = 192) during the 10 meter TUG. The rate of success was subsequently confirmed in the 5 meter TUG (n = 192) without altering the parameters of the algorithm. When applying the segmentation algorithms to the 10 meter TUG, we were able to parse 100% of the transition points (n = 224) between different segments that were as reliable and less variable than visual segmentation performed by two independent examiners. The present study lays the foundation for the development of a comprehensive algorithm to detect and segment naturalistic activities using inertial sensors, in hope of evaluating automatically motor performance within the detected tasks.
Method and apparatus for reading meters from a video image
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, T.J.; Ferguson, J.J.
1995-12-31
A method and system enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relatively non-intrusivemore » manner without making any complicated or expensive electronic connections, and without requiring intensive manpower.« less
Method and apparatus for reading meters from a video image
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, T.J.; Ferguson, J.J.
1997-09-30
A method and system to enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relativelymore » non-intrusive manner without making any complicated or expensive electronic connections, and without requiring intensive manpower. 1 fig.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-15
.... It also features output metering, branch current/circuit monitoring and auto-detection by the Infra...). Small system: 1 40 kW N+1 Symmetra PX UPS 1 40 kW InfraStruXure PDU with pre-fabricated circuits 10 Net...Xure PDU with pre-fabricated circuits 50 NetShelter SX enclosures 50 Rack power distribution units 16...
Głowińska-Olszewska, Barbara; Urban, Mirosława; Peczyńska, Jadwiga; Florys, Bozena; Kowalewski, Marek
2005-01-01
Improved methods of diabetes therapy result in a near normoglycaemic state in many patients. This leads however unfortunately to more frequent hypoglycaemic incidents. Particularly small children, whose nervous system is not fully mature, are at high risk of central nervous system damage in case of hypoglycaemia. A new method of detail monitoring of glycaemia provides CGMS system. The aim of the study was to compare the glycaemic profile, with high attention to hypoglycaemia in groups of young and older children with diabetes type 1, using CGMS and routine glucose meter. We studied 32 children with diabetes type 1. Children were divided into groups: group I--small children, n=17 (<7 yrs of age), mean age 5,8 years, with disease duration--2,46 years, with mean HbA1c level--7,22%, and group II--older children, n=15 (>10 years of age), mean age--12 years, with disease duration--3 years, with HbA1c level--7,21%. Continuous glucose monitoring system (CGMS), by MiniMed, was applied in outpatient or hospital conditions, after short training of patient and parents; together with routine glucose meter measurements, 4-8 times/24 hours. In 9 patients from small children group CGMS was repeated after 2 months. Hypoglycaemic incidents detected with CGMS were similar in both groups: 4,6 in I group vs. 4,2 in II group (ns). Hypoglycaemic incidents found with meter were lower in I group--1,6 vs. 2,3 in II group (ns). Mean hypoglycaemic time/24 hour was longer in small children group: 101 min vs. 74 min in group II (p<00,05). In I group we found higher number of hypoglycaemic incidents during the night compared to group II--1,7 vs. 0,8 (p<00,05) and longer duration of night hypoglycaemia: in I group--56 min vs. 32 min in group II (p<00,05). Repeated CGMS study in 9 children from I group revealed decreased mean time of hypoglycaemia/24 hours from 134 min/24 h to 90 min/24 h (p<00,05) and decreased time of night hypoglycaemia from 65 min to 40 min (p<00,05), with a comparable number of hypoglycaemic incidents. Hypoglycaemic incidents found with routine meter measurements in small children were 1,6 vs. 4,6 hypoglycaemia found with CGMS (p<00,05), in the older children group routine measurement found 2,3 hypoglycaemia vs. 4,2 detected with CGMS (ns). 1. CGMS can be particularly usefull in monitoring glucose profile and detecting hypoglycaemia incidents, mainly nocturnal in small children. 2. CGMS allows to verify meal dose of insulin and to decrease postprandial hyperglycaemia. 3. Modification of insulin therapy on the base of CGMS helps to decrease the time of hypoglycaemia and hyperglycemia, particularly during the night.
Research on the full life cycle management system of smart electric energy meter
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; Guo, Dingying; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu
2018-02-01
At present, China’s smart electric energy meter life management is started from the procurement and acceptance. The related monitoring and management of the manufacturing sector has not yet been carried out. This article applies RFID technology and network cloud platform to full life cycle management system of smart electric energy meters, builds this full life cycle management system including design and manufacturing, process control, measurement and calibration testing, storage management, user acceptance, site operation, maintenance scrap and other aspects. Exploring smart electric energy meters on-line and off-line communication by the application of active RFID communication functions, and the actual functional application such as local data exchange and instrument calibration. This system provides technical supports on power demand side management and the improvement of smart electric energy meter reliability evaluation system.
Development of an integrated sub-picometric SWIFTS-based wavelength meter
NASA Astrophysics Data System (ADS)
Duchemin, Céline; Thomas, Fabrice; Martin, Bruno; Morino, Eric; Puget, Renaud; Oliveres, Robin; Bonneville, Christophe; Gonthiez, Thierry; Valognes, Nicolas
2017-02-01
SWIFTSTM technology has been known for over five years to offer compact and high-resolution laser spectrum analyzers. The increase of wavelength monitoring demand with even better accuracy and resolution has pushed the development of a wavelength meter based on SWIFTSTM technology, named LW-10. As a reminder, SWIFTSTM principle consists in a waveguide in which a stationary wave is created, sampled and read out by a linear image sensor array. Due to its inherent properties (non-uniform subsampling) and aliasing signal (as presented in Shannon-Nyquist criterion), the system offers short spectral window bandwidths thus needs an a priori on the working wavelength and thermal monitoring. Although SWIFTSTM-based devices are barely sensitive to atmospheric pressure, temperature control is a key factor to master both high accuracy and wavelength meter resolution. Temperature control went from passive (temperature probing only) to active control (Peltier thermoelectric cooler) with milli-degree accuracy. The software part consists in dropping the Fourier-like transform, for a least-squares method directly on the interference pattern. Moreover, the consideration of the system's chromatic behavior provides a "signature" for automated wavelength detection and discrimination. This SWIFTSTM-based new device - LW-10 - shows outstanding results in terms of absolute accuracy, wavelength meter resolution as well as calibration robustness within a compact device, compared to other existing technologies. On the 630 - 1100 nm range, the final device configuration allows pulsed or CW lasers monitoring with 20 MHz resolution and 200 MHz absolute accuracy. Non-exhaustive applications include tunable laser control and frequency locking experiments
Study on the system-level test method of digital metering in smart substation
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Yang, Min; Hu, Juan; Li, Fuchao; Luo, Ruixi; Li, Jinsong; Ai, Bing
2017-03-01
Nowadays, the test methods of digital metering system in smart substation are used to test and evaluate the performance of a single device, but these methods can only effectively guarantee the accuracy and reliability of the measurement results of a digital metering device in a single run, it does not completely reflect the performance when each device constitutes a complete system. This paper introduced the shortages of the existing test methods. A system-level test method of digital metering in smart substation was proposed, and the feasibility of the method was proved by the actual test.
Multi-User Low Intrusive Occupancy Detection
Widyawan, Widyawan; Lazovik, Alexander
2018-01-01
Smart spaces are those that are aware of their state and can act accordingly. Among the central elements of such a state is the presence of humans and their number. For a smart office building, such information can be used for saving energy and safety purposes. While acquiring presence information is crucial, using sensing techniques that are highly intrusive, such as cameras, is often not acceptable for the building occupants. In this paper, we illustrate a proposal for occupancy detection which is low intrusive; it is based on equipment typically available in modern offices such as room-level power-metering and an app running on workers’ mobile phones. For power metering, we collect the aggregated power consumption and disaggregate the load of each device. For the mobile phone, we use the Received Signal Strength (RSS) of BLE (Bluetooth Low Energy) nodes deployed around workspaces to localize the phone in a room. We test the system in our offices. The experiments show that sensor fusion of the two sensing modalities gives 87–90% accuracy, demonstrating the effectiveness of the proposed approach. PMID:29509693
Standoff laser-based spectroscopy for explosives detection
NASA Astrophysics Data System (ADS)
Gaft, M.; Nagli, L.
2007-10-01
Real time detection and identification of explosives at a standoff distance is a major issue in efforts to develop defense against so-called Improvised Explosive Devices (IED). It is recognized that the only technique, which is potentially capable to standoff detection of minimal amounts of explosives is laser-based spectroscopy. LDS activity is based on a combination of laser-based spectroscopic methods with orthogonal capabilities. Our technique belongs to trace detection, namely to its micro-particles variety. It is based on commonly held belief that surface contamination was very difficult to avoid and could be exploited for standoff detection. We has applied optical techniques including gated Raman and time-resolved luminescence spectroscopy for detection of main explosive materials, both factory and homemade. We developed and tested a Raman system for the field remote detection and identification of minimal amounts of explosives on relevant surfaces at a distance of up to 30 meters.
Anomaly Detection in Test Equipment via Sliding Mode Observers
NASA Technical Reports Server (NTRS)
Solano, Wanda M.; Drakunov, Sergey V.
2012-01-01
Nonlinear observers were originally developed based on the ideas of variable structure control, and for the purpose of detecting disturbances in complex systems. In this anomaly detection application, these observers were designed for estimating the distributed state of fluid flow in a pipe described by a class of advection equations. The observer algorithm uses collected data in a piping system to estimate the distributed system state (pressure and velocity along a pipe containing liquid gas propellant flow) using only boundary measurements. These estimates are then used to further estimate and localize possible anomalies such as leaks or foreign objects, and instrumentation metering problems such as incorrect flow meter orifice plate size. The observer algorithm has the following parts: a mathematical model of the fluid flow, observer control algorithm, and an anomaly identification algorithm. The main functional operation of the algorithm is in creating the sliding mode in the observer system implemented as software. Once the sliding mode starts in the system, the equivalent value of the discontinuous function in sliding mode can be obtained by filtering out the high-frequency chattering component. In control theory, "observers" are dynamic algorithms for the online estimation of the current state of a dynamic system by measurements of an output of the system. Classical linear observers can provide optimal estimates of a system state in case of uncertainty modeled by white noise. For nonlinear cases, the theory of nonlinear observers has been developed and its success is mainly due to the sliding mode approach. Using the mathematical theory of variable structure systems with sliding modes, the observer algorithm is designed in such a way that it steers the output of the model to the output of the system obtained via a variety of sensors, in spite of possible mismatches between the assumed model and actual system. The unique properties of sliding mode control allow not only control of the model internal states to the states of the real-life system, but also identification of the disturbance or anomaly that may occur.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-24
... facilities would include: (1) Three 35-kilowatt (kW), 5-meter-diameter axial flow Kinetic System turbine...; (2) nine additional 5-meter-diameter axial flow Kinetic System turbine generator units mounted on...-meter-diameter axial flow Kinetic System turbine generator units mounted on six triframe mounts, with a...
NASA Astrophysics Data System (ADS)
Jedicke, R.; Bolin, B.; Chyba, M.; Fedorets, G.; Granvik, M.; Patterson, G.; Vaubaillon, J.
2014-07-01
We will present an overview of our recent work on understanding the population of natural objects that are temporarily captured in the Earth-Moon system. We use the term 'minimoon' to refer to objects that i) have negative total energy (kinetic+potential) relative to the Earth-Moon barycenter that ii) make at least one full revolution around the barycenter in a co-rotating frame relative to the Earth-Sun axis iii) while they are within 3 Earth Hill-sphere radii. There has been one confirmed minimoon, the 2-3 meter diameter object designated 2006 RH_{120} that was discovered by the Catalina Sky Survey [1]. That object's size, capture duration, geocentric trajectory, and pre-and post-capture heliocentric orbits are in perfect agreement with the minimoon model proposed by Granvik et al. (2012) [2]. We expect that there are one or two 1 to 2 meter diameter minimoons in the steady state population at any time and about a dozen larger than 50 cm diameter. Minimoons have an average lifetime of about 9 months. 'Drifters' are like minimoons except that they do not fulfill the requirement of making at least one revolution in the Earth-Moon system. The population of drifters is about 10× the minimoon population so that the largest drifter in the steady state is about 5-10 meters in diameter and there are perhaps ten of about 1 meter diameter at any time. The combined population of minimoons and drifters, henceforth 'cis-lunar objects' (CLO), provide a formerly unrecognized opportunity for scientific exploration and testing concepts for in-situ resource utilization [3]. They could provide large samples of main-belt asteroids that are unaffected by passage through Earth's atmosphere or weathering on the ground, with the added convenience of already being gravitationally bound in the Earth-Moon system. The CLOs provide interesting challenges for rendezvous missions because of their limited lifetime and non-elliptical trajectories while they are bound objects [4]. The problem is that detecting the CLOs is difficult -- they are small, captured for only limited time periods, and their apparent rates of motion are more like artificial satellites than the more distant NEOs [5]. New technology may enable the detection of a small number of CLOs from the ground in the next few years [5,6] but the only way to discover a reliable stream of these interesting objects is from a space-based platform.
NASA Astrophysics Data System (ADS)
Fujioka, Kantaro; Kobayashi, Kazuo; Kato, Kazuhiro; Aoki, Misumi; Mitsuzawa, Kyohiko; Kinoshita, Masataka; Nishizawa, Azusa
1997-12-01
Hydrothermal activities were monitored by an ocean bottom seismometer with hydrophone (OBSH) and a composite measuring system (Manatee) including CTD, current meter, transmission meter and cameras at a small depression on the TAG hydrothermal mound in the Mid-Atlantic Ridge. Low-frequency pressure pulses detected by the hydrophone with semi-diurnal periodicity seem to correspond to cycles of hydrothermal upflow from a small and short-lived smoker vent close to the observing site. The peaks of pressure pulses are synchronous with the maximum gradient of areal strain decrease due to tidal load release. Microearthquakes with very near epicenters occur sporadically and do not appear to be directly correlatable to hydrothermal venting. Temporal variations in bottom water temperature also have semi-diurnal periodicity but are more complicated than the pressure events. Temperatures may be affected both by upwelling of hot water and by lateral flow of the bottom current changing its directions with ocean tide.
40 CFR 92.111 - Smoke measurement system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... system of the light extinction meter, as follows: ER16AP98.000 (b) Equipment. The following equipment... the exhaust plume as it passes through the optical unit. (3) Smokemeter, (light extinction meter). A... a remote control unit. (ix) Light extinction meters employing substantially identical measurement...
40 CFR 92.111 - Smoke measurement system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... system of the light extinction meter, as follows: ER16AP98.000 (b) Equipment. The following equipment... the exhaust plume as it passes through the optical unit. (3) Smokemeter, (light extinction meter). A... a remote control unit. (ix) Light extinction meters employing substantially identical measurement...
40 CFR 92.111 - Smoke measurement system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... system of the light extinction meter, as follows: ER16AP98.000 (b) Equipment. The following equipment... the exhaust plume as it passes through the optical unit. (3) Smokemeter, (light extinction meter). A... a remote control unit. (ix) Light extinction meters employing substantially identical measurement...
40 CFR 92.111 - Smoke measurement system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... system of the light extinction meter, as follows: ER16AP98.000 (b) Equipment. The following equipment... the exhaust plume as it passes through the optical unit. (3) Smokemeter, (light extinction meter). A... a remote control unit. (ix) Light extinction meters employing substantially identical measurement...
40 CFR 92.111 - Smoke measurement system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... system of the light extinction meter, as follows: ER16AP98.000 (b) Equipment. The following equipment... the exhaust plume as it passes through the optical unit. (3) Smokemeter, (light extinction meter). A... a remote control unit. (ix) Light extinction meters employing substantially identical measurement...
Origin of the Universe: From the First Stars to Planets with JWST
NASA Technical Reports Server (NTRS)
Clampin, Mark
2008-01-01
The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments. JWST's primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, protoplanetary systems, and the formation of evolution of planetary systems. We will review the motivations for JWST's science goals in the context of recent Hubble Space Telescope, and Spitzer Space Telescope observations and review the status of the JWST Observatory.
Particulate contamination spectrometer. Volume 1: Technical report
NASA Technical Reports Server (NTRS)
Schmitt, R. J.; Boyd, B. A.; Linford, R. M. F.
1975-01-01
A laser particulate spectrometer (LPS) system was developed to measure the size and speed distributions of particulate (dusts, aerosols, ice particles, etc.) contaminants. Detection of the particulates was achieved by means of light scattering and extinction effects using a single laser beam to cover a size range of 0.8 to 275 microns diameter and a speed range of 0.2 to 20 meter/second. The LPS system was designed to operate in the high vacuum environment of a space simulation chamber with cold shroud temperatures ranging from 77 to 300 K.
F-15 digital electronic engine control system description
NASA Technical Reports Server (NTRS)
Myers, L. P.
1984-01-01
A digital electronic engine control (DEEC) was developed for use on the F100-PW-100 turbofan engine. This control system has full authority control, capable of moving all the controlled variables over their full ranges. The digital computational electronics and fault detection and accomodation logic maintains safe engine operation. A hydromechanical backup control (BUC) is an integral part of the fuel metering unit and provides gas generator control at a reduced performance level in the event of an electronics failure. The DEEC's features, hardware, and major logic diagrams are described.
Wang, Qing; Wang, Hui; Yang, Xiaohai; Wang, Kemin; Liu, Rongjuan; Li, Qing; Ou, Jinqing
2015-02-21
Assays of α-amylase (AMS) activity in serum and urine constitute the important indicator for the diagnosis of acute pancreatitis, mumps, renal disease and abdominal disorders. Since these diseases confer a heavy financial burden on the health care system, AMS detection in point-of-care is fundamental. Here, a one-step assay for direct determination of the AMS activity was developed using a portable personal glucose meter (PGM). In this assay, maltopentaose was used as a substrate for sensitive detection of AMS with the assistance of α-glucosidase. In the presence of AMS, maltopentaose can be readily hydrolyzed to form maltotriose and maltose quickly. With the enzymatic hydrolysis of α-glucosidase, maltotriose and maltose can be turned into glucose rapidly, which can be quantitatively measured using a portable PGM. This assay did not require any cumbersome and time consuming operations, such as surface modification, synthesis of invertase conjugate, washing and centrifugation. Detection of AMS can be achieved using only a one-step mixture, and the limit of detection was 20 U L(-1) which was lower than the clinical cutoff for AMS. More importantly, this sensitive and selective assay was also used for the detection of AMS in human serum/urine samples. The results showed that the recovery of AMS from human serum/urine samples was 91-107%. The rapid and easy-to-operate assay may have potential application in the fields of point-of-care (POC) clinical diagnosis, particularly in rural and remote areas where lab equipment may be limited.
A-Track: A New Approach for Detection of Moving Objects in FITS Images
NASA Astrophysics Data System (ADS)
Kılıç, Yücel; Karapınar, Nurdan; Atay, Tolga; Kaplan, Murat
2016-07-01
Small planet and asteroid observations are important for understanding the origin and evolution of the Solar System. In this work, we have developed a fast and robust pipeline, called A-Track, for detecting asteroids and comets in sequential telescope images. The moving objects are detected using a modified line detection algorithm, called ILDA. We have coded the pipeline in Python 3, where we have made use of various scientific modules in Python to process the FITS images. We tested the code on photometrical data taken by an SI-1100 CCD with a 1-meter telescope at TUBITAK National Observatory, Antalya. The pipeline can be used to analyze large data archives or daily sequential data. The code is hosted on GitHub under the GNU GPL v3 license.
40 CFR 86.884-9 - Smoke measurement system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... extinction meter. ER06OC93.182 (b) Equipment. The following equipment shall be used in the system. (1... used to remove the exhaust from the test site. (2) Smokemeter (light extinction meter)—continuous... a remote control unit. (ix) Light extinction meters employing substantially identical measurement...
40 CFR 86.884-9 - Smoke measurement system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... extinction meter. ER06OC93.182 (b) Equipment. The following equipment shall be used in the system. (1... used to remove the exhaust from the test site. (2) Smokemeter (light extinction meter)—continuous... a remote control unit. (ix) Light extinction meters employing substantially identical measurement...
40 CFR 86.884-9 - Smoke measurement system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... extinction meter. ER06OC93.182 (b) Equipment. The following equipment shall be used in the system. (1... used to remove the exhaust from the test site. (2) Smokemeter (light extinction meter)—continuous... a remote control unit. (ix) Light extinction meters employing substantially identical measurement...
40 CFR 86.884-9 - Smoke measurement system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... extinction meter. ER06OC93.182 (b) Equipment. The following equipment shall be used in the system. (1... used to remove the exhaust from the test site. (2) Smokemeter (light extinction meter)—continuous... a remote control unit. (ix) Light extinction meters employing substantially identical measurement...
Traceable calibration of ultraviolet meters used with broadband, extended sources.
Coleman, A J; Collins, M; Saunders, J E
2000-01-01
A calibration system has been developed to provide increased accuracy in the measurement of the irradiance responsivity appropriate for UV meters used with broadband, extended sources of the type employed in phototherapy. The single wavelength responsivity of the test meter is obtained in the wavelength range 250-400 nm by intercomparison with a transfer standard meter in a narrow, monochromatic beam. Traceability to primary standard irradiance scales is provided via the National Measurement System with a best uncertainty of 7% (at 95% confidence). The effective responsivity of the test meter, when used with broadband extended sources, is calculated using the measured spectral and angular response of the meter and tabulated data on the spectral and spatial characteristics of the source radiance. The uncertainty in the effective responsivity, independent of the source variability, is estimated to be 10% (at 95% confidence). The advantages of this calibration system over existing approaches are discussed.
NASA Technical Reports Server (NTRS)
Abdel-Gawad, M. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Surface indications of recent faulting are generally observed in EREP S190B photographs. Comparison of secondary roads (asphalt and dirt) registered in EREP and U-2 photographs together with field measurements shows that dirt and asphalt roads about seven meters wide can be detected in EREP S190B photographs where sufficient contrast exists between the tone of the road surface and surrounding terrain. In low contrast cases, roads more than ten meters wide could not be detected.
NASA Astrophysics Data System (ADS)
Navaratne, Uditha Sudheera
The smart grid is the future of the power grid. Smart meters and the associated network play a major role in the distributed system of the smart grid. Advance Metering Infrastructure (AMI) can enhance the reliability of the grid, generate efficient energy management opportunities and many innovations around the future smart grid. These innovations involve intense research not only on the AMI network itself but as also on the influence an AMI network can have upon the rest of the power grid. This research describes a smart meter testbed with hardware in loop that can facilitate future research in an AMI network. The smart meters in the testbed were developed such that their functionality can be customized to simulate any given scenario such as integrating new hardware components into a smart meter or developing new encryption algorithms in firmware. These smart meters were integrated into the power system simulator to simulate the power flow variation in the power grid on different AMI activities. Each smart meter in the network also provides a communication interface to the home area network. This research delivers a testbed for emulating the AMI activities and monitoring their effect on the smart grid.
NASA Astrophysics Data System (ADS)
Mitani, Yusuke; Miyaji, Kousuke; Kaneko, Satoshi; Uekura, Takaharu; Momose, Hideya; Johguchi, Koh
2018-04-01
This paper presents a compact wearable perspiration meter system using a 180-nm CMOS technology. With custom chip and board design, the proposed perspiration meter, which can measure a qualitative sweating rate, is integrated into 15 × 20 mm2. From the experimental results, the capacitances of the humidity sensors with analog-to-digital converter and band-gap reference circuits can operate accurately without hysteresis. In addition, a demonstration with simulated human skin is carried out to investigate the sensor’s performance under real environments. The proposed perspiration meter can output values equivalent to a conventional meter. As a result, it is verified that the proposed system can be used as a human sweat sensor for wearable application.
Terahertz Computed Tomography of NASA Thermal Protection System Materials
NASA Technical Reports Server (NTRS)
Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.
2011-01-01
A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.
Radiation dose-rate meter using an energy-sensitive counter
Kopp, Manfred K.
1988-01-01
A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.
76 FR 72507 - National Emissions Standards for Hazardous Air Pollutants: Ferroalloys Production
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-23
... MDL method detection limit mg/dscm milligrams per dry standard cubic meter MIR maximum individual risk... pounds per hour per megawatt (lb/hr/ MW) or 35 milligrams per dry standard cubic meter (mg/ dscm) (0.015... stacks) producing ferromanganese. New, reconstructed, or Metal oxygen refining process... 69 mg/dscm (0...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Richard Karl; Martin, Jeffrey B.; Wiemann, Dora K.
We developed new detector technologies to identify the presence of radioactive materials for nuclear forensics applications. First, we investigated an optical radiation detection technique based on imaging nitrogen fluorescence excited by ionizing radiation. We demonstrated optical detection in air under indoor and outdoor conditions for alpha particles and gamma radiation at distances up to 75 meters. We also contributed to the development of next generation systems and concepts that could enable remote detection at distances greater than 1 km, and originated a concept that could enable daytime operation of the technique. A second area of research was the development ofmore » room-temperature graphene-based sensors for radiation detection and measurement. In this project, we observed tunable optical and charged particle detection, and developed improved devices. With further development, the advancements described in this report could enable new capabilities for nuclear forensics applications.« less
Stand-off detection of explosives vapors by resonance-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Johansson, Ida; Ceco, Ema; Ehlerding, Anneli; Östmark, Henric
2013-06-01
This paper describes a system for stand-off vapor detection based on Resonant Raman spectroscopy, RRS. The system is a step towards a RRS LIDAR (Light Detection And Ranging) system, capable of detecting vapors from explosives and explosives precursors at long distances. The current system was used to detect the vapor of nitromethane and mononitrotoluene outdoors in the open air, at a stand-off distance of 11-13 meters. Also, the signal dependence upon irradiation wavelength and sample concentration was studied in controlled laboratory conditions. A tunable Optical Parametric Oscillator pumped by an Nd:YAG laser, with a pulse length of 6 ns, was operated in the UV range of interest, 210-400 nm, illuminating the sample vapor. The backscattered Raman signal was collected by a telescope and a roundto- slit optical fiber was used to transmit collected light to the spectrometer with minimum losses. A gated intensified charge-coupled device (ICCD) registered the spectra. The nitromethane cross section was resonance enhanced more than a factor 30 700, when measured at 220 nm, compared to the 532 nm value. The results show that a decrease in concentration can have a positive effect on the sensitivity of the system, due to a decrease in absorption and selfabsorption in the sample.
Beeman, John W.; Hayes, Brian; Wright, Katrina
2012-01-01
A series of in-stream passive integrated transponder (PIT) detection antennas installed across the Klamath River in August 2010 were tested using tagged fish in the summer of 2011. Six pass-by antennas were constructed and anchored to the bottom of the Klamath River at a site between the Shasta and Scott Rivers. Two of the six antennas malfunctioned during the spring of 2011 and two pass-through antennas were installed near the opposite shoreline prior to system testing. The detection probability of the PIT tag detection system was evaluated using yearling coho salmon implanted with a PIT tag and a radio transmitter and then released into the Klamath River slightly downstream of Iron Gate Dam. Cormack-Jolly-Seber capture-recapture methods were used to estimate the detection probability of the PIT tag detection system based on detections of PIT tags there and detections of radio transmitters at radio-telemetry detection systems downstream. One of the 43 PIT- and radio-tagged fish released was detected by the PIT tag detection system and 23 were detected by the radio-telemetry detection systems. The estimated detection probability of the PIT tag detection system was 0.043 (standard error 0.042). Eight PIT-tagged fish from other studies also were detected. Detections at the PIT tag detection system were at the two pass-through antennas and the pass-by antenna adjacent to them. Above average river discharge likely was a factor in the low detection probability of the PIT tag detection system. High discharges dislodged two power cables leaving 12 meters of the river width unsampled for PIT detections and resulted in water depths greater than the read distance of the antennas, which allowed fish to pass over much of the system with little chance of being detected. Improvements in detection probability may be expected under river discharge conditions where water depth over the antennas is within maximum read distance of the antennas. Improvements also may be expected if additional arrays of antennas are used.
Vision based object pose estimation for mobile robots
NASA Technical Reports Server (NTRS)
Wu, Annie; Bidlack, Clint; Katkere, Arun; Feague, Roy; Weymouth, Terry
1994-01-01
Mobile robot navigation using visual sensors requires that a robot be able to detect landmarks and obtain pose information from a camera image. This paper presents a vision system for finding man-made markers of known size and calculating the pose of these markers. The algorithm detects and identifies the markers using a weighted pattern matching template. Geometric constraints are then used to calculate the position of the markers relative to the robot. The selection of geometric constraints comes from the typical pose of most man-made signs, such as the sign standing vertical and the dimensions of known size. This system has been tested successfully on a wide range of real images. Marker detection is reliable, even in cluttered environments, and under certain marker orientations, estimation of the orientation has proven accurate to within 2 degrees, and distance estimation to within 0.3 meters.
Measurement system for determination of current-voltage characteristics of PV modules
NASA Astrophysics Data System (ADS)
Idzkowski, Adam; Walendziuk, Wojciech; Borawski, Mateusz; Sawicki, Aleksander
2015-09-01
The realization of a laboratory stand for testing photovoltaic panels is presented here. The project of the laboratory stand was designed in SolidWorks software. The aim of the project was to control the electrical parameters of a PV panel. For this purpose a meter that measures electrical parameters i.e. voltage, current and power, was realized. The meter was created with the use of LabJack DAQ device and LabVIEW software. The presented results of measurements were obtained in different conditions (variable distance from the source of light, variable tilt angle of the panel). Current voltage characteristics of photovoltaic panel were created and all parameters could be detected in different conditions. The standard uncertainties of sample voltage, current, power measurements were calculated. The paper also gives basic information about power characteristics and efficiency of a solar cell.
Small asteroids temporarily captured in the Earth-Moon system
NASA Astrophysics Data System (ADS)
Jedicke, Robert; Bolin, Bryce; Bottke, William F.; Chyba, Monique; Fedorets, Grigori; Granvik, Mikael; Patterson, Geoff
2016-01-01
We present an update on our work on understanding the population of natural objects that are temporarily captured in the Earth-Moon system like the 2-3 meter diameter, 2006 RH120, that was discovered by the Catalina Sky Survey. We use the term `minimoon' to refer to objects that are gravitationally bound to the Earth-Moon system, make at least one revolution around the barycenter in a co-rotating frame relative to the Earth-Sun axis, and are within 3 Earth Hill-sphere radii. There are one or two 1 to 2 meter diameter minimoons in the steady state population at any time, and about a dozen larger than 50 cm diameter. `Drifters' are also bound to the Earth-Moon system but make less than one revolution about the barycenter. The combined population of minimoons and drifters provide a new opportunity for scientific exploration of small asteroids and testing concepts for in-situ resource utilization. These objects provide interesting challenges for rendezvous missions because of their limited lifetime and complicated trajectories. Furthermore, they are difficult to detect because they are small, available for a limited time period, and move quickly across the sky.
Small asteroids temporarily captured in the Earth-Moon system
NASA Astrophysics Data System (ADS)
Jedicke, Robert; Bolin, Bryce; Bottke, William F.; Chyba, Monique; Fedorets, Grigori; Granvik, Mikael; Patterson, Geoff
2015-08-01
We will present an update on our work on understanding the population of natural objects that are temporarily captured in the Earth-Moon system, such as the 2-3 meter diameter 2006 RH120 that was discovered by the Catalina Sky Survey. We use the term 'minimoon' to refer to objects that are gravitationally bound to the Earth-Moon system, make at least one revolution around the barycenter in a co-rotating frame relative to the Earth-Sun axis, and are within 3 Earth Hill-sphere radii. There are one or two 1 to 2 meter diameter minimoons in the steady state population at any time, and about a dozen larger than 50 cm diameter. `Drifters' are also bound to the Earth-Moon system but make less than one revolution about the barycenter. The combined population of minimoons and drifters provide a new opportunity for scientific exploration of small asteroids and testing concepts for in-situ resource utilization. These objects provide interesting challenges for rendezvous missions because of their limited lifetime and complicated trajectories. Furthermore, they are difficult to detect because they are small, available for a limited time period, and move quickly across the sky.
MINERVA: A Dedicated Observatory for Detection of Nearby Low-Mass Exoplanets
NASA Astrophysics Data System (ADS)
McCrady, Nate; Johnson, John; Wright, Jason; Wittenmyer, Robert A.; Blake, Cullen; Swift, Jonathan; Eastman, Jason D.; Plavchan, Peter; Riddle, Reed L.; Muirhead, Philip Steven; Bottom, Michael; Zhao, Ming; Beatty, Thomas G.
2015-01-01
Detection of low-mass planets around GKM stars requires sub-meter-per-second radial velocity precision. Stellar noise sources (starspots, oscillations, and granulation) necessitate high cadence observations. MINERVA is a dedicated observatory for velocimetric detection of low mass exoplanets orbiting nearby stars. Our array of four robotic 0.7-meter PlaneWave telescopes feeds a purpose-built, temperature-stabilized, iodine cell spectrometer from Callaghan Innovation. We will monitor bright, sun-like stars within 100 pc every clear night from Whipple Observatory on Mt Hopkins, Arizona. Each telescope is also equipped with an Andor CCD for followup photometry and education use. Commissioning is underway on the site and science observations will begin in early 2015.
Detection of MAVs (Micro Aerial Vehicles) based on millimeter wave radar
NASA Astrophysics Data System (ADS)
Noetel, Denis; Johannes, Winfried; Caris, Michael; Hommes, Alexander; Stanko, Stephan
2016-10-01
In this paper we present two system approaches for perimeter surveillance with radar techniques focused on the detection of Micro Aerial Vehicles (MAVs). The main task of such radars is to detect movements of targets such as an individual or a vehicle approaching a facility. The systems typically cover a range of several hundred meters up to several kilometers. In particular, the capability of identifying Remotely Piloted Aircraft Systems (RPAS), which pose a growing threat on critical infrastructure areas, is of great importance nowadays. The low costs, the ease of handling and a considerable payload make them an excellent tool for unwanted surveillance or attacks. Most platforms can be equipped with all kind of sensors or, in the worst case, with destructive devices. A typical MAV is able to take off and land vertically, to hover, and in many cases to fly forward at high speed. Thus, it can reach all kinds of places in short time while the concealed operator of the MAV resides at a remote and riskless place.
NASA Astrophysics Data System (ADS)
Sidor, Kamil; Szlachta, Anna
2017-04-01
The article presents the impact of the edge detection method in the image analysis on the reading accuracy of the measured value. In order to ensure the automatic reading of the measured value by an analog meter, a standard webcam and the LabVIEW programme were applied. NI Vision Development tools were used. The Hough transform was used to detect the indicator. The programme output was compared during the application of several methods of edge detection. Those included: the Prewitt operator, the Roberts cross, the Sobel operator and the Canny edge detector. The image analysis was made for an analog meter indicator with the above-mentioned methods, and the results of that analysis were compared with each other and presented.
Water Detection Based on Color Variation
NASA Technical Reports Server (NTRS)
Rankin, Arturo L.
2012-01-01
This software has been designed to detect water bodies that are out in the open on cross-country terrain at close range (out to 30 meters), using imagery acquired from a stereo pair of color cameras mounted on a terrestrial, unmanned ground vehicle (UGV). This detector exploits the fact that the color variation across water bodies is generally larger and more uniform than that of other naturally occurring types of terrain, such as soil and vegetation. Non-traversable water bodies, such as large puddles, ponds, and lakes, are detected based on color variation, image intensity variance, image intensity gradient, size, and shape. At ranges beyond 20 meters, water bodies out in the open can be indirectly detected by detecting reflections of the sky below the horizon in color imagery. But at closer range, the color coming out of a water body dominates sky reflections, and the water cue from sky reflections is of marginal use. Since there may be times during UGV autonomous navigation when a water body does not come into a perception system s field of view until it is at close range, the ability to detect water bodies at close range is critical. Factors that influence the perceived color of a water body at close range are the amount and type of sediment in the water, the water s depth, and the angle of incidence to the water body. Developing a single model of the mixture ratio of light reflected off the water surface (to the camera) to light coming out of the water body (to the camera) for all water bodies would be fairly difficult. Instead, this software detects close water bodies based on local terrain features and the natural, uniform change in color that occurs across the surface from the leading edge to the trailing edge.
New applications of laser-induced breakdown and stand-off Raman spectroscopy
NASA Astrophysics Data System (ADS)
Snyder, Marion Lawrence
Two novel spectroscopic applications, with the common theme of remote spectroscopy are described. In one application, laser-induced breakdown spectroscopy (LIBS) is investigated for deep ocean measurements of hydrothermal vent chemistry. This technique is demonstrated for the first time for solution measurements at pressures corresponding to those found at hydrothermal vent sites, at ocean depths of one to three kilometers. In the other application, Raman spectroscopy is investigated for stand-off detection of high explosive (HE) materials. We demonstrate several HE materials in silica can be measured at 50-meter range under ambient light conditions, a new record for this application. Chapters one through three of this dissertation contain published and recently submitted articles describing LIBS for in situ multi-elemental detection in high-pressure aqueous environments such as the deep ocean. Initial work shows the potential of single-pulse LIBS (SP-LIBS) to measure dissolved elements (e.g., Na, Ca, Li, K, and Mn) at the part-per-million level in aqueous solutions at pressures exceeding 276 bar. Dual-pulse LIBS (DP-LIBS) of high-pressure aqueous solutions is also presented. We show significant DP-LIBS enhancements are achieved through excitation of a vapor bubble formed by laser-induced breakdown of the solution with a previous laser pulse, thereby increasing the sensitivity of LIBS and allowing additional elements to be measured. Preliminary findings show that increasing solution pressure has a detrimental effect on DP-LIBS emission intensities, such that little if any DP-LIBS emission was observed above approximately 100 bar. Recent results suggest a direct relationship exists between the size of the bubble and the resulting DP-LIBS emission, and that reduction in bubble size and lifetime at elevated pressure lead to the decreased DP-LIBS emission. Chapter four contains published work examining the potential of stand-off Raman spectroscopy for remote HE detection. A small, transportable, telescope-based standoff Raman system is demonstrated for detection of HE materials, including RDX, TNT, and PETN, and simulants at distances up to 50 meters in ambient light conditions. Possible detection limits on the hundreds of parts-per-million level and detection ranges of hundreds of meters are suggested. Merits of pulsed laser excitation sources and intensified charge-coupled devices (ICCD) for detection are discussed.
RECENT DEVELOPMENTS IN HYDROLOGIC INSTRUMENTATION.
Latkovich, Vito J.
1985-01-01
The availability of space-age materials and implementation of state-of-the-art electronics is making possible the recent developments of hydrologic instrumentation. Material developments include: Synthetic-fiber sounding and tag lines; fiberglass wading rod; polymer (plastic) sheaves, pulleys and sampler components; and polymer (plastic) bucket wheels for current meters. These materials are very cost effective and efficient. Electromechanical and electronic developments and applications include: adaptable data acquisition system; downhole sampler for hazardous substances; current-meter digitizer; hydraulic power/drive system for discharge measurements and water-quality sampling; non-contact water-level sensors; minimum data recorder; acoustic velocity meters, and automated current meter discharge-measurement system.
Acetylene measurement in flames by chirp-based quantum cascade laser spectrometry.
