Sample records for detection system capable

  1. Target Detection Routine (TADER). User’s Guide.

    DTIC Science & Technology

    1987-09-01

    o System range capability subset (one record - omitted for standoff SLAR and penetrating system) o System inherent detection probability subset ( IELT ...records, i.e., one per element type) * System capability modifier subset/A=1, E=1 ( IELT records) o System capability modifier subset/A=1, E=2 ( IELT ...records) s System capability modifier subset/A=2, E=1 ( IELT records) o System capability modifier subset/A=2, E=2 ( IELT records) Unit Data Set (one set

  2. Damage Detection and Verification System (DDVS) for In-Situ Health Monitoring

    NASA Technical Reports Server (NTRS)

    Williams, Martha K.; Lewis, Mark; Szafran, J.; Shelton, C.; Ludwig, L.; Gibson, T.; Lane, J.; Trautwein, T.

    2015-01-01

    Project presentation for Game Changing Program Smart Book Release. Detection and Verification System (DDVS) expands the Flat Surface Damage Detection System (FSDDS) sensory panels damage detection capabilities and includes an autonomous inspection capability utilizing cameras and dynamic computer vision algorithms to verify system health. Objectives of this formulation task are to establish the concept of operations, formulate the system requirements for a potential ISS flight experiment, and develop a preliminary design of an autonomous inspection capability system that will be demonstrated as a proof-of-concept ground based damage detection and inspection system.

  3. Adaptable radiation monitoring system and method

    DOEpatents

    Archer, Daniel E [Livermore, CA; Beauchamp, Brock R [San Ramon, CA; Mauger, G Joseph [Livermore, CA; Nelson, Karl E [Livermore, CA; Mercer, Michael B [Manteca, CA; Pletcher, David C [Sacramento, CA; Riot, Vincent J [Berkeley, CA; Schek, James L [Tracy, CA; Knapp, David A [Livermore, CA

    2006-06-20

    A portable radioactive-material detection system capable of detecting radioactive sources moving at high speeds. The system has at least one radiation detector capable of detecting gamma-radiation and coupled to an MCA capable of collecting spectral data in very small time bins of less than about 150 msec. A computer processor is connected to the MCA for determining from the spectral data if a triggering event has occurred. Spectral data is stored on a data storage device, and a power source supplies power to the detection system. Various configurations of the detection system may be adaptably arranged for various radiation detection scenarios. In a preferred embodiment, the computer processor operates as a server which receives spectral data from other networked detection systems, and communicates the collected data to a central data reporting system.

  4. Study of gamma detection capabilities of the REWARD mobile spectroscopic system

    NASA Astrophysics Data System (ADS)

    Balbuena, J. P.; Baptista, M.; Barros, S.; Dambacher, M.; Disch, C.; Fiederle, M.; Kuehn, S.; Parzefall, U.

    2017-07-01

    REWARD is a novel mobile spectroscopic radiation detector system for Homeland Security applications. The system integrates gamma and neutron detection equipped with wireless communication. A comprehensive simulation study on its gamma detection capabilities in different radioactive scenarios is presented in this work. The gamma detection unit consists of a precise energy resolution system based on two stacked (Cd,Zn)Te sensors working in coincidence sum mode. The volume of each of these CZT sensors is 1 cm3. The investigated energy windows used to determine the detection capabilities of the detector correspond to the gamma emissions from 137Cs and 60Co radioactive sources (662 keV and 1173/1333 keV respectively). Monte Carlo and Technology Computer-Aided Design (TCAD) simulations are combined to determine its sensing capabilities for different radiation sources and estimate the limits of detection of the sensing unit as a function of source activity for several shielding materials.

  5. Configuration of electro-optic fire source detection system

    NASA Astrophysics Data System (ADS)

    Fabian, Ram Z.; Steiner, Zeev; Hofman, Nir

    2007-04-01

    The recent fighting activities in various parts of the world have highlighted the need for accurate fire source detection on one hand and fast "sensor to shooter cycle" capabilities on the other. Both needs can be met by the SPOTLITE system which dramatically enhances the capability to rapidly engage hostile fire source with a minimum of casualties to friendly force and to innocent bystanders. Modular system design enable to meet each customer specific requirements and enable excellent future growth and upgrade potential. The design and built of a fire source detection system is governed by sets of requirements issued by the operators. This can be translated into the following design criteria: I) Long range, fast and accurate fire source detection capability. II) Different threat detection and classification capability. III) Threat investigation capability. IV) Fire source data distribution capability (Location, direction, video image, voice). V) Men portability. ) In order to meet these design criteria, an optimized concept was presented and exercised for the SPOTLITE system. Three major modular components were defined: I) Electro Optical Unit -Including FLIR camera, CCD camera, Laser Range Finder and