Quine, Zachary R; McNesby, Kevin L
2009-06-01
We have designed and characterized a mid-IR spectrometer built around a pulsed distributed-feedback quantum cascade laser using the characteristic frequency down-chirp to scan through the spectral region 6.5 cm(-1) spectral region. The behavior of this chirp is extensively measured. The accuracy and detection limits of the system as an absorption spectrometer are demonstrated first by measuring spectra of acetylene through a single pass 16 cm absorption cell in real time at low concentrations and atmospheric pressure. The smallest detectable peak is measured to be approximately 1.5 x 10(-4) absorbance units, yielding a minimum detectable concentration length product of 2.4 parts per million meter at standard temperature and pressure. This system is then used to detect acetylene within an ethylene-air opposed flow flame. Measurements of acetylene content as a function of height above the fuel source are presented, as well as measurements of acetylene produced in fuel breakdown as a function of preinjection fuel temperature.
Generic Sensor Modeling Using Pulse Method
NASA Technical Reports Server (NTRS)
Helder, Dennis L.; Choi, Taeyoung
2005-01-01
Recent development of high spatial resolution satellites such as IKONOS, Quickbird and Orbview enable observation of the Earth's surface with sub-meter resolution. Compared to the 30 meter resolution of Landsat 5 TM, the amount of information in the output image was dramatically increased. In this era of high spatial resolution, the estimation of spatial quality of images is gaining attention. Historically, the Modulation Transfer Function (MTF) concept has been used to estimate an imaging system's spatial quality. Sometimes classified by target shapes, various methods were developed in laboratory environment utilizing sinusoidal inputs, periodic bar patterns and narrow slits. On-orbit sensor MTF estimation was performed on 30-meter GSD Landsat4 Thematic Mapper (TM) data from the bridge pulse target as a pulse input . Because of a high resolution sensor s small Ground Sampling Distance (GSD), reasonably sized man-made edge, pulse, and impulse targets can be deployed on a uniform grassy area with accurate control of ground targets using tarps and convex mirrors. All the previous work cited calculated MTF without testing the MTF estimator's performance. In previous report, a numerical generic sensor model had been developed to simulate and improve the performance of on-orbit MTF estimating techniques. Results from the previous sensor modeling report that have been incorporated into standard MTF estimation work include Fermi edge detection and the newly developed 4th order modified Savitzky-Golay (MSG) interpolation technique. Noise sensitivity had been studied by performing simulations on known noise sources and a sensor model. Extensive investigation was done to characterize multi-resolution ground noise. Finally, angle simulation was tested by using synthetic pulse targets with angles from 2 to 15 degrees, several brightness levels, and different noise levels from both ground targets and imaging system. As a continuing research activity using the developed sensor model, this report was dedicated to MTF estimation via pulse input method characterization using the Fermi edge detection and 4th order MSG interpolation method. The relationship between pulse width and MTF value at Nyquist was studied including error detection and correction schemes. Pulse target angle sensitivity was studied by using synthetic targets angled from 2 to 12 degrees. In this report, from the ground and system noise simulation, a minimum SNR value was suggested for a stable MTF value at Nyquist for the pulse method. Target width error detection and adjustment technique based on a smooth transition of MTF profile is presented, which is specifically applicable only to the pulse method with 3 pixel wide targets.
ELECTRICAL LOAD ANTICIPATOR AND RECORDER
Werme, J.E.
1961-09-01
A system is described in which an indication of the prevailing energy consumption in an electrical power metering system and a projected power demand for one demand in terval is provided at selected increments of time within the demand interval. Each watt-hour meter in the system is provided with an impulse generator that generates two impulses for each revolution of the meter disc. In each demand interval, for example, one half-hour, of the metering system, the total impulses received from all of the meters are continuously totaled for each 5-minute interval and multiplied by a number from 6 to 1 depending upon which 5- minute interval the impulses were received. This value is added to the total pulses received in the intervals preceding the current 5-minute interval within the half-hour demand interval tc thereby provide an indication of the projected power demand every 5 minutes in the demand interval.
Linearizing an intermodulation radar transmitter by filtering switched tones
NASA Astrophysics Data System (ADS)
Mazzaro, Gregory J.; Sherbondy, Andrew J.; Ranney, Kenneth I.; Sherbondy, Kelly D.; Martone, Anthony F.
2017-05-01
For nonlinear radar, the transmit power required to measure a detectable response from a target is relatively high, and generating that high power is achieved at the cost of linearity. This paper applies the distortion mitigation technique Linearization by Time-Multiplexed Spectrum (LITMUS) to intermodulation radar, a type of nonlinear radar which receives spectral content produced by the mixing of multiple frequencies at a nonlinear target. By implementing LITMUS, an experimental detection system for an intermodulation radar achieves a signal-to-noise ratio up to 20 dB for a total transmit power of approximately 80 mW and nonlinear targets placed at a standoff distance of 2 meters.
Wang, Zhenzhen; Chen, Zhaowei; Gao, Nan; Ren, Jinsong; Qu, Xiaogang
2015-10-07
Herein, for the first time, we presented a simple and general approach by using personal glucose meters (PGM) for portable and ultrasensitive detection of microbial pathogens. Upon addition of pathogenic bacteria, glucoamylase-quaternized magnetic nanoparticles (GA-QMNPS) conjugates were disrupted by the competitive multivalent interactions between bacteria and QMNPS, resulting in the release of GA. After magnetic separation, the free GA could catalyze the hydrolysis of amylose into glucose for quantitative readout by PGM. In such way, PGM was transmuted into a bacterial detection device and extremely low detection limits down to 20 cells mL(-1) was achieved. More importantly, QMNPS could inhibit the growth of the bacteria and destroy its cellular structure, which enabled bacteria detection and inhibition simultaneously. The simplicity, portability, sensitivity and low cost of presented work make it attractive for clinical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2010 CFR
2010-10-01
... exceed 3000 microvolts/meter/MHz at 3 meters in any direction. Further, an AVIS, when in its operating position, shall not produce a field strength greater than 400 microvolts/meter/MHz at 3 meters in any... maximum of 100 microvolts/meter/MHz at 3 meters, measured from 30 MHz to 20 GHz for the complete system...
Close-in detection system for the Mine Hunter/Killer program
NASA Astrophysics Data System (ADS)
Bishop, Steven S.; Campana, Stephen B.; Lang, David A.; Wiggins, Carl M.
2000-08-01
The Close-in Detection (CID) System is the vehicle-mounted multisensor landmine detection system for the Army CECOM Night Vision Electronic Sensors Directorate (NVESD) Mine Hunter/Killer (MH/K) Program. The CID System is being developed by BAE Systems in San Diego, CA. TRW Systems and Information Technology Group in Arlington, VA and a team of specialists for ERIM, E-OIR, SNL, and APL/JHU support NVESD in the development, analysis and testing of the CID and associated signal and data processing. The CID System includes tow down-looking sensor arrays: a ground- penetrating radar (GPR) array, and a set of Electro-Magnetic Induction (EMI) coils for metal detection. These arrays span a 3-meter wide swath in front of a high mobility, multipurpose wheeled vehicle. The system also includes a forward looking IR imaging system mounted on the roof of the vehicle and covering a swath of the road ahead of the vehicle. Signals from each sensor are processed separately to detect and localize objects of interest. Features of candidate objects are integrated in a processor that uses them to discriminates between anti-tank miens and clutter. Mine locations are passed to the neutralization subsystem of MH/K. This paper reviews the design of the sensors and signal processing of the CID system and gives examples and analysis of recent test results at the NVESD mine lanes. The strengths and weaknesses of each sensor are discussed, and the application of multisensor fusion is illustrated.
Calès, P; Zarski, J P; Chapplain, J Marc; Bertrais, S; Sturm, N; Michelet, C; Babany, G; Chaigneau, J; Eddine Charaf, M
2012-02-01
We evaluated whether quantitative measurements of liver fibrosis with recently developed diagnostics outperform histological staging in detecting natural or interferon-induced changes. We compared Metavir staging, morphometry (area and fractal dimension) and six blood tests in 157 patients with chronic hepatitis C from two trials testing maintenance interferon for 96 weeks. Paired liver biopsies and blood tests were available for 101 patients, and there was a significant improvement in Metavir activity and a significant increase in blood tests reflecting fibrosis quantity in patients treated with interferon when compared with controls - all per cent changes in histological fibrosis measures were significantly increased in F1 vs F2-4 stages only in the interferon group. For the whole population studied between weeks 0 and 96, there was significant progression only in the area of fibrosis (AOF) (P = 0.026), FibroMeter (P = 0.020) and CirrhoMeter (P = 0.003). With regards to dynamic reproducibility, agreement was good (r(ic) ≥ 0.72) only for Metavir fibrosis score, FibroMeter and CirrhoMeter. The per cent change in AOF was significantly higher than that of fractal dimension (P = 0.003) or Metavir fibrosis score (P = 0.015). CirrhoMeter was the only blood test with a change significantly higher than that of AOF (P = 0.039). AOF and two blood tests, reflecting fibrosis quantity, have high sensitivity and/or reproducibility permitting the detection of a small progression in liver fibrosis over two years. A blood test reflecting fibrosis quantity is more sensitive and reproducible than morphometry. The study also shows that maintenance interferon does not improve fibrosis, whatever its stage. © 2011 Blackwell Publishing Ltd.
20 Meter Solar Sail Analysis and Correlation
NASA Technical Reports Server (NTRS)
Taleghani, B. K.; Lively, P. S.; Banik, J.; Murphy, D. M.; Trautt, T. A.
2005-01-01
This paper describes finite element analyses and correlation studies to predict deformations and vibration modes/frequencies of a 20-meter solar sail system developed by ATK Space Systems. Under the programmatic leadership of NASA Marshall Space Flight Center's In-Space Propulsion activity, the 20-meter solar sail program objectives were to verify the design, to assess structural responses of the sail system, to implement lessons learned from a previous 10-meter quadrant system analysis and test program, and to mature solar sail technology to a technology readiness level (TRL) of 5. For this 20 meter sail system, static and ground vibration tests were conducted in NASA Glenn Research Center's 100 meter diameter vacuum chamber at Plum Brook station. Prior to testing, a preliminary analysis was performed to evaluate test conditions and to determine sensor and actuator locations. After testing was completed, an analysis of each test configuration was performed. Post-test model refinements included updated properties to account for the mass of sensors, wiring, and other components used for testing. This paper describes the development of finite element models (FEM) for sail membranes and masts in each of four quadrants at both the component and system levels, as well as an optimization procedure for the static test/analyses correlation.
NASA Technical Reports Server (NTRS)
Shen, C. N.; YERAZUNIS
1979-01-01
The feasibility of using range/pointing angle data such as might be obtained by a laser rangefinder for the purpose of terrain evaluation in the 10-40 meter range on which to base the guidance of an autonomous rover was investigated. The decision procedure of the rapid estimation scheme for the detection of discrete obstacles has been modified to reinforce the detection ability. With the introduction of the logarithmic scanning scheme and obstacle identification scheme, previously developed algorithms are combined to demonstrate the overall performance of the intergrated route designation system using laser rangefinder. In an attempt to cover a greater range, 30 m to 100 mm, the problem estimating gradients in the presence of positioning angle noise at middle range is investigated.
40 CFR 86.092-2 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
...), general type of fuel system (i.e., carburetor or fuel injection), catalyst system (e.g., none, oxidization... control systems are emission control components or systems (and fuel metering systems) that have completed... emission control components or systems (and fuel metering systems) that do not qualify as proven emission...
40 CFR 86.092-2 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
...), general type of fuel system (i.e., carburetor or fuel injection), catalyst system (e.g., none, oxidization... control systems are emission control components or systems (and fuel metering systems) that have completed... emission control components or systems (and fuel metering systems) that do not qualify as proven emission...
40 CFR 86.092-2 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...), general type of fuel system (i.e., carburetor or fuel injection), catalyst system (e.g., none, oxidization... control systems are emission control components or systems (and fuel metering systems) that have completed... emission control components or systems (and fuel metering systems) that do not qualify as proven emission...
SPECS: The Kilometer-baseline Far-IR Interferometer in NASA’s Space Science Roadmap
2004-01-01
planetary debris disks – are detectable with cryogenically cooled telescopes having total light collecting areas in the tens of square meters. If this...of the Hubble Space Telescope. At such resolution galaxies at high redshift, protostars, and nascent planetary systems will be resolved, and...protogalaxies, the nearest star forming regions, and all but a small handful of debris disks subtend sub- arcsecond angles in the sky. To build a single
Explosive hazard detection using MIMO forward-looking ground penetrating radar
NASA Astrophysics Data System (ADS)
Shaw, Darren; Ho, K. C.; Stone, Kevin; Keller, James M.; Popescu, Mihail; Anderson, Derek T.; Luke, Robert H.; Burns, Brian
2015-05-01
This paper proposes a machine learning algorithm for subsurface object detection on multiple-input-multiple-output (MIMO) forward-looking ground-penetrating radar (FLGPR). By detecting hazards using FLGPR, standoff distances of up to tens of meters can be acquired, but this is at the degradation of performance due to high false alarm rates. The proposed system utilizes an anomaly detection prescreener to identify potential object locations. Alarm locations have multiple one-dimensional (ML) spectral features, two-dimensional (2D) spectral features, and log-Gabor statistic features extracted. The ability of these features to reduce the number of false alarms and increase the probability of detection is evaluated for both co-polarizations present in the Akela MIMO array. Classification is performed by a Support Vector Machine (SVM) with lane-based cross-validation for training and testing. Class imbalance and optimized SVM kernel parameters are considered during classifier training.
PDR with a Foot-Mounted IMU and Ramp Detection
Jiménez, Antonio R.; Seco, Fernando; Zampella, Francisco; Prieto, José C.; Guevara, Jorge
2011-01-01
The localization of persons in indoor environments is nowadays an open problem. There are partial solutions based on the deployment of a network of sensors (Local Positioning Systems or LPS). Other solutions only require the installation of an inertial sensor on the person’s body (Pedestrian Dead-Reckoning or PDR). PDR solutions integrate the signals coming from an Inertial Measurement Unit (IMU), which usually contains 3 accelerometers and 3 gyroscopes. The main problem of PDR is the accumulation of positioning errors due to the drift caused by the noise in the sensors. This paper presents a PDR solution that incorporates a drift correction method based on detecting the access ramps usually found in buildings. The ramp correction method is implemented over a PDR framework that uses an Inertial Navigation algorithm (INS) and an IMU attached to the person’s foot. Unlike other approaches that use external sensors to correct the drift error, we only use one IMU on the foot. To detect a ramp, the slope of the terrain on which the user is walking, and the change in height sensed when moving forward, are estimated from the IMU. After detection, the ramp is checked for association with one of the existing in a database. For each associated ramp, a position correction is fed into the Kalman Filter in order to refine the INS-PDR solution. Drift-free localization is achieved with positioning errors below 2 meters for 1,000-meter-long routes in a building with a few ramps. PMID:22163701
Embedded solution for a microwave moisture meter
USDA-ARS?s Scientific Manuscript database
In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter is based on the free-space transmission measurement technique and uses low-intensity microwaves to measure the attenuation and p...
The ac and dc electric field meters developed for the US Department of Energy
NASA Technical Reports Server (NTRS)
Kirkham, H.; Johnston, A.; Jackson, S.; Sheu, K.
1987-01-01
Two space-potential electric field meters developed at the Jet Propulsion Laboratory under the auspices of the U.S. Department of Energy are described. One of the meters was designed to measure dc fields, the other ac fields. Both meters use fiber optics to couple a small measuring probe to a remote readout device, so as to minimize field perturbation due to the presence of the probe. By using coherent detection, it has been possible to produce instruments whose operating range extends from about 10 V/m up to about 2.5 kV/cm, without the need for range switching on the probe. The electrical and mechanical design of both meters are described in detail. Data from laboratory tests are presented, as well as the results of the tests at the National Bureau of Standards and the Electric Power Research Institute's High Voltage Transmission Research Facility.
Investigation of natural gas theft by magnetic remanence mapping.
Dobó, Zsolt; Kovács, Helga; Tóth, Pál; Palotás, Árpád B
2014-12-01
Natural gas theft causes major losses in the energy industry in Hungary. Among the non-technical losses occurring in natural gas networks, fraudulent residential consumption is one of the main factors. Up to 2014, gas meters that are most widely used in residential monitoring are manufactured with ferromagnetic moving components, which makes it possible to alter or disrupt the operation of the meters non-intrusively by placing permanent magnets on the casing of the meters. Magnetic remanence mapping was used to investigate a sample of 80 recalled residential meters and detect potentially fraudulent activity. 10% of the meters were found suspect by magnetic remanence measurement, of which 50% were confirmed to be potentially hijacked by further mechanical investigation. The details of the technique are described in this paper, along with experimental results and the discussion of the analysis of the real-world samples. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Koska, Bronislav; Křemen, Tomáš; Štroner, Martin; Pospíšil, Jiří; Jirka, Vladimír.
2014-10-01
An experimental approach to the land drainage system detection and its physical and spatial parameters evaluation by the form of pilot project is presented in this paper. The novelty of the approach is partly based on using of unique unmanned aerial vehicle - airship with some specific properties. The most important parameters are carrying capacity (15 kg) and long flight time (3 hours). A special instrumentation was installed for physical characteristic testing in the locality too. The most important is 30 meter high mast with 3 meter length bracket at the top with sensors recording absolute and comparative temperature, humidity and wind speed and direction in several heights of the mast. There were also installed several measuring units recording local condition in the area. Recorded data were compared with IR images taken from airship platform. The locality is situated around village Domanín in the Czech Republic and has size about 1.8 x 1.5 km. There was build a land drainage system during the 70-ties of the last century which is made from burnt ceramic blocks placed about 70 cm below surface. The project documentation of the land drainage system exists but real state surveying haveńt been never realized. The aim of the project was land surveying of land drainage system based on infrared, visual and its combination high resolution orthophotos (10 cm for VIS and 30 cm for IR) and spatial and physical parameters evaluation of the presented procedure. The orthophoto in VIS and IR spectrum and its combination seems to be suitable for the task.
Use of a hand-held meter for detecting subclinical ketosis in dairy cows.
Voyvoda, Huseyin; Erdogan, Hasan
2010-12-01
The Optium Xceed is a new hand-held meter for determining blood β-hydroxybutyrate (BHBA) and glucose in human medicine. The objective of this study was to compare BHBA and glucose results obtained using the hand-held meter with those results made with a laboratory method and to evaluate its usefulness as a cowside test in the diagnosis of subclinical ketosis (SCK) in dairy cows. Seventy-eight blood samples from clinically healthy Holstein cows between 5 and 60 days post-calving were analysed. BHBA and glucose values were significantly higher with the hand-held meter versus laboratory methods. Correlation coefficients (r) for BHBA and glucose with the Optium Xceed versus laboratory methods were 0.97 and 0.63, respectively. Based on Bland-Altman plot and Passing-Bablok regression, agreement between two methods was good for BHBA but the agreement for glucose was only fair. When SCK was defined as plasma BHBA levels ≥ 1200 μmol/L, the sensitivity and specificity of the hand-held meter ketone testing in determining SCK were 85% and 94%, respectively. Raising the threshold of the laboratory method to ≥ 1400 μmol/L, the sensitivity and specificity incremented to 0.90 and 0.98, respectively. In conclusion, the blood ketone-monitoring device can be used as a rapid and reliable diagnostic test to detect SCK under field conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.
A system for the real time, direct measurement of natural gas flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, T.
1995-12-31
PMI/Badger Meter, Inc. with partial sponsorship from the Gas Research Institute, has designed and developed direct measurement total energy flow metering instrumentation. As industry demands for improved accuracy and speed of measurement have increased so has the complexity of the overall hardware and software systems. Considering traditional system approaches, few companies have the in house capability of maintaining a complete system. This paper addresses efforts to implement a direct, total gas energy flow metering system which is simple to use and cost effective.
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-03-01
In this paper, the semi-active RFID watt-hour meter is applied to automatic test lines and intelligent warehouse management, from the transmission system, test system and auxiliary system, monitoring system, realize the scheduling of watt-hour meter, binding, control and data exchange, and other functions, make its more accurate positioning, high efficiency of management, update the data quickly, all the information at a glance. Effectively improve the quality, efficiency and automation of verification, and realize more efficient data management and warehouse management.
Standoff concealed weapon detection using a 350-GHz radar imaging system
NASA Astrophysics Data System (ADS)
Sheen, David M.; Hall, Thomas E.; Severtsen, Ronald H.; McMakin, Douglas L.; Hatchell, Brian K.; Valdez, Patrick L. J.
2010-04-01
The sub-millimeter (sub-mm) wave frequency band from 300 - 1000 GHz is currently being developed for standoff concealed weapon detection imaging applications. This frequency band is of interest due to the unique combination of high resolution and clothing penetration. The Pacific Northwest National Laboratory (PNNL) is currently developing a 350 GHz, active, wideband, three-dimensional, radar imaging system to evaluate the feasibility of active sub-mm imaging for standoff detection. Standoff concealed weapon and explosive detection is a pressing national and international need for both civilian and military security, as it may allow screening at safer distances than portal screening techniques. PNNL has developed a prototype active wideband 350 GHz radar imaging system based on a wideband, heterodyne, frequency-multiplier-based transceiver system coupled to a quasi-optical focusing system and high-speed rotating conical scanner. This prototype system operates at ranges up to 10+ meters, and can acquire an image in 10 - 20 seconds, which is fast enough to scan cooperative personnel for concealed weapons. The wideband operation of this system provides accurate ranging information, and the images obtained are fully three-dimensional. During the past year, several improvements to the system have been designed and implemented, including increased imaging speed using improved balancing techniques, wider bandwidth, and improved image processing techniques. In this paper, the imaging system is described in detail and numerous imaging results are presented.
Detection and tracking of drones using advanced acoustic cameras
NASA Astrophysics Data System (ADS)
Busset, Joël.; Perrodin, Florian; Wellig, Peter; Ott, Beat; Heutschi, Kurt; Rühl, Torben; Nussbaumer, Thomas
2015-10-01
Recent events of drones flying over city centers, official buildings and nuclear installations stressed the growing threat of uncontrolled drone proliferation and the lack of real countermeasure. Indeed, detecting and tracking them can be difficult with traditional techniques. A system to acoustically detect and track small moving objects, such as drones or ground robots, using acoustic cameras is presented. The described sensor, is completely passive, and composed of a 120-element microphone array and a video camera. The acoustic imaging algorithm determines in real-time the sound power level coming from all directions, using the phase of the sound signals. A tracking algorithm is then able to follow the sound sources. Additionally, a beamforming algorithm selectively extracts the sound coming from each tracked sound source. This extracted sound signal can be used to identify sound signatures and determine the type of object. The described techniques can detect and track any object that produces noise (engines, propellers, tires, etc). It is a good complementary approach to more traditional techniques such as (i) optical and infrared cameras, for which the object may only represent few pixels and may be hidden by the blooming of a bright background, and (ii) radar or other echo-localization techniques, suffering from the weakness of the echo signal coming back to the sensor. The distance of detection depends on the type (frequency range) and volume of the noise emitted by the object, and on the background noise of the environment. Detection range and resilience to background noise were tested in both, laboratory environments and outdoor conditions. It was determined that drones can be tracked up to 160 to 250 meters, depending on their type. Speech extraction was also experimentally investigated: the speech signal of a person being 80 to 100 meters away can be captured with acceptable speech intelligibility.
Thorat, Yogesh T; Salvi, Sundeep S; Kodgule, Rahul R
2017-05-09
Peak flow meter with questionnaire and mini-spirometer are considered as alternative tools to spirometry for screening of asthma and chronic obstructive pulmonary disease. However, the accuracy of these tools together, in clinical settings for disease diagnosis, has not been studied. Two hundred consecutive patients with respiratory complaints answered a short symptom questionnaire and performed peak expiratory flow measurements, standard spirometry with Koko spirometer and mini-spirometry (COPD-6). Spirometry was repeated after bronchodilation. Physician made a final diagnosis of asthma, chronic obstructive pulmonary disease and others. One eighty nine patients (78 females) with age 51 ± 17 years with asthma (115), chronic obstructive pulmonary disease (33) and others (41) completed the study. "Breathlessness > 6months" and "cough > 6months" were important symptoms to detect obstructive airways disease. "Asymptomatic period > 2 weeks" had the best sensitivity (Sn) and specificity (Sp) to differentiate asthma and chronic obstructive pulmonary disease. A peak expiratory flow of < 80% predicted was the best cut-off to detect airflow limitation (Sn 90%, Sp 50%). Respiratory symptoms with PEF < 80% predicted, had Sn 84 and Sp 93% to detect OAD. COPD-6 device under-estimated FEV 1 by 13 mL (95% CI: -212, 185). At a cut-off of 0.75, the FEV 1 /FEV 6 had the best accuracy (Sn 80%, Sp 86%) to detect airflow limitation. Peak flow meter with few symptom questions can be effectively used in clinical practice for objective detection of asthma and chronic obstructive pulmonary disease, in the absence of good quality spirometry. Mini-spirometers are useful in detection of obstructive airways diseases but FEV 1 measured is inaccurate. DIFFERENTIATING CONDITIONS IN POORLY-EQUIPPED SETTINGS: A simple questionnaire and peak flow meter measurements can help doctors differentiate between asthma and chronic lung disease. In clinical settings where access to specialist equipment and knowledge is limited, it can be challenging for doctors to tell the difference between asthma and chronic obstructive pulmonary disease (COPD). To determine a viable alternative method for differentiating between these diseases, Rahul Kodgule and colleagues at the Chest Research Foundation in Pune, India, trialed a simplified version of two existing symptom questionnaires, combined with peak flow meter measurements. They assessed 189 patients using this method, and found it aided diagnosis with high sensitivity and specificity. Breathlessness, cough and wheeze were the minimal symptoms required for COPD diagnosis, while the length of asymptomatic periods was most helpful in distinguishing asthma from COPD.
Grain quality inspection system
NASA Technical Reports Server (NTRS)
Flood, C. A., Jr.; Singletow, D. P.; James, S. N.
1979-01-01
A review of grain quality indicators and measurement methods was conducted in order to assess the feasibility of using remote sensing technology to develop a continuous monitoring system for use during grain transfer operations. Most detection methods were found to be too slow or too expensive to be incorporated into the normal inspection procedure of a grain elevator on a continuous basis. Two indicators, moisture content and broken corn and foreign material, show potential for automation and are of an economic value. A microprocessor based system which utilizes commercially available electronic moisture meter was developed and tested. A method for automating BCFM measurement is described. A complete system description is presented along with performance test results.
Assessment of the Need for an Improved Inspection Program for Master Meter Systems
DOT National Transportation Integrated Search
2002-01-01
Gas master meter systems are small intrastate gas distribution systems providing natural gas purchased from local gas utilities (or, rarely, gas transmission systems) to consumers in connection with the rental, leasing, or management of real property...
Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland
NASA Astrophysics Data System (ADS)
Walter, Fabian; Burtin, Arnaud; McArdell, Brian W.; Hovius, Niels; Weder, Bianca; Turowski, Jens M.
2017-06-01
Heavy precipitation can mobilize tens to hundreds of thousands of cubic meters of sediment in steep Alpine torrents in a short time. The resulting debris flows (mixtures of water, sediment and boulders) move downstream with velocities of several meters per second and have a high destruction potential. Warning protocols for affected communities rely on raising awareness about the debris-flow threat, precipitation monitoring and rapid detection methods. The latter, in particular, is a challenge because debris-flow-prone torrents have their catchments in steep and inaccessible terrain, where instrumentation is difficult to install and maintain. Here we test amplitude source location (ASL) as a processing scheme for seismic network data for early warning purposes. We use debris-flow and noise seismograms from the Illgraben catchment, Switzerland, a torrent system which produces several debris-flow events per year. Automatic in situ detection is currently based on geophones mounted on concrete check dams and radar stage sensors suspended above the channel. The ASL approach has the advantage that it uses seismometers, which can be installed at more accessible locations where a stable connection to mobile phone networks is available for data communication. Our ASL processing uses time-averaged ground vibration amplitudes to estimate the location of the debris-flow front. Applied to continuous data streams, inversion of the seismic amplitude decay throughout the network is robust and efficient, requires no manual identification of seismic phase arrivals and eliminates the need for a local seismic velocity model. We apply the ASL technique to a small debris-flow event on 19 July 2011, which was captured with a temporary seismic monitoring network. The processing rapidly detects the debris-flow event half an hour before arrival at the outlet of the torrent and several minutes before detection by the in situ alarm system. An analysis of continuous seismic records furthermore indicates that detectability of Illgraben debris flows of this size is unaffected by changing environmental and anthropogenic seismic noise and that false detections can be greatly reduced with simple processing steps.
NASA Technical Reports Server (NTRS)
Rogers, Ralph V.
1993-01-01
The TATSS Project's goal was to develop a design for computer software that would support the attainment of the following objectives for the air traffic simulation model: (1) Full freedom of movement for each aircraft object in the simulation model. Each aircraft object may follow any designated flight plan or flight path necessary as required by the experiment under consideration. (2) Object position precision up to +/- 3 meters vertically and +/- 15 meters horizontally. (3) Aircraft maneuvering in three space with the object position precision identified above. (4) Air traffic control operations and procedures. (5) Radar, communication, navaid, and landing aid performance. (6) Weather. (7) Ground obstructions and terrain. (8) Detection and recording of separation violations. (9) Measures of performance including deviations from flight plans, air space violations, air traffic control messages per aircraft, and traditional temporal based measures.
Borcherdt, R.D.; Johnston, M.J.S.; Glassmoyer, G.
1989-01-01
Volumetric strain meters (Sacks-Evertson design) are installed at 15 sites along the San Andreas fault system, to monitor long-term strain changes for earthquake prediction. Deployment of portable broadband, high-resolution digital recorders (GEOS) at several of the sites extends the detection band for volumetric strain to periods shorter than 5 ?? 10-2 sec and permits the simultaneous observation of seismic radiation fields using conventional short-period pendulum seismometers. Recordings of local and regional earthquakes indicate that dilatometers respond to P energy but not direct shear energy and that straingrams can be used to resolve superimposed reflect P and S waves for inference of wave characteristics not permitted by either sensor alone. Simultaneous measurements of incident P- and S-wave amplitudes are used to introduce a technique for single-station estimates of wave field inhomogeneity, free-surface reflection coefficients and local material P velocity. -from Authors
Handheld Multi-Gas Meters Assessment Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Gustavious; Wald-Hopkins, Mark David; Obrey, Stephen J.
2016-06-27
Handheld multi-gas meters (MGMs) are equipped with sensors to monitor oxygen (O2) levels and additional sensors to detect the presence of combustible or toxic gases in the environment. This report is limited to operational response-type MGMs that include at least four different sensors. These sensors can vary by type and by the monitored chemical. In real time, the sensors report the concentration of monitored gases in the atmosphere near the MGM. In April 2016 the System Assessment and Validation for Emergency Responders (SAVER) Program conducted an operationally-oriented assessment of MGMs. Five MGMs were assessed by emergency responders. The criteria andmore » scenarios used in this assessment were derived from the results of a focus group of emergency responders with experience in using MGMs. The assessment addressed 16 evaluation criteria in four SAVER categories: Usability, Capability, Maintainability, and Deployability.« less
Human-technology interaction for standoff IED detection
NASA Astrophysics Data System (ADS)
Zhang, Evan; Zou, Yiyang; Zachrich, Liping; Fulton, Jack
2011-03-01
IEDs kill our soldiers and innocent people every day. Lessons learned from Iraq and Afghanistan clearly indicated that IEDs cannot be detected/defeated by technology alone; human-technology interaction must be engaged. In most cases, eye is the best detector, brain is the best computer, and technologies are tools, they must be used by human being properly then can achieve full functionality. In this paper, a UV Raman/fluorescence, CCD and LWIR 3 sensor fusion system for standoff IED detection and a handheld fusion system for close range IED detection are developed and demonstrated. We must train solders using their eyes or CCD/LWIR cameras to do wide area search while on the move to find small suspected area first then use the spectrometer because the laser spot is too small, to scan a one-mile long and 2-meter wide road needs 185 days although our fusion system can detect the IED in 30m with 1s interrogating time. Even if the small suspected area (e.g., 0.5mx0.5m) is found, human eyes still cannot detect the IED, soldiers must use or interact with the technology - laser based spectrometer to scan the area then they are able to detect and identify the IED in 10 minutes not 185 days. Therefore, the human-technology interaction approach will be the best solution for IED detection.
Effect of disinfectants on glucose monitors.
Mahoney, John J; Lim, Christine G
2012-01-01
Monitoring blood glucose levels is an integral part of routine diabetes management. To minimize the risk of transmission of bloodborne pathogens during monitoring, the Centers for Disease Control and Prevention (CDC) recommends that glucose meters be disinfected after each use whenever they are used to test multiple patients. The objective of this study is to assess the compatibility of some common disinfectants with certain blood glucose meter systems. We tested six disinfectants for adverse impact on meter performance or the exterior meter surfaces. The disinfectants tested were 0.525% sodium hypochlorite, 20% 2-propanol and 10% ethanol, 17.2% isopropanol, 55% isopropanol, 70% isopropanol, and hydrogen peroxide. To assess meter performance, we tested OneTouch® Ultra® blood glucose monitoring systems with control solution before and after application of either water or disinfectant. To assess the effect on exterior meter surfaces, we performed a soaking test to simulate long-term exposure to disinfectant. Paired t-test results showed that the control solution data associated with disinfectant and with water application were not significantly different for each meter type. However, most of the meter types were adversely affected by hydrogen peroxide and/or by the higher concentrations of alcohol-based disinfectants. Although none of the six disinfectants affected meter performance, hydrogen peroxide and isopropanol >20% adversely affected the exterior surfaces of the tested meters. When complying with CDC instructions for meter disinfection, users should use caution and choose disinfectants that have been validated by the meter manufacturer. © 2012 Diabetes Technology Society.
Effect of Disinfectants on Glucose Monitors
Mahoney, John J; Lim, Christine G
2012-01-01
Background Monitoring blood glucose levels is an integral part of routine diabetes management. To minimize the risk of transmission of bloodborne pathogens during monitoring, the Centers for Disease Control and Prevention (CDC) recommends that glucose meters be disinfected after each use whenever they are used to test multiple patients. The objective of this study is to assess the compatibility of some common disinfectants with certain blood glucose meter systems. Methods We tested six disinfectants for adverse impact on meter performance or the exterior meter surfaces. The disinfectants tested were 0.525% sodium hypochlorite, 20% 2-propanol and 10% ethanol, 17.2% isopropanol, 55% isopropanol, 70% isopropanol, and hydrogen peroxide. To assess meter performance, we tested OneTouch® Ultra® blood glucose monitoring systems with control solution before and after application of either water or disinfectant. To assess the effect on exterior meter surfaces, we performed a soaking test to simulate long-term exposure to disinfectant. Results Paired t-test results showed that the control solution data associated with disinfectant and with water application were not significantly different for each meter type. However, most of the meter types were adversely affected by hydrogen peroxide and/or by the higher concentrations of alcohol-based disinfectants. Conclusions Although none of the six disinfectants affected meter performance, hydrogen peroxide and isopropanol >20% adversely affected the exterior surfaces of the tested meters. When complying with CDC instructions for meter disinfection, users should use caution and choose disinfectants that have been validated by the meter manufacturer. PMID:22401326
Scales and Exercises with Aksak Meters in Flute Education: A Study with Turkish and Italian Students
ERIC Educational Resources Information Center
Sakin, Ajda Senol; Öztürk, Ferda Gürgan
2016-01-01
Musical scale and exercise studies in instrumental education are considered as a fundamental component of music education. During an analysis of methods prepared for instrumental education, it was detected that scale and exercise studies for Aksak meters generally did not exist. This study was conducted to identify the effects of scales and…
NASA Technical Reports Server (NTRS)
Vilnrotter, Victor A.
2012-01-01
The development and demonstration of a "polished panel" optical receiver concept on the 34 meter research antenna of the Deep Space Network (DSN) has been the subject of recent papers. This concept would enable simultaneous reception of optical and microwave signals by retaining the original shape of the main reflector for microwave reception, but with the aluminum panels polished to high reflectivity to enable focusing of optical signal energy as well. A test setup has been installed on the DSN's 34 meter research antenna at Deep Space Station 13 (DSS-13) of NASA's Goldstone Communications Complex in California, and preliminary experimental results have been obtained. This paper describes the results of our latest efforts to improve the point-spread function (PSF) generated by a custom polished panel, in an attempt to reduce the dimensions of the PSF, thus enabling more precise tracking and improved detection performance. The design of the new mechanical support structure and its operation are described, and the results quantified in terms of improvements in collected signal energy and optical communications performance, based on data obtained while tracking the planet Jupiter with the 34 meter research antenna at DSS-13.
Mayo, Lawrence R.; Trabant, Dennis C.; March, Rod S.
2004-01-01
Scientific measurements at Wolverine Glacier, on the Kenai Peninsula in south-central Alaska, began in April 1966. At three long-term sites in the research basin, the measurements included snow depth, snow density, heights of the glacier surface and stratigraphic summer surfaces on stakes, and identification of the surface materials. Calculations of the mass balance of the surface strata-snow, new firn, superimposed ice, and old firn and ice mass at each site were based on these measurements. Calculations of fixed-date annual mass balances for each hydrologic year (October 1 to September 30), as well as net balances and the dates of minimum net balance measured between time-transgressive summer surfaces on the glacier, were made on the basis of the strata balances augmented by air temperature and precipitation recorded in the basin. From 1966 through 1995, the average annual balance at site A (590 meters altitude) was -4.06 meters water equivalent; at site B (1,070 meters altitude), was -0.90 meters water equivalent; and at site C (1,290 meters altitude), was +1.45 meters water equivalent. Geodetic determination of displacements of the mass balance stake, and glacier surface altitudes was added to the data set in 1975 to detect the glacier motion responses to variable climate and mass balance conditions. The average surface speed from 1975 to 1996 was 50.0 meters per year at site A, 83.7 meters per year at site B, and 37.2 meters per year at site C. The average surface altitudes were 594 meters at site A, 1,069 meters at site B, and 1,293 meters at site C; the glacier surface altitudes rose and fell over a range of 19.4 meters at site A, 14.1 meters at site B, and 13.2 meters at site C.
Metering Plan: Intelligent Operational Strategies Through Enhanced Metering Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, Jason E.
The Sustainability Program at Pacific Northwest National Laboratory (PNNL) has adopted a “triple-bottom-line” approach of environmental stewardship, social responsibility, and economic prosperity to its operations. Metering at PNNL works in support of all three, specifically to measure and inform building energy use and greenhouse gas emissions and minimize water use. The foundation for metering at PNNL is a core goal set, which consists of four objectives: providing accurate data without interruption, analyzing data while it is still new, providing actionable recommendations to operations management, and ensuring PNNL’s compliance with contract metering requirements. These core objectives guide the decisions that wemore » make during annual planning and as we operate throughout the year. This 2016 edition of the Metering Plan conveys the metering practices for and vision of the Sustainability Program. Changes in this plan from the 2015 edition include updated tables and an enhanced discussion on energy tracking systems used at PNNL. This plan also discusses updated benchmarking strategies using PNNL’s graphics and analytics tool, BuildingOS by Lucid Design Group. This plan presents our progress toward the metering goals shared by all federal agencies and highlights our successful completion of metering requirements. Currently, PNNL is fully compliant with the applicable legislative and Executive Order metering requirements. PNNL’s approach to the installation of new meters will be discussed. Perhaps most importantly, this plan details the analysis techniques utilized at PNNL that rely on the endless streams of data newly available as a result of increased meter deployment over the last several years. Previous Metering Plans have documented specific meter connection schemes as PNNL focused on deploying meters in a first step toward managing energy and water use. This plan serves not only to highlight PNNL’s successful completion of agency metering goals, but also can be used as a guideline for meter installation and data analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiser,J.H.; Adams, J.; Dietz, R..
2008-10-07
The Tag, Track and Location System (TTL) Program is investigating methods of tracking an asset using perfluorocarbon tracers (PFT). The success of any TTL method requires sound detection/location instrumentation. Tracer Detection Technologies Corp (TDT), through a contract with the Office of Naval Research (ONR), is investigating different detection systems. The detections systems generally fall into two categories; proximity detectors and standoff detectors. Proximity detectors, as the name implies, need to be in close proximity (e.g., meter to 10's of meters) to the PFT source. Standoff detection searches for the PFT from a greater distance away from the source (e.g., 100'smore » of meters to kilometers). Gas Chromatographs (GC) are generally considered a proximity detection systems, but in the case of PFTs should be considered for both proximity and standoff detection with the caveat that in standoff use the GC needs to be somewhere in the PFT plume, i.e., generally downwind of the source. With a properly sized PFT source, the right GC can afford fairly large standoff (distance from the source) distances; 100's of meters to kilometers downwind. Brookhaven National Laboratory (BNL) has such a GC system and offered to demonstrate the CDTA for TTL as a no cost addition to the TDTTTL project, of which BNL was a participant. BNL is a leading authority on the sampling, collection, release and detection of PFTs. In addition, the BNL team has extensive background in atmospheric dispersion, the application of PFTs to such studies and the development of applications utilizing PFTs such as building infiltration measurements, control room integrity determination, leak location and environmental investigations. This experience and expertise is essential in developing any PFT application were dispersion, dilution and overcoming environmental conditions and interferences are integral to success. BNL has developed sophisticated gas chromatography methods and instruments that allow detection of up to seven PFTs at part per quadrillion levels (1015) with sample times as short as 60 seconds. The Continuous Dual-Trap Analyzer (CDTA) was developed for leak hunting applications and can continuously sample the air for PFTs without interruption. Sample time can be as short as 60 seconds. The CDTA has been extensively used in the commercial sector to detect PFTs that have been introduced to leaking buried dielectric fluid-filled cables or leaking subsurface gas lines. The PFTs travel through the cable or pipe until they reach the leak site. PFTs then escape into the surrounding soil and permeate/diffuse to the surface where they can be detected with the CDTA. Typically a cable is tagged with ppm levels of PFTs resulting in ppt to ppq concentrations in the air at the leak site. The CDTA is proven to be rugged, reliable and has a proven track record of successful leak location. The application of the CDTA to PFT detection for TTL is identical to application for leak detection. The CDTA operator has a general idea, with a few miles of roadway, where the leak is located, but no specific knowledge of the location (it can be any where along the road). The CDTA is mounted in a Chevy Astro Van and is dispatched to the field. In the field the van is driven at nominally 15 mph along the road. The CDTA continuously samples the air outside the van (via a 1/4-inch plastic sample tube stuck out a side window) until a positive detection occurs. The van then covers the road section where the detection occurred at a slightly slower pace to pin-point the area where the leak is and to direct soil probe samples. The soil probe samples take soil gas samples every 10 yards or so and the samples are analyzed on the CDTA. The leak can be located to within a few feet in 95% of the cases. To date the CDTA has been successful in every leak hunt performed by BNL. One interesting case was a leak hunt that resulted in repeated negative detections. The confidence in the CDTA forced the utility to recheck its 'plumbing' which lead to the discovery that a valve was turned that shouldn't have been so that gas was being diverted rather than leaking (the pressure drop was due to this diversion of the gas to another line). For TTL application, a tagged item or person is known to be in a general area and can be located by detecting the PFT emanating from the tagging source. The CDTA can be deployed in the area and by sampling in a grid fashion (starting on the downwind side of the area of interest) can easily find even very small sources. The CDTA is a perfect match for this application and the leak hunt use basically a simulation of Track and Locate. No other PFT detection technology has the detection sensitivity, proven track record and ruggedness of the CDTA. For these reasons, BNL offered to demonstrate the CDTA for TTL as a no cost addition to the TTL lidar demonstration project. This report details the demonstration scenario and results.« less
49 CFR 325.23 - Type of measurement systems which may be used.
Code of Federal Regulations, 2011 CFR
2011-10-01
... may be used. The sound level measurement system must meet or exceed the requirements of American National Standard Specification for Sound Level Meters (ANSI S1.4-1971), approved April 27, 1971, issued by..., New York, New York, 10018. (a) A Type 1 sound level meter; (b) A Type 2 sound level meter; or (c) A...
NASA Technical Reports Server (NTRS)
Wilson, D. J.; Krause, M. C.; Coffey, E. W.; Huang, C. C.; Edwards, B. B.; Shrider, K. R.; Jetton, J. L.; Morrison, L. K.
1974-01-01
A servo-controlled range/elevation scanner for the laser Doppler velocimeter (LDV) was developed and tested in the field to assess its performance in detecting and monitoring aircraft trailing vortices in an airport environment. The elevation scanner provides a capability to manually point the LDV telescope at operator chosen angles from 3.2 deg. to 89.6 deg within 0.2 deg, or to automatically scan the units between operator chosen limits at operator chosen rates of 0.1 Hz to 0.5 Hz. The range scanner provides a capability to manually adjust the focal point of the system from a range of 32 meters to a range of 896 meters under operator control, or to scan between operator chosen limits and at rates from 0.1 Hz to 6.9 Hz. The scanner controls are designed to allow simulataneous range and elevation scanning so as to provide finger scan patterns, arc scan patterns, and vertical line scan patterns. The development and testing of the unit is discussed, along with a fluid dynamic model of the wake vortex developed in a laser Doppler vortex sensor simulation program.
Detection of Frauds and Other Non-technical Losses in Power Utilities using Smart Meters: A Review
NASA Astrophysics Data System (ADS)
Ahmad, Tanveer; Ul Hasan, Qadeer
2016-06-01
Analysis of losses in power distribution system and techniques to mitigate these are two active areas of research especially in energy scarce countries like Pakistan to increase the availability of power without installing new generation. Since total energy losses account for both technical losses (TL) as well as non-technical losses (NTLs). Utility companies in developing countries are incurring of major financial losses due to non-technical losses. NTLs lead to a series of additional losses, such as damage to the network (infrastructure and the reduction of network reliability) etc. The purpose of this paper is to perform an introductory investigation of non-technical losses in power distribution systems. Additionally, analysis of NTLs using consumer energy consumption data with the help of Linear Regression Analysis has been carried out. This data focuses on the Low Voltage (LV) distribution network, which includes: residential, commercial, agricultural and industrial consumers by using the monthly kWh interval data acquired over a period (one month) of time using smart meters. In this research different prevention techniques are also discussed to prevent illegal use of electricity in the distribution of electrical power system.
NASA Astrophysics Data System (ADS)
Kobayashi, Y.; Watanabe, K.; Imai, M.; Watanabe, K.; Naruse, N.; Takahashi, Y.
2016-12-01
Hyper-densely monitoring for poor-visibility occurred by snowstorm is needed to make an alert system, because the snowstorm is difficult to predict from the observation only at a representative point. There are some problems in the previous approaches for the poor-visibility monitoring using video analyses or visibility meters; these require a wired network monitoring (a large amount of data: 10MB/sec at least) and the system cost is high (10,000 at each point). Thus, the risk of poor-visibility has been mainly measured at specific point such as airport and mountain pass, and estimated by simulation two dimensionally. To predict it two dimensionally and accurately, we have developed a low-cost meteorological system to observe the snowstorm hyper-densely. We have developed a low-cost visibility meter which works as the reduced intensity of semiconducting laser light when snow particles block off. Our developed system also has a capability of extending a hyper-densely observation in real-time on wireless network using Zigbee; A/D conversion and wireless data sent from temperature and illuminance sensors. We use a semiconducting laser chip (5) for the light source and a reflection mechanism by the use of three mirrors so as to send the light to a non-sensitive illuminance sensor directly. Thus, our visibility detecting system ($500) becomes much cheaper than previous one. We have checked the correlation between the reduced intensity taken by our system and the visibility recorded by conventional video camera. The value for the correlation coefficient was -0.67, which indicates a strong correlation. It means that our developed system is practical. In conclusion, we have developed low-cost meteorological detecting system to observe poor-visibility occurred by snowstorm, having a potential of hyper-densely monitoring on wireless network, and have made sure the practicability.
Intellectual Production Supervision Perform based on RFID Smart Electricity Meter
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-03-01
This topic develops the RFID intelligent electricity meter production supervision project management system. The system is designed for energy meter production supervision in the management of the project schedule, quality and cost information management requirements in RFID intelligent power, and provide quantitative information more comprehensive, timely and accurate for supervision engineer and project manager management decisions, and to provide technical information for the product manufacturing stage file. From the angle of scheme analysis, design, implementation and test, the system development of production supervision project management system for RFID smart meter project is discussed. Focus on the development of the system, combined with the main business application and management mode at this stage, focuses on the energy meter to monitor progress information, quality information and cost based information on RFID intelligent power management function. The paper introduces the design scheme of the system, the overall client / server architecture, client oriented graphical user interface universal, complete the supervision of project management and interactive transaction information display, the server system of realizing the main program. The system is programmed with C# language and.NET operating environment, and the client and server platforms use Windows operating system, and the database server software uses Oracle. The overall platform supports mainstream information and standards and has good scalability.
Focused Heavy Ion Nuclear Microprobe facility at the University of North Texas
NASA Astrophysics Data System (ADS)
Guo, B. N.; Yang, C.; El Bouanani, M.; Duggan, J. L.; McDaniel, F. D.
1999-10-01
A Focused Heavy Ion Nuclear Microprobe facility has been constructed at the University of North Texas. The microprobe utilizes two separated Russian magnetic quadrupole quadruplets. The two identical magnetic quadrupole doublet lenses are separated by 2.61 meters. The lens system with ~ 80 times demagnification has the ability to focus proton, alpha particle, or heavier ions down to a spot size of ~ 1 μm. The microprobe components rest on a 7 meter steel beam support with vibration isolation. A computer provides control for the lens power supplies and also the parameters for a post-lens scanning coil to raster-scan the beam across the sample. Up to four detection channels can be used for simultaneous data acquisition under VME control. A RISC workstation is used to collect, display and analyze the data. The data is transferred via ethernet. A detailed description of the facility and data acquisition system along with preliminary testing results on TEM grids with Rutherford Backscattering Spectrometry and the Ion Beam Induced Charge Collection techniques will be presented.
NASA Astrophysics Data System (ADS)
Strausberger, Donald J.
Several Radar Target Identification (RTI) techniques have been developed at The Ohio State University in recent years. Using the ElectroScience Laboratory compact range a large database of coherent RCS measurement has been constructed for several types of targets (aircraft, ships, and ground vehicles) at a variety of polarizations, aspect angles, and frequency bands. This extensive database has been used to analyze the performance of several different classification algorithms through the use of computer simulations. In order to optimize classification performance, it was concluded that the radar frequency range should lie in the Rayleigh-resonance frequency range, where the wavelength is on the order of or larger than the target size. For aircraft and ships with general dimensions on the order of 10 meters to 100 meters it is apparent that the High Frequency (HF) band provides optimal classification performance. Since existing HF radars are currently being used for detection and tracking or aircraft and ships of these dimensions, it is natural to further investigate the possibility of using these existing radars as the measurement devices in a radar target classification system.
DOT National Transportation Integrated Search
2000-01-01
Caltrans is committed to using ramp metering as an effective traffic management strategy to maintain an efficient freeway system and protect the investment made in constructing freeways by keeping them operating at or near capacity. Ramp Metering is ...
NASA Astrophysics Data System (ADS)
Misra, Anupam K.; Sharma, Shiv K.; Acosta, Tayro E.; Porter, John N.; Lucey, Paul G.; Bates, David E.
2012-06-01
The University of Hawaii has been developing portable remote Raman systems capable of detecting chemicals in daylight from a safe standoff distance. We present data on standoff detection of chemicals used in the synthesis of homemade explosives (HME) using a portable standoff Raman system utilizing an 8-inch telescope. Data show that good-quality Raman spectra of various hazardous chemicals such as ammonium nitrate, potassium nitrate, potassium perchlorate, sulfur, nitrobenzene, benzene, acetone, various organic and inorganic chemicals etc. could be easily obtained from remote distances, tested up to 120 meters, with a single-pulse laser excitation and with detection time less than 1 μs. The system uses a frequency-doubled Nd:YAG pulsed laser source (532 nm, 100 mJ/pulse, 15 Hz, pulse width 10 ns) capable of firing a single or double pulse. The double-pulse configuration also allows the system to perform standoff LIBS (Laser-Induced Breakdown Spectroscopy) at 50 m range. In the standoff Raman detection, the doublepulse sequence simply doubles the signal to noise ratio. Significant improvement in the quality of Raman spectra is observed when the standoff detection is made with 1s integration time. The system uses a 50-micron slit and has spectral resolution of 8 cm-1. The HME chemicals could be easily detected through clear and brown glass bottles, PP and HDPE plastic bottles, and also through fluorescent plastic water bottles. Standoff Raman detection of HME chemical from a 10 m distance through non-visible concealed bottles in plastic bubble wrap packaging is demonstrated with 1 s integration time. Possible applications of the standoff Raman system for homeland security and environmental monitoring are discussed.
Design and implementation of Remote Digital Energy Meter (RDEM) based on GSM technology
NASA Astrophysics Data System (ADS)
Khan, Muhammad Waseem; Wang, Jie; Irfan, Muhammad; Shiraz, M.; Khan, Ali Hassan
2017-11-01
Electric power is one of the basic requirement for socio economic and social prosperity of any country, which is mainly employs for domestic, industrial and agricultural sectors. The primary purpose of this research is to design and implement an energy meter which can remotely control and monitor through global system for mobile (GSM) communication technology. For this purpose, a single phase or three phase digital energy meters are used to add on different advanced modules. The energy meter can be activated and display power consumption information at the consumer premises on liquid crystal display and through a short message service (SMS) by using GSM technology. At the power sending end, an energy meter can be remotely control and monitor through GSM technology without any system disturbances. This study will lead to make the system easier, economical, reliable and efficient for the electrical department.
NASA Astrophysics Data System (ADS)
Daminov, Ildar; Tarasova, Ekaterina; Andreeva, Tatyana; Avazov, Artur
2016-02-01
This paper presents the comparison of smart meter deployment business models to determine the most suitable option providing smart meters deployment. Authors consider 3 main business model of companies: distribution grid company, energy supplier (energosbyt) and metering company. The goal of the article is to compare the business models of power companies from massive smart metering roll out in power system of Russian Federation.
Grid-Connected Distributed Generation: Compensation Mechanism Basics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aznar, Alexandra Y; Zinaman, Owen R
2017-10-02
This short report defines compensation mechanisms for grid-connected, behind-the-meter distributed generation (DG) systems as instruments that comprise three core elements: (1) metering and billing arrangements, (2) sell rate design, and (3) retail rate design. This report describes metering and billing arrangements, with some limited discussion of sell rate design. We detail the three possible arrangements for metering and billing of DG: net energy metering (NEM); buy all, sell all; and net billing.
Development and testing of highway storm-sewer flow measurement and recording system
Kilpatrick, F.A.; Kaehrle, W.R.; Hardee, Jack; Cordes, E.H.; Landers, M.N.
1985-01-01
A comprehensive study and development of measuring instruments and techniques for measuring all components of flow in a storm-sewer drainage system was undertaken by the U.S. Geological Survey under the sponsorship of the Federal Highway Administration. The study involved laboratory and field calibration and testing of measuring flumes, pipe insert meters, weirs, electromagnetic velocity meters as well as the development and calibration of pneumatic-bubbler pressure transducer head measuring systems. Tracer-dilution and acoustic flow meter measurements were used in field verification tests. A single micrologger was used to record data from all the above instruments as well as from a tipping-bucket rain gage and also to activate on command the electromagnetic velocity meter and tracer-dilution systems. (Author 's abstract)
DOT National Transportation Integrated Search
2015-05-01
The research team developed a comprehensive Benefit/Cost (B/C) analysis framework to evaluate existing and anticipated : intelligent transportation system (ITS) strategies, particularly, adaptive traffic control systems and ramp metering systems, : i...
40 CFR 205.54-2 - Sound data acquisition system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... meets the “fast” dynamic requirement of a precision sound level meter indicating meter system for the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Sound data acquisition system. 205.54... data acquisition system. (a) Systems employing tape recorders and graphic level recorders may be...
Wavefront detection method of a single-sensor based adaptive optics system.
Wang, Chongchong; Hu, Lifa; Xu, Huanyu; Wang, Yukun; Li, Dayu; Wang, Shaoxin; Mu, Quanquan; Yang, Chengliang; Cao, Zhaoliang; Lu, Xinghai; Xuan, Li
2015-08-10
In adaptive optics system (AOS) for optical telescopes, the reported wavefront sensing strategy consists of two parts: a specific sensor for tip-tilt (TT) detection and another wavefront sensor for other distortions detection. Thus, a part of incident light has to be used for TT detection, which decreases the light energy used by wavefront sensor and eventually reduces the precision of wavefront correction. In this paper, a single Shack-Hartmann wavefront sensor based wavefront measurement method is presented for both large amplitude TT and other distortions' measurement. Experiments were performed for testing the presented wavefront method and validating the wavefront detection and correction ability of the single-sensor based AOS. With adaptive correction, the root-mean-square of residual TT was less than 0.2 λ, and a clear image was obtained in the lab. Equipped on a 1.23-meter optical telescope, the binary stars with angle distance of 0.6″ were clearly resolved using the AOS. This wavefront measurement method removes the separate TT sensor, which not only simplifies the AOS but also saves light energy for subsequent wavefront sensing and imaging, and eventually improves the detection and imaging capability of the AOS.
Water leakage management by district metered areas at water distribution networks.
Özdemir, Özgür
2018-03-01
The aim of this study is to design a district metered area (DMA) at water distribution network (WDN) for determination and reduction of water losses in the city of Malatya, Turkey. In the application area, a pilot DMA zone was built by analyzing the existing WDN, topographic map, length of pipes, number of customers, service connections, and valves. In the DMA, International Water Association standard water balance was calculated considering inflow rates and billing records. The ratio of water losses in DMAs was determined as 82%. Moreover, 3124 water meters of 2805 customers were examined while 50% of water meters were detected as faulty. This study revealed that DMA application is useful for the determination of water loss rate in WDNs and identify a cost-effective leakage reduction program.
NASA Technical Reports Server (NTRS)
Couch, Richard H.; Rowland, Carroll W.; Ellis, K. Scott; Blythe, Michael P.; Regan, Curtis P.; Koch, Michael R.; Antill, Charles W.; Kitchen, Wayne L.; Cox, John W.; Delorme, Joseph F.
1991-01-01
Engineering aspects are presented of the design, fabrication, integration, and operation of the Lidar In-Space Technology Experiment (LITE) for flight aboard the Space Shuttle in mid-1993. The LITE system is being developed by NASA/Langley Research Center and will be used to detect stratospheric and tropospheric aerosols, probe the planetary boundary layer, measure cloud top heights, and measure atmospheric temperature and density in the 10- to 40-km range. The system consists of a nominal telescope receiver 1 meter in diameter, a three-color Nd:YAG laser transmitter, and the system electronics. The system makes extensive use of Space Shuttle resources for electrical power, thermal control, and command and data handling.
NASA Technical Reports Server (NTRS)
Marcin, Martin; Abramovici, Alexander
2008-01-01
The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density <5 microcycle/(Hz)1/2 and to be capable of determining the power spectral density of the phase difference over the frequency range from 1 mHz to 1 Hz. Such a phase meter could also be used on Earth to perform similar measurements in laser metrology of moving bodies. To illustrate part of the principle of operation of the phase meter, the figure includes a simplified block diagram of a basic singlechannel digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.
New Technologies and Strategies to Exploit Near Earth Asteroids for Breakthrough Space Development
NASA Astrophysics Data System (ADS)
Rather, John; Powell, James; Maise, George
2010-01-01
The past two decades have brought a profound expansion of knowledge of near earth objects (NEO). If creatively exploited, NEOs can significantly increase human safety while reducing costs of exploration and development of the moon, Mars and the solar system. Synergistically, the ability to defend the Earth from devastating impacts will become very effective. A spherical volume having a radius equivalent to the moon's orbit, 400,000 km, is visited every day by approximately ten NEOs having diameters of ~10 meters, while ~30 meter diameter encounters occur about once per month. Because these objects are usually very faint and only within detectable range for a few days, they require specialized equipment to discover them with high probability of detection and to enable accurate determination of orbital parameters. Survey systems are now being implemented that are cataloging many thousands of objects larger than 30 meters, but numerous advantages will result from extending the complete NEO census down to 10 meter diameters. The typical compositions of such NEOs will range from ~80% that are low density dust & rock ``rubble piles'' to perhaps 2% containing heavy metals-properties well known from meteorite samples. It is quite possible that there will also be some fragments of short period comets that are rich in water ice and other volatile components. In this paper we will propose a set of new technologies and strategies for exploiting NEO resources that can yield important space development breakthroughs at much lower costs than existing concepts. Solar powered ``Tugboats'' deployed at the space station can rendezvous with carefully selected NEOs and steer them into captured orbits in the lunar L4 & L5 regions. Robotic equipment will then modify them for a plethora of benefits. Notably, the problem of radiation shielding against the Van Allen belts, solar flares and cosmic rays will be solved. Free transportation from low earth orbit to the moon and beyond will be feasible via shielded habitats in elliptical orbits. Large, comfortable habitats for long duration trips to Mars and beyond can be built. Propulsion for orbital transfer and maneuvering of heavy payloads can be accomplished by solar energized ejection of NEO materials. Industries can be developed based upon reconditioning materials for use in space and recovery of heavy metals for use on Earth.
NASA Astrophysics Data System (ADS)
Fairchild, A.; Chirayath, V.; Gladen, R.; McDonald, A.; Lim, Z.; Chrysler, M.; Koymen, A.; Weiss, A.
Simion 8.1®simulations were used to determine the energy resolution of a 1 meter long Time of Flight Positron annihilation induced Auger Electron Spectrometer (TOF-PAES). The spectrometer consists of: 1. a magnetic gradient section used to parallelize the electrons leaving the sample along the beam axis, 2. an electric field free time of flight tube and 3. a detection section with a set of ExB plates that deflect electrons exiting the TOF tube into a Micro-Channel Plate (MCP). Simulations of the time of flight distribution of electrons emitted according to a known secondary electron emission distribution, for various sample biases, were compared to experimental energy calibration peaks and found to be in excellent agreement. The TOF spectra at the highest sample bias was used to determine the timing resolution function describing the timing spread due to the electronics. Simulations were then performed to calculate the energy resolution at various electron energies in order to deconvolute the combined influence of the magnetic field parallelizer, the timing resolution, and the voltage gradient at the ExB plates. The energy resolution of the 1m TOF-PAES was compared to a newly constructed 3 meter long system. The results were used to optimize the geometry and the potentials of the ExB plates for obtaining the best energy resolution. This work was supported by NSF Grant NSF Grant No. DMR 1508719 and DMR 1338130.
CD-ROM and Metering--An Overview.
ERIC Educational Resources Information Center
Shear, Victor
1992-01-01
Discusses the need for security and metering features for CD-ROM products. Topics covered include user productivity issues, pricing problems, integrated information resources, advantages of CD-ROM distribution systems, unauthorized use, content encryption, and multiple simultaneous meters. (MES)
Preparation of paper scintillator for detecting 3H contaminant.
Miyoshi, Hirokazu; Ikeda, Toshiji
2013-09-01
Liquid scintillator (LS)-encapsulated silica was prepared by the sol-gel method and then was added dropwise onto a wipe paper to form a paper scintillator. First, the efficiencies of wipe were determined for both the paper scintillator and the wipe paper using a liquid scintillation counter (LSC). The efficiencies of wipe using the paper scintillator and the wipe paper were 88 and 36 %, respectively. The detection efficiencies were 5.5 % for the paper scintillator, 46 % for the wipe paper using an LS and 0.08 % for the (3)H/(14)C survey meter, respectively, compared with that of a melt-on scintillator of 47 %. Second, an (3)H contaminant on the paper scintillator was successfully detected using a photomultiplier without an LSC or an (3)H/(14)C survey meter. Finally, the paper scintillator was able to detect beta rays of the (3)H contaminant easily without an LS.
Network Algorithms for Detection of Radiation Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S; Brooks, Richard R; Wu, Qishi
In support of national defense, Domestic Nuclear Detection Office s (DNDO) Intelligent Radiation Sensor Systems (IRSS) program supported the development of networks of radiation counters for detecting, localizing and identifying low-level, hazardous radiation sources. Industry teams developed the first generation of such networks with tens of counters, and demonstrated several of their capabilities in indoor and outdoor characterization tests. Subsequently, these test measurements have been used in algorithm replays using various sub-networks of counters. Test measurements combined with algorithm outputs are used to extract Key Measurements and Benchmark (KMB) datasets. We present two selective analyses of these datasets: (a) amore » notional border monitoring scenario that highlights the benefits of a network of counters compared to individual detectors, and (b) new insights into the Sequential Probability Ratio Test (SPRT) detection method, which lead to its adaptations for improved detection. Using KMB datasets from an outdoor test, we construct a notional border monitoring scenario, wherein twelve 2 *2 NaI detectors are deployed on the periphery of 21*21meter square region. A Cs-137 (175 uCi) source is moved across this region, starting several meters from outside and finally moving away. The measurements from individual counters and the network were processed using replays of a particle filter algorithm developed under IRSS program. The algorithm outputs from KMB datasets clearly illustrate the benefits of combining measurements from all networked counters: the source was detected before it entered the region, during its trajectory inside, and until it moved several meters away. When individual counters are used for detection, the source was detected for much shorter durations, and sometimes was missed in the interior region. The application of SPRT for detecting radiation sources requires choosing the detection threshold, which in turn requires a source strength estimate, typically specified as a multiplier of the background radiation level. A judicious selection of this source multiplier is essential to achieve optimal detection probability at a specified false alarm rate. Typically, this threshold is chosen from the Receiver Operating Characteristic (ROC) by varying the source multiplier estimate. ROC is expected to have a monotonically increasing profile between the detection probability and false alarm rate. We derived ROCs for multiple indoor tests using KMB datasets, which revealed an unexpected loop shape: as the multiplier increases, detection probability and false alarm rate both increase until a limit, and then both contract. Consequently, two detection probabilities correspond to the same false alarm rate, and the higher is achieved at a lower multiplier, which is the desired operating point. Using the Chebyshev s inequality we analytically confirm this shape. Then, we present two improved network-SPRT methods by (a) using the threshold off-set as a weighting factor for the binary decisions from individual detectors in a weighted majority voting fusion rule, and (b) applying a composite SPRT derived using measurements from all counters.« less
Lidar point density analysis: implications for identifying water bodies
Worstell, Bruce B.; Poppenga, Sandra K.; Evans, Gayla A.; Prince, Sandra
2014-01-01
Most airborne topographic light detection and ranging (lidar) systems operate within the near-infrared spectrum. Laser pulses from these systems frequently are absorbed by water and therefore do not generate reflected returns on water bodies in the resulting void regions within the lidar point cloud. Thus, an analysis of lidar voids has implications for identifying water bodies. Data analysis techniques to detect reduced lidar return densities were evaluated for test sites in Blackhawk County, Iowa, and Beltrami County, Minnesota, to delineate contiguous areas that have few or no lidar returns. Results from this study indicated a 5-meter radius moving window with fewer than 23 returns (28 percent of the moving window) was sufficient for delineating void regions. Techniques to provide elevation values for void regions to flatten water features and to force channel flow in the downstream direction also are presented.
Human Location Detection System Using Micro-Electromechanical Sensor for Intelligent Fan
NASA Astrophysics Data System (ADS)
Parnin, S.; Rahman, M. M.
2017-03-01
This paper presented the development of sensory system for detection of both the presence and the location of human in a room spaces using MEMS Thermal sensor. The system is able to detect the surface temperature of occupants by a non-contact detection at the maximum of 6 meters far. It can be integrated to any swing type of electrical appliances such as standing fan or a similar devices. Differentiating human from other moving and or static object by heat variable is nearly impossible since human, animals and electrical appliances produce heat. The uncontrollable heat properties which can change and transfer will add to the detection issue. Integrating the low cost MEMS based thermal sensor can solve the first of human sensing problem by its ability to detect human in stationary. Further discrimination and analysis must therefore be made to the measured temperature data to distinguish human from other objects. In this project, the fan is properly designed and program in such a way that it can adapt to different events starting from the human sensing stage to its dynamic and mechanical moving parts. Up to this stage initial testing to the Omron D6T microelectromechanical thermal sensor is currently under several experimental stages. Experimental result of the sensor tested on stationary and motion state of human are behaviorally differentiable and successfully locate the human position by detecting the maximum temperature of each sensor reading.
Testing the Fraunhofer line discriminator by sensing fluorescent dye
NASA Technical Reports Server (NTRS)
Stoertz, G. E.
1969-01-01
The experimental Fraunhofer Line Discriminator (FLD) has detected increments of Rhodamine WT dye as small as 1 ppb in 1/2 meter depths. It can be inferred that increments considerably smaller than 1 ppb will be detectable in depths considerably greater than 1/2 meter. Turbidity of the water drastically reduces luminescence or even completely blocks the transmission of detectable luminescence to the FLD. Attenuation of light within the water by turbidity and by the dye itself are the major factors to be considered in interpreting FLD records and in relating luminescence coefficient to dye concentration. An airborne test in an H-19 helicopter established feasibility of operating the FLD from the aircraft power supply, and established that the rotor blades do not visibly affect the monitoring of incident solar radiation.
Mortise terrorism on the main pipelines
NASA Astrophysics Data System (ADS)
Komarov, V. A.; Nigrey, N. N.; Bronnikov, D. A.; Nigrey, A. A.
2018-01-01
The research aim of the work is to analyze the effectiveness of the methods of physical protection of main pipelines proposed in the article from the "mortise terrorism" A mathematical model has been developed that made it possible to predict the dynamics of "mortise terrorism" in the short term. An analysis of the effectiveness of physical protection methods proposed in the article to prevent unauthorized impacts on the objects under investigation is given. A variant of a video analytics system has been developed that allows detecting violators with recognition of the types of work they perform at a distance of 150 meters in conditions of complex natural backgrounds and precipitation. Probability of detection is 0.959.
In Situ Soil Venting - Full Scale Test, Hill AFB, Guidance Document. Volume 2
1991-08-01
oxidizer. Another system was connected to the existing air scrubber of a building (Reference 23). The self-contained unit reported by Rippberger...devices on the market for flow rate measurement. Some of the more common devices are orifice meters, venturi meters, rotameters, pitot tubes, hot-wire...Notes on how to size and construct orifice meters can be found in Reference 41. * Venturi Meter - A venturi meter works basically on the same
Mahrt, A; Burfeind, O; Voigtsberger, R; Müller, A; Heuwieser, W
2014-01-01
Subclinical ketosis (SCK), an important disease in lactating dairy cows, is defined as the presence of elevated concentrations of circulating ketone bodies without the development of clinical signs. Therefore, diagnostic methods are limited to the detection of the concentrations of ketone bodies in different body fluids. The objective of this study was to evaluate a recently developed electronic hand- held meter (NovaVet) for the determination of β-hydroxybutyric acid (BHB) in the blood of dairy cows. A total of 155 lactating dairy cows were included in the trial. Blood samples were taken from each cow and analyzed using the BHB meter. The obtained concentrations were compared to the results determined by a commercial laboratory. The Spearman's rank correlation coefficient was determined between the two methods. A Wilcoxon test was performed and a Bland-Altman plot was generated. Test characteristics (sensitivity, specificity, positive and negative predictive value) for established BHB cut points for the diagnosis of SCK were calculated using receiver operating characteristic (ROC) analysis. The two methods were highly correlated (rs = 0.87; p < 0.05). A difference (median 0.0 mmol/l; interquartile range [IQR] -0.1 to 0.2 mmol/l; p < 0.05) was found between BHB concentrations determined using the BHB meter (median 1.0 mmol/l; IQR 0.7-1.3 mmol/l) and by the laboratory (median 0.9 mmol/l; IQR 0.7-1.1 mmol/l). Using a cut point of 1.2 mmol/l, sensitivity and specificity of the BHB meter were 97% and 82%, respectively. There was a good agreement between BHB concentrations determined using the BHB meter and the laboratory. Furthermore, the BHB meter displayed good test characteristics. The specificity of 82% results in a number of false-positive results. However, this new device can be recommended for the detection of SCK in cows under practical conditions.
Developing an area-wide system for coordinated ramp meter control.
DOT National Transportation Integrated Search
2008-12-01
Ramp metering has been broadly accepted and deployed as an effective countermeasure : against both recurrent and non-recurrent congestion on freeways. However, many current ramp : metering algorithms tend to improve only freeway travels using local d...
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Ryan, Robert E.; Smoot, James C.; Prados, Donald; McKellip, Rodney; Sader. Steven A.; Gasser, Jerry; May, George; Hargrove, William
2007-01-01
A NASA RPC (Rapid Prototyping Capability) experiment was conducted to assess the potential of VIIRS (Visible/Infrared Imager/Radiometer Suite) data for monitoring non-native gypsy moth (Lymantria dispar) defoliation of forests. This experiment compares defoliation detection products computed from simulated VIIRS and from MODIS (Moderate Resolution Imaging Spectroradiometer) time series products as potential inputs to a forest threat EWS (Early Warning System) being developed for the USFS (USDA Forest Service). Gypsy moth causes extensive defoliation of broadleaved forests in the United States and is specifically identified in the Healthy Forest Restoration Act (HFRA) of 2003. The HFRA mandates development of a national forest threat EWS. This system is being built by the USFS and NASA is aiding integration of needed satellite data products into this system, including MODIS products. This RPC experiment enabled the MODIS follow-on, VIIRS, to be evaluated as a data source for EWS forest monitoring products. The experiment included 1) assessment of MODIS-simulated VIIRS NDVI products, and 2) evaluation of gypsy moth defoliation mapping products from MODIS-simulated VIIRS and from MODIS NDVI time series data. This experiment employed MODIS data collected over the approximately 15 million acre mid-Appalachian Highlands during the annual peak defoliation time frame (approximately June 10 through July 27) during 2000-2006. NASA Stennis Application Research Toolbox software was used to produce MODIS-simulated VIIRS data and NASA Stennis Time Series Product Tool software was employed to process MODIS and MODIS-simulated VIIRS time series data scaled to planetary reflectance. MODIS-simulated VIIRS data was assessed through comparison to Hyperion-simulated VIIRS data using data collected during gypsy moth defoliation. Hyperion-simulated MODIS data showed a high correlation with actual MODIS data (NDVI R2 of 0.877 and RMSE of 0.023). MODIS-simulated VIIRS data for the same date showed moderately high correlation with Hyperion-simulated VIIRS data (NDVI R2 of 0.62 and RMSE of 0.035), even though the datasets were collected about a half an hour apart during changing weather conditions. MODIS products (MOD02, MOD09, and MOD13) and MOD02-simulated VIIRS time series data were used to generate defoliation mapping products based on image classification and image differencing change detection techniques. Accuracy of final defoliation mapping products was assessed by image interpreting over 170 randomly sampled locations found on Landsat and ASTER data in conjunction with defoliation map data from the USFS. The MOD02-simulated VIIRS 400-meter NDVI classification produced a similar overall accuracy (87.28 percent with 0.72 Kappa) to the MOD02 250-meter NDVI classification (86.71 percent with 0.71 Kappa). In addition, the VIIRS 400-meter NDVI, MOD02 250-meter NDVI, and MOD02 500-meter NDVI showed good user and producer accuracies for the defoliated forest class (70 percent) and acceptable Kappa values (0.66). MOD02 and MOD02-simulated VIIRS data both showed promise as data sources for regional monitoring of forest disturbance due to insect defoliation.
Xu, Xue-tao; Liang, Kai-yi; Zeng, Jia-ying
2015-02-15
A portable and sensitive quantitative DNA detection method based on personal glucose meters and isothermal circular strand-displacement polymerization reaction was developed. The target DNA triggered target recycling process, which opened capture DNA. The released target then found another capture DNA to trigger another polymerization cycle, which was repeated for many rounds, resulting in the multiplication of the DNA-invertase conjugation on the surface of Streptavidin-MNBs. The DNA-invertase was used to catalyze the hydrolysis of sucrose into glucose for PGM readout. There was a liner relationship between the signal of PGM and the concentration of target DNA in the range of 5.0 to 1000 fM, which is lower than some DNA detection method. In addition, the method exhibited excellent sequence selectivity and there was almost no effect of biological complex to the detection performance, which suggested our method can be successfully applied to DNA detection in real biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahmed, Nasar; Ahmed, Rizwan; Umar, Z. A.; Aslam Baig, M.
2017-08-01
In this paper we present the construction and modification of a linear time-of-flight mass spectrometer to improve its mass resolution. This system consists of a laser ablation/ionization section based on a Q-switched Nd:YAG laser (532 nm, 500 mJ, 5 ns pulse duration) integrated with a one meter linear time-of-flight mass spectrometer coupled with an electric sector and a magnetic lens and outfitted with a channeltron electron multiplier for ion detection. The resolution of the system has been improved by optimizing the accelerating potential and inserting a magnetic lens after the extraction region. The isotopes of lithium, lead and cadmium samples have been resolved and detected in accordance with their natural abundance. The capability of the system has been further exploited to determine the elemental composition of a brass alloy, having a certified composition of zinc and copper. Our results are in excellent agreement with its certified composition. This setup is found to be extremely efficient and convenient for fast analyses of any solid sample.
Olateju, Tolu; Begley, Joseph; Flanagan, Daniel; Kerr, David
2012-07-01
Most manufacturers of blood glucose monitoring equipment do not give advice regarding the use of their meters and strips onboard aircraft, and some airlines have blood glucose testing equipment in the aircraft cabin medical bag. Previous studies using older blood glucose meters (BGMs) have shown conflicting results on the performance of both glucose oxidase (GOX)- and glucose dehydrogenase (GDH)-based meters at high altitude. The aim of our study was to evaluate the performance of four new-generation BGMs at sea level and at a simulated altitude equivalent to that used in the cabin of commercial aircrafts. Blood glucose measurements obtained by two GDH and two GOX BGMs at sea level and simulated altitude of 8000 feet in a hypobaric chamber were compared with measurements obtained using a YSI 2300 blood glucose analyzer as a reference method. Spiked venous blood samples of three different glucose levels were used. The accuracy of each meter was determined by calculating percentage error of each meter compared with the YSI reference and was also assessed against standard International Organization for Standardization (ISO) criteria. Clinical accuracy was evaluated using the consensus error grid method. The percentage (standard deviation) error for GDH meters at sea level and altitude was 13.36% (8.83%; for meter 1) and 12.97% (8.03%; for meter 2) with p = .784, and for GOX meters was 5.88% (7.35%; for meter 3) and 7.38% (6.20%; for meter 4) with p = .187. There was variation in the number of time individual meters met the standard ISO criteria ranging from 72-100%. Results from all four meters at both sea level and simulated altitude fell within zones A and B of the consensus error grid, using YSI as the reference. Overall, at simulated altitude, no differences were observed between the performance of GDH and GOX meters. Overestimation of blood glucose concentration was seen among individual meters evaluated, but none of the results obtained would have resulted in dangerous failure to detect and treat blood glucose errors or in giving treatment that was actually contradictory to that required. © 2012 Diabetes Technology Society.
Pan, Meiyan; Liang, Zhaoxing; Wang, Yu; Chen, Yihang
2016-01-01
We propose a novel mechanism to construct a tunable and ultracompact refractive index sensor by using the Fano resonance in metal-graphene hybrid nanostructure. Plasmon modes in graphene nanoribbons and waveguide resonance modes in the slits of metal strip array coexist in this system. Strong interference between the two different modes occurs when they are spectrally overlapped, resulting in a Fano-type asymmetrically spectral lineshape which can be used for detecting the variations of ambient refractive index. The proposed sensor has a relatively high figure of merit (FOM) over 20 and its sensing performance shows a good tolerance to roughness. In addition to the wide range measurement enabled by the electrical tuning of graphene plasmon modes, such ultracompact system also provides an angle-independent operation and therefore, it can efficiently work for the detection of gas, liquid, or solids. Such optical nanostructure may also be applied to diverse fields such as temperature/pressure metering, medical detection, and mechanical precision measurement. PMID:27439964
Witinski, Mark F; Blanchard, Romain; Pfluegl, Christian; Diehl, Laurent; Li, Biao; Krishnamurthy, Kalyani; Pein, Brandt C; Azimi, Masud; Chen, Peili; Ulu, Gokhan; Vander Rhodes, Greg; Howle, Chris R; Lee, Linda; Clewes, Rhea J; Williams, Barry; Vakhshoori, Daryoosh
2018-04-30
This article presents new spectroscopic results in standoff chemical detection that are enabled by monolithic arrays of Distributed Feedback (DFB) Quantum Cascade Lasers (QCLs), with each array element at a slightly different wavelength than its neighbor. The standoff analysis of analyte/substrate pairs requires a laser source with characteristics offered uniquely by a QCL Array. This is particularly true for time-evolving liquid chemical warfare agent (CWA) analysis. In addition to describing the QCL array source developed for long wave infrared coverage, a description of an integrated prototype standoff detection system is provided. Experimental standoff detection results using the man-portable system for droplet examination from 1.3 meters are presented using the CWAs VX and T-mustard as test cases. Finally, we consider three significant challenges to working with droplets and liquid films in standoff spectroscopy: substrate uptake of the analyte, time-dependent droplet spread of the analyte, and variable substrate contributions to retrieved signals.
Pan, Meiyan; Liang, Zhaoxing; Wang, Yu; Chen, Yihang
2016-07-21
We propose a novel mechanism to construct a tunable and ultracompact refractive index sensor by using the Fano resonance in metal-graphene hybrid nanostructure. Plasmon modes in graphene nanoribbons and waveguide resonance modes in the slits of metal strip array coexist in this system. Strong interference between the two different modes occurs when they are spectrally overlapped, resulting in a Fano-type asymmetrically spectral lineshape which can be used for detecting the variations of ambient refractive index. The proposed sensor has a relatively high figure of merit (FOM) over 20 and its sensing performance shows a good tolerance to roughness. In addition to the wide range measurement enabled by the electrical tuning of graphene plasmon modes, such ultracompact system also provides an angle-independent operation and therefore, it can efficiently work for the detection of gas, liquid, or solids. Such optical nanostructure may also be applied to diverse fields such as temperature/pressure metering, medical detection, and mechanical precision measurement.
Hornig, Katlin J; Byers, Stacey R; Callan, Robert J; Holt, Timothy; Field, Megan; Han, Hyungchul
2013-08-01
To compare β-hydroxybutyrate (BHB) and glucose concentrations measured with a dual-purpose point-of-care (POC) meter designed for use in humans and a laboratory biochemical analyzer (LBA) to determine whether the POC meter would be reliable for on-farm measurement of blood glucose and BHB concentrations in sheep in various environmental conditions and nutritional states. 36 pregnant mixed-breed ewes involved in a maternal feed restriction study. Blood samples were collected from each sheep at multiple points throughout gestation and lactation to allow for tracking of gradually increasing metabolic hardship. Whole blood glucose and BHB concentrations were measured with the POC meter and compared with serum results obtained with an LBA. 464 samples were collected. Whole blood BHB concentrations measured with the POC meter compared well with LBA results, and error grid analysis showed the POC values were acceptable. Whole blood glucose concentrations measured with the POC meter had more variation, compared with LBA values, over the glucose ranges evaluated. Results of error grid analysis of POC-measured glucose concentrations were not acceptable, indicating errors likely to result in needless treatment with glucose or other supplemental energy sources in normoglycemic sheep. The POC meter was user-friendly and performed well across a wide range of conditions. The meter was adequate for detection of pregnancy toxemia in sheep via whole blood BHB concentration. Results should be interpreted with caution when the POC meter is used to measure blood glucose concentrations.
77 FR 38342 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-27
... to adding postage to postage meters. III. Description of Changes to Systems of Records The Postal... Management Records USPS 300.000 SYSTEM NAME: Finance Records USPS 400.000 SYSTEM NAME: Supplier and Tenant...: Postage Meter and PC Postage Customer Data and Transaction Records Accordingly, for the reasons stated...
Factors interfering with the accuracy of five blood glucose meters used in Chinese hospitals.
Lv, Hong; Zhang, Guo-jun; Kang, Xi-xiong; Yuan, Hui; Lv, Yan-wei; Wang, Wen-wen; Randall, Rollins
2013-09-01
The prevalence of diabetes is increasing in China. Glucose control is very important in diabetic patients. The aim of this study was to compare the accuracy of five glucose meters used in Chinese hospitals with a reference method, in the absence and presence of various factors that may interfere with the meters. Within-run precision of the meters was evaluated include Roche Accu-Chek Inform®, Abbott Precision PCx FreeStyle®, Bayer Contour®, J&J LifeScan SureStep Flexx®, and Nova Biomedical StatStrip®. The interference of hematocrit level, maltose, ascorbic acid, acetaminophen, galactose, dopamine, and uric acid were tested in three levels of blood glucose, namely low, medium, and high concentrations. Accuracy (bias) of the meters and analytical interference by various factors were evaluated by comparing results obtained in whole blood specimens with those in plasma samples of the whole blood specimens run on the reference method. Impact of oxygen tension on above five blood glucose meters was detected. Precision was acceptable and slightly different between meters. There were no significant differences in the measurements between the meters and the reference method. The hematocrit level significantly interfered with all meters, except StatStrip. Measurements were affected to varying degrees by different substances at different glucose levels, e.g. acetaminophen and ascorbic acid (Freestyle), maltose and galactose (FreeStyle, Accu-Chek), uric acid (FreeStyle, Bayer Contour), and dopamine (Bayer Contour). The measurements with the five meters showed a good correlation with the plasma hexokinase reference method, but most were affected by the hematocrit level. Some meters also showed marked interference by other substances. © 2013 Wiley Periodicals, Inc.
Tunable Fabry-Perot etalon-based long-wavelength infrared imaging spectroradiometer.
Marinelli, W J; Gittins, C M; Gelb, A H; Green, B D
1999-04-20
Imaging spectrometry enables passive, stand-off detection and analysis of the chemical composition of gas plumes and surfaces over wide geographic areas. We describe the use of a long-wavelength infrared imaging spectroradiometer, comprised of a low-order tunable Fabry-Perot etalon coupled to a HgCdTe detector array, to perform multispectral detection of chemical vapor plumes. The tunable Fabry-Perot etalon used in this research provides coverage of the 9.5-14-microm spectral region with a resolution of 7-9 cm(-1). The etalon-based imaging system provides the opportunity to image a scene at only those wavelengths needed for chemical species identification and quantification and thereby minimize the data volume necessary for selective species detection. We present initial results using a brassboard imaging system for stand-off detection and quantification of chemical vapor plumes against near-ambient-temperature backgrounds. These data show detection limits of 22 parts per million by volume times meter (ppmv x m) and 0.6 ppmv x m for dimethyl methyphosphonate and SF6, respectively, for a gas/background DeltaT of 6 K. The system noise-equivalent spectral radiance is approximately 2 microW cm(-2) sr(-1) microm(-1). Model calculations are presented comparing the measured sensitivity of the sensor to the anticipated signal levels for two chemical release scenarios.
Huang, Fengchun; Zhang, Huilin; Wang, Lei; Lai, Weihua; Lin, Jianhan
2018-02-15
Combining double-layer capillary based high gradient immunomagnetic separation, invertase-nanocluster based signal amplification and glucose meter based signal detection, a novel biosensor was developed for sensitive and rapid detection of E. coli O157:H7 in this study. The streptavidin modified magnetic nanobeads (MNBs) were conjugated with the biotinylated polyclonal antibodies against E. coli O157:H7 to form the immune MNBs, which were captured by the high gradient magnetic field in the double-layer capillary to specifically separate and efficiently concentrate the target bacteria. Calcium chloride was used with the monoclonal antibodies against E. coli O157:H7 and the invertase to form the immune invertase-nanoclusters (INCs), which were used to react with the target bacteria to form the MNB-bacteria-INC complexes in the capillary. The sucrose was then injected into the capillary and catalyzed by the invertase on the complexes into the glucose, which was detected using the glucose meter to obtain the concentration of the glucose for final determination of the E. coli O157:H7 cells in the sample. A linear relationship between the readout of the glucose meter and the concentration of the E. coli O157:H7 cells (from 10 2 to 10 7 CFU/mL) was found and the lower detection limit of this biosensor was 79 CFU/mL. This biosensor might be extended for the detection of other foodborne pathogens by changing the antibodies and has shown the potential for the detection of foodborne pathogens in a large volume of sample to further increase the sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.
Cancer-meter: measure and cure.
Kashyap, Sunil Kumar; Sharma, Birendra Kumar; Banerjee, Amitabh
2017-05-01
This paper presents a theory and system on "Cancer-Meter'. This idea came through the statement that "cancer is curable if it is measurable". The Cancer-Meter proves that it is possible. This paper proposes the cancer-meter in two ways, theoretical and electronically, as per the measurement and treatment. By the mathematics, first part is defined but the second part is based on computer programming, electrical and electronics. Thus, the cancer-meter is a programmed-electrical-electronic device which measures and cures the cancer both.
NASA Technical Reports Server (NTRS)
Young, Roy M.; Montgomery, Edward E.; Montgomery, Sandy; Adams, Charles L.
2007-01-01
The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 separate, independent system design and development hardware demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L'Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter ground demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators. Descriptions of the system designs for both the ATK and L'Garde systems will be presented. Changes, additions and evolution of the system designs will be highlighted. A description of the modeling and analyses activities performed by both teams, as well as testing conducted to raise the TRL of solar sail technology will be presented. A summary of the results of model correlation activities will be presented. Finally, technology gaps identified during the assessment and gap closure plans will be presented, along with "lessons learned", subsequent planning activities and validation flight opportunities for solar sail propulsion technology.
[Hypobaric chamber as a test of the aircrew of Russain Air Forces].
Shishov, A A; Olenev, N I; Shishkin, A N; Filatov, V N
2014-04-01
Authors research clinical medical importance of hypobaric ascends to an attitude of 5000 meters for 20 minutes for detection of latent forms of diseases and assessment of professional health and ascends to an attitude of 5000 and 6000 meters for 5 minutes when performing psychophysiological training for high altitude flying. According to test of 1326 pilots of Russian Air Forces, including pilots with different diseases, hypobaric ascends showed high diagnostic effectiveness for the professional health assessment. By using of both methods it was revealed that frequency of detection of decreased tolerance to hypoxia is the same (in average in 2,7 and 3,1% of total number of patients). By ascends in 38 patients (2,9%) was revealed decreased tolerance to hypoxia of medium level. It indicated about low functional state and space capacity of pilots. It was proved that hypobaric ascends of 5000 and 6000 meters for 5 minutes could be considered as an effective method of checkup of aircrew for the aviation physical examination.
Summary of extensometric measurements in El Paso, Texas
Heywood, Charles E.
2003-01-01
Two counter-weighted-pipe borehole extensometers were installed on the left bank of the Rio Grande between El Paso, Texas, and Ciudad Juarez, Chihuahua, Mexico, in 1992. A shallow extensometer measures vertical compaction in the 6- to 100-meter aquifer-system depth interval. A deep extensometer measures vertical compaction in the 6- to 305-meter aquifer-system depth interval. Both extensometers are referenced to the same surface datum, which allows time-series differencing to determine vertical compaction in the depth interval between 100 and 305 meters. From April 2, 1993, through June 13, 2002, 1.6 centimeters of compaction occurred in the 6-to 305-m depth interval. Until February 1999, most aquifer-system compaction occurred in the deeper aquifer-system interval between 100 and 305 meters, from which ground water was extracted. After that time, compaction in the shallow interval from 6 to 100 meters was predominant and attained a maximum of 7.6 millimeters by June 13, 2002. Minor residual compaction is expected to continue; continued maintenance of the El Paso extensometers would document this process.
Optical clocks and relativity.
Chou, C W; Hume, D B; Rosenband, T; Wineland, D J
2010-09-24
Observers in relative motion or at different gravitational potentials measure disparate clock rates. These predictions of relativity have previously been observed with atomic clocks at high velocities and with large changes in elevation. We observed time dilation from relative speeds of less than 10 meters per second by comparing two optical atomic clocks connected by a 75-meter length of optical fiber. We can now also detect time dilation due to a change in height near Earth's surface of less than 1 meter. This technique may be extended to the field of geodesy, with applications in geophysics and hydrology as well as in space-based tests of fundamental physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monsabert, S. de; Lemmer, H.; Dinwiddie, D.
1995-10-01
In the past, most buildings, structures, and ship visits were not metered, and flat estimates were calculated based on various estimating techniques. The decomposition process was further complicated by the fact that many of the meters monitor consumption values only and do not provide demand or time of use data. This method of billing provides no incentives to the PWC customers to implement energy conservation programs, including load shedding, Energy Monitoring and Control Systems (EMCS), building shell improvements, low flow toilets and shower heads, efficient lighting systems, or other energy savings alternatives. Similarly, the method had no means of adjustmentmore » for seasonal or climatic variations outside of the norm. As an alternative to flat estimates, the Customized Utility Billing Integrated Control (CUBIC) system and the Graphical Data Input System (GDIS) were developed to better manage the data to the major claimant area users based on utilities usage factors, building size, weather data, and hours of operation. GDIS is a graphical database that assists PWC engineers in the development and maintenance of single-line utility diagrams of the facilities and meters. It functions as a drawing associate system and is written in AutoLISP for AutoCAD version 12. GDIS interprets the drawings and provides the facility-to-meter and meter-to-meter hierarchy data that are used by the CUBIC to allocate the billings. This paper reviews the design, development and implementation aspects of CUBIC/GDIS and discusses the benefits of this improved utilities management system.« less
Geerse, Daphne J; Coolen, Bert H; Roerdink, Melvyn
2015-01-01
Walking ability is frequently assessed with the 10-meter walking test (10MWT), which may be instrumented with multiple Kinect v2 sensors to complement the typical stopwatch-based time to walk 10 meters with quantitative gait information derived from Kinect's 3D body point's time series. The current study aimed to evaluate a multi-Kinect v2 set-up for quantitative gait assessments during the 10MWT against a gold-standard motion-registration system by determining between-systems agreement for body point's time series, spatiotemporal gait parameters and the time to walk 10 meters. To this end, the 10MWT was conducted at comfortable and maximum walking speed, while 3D full-body kinematics was concurrently recorded with the multi-Kinect v2 set-up and the Optotrak motion-registration system (i.e., the gold standard). Between-systems agreement for body point's time series was assessed with the intraclass correlation coefficient (ICC). Between-systems agreement was similarly determined for the gait parameters' walking speed, cadence, step length, stride length, step width, step time, stride time (all obtained for the intermediate 6 meters) and the time to walk 10 meters, complemented by Bland-Altman's bias and limits of agreement. Body point's time series agreed well between the motion-registration systems, particularly so for body points in motion. For both comfortable and maximum walking speeds, the between-systems agreement for the time to walk 10 meters and all gait parameters except step width was high (ICC ≥ 0.888), with negligible biases and narrow limits of agreement. Hence, body point's time series and gait parameters obtained with a multi-Kinect v2 set-up match well with those derived with a gold standard in 3D measurement accuracy. Future studies are recommended to test the clinical utility of the multi-Kinect v2 set-up to automate 10MWT assessments, thereby complementing the time to walk 10 meters with reliable spatiotemporal gait parameters obtained objectively in a quick, unobtrusive and patient-friendly manner.
Geerse, Daphne J.; Coolen, Bert H.; Roerdink, Melvyn
2015-01-01
Walking ability is frequently assessed with the 10-meter walking test (10MWT), which may be instrumented with multiple Kinect v2 sensors to complement the typical stopwatch-based time to walk 10 meters with quantitative gait information derived from Kinect’s 3D body point’s time series. The current study aimed to evaluate a multi-Kinect v2 set-up for quantitative gait assessments during the 10MWT against a gold-standard motion-registration system by determining between-systems agreement for body point’s time series, spatiotemporal gait parameters and the time to walk 10 meters. To this end, the 10MWT was conducted at comfortable and maximum walking speed, while 3D full-body kinematics was concurrently recorded with the multi-Kinect v2 set-up and the Optotrak motion-registration system (i.e., the gold standard). Between-systems agreement for body point’s time series was assessed with the intraclass correlation coefficient (ICC). Between-systems agreement was similarly determined for the gait parameters’ walking speed, cadence, step length, stride length, step width, step time, stride time (all obtained for the intermediate 6 meters) and the time to walk 10 meters, complemented by Bland-Altman’s bias and limits of agreement. Body point’s time series agreed well between the motion-registration systems, particularly so for body points in motion. For both comfortable and maximum walking speeds, the between-systems agreement for the time to walk 10 meters and all gait parameters except step width was high (ICC ≥ 0.888), with negligible biases and narrow limits of agreement. Hence, body point’s time series and gait parameters obtained with a multi-Kinect v2 set-up match well with those derived with a gold standard in 3D measurement accuracy. Future studies are recommended to test the clinical utility of the multi-Kinect v2 set-up to automate 10MWT assessments, thereby complementing the time to walk 10 meters with reliable spatiotemporal gait parameters obtained objectively in a quick, unobtrusive and patient-friendly manner. PMID:26461498
Deep belief networks for false alarm rejection in forward-looking ground-penetrating radar
NASA Astrophysics Data System (ADS)
Becker, John; Havens, Timothy C.; Pinar, Anthony; Schulz, Timothy J.
2015-05-01
Explosive hazards are one of the most deadly threats in modern conflicts. The U.S. Army is interested in a reliable way to detect these hazards at range. A promising way of accomplishing this task is using a forward-looking ground-penetrating radar (FLGPR) system. Recently, the Army has been testing a system that utilizes both L-band and X-band radar arrays on a vehicle mounted platform. Using data from this system, we sought to improve the performance of a constant false-alarm-rate (CFAR) prescreener through the use of a deep belief network (DBN). DBNs have also been shown to perform exceptionally well at generalized anomaly detection. They combine unsupervised pre-training with supervised fine-tuning to generate low-dimensional representations of high-dimensional input data. We seek to take advantage of these two properties by training a DBN on the features of the CFAR prescreener's false alarms (FAs) and then use that DBN to separate FAs from true positives. Our analysis shows that this method improves the detection statistics significantly. By training the DBN on a combination of image features, we were able to significantly increase the probability of detection while maintaining a nominal number of false alarms per square meter. Our research shows that DBNs are a good candidate for improving detection rates in FLGPR systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false What must a master meter or small liquefied... a master meter or small liquefied petroleum gas (LPG) operator do to implement this subpart? (a) General. No later than August 2, 2011 the operator of a master meter system or a small LPG operator must...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false What must a master meter or small liquefied... a master meter or small liquefied petroleum gas (LPG) operator do to implement this subpart? (a) General. No later than August 2, 2011 the operator of a master meter system or a small LPG operator must...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false What must a master meter or small liquefied... a master meter or small liquefied petroleum gas (LPG) operator do to implement this subpart? (a) General. No later than August 2, 2011 the operator of a master meter system or a small LPG operator must...
Jones, Amanda K; Gately, Rachael E; Kellogg, Tasia D; Zinn, Steven A; Govoni, Kristen E; Reed, Sarah A
2018-05-07
Prevention of metabolic diseases in small ruminants may improve production efficiency and profitability, yet ewes carrying multiples or who are in poor body condition are at increased susceptibility to develop ketosis. This study evaluated the hand-held Nova Vet Meter to accurately detect β-hydroxybutyric acid (BHBA) concentrations in ewes and determined the percentage of ewes at moderate (0.8 to 1.5 mmol/L BHBA) and greatest (≥1.6 mmol/L BHBA) risk to develop ketosis during late gestation. To validate the Nova Vet Meter, BHBA concentrations of 104 paired blood samples were measured using the Nova Vet Meter and gold-standard laboratory analysis. Receiver operating characteristics were calculated. The accuracy and sensitivity of detecting BHBA concentrations at 0.8 to 1.5 mmol/L were 94.2% and 97.3%, respectively. The accuracy and sensitivity of detecting BHBA concentrations ≥ 1.6 mmol/L were 98.0% and 50.0%, respectively. Ewe body weight (BW), body condition score (BCS), and BHBA of 117 ewes from three flocks were determined weekly during the four weeks before parturition. During the last three weeks of gestation >20% of ewes were identified with moderate risk to develop ketosis. During the last four weeks of gestation, ewes carrying triplets had reduced BCS (P = 0.0002) and increased BHBA concentrations (P < 0.0001) compared with singleton and twin pregnancies. Ewe BHBA did not correlate with lamb birth weight (R 2 = 0.003; P = 0.41). In conclusion, the Nova Vet Meter is suitable for sheep-side BHBA monitoring between 0.8 and 1.5 mmol/L, but further testing is necessary to evaluate BHBA readings ≥1.6 mmol/L. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sonic impedance technique detects flaws in polyurethane foam spray-on insulation
NASA Technical Reports Server (NTRS)
Haralson, H. S.; Haynes, J. L.
1970-01-01
Sonic impedance testing detects voids and unbonded regions as small as 1 inch in diameter by 0.03 inch thick. Measurements are made manually or by automatic scanning and the readout is made by meter or recorder.
Active bypass flow control for a seal in a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, Todd A.; Kimmel, Keith D.
An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wearsmore » In at least one embodiment, the metering device may include an annular ring having at least one metering orifice extending therethrough, whereby alignment of the metering orifice with the outlet may be adjustable to change a cross-sectional area of an opening of aligned portions of the outlet and the metering orifice.« less
Sheffield, Catherine A; Kane, Michael P; Bakst, Gary; Busch, Robert S; Abelseth, Jill M; Hamilton, Robert A
2009-09-01
This study compared the accuracy and precision of four value-added glucose meters. Finger stick glucose measurements in diabetes patients were performed using the Abbott Diabetes Care (Alameda, CA) Optium, Diagnostic Devices, Inc. (Miami, FL) DDI Prodigy, Home Diagnostics, Inc. (Fort Lauderdale, FL) HDI True Track Smart System, and Arkray, USA (Minneapolis, MN) HypoGuard Assure Pro. Finger glucose measurements were compared with laboratory reference results. Accuracy was assessed by a Clarke error grid analysis (EGA), a Parkes EGA, and within 5%, 10%, 15%, and 20% of the laboratory value criteria (chi2 analysis). Meter precision was determined by calculating absolute mean differences in glucose values between duplicate samples (Kruskal-Wallis test). Finger sticks were obtained from 125 diabetes patients, of which 90.4% were Caucasian, 51.2% were female, 83.2% had type 2 diabetes, and average age of 59 years (SD 14 years). Mean venipuncture blood glucose was 151 mg/dL (SD +/-65 mg/dL; range, 58-474 mg/dL). Clinical accuracy by Clarke EGA was demonstrated in 94% of Optium, 82% of Prodigy, 61% of True Track, and 77% of the Assure Pro samples (P < 0.05 for Optium and True Track compared to all others). By Parkes EGA, the True Track was significantly less accurate than the other meters. Within 5% accuracy was achieved in 34%, 24%, 29%, and 13%, respectively (P < 0.05 for Optium, Prodigy, and Assure Pro compared to True Track). Within 10% accuracy was significantly greater for the Optium, Prodigy, and Assure Pro compared to True Track. Significantly more Optium results demonstrated within 15% and 20% accuracy compared to the other meter systems. The HDI True Track was significantly less precise than the other meter systems. The Abbott Optium was significantly more accurate than the other meter systems, whereas the HDI True Track was significantly less accurate and less precise compared to the other meter systems.
Multicore photonic crystal fiber force meters
NASA Astrophysics Data System (ADS)
Reimlinger, M.; Colalillo, A.; Coompson, J.; Wynne, R.
2011-04-01
A silica based three core photonic crystal fiber (PCF) force meter with fast response times (<30μs) for low wind speed detection is presented. Results are provided for PCF structures containing cores with varied lattice spacing. Force meters with high spatial resolution (sample regions <10cm) specially outfitted for extreme environmental conditions are of interest to both industry and basic research institutions. The featured PCF force meter exhibited sensitivities that agreed with theoretical predictions that are useful for the detection of minimum displacements for wind speeds <30m/s. The results of this investigation are relevant to civil engineering applications including urban sensing technologies that involve air quality monitoring. The deflection of the PCF detection interface was measured as a function of the fiber deflection or the applied force (e.g. wind speed). The three core PCF has a core diameter of 3.9μm, outer diameter of 132.5μm and 7.56μm core-core spacing. A 4cm length of the PCF is attached to the surface of a thin metal beam. One end of the PCF section is fusion spliced to a single mode fiber (SMF) at the fiber input. The remaining fiber end is coupled to a CCD camera with a lens at the PCF output. The applied force deflects the supported PCF such that the intensity distribution of the optical field for the multiple cores changes as a function of displacement. Experimental results from static deflection measurements are in agreement with coupled-mode theory and simple beam deflection theory models.
40 CFR 90.420 - CVS concept of exhaust gas sampling system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...
40 CFR 90.420 - CVS concept of exhaust gas sampling system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...
40 CFR 90.420 - CVS concept of exhaust gas sampling system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...
40 CFR 90.420 - CVS concept of exhaust gas sampling system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...
40 CFR 90.420 - CVS concept of exhaust gas sampling system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...
Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Najafi, Massieh; Auslander, David M.; Bartlett, Peter L.
2010-05-30
Many studies have shown that energy savings of five to fifteen percent are achievable in commercial buildings by detecting and correcting building faults, and optimizing building control systems. However, in spite of good progress in developing tools for determining HVAC diagnostics, methods to detect faults in HVAC systems are still generally undeveloped. Most approaches use numerical filtering or parameter estimation methods to compare data from energy meters and building sensors to predictions from mathematical or statistical models. They are effective when models are relatively accurate and data contain few errors. In this paper, we address the case where models aremore » imperfect and data are variable, uncertain, and can contain error. We apply a Bayesian updating approach that is systematic in managing and accounting for most forms of model and data errors. The proposed method uses both knowledge of first principle modeling and empirical results to analyze the system performance within the boundaries defined by practical constraints. We demonstrate the approach by detecting faults in commercial building air handling units. We find that the limitations that exist in air handling unit diagnostics due to practical constraints can generally be effectively addressed through the proposed approach.« less
Slit-lamp photography made easy by a spot metering system.
Khaw, P T; Elkington, A R
1988-01-01
The use of a standard 35 mm camera with a spot metering system to take slit-lamp photographs is described. This system is mounted on a standard Haag-Streit slit-lamp and can be used with good results even by inexperienced operators. Images PMID:3390424
DOT National Transportation Integrated Search
2006-12-01
Over the last several years, researchers at the University of Arizonas ATLAS Center have developed an adaptive ramp : metering system referred to as MILOS (Multi-Objective, Integrated, Large-Scale, Optimized System). The goal of this project : is ...
Standoff detection of explosive molecules using nanosecond gated Raman spectroscopy
NASA Astrophysics Data System (ADS)
Chung, Jin Hyuk; Cho, Soo Gyeong
2013-06-01
Recently, improvised explosive device (IED) has been a serious threat for many countries. One of the approaches to alleviate this threat is standoff detection of explosive molecules used in IEDs. Raman spectroscopy is a prospective method among many technologies under research to achieve this goal. It provides unique information of the target materials, through which the ingredients used in IEDs can be analyzed and identified. The main problem of standoff Raman spectroscopic detection is the large background noise hindering weak Raman signals from the target samples. Typical background noise comes from both ambient fluorescent lights indoor and sunlight outdoor whose intensities are usually much larger than that of Raman scattering from the sample. Under the proper condition using pulse laser and ICCD camera with nanosecond pulse width and gating technology, we succeed to separate and remove these background noises from Raman signals. For this experiment, we build an optical system for standoff detection of explosive molecules. We use 532 nm, 10 Hz, Q-switching Nd:YAG laser as light source, and ICCD camera triggered by laser Qswitching time with proper gate delay regarding the flight time of Raman from target materials. Our detection system is successfully applied to detect and identify more than 20 ingredients of IEDs including TNT, RDX, and HMX which are located 10 to 54 meters away from the system.
Weak-value amplification as an optimal metrological protocol
NASA Astrophysics Data System (ADS)
Alves, G. Bié; Escher, B. M.; de Matos Filho, R. L.; Zagury, N.; Davidovich, L.
2015-06-01
The implementation of weak-value amplification requires the pre- and postselection of states of a quantum system, followed by the observation of the response of the meter, which interacts weakly with the system. Data acquisition from the meter is conditioned to successful postselection events. Here we derive an optimal postselection procedure for estimating the coupling constant between system and meter and show that it leads both to weak-value amplification and to the saturation of the quantum Fisher information, under conditions fulfilled by all previously reported experiments on the amplification of weak signals. For most of the preselected states, full information on the coupling constant can be extracted from the meter data set alone, while for a small fraction of the space of preselected states, it must be obtained from the postselection statistics.
Wireless infrared computer control
NASA Astrophysics Data System (ADS)
Chen, George C.; He, Xiaofei
2004-04-01
Wireless mouse is not restricted by cable"s length and has advantage over its wired counterpart. However, all the mice available in the market have detection range less than 2 meters and angular coverage less than 180 degrees. Furthermore, commercial infrared mice are based on track ball and rollers to detect movements. This restricts them to be used in those occasions where users want to have dynamic movement, such as presentations and meetings etc. This paper presents our newly developed infrared wireless mouse, which has a detection range of 6 meters and angular coverage of 180 degrees. This new mouse uses buttons instead of traditional track ball and is developed to be a hand-held device like remote controller. It enables users to control cursor with a distance closed to computer and the mouse to be free from computer operation.
Simplified Processing Method for Meter Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, Kimberly M.; Colotelo, Alison H. A.; Downs, Janelle L.
2015-11-01
Simple/Quick metered data processing method that can be used for Army Metered Data Management System (MDMS) and Logistics Innovation Agency data, but may also be useful for other large data sets. Intended for large data sets when analyst has little information about the buildings.
Electro-optical equivalent calibration technology for high-energy laser energy meters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Ji Feng, E-mail: wjfcom2000@163.com; Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900; Graduate School of China Academy of Engineering Physics, Beijing 100088
Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precisionmore » is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).« less
Landsat Data Continuity Mission Calibration and Validation
NASA Technical Reports Server (NTRS)
Markham, Brian L.; Dabney, Philip W.; Storey, James C.; Morfitt, Ron; Knight, Ed; Kvaran, Geir; Lee, Kenton
2008-01-01
The primary payload for the Landsat Data Continuity Mission (LDCM) is the Operational Land Imager (OLI), being built by Ball Aerospace and Technologies, under contract to NASA. The OLI has spectral bands similar to the Landsat-7 ETM+, minus the thermal band and with two new bands, a 443 nm band and 1375 nm cirrus detection band. On-board calibration systems include two solar diffusers (routine and pristine), a shutter and three sets of internal lamps (routine, backup and pristine). Being a pushbroom opposed to a whiskbroom design of ETM+, the system poses new challenges for characterization and calibration, chief among them being the large focal plane with 75000+ detectors. A comprehensive characterization and calibration plan is in place for the instrument and the data throughout the mission including Ball, NASA and the United States Geological Survey, which will take over operations of LDCM after on-orbit commissioning. Driving radiometric calibration requirements for OLI data include radiance calibration to 5% uncertainty (1 q); reflectance calibration to 3% uncertainty (1 q) and relative (detector-to-detector) calibration to 0.5% (J (r). Driving geometric calibration requirements for OLI include bandto- band registration of 4.5 meters (90% confidence), absolute geodetic accuracy of 65 meters (90% CE) and relative geodetic accuracy of 25 meters (90% CE). Key spectral, spatial and radiometric characterization of the OLI will occur in thermal vacuum at Ball Aerospace. During commissioning the OLI will be characterized and calibrated using celestial (sun, moon, stars) sources and terrestrial sources. The USGS EROS ground processing system will incorporate an image assessment system similar to Landsat-7 for characterization and calibration. This system will have the added benefit that characterization data will be extracted as part of the normal image data processing, so that the characterization data available will be significantly larger than for Landsat-7 ETM+.
Xiao, Wei; Xiao, Meng; Fu, Qiangqiang; Yu, Shiting; Shen, Haicong; Bian, Hongfen; Tang, Yong
2016-11-08
The detection of environmental mercury (Hg) contamination requires complex and expensive instruments and professional technicians. We present a simple, sensitive, and portable Hg 2+ detection system based on a smartphone and colorimetric aptamer nanosensor. A smartphone equipped with a light meter app was used to detect, record, and process signals from a smartphone-based microwell reader (MR S-phone), which is composed of a simple light source and a miniaturized assay platform. The colorimetric readout of the aptamer nanosensor is based on a specific interaction between the selected aptamer and Hg 2+ , which leads to a color change in the reaction solution due to an aggregation of gold nanoparticles (AuNPs). The MR S-phone-based AuNPs-aptamer colorimetric sensor system could reliably detect Hg 2+ in both tap water and Pearl River water samples and produced a linear colorimetric readout of Hg 2+ concentration in the range of 1 ng/mL-32 ng/mL with a correlation of 0.991, and a limit of detection (LOD) of 0.28 ng/mL for Hg 2+ . The detection could be quickly completed in only 20 min. Our novel mercury detection assay is simple, rapid, and sensitive, and it provides new strategies for the on-site detection of mercury contamination in any environment.
Xiao, Wei; Xiao, Meng; Fu, Qiangqiang; Yu, Shiting; Shen, Haicong; Bian, Hongfen; Tang, Yong
2016-01-01
The detection of environmental mercury (Hg) contamination requires complex and expensive instruments and professional technicians. We present a simple, sensitive, and portable Hg2+ detection system based on a smartphone and colorimetric aptamer nanosensor. A smartphone equipped with a light meter app was used to detect, record, and process signals from a smartphone-based microwell reader (MR S-phone), which is composed of a simple light source and a miniaturized assay platform. The colorimetric readout of the aptamer nanosensor is based on a specific interaction between the selected aptamer and Hg2+, which leads to a color change in the reaction solution due to an aggregation of gold nanoparticles (AuNPs). The MR S-phone-based AuNPs-aptamer colorimetric sensor system could reliably detect Hg2+ in both tap water and Pearl River water samples and produced a linear colorimetric readout of Hg2+ concentration in the range of 1 ng/mL–32 ng/mL with a correlation of 0.991, and a limit of detection (LOD) of 0.28 ng/mL for Hg2+. The detection could be quickly completed in only 20 min. Our novel mercury detection assay is simple, rapid, and sensitive, and it provides new strategies for the on-site detection of mercury contamination in any environment. PMID:27834794
The Anti-RFI Design of Intelligent Electric Energy Meters with UHF RFID
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-03-01
In order to solve the existing artificial meter reading watt-hour meter industry is still slow and inventory of common problems, using the uhf radio frequency identification (RFID) technology and intelligent watt-hour meter depth fusion, which has a one-time read multiple tags, identification distance, high transmission rate, high reliability, etc, while retaining the original asset management functions, in order to ensure the uhf RFID and minimum impact on the operation of the intelligent watt-hour meter, proposed to improve the stability of the electric meter system while working at the same time, this paper designs the uhf RFID intelligent watt-hour meter radio frequency interference resistance, put forward to improve intelligent watt-hour meter electromagnetic compatibility design train of thought, and introduced its power and the hardware circuit design of printed circuit board, etc.
Far-Infrared Photometry with an 0.4-Meter Liquid Helium Cooled Balloon-Borne Telescope. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Jacobson, M. R.
1977-01-01
A 0.4-meter aperture, liquid helium cooled multichannel far-infrared balloon-borne telescope was constructed to survey the galactic plane. Nine new sources, above a 3-sigma confidence level of 1300 Jy, were identified. Although two-thirds of the scanned area was more than 10 degrees from the galactic plane, no sources were detected in that region; all nine fell within 10 degrees and eight of those within 4 degrees of the galactic equator. Correlations with visible, compact H lines associated with radio continuum and with sources displaying spectra steeply rising between 11 and 20 microns were noted, while stellar objects were not detected.
40 CFR 60.3 - Units and abbreviations.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) System International (SI) units of measure: A—ampere g—gram Hz—hertz J—joule K—degree Kelvin kg—kilogram m—meter m3—cubic meter mg—milligram—10 −3 gram mm—millimeter—10 −3 meter Mg—megagram—106 gram mol—mole N—newton ng—nanogram—10 −9 gram nm—nanometer—10 −9 meter Pa—pascal s—second V—volt W—watt Ω—ohm µg...
40 CFR 60.3 - Units and abbreviations.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) System International (SI) units of measure: A—ampere g—gram Hz—hertz J—joule K—degree Kelvin kg—kilogram m—meter m3—cubic meter mg—milligram—10 −3 gram mm—millimeter—10 −3 meter Mg—megagram—106 gram mol—mole N—newton ng—nanogram—10 −9 gram nm—nanometer—10 −9 meter Pa—pascal s—second V—volt W—watt Ω—ohm µg...
40 CFR 60.3 - Units and abbreviations.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) System International (SI) units of measure: A—ampere g—gram Hz—hertz J—joule K—degree Kelvin kg—kilogram m—meter m3—cubic meter mg—milligram—10 −3 gram mm—millimeter—10 −3 meter Mg—megagram—106 gram mol—mole N—newton ng—nanogram—10 −9 gram nm—nanometer—10 −9 meter Pa—pascal s—second V—volt W—watt Ω—ohm µg...
40 CFR 60.3 - Units and abbreviations.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) System International (SI) units of measure: A—ampere g—gram Hz—hertz J—joule K—degree Kelvin kg—kilogram m—meter m3—cubic meter mg—milligram—10 −3 gram mm—millimeter—10 −3 meter Mg—megagram—106 gram mol—mole N—newton ng—nanogram—10 −9 gram nm—nanometer—10 −9 meter Pa—pascal s—second V—volt W—watt Ω—ohm µg...
Accuracy of Cycling Power Meters against a Mathematical Model of Treadmill Cycling.
Maier, Thomas; Schmid, Lucas; Müller, Beat; Steiner, Thomas; Wehrlin, Jon Peter
2017-06-01
The aim of this study was to compare the accuracy among a high number of current mobile cycling power meters used by elite and recreational cyclists against a first principle-based mathematical model of treadmill cycling. 54 power meters from 9 manufacturers used by 32 cyclists were calibrated. While the cyclist coasted downhill on a motorised treadmill, a back-pulling system was adjusted to counter the downhill force. The system was then loaded 3 times with 4 different masses while the cyclist pedalled to keep his position. The mean deviation (trueness) to the model and coefficient of variation (precision) were analysed. The mean deviations of the power meters were -0.9±3.2% (mean±SD) with 6 power meters deviating by more than±5%. The coefficients of variation of the power meters were 1.2±0.9% (mean±SD), with Stages varying more than SRM (p<0.001) and PowerTap (p<0.001). In conclusion, current power meters used by elite and recreational cyclists vary considerably in their trueness; precision is generally high but differs between manufacturers. Calibrating and adjusting the trueness of every power meter against a first principle-based reference is advised for accurate measurements. © Georg Thieme Verlag KG Stuttgart · New York.
STORM-SEWER FLOW MEASUREMENT AND RECORDING SYSTEM.
Kilpatrick, Frederick A.; Kaehrle, William R.
1986-01-01
A comprehensive study and development of instruments and techniques for measuring all components of flow in a storm-sewer drainage system were undertaken by the U. S. Geological Survey under the sponsorship of FHWA. The study involved laboratory and field calibration and testing of measuring flumes, pipe insert meters, weirs, and electromagnetic velocity meters as well as the development and calibration of pneumatic bubbler and pressure transducer head-measuring systems. Tracer dilution and acoustic-flowmeter measurements were used in field verification tests. A single micrologger was used to record data from all the instruments and also to activate on command the electromagnetic velocity meter and tracer dilution systems.
Stand-off detection of plant-produced volatile organic compounds using short-range Raman LIDAR
NASA Astrophysics Data System (ADS)
Johnson, Lewis; Barnett, Cleon; Brown, Christopher; Crawford, Devron; Tumlinson, James
2004-03-01
Several plant species release volatile organic compounds (VOCs) when under stresses such as herbivore feeding attack. The release of these plant-produced VOCs (i.e. terpenes) triggers the release of active biochemical defenses, which target the attacker. In some cases, the VOCs send cues to nearby carnivorous predators to attract them to the feeding herbivore. Volatile compounds are released both locally by damaged leaves and systemically by the rest of the plant. These compounds are released in large quantities, which facilitate detection of pests in the field by parasitoids. Detecting the plant"s VOC emissions as a function of various parameters (e.g. ambient temperature, atmospheric nitrogen levels, etc.) is essential to designing effective biological control systems. In addition these VOC releases may serve as early warning indicator of chemo-bio attacks. By combining Raman spectroscopy techniques with Laser Remote Sensing (LIDAR) systems, we are developing a Standoff detection system. Initial results indicate that is it possible to detect and differentiate between various terpenes, plant species, and other chemical compounds at distances greater than 12 meters. Currently, the system uses the 2nd harmonic of a Nd:YAG; however plans are underway to improve the Raman signal by moving the illumination wavelength into the solar-blind UV region. We report on our initial efforts of designing and characterizing this in a laboratory proof of concept system. We envision that this effort will lead to the design of a portable field-deployable system to rapidly characterize, with a high spatial resolution, large crops and other fields.
Evaluation of two portable meters for determination of blood triglyceride concentration in dogs.
Kluger, Elissa K; Dhand, Navneet K; Malik, Richard; Ilkin, William J; Snow, David H; Govendir, Merran
2010-02-01
To evaluate agreement between 2 portable triglyceride meters and a veterinary laboratory for measurement of blood triglyceride concentrations in dogs and evaluate effects of Hct and blood volume analyzed. 97 blood samples collected from 60 dogs. Triglyceride concentrations were measured in blood by use of 2 meters and compared with serum triglyceride concentrations determined by a veterinary laboratory. Within- and between-day precision, accuracy, and effects of blood volume and Hct were analyzed. Accuracy of both meters varied with triglyceride concentration, although both accurately delineated dogs with triglyceride concentrations < 180 mg/dL versus > or = 180 mg/dL. One meter had results with excellent overall correlation with results of the standard laboratory method, with a concordance correlation coefficient of 0.94 and mean difference of 20.3 mg/dL. The other meter had a good overall concordance correlation coefficient of 0.86 with a higher absolute mean difference of -27.7 mg/dL. Results were only affected by blood volume; triglyceride concentrations determined via both meters were significantly lower when 7 microL of EDTA-anticoagulated blood was used, compared with larger volumes. 1 meter had greater accuracy in the range of 140 to 400 mg/dL and was therefore well suited to detect hypertriglyceridemia. The other meter was accurate with triglyceride values < 140 mg/dL and yielded results similar to those of the veterinary laboratory in the range of 140 to 400 mg/dL, therefore being suitable for determination of triglyceride concentrations in nonfed dogs and dogs with mildly high concentrations.
Design and test of a 2m x 4m DART system
NASA Technical Reports Server (NTRS)
Tolomeo, J.; Loane, J.; Cross, G.; Tenerelli, D.; Sable, B.; Decker, T.; Nelson, T.; Joseph, B.; Windes, C.; Kokawa, D.;
2003-01-01
A 2 meter by 4 meter DART (dual anamorphic reflector telescope) system has been designed and fabricated using thin stretched mesh reflectors. This report documents the structural configuration, test preparation, test results, and analysis correlation.
On-site flow calibration of turbine meters for natural gas custody transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ting, V.C.; Schexnayder, L.L.; Conkling, D.B.
1991-05-01
This paper presents the design criteria, performance characteristics, and calibration procedures relating to a turbine-meter flow-calibration facility used in the high-volume custody transfer of natural gas. The facility, located in Venice, LA, is owned and operated by Chevron U.S.A. Inc. and is used to meter sales volumes of up to 500 MMscf/D (14.16 {times} 10 std m{sup 3}/d) at a nominal operating pressure of 1,000 psig (6.9 MPa). The system includes three 12-in. (30.48 cm) turbine meters used for sales-volume measurement, a bank of sonic nozzles, and a master turbine meter connected in series with the sales meters. The sonicmore » nozzles and master meter serve as flow-proving and -calibration devices. sonic nozzles are recommended by the turbine-meter standard for meter calibration. This paper examines the performance of on-site calibration of gas turbine meters. The Venice facility successfully demonstrated that on-site calibration of gas-metering devices can ensure accurate gas-flow measurement under field conditions.« less
Two laboratory methods for the calibration of GPS speed meters
NASA Astrophysics Data System (ADS)
Bai, Yin; Sun, Qiao; Du, Lei; Yu, Mei; Bai, Jie
2015-01-01
The set-ups of two calibration systems are presented to investigate calibration methods of GPS speed meters. The GPS speed meter calibrated is a special type of high accuracy speed meter for vehicles which uses Doppler demodulation of GPS signals to calculate the measured speed of a moving target. Three experiments are performed: including simulated calibration, field-test signal replay calibration, and in-field test comparison with an optical speed meter. The experiments are conducted at specific speeds in the range of 40-180 km h-1 with the same GPS speed meter as the device under calibration. The evaluation of measurement results validates both methods for calibrating GPS speed meters. The relative deviations between the measurement results of the GPS-based high accuracy speed meter and those of the optical speed meter are analyzed, and the equivalent uncertainty of the comparison is evaluated. The comparison results justify the utilization of GPS speed meters as reference equipment if no fewer than seven satellites are available. This study contributes to the widespread use of GPS-based high accuracy speed meters as legal reference equipment in traffic speed metrology.
Enhanced Detection of Sea-Disposed Man-Made Objects in Backscatter Data
NASA Astrophysics Data System (ADS)
Edwards, M.; Davis, R. B.
2016-12-01
The Hawai'i Undersea Military Munitions Assessment (HUMMA) project developed software to increase data visualization capabilities applicable to seafloor reflectivity datasets acquired by a variety of bottom-mapping sonar systems. The purpose of these improvements is to detect different intensity values within an arbitrary amplitude range that may be associated with relative target reflectivity as well as extend the overall amplitude range across which detailed dynamic contrast may be effectively displayed. The backscatter dataset used to develop this software imaged tens of thousands of reflective targets resting on the seabed that were systematically sea disposed south of Oahu, Hawaii, around the end of World War II in waters ranging from 300-600 meters depth. Human-occupied and remotely operated vehicles conducted ground-truth video and photographic reconnaissance of thousands of these reflective targets, documenting and geo-referencing long curvilinear trials of items including munitions, paint cans, airplane parts, scuttled ships, cars and bundled anti-submarine nets. Edwards et al. [2012] determined that most individual trails consist of objects of one particular type. The software described in this presentation, in combination with the ground-truth images, was developed to help recognize different types of objects based on reflectivity, size, and shape from altitudes of tens of meters above the seabed. The fundamental goal of the software is to facilitate rapid underway detection and geo-location of specific sea-disposed objects so their impact on the environment can be assessed.
Rao, Anoop; Wiley, Meg; Iyengar, Sridhar; Nadeau, Dan; Carnevale, Julie
2010-01-01
Background Studies have shown that controlling blood glucose can reduce the onset and progression of the long-term microvascular and neuropathic complications associated with the chronic course of diabetes mellitus. Improved glycemic control can be achieved by frequent testing combined with changes in medication, exercise, and diet. Technological advancements have enabled improvements in analytical accuracy of meters, and this paper explores two such parameters to which that accuracy can be attributed. Methods Four blood glucose monitoring systems (with or without dynamic electrochemistry algorithms, codeless or requiring coding prior to testing) were evaluated and compared with respect to their accuracy. Results Altogether, 108 blood glucose values were obtained for each system from 54 study participants and compared with the reference values. The analysis depicted in the International Organization for Standardization table format indicates that the devices with dynamic electrochemistry and the codeless feature had the highest proportion of acceptable results overall (System A, 101/103). Results were significant when compared at the 10% bias level with meters that were codeless and utilized static electrochemistry (p = .017) or systems that had static electrochemistry but needed coding (p = .008). Conclusions Analytical performance of these blood glucose meters differed significantly depending on their technologic features. Meters that utilized dynamic electrochemistry and did not require coding were more accurate than meters that used static electrochemistry or required coding. PMID:20167178
Rao, Anoop; Wiley, Meg; Iyengar, Sridhar; Nadeau, Dan; Carnevale, Julie
2010-01-01
Studies have shown that controlling blood glucose can reduce the onset and progression of the long-term microvascular and neuropathic complications associated with the chronic course of diabetes mellitus. Improved glycemic control can be achieved by frequent testing combined with changes in medication, exercise, and diet. Technological advancements have enabled improvements in analytical accuracy of meters, and this paper explores two such parameters to which that accuracy can be attributed. Four blood glucose monitoring systems (with or without dynamic electrochemistry algorithms, codeless or requiring coding prior to testing) were evaluated and compared with respect to their accuracy. Altogether, 108 blood glucose values were obtained for each system from 54 study participants and compared with the reference values. The analysis depicted in the International Organization for Standardization table format indicates that the devices with dynamic electrochemistry and the codeless feature had the highest proportion of acceptable results overall (System A, 101/103). Results were significant when compared at the 10% bias level with meters that were codeless and utilized static electrochemistry (p = .017) or systems that had static electrochemistry but needed coding (p = .008). Analytical performance of these blood glucose meters differed significantly depending on their technologic features. Meters that utilized dynamic electrochemistry and did not require coding were more accurate than meters that used static electrochemistry or required coding. 2010 Diabetes Technology Society.
The James Webb Space Telescope and its Potential for Exoplanet Science
NASA Technical Reports Server (NTRS)
Clampin, Mark
2008-01-01
The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 microns to 28 microns. JWST s primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. Recent progress in hardware development for the observatory will be presented, including a discussion of the status of JWST s optical system and Beryllium mirror fabrication, progress with sunshield prototypes, and recent changes in the integration and test configuration. We also review the expected scientific performance of the observatory for observations of exosolar planets by means of transit imaging and spectroscopy and direct imaging. We also review the recent discovery of Fomalhaut B and implications for debris disk imaging nd exoplanet detection with JWST.
Space Debris Measurements using the Advanced Modular Incoherent Scatter Radar
NASA Astrophysics Data System (ADS)
Nicolls, M.
The Advanced Modular Incoherent Scatter Radar (AMISR) is a modular, mobile UHF phased-array radar facility developed and used for scientific studies of the ionosphere. The radars are completely remotely operated and allow for pulse-to-pulse beam steering over the field-of-view. A satellite and debris tracking capability fully interleaved with scientific operations has been developed, and the AMISR systems are now used to routinely observe LEO space debris, with the ability to simultaneously track and detect multiple objects. The system makes use of wide-bandwidth radar pulses and coherent processing to detect objects as small as 5-10 cm in size through LEO, achieving a range resolution better than 20 meters for LEO targets. The interleaved operations allow for ionospheric effects on UHF space debris measurements, such as dispersion, to be assessed. The radar architecture, interleaved operations, and impact of space weather on the measurements will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, P. L.; Decman, D.; Prasad, M.
An SNM attribute Information Barrier (IB) system was developed for a 2011 US/UK Exercise. The system was modified and extensively tested in a 2013-2014 US-UK Measurement Campaign. This work demonstrated rapid deployment of an IB system for potential treaty use. The system utilizes an Ortec Fission Meter neutron multiplicity counter and custom computer code. The system demonstrates a proof-of-principle automated Pu-240 mass determination with an information barrier. After a software start command is issued, the system automatically acquires and downloads data, performs an analysis, and displays the results. This system conveys the results of a Pu mass threshold measurements inmore » a way the does not reveal sensitive information. In full IB mode, only the pass/fail result is displayed as a “Mass <= Threshold Amount” or “Mass >= Threshold Amount” as shown in Figure 4. This can easily be adapted to a red/green “lights” display similar to the Detective IB system for Pu isotopics as shown in Figure 6. In test mode, more detailed information is displayed. The code can also read in, analyze, and display results from previously acquired or simulated data. Because the equipment is commercial-off-the-shelf (COTS), the system demonstrates a low-cost short-lead-time technology for treaty SNM attribute measurements. A deployed system will likely require integration of additional authentication and tamper-indicating technologies. This will be discussed for the project in this and future progress reports.« less
Design Enhancements of the Fourier Kelvin Stellar Interferometer to Enable Detection of Earth Twins
NASA Technical Reports Server (NTRS)
Barry, Richard K.; Danchi, William C.; Lopez, Bruno; Rinehart, Stephan; Augereau, Jean-Charles; Beust, Herve; Bonfils, Xavier; Borde, Pascal; Kern, Pierre; Leger, Alain;
2009-01-01
During the last few years, considerable effort has been directed towards very large-scale (> $5 billion) missions to detect and characterize Mars-radius to Earth-radius planets around nearby stars; such as the Terrestrial Planet Finder Interferometer and Darwin missions. However, technological issues such as formation flying and control of systematic noise sources will likely prevent these missions from entering Phase A until at least the end of the next decade. Presently more than 350 planets have been discovered by a variety of techniques, and little is known about the majority of them other than their approximate mass. However, a simplified nulling interferometer operating in the near- to mid-infrared (e.g. approx. 5-15 microns), like the enhanced version of the Fourier Kelvin Stellar Interferometer (FKSI), can characterize the atmospheres of a large sample of the known planets - including Earth twins. Many other scientific problems can be addressed with a system like FKSI, including the studies of debris disks, active galactic nuclei, and low mass companions around nearby stars. We report results of a recent engineering study on an enhanced version of FKSI that includes 1-meter primary mirrors, 20-meter boom length, and an advanced sun shield that will provide a 45-degree FOR and 40K operating temperature for all optics including siderostats.
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Ryan, Robert E.; Smoot, James; Kuper, Phillip; Prados, Donald; Russell, Jeffrey; Ross, Kenton; Gasser, Gerald; Sader, Steven; McKellip, Rodney
2007-01-01
This report details one of three experiments performed during FY 2007 for the NASA RPC (Rapid Prototyping Capability) at Stennis Space Center. This RPC experiment assesses the potential of VIIRS (Visible/Infrared Imager/Radiometer Suite) and MODIS (Moderate Resolution Imaging Spectroradiometer) data for detecting and monitoring forest defoliation from the non-native Eurasian gypsy moth (Lymantria dispar). The intent of the RPC experiment was to assess the degree to which VIIRS data can provide forest disturbance monitoring information as an input to a forest threat EWS (Early Warning System) as compared to the level of information that can be obtained from MODIS data. The USDA Forest Service (USFS) plans to use MODIS products for generating broad-scaled, regional monitoring products as input to an EWS for forest health threat assessment. NASA SSC is helping the USFS to evaluate and integrate currently available satellite remote sensing technologies and data products for the EWS, including the use of MODIS products for regional monitoring of forest disturbance. Gypsy moth defoliation of the mid-Appalachian highland region was selected as a case study. Gypsy moth is one of eight major forest insect threats listed in the Healthy Forest Restoration Act (HFRA) of 2003; the gypsy moth threatens eastern U.S. hardwood forests, which are also a concern highlighted in the HFRA of 2003. This region was selected for the project because extensive gypsy moth defoliation occurred there over multiple years during the MODIS operational period. This RPC experiment is relevant to several nationally important mapping applications, including agricultural efficiency, coastal management, ecological forecasting, disaster management, and carbon management. In this experiment, MODIS data and VIIRS data simulated from MODIS were assessed for their ability to contribute broad, regional geospatial information on gypsy moth defoliation. Landsat and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) data were used to assess the quality of gypsy moth defoliation mapping products derived from MODIS data and from simulated VIIRS data. The project focused on use of data from MODIS Terra as opposed to MODIS Aqua mainly because only MODIS Terra data was collected during 2000 and 2001-years with comparatively high amounts of gypsy moth defoliation within the study area. The project assessed the quality of VIIRS data simulation products. Hyperion data was employed to assess the quality of MODIS-based VIIRS simulation datasets using image correlation analysis techniques. The ART (Application Research Toolbox) software was used for data simulation. Correlation analysis between MODIS-simulated VIIRS data and Hyperion-simulated VIIRS data for red, NIR (near-infrared), and NDVI (Normalized Difference Vegetation Index) image data products collectively indicate that useful, effective VIIRS simulations can be produced using Hyperion and MODIS data sources. The r(exp 2) for red, NIR, and NDVI products were 0.56, 0.63, and 0.62, respectively, indicating a moderately high correlation between the 2 data sources. Temporal decorrelation from different data acquisition times and image misregistration may have lowered correlation results. The RPC experiment also generated MODIS-based time series data products using the TSPT (Time Series Product Tool) software. Time series of simulated VIIRS NDVI products were produced at approximately 400-meter resolution GSD (Ground Sampling Distance) at nadir for comparison to MODIS NDVI products at either 250- or 500-meter GSD. The project also computed MODIS (MOD02) NDMI (Normalized Difference Moisture Index) products at 500-meter GSD for comparison to NDVI-based products. For each year during 2000-2006, MODIS and VIIRS (simulated from MOD02) time series were computed during the peak gypsy moth defoliation time frame in the study area (approximately June 10 through July 27). Gypsy moth defoliation mapping products from simated VIIRS and MOD02 time series were produced using multiple methods, including image classification and change detection via image differencing. The latter enabled an automated defoliation detection product computed using percent change in maximum NDVI for a peak defoliation period during 2001 compared to maximum NDVI across the entire 2000-2006 time frame. Final gypsy moth defoliation mapping products were assessed for accuracy using randomly sampled locations found on available geospatial reference data (Landsat and ASTER data in conjunction with defoliation map data from the USFS). Extensive gypsy moth defoliation patches were evident on screen displays of multitemporal color composites derived from MODIS data and from simulated VIIRS vegetation index data. Such defoliation was particularly evident for 2001, although widespread denuded forests were also seen for 2000 and 2003. These visualizations were validated using aforementioned reference data. Defoliation patches were visible on displays of MODIS-based NDVI and NDMI data. The viewing of apparent defoliation patches on all of these products necessitated adoption of a specialized temporal data processing method (e.g., maximum NDVI during the peak defoliation time frame). The frequency of cloud cover necessitated this approach. Multitemporal simulated VIIRS and MODIS Terra data both produced effective general classifications of defoliated forest versus other land cover. For 2001, the MOD02-simulated VIIRS 400-meter NDVI classification produced a similar yet slightly lower overall accuracy (87.28 percent with 0.72 Kappa) than the MOD02 250-meter NDVI classification (88.44 percent with 0.75 Kappa). The MOD13 250-meter NDVI classification had a lower overall accuracy (79.13 percent) and a much lower Kappa (0.46). The report discusses accuracy assessment results in much more detail, comparing overall classification and individual class accuracy statistics for simulated VIIRS 400-meter NDVI, MOD02 250-meter NDVI, MOD02-500 meter NDVI, MOD13 250-meter NDVI, and MOD02 500-meter NDMI classifications. Automated defoliation detection products from simulated VIIRS and MOD02 data for 2001 also yielded similar, relatively high overall classification accuracy (85.55 percent for the VIIRS 400-meter NDVI versus 87.28 percent for the MOD02 250-meter NDVI). In contrast, the USFS aerial sketch map of gypsy moth defoliation showed a lower overall classification accuracy at 73.64 percent. The overall classification Kappa values were also similar for the VIIRS (approximately 0.67 Kappa) versus the MOD02 (approximately 0.72 Kappa) automated defoliation detection product, which were much higher than the values exhibited by the USFS sketch map product (overall Kappa of approximately 0.47). The report provides additional details on the accuracy of automated gypsy moth defoliation detection products compared with USFS sketch maps. The results suggest that VIIRS data can be effectively simulated from MODIS data and that VIIRS data will produce gypsy moth defoliation mapping products that are similar to MODIS-based products. The results of the RPC experiment indicate that VIIRS and MODIS data products have good potential for integration into the forest threat EWS. The accuracy assessment was performed only for 2001 because of time constraints and a relative scarcity of cloud-free Landsat and ASTER data for the peak defoliation period of the other years in the 2000-2006 time series. Additional work should be performed to assess the accuracy of gypsy moth defoliation detection products for additional years.The study area (mid-Appalachian highlands) and application (gypsy moth forest defoliation) are not necessarily representative of all forested regions and of all forest threat disturbance agents. Additional work should be performed on other inland and coastal regions as well as for other major forest threats.
Biosensors for termite control
NASA Astrophysics Data System (ADS)
Farkhanda, M.
2013-12-01
Termites are major urban pests in Pakistan and cause damage to wooden structures and buildings. Termite management has two parts: prevention and control. The most difficult part of termite control is termite detection as most of them are subterranean in Pakistan and have tunneling habit.Throughout the world, chemical termiticides are going to be replaced by baits, microwave and sensor technology. Termite species are distinct biologically and have specific foraging behaviors. Termite Detection Radar, Moisture meter and Remote Thermal Sensor with Laser are available throughout the world. These can detect termites underground and use fewer chemicals than traditional methods. For wooden buildings, a termite sensor and an intrusion detection system for detecting termites are designed. A pair of electrodes is disposed inside the container. A pair of terminals is connected to these electrodes, these extend outside the container. Termites are detected by a change of conductivity between the electrodes, when termites are detected a warning device generates a warning signal. In Pakistan, there is dire need to develop such biosensoring devices locally, then apply control methods that would save money and protect the environment.
Standardized UXO Technology Demonstration Site, Open Field Scoring Record No. 893
2008-07-01
EM) AMOS metal detector is a linear multichannel sensor array consisting of a 2-meter-wide transmitter coil and 16 receiver coils, mounted on a...ferrous and nonferrous metals : Will detect ammunition components 20-mm caliber and over at depths of up to 0.4 meter and ammunition components 100...robust, all-terrain trailer (fig. 1). b. The AMOS detector unit consists of the following main components: (1) Lower sensor level (dimensions
Lin, Bingqian; Liu, Dan; Yan, Jinmao; Qiao, Zhi; Zhong, Yunxin; Yan, Jiawei; Zhu, Zhi; Ji, Tianhai; Yang, Chaoyong James
2016-03-23
There is considerable demand for sensitive, selective, and portable detection of disease-associated proteins, particularly in clinical practice and diagnostic applications. Portable devices are highly desired for detection of disease biomarkers in daily life due to the advantages of being simple, rapid, user-friendly, and low-cost. Herein we report an enzyme-encapsulated liposome-linked immunosorbent assay for sensitive detection of proteins using personal glucose meters (PGM) for portable quantitative readout. Liposomes encapsulating a large amount of amyloglucosidase or invertase are surface-coated with recognition elements such as aptamers or antibodies for target recognition. By translating molecular recognition signal into a large amount of glucose with the encapsulated enzyme, disease biomarkers such as thrombin or C-reactive protein (CRP) can be quantitatively detected by a PGM with a high detection limit of 1.8 or 0.30 nM, respectively. With the advantages of portability, ease of use, and low-cost, the method reported here has potential for portable and quantitative detection of various targets for different POC testing scenarios, such as rapid diagnosis in clinic offices, health monitoring at the bedside, and chemical/biochemical safety control in the field.
Passive Sensor Integration for Vehicle Self-Localization in Urban Traffic Environment †
Gu, Yanlei; Hsu, Li-Ta; Kamijo, Shunsuke
2015-01-01
This research proposes an accurate vehicular positioning system which can achieve lane-level performance in urban canyons. Multiple passive sensors, which include Global Navigation Satellite System (GNSS) receivers, onboard cameras and inertial sensors, are integrated in the proposed system. As the main source for the localization, the GNSS technique suffers from Non-Line-Of-Sight (NLOS) propagation and multipath effects in urban canyons. This paper proposes to employ a novel GNSS positioning technique in the integration. The employed GNSS technique reduces the multipath and NLOS effects by using the 3D building map. In addition, the inertial sensor can describe the vehicle motion, but has a drift problem as time increases. This paper develops vision-based lane detection, which is firstly used for controlling the drift of the inertial sensor. Moreover, the lane keeping and changing behaviors are extracted from the lane detection function, and further reduce the lateral positioning error in the proposed localization system. We evaluate the integrated localization system in the challenging city urban scenario. The experiments demonstrate the proposed method has sub-meter accuracy with respect to mean positioning error. PMID:26633420
A vision framework for the localization of soccer players and ball on the pitch using Handycams
NASA Astrophysics Data System (ADS)
Vilas, Tiago; Rodrigues, J. M. F.; Cardoso, P. J. S.; Silva, Bruno
2015-03-01
The current performance requirements in soccer make imperative the use of new technologies for game observation and analysis, such that detailed information about the teams' actions is provided. This paper summarizes a framework to collect the soccer players and ball positions using one or more Full HD Handycams, placed no more than 20cm apart in the stands, as well as how this framework connects to the FootData project. The system was based on four main modules: the detection and delimitation of the soccer pitch, the ball and the players detection and assignment to their teams, the tracking of players and ball and finally the computation of their localization (in meters) in the pitch.
Remote photoacoustic detection of liquid contamination of a surface.
Perrett, Brian; Harris, Michael; Pearson, Guy N; Willetts, David V; Pitter, Mark C
2003-08-20
A method for the remote detection and identification of liquid chemicals at ranges of tens of meters is presented. The technique uses pulsed indirect photoacoustic spectroscopy in the 10-microm wavelength region. Enhanced sensitivity is brought about by three main system developments: (1) increased laser-pulse energy (150 microJ/pulse), leading to increased strength of the generated photoacoustic signal; (2) increased microphone sensitivity and improved directionality by the use of a 60-cm-diameter parabolic dish; and (3) signal processing that allows improved discrimination of the signal from noise levels through prior knowledge of the pulse shape and pulse-repetition frequency. The practical aspects of applying the technique in a field environment are briefly examined, and possible applications of this technique are discussed.
Sonic Detection and Ranging (SODAR) Wind Profiler Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coulter, Richard L.
2016-04-01
The SODAR (Sonic Detection and Ranging) wind profiler measures wind profiles and backscattered signal strength between (nominally) 15 meters (m) and 500 m. It operates by transmitting acoustic energy into the atmosphere and measuring the strength and frequency of backscattered energy. The strength of the backscattered signal is determined by the strength of temperature inhomogeneities with size on the order of 10 centimeters (cm). Assuming the scattering elements in the atmosphere are moving with the mean wind, the horizontal wind field can be derived. The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF)more » has a system developed by Scintec, Inc. that transmits a sequence of frequencies to enhance signal determination.« less
Schenk, Robert J; Schenk, Jenna
2011-01-01
A pharmacist-delivered, outpatient-focused medication therapy management (MTM) program is using a remote blood glucose (BG) meter upload device to provide better care and to improve outcomes for its patients with diabetes. Sharing uploaded BG meter data, presented in easily comprehensible graphs and charts, enables patients, caregivers, and the medical team to better understand how the patients' diabetes care is progressing. Pharmacists are becoming increasingly more active in helping to manage patients' complex medication regimens in an effort to help detect and avoid medication-related problems. Working together with patients and their physicians as part of an interdisciplinary health care team, pharmacists are helping to improve medication outcomes. This article focuses on two case studies highlighting the Diabetes Monitoring Program, one component of the Meridian Pharmacology Institute MTM service, and discusses the clinical application of a unique BG meter upload device. © 2010 Diabetes Technology Society.
NASA Technical Reports Server (NTRS)
Gisser, D. G.; Frederick, D. K.; Sandor, G. N.; Shen, C. N.; Yerazunis, S. W.
1976-01-01
Problems related to the design and control of an autonomous rover for the purpose of unmanned exploration of the planets were considered. Building on the basis of prior studies, a four wheeled rover of unusual mobility and maneuverability was further refined and tested under both laboratory and field conditions. A second major effort was made to develop autonomous guidance. Path selection systems capable of dealing with relatively formidable hazard and terrains involving various short range (1.0-3.0 meters), hazard detection systems using a triangulation detection concept were simulated and evaluated. The mechanical/electronic systems required to implement such a scheme were constructed and tested. These systems include: laser transmitter, photodetectors, the necessary data handling/controlling systems and a scanning mast. In addition, a telemetry system to interface the vehicle, the off-board computer and a remote control module for operator intervention were developed. Software for the autonomous control concept was written. All of the systems required for complete autonomous control were shown to be satisfactory except for that portion of the software relating to the handling of interrupt commands.
Simultaneous S- and X-band uplink-downlink performance at DSS 13
NASA Technical Reports Server (NTRS)
Freiley, A. J.
1988-01-01
The Deep Space Station 13 26-meter antenna with the second generation S/X feedcone was tested to determine the dual S- and X-band (2.1 to 2.3 GHz and 7.1 to 8.5 GHz) transmit and receive performance. Measurements were conducted using the 20 kW transmitters at S- and X-band while simultaneously receiving S- and X-band. This system proved to be very quiet compared with the other DSN antennas. Under normal tracking configurations, no noise burst or intermodulation product (IMP) activity was detectable to the -175 dBm level. To prove the instrumentation's ability to detect such phenomena, an IMP generator was introduced onto the system with positive, verifiable results. The IMP occurred at the -162 dBm level, accompanied by moderate noise burst activity, and was readily repeatable. The measurement also showed the possible need for additional fourth channel filtering in the system to reduce the effect of the transmitter power on the low noise amplifiers.
Towards photometry pipeline of the Indonesian space surveillance system
NASA Astrophysics Data System (ADS)
Priyatikanto, Rhorom; Religia, Bahar; Rachman, Abdul; Dani, Tiar
2015-09-01
Optical observation through sub-meter telescope equipped with CCD camera becomes alternative method for increasing orbital debris detection and surveillance. This observational mode is expected to eye medium-sized objects in higher orbits (e.g. MEO, GTO, GSO & GEO), beyond the reach of usual radar system. However, such observation of fast moving objects demands special treatment and analysis technique. In this study, we performed photometric analysis of the satellite track images photographed using rehabilitated Schmidt Bima Sakti telescope in Bosscha Observatory. The Hough transformation was implemented to automatically detect linear streak from the images. From this analysis and comparison to USSPACECOM catalog, two satellites were identified and associated with inactive Thuraya-3 satellite and Satcom-3 debris which are located at geostationary orbit. Further aperture photometry analysis revealed the periodicity of tumbling Satcom-3 debris. In the near future, it is not impossible to apply similar scheme to establish an analysis pipeline for optical space surveillance system hosted in Indonesia.
Capabilities of the James Webb Space Telescope for Exoplanet Science
NASA Technical Reports Server (NTRS)
Clampin, Mark
2009-01-01
The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 m to 28 m. JWST s primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. We also review the expected scientific performance of the observatory for observations of exosolar planets by means of transit photometry and spectroscopy, and direct coronagraphic imaging.
Expanding the Use of Time-Based Metering: Multi-Center Traffic Management Advisor
NASA Technical Reports Server (NTRS)
Landry, Steven J.; Farley, Todd; Hoang, Ty
2005-01-01
Time-based metering is an efficient air traffic management alternative to the more common practice of distance-based metering (or "miles-in-trail spacing"). Despite having demonstrated significant operational benefit to airspace users and service providers, time-based metering is used in the United States for arrivals to just nine airports and is not used at all for non-arrival traffic flows. The Multi-Center Traffic Management Advisor promises to bring time-based metering into the mainstream of air traffic management techniques. Not constrained to operate solely on arrival traffic, Multi-Center Traffic Management Advisor is flexible enough to work in highly congested or heavily partitioned airspace for any and all traffic flows in a region. This broader and more general application of time-based metering is expected to bring the operational benefits of time-based metering to a much wider pool of beneficiaries than is possible with existing technology. It also promises to facilitate more collaborative traffic management on a regional basis. This paper focuses on the operational concept of the Multi-Center Traffic Management Advisor, touching also on its system architecture, field test results, and prospects for near-term deployment to the United States National Airspace System.
30 CFR 250.1203 - Gas measurement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Security § 250.1203 Gas measurement. (a) To which meters do MMS requirements for gas measurement apply? MMS requirements for gas measurements apply to all OCS gas royalty and allocation meters. (b) What are the... throughout the system. (4) Equip the meter with a chart or electronic data recorder. If an electronic data...
NASA Astrophysics Data System (ADS)
Dauvergne, J.-L.; Colas, F.; Delcroix, M.; Lecacheux, J.
2017-09-01
We already have very good result with the 1 meter telescope of Pic du Midi. Our goal is to have more and more people in the team in order to make a survey has long as possible of Jupiter, Uranus and Neptune. The next step is an OA system, we want to make it work on the 1 meter telescope and also make it available on the market to help other observatories to produce high resolution images of the solar system with middle size telescopes.
Response of the Cardiovascular System to Vibration and Combined Stresses
1980-11-01
flow meter ( Zepeda Instruments) and our di- mension meter (Schussler and Associates) resulted in two suggestions: ’) an outline of possible steps to take...tionally, the flowmeter gate was not adjustable, further limiting our timing ability. Given the features of the Zepeda flowmeter in design (square-wave...dimension meter clock pulse (divided down) as the flow oscillator, rather than capturing the flow oscillator as was necessary with the Zepeda meter. This
Detection of underground voids in Tahura Japan Cave Bandung using ground penetrating radar
NASA Astrophysics Data System (ADS)
Azimmah, Azizatun; Widodo
2017-07-01
The detection of underground voids is important due to their effects on subsidence higher risk. Ground Penetrating Radar is one of geophysical electromagnetic methods that has been proven to be able to detect and locate any void beneath the surface effectively at a shallow depth. This method uses the contrasts of dielectric properties, resistivity and magnetic permeability to investigate and map what lies beneath the surface. Hence, this research focused on how GPR could be applied for detecting underground voids at the site of investigation, The Japan Cave in Taman Hutan Raya located in Dago, Bandung, Indonesia. A 100 MHz GPR shielded antenna frequency were used to measure three >80 meters long measurement lines. These three GPR profiles were positioned on the surface above the Japan Cave. The radargram results showed existences of different amplitude regions proven to be the air-filled cavities, at a depth of <10 meters, and interfaces between the underneath layers.
Metrics for Assessment of Smart Grid Data Integrity Attacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annarita Giani; Miles McQueen; Russell Bent
2012-07-01
There is an emerging consensus that the nation’s electricity grid is vulnerable to cyber attacks. This vulnerability arises from the increasing reliance on using remote measurements, transmitting them over legacy data networks to system operators who make critical decisions based on available data. Data integrity attacks are a class of cyber attacks that involve a compromise of information that is processed by the grid operator. This information can include meter readings of injected power at remote generators, power flows on transmission lines, and relay states. These data integrity attacks have consequences only when the system operator responds to compromised datamore » by redispatching generation under normal or contingency protocols. These consequences include (a) financial losses from sub-optimal economic dispatch to service loads, (b) robustness/resiliency losses from placing the grid at operating points that are at greater risk from contingencies, and (c) systemic losses resulting from cascading failures induced by poor operational choices. This paper is focused on understanding the connections between grid operational procedures and cyber attacks. We first offer two examples to illustrate how data integrity attacks can cause economic and physical damage by misleading operators into taking inappropriate decisions. We then focus on unobservable data integrity attacks involving power meter data. These are coordinated attacks where the compromised data are consistent with the physics of power flow, and are therefore passed by any bad data detection algorithm. We develop metrics to assess the economic impact of these attacks under re-dispatch decisions using optimal power flow methods. These metrics can be use to prioritize the adoption of appropriate countermeasures including PMU placement, encryption, hardware upgrades, and advance attack detection algorithms.« less
Advanced Metering Installations – A Perspective from Federal Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Earni, Shankar
2016-05-02
This report is intended to provide guidance to the United States Department of Energy (DOE) and other federal agencies to highlight some of the existing practices related to advanced building metering systems. This study identified some of the existing actions related to advanced meter data and proposes how advanced metered data can be employed to develop robust cost effective measurement and verification (M&V) strategies. This report proposes an integrated framework on how advanced meter data can be used to identify energy conservation opportunities and to develop proactive M&V strategies to ensure that the savings for energy projects are being realized.more » This information will help improve metering, feedback, and dashboard implementations for reducing energy use at DOE facilities, based on lessons learned from various advanced metering implementations.« less
Homogeneity of a Global Multisatellite Soil Moisture Climate Data Record
NASA Technical Reports Server (NTRS)
Su, Chun-Hsu; Ryu, Dongryeol; Dorigo, Wouter; Zwieback, Simon; Gruber, Alexander; Albergel, Clement; Reichle, Rolf H.; Wagner, Wolfgang
2016-01-01
Climate Data Records (CDR) that blend multiple satellite products are invaluable for climate studies, trend analysis and risk assessments. Knowledge of any inhomogeneities in the CDR is therefore critical for making correct inferences. This work proposes a methodology to identify the spatiotemporal extent of the inhomogeneities in a 36-year, global multisatellite soil moisture CDR as the result of changing observing systems. Inhomogeneities are detected at up to 24 percent of the tested pixels with spatial extent varying with satellite changeover times. Nevertheless, the contiguous periods without inhomogeneities at changeover times are generally longer than 10 years. Although the inhomogeneities have measurable impact on the derived trends, these trends are similar to those observed in ground data and land surface reanalysis, with an average error less than 0.003 cubic meters per cubic meter per year. These results strengthen the basis of using the product for long-term studies and demonstrate the necessity of homogeneity testing of multisatellite CDRs in general.
An application of data mining in district heating substations for improving energy performance
NASA Astrophysics Data System (ADS)
Xue, Puning; Zhou, Zhigang; Chen, Xin; Liu, Jing
2017-11-01
Automatic meter reading system is capable of collecting and storing a huge number of district heating (DH) data. However, the data obtained are rarely fully utilized. Data mining is a promising technology to discover potential interesting knowledge from vast data. This paper applies data mining methods to analyse the massive data for improving energy performance of DH substation. The technical approach contains three steps: data selection, cluster analysis and association rule mining (ARM). Two-heating-season data of a substation are used for case study. Cluster analysis identifies six distinct heating patterns based on the primary heat of the substation. ARM reveals that secondary pressure difference and secondary flow rate have a strong correlation. Using the discovered rules, a fault occurring in remote flow meter installed at secondary network is detected accurately. The application demonstrates that data mining techniques can effectively extrapolate potential useful knowledge to better understand substation operation strategies and improve substation energy performance.
NASA Technical Reports Server (NTRS)
Vincent, R. K.
1980-01-01
A geological study of a 27,500 sq km area in the Los Andes region of northwestern Venezuela was performed which employed both X-band radar mosaics and computer processed Landsat images. The 3.12 cm wavelength radar data were collected with horizontal-horizontal polarization and 10 meter spatial resolution by an Aeroservices SAR system at an altitude of 12,000 meters. The radar images increased the number of observable suspected fractures by 27 percent over what could be mapped by LANDSAT alone, owing mostly to the cloud cover penetration capabilities of radar. The approximate eight fold greater spatial resolution of the radar images made possible the identification of shorter, narrower fractures than could be detected with LANDSAT data alone, resulting in the discovery of a low relief anticline that could not be observed in LANDSAT data. Exploration targets for petroleum, copper, and uranium were identified for further geophysical work.
The 2nd phase of the LEANDRE program: Water-vapor DIAL measurement
NASA Technical Reports Server (NTRS)
Quaglia, P.; Bruneau, D.; Pelon, J.
1992-01-01
As a follow-on of the backscattered lidar, a differential absorption lidar (LEANDRE 2) is now being developed as part of the LEANDRE program for airborne meteorological studies. The primary measurement objective of LEANDRE 2 is water vapor. Pressure and temperature measurements are aimed at a second stage. The goals are to obtain a horizontal resolution of a few hundred meters for a vertical resolution of less than a hundred meters, with an absolute accuracy of 10 percent for humidity measurement. As compatibility is an important feature between the 2 first phases of LEANDRE, most of the LEANDRE 1 sub-system will be used and adapted for LEANDRE 2. For example, detection electronics, central computer, detectors and telescope will be the same. However, important modifications have to be done on the laser source, and spectral control has to be added. Most of the work is thus devoted to those developments, and the status is presented here.
Multi-Center Traffic Management Advisor Operational Field Test Results
NASA Technical Reports Server (NTRS)
Farley, Todd; Landry, Steven J.; Hoang, Ty; Nickelson, Monicarol; Levin, Kerry M.; Rowe, Dennis W.
2005-01-01
The Multi-Center Traffic Management Advisor (McTMA) is a research prototype system which seeks to bring time-based metering into the mainstream of air traffic control (ATC) operations. Time-based metering is an efficient alternative to traditional air traffic management techniques such as distance-based spacing (miles-in-trail spacing) and managed arrival reservoirs (airborne holding). While time-based metering has demonstrated significant benefit in terms of arrival throughput and arrival delay, its use to date has been limited to arrival operations at just nine airports nationally. Wide-scale adoption of time-based metering has been hampered, in part, by the limited scalability of metering automation. In order to realize the full spectrum of efficiency benefits possible with time-based metering, a much more modular, scalable time-based metering capability is required. With its distributed metering architecture, multi-center TMA offers such a capability.
Sudden aseismic fault slip on the south flank of Kilauea volcano.
Cervelli, Peter; Segall, Paul; Johnson, Kaj; Lisowski, Michael; Miklius, Asta
2002-02-28
One of the greatest hazards associated with oceanic volcanoes is not volcanic in nature, but lies with the potential for catastrophic flank failure. Such flank failure can result in devastating tsunamis and threaten not only the immediate vicinity, but coastal cities along the entire rim of an ocean basin. Kilauea volcano on the island of Hawaii, USA, is a potential source of such flank failures and has therefore been monitored by a network of continuously recording geodetic instruments, including global positioning system (GPS) receivers, tilt meters and strain meters. Here we report that, in early November 2000, this network recorded transient southeastward displacements, which we interpret as an episode of aseismic fault slip. The duration of the event was about 36 hours, it had an equivalent moment magnitude of 5.7 and a maximum slip velocity of about 6[?]cm per day. Inversion of the GPS data reveals a shallow-dipping thrust fault at a depth of 4.5[?]km that we interpret as the down-dip extension of the Hilina Pali--Holei Pali normal fault system. This demonstrates that continuously recording geodetic networks can detect accelerating slip, potentially leading to warnings of volcanic flank collapse.
Lyon, Martha E; Lyon, Andrew W
2011-01-01
The article entitled, Performance of the CONTOUR® TS Blood Glucose Monitoring System, by Frank and colleagues in this issue of Journal of Diabetes Science and Technology, demonstrates that the CONTOUR® TS glucose meter exceeds current regulatory expectations for glucose meter performance. However, the appropriateness of current regulatory expectations, such as International Organization for Standardization (ISO) 15197:2003, is being reevaluated because of increasing concern regarding the reliability of glucose meters in ambulatory and hospitalized environments. Between 2004 and 2008, 12,673 serious adverse events with glucose meters that met the ISO 15197 expectations were reported in the Food and Drug Administration-Manufacturer and User Facility Device Experience surveillance database. Should different glucose meter performance criteria be applied to ambulatory versus critical care patients? © 2010 Diabetes Technology Society.
NASA Technical Reports Server (NTRS)
Richardson, Albert O.
1997-01-01
This research has investigated the use of fuzzy logic, via the Matlab Fuzzy Logic Tool Box, to design optimized controller systems. The engineering system for which the controller was designed and simulate was the container crane. The fuzzy logic algorithm that was investigated was the 'predictive control' algorithm. The plant dynamics of the container crane is representative of many important systems including robotic arm movements. The container crane that was investigated had a trolley motor and hoist motor. Total distance to be traveled by the trolley was 15 meters. The obstruction height was 5 meters. Crane height was 17.8 meters. Trolley mass was 7500 kilograms. Load mass was 6450 kilograms. Maximum trolley and rope velocities were 1.25 meters per sec. and 0.3 meters per sec., respectively. The fuzzy logic approach allowed the inclusion, in the controller model, of performance indices that are more effectively defined in linguistic terms. These include 'safety' and 'cargo swaying'. Two fuzzy inference systems were implemented using the Matlab simulation package, namely the Mamdani system (which relates fuzzy input variables to fuzzy output variables), and the Sugeno system (which relates fuzzy input variables to crisp output variable). It is found that the Sugeno FIS is better suited to including aspects of those plant dynamics whose mathematical relationships can be determined.
Guide to Flow Measurement for Electric Propulsion Systems
NASA Technical Reports Server (NTRS)
Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve
2013-01-01
In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."
Prototyping the E-ELT M1 local control system communication infrastructure
NASA Astrophysics Data System (ADS)
Argomedo, J.; Kornweibel, N.; Grudzien, T.; Dimmler, M.; Andolfato, L.; Barriga, P.
2016-08-01
The primary mirror of the E-ELT is composed of 798 hexagonal segments of about 1.45 meters across. Each segment can be moved in piston and tip-tilt using three position actuators. Inductive edge sensors are used to provide feedback for global reconstruction of the mirror shape. The E-ELT M1 Local Control System will provide a deterministic infrastructure for collecting edge sensor and actuators readings and distribute the new position actuators references while at the same time providing failure detection, isolation and notification, synchronization, monitoring and configuration management. The present paper describes the prototyping activities carried out to verify the feasibility of the E-ELT M1 local control system communication architecture design and assess its performance and potential limitations.
NASA Technical Reports Server (NTRS)
Lee, Harry
1994-01-01
A highly accurate transmission line fault locator based on the traveling-wave principle was developed and successfully operated within B.C. Hydro. A transmission line fault produces a fast-risetime traveling wave at the fault point which propagates along the transmission line. This fault locator system consists of traveling wave detectors located at key substations which detect and time tag the leading edge of the fault-generated traveling wave as if passes through. A master station gathers the time-tagged information from the remote detectors and determines the location of the fault. Precise time is a key element to the success of this system. This fault locator system derives its timing from the Global Positioning System (GPS) satellites. System tests confirmed the accuracy of locating faults to within the design objective of +/-300 meters.
Effectiveness of glucose monitoring systems modified for the visually impaired.
Bernbaum, M; Albert, S G; Brusca, S; McGinnis, J; Miller, D; Hoffmann, J W; Mooradian, A D
1993-10-01
To compare three glucose meters modified for use by individuals with diabetes and visual impairment regarding accuracy, precision, and clinical reliability. Ten subjects with diabetes and visual impairment performed self-monitoring of blood glucose using each of the three commercially available blood glucose meters modified for visually impaired users (the AccuChek Freedom [Boehringer Mannheim, Indianapolis, IN], the Diascan SVM [Home Diagnostics, Eatontown, NJ], and the One Touch [Lifescan, Milpitas, CA]). The meters were independently evaluated by a laboratory technologist for precision and accuracy determinations. Only two meters were acceptable with regard to laboratory precision (coefficient of variation < 10%)--the Accuchek and the One Touch. The Accuchek and the One Touch did not differ significantly with regard to laboratory estimates of accuracy. A great discrepancy of the clinical reliability results was observed between these two meters. The Accuchek maintained a high degree of reliability (y = 0.99X + 0.44, r = 0.97, P = 0.001). The visually impaired subjects were unable to perform reliable testing using the One Touch system because of a lack of appropriate tactile landmarks and auditory signals. In addition to laboratory assessments of glucose meters, monitoring systems designed for the visually impaired must include adequate tactile and audible feedback features to allow for the acquisition and placement of appropriate blood samples.
Verification of Wind Measurement to 450-Meter Altitude with Mobile Laser Doppler System
DOT National Transportation Integrated Search
1977-12-01
The Lockheed mobile atmospheric unit is a laser Doppler velocimeter system designed for the remote sensing of winds. The capability of the laser Doppler velocimeter accurately to measure winds to 150-meter altitude has been previously demonstrated. T...
Acoustic systems for the measurement of streamflow
Laenen, Antonius; Smith, Winchell
1983-01-01
The acoustic velocity meter (AVM), also referred to as an ultrasonic flowmeter, has been an operational tool for the measurement of streamflow since 1965. Very little information is available concerning AVM operation, performance, and limitations. The purpose of this report is to consolidate information in such a manner as to provide a better understanding about the application of this instrumentation to streamflow measurement. AVM instrumentation is highly accurate and nonmechanical. Most commercial AVM systems that measure streamflow use the time-of-travel method to determine a velocity between two points. The systems operate on the principle that point-to-point upstream travel-time of sound is longer than the downstream travel-time, and this difference can be monitored and measured accurately by electronics. AVM equipment has no practical upper limit of measurable velocity if sonic transducers are securely placed and adequately protected. AVM systems used in streamflow measurement generally operate with a resolution of ?0.01 meter per second but this is dependent on system frequency, path length, and signal attenuation. In some applications the performance of AVM equipment may be degraded by multipath interference, signal bending, signal attenuation, and variable streamline orientation. Presently used minicomputer systems, although expensive to purchase and maintain, perform well. Increased use of AVM systems probably will be realized as smaller, less expensive, and more conveniently operable microprocessor-based systems become readily available. Available AVM equipment should be capable of flow measurement in a wide variety of situations heretofore untried. New signal-detection techniques and communication linkages can provide additional flexibility to the systems so that operation is possible in more river and estuary situations.
Mapping the Upper Subsurface of MARS Using Radar Polarimetry
NASA Technical Reports Server (NTRS)
Carter, L. M.; Rincon, R.; Berkoski, L.
2012-01-01
Future human exploration of Mars will require detailed knowledge of the surface and upper several meters of the subsurface in potential landing sites. Likewise, many of the Planetary Science Decadal Survey science goals, such as understanding the history of Mars climate change, determining how the surface was altered through processes like volcanism and fluvial activity, and locating regions that may have been hospitable to life in the past, would be significantly advanced through mapping of the upper meters of the surface. Synthetic aperture radar (SAR) is the only remote sensing technique capable of penetrating through meters of material and imaging buried surfaces at high (meters to tens-of-meters) spatial resolution. SAR is capable of mapping the boundaries of buried units and radar polarimetry can provide quantitative information about the roughness of surface and subsurface units, depth of burial of stratigraphic units, and density of materials. Orbital SAR systems can obtain broad coverage at a spatial scale relevant to human and robotic surface operations. A polarimetric SAR system would greatly increase the safety and utility of future landed systems including sample caching.
Reith, S; Hoy, S
2018-02-01
Efficient detection of estrus is a permanent challenge for successful reproductive performance in dairy cattle. In this context, comprehensive knowledge of estrus-related behaviors is fundamental to achieve optimal estrus detection rates. This review was designed to identify the characteristics of behavioral estrus as a necessary basis for developing strategies and technologies to improve the reproductive management on dairy farms. The focus is on secondary symptoms of estrus (mounting, activity, aggressive and agonistic behaviors) which seem more indicative than standing behavior. The consequences of management, housing conditions and cow- and environmental-related factors impacting expression and detection of estrus as well as their relative importance are described in order to increase efficiency and accuracy of estrus detection. As traditional estrus detection via visual observation is time-consuming and ineffective, there has been a considerable advancement of detection aids during the last 10 years. By now, a number of fully automated technologies including pressure sensing systems, activity meters, video cameras, recordings of vocalization as well as measurements of body temperature and milk progesterone concentration are available. These systems differ in many aspects regarding sustainability and efficiency as keys to their adoption for farm use. As being most practical for estrus detection a high priority - according to the current research - is given to the detection based on sensor-supported activity monitoring, especially accelerometer systems. Due to differences in individual intensity and duration of estrus multivariate analysis can support herd managers in determining the onset of estrus. Actually, there is increasing interest in investigating the potential of combining data of activity monitoring and information of several other methods, which may lead to the best results concerning sensitivity and specificity of detection. Future improvements will likely require more multivariate detection by data and systems already existing on farms.
Earth's Minimoons: Opportunities for Science and Technology.
NASA Astrophysics Data System (ADS)
Jedicke, Robert; Bolin, Bryce T.; Bottke, William F.; Chyba, Monique; Fedorets, Grigori; Granvik, Mikael; Jones, Lynne; Urrutxua, Hodei
2018-05-01
Twelve years ago the Catalina Sky Survey discovered Earth's first known natural geocentric object other than the Moon, a few-meter diameter asteroid designated \\RH. Despite significant improvements in ground-based asteroid surveying technology in the past decade they have not discovered another temporarily-captured orbiter (TCO; colloquially known as minimoons) but the all-sky fireball system operated in the Czech Republic as part of the European Fireball Network detected a bright natural meteor that was almost certainly in a geocentric orbit before it struck Earth's atmosphere. Within a few years the Large Synoptic Survey Telescope (LSST) will either begin to regularly detect TCOs or force a re-analysis of the creation and dynamical evolution of small asteroids in the inner solar system. The first studies of the provenance, properties, and dynamics of Earth's minimoons suggested that there should be a steady state population with about one 1- to 2-meter diameter captured objects at any time, with the number of captured meteoroids increasing exponentially for smaller sizes. That model was then improved and extended to include the population of temporarily-captured flybys (TCFs), objects that fail to make an entire revolution around Earth while energetically bound to the Earth-Moon system. Several different techniques for discovering TCOs have been considered but their small diameters, proximity, and rapid motion make them challenging targets for existing ground-based optical, meteor, and radar surveys. However, the LSST's tremendous light gathering power and short exposure times could allow it to detect and discover many minimoons. We expect that if the TCO population is confirmed, and new objects are frequently discovered, they can provide new opportunities for 1) studying the dynamics of the Earth-Moon system, 2) testing models of the production and dynamical evolution of small asteroids from the asteroid belt, 3) rapid and frequent low delta-v missions to multiple minimoons, and 4) evaluating in-situ resource utilization techniques on asteroidal material. Here we review the past decade of minimoon studies in preparation for capitalizing on the scientific and commercial opportunities of TCOs in the first decade of LSST operations.
Tooth color measurement using Chroma Meter: techniques, advantages, and disadvantages.
Li, Yiming
2003-01-01
Tooth whitening has become a popular and routine dental procedure, and its efficacy and safety have been well documented. However, the measurement of tooth color, particularly in the evaluation of the efficacy of a system intended to enhance tooth whiteness, remains a challenge. One of the instruments used for assessing tooth color in clinical whitening studies is the Minolta Chroma Meter CR-321 (Minolta Corporation USA, Ramsey, NJ, USA). This article describes the instrument and discusses various measuring procedures and the Chroma Meter's advantages, limitations, and disadvantages. The available information indicates that, although Minolta Chroma Meter CR-321 provides quantitative and objective measurements of tooth color, it can be tedious to use with a custom alignment device. The Chroma Meter data are inconsistent with the commonly used visual instruments such as Vitapan Classical Shade Guide (Vita Zahnfabrik, Bad Säckingen, Germany), although in many cases the general trends are similar. It is also questionable whether the small area measured adequately represents the color of the whole tooth. A more critical challenge is the lack of methods for interpreting the Chroma Meter data regarding tooth color change in studies evaluating the efficacy of whitening systems. Consequently, at present the Chroma Meter data alone do not appear to be adequate for determining tooth color change in whitening research, although the quantitative measurements may be useful as supplemental or supportive data. Research is needed to develop and improve the instrument and technique for quantitative measurement of tooth color and interpretation of the data for evaluating tooth color change. This paper will help readers to understand the advantages and limitations of the Minolta Chroma Meter used for evaluating the efficacy of tooth-whitening systems so that proper judgment can be made in the interpretation of the results of clinical studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Peter J.; Edson, Patrick L.
2013-12-20
This project saw the completion of the design and development of a second generation, high frequency (90-120 kHz) Subsurface-Threat Detection Sonar Network (SDSN). The system was deployed, operated, and tested in Cobscook Bay, Maine near the site the Ocean Renewable Power Company TidGen™ power unit. This effort resulted in a very successful demonstration of the SDSN detection, tracking, localization, and classification capabilities in a high current, MHK environment as measured by results from the detection and tracking trials in Cobscook Bay. The new high frequency node, designed to operate outside the hearing range of a subset of marine mammals, wasmore » shown to detect and track objects of marine mammal-like target strength to ranges of approximately 500 meters. This performance range results in the SDSN system tracking objects for a significant duration - on the order of minutes - even in a tidal flow of 5-7 knots, potentially allowing time for MHK system or operator decision-making if marine mammals are present. Having demonstrated detection and tracking of synthetic targets with target strengths similar to some marine mammals, the primary hurdle to eventual automated monitoring is a dataset of actual marine mammal kinematic behavior and modifying the tracking algorithms and parameters which are currently tuned to human diver kinematics and classification.« less
46 CFR 199.290 - Stowage of survival craft.
Code of Federal Regulations, 2010 CFR
2010-10-01
... vessel 80 meters (262 feet) or more in length but less than 120 meters (393 feet) in length, must be... of the vessel's propeller; and (2) On a cargo vessel 120 meters (393 feet) or more in length, must be... launching appliance of aluminum construction must be protected by a water spray system meeting the...
40 CFR 86.884-9 - Smoke measurement system.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Schematic drawing. The Figure I84-1 is a schematic drawing of the optical system of the light extinction... the exhaust from the test site. (2) Smokemeter (light extinction meter)—continuous recording, full...) Light extinction meters employing substantially identical measurement principles and producing...
Spectroscopic planetary detection
NASA Technical Reports Server (NTRS)
Deming, Drake
1991-01-01
One of the most promising methods for the detection of extra-solar planets is the spectroscopic method, where a small Doppler shift (approx. 10 meter/sec) in the spectrum of the parent star reveals the presence of planetary companions. However, solar type stars may show spurious Doppler shifts due to surface activity. If these effects are periodic, as is the solar activity cycle, then they may masquerade as planetary companions. The goal of this study was to determine whether the solar cycle affects the Doppler stability of integrated sunlight. Observations of integrated sunlight were made in the near infrared (approx. 2 micron), using the Kitt Peak McMath Fourier transform spectrometer, with a N2O gas absorption cell for calibration. An accuracy of approx. 5 meter/sec was achieved.
Katz, Brian G.; Crandall, Christy A.; Metz, Patricia A.; McBride, W. Scott; Berndt, Marian P.
2007-01-01
In 2001, the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey began a series of studies on the transport of anthropogenic and natural contaminants (TANC) to public-supply wells. The main goal of the TANC program was to better understand the source, transport, and receptor factors that control contaminant movement to public-supply wells in representative aquifers of the United States. Studies were first conducted at regional scales at four of the eight TANC study areas during 2002-03 and at small (local) scales during 2003-05 in California, Nebraska, Connecticut, and Florida. In the Temple Terrace study area near Tampa, Florida, multiple chemical indicators and geochemical and ground-water flow modeling techniques were used to assess the vulnerability of a public-supply well in the karstic Upper Floridan aquifer to contamination from anthropogenic and naturally occurring contaminants. During 2003-05, water samples were collected from the public-supply well and 13 surrounding monitoring wells that all tap the Upper Floridan aquifer, and from 15 monitoring wells in the overlying surficial aquifer system and the intermediate confining unit that are located within the modeled ground-water contributing recharge area of the public-supply well. Six volatile organic compounds and four pesticides were detected in trace concentrations (well below drinking-water standards) in water from the public-supply well, which had an open interval from 36 to 53 meters below land surface. These contaminants were detected more frequently in water samples from monitoring wells in the overlying clastic surficial aquifer system than in water from monitoring wells in the Upper Floridan aquifer in the study area. Likewise, nitrate-N concentrations in the public-supply well (0.72-1.4 milligrams per liter) were more similar to median concentrations in the oxic surficial aquifer system (2.1 milligrams per liter) than to median nitrate-N concentrations in the anoxic Upper Floridan aquifer (0.06 milligram per liter) under sulfate-reducing conditions. High concentrations of radon-222 and uranium in the public-supply well compared to those in monitoring wells in the Upper Floridan aquifer appear to originate from water moving downward through sands and discontinuous clay lenses that overlie the aquifer. Water samples also were collected from three overlapping depth intervals (38-53, 43-53, and 49-53 meters below land surface) in the public-supply well. The 49- to 53-meter interval was identified as a high-flow zone during geophysical logging of the wellbore. Water samples were collected from these depth intervals at a low pumping rate by placing a low-capacity submersible pump (less than 0.02 cubic meter per minute) at the top of each interval. To represent higher pumping conditions, a large-capacity portable submersible pump (1.6 cubic meters per minute) was placed near the top of the open interval; water-chemistry samples were collected using the low-capacity submersible pump. The 49- to 53-meter depth interval had distinctly different chemistry than the other two sampled intervals. Higher concentrations of nitrate-N, atrazine, radon, trichloromethane (chloroform), and arsenic (and high arsenic (V)/arsenic (III) ratios); lower concentrations of dissolved solids, strontium, iron, manganese, and lower nitrogen and sulfur isotope ratios were found in this highly transmissive zone in the limestone than in water from the two other depth intervals. Movement of water likely occurs from the overlying sands and clays of the oxic surficial aquifer system and intermediate confining unit (that contains high radon-222 and nitrate-N concentrations) into the anoxic Upper Floridan aquifer (that contains low radon-222 and nitrate-N concentrations). Differences in arsenic concentrations in water from the various depth intervals in the public-supply well (3.2-19.0 micrograms per liter) were related to pumping conditions. The high arsenic
Advancing High Contrast Adaptive Optics
NASA Astrophysics Data System (ADS)
Ammons, M.; Poyneer, L.; GPI Team
2014-09-01
A long-standing challenge has been to directly image faint extrasolar planets adjacent to their host suns, which may be ~1-10 million times brighter than the planet. Several extreme AO systems designed for high-contrast observations have been tested at this point, including SPHERE, Magellan AO, PALM-3000, Project 1640, NICI, and the Gemini Planet Imager (GPI, Macintosh et al. 2014). The GPI is the world's most advanced high-contrast adaptive optics system on an 8-meter telescope for detecting and characterizing planets outside of our solar system. GPI will detect a previously unstudied population of young analogs to the giant planets of our solar system and help determine how planetary systems form. GPI employs a 44x44 woofer-tweeter adaptive optics system with a Shack-Hartmann wavefront sensor operating at 1 kHz. The controller uses Fourier-based reconstruction and modal gains optimized from system telemetry (Poyneer et al. 2005, 2007). GPI has an apodized Lyot coronal graph to suppress diffraction and a near-infrared integral field spectrograph for obtaining planetary spectra. This paper discusses current performance limitations and presents the necessary instrumental modifications and sensitivity calculations for scenarios related to high-contrast observations of non-sidereal targets.
Performance of the CONTOUR® TS Blood Glucose Monitoring System.
Frank, Joy; Wallace, Jane F; Pardo, Scott; Parkes, Joan Lee
2011-01-01
Self-monitoring of blood glucose (SMBG) remains an important component of diabetes management, engendering a need for affordable blood glucose (BG) meters that are accurate, precise, and convenient. The CONTOUR® TS is a BG meter that endeavors to meet this need. It uses glucose dehydrogenase/flavin dinucleotide chemistry, automatic test strip calibration, and autocompensation for hematocrit along with the ease of use that has come to be expected of a modern meter. The objective of this clinical trial was to determine whether the CONTOUR TS system met these criteria. The system was evaluated at a single clinical site with 106 subjects with type 1 or type 2 diabetes. Blood glucose values ranged from 60 to 333 mg/dl over all subjects. Both lay users and health care professionals (HCPs) tested the meters, with test strips from three different lots. Results were compared to a reference analyzer of verified precision and accuracy. Forty-nine of the subjects also participated in a home study of the meter. Lay users learned to use the system without assistance and were surveyed on its use at the end of the study. When used with capillary blood, both subjects and HCPs obtained results that exceeded the International Organization for Standardization 15197:2003 criteria, (i.e., ≥95% of values fell within 20% or 15 mg/dl of the laboratory value for BG levels greater than or less than 75 mg/dl, respectively). Specifically, lay users achieved 97.9% and HCPs 98.6%. When used with venous blood, 99.8% of measurements were within the criteria. All measurements for both capillary and venous blood fell into zones A or B of the Parkes error grid, deemed clinically accurate. Hematocrit was found to have no influence on BG measurements. A large majority of the subjects found the system easy to learn and to use. The CONTOUR TS BG meter system gave accurate and reproducible results with both capillary and venous blood; subjects learned to use the meter system by following the user guide and quick reference guide. © 2010 Diabetes Technology Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhenyu; Zhou, Ning; Tuffner, Francis K.
Small signal stability problems are one of the major threats to grid stability and reliability in the U.S. power grid. An undamped mode can cause large-amplitude oscillations and may result in system breakups and large-scale blackouts. There have been several incidents of system-wide oscillations. Of those incidents, the most notable is the August 10, 1996 western system breakup, a result of undamped system-wide oscillations. Significant efforts have been devoted to monitoring system oscillatory behaviors from measurements in the past 20 years. The deployment of phasor measurement units (PMU) provides high-precision, time-synchronized data needed for detecting oscillation modes. Measurement-based modal analysis,more » also known as ModeMeter, uses real-time phasor measurements to identify system oscillation modes and their damping. Low damping indicates potential system stability issues. Modal analysis has been demonstrated with phasor measurements to have the capability of estimating system modes from both oscillation signals and ambient data. With more and more phasor measurements available and ModeMeter techniques maturing, there is yet a need for methods to bring modal analysis from monitoring to actions. The methods should be able to associate low damping with grid operating conditions, so operators or automated operation schemes can respond when low damping is observed. The work presented in this report aims to develop such a method and establish a Modal Analysis for Grid Operation (MANGO) procedure to aid grid operation decision making to increase inter-area modal damping. The procedure can provide operation suggestions (such as increasing generation or decreasing load) for mitigating inter-area oscillations.« less
Interference studies with two hospital-grade and two home-grade glucose meters.
Lyon, Martha E; Baskin, Leland B; Braakman, Sandy; Presti, Steven; Dubois, Jeffrey; Shirey, Terry
2009-10-01
Interference studies of four glucose meters (Nova Biomedical [Waltham, MA] StatStrip [hospital grade], Roche Diagnostics [Indianapolis, IN] Accu-Chek Aviva [home grade], Abbott Diabetes Care [Alameda, CA] Precision FreeStyle Freedom [home grade], and LifeScan [Milpitas, CA] SureStep Flexx [hospital grade]) were evaluated and compared to the clinical laboratory plasma hexokinase reference method (Roche Hitachi 912 chemistry analyzer). These meters were chosen to reflect the continuum of care from hospital to home grade meters commonly seen in North America. Within-run precision was determined using a freshly prepared whole blood sample spiked with concentrated glucose to give three glucose concentrations. Day-to-day precision was evaluated using aqueous control materials supplied by each vendor. Common interferences, including hematocrit, maltose, and ascorbate, were tested alone and in combination with one another on each of the four glucose testing devices at three blood glucose concentrations. Within-run precision for all glucose meters was <5% except for the FreeStyle (up to 7.6%). Between-day precision was <6% for all glucose meters. Ascorbate caused differences (percentage change from a sample without added interfering substances) of >5% with pyrroloquinolinequinone (PQQ)-glucose dehydrogenase-based technologies (Aviva and Freestyle) and the glucose oxidase-based Flexx meter. Maltose strongly affected the PQQ-glucose dehydrogenase-based meter systems. When combinations of interferences (ascorbate, maltose, and hematocrit mixtures) were tested, the extent of the interference was up to 193% (Aviva), 179% (FreeStyle), 25.1% (Flexx), and 5.9% (StatStrip). The interference was most pronounced at low glucose (3.9-4.4 mmol/L). All evaluated glucose meter systems demonstrated varying degrees of interference by hematocrit, ascorbate, and maltose mixtures. PQQ-glucose dehydrogenase-based technologies showed greater susceptibility than glucose oxidase-based systems. However, the modified glucose oxidase-based amperometric method (Nova StatStrip) was less affected in comparison with the glucose oxidase-based photometric method (LifeScan SureStep Flexx).
Comparison of intraocular lens decentration and tilt measurements using 2 Purkinje meter systems.
Maedel, Sophie; Hirnschall, Nino; Bayer, Natascha; Markovic, Sabine; Tabernero, Juan; Artal, Pablo; Schaeffel, Frank; Findl, Oliver
2017-05-01
To evaluate the difference in intraocular lens tilt and decentration measurements with 2 Purkinje meters. Vienna Institute for Research in Ocular Surgery, Hanusch Hospital, Vienna, Austria. Prospective evaluation of diagnostic test. This single-center study included pseudophakic patients in 2 substudies in which 3 consecutive measurements were performed with 2 Purkinje meters (Spanish and German). In substudy 1, an inexperienced examiner performed all measurements after a short learning period. In substudy 2, all measurements were taken by experienced examiners under direct supervision of the inventors of the devices. Substudy 1 included 53 pseudophakic eyes in which all 53 scans were successful with the Spanish device; however, only 35 measurements (66%) were successful with the German Purkinje meter. The mean tilt measured with the Spanish Purkinje meter was 4.35 degrees ± 2.50 (SD) and 9.20 ± 6.96 degrees with the German Purkinje meter. The mean decentration was 0.44 ± 0.19 mm and 0.74 ± 0.91 mm, (P = .44), respectively. In substudy 2 (29 pseudophakic eyes), the number of successful scans was 29 (100%) and 18 (62%) for the Spanish meter and German Purkinje meter, respectively. The mean horizontal and vertical tilt difference vector between the 2 systems was 4.89 ± 3.24 degrees and 7.57 ± 3.82 degrees, respectively. Concerning clinical feasibility, the Spanish Purkinje meter had a greater percentage of successful scans than the German device. In addition, this device measured significantly higher tilt values than the Spanish Purkinje meter. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
2003-09-02
KENNEDY SPACE CENTER, FLA. - This bird's-eye view of a high bay in the Orbiter Processing Facility (OPF) shows the open payload bay of Space Shuttle Discovery surrounded by the standard platforms and equipment required to process a Space Shuttle orbiter. The high bay is 197 feet (60 meters) long, 150 feet (46 meters) wide, 95 feet (29 meters) high, and encompasses a 29,000-square-foot (2,694-meter) area. The 30-ton (27-metric-ton) bridge crane (yellow device, right) has a hook height of approximately 66 feet (20 meters). Platforms, a main access bridge, and two rolling bridges with trucks provide access to various parts of the orbiter. In addition to routine servicing and checkout, the inspections and modifications made to enhance Discovery's performance and upgrade its systems were performed in the OPF during its recently completed Orbiter Major Modification (OMM) period.
NASA Technical Reports Server (NTRS)
Rhodes, David B.; Franke, John M.; Jones, Stephen B.; Leighty, Bradley D.
1992-01-01
Simple light-meter circuit used to position knife edge of schlieren optical system to block exactly half light. Enables operator to check quickly position of knife edge between tunnel runs to ascertain whether or not in alignment. Permanent measuring system made part of each schlieren system. If placed in unused area of image plane, or in monitoring beam from mirror knife edge, provides real-time assessment of alignment of schlieren system.
Seismic monitoring of the unstable rock slope at Aaknes, Norway
NASA Astrophysics Data System (ADS)
Roth, M.; Blikra, L. H.
2009-04-01
The unstable rock slope at Aaknes has an estimated volume of about 70 million cubic meters, and parts of the slope are moving at a rate between 2-15 cm/year. Amongst many other direct monitoring systems we have installed a small-scale seismic network (8 three-component geophones over an area of 250 x 150 meters) in order to monitor microseismic events related to the movement of the slope. The network has been operational since November 2005 with only a few short-term outages. Seismic data are transferred in real-time from the site to NORSAR for automatic detection processing. The resulting detection lists and charts and the associated waveform are forwarded immediately to the early warning centre of the Municipality of Stranda. Furthermore, we make them available after a delay of about 10-15 minutes on our public project web page (http://www.norsar.no/pc-47-48-Latest-Data.aspx). Seismic monitoring provides independent and complementary data to the more direct monitoring systems at Aaknes. We observe increased seismic activity in periods of heavy rain fall or snow melt, when laser ranging data and extensometer readings indicate temporary acceleration phases of the slope. The seismic network is too small and the velocity structure is too heterogeneous in order to obtain reliable localizations of the microseismic events. In summer 2009 we plan to install a high-sensitive broadband seismometer (60 s - 100 Hz) in the middle of the unstable slope. This will allow us to better constrain the locations of the microseismic events and to investigate potential low-frequency signals associated with the slope movement.
Rosenberry, Donald O.; Briggs, Martin A.; Delin, Geoffrey N.; Hare, Danielle K.
2016-01-01
Quantifying flow of groundwater through streambeds often is difficult due to the complexity of aquifer-scale heterogeneity combined with local-scale hyporheic exchange. We used fiber-optic distributed temperature sensing (FO-DTS), seepage meters, and vertical temperature profiling to locate, quantify, and monitor areas of focused groundwater discharge in a geomorphically simple sand-bed stream. This combined approach allowed us to rapidly focus efforts at locations where prodigious amounts of groundwater discharged to the Quashnet River on Cape Cod, Massachusetts, northeastern USA. FO-DTS detected numerous anomalously cold reaches one to several m long that persisted over two summers. Seepage meters positioned upstream, within, and downstream of 7 anomalously cold reaches indicated that rapid groundwater discharge occurred precisely where the bed was cold; median upward seepage was nearly 5 times faster than seepage measured in streambed areas not identified as cold. Vertical temperature profilers deployed next to 8 seepage meters provided diurnal-signal-based seepage estimates that compared remarkably well with seepage-meter values. Regression slope and R2 values both were near 1 for seepage ranging from 0.05 to 3.0 m d−1. Temperature-based seepage model accuracy was improved with thermal diffusivity determined locally from diurnal signals. Similar calculations provided values for streambed sediment scour and deposition at subdaily resolution. Seepage was strongly heterogeneous even along a sand-bed river that flows over a relatively uniform sand and fine-gravel aquifer. FO-DTS was an efficient method for detecting areas of rapid groundwater discharge, even in a strongly gaining river, that can then be quantified over time with inexpensive streambed thermal methods.
ATimer-Actuated, Immunoassay Cassette for Detecting Molecular Markers in Oral Fluids
Liu, Changchun; Qiu, Xianbo; Ongagna, Serge; Chen, Dafeng; Chen, Zongyuan; Abrams, William R.; Malamud, Daniel; Corstjens, Paul L.A.M.; Bau, Haim H.
2009-01-01
An inexpensive, hand-held, point-of-care, disposable, self-contained, immunoassay cassette comprised of air pouches for pumping, a metering chamber, reagents storage chambers, a mixer, and a lateral flow strip was designed, constructed, and tested. The assay was carried out in a consecutive flow format. The detection was facilitated with up-converting, phosphor (UCP) reporter particles. The automated, timely pumping of the various reagents was driven by a spring-loaded timer. The utility of the cassette was demonstrated by detecting antibodies to HIV in saliva samples and further evaluated with a non-contagious, haptenized DNA assay. The cassette has several advantages over dip sticks such as sample preprocessing, integrated storage of reagents, and automated operation that reduces operator errors and training. The cassette and actuator described herein can readily be extended to detect biomarkers of other diseases in body fluids and other fluids at the point of care. The system is particularly suitable for resource poor countries, where funds and trained personnel are in short supply. PMID:19255658
Novel approach for low-cost muzzle flash detection system
NASA Astrophysics Data System (ADS)
Voskoboinik, Asher
2008-04-01
A low-cost muzzle flash detection based on CMOS sensor technology is proposed. This low-cost technology makes it possible to detect various transient events with characteristic times between dozens of microseconds up to dozens of milliseconds while sophisticated algorithms successfully separate them from false alarms by utilizing differences in geometrical characteristics and/or temporal signatures. The proposed system consists of off-the-shelf smart CMOS cameras with built-in signal and image processing capabilities for pre-processing together with allocated memory for storing a buffer of images for further post-processing. Such a sensor does not require sending giant amounts of raw data to a real-time processing unit but provides all calculations in-situ where processing results are the output of the sensor. This patented CMOS muzzle flash detection concept exhibits high-performance detection capability with very low false-alarm rates. It was found that most false-alarms due to sun glints are from sources at distances of 500-700 meters from the sensor and can be distinguished by time examination techniques from muzzle flash signals. This will enable to eliminate up to 80% of falsealarms due to sun specular reflections in the battle field. Additional effort to distinguish sun glints from suspected muzzle flash signal is made by optimization of the spectral band in Near-IR region. The proposed system can be used for muzzle detection of small arms, missiles and rockets and other military applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fishbaugher, M. J.
1985-05-01
The decreasing cost of microcomputers along with improvements in power metering circuitry have changed the way in which electrical energy use is monitored. Although utilities still rely on kilowatt-hour (kWh) meters for billing purposes, a microcomputer-based monitoring system is used when greater temporal and end-use resolution is desired. Because these types of monitoring systems will be used increasingly in large-scale conservation and end-use studies, it is important that their performance be analyzed to determine their accuracy. A co-instrumentation test was devised in which two such microcomputer-based monitoring systems made simultaneous measurements of electrical end-uses in two commercial buildings. The analysismore » of the co-instrumentation data aids in the evaluation of microcomputer-based monitoring systems used for end-use measurements. Separate and independent data loggers were used to measure the same loads simultaneously. In addition to these two systems, a utility billing meter measured the total energy use in each building during the co-instrumentation test. The utility's meters provided a relatively accurate standard by which the performance of both loggers could be judged. The comparison between the SCL and PNL microcomputer-based loggers has shown that power measurement techniques directly affect system performance. The co-instrumentation test has shown that there are certain standards that a monitoring system must meet if it is to perform well. First, it is essential to calibrate a microcomputer-based logger against a known standard load before the system is installed. Second, a microcomputer-based system must have some way of accounting for power factors. Recent advances in power metering circuitry have made it relatively easy to apply these power factors automatically in real time.« less
Direct methanol feed fuel cell and system
NASA Technical Reports Server (NTRS)
Surampudi, Subbarao (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor)
2009-01-01
Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.
40 CFR 63.3 - Units and abbreviations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... defined as follows: (a) System International (SI) units of measure: A = ampere g = gram Hz = hertz J = joule °K = degree Kelvin kg = kilogram l = liter m = meter m3 = cubic meter mg = milligram = 10−3 gram ml = milliliter = 10−3 liter mm = millimeter = 10−3 meter Mg = megagram = 106 gram = metric ton MJ...
40 CFR 63.3 - Units and abbreviations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... defined as follows: (a) System International (SI) units of measure: A = ampere g = gram Hz = hertz J = joule °K = degree Kelvin kg = kilogram l = liter m = meter m3 = cubic meter mg = milligram = 10−3 gram ml = milliliter = 10−3 liter mm = millimeter = 10−3 meter Mg = megagram = 106 gram = metric ton MJ...
40 CFR 63.3 - Units and abbreviations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... defined as follows: (a) System International (SI) units of measure: A = ampere g = gram Hz = hertz J = joule °K = degree Kelvin kg = kilogram l = liter m = meter m3 = cubic meter mg = milligram = 10−3 gram ml = milliliter = 10−3 liter mm = millimeter = 10−3 meter Mg = megagram = 106 gram = metric ton MJ...
40 CFR 63.3 - Units and abbreviations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... defined as follows: (a) System International (SI) units of measure: A = ampere g = gram Hz = hertz J = joule °K = degree Kelvin kg = kilogram l = liter m = meter m3 = cubic meter mg = milligram = 10−3 gram ml = milliliter = 10−3 liter mm = millimeter = 10−3 meter Mg = megagram = 106 gram = metric ton MJ...
40 CFR 63.3 - Units and abbreviations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... defined as follows: (a) System International (SI) units of measure: A = ampere g = gram Hz = hertz J = joule °K = degree Kelvin kg = kilogram l = liter m = meter m3 = cubic meter mg = milligram = 10−3 gram ml = milliliter = 10−3 liter mm = millimeter = 10−3 meter Mg = megagram = 106 gram = metric ton MJ...
46 CFR 108.489 - Helicopter fueling facilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...
46 CFR 108.489 - Helicopter fueling facilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...
46 CFR 108.489 - Helicopter fueling facilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...
46 CFR 108.489 - Helicopter fueling facilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...
46 CFR 108.489 - Helicopter fueling facilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...
The Mount Rainier Lahar Detection System
NASA Astrophysics Data System (ADS)
Lockhart, A. B.; Murray, T. L.
2003-12-01
To mitigate the risk of unheralded lahars from Mount Rainier, the U.S. Geological Survey, in cooperation with Pierce County, Washington, installed a lahar-detection system on the Puyallup and Carbon rivers that originate on Mount Rainier's western slopes. The system, installed in 1998, is designed to automatically detect the passage of lahars large enough to potentially affect populated areas downstream (approximate volume threshold 40 million cubic meters), while ignoring small lahars, earthquakes, extreme weather and floods. Along each river valley upstream, arrays of independent lahar-monitoring stations equipped with geophones and short tripwires telemeter data to a pair of redundant computer base stations located in and near Tacoma at existing public safety facilities that are staffed around the clock. Monitored data consist of ground-vibration levels, tripwire status, and transmissions at regular intervals. The base stations automatically evaluate these data to determine if a dangerous lahar is passing through the station array. The detection algorithm requires significant ground vibration to occur at those stations in the array that are above the anticipated level of inundation, while lower level `deadman' stations, inundated by the flow, experience tripwire breakage or are destroyed. Once a base station detects a lahar, it alerts staff who execute a call-down of public-safety officials and schools, initiating evacuation of areas potentially at risk. Because the system's risk-mitigation task imposes high standards of reliability on all components, it has been under test for several years. To date, the system has operated reliably and without false alarms, including during the nearby M6.8 Nisqually Earthquake on February 28, 2001. The system is being turned over to Pierce County, and activated as part of their lahar warning system.
Energy Theft in the Advanced Metering Infrastructure
NASA Astrophysics Data System (ADS)
McLaughlin, Stephen; Podkuiko, Dmitry; McDaniel, Patrick
Global energy generation and delivery systems are transitioning to a new computerized "smart grid". One of the principle components of the smart grid is an advanced metering infrastructure (AMI). AMI replaces the analog meters with computerized systems that report usage over digital communication interfaces, e.g., phone lines. However, with this infrastructure comes new risk. In this paper, we consider adversary means of defrauding the electrical grid by manipulating AMI systems. We document the methods adversaries will use to attempt to manipulate energy usage data, and validate the viability of these attacks by performing penetration testing on commodity devices. Through these activities, we demonstrate that not only is theft still possible in AMI systems, but that current AMI devices introduce a myriad of new vectors for achieving it.
Non-invasive energy meter for fixed and variable flow systems
Menicucci, David F.; Black, Billy D.
2005-11-01
An energy metering method and apparatus for liquid flow systems comprising first and second segments of one or more conduits through which a liquid flows, comprising: attaching a first temperature sensor for connection to an outside of the first conduit segment; attaching a second temperature sensor for connection to an outside of the second conduit segment; via a programmable control unit, receiving data from the sensors and calculating energy data therefrom; and communicating energy data from the meter; whereby the method and apparatus operate without need to temporarily disconnect or alter the first or second conduit segments. The invention operates with both variable and fixed flow systems, and is especially useful for both active and passive solar energy systems.
2024 Unmanned Undersea Warfare Concept
2013-06-01
mine. Assumptions are that the high-tech mine would have a 400 - meter range that spans 360 degrees, a 90% probability of detecting a HVU, and a 30...motor volume – The electric propulsion motor is assumed to be 0.127 cubic meters . A common figure of 24” x 18” x 18” is assumed. This size will allow...regard to propagation loss is assumed to be 400 HZ. Using Excel spreadsheet modeling, the maximum range is determined by finding that range resulting in
Real-time color/shape-based traffic signs acquisition and recognition system
NASA Astrophysics Data System (ADS)
Saponara, Sergio
2013-02-01
A real-time system is proposed to acquire from an automotive fish-eye CMOS camera the traffic signs, and provide their automatic recognition on the vehicle network. Differently from the state-of-the-art, in this work color-detection is addressed exploiting the HSI color space which is robust to lighting changes. Hence the first stage of the processing system implements fish-eye correction and RGB to HSI transformation. After color-based detection a noise deletion step is implemented and then, for the classification, a template-based correlation method is adopted to identify potential traffic signs, of different shapes, from acquired images. Starting from a segmented-image a matching with templates of the searched signs is carried out using a distance transform. These templates are organized hierarchically to reduce the number of operations and hence easing real-time processing for several types of traffic signs. Finally, for the recognition of the specific traffic sign, a technique based on extraction of signs characteristics and thresholding is adopted. Implemented on DSP platform the system recognizes traffic signs in less than 150 ms at a distance of about 15 meters from 640x480-pixel acquired images. Tests carried out with hundreds of images show a detection and recognition rate of about 93%.
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Active and Passive Hybrid Sensor; Quick-Response Thermal Actuator for Use as a Heat Switch; System for Hydrogen Sensing; Method for Detecting Perlite Compaction in Large Cryogenic Tanks; Using Thin-Film Thermometers as Heaters in Thermal Control Applications; Directional Spherical Cherenkov Detector; AlGaN Ultraviolet Detectors for Dual-Band UV Detection; K-Band Traveling-Wave Tube Amplifier; Simplified Load-Following Control for a Fuel Cell System; Modified Phase-meter for a Heterodyne Laser Interferometer; Loosely Coupled GPS-Aided Inertial Navigation System for Range Safety; Sideband-Separating, Millimeter-Wave Heterodyne Receiver; Coaxial Propellant Injectors With Faceplate Annulus Control; Adaptable Diffraction Gratings With Wavefront Transformation; Optimizing a Laser Process for Making Carbon Nanotubes; Thermogravimetric Analysis of Single-Wall Carbon Nanotubes; Robotic Arm Comprising Two Bending Segments; Magnetostrictive Brake; Low-Friction, Low-Profile, High-Moment Two-Axis Joint; Foil Gas Thrust Bearings for High-Speed Turbomachinery; Miniature Multi-Axis Mechanism for Hand Controllers; Digitally Enhanced Heterodyne Interferometry; Focusing Light Beams To Improve Atomic-Vapor Optical Buffers; Landmark Detection in Orbital Images Using Salience Histograms; Efficient Bit-to-Symbol Likelihood Mappings; Capacity Maximizing Constellations; Natural-Language Parser for PBEM; Policy Process Editor for P(sup 3)BM Software; A Quality System Database; Trajectory Optimization: OTIS 4; and Computer Software Configuration Item-Specific Flight Software Image Transfer Script Generator.
Applications of a laser velocimeter in the Langley 4- by 7-meter tunnel
NASA Astrophysics Data System (ADS)
Sellers, W. L.; Elliott, J. W.
1982-09-01
Applications of a laser velocimeter in the Langley 4 by 7 meter wind tunnel are discussed. The system configuration is described. The data acquisition, the laser velocimeter traversing, and the particle generating systems are discussed. Flow distribution and rotor wake applications are discussed.
Creating and Perpetuating Social Memory across the Ancient Cost Rican Landscape
NASA Technical Reports Server (NTRS)
Sheets, Payson; Sever, Tom
2004-01-01
For most of the time that Native Americans lived in ancient Costa Rica, their travel across the landscape was task-oriented and thus sufficiently randomized to leave no detectable trace. That changed about 500 BC in the Arenal area when people separated their cemeteries from their villages, and travel between them was ritually mediated by travel along the same path, in single file, in as straight a line as possible. The inadvertent erosion over centuries of use entrenched paths 2 or more meters deep, and we believe the cultural standard developed that the preferred way of entering a special place was by an entrenched path. People created and perpetuated social memory across their landscapes with generation after generation of use. The construction of meaning developed as the paths entrenched, ultimately embedding that meaning deep in people s belief systems as well as literally embedding it in the landscape. the Arenal area, a series of chiefdoms did develop east of the area at about AD 1000. To satisfy their need for monumentality, we suggest here that chiefs chose the proper entrenched entryway as exemplified in the Arenal area, for elaboration. On the rocky slopes of the volcanoes monumental entryways were built of stone, and on the fine alluvial plains they were of earthen construction. For instance, the radiating entrenched roads entering Cutris are about 4 km long and as wide as 50 meters, and many meters deep.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
This document presents an outline for a 135-hour course designed to help the trainee gain the skills and knowledge necessary to become an aviation powerplant mechanic. The course outlines the theory of operation of various fuel systems, fuel metering, induction, and exhaust system components with an emphasis on troubleshooting, maintenance, and…
Smith, Winchell
1971-01-01
Current-meter measurements of high accuracy will be required for calibration of an acoustic flow-metering system proposed for installation in the Sacramento River at Chipps Island in California. This report presents an analysis of the problem of making continuous accurate current-meter measurements in this channel where the flow regime is changing constantly in response to tidal action. Gaging-system requirements are delineated, and a brief description is given of the several applicable techniques that have been developed by others. None of these techniques provides the accuracies required for the flowmeter calibration. A new system is described--one which has been assembled and tested in prototype and which will provide the matrix of data needed for accurate continuous current-meter measurements. Analysis of a large quantity of data on the velocity distribution in the channel of the Sacramento River at Chipps Island shows that adequate definition of the velocity can be made during the dominant flow periods--that is, at times other than slack-water periods--by use of current meters suspended at elevations 0.2 and 0.8 of the depth below the water surface. However, additional velocity surveys will be necessary to determine whether or not small systematic corrections need be applied during periods of rapidly changing flow. In the proposed system all gaged parameters, including velocities, depths, position in the stream, and related times, are monitored continuously as a boat moves across the river on the selected cross section. Data are recorded photographically and transferred later onto punchcards for computer processing. Computer programs have been written to permit computation of instantaneous discharges at any selected time interval throughout the period of the current meter measurement program. It is anticipated that current-meter traverses will be made at intervals of about one-half hour over periods of several days. Capability of performance for protracted periods was, consequently, one of the important elements in system design. Analysis of error sources in the proposed system indicates that errors in individual computed discharges can be kept smaller than 1.5 percent if the expected precision in all measured parameters is maintained.
NASA Astrophysics Data System (ADS)
Quednau, Philipp; Trommer, Ralph; Schmidt, Lorenz-Peter
2016-03-01
Wireless transmission systems in smart metering networks share the advantage of lower installation costs due to the expandability of separate infrastructure but suffer from transmission problems. In this paper the issue of interference of wireless transmitted smart meter data with third party systems and data from other meters is investigated and an approach for solving the problem is presented. A multi-channel wireless m-bus receiver was developed to separate the desired data from unwanted interferers by spatial filtering. The according algorithms are presented and the influence of different antenna types on the spatial filtering is investigated. The performance of the spatial filtering is evaluated by extensive measurements in a realistic surrounding with several hundreds of active wireless m-bus transponders. These measurements correspond to the future environment for data-collectors as they took place in rural and urban areas with smart gas meters equipped with wireless m-bus transponders installed in almost all surrounding buildings.
Bushberg, Jerrold T; Foster, Kenneth R; Hatfield, James B; Thansandote, Arthur; Tell, Richard A
2015-03-01
This Technical Information Statement describes Smart Meter technology as used with modern electric power metering systems and focuses on the radio frequency (RF) emissions associated with their operation relative to human RF exposure limits. Smart Meters typically employ low power (-1 W or less) transmitters that wirelessly send electric energy usage data to the utility company several times per day in the form of brief, pulsed emissions in the unlicensed frequency bands of 902-928 MHz and 2.4-2.48 GHz or on other nearby frequencies. Most Smart Meters operate as wireless mesh networks where each Smart Meter can communicate with other neighboring meters to relay data to a data collection point in the region. This communication process includes RF emissions from Smart Meters representing energy usage as well as the relaying of data from other meters and emissions associated with maintaining the meter's hierarchy within the wireless network. As a consequence, most Smart Meters emit RF pulses throughout the day, more at certain times and less at others. However, the duty cycle associated with all of these emissions is very small, typically less than 1%, and most of the time far less than 1%, meaning that most Smart Meters actually transmit RF fields for only a few minutes per day at most. The low peak power of Smart Meters and the very low duty cycles lead to the fact that accessible RF fields near Smart Meters are far below both U.S. and international RF safety limits whether judged on the basis of instantaneous peak power densities or time-averaged exposures. This conclusion holds for Smart Meters alone or installed in large banks of meters.
Millimeter-wave radar for vital signs sensing
NASA Astrophysics Data System (ADS)
Petkie, Douglas T.; Benton, Carla; Bryan, Erik
2009-05-01
In this paper, we will describe the development of a 228 GHz heterodyne radar system as a vital signs sensing monitor that can remotely measure respiration and heart rates from distances of 1 to 50 meters. We will discuss the design of the radar system along with several studies of its performance. The system includes the 228 GHz transmitter and heterodyne receiver that are optically coupled to the same 6 inch optical mirror that is used to illuminate the subject under study. Intermediate Frequency (IF) signal processing allows the system to track the phase of the reflected signal through I and Q detection and phase unwrapping. The system monitors the displacement in real time, allowing various studies of its performance to be made. We will review its successes by comparing the measured rates with a wireless health monitor and also describe the challenges of the system.
The LCOGT near-Earth-object follow-up network
NASA Astrophysics Data System (ADS)
Lister, T.
2014-07-01
Las Cumbres Observatory Global Telescope (LCOGT) network is a planned homogeneous network that will eventually consist of over 35 telescopes at 6 locations in the northern and southern hemispheres [1]. This network is versatile and designed to respond rapidly to target of opportunity events and also to do long term monitoring of slowly changing astronomical phenomena. The global coverage of the network and the apertures of telescope available make the LCOGT network ideal for follow-up and characterization of a wide range of solar-system objects (e.g. asteroids, Kuiper-belt objects, comets) and in particular near-Earth objects (NEOs). There are 3 classes to the telescope resources: 2-meter aperture, 1-meter aperture and 0.4-meter aperture. We have been operating our two 2-meter telescopes since 2005 and began a specific program of NEO follow-up for the Pan-STARRS survey in October 2010. The combination of all-sky access, large aperture, rapid response, robotic operation and good site conditions allows us to provide time-critical follow-up astrometry and photometry on newly discovered objects and faint objects as they recede from the Earth, allowing the orbital arc to be extended and preventing loss of objects. These telescope resources have greatly increased as LCOGT has completed the first phase of the deployment, designated as ''Version 1.0'', with the installation, commissioning and ongoing operation of nine 1-meter telescopes. These are distributed among four sites with one 1-meter at McDonald Observatory (Texas), three telescopes at Cerro Tololo (Chile), three telescopes at SAAO (South Africa) and the final two telescope at Siding Spring Observatory (Australia). In addition to the 1-meter network, the scheduling and control system for the two 2-meter telescopes have been upgraded and unified with that of the 1-meter network to provide a coherent robotic telescopic network. The telescope network is now operating and observations are being executed remotely and robotically. I am using the LCOGT network to confirm newly detected NEO candidates produced by the major sky surveys such as Catalina Sky Survey (CSS) and Pan-STARRS (PS1) with additional targets coming from the NEOWISE satellite and the Palomar Transient Factory (PTF). Robotic observations of NEOs and other solar-system objects have been routinely carried out for several years on the 2-m and 1-m telescopes, with over 20,000 positional and magnitude measurements reported to the Minor Planet Center (MPC) in the last two years. We have developed software to automatically fetch candidates from Pan-STARRS and the MPC Confirmation Page, compute orbits and ephemerides, plan and schedule observations on the telescopes and retrieve the processed data [2]. The program is being expanded which will allow us to greatly increase the amount of survey discoveries that are followed-up, obtain accurate astrometry and provide important characterization data in the form of colors, lightcurves, rotation rates and spectra for NEOs. An increasing amount of time is being spent to obtain follow-up astrometry and photometry for radar-targeted objects in order to improve the orbits and determine the rotation periods. Priority for follow-up is now given to the fainter and most southern targets on the Confirmation Page, objects that are scheduled for Goldstone/Arecibo radar targeting and those objects which could become potential mission destinations for spacecraft. This will be extended to obtain more light curves of other NEOs which could be Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) or Asteroid Retrieval Mission (ARM) targets. With the increase in time available from the LCOGT 1-meter network and commissioning of low-resolution spectrographs on the 2-meter telescopes for moving objects, this will produce a large advance in capabilities for NEO follow-up and characterization. This will produce an unprecedented network for NEO follow-up, particularly in the Southern Hemisphere where there is currently a shortage of suitable facilities. We will continue to develop our software to take advantage of the increased resources and capabilities of the LCOGT Network.
Mars SubsurfAce Sounding by Time-Domain Electromagnetic MeasuRements
NASA Astrophysics Data System (ADS)
Tacconi, G.; Minna, L.; Pagnan, S.; Tacconi, M.
1999-09-01
MASTER (Mars subsurfAce Sounding by Time-domain Electromagnetic measuRements) is an experimental project proposed to fly aboard the Italian Drill (DEEDRI) payload for the Mars Surveyor Program 2003. MASTER will offer the scientific community the first opportunity to scan Mars subsurface structure by means of the technique employing time-domain electromagnetic measurements TDEM. Up today proposed experiments for scanning the Martian subsurface have focused on exploring the crust of the planet Mars up to few meters, while MASTER will explore electrical structures and related soil characteristics and processes at depths up to hundreds meters at least. TDEM represents an active remote sensing system and will be used likely a ULF/ELF/VLF ``radar." If a certain volumetric zone has different electrical conductivity, the current in the sample will vary generating a secondary scattered electromagnetic field containing the information about the explored volume. The volumetric mean value of the conductivity will be estimated according to the implicit near field e.m. propagation conditions, considering the skin depth (d) and the apparent resistivity (ra) as the most representative and critical parameters. As any active remotely sensed measurements the TDEM system behaves like a ``bistatic" communication channel and is mandatory to investigate the characteristics of the background noise at the receiver site. The MASTER system, can operate also as a passive listening device of the possible electromagnetic background noise on the Mars surface at ULF/ELF/VLF bands. Present paper will describe in details the application of the TDEM method as well as the approaches to the detection and estimation of the e.m. BGN on Mars surface, in terms of man made, natural BGN and intrinsic noise of the sensors and electronic systems. The electromagnetic background noise detection/estimation represents by itself a no cost experiment and the first experiment of this type on Mars.
NaK Plugging Meter Design for the Feasibility Test Loops
NASA Technical Reports Server (NTRS)
Pearson, J. Boise; Godfroy, Thomas J.; Reid, Robert S.; Polzin, Kurt A.
2008-01-01
The design and predicted performance of a plugging meter for use in the measurement of NaK impurity levels are presented. The plugging meter is incorporated into a Feasibility Test Loop (FTL), which is a small pumped-NaK loop designed to enable the rapid, small-scale evaluation of techniques such as in situ purification methods and to permit the measurement of bulk material transport effects (not mechanisms) under flow conditions that are representative of a fission surface power reactor. The FTL operates at temperatures similar to those found in a reactor, with a maximum hot side temperature of 900 K and a corresponding cold side temperature of 860 K. In the plugging meter a low flow rate bypass loop is cooled until various impurities (primarily oxides) precipitate out of solution. The temperatures at which these impurities precipitate are indicative of the level of impurities in the NaK. The precipitates incrementally plug a small orifice in the bypass loop, which is detected by monitoring changes in the liquid metal flow rate.
46 CFR 28.345 - Electrical standards for vessels less than 79 feet (24 meters) in length.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Electrical standards for vessels less than 79 feet (24... § 28.345 Electrical standards for vessels less than 79 feet (24 meters) in length. (a) A vessel less than 79 feet (24 meters) in length with an alternating current electrical distribution system may...
46 CFR 28.345 - Electrical standards for vessels less than 79 feet (24 meters) in length.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Electrical standards for vessels less than 79 feet (24... § 28.345 Electrical standards for vessels less than 79 feet (24 meters) in length. (a) A vessel less than 79 feet (24 meters) in length with an alternating current electrical distribution system may...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
... encase water, gas, or other valves, or water and gas meters, classifiable as light castings under HTS... systems; and valve, service, and meter boxes which are placed below ground to encase water, gas, or other valves, or water or gas meters. These articles must be of cast iron, not alloyed, and not malleable. This...
Effects of erosion control structures along a portion of the northern Chesapeake Bay shoreline
Zabawa, C.F.; Kerhin, R.T.; Bayley, S.
1981-01-01
A 6.500-meter reach of western Chesapeake Bay shoreline (lower Mayo Peninsula) lost about 1.1??106 cubic meters of sediment (equivalent to 170 cubic meters lost per meter of shoreline) between 1846 and 1932, when the first aerial photographs show the shoreline already substantially protected by a system of groins and intermittent bulkheading. These structures have eliminated the fastland as a source of erodable material, and have starved the supply of sand for littoral drift, thus limiting the extent of the beaches to the remaining groin fields. Volumes of sediment involved in these impacts are small in the overall sediment budget. Bulkheads produce no deficit in the budget since scouring of the beaches on their seaward sides makes up for the decreased erosion of protected fastland. Groins trap little of the potential littoral drift (computed to be about 104 cubic meters per meter of shoreline per year). The sand supply in the remaining beaches is nearly equivalent to the annual loss of sediment from the entire shoreline system due to the long-term rate of erosion of the shoreline and nearshore between 1846 and 1932. ?? 1981 Springer-Verlag New York Inc.
Fuel cell membrane hydration and fluid metering
Jones, Daniel O.; Walsh, Michael M.
2003-01-01
A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).
Incipient Crack Detection in Composite Wind Turbine Blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Stuart G.; Choi, Mijin; Jeong, Hyomi
2012-08-28
This paper presents some analysis results for incipient crack detection in a 9-meter CX-100 wind turbine blade that underwent fatigue loading to failure. The blade was manufactured to standard specifications, and it underwent harmonic excitation at its first resonance using a hydraulically-actuated excitation system until reaching catastrophic failure. This work investigates the ability of an ultrasonic guided wave approach to detect incipient damage prior to the surfacing of a visible, catastrophic crack. The blade was instrumented with piezoelectric transducers, which were used in an active, pitchcatch mode with guided waves over a range of excitation frequencies. The performance results inmore » detecting incipient crack formation in the fiberglass skin of the blade is assessed over the range of frequencies in order to determine the point at which the incipient crack became detectable. Higher excitation frequencies provide consistent results for paths along the rotor blade's carbon fiber spar cap, but performance falls off with increasing excitation frequencies for paths off of the spar cap. Lower excitation frequencies provide more consistent performance across all sensor paths.« less
A portable meter for measuring low frequency currents in the human body.
Niple, J C; Daigle, J P; Zaffanella, L E; Sullivan, T; Kavet, R
2004-07-01
A portable meter has been developed for measuring low frequency currents that flow in the human body. Although the present version of the meter was specifically designed to measure 50/60 Hz "contact currents," the principles involved can be used with other low frequency body currents. Contact currents flow when the human body provides a conductive path between objects in the environment with different electrical potentials. The range of currents the meter detects is approximately 0.4-800 microA. This provides measurements of currents from the threshold of human perception (approximately 500 microA(RMS)) down to single microampere levels. The meter has a unique design, which utilizes the human subject's body impedance as the sensing element. Some of the advantages of this approach are high sensitivity, the ability to measure current flow in the majority of the body, and relative insensitivity to the current path connection points. Current measurement accuracy varies with the accuracy of the body impedance (resistance) measurement and different techniques can be used to obtain a desired level of accuracy. Techniques are available to achieve an estimated +/-20% accuracy. Copyright 2004 Wiley-Liss, Inc.
A Starshade Petal Error Budget for Exo-Earth Detection and Characterization
NASA Technical Reports Server (NTRS)
Shaklan, Stuart B.; Marchen, Luis; Lisman, P. Douglas; Cady, Eric; Martin, Stefan; Thomson, Mark; Dumont, Philip; Kasdin, N. Jeremy
2011-01-01
We present a starshade error budget with engineering requirements that are well within the current manufacturing and metrology capabilities. The error budget is based on an observational scenario in which the starshade spins about its axis on timescales short relative to the zodi-limited integration time, typically several hours. The scatter from localized petal errors is smoothed into annuli around the center of the image plane, resulting in a large reduction in the background flux variation while reducing thermal gradients caused by structural shadowing. Having identified the performance sensitivity to petal shape errors with spatial periods of 3-4 cycles/petal as the most challenging aspect of the design, we have adopted and modeled a manufacturing approach that mitigates these perturbations with 1-meter-long precision edge segments positioned using commercial metrology that readily meets assembly requirements. We have performed detailed thermal modeling and show that the expected thermal deformations are well within the requirements as well. We compare the requirements for four cases: a 32 meter diameter starshade with a 1.5 meter telescope, analyzed at 75 and 90 milliarcseconds, and a 40 meter diameter starshade with a 4 meter telescope, analyzed at 60 and 75 milliarcseconds.
Quantitative measuring system for combustible gas with audible tick rate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batz, J.E.
1979-09-04
Northern Illinois Gas Co.'s new gas-detection instrument is lightweight, portable, easy to use, and in compliance with industry standards as an intrinsically safe device. The instrument uses a semiconductor gas-sensor element energyzed with the regulated voltage source. Placed in the atmosphere to be tested, the detector generates a signal representative of the concentration of natural gas in the air. A meter displays the signal to determine whether the area is hazardous; a variable-repetition-rate blocking oscillator feeding a speaker responds to the signal, generating an audible tick rate useful in locating a leak.
Detection of active decay at groundline in utility poles
Alex L. Shigo; Walter C. Shortle; Julian Ochrymowych
1977-01-01
Active wood decay at groundline in in-service utility poles can be detected by a skilled inspector using: 1. A knowledge of basic patterns of decay. 2. Recognition of obvious signs of decay. 3. Proper interpretation of information obtained from a pulsed-current meter-Shigometer®-used with various probes and probing techniques.
Variable frequency microwave heating apparatus
Bible, Don W.; Lauf, Robert J.; Johnson, Arvid C.; Thigpen, Larry T.
1999-01-01
A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).
Personal glucose meters for detection and quantification of a broad range of analytes
Lu, Yi; Xiang, Yu
2015-02-03
A general methodology for the development of highly sensitive and selective sensors that can achieve portable, low-cost and quantitative detection of a broad range of targets using only a personal glucose meter (PGM) is disclosed. The method uses recognition molecules that are specific for a target agent, enzymes that can convert an enzyme substrate into glucose, and PGM. Also provided are sensors, which can include a solid support to which is attached a recognition molecule that permits detection of a target agent, wherein the recognition molecule specifically binds to the target agent in the presence of the target agent but not significantly to other agents as well as an enzyme that can catalyze the conversion of a substance into glucose, wherein the enzyme is attached directly or indirectly to the recognition molecule, and wherein in the presence of the target agent the enzyme can convert the substance into glucose. The disclosed sensors can be part of a lateral flow device. Methods of using such sensors for detecting target agents are also provided.
The Krafla International Testbed (KMT): Ground Truth for the New Magma Geophysics
NASA Astrophysics Data System (ADS)
Brown, L. D.; Kim, D.; Malin, P. E.; Eichelberger, J. C.
2017-12-01
Recent developments in geophysics such as large N seismic arrays , 4D (time lapse) subsurface imaging and joint inversion algorithms represent fresh approaches to delineating and monitoring magma in the subsurface. Drilling at Krafla, both past and proposed, are unique opportunities to quantitatively corroborate and calibrate these new technologies. For example, dense seismic arrays are capable of passive imaging of magma systems with resolutions comparable to that achieved by more expensive (and often logistically impractical) controlled source surveys such as those used in oil exploration. Fine details of the geometry of magma lenses, feeders and associated fluid bearing fracture systems on the scale of meters to tens of meters are now realistic targets for surface seismic surveys using ambient energy sources, as are detection of their temporal variations. Joint inversions, for example of seismic and MT measurements, offer the promise of tighter quantitative constraints on the physical properties of the various components of magma and related geothermal systems imaged by geophysics. However, the accuracy of such techniques will remain captive to academic debate without testing against real world targets that have been directly sampled. Thus application of these new techniques to both guide future drilling at Krafla and to be calibrated against the resulting borehole observations of magma are an important step forward in validating geophysics for magma studies in general.
Bellco Formula Domus Home Care System.
Trewin, Elizabeth
2004-01-01
There are certain characteristics in a dialysis machine that would be desirable for use in home and limited care environments. These features relate to safety, ease of use, consideration of physical space, and reliability. The Bellco Formula Domus Home Care System was designed to meet all these requirements. Bellco's philosophy of patient treatment centers on global biocompatibility. This is evident in the design of the Formula Domus Home Care System. It has the smallest hydraulic fluid pathway of any dialysis machine on the market. Formula is capable of preparing ultrapure dialysate. The ultrafiltration measurement mechanism, the patented Coriolis flow meter, measures the mass of the dialysate, not the volume. For this reason it is the only dialysis machine that detects actual backfiltration, not just the theoretical possibility of it based on transmembrane pressure. The Coriolis flow meter also ensures that dialysate flow is a true single pass. The operator interface is a single window operating control. It is possible to select up to 14 different languages. There is an online help key to assist patients with troubleshooting. Programmable start-up and shutdown times save time for the patient. Formula is the only dialysis machine to offer a backup battery feature. Formula is capable of communicating with any software available. The focus on global biocompatibility ensures the best quality dialysis treatments for a population of patients who will likely remain on dialysis for a longer period of time than conventional dialysis patients.
Effective Dust Control Systems on Concrete Dowel Drilling Machinery
Echt, Alan S.; Sanderson, Wayne T.; Mead, Kenneth R.; Feng, H. Amy; Farwick, Daniel R.; Farwick, Dawn Ramsey
2016-01-01
Rotary-type percussion dowel drilling machines, which drill horizontal holes in concrete pavement, have been documented to produce respirable crystalline silica concentrations above recommended exposure criteria. This places operators at potential risk for developing health effects from exposure. United States manufacturers of these machines offer optional dust control systems. The effectiveness of the dust control systems to reduce respirable dust concentrations on two types of drilling machines was evaluated under controlled conditions with the machines operating inside large tent structures in an effort to eliminate secondary exposure sources not related to the dowel-drilling operation. Area air samples were collected at breathing zone height at three locations around each machine. Through equal numbers of sampling rounds with the control systems randomly selected to be on or off, the control systems were found to significantly reduce respirable dust concentrations from a geometric mean of 54 mg per cubic meter to 3.0 mg per cubic meter on one machine and 57 mg per cubic meter to 5.3 mg per cubic meter on the other machine. This research shows that the dust control systems can dramatically reduce respirable dust concentrations by over 90% under controlled conditions. However, these systems need to be evaluated under actual work conditions to determine their effectiveness in reducing worker exposures to crystalline silica below hazardous levels. PMID:27074062
All Optical Solution for Free Space Optics Point to Point Links
NASA Astrophysics Data System (ADS)
Hirayama, Daigo
Optical network systems are quickly replacing electrical network systems. Optical systems provide better bandwidth, faster data rates, better security to networks, and are less susceptible to noise. Free Space Optics (systems) still rely on numerous electrical systems such as the modulation and demodulation systems to convert optical signals to electrical signals for the transmitting laser. As the concept of the entirely optical network becomes more realizable, the electrical components of the FSO system will become a hindrance to communications. The focus of this thesis is to eliminate the electrical devices for the FSO point to point links by replacing them with optical devices. The concept is similar to an extended beam connector. However, where an extended beam connector deals with a gap of a few millimeters, my focus looks at distances from 100 meters to one kilometer. The aim is to achieve a detectable signal of 1nW at a distance of 500 meters at a wavelength of 1500-1600nm. This leads to application in building to building links and mobile networks. The research examines the design of the system in terms of generating the wave, the properties of the fiber feeding the wave, and the power necessary to achieve a usable distance. The simulation is executed in Code V by Synopsys, which is an industry standard to analyze optical systems. A usable device with a range of around 500m was achieved with an input power of 1mW. The approximations of the phase function resulted in some aberrations to the profile of the beam, but were not very detrimental to the function of the device. The removal of electrical devices from a FSO point to point link decreased the power used to establish the link and decreased the cost.
8-Meter UV/Optical Space Telescope
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2008-01-01
This slide presentation proposes using the unprecedented capability of the planned Ares V launch vehicle, to place a 8 meter monolithic space telescope at the Earth-Sun L2 point. This new capability enables a new design pardigm -- simplicity. The six to eight meter class telescope with a massive high Technical Readiness Level ground observatory class monolithic primary mirror has been determined feasible. The proposed design, structural analysis, spacecraft design and shroud integration, thermal analysis, propulsion system, guidance navigation and pointing control assumptions about the avionics, and power systems, operational lifetime, and the idea of in-space servicing are reviewed.
Analysis article: accuracy of the DIDGET glucose meter in children and young adults with diabetes.
Kim, Sarah
2011-09-01
Diabetes is one of the most common chronic diseases among American children. Although studies show that intensive management, including frequent glucose testing, improves diabetes control, this is difficult to accomplish. Bayer's DIDGET® glucose meter system pairs with a popular handheld video game system and couples good blood glucose testing habits with video-game-based rewards. In this issue, Deeb and colleagues performed a study demonstrating the accuracy of the DIDGET meter, a critical asset to this novel product designed to alleviate some of the challenges of managing pediatric diabetes. © 2011 Diabetes Technology Society.
Active Time-Domain Reflectometry for Unattended Safeguards Systems: FY16 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tedeschi, Jonathan R.; Smith, Leon E.; Conrad, Ryan C.
2016-10-21
The International Atomic Energy Agency (IAEA) continues to expand its use of unattended measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. Traditional data security measures, for example tamper-indicating (TI) conduit, are impractical for the long separation distances (often 100 meters or more) between unattended monitoring system (UMS) components. Pacific Northwest National Laboratory (PNNL) is studying the viability of active time-domain reflectometry (TDR) for the detection of cable tampering in unattended radiation detection systems. The instrument concept under investigation would allow formore » unmanned cable integrity measurements, remote surveillance reporting and locating of cable faults and/or tampers. This report describes PNNL’s FY16 progress and includes: an overview of the TDR methods under investigation; description of the TDR evaluation testbed developed by PNNL; development and testing of advanced signal processing algorithms to extract weak signals from relatively high noise levels; and initial testing of a laboratory prototype intended for IAEA UMS applications and based on a commercially available TDR module. Preliminary viability findings and recommendations for the next stage of development and testing are provided.« less
ELECTRICAL LOAD ANTICIPATOR AND RECORDER
Russell, J.B.; Thomas, R.J.
1961-07-25
A system is descrbied in which an indication of the prevailing energy consumption in an electrical power metering system and a projected Power demand for one demand interval is provided at selected increments of time withm the demand interval. Each watthour meter in the system is provided with an impulse generator that generates two impulses for each revolution of the meter disc. The total pulses received frorn all the meters are continuously totaled and are fed to a plurality of parallel connected gated counters. Each counter has its gate opened at different sub-time intervals during the demand interval. A multiplier is connected to each of the gated counters except the last one and each multiplier is provided with a different multiplier constant so as to provide an estimate of the power to be drawn over the entire demand interval at the end of each of the different sub-time intervals. Means are provided for recording the ontputs from the different circuits in synchronism with the actuation oi each gate circuit.
Finding and characterizing candidate targets for the Asteroid Redirect Mission (ARM)
NASA Astrophysics Data System (ADS)
Chodas, P.
2014-07-01
NASA's proposed Asteroid Redirect Mission (ARM) leverages key on-going activities in Human Exploration and Space Technology to advance NASA's goals in these areas. One primary objective of ARM would be to develop and demonstrate a high-power Solar Electric Propulsion (SEP) vehicle which would have the capability of moving significant amounts of mass around the solar system. SEP would be a key technology for robust future missions to deep space destinations, possibly including human missions to asteroids or to Mars. ARM would use the SEP vehicle to redirect up to hundreds of tons of material from a near-Earth asteroid into a stable lunar orbit, where a crew flying in an Orion vehicle would rendezvous and dock with it. The crew would perform an extra-vehicular activity (EVA), sample the material, and bring it back to the Earth; follow-on visits would also be possible. Two ARM mission concepts are being studied: one is to go to a small 4-10-meter-diameter asteroid, capture the entire asteroid and guide it into lunar orbit; the other is to go to a large 100-500 meter asteroid, remove a 1-10 meter boulder, and bring the boulder back into lunar orbit. A planetary defense demonstration could be included under either concept. Although some candidate targets are already known for both mission concepts, an observation campaign has been organized to identify more mission candidates. This campaign naturally leverages off of NASA's NEO Observations Program. Enhancements to asteroid search capabilities which will come online soon should increase the discovery rates for ARM candidates and hazardous asteroids alike. For the small-asteroid ARM concept, candidate targets must be smaller than about 12 meters, must follow Earth-like orbits and must naturally approach the Earth closely in the early 2020s, providing the opportunity for a low-velocity capture into the Earth/Moon system. About a dozen candidates are known with absolute magnitudes in the right range and with orbits suitable for missions launching no earlier than June 2019; the maximum asteroid return masses for these range from 45 to 800 tons according to the orbit. Unfortunately, many of the currently known candidates have not had their sizes, masses and spin rates adequately constrained in order to provide confidence that they are within the capability of the ARM vehicle to return. Still, three candidates have been characterized well enough, two by the Spitzer Space Telescope, 2009 BD and 2011 MD, and one by radar, 2013 EC_{20}. 2009 BD was not actually detected by Spitzer, indicating it was smaller than expected, about 4 meters; similarly, 2013 EC_{20} turned out to be smaller than desired, less than 3 meters. A fourth candidate, 2008 HU_4, should be characterized with radar in 2016 when it passes near the Earth. In general, physical characterization of these very small asteroids is best performed immediately after discovery, while they are still very near the Earth. Radar is important for characterizing size and rotation state, while long-arc high-precision astrometry can help characterize mass through estimation of the area-to-mass ratio. Rapid-response characterization for an ARM candidate was successfully demonstrated last year for 2013 EC_{20}, mentioned earlier. More candidates for the small-asteroid concept are expected: new potential candidates should be detected at the rate of 3 to 5 per year, based on extrapolations from past discovery rates. For the large-asteroid ARM concept, there is an additional characterization challenge: the surface of the asteroid must be observed with enough resolution that the presence of ˜3-meter boulders can be either directly seen or inferred from high-SNR radar. The maximum size and mass of the returnable boulders depends on the asteroid orbit in much the same way as for the other concept. Asteroid Itokawa is a strong candidate because it has already been well characterized by the Japanese Hayabusa spacecraft. The future targets of the OSIRIS-REx and Hayabusa 2 missions, Bennu and 1999 JU_3, should also become strong candidates in 2018. Also considered a valid candidate is 2008 EV_5: radar detected decameter-scale boulders on its surface, from which the presence of returnable ˜3-meter boulders can be inferred. The characterization rate for large-asteroid concept candidates using high-SNR radar is about 1 per year. NASA plans to choose between the two ARM concepts, capture an entire small asteroid versus pick up a boulder from a large one, within about a year.
Polarization speed meter for gravitational-wave detection
NASA Astrophysics Data System (ADS)
Wade, Andrew R.; McKenzie, Kirk; Chen, Yanbei; Shaddock, Daniel A.; Chow, Jong H.; McClelland, David E.
2012-09-01
We propose a modified configuration of an advanced gravitational-wave detector that is a speed-meter-type interferometer with improved sensitivity with respect to quantum noise. With the addition of polarization-controlling components to the output of an arm cavity Michelson interferometer, an orthogonal polarization state of the interferometer can be used to store signal, returning it later with opposite phase to cancel position information below the storage bandwidth of the opposite mode. This modification provides an alternative to an external kilometer-scale Fabry-Pérot cavity, as presented in earlier work of Purdue and Chen [Phys. Rev. D 66, 122004 (2002)]. The new configuration requires significantly less physical infrastructure to achieve speed meter operation. The quantity of length and alignment degrees of freedom is also reduced. We present theoretical calculations to show that such a speed meter detector is capable of beating the strain sensitivity imposed by the standard quantum limit over a broad range of frequencies for Advanced Laser Interferometer Gravitational-wave Observatory-like parameters. The benefits and possible difficulties of implementing such a scheme are outlined. We also present results for tuning of the speed meter by adjusting the degree of polarization coupling, a novel possibility that does not exist in previously proposed designs, showing that there is a smooth transition from speed meter operation to that of a signal-recycling Michelson behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D; MacDougall, R
2016-06-15
Purpose: Accurate values for Kerma-Area-Product (KAP) are needed for patient dosimetry and quality control for exams utilizing radiographic and/or fluoroscopic imaging. The KAP measured using a typical direct KAP meter built with parallel-plate transmission ionization chamber is not precise and depends on the energy spectrum of diagnostic x-rays. This study compared the accuracy and reproducibility of KAP derived from system parameters with values measured with a direct KAP meter. Methods: IEC tolerance for displayed KAP is specified up to ± 35% above 2.5 Gy-cm{sup 2} and manufacturer’s specifications are typically ± 25%. KAP values from the direct KAP meter driftsmore » with time leading to replacement or re-calibration. More precise and consistent KAP is achievable utilizing a database of known radiation output for various system parameters. The integrated KAP meter was removed from a radiography system. A total of 48 measurements of air kerma were acquired at x-ray tube potential from 40 to 150 kVp with 10 kVp increment using ion chamber type external dosimeter at free-in-air geometry for four different types of filter combinations following the manufacturer’s service procedure. These data were used to create updated correction factors that determine air kerma computationally for given system parameters. Results of calculated KAP were evaluated against results using a calibrated ion chamber based dosimeter and a computed radiography imaging plate to measure x-ray field size. Results: The accuracy of calculated KAP from the system parameters was better within 4% deviation in all diagnostic x-ray tube potentials tested from 50 to 140 kVp. In contrast, deviations of up to 25% were measured from KAP displayed from the direct KAP meter. Conclusion: The “calculated KAP” approach provides the nominal advantage of improved accuracy and precision of displayed KAP as well as reduced cost of calibrating or replacing integrated KAP meters.« less
The Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT)
NASA Technical Reports Server (NTRS)
Epp, Chirold D.; Smith, Thomas B.
2007-01-01
As NASA plans to send humans back to the Moon and develop a lunar outpost, technologies must be developed to place humans and cargo safely, precisely, repeatedly, on the lunar surface with the capability to avoid surface hazards. Exploration Space Architecture Study requirements include the need for global lunar surface access with safe, precise landing without lighting constraints on terrain that may have landing hazards for human scale landing vehicles. Landing accuracies of perhaps 1,000 meters for sortie crew missions to 10 s of meters for Outpost class missions are required. The Autonomous precision Landing Hazard Avoidance Technology (ALHAT) project will develop the new and unique descent and landing Guidance, Navigation and Control (GNC) hardware and software technologies necessary for these capabilities. The ALHAT project will qualify a lunar descent and landing GNC system to a Technology Readiness Level (TRL) of 6 capable of supporting lunar crewed, cargo, and robotic missions. The (ALHAT) development project was chartered by NASA Headquarters in October 2006. The initial effort to write a project plan and define an ALHAT Team was followed by a fairly aggressive research and analysis effort to determine what technologies existed that could be developed and applied to the lunar landing problems indicated above. This paper describes the project development, research, analysis and concept evolution that has occurred since the assignment of the project. This includes the areas of systems engineering, GNC, sensors, sensor algorithms, simulations, fielding testing, laboratory testing, Hardware-In-The-Loop testing, system avionics and system certification concepts.
NASA Technical Reports Server (NTRS)
Mata, Carlos T.; Mata, Angel G.
2012-01-01
A new Lightning Protection System (LPS) was designed and built at Launch Complex 39B (LC39B), at the Kennedy Space Center (KSC), Florida, which consists of a catenary wire system (at a height of about 181 meters above ground level) supported by three insulators installed atop three towers in a triangular configuration. Nine downconductors (each about 250 meters long) are connected to the catenary wire system. Each downconductor is connected to a 7.62-meter-radius circular counterpoise conductor with six equally spaced, 6-meter-long vertical grounding rods. Grounding requirements at LC39B call for all underground and aboveground metallic piping, enclosures, raceways, and cable trays, within 7.62 meters of the counterpoise, to be bonded to the counterpoise, which results in a complex interconnected grounding system, given the many metallic piping, raceways, and cable trays that run in multiple directions around LC39B. The complexity of this grounding system makes the fall-of-potential method, which uses multiple metallic rods or stakes, unsuitable for measuring the grounding impedances of the downconductors. To calculate the grounding impedance of the downconductors, an Earth Ground Clamp (EGC) (a stakeless device for measuring grounding impedance) and an Alternative Transient Program (ATP) model of the LPS are used. The EGC is used to measure the loop impedance plus the grounding impedance of each downconductor, and the ATP model is used to calculate the loop impedance of each downconductor circuit. The grounding resistance of the downconductors is then calculated by subtracting the ATP calculated loop impedances from the EGC measurements.
Johnson Space Center's Solar and Wind-Based Renewable Energy System
NASA Technical Reports Server (NTRS)
Vasquez, A.; Ewert, M.; Rowlands, J.; Post, K.
2009-01-01
The NASA Johnson Space Center (JSC) in Houston, Texas has a Sustainability Partnership team that seeks ways for earth-based sustainability practices to also benefit space exploration research. A renewable energy gathering system was installed in 2007 at the JSC Child Care Center (CCC) which also offers a potential test bed for space exploration power generation and remote monitoring and control concepts. The system comprises: 1) several different types of photovoltaic panels (29 kW), 2) two wind-turbines (3.6 kW total), and 3) one roof-mounted solar thermal water heater and tank. A tie to the JSC local electrical grid was provided to accommodate excess power. The total first year electrical energy production was 53 megawatt-hours. A web-based real-time metering system collects and reports system performance and weather data. Improvements in areas of the CCC that were detected during subsequent energy analyses and some concepts for future efforts are also presented.
Street curb recognition in 3d point cloud data using morphological operations
NASA Astrophysics Data System (ADS)
Rodríguez-Cuenca, Borja; Concepción Alonso-Rodríguez, María; García-Cortés, Silverio; Ordóñez, Celestino
2015-04-01
Accurate and automatic detection of cartographic-entities saves a great deal of time and money when creating and updating cartographic databases. The current trend in remote sensing feature extraction is to develop methods that are as automatic as possible. The aim is to develop algorithms that can obtain accurate results with the least possible human intervention in the process. Non-manual curb detection is an important issue in road maintenance, 3D urban modeling, and autonomous navigation fields. This paper is focused on the semi-automatic recognition of curbs and street boundaries using a 3D point cloud registered by a mobile laser scanner (MLS) system. This work is divided into four steps. First, a coordinate system transformation is carried out, moving from a global coordinate system to a local one. After that and in order to simplify the calculations involved in the procedure, a rasterization based on the projection of the measured point cloud on the XY plane was carried out, passing from the 3D original data to a 2D image. To determine the location of curbs in the image, different image processing techniques such as thresholding and morphological operations were applied. Finally, the upper and lower edges of curbs are detected by an unsupervised classification algorithm on the curvature and roughness of the points that represent curbs. The proposed method is valid in both straight and curved road sections and applicable both to laser scanner and stereo vision 3D data due to the independence of its scanning geometry. This method has been successfully tested with two datasets measured by different sensors. The first dataset corresponds to a point cloud measured by a TOPCON sensor in the Spanish town of Cudillero. That point cloud comprises more than 6,000,000 points and covers a 400-meter street. The second dataset corresponds to a point cloud measured by a RIEGL sensor in the Austrian town of Horn. That point cloud comprises 8,000,000 points and represents a 160-meter street. The proposed method provides success rates in curb recognition of over 85% in both datasets.
Preliminary Comparisons of the Information Content and Utility of TM Versus MSS Data
NASA Technical Reports Server (NTRS)
Markham, B. L.
1984-01-01
Comparisons were made between subscenes from the first TM scene acquired of the Washington, D.C. area and a MSS scene acquired approximately one year earlier. Three types of analyses were conducted to compare TM and MSS data: a water body analysis, a principal components analysis and a spectral clustering analysis. The water body analysis compared the capability of the TM to the MSS for detecting small uniform targets. Of the 59 ponds located on aerial photographs 34 (58%) were detected by the TM with six commission errors (15%) and 13 (22%) were detected by the MSS with three commission errors (19%). The smallest water body detected by the TM was 16 meters; the smallest detected by the MSS was 40 meters. For the principal components analysis, means and covariance matrices were calculated for each subscene, and principal components images generated and characterized. In the spectral clustering comparison each scene was independently clustered and the clusters were assigned to informational classes. The preliminary comparison indicated that TM data provides enhancements over MSS in terms of (1) small target detection and (2) data dimensionality (even with 4-band data). The extra dimension, partially resultant from TM band 1, appears useful for built-up/non-built-up area separation.
Forming images with thermal neutrons
NASA Astrophysics Data System (ADS)
Vanier, Peter E.; Forman, Leon
2003-01-01
Thermal neutrons passing through air have scattering lengths of about 20 meters. At further distances, the majority of neutrons emanating from a moderated source will scatter multiple times in the air before being detected, and will not retain information about the location of the source, except that their density will fall off somewhat faster than 1/r2. However, there remains a significant fraction of the neutrons that will travel 20 meters or more without scattering and can be used to create an image of the source. A few years ago, a proof-of-principle "camera" was demonstrated that could produce images of a scene containing sources of thermalized neutrons and could locate a source comparable in strength with an improvised nuclear device at ranges over 60 meters. The instrument makes use of a coded aperture with a uniformly redundant array of openings, analogous to those used in x-ray and gamma cameras. The detector is a position-sensitive He-3 proportional chamber, originally used for neutron diffraction. A neutron camera has many features in common with those designed for non-focusable photons, as well as some important differences. Potential applications include detecting nuclear smuggling, locating non-metallic land mines, assaying nuclear waste, and surveying for health physics purposes.
THERMALWATER FLOW METER. Hot Springs National Park, Bathhouse Row, ...
THERMAL-WATER FLOW METER. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR
Utilities bullish on meter-reading technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garner, W.L.
1995-01-15
By the end of 1996, the 400,000 customers of Kansas City Power & Light Company (KCPL) will have their electric meters read by a real-time wireless network that will relay electrical consumption readings back to computers at the utility`s customer service office. KCPL`s executives believe the new radio and cellular network will greatly improve the company`s ability to control its power distribution, manage its load requirements, monitor outages, and in the near future, allow time-of-use and offpeak pricing. The KCPL system represents the first systemwide, commercial application of wireless automated meter reading (AMR) by a U.S. utility. The article alsomore » describes other AMR systems for reading water and gas meters, along with saying that $18 billion in future power plant investments can be avoided by using time-of-use pricing for residential customers.« less
Spectroscopic planetary detection
NASA Technical Reports Server (NTRS)
Deming, D.; Espenak, F.; Hillman, J. J.; Kostiuk, T.; Mumma, M. J.; Jennings, D. E.
1986-01-01
The Sun-as-a-star was monitored using the McMath Fourier transform spectometer (FTS) on Kitt Peak in 1983. In 1985 the first measurement was made using the laser heterodyne technique. The FTS measurements now extend for three years, with errors of order 3 meters/sec at a given epoch. Over this 3 year period, a 33 meter/sec change was measured in the apparent velocity of integrated sunlight. The sense of the effect is that a greater blueshift is seen near solar minimum, which is consistent with expectations based on considering the changing morphology of solar granular convection. Presuming this effect is solar-cycle-related, it will mimic the Doppler reflex produced by a planetary companion of approximately two Jupiter masses, with an 11 year orbital period. Thus, Jupiter itself is below the threshold for detection by spectroscopic means, without an additional technique for discrimination. However, for planetary companions in shorter period orbits (P approx. 3 years) the threshold for unambiguous detection is well below one Jupiter mass.
Water Pipeline Monitoring and Leak Detection using Flow Liquid Meter Sensor
NASA Astrophysics Data System (ADS)
Rahmat, R. F.; Satria, I. S.; Siregar, B.; Budiarto, R.
2017-04-01
Water distribution is generally installed through underground pipes. Monitoring the underground water pipelines is more difficult than monitoring the water pipelines located on the ground in open space. This situation will cause a permanent loss if there is a disturbance in the pipeline such as leakage. Leaks in pipes can be caused by several factors, such as the pipe’s age, improper installation, and natural disasters. Therefore, a solution is required to detect and to determine the location of the damage when there is a leak. The detection of the leak location will use fluid mechanics and kinematics physics based on harness water flow rate data obtained using flow liquid meter sensor and Arduino UNO as a microcontroller. The results show that the proposed method is able to work stably to determine the location of the leak which has a maximum distance of 2 metres, and it’s able to determine the leak location as close as possible with flow rate about 10 litters per minute.
Advanced Video Guidance Sensor (AVGS) Development Testing
NASA Technical Reports Server (NTRS)
Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.
2004-01-01
NASA's Marshall Space Flight Center was the driving force behind the development of the Advanced Video Guidance Sensor, an active sensor system that provides near-range sensor data as part of an automatic rendezvous and docking system. The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state camera to detect the return from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The AVGS will fly as part of the Demonstration of Autonomous Rendezvous Technologies (DART) in October, 2004. This development effort has required a great deal of testing of various sorts at every phase of development. Some of the test efforts included optical characterization of performance with the intended target, thermal vacuum testing, performance tests in long range vacuum facilities, EMI/EMC tests, and performance testing in dynamic situations. The sensor has been shown to track a target at ranges of up to 300 meters, both in vacuum and ambient conditions, to survive and operate during the thermal vacuum cycling specific to the DART mission, to handle EM1 well, and to perform well in dynamic situations.
Ionizing Radiation Measurement Solution in a Hospital Environment
Garcia-Sanchez, Antonio-Javier; Garcia Angosto, Enrique Angel; Moreno Riquelme, Pedro Antonio; Serna Berna, Alfredo; Ramos-Amores, David
2018-01-01
Ionizing radiation is one of the main risks affecting healthcare workers and patients worldwide. Special attention has to be paid to medical staff in the vicinity of radiological equipment or patients undergoing radioisotope procedures. To measure radiation values, traditional area meters are strategically placed in hospitals and personal dosimeters are worn by workers. However, important drawbacks inherent to these systems in terms of cost, detection precision, real time data processing, flexibility, and so on, have been detected and carefully detailed. To overcome these inconveniences, a low cost, open-source, portable radiation measurement system is proposed. The goal is to deploy devices integrating a commercial Geiger-Muller (GM) detector to capture radiation doses in real time and to wirelessly dispatch them to a remote database where the radiation values are stored. Medical staff will be able to check the accumulated doses first hand, as well as other statistics related to radiation by means of a smartphone application. Finally, the device is certified by an accredited calibration center, to later validate the entire system in a hospital environment. PMID:29419769
MicroSensors Systems: detection of a dismounted threat
NASA Astrophysics Data System (ADS)
Davis, Bill; Berglund, Victor; Falkofske, Dwight; Krantz, Brian
2005-05-01
The Micro Sensor System (MSS) is a layered sensor network with the goal of detecting dismounted threats approaching high value assets. A low power unattended ground sensor network is dependant on a network protocol for efficiency in order to minimize data transmissions after network establishment. The reduction of network 'chattiness' is a primary driver for minimizing power consumption and is a factor in establishing a low probability of detection and interception. The MSS has developed a unique protocol to meet these challenges. Unattended ground sensor systems are most likely dependant on batteries for power which due to size determines the ability of the sensor to be concealed after placement. To minimize power requirements, overcome size limitations, and maintain a low system cost the MSS utilizes advanced manufacturing processes know as Fluidic Self-Assembly and Chip Scale Packaging. The type of sensing element and the ability to sense various phenomenologies (particularly magnetic) at ranges greater than a few meters limits the effectiveness of a system. The MicroSensor System will overcome these limitations by deploying large numbers of low cost sensors, which is made possible by the advanced manufacturing process used in production of the sensors. The MSS program will provide unprecedented levels of real-time battlefield information which greatly enhances combat situational awareness when integrated with the existing Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) infrastructure. This system will provide an important boost to realizing the information dominant, network-centric objective of Joint Vision 2020.
New paradigms in type 2 immunity.
Pulendran, Bali; Artis, David
2012-07-27
Nearly half of the world's population harbors helminth infections or suffers from allergic disorders. A common feature of this population is the so-called "type 2 immune response," which confers protection against helminths, but also promotes pathologic responses associated with allergic inflammation. However, the mechanisms that initiate and control type 2 responses remain enigmatic. Recent advances have revealed a role for the innate immune system in orchestrating type 2 responses against a bewildering array of stimuli, from nanometer-sized allergens to 20-meter-long helminth parasites. Here, we review these advances and suggest that the human immune system has evolved multiple mechanisms of sensing such stimuli, from recognition of molecular patterns via innate immune receptors to detecting metabolic changes and tissue damage caused by these stimuli.
NASA Astrophysics Data System (ADS)
Pamulaparthy, Balakrishna; KS, Swarup; Kommu, Rajagopal
2014-12-01
Distribution automation (DA) applications are limited to feeder level today and have zero visibility outside of the substation feeder and reaching down to the low-voltage distribution network level. This has become a major obstacle in realizing many automated functions and enhancing existing DA capabilities. Advanced metering infrastructure (AMI) systems are being widely deployed by utilities across the world creating system-wide communications access to every monitoring and service point, which collects data from smart meters and sensors in short time intervals, in response to utility needs. DA and AMI systems convergence provides unique opportunities and capabilities for distribution grid modernization with the DA system acting as a controller and AMI system acting as feedback to DA system, for which DA applications have to understand and use the AMI data selectively and effectively. In this paper, we propose a load segmentation method that helps the DA system to accurately understand and use the AMI data for various automation applications with a suitable case study on power restoration.
Research and Development Trend of Shape Control for Cold Rolling Strip
NASA Astrophysics Data System (ADS)
Wang, Dong-Cheng; Liu, Hong-Min; Liu, Jun
2017-09-01
Shape is an important quality index of cold rolling strip. Up to now, many problems in the shape control domain have not been solved satisfactorily, and a review on the research progress in the shape control domain can help to seek new breakthrough directions. In the past 10 years, researches and applications of shape control models, shape control means, shape detection technology, and shape control system have achieved significant progress. In the aspect of shape control models, the researches in the past improve the accuracy, speed and robustness of the models. The intelligentization of shape control models should be strengthened in the future. In the aspect of the shape control means, the researches in the past focus on the roll optimization, mill type selection, process optimization, local strip shape control, edge drop control, and so on. In the future, more attention should be paid to the coordination control of both strip shape and other quality indexes, and the refinement of control objective should be strengthened. In the aspects of shape detection technology and shape control system, some new types of shape detection meters and shape control systems are developed and have successfully industrial applications. In the future, the standardization of shape detection technology and shape control system should be promoted to solve the problem of compatibility. In general, the four expected development trends of shape control for cold rolling strip in the future are intelligentization, coordination, refinement, and standardization. The proposed research provides new breakthrough directions for improving shape quality.
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, J.R.
1980-05-02
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.
History of Hubble Space Telescope (HST)
1986-01-01
This image illustrates the Hubble Space Telescope's (HST's) Optical Telescope Assembly (OTA). One of the three major elements of the HST, the OTA consists of two mirrors (a primary mirror and a secondary mirror), support trusses, and the focal plane structure. The mirrors collect and focus light from selected celestial objects and are housed near the center of the telescope. The primary mirror captures light from objects in space and focuses it toward the secondary mirror. The secondary mirror redirects the light to a focal plane where the Scientific Instruments are located. The primary mirror is 94.5 inches (2.4 meters) in diameter and the secondary mirror is 12.2 inches (0.3 meters) in diameter. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth Orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from the Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5 feet (13 meters) long and weighs 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.
Baum, John M; Monhaut, Nanette M; Parker, Donald R; Price, Christopher P
2006-06-01
Two independent studies reported that 16% of people who self-monitor blood glucose used incorrectly coded meters. The degree of analytical error, however, was not characterized. Our study objectives were to demonstrate that miscoding can cause analytical errors and to characterize the potential amount of bias that can occur. The impact of calibration error with three selfblood glucose monitoring systems (BGMSs), one of which has an autocoding feature, is reported. Fresh capillary fingerstick blood from 50 subjects, 18 men and 32 women ranging in age from 23 to 82 years, was used to measure glucose with three BGMSs. Two BGMSs required manual coding and were purposely miscoded using numbers different from the one recommended for the reagent lot used. Two properly coded meters of each BGMS were included to assess within-system variability. Different reagent lots were used to challenge a third system that had autocoding capability and could not be miscoded. Some within-system comparisons showed deviations of greater than +/-30% when results obtained with miscoded meters were compared with data obtained with ones programmed using the correct code number. Similar erroneous results were found when the miscoded meter results were compared with those obtained with a glucose analyzer. For some miscoded meter and test strip combinations, error grid analysis showed that 90% of results fell into zones indicating altered clinical action. Such inaccuracies were not found with the BGMS having the autocoding feature. When certain meter code number settings of two BGMSs were used in conjunction with test strips having code numbers that did not match, statistically and clinically inaccurate results were obtained. Coding errors resulted in analytical errors of greater than +/-30% (-31.6 to +60.9%). These results confirm the value of a BGMS with an automatic coding feature.
Jones, K P; Mullee, M A
1990-01-01
OBJECTIVE--To compare measurements of the peak expiratory flow rate taken by the mini Wright peak flow meter and the turbine spirometer. DESIGN--Pragmatic study with randomised order of use of recording instruments. Phase 1 compared a peak expiratory flow type expiration recorded by the mini Wright peak flow meter with an expiration to forced vital capacity recorded by the turbine spirometer. Phase 2 compared peak expiratory flow type expirations recorded by both meters. Reproducibility was assessed separately. SETTING--Routine surgeries at Aldermoor Health Centre, Southampton. SUBJECTS--212 Patients aged 4 to 78 presenting with asthma or obstructive airways disease. Each patient contributed only once to each phase (105 in phase 1, 107 in phase 2), but some entered both phases on separate occasions. Reproducibility was tested on a further 31 patients. MAIN OUTCOME MEASURE--95% Limits of agreement between measurements on the two meters. RESULTS--208 (98%) Of the readings taken by the mini Wright meter were higher than the corresponding readings taken by the turbine spirometer, but the 95% limits of agreement (mean difference (2 SD] were wide (1 to 173 l/min). Differences due to errors in reproducibility were not sufficient to predict this level of disagreement. Analysis by age, sex, order of use, and the type of expiration did not detect any significant differences. CONCLUSIONS--The two methods of measuring peak expiratory flow rate were not comparable. The mini Wright meter is likely to remain the preferred instrument in general practice. PMID:2142611
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Gung-Chian, E-mail: gcyin@nsrrc.org.tw; Chang, Shi-Hung; Chen, Bo-Yi
2016-01-28
The hard X-ray nanoprobe facility at Taiwan Photon Source (TPS) provides multimodal X-ray detections, including XRF, XAS, XEOL, projection microscope, CDI, etc. Resulting from the large numerical aperture obtained by utilizing nested Montel mirrors, the beamline with a moderate length 75 meters can conduct similar performance with those beamlines longer than 100 meters. The mirrors are symmetrically placed with a 45 degrees cut. The beamline optics is thus designed to take the advantage of the symmetry of mirrors such that a round focal spot is accomplished. The size and the divergence of the focus spot are simulated around 40 nm andmore » 6.29 mrad, respectively. The whole facility including the beamline and the stations will be operated under vacuum to preserve the photon coherence as well as to prevent the system from unnecessary environmental interference. A SEM in close cooperation with laser interferometers is equipped to precisely locate the position of the sample. This endstation is scheduled to be commissioned in the fall of 2016.« less
[Spatial analysis of road traffic accidents with fatalities in Spain, 2008-2011].
Gómez-Barroso, Diana; López-Cuadrado, Teresa; Llácer, Alicia; Palmera Suárez, Rocío; Fernández-Cuenca, Rafael
2015-09-01
To estimate the areas of greatest density of road traffic accidents with fatalities at 24 hours per km(2)/year in Spain from 2008 to 2011, using a geographic information system. Accidents were geocodified using the road and kilometer points where they occurred. The average nearest neighbor was calculated to detect possible clusters and to obtain the bandwidth for kernel density estimation. A total of 4775 accidents were analyzed, of which 73.3% occurred on conventional roads. The estimated average distance between accidents was 1,242 meters, and the average expected distance was 10,738 meters. The nearest neighbor index was 0.11, indicating that there were aggregations of accidents in space. A map showing the kernel density was obtained with a resolution of 1 km(2), which identified the areas of highest density. This methodology allowed a better approximation to locating accident risks by taking into account kilometer points. The map shows areas where there was a greater density of accidents. This could be an advantage in decision-making by the relevant authorities. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.
The Application of a Technique for Vector Correlation to Problems in Meteorology and Oceanography.
NASA Astrophysics Data System (ADS)
Breaker, L. C.; Gemmill, W. H.; Crosby, D. S.
1994-11-01
In a recent study, Crosby et al. proposed a definition for vector correlation that has not been commonly used in meteorology or oceanography. This definition has both a firm theoretical basis and a rather complete set of desirable statistical properties. In this study, the authors apply the definition to practical problems arising in meteorology and oceanography. In the first of two case studies, vector correlations were calculated between subsurface currents for five locations along the southeastern shore of Lake Erie. Vector correlations for one sample size were calculated for all current meter combinations, first including the seiche frequency and then with the seiche frequency removed. Removal of the seiche frequency, which was easily detected in the current spectra, had only a small effect on the vector correlations. Under reasonable assumptions, the vector correlations were in most cases statistically significant and revealed considerable fine structure in the vector correlation sequences. In some cases, major variations in vector correlation coincided with changes in surface wind. The vector correlations for the various current meter combinations decreased rapidly with increasing spatial separation. For one current meter combination, canonical correlations were also calculated; the first canonical correlation tended to retain the underlying trend, whereas the second canonical correlation retained the peaks in the vector correlations.In the second case study, vector correlations were calculated between marine surface winds derived from the National Meteorological Center's Global Data Assimilation System and observed winds acquired from the network of National Data Buoy Center buoys that are located off the continental United States and in the Gulf of Alaska. Results of this comparison indicated that 1) there was a significant decrease in correlation between the predicted and observed winds with increasing forecast interval out to 72 h, 2) the technique provides a sensitive indicator for detecting bad buoy reports, and 3) there was no obvious seasonal cycle in the monthly vector correlations for the period of observation.
DETAIL OF THERMALWATER FLOW METER. Hot Springs National Park, ...
DETAIL OF THERMAL-WATER FLOW METER. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR
5. FLOW METER AND PIPING SHOWING CONNECTIONS. Hot Springs ...
5. FLOW METER AND PIPING SHOWING CONNECTIONS. - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR
Low Flow Vortex Shedding Flow Meter for Hypergolics/all Media
NASA Technical Reports Server (NTRS)
Thinh, Ngo Dinh
1991-01-01
A family of vortex shedding flow meters, for measurement of hypergol flows, was designed and fabricated. The test loops to evaluate the flow meters for water flow, as well as Freon -113 flow which simulates the hypergolic fluids, were modified and constructed to utilize a pump system which has an output capacity of 200 gpm. Test runs were conducted on the small 1/2 inch model with Freon 113 and on the larger models with water. Results showed that the linearity between the frequency of the vortices and the flow rate of the fluids was very close to that of the turbine flow meter. It is suggested that the vortex shedding flow meter is a possible replacement for the existing turbine type.
Daytime Water Detection Based on Sky Reflections
NASA Technical Reports Server (NTRS)
Rankin, Arturo; Matthies, Larry; Bellutta, Paolo
2011-01-01
A water body s surface can be modeled as a horizontal mirror. Water detection based on sky reflections and color variation are complementary. A reflection coefficient model suggests sky reflections dominate the color of water at ranges > 12 meters. Water detection based on sky reflections: (1) geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground (2) predicts if the ground pixel is water based on color similarity and local terrain features. Water detection has been integrated on XUVs.
Assessment of the Potential for Flux Estimation Using Concentration Data from Mobile Surveys
NASA Astrophysics Data System (ADS)
Gyenis, A.; Zahasky, C.; Moriarty, D. M.; Benson, S. M.
2014-12-01
Carbon capture and storage is a climate change mitigation technology with the potential to serve as a bridge technology as society transitions from a fossil fuel dependent energy system to a renewable energy dominated system. One of the greatest concerns associated with wide-scale adoption of carbon capture and storage technology is the risk of carbon dioxide leakage from sequestration reservoirs. Thus there is a need to develop efficient and effective strategies for monitoring and verification of geologically stored carbon dioxide. To evaluate the potential for estimating leakage fluxes based on mobile surveys, we establish correlations between concentration data and flux measurements made with a flux chamber. These correlations are then used to estimate leakage fluxes over a 70-meter long horizontal well buried approximately 1.8 meters below the surface at the Zero Emissions Research and Technology (ZERT) facility operated by Montana State University. The CO2 had a leakage rate of 0.15 t/d, which is comparable to a small leak in an industrial scale project (0.005% of a 1 Mt/yr storage project). A Picarro gas analyzer was used to measure 12CO2 and 13CO2 at heights of 3 cm above the ground surface. Previous studies (Moriarty, 2014) show that concentration data at this height provides a very high likelihood (>95%) of detecting leaks within a distance of 2.5 m of the leak. Measured concentration data show a noisy but significant correlation with flux measurements, thus providing the possibility to obtain rough estimates of leakage fluxes from mobile measurements. Moriarty, Dylan, 2014. Rapid Surface Detection of CO2 Leaks from Geologic Sequestration Sites. MS Thesis, Stanford University.
Scientists Discover Sugar in Space
NASA Astrophysics Data System (ADS)
2000-06-01
The prospects for life in the Universe just got sweeter, with the first discovery of a simple sugar molecule in space. The discovery of the sugar molecule glycolaldehyde in a giant cloud of gas and dust near the center of our own Milky Way Galaxy was made by scientists using the National Science Foundation's 12 Meter Telescope, a radio telescope on Kitt Peak, Arizona. "The discovery of this sugar molecule in a cloud from which new stars are forming means it is increasingly likely that the chemical precursors to life are formed in such clouds long before planets develop around the stars," said Jan M. Hollis of the NASA Goddard Space Flight Center in Greenbelt, MD. Hollis worked with Frank J. Lovas of the University of Illinois and Philip R. Jewell of the National Radio Astronomy Observatory (NRAO) in Green Bank, WV, on the observations, made in May. The scientists have submitted their results to the Astrophysical Journal Letters. "This discovery may be an important key to understanding the formation of life on the early Earth," said Jewell. Conditions in interstellar clouds may, in some cases, mimic the conditions on the early Earth, so studying the chemistry of interstellar clouds may help scientists understand how bio-molecules formed early in our planet's history. In addition, some scientists have suggested that Earth could have been "seeded" with complex molecules by passing comets, made of material from the interstellar cloud that condensed to form the Solar System. Glycolaldehyde, an 8-atom molecule composed of carbon, oxygen and hydrogen, can combine with other molecules to form the more-complex sugars Ribose and Glucose. Ribose is a building block of nucleic acids such as RNA and DNA, which carry the genetic code of living organisms. Glucose is the sugar found in fruits. Glycolaldehyde contains exactly the same atoms, though in a different molecular structure, as methyl formate and acetic acid, both of which were detected previously in interstellar clouds. Glycolaldehyde is a simpler molecular cousin to table sugar, the scientists say. The sugar molecule was detected in a large cloud of gas and dust some 26,000 light-years away, near the center of our Galaxy. Such clouds, often many light-years across, are the material from which new stars are formed. Though very rarified by Earth standards, these interstellar clouds are the sites of complex chemical reactions that occur over hundreds of thousands or millions of years. So far, about 120 different molecules have been discovered in these clouds. Most of these molecules contain a small number of atoms, and only a few molecules with eight or more atoms have been found in interstellar clouds. The 12 Meter Telescope "Finding glycolaldehyde in one of these interstellar clouds means that such molecules can be formed even in very rarified conditions," said Hollis. "We don't yet understand how it could be formed there," he added. "A combination of more astronomical observations and theoretical chemistry work will be required to resolve the mystery of how this molecule is formed in space." "We hope this discovery inspires renewed efforts to find even more kinds of molecules, so that, with a better idea of the total picture, we may be able to deduce the details of the prebiotic chemistry taking place in interstellar clouds," Hollis said. The discovery was made by detecting faint radio emission from the sugar molecules in the interstellar cloud. Molecules rotate end-for-end, and as they change from one rotational energy state to another, they emit radio waves at precise frequencies. The "family" of radio frequencies emitted by a particular molecule forms a unique "fingerprint" that scientists can use to identify that molecule. The scientists identified glycolaldehyde by detecting six frequencies of radio emission in what is termed the millimeter-wavelength region of the electromagnetic spectrum -- a region between more-familiar microwaves and infrared radiation. The NRAO 12 Meter Telescope used to detect the sugar molecule has been a pioneer instrument in the detection of molecules in space. Built in 1967, it made the first detections of dozens of the molecules now known to exist in space, including the important first discovery of carbon monoxide, now widely used by astronomers as a signpost showing regions where stars are being formed. The 12 Meter Telescope is scheduled to be closed at the end of July, in preparation for the Atacama Large Millimeter Array, an advanced system of 64 radio-telescope antennas in northern Chile now being developed by an international partnership. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Giant Molecular Cloud Near Milky Way's Center The giant molecular cloud, known as Sagittarius B2 (North), as seen by the NSF's Very Large Array (VLA) radio telescope in New Mexico. This is the cloud in which scientists using the 12 Meter Telescope detected the simple sugar molecule glycolaldehyde. This VLA image shows hydrogen gas in a region nearly 3 light-years across. In this image, red indicates stronger radio emission; blue weaker. The 12 Meter Telescope studied this region at much shorter wavelengths, which revealed the evidence of sugar molecules. CREDIT: R. Gaume, M. Claussen, C. De Pree, W.M. Goss, D. Mehringer, NRAO/AUI/NSF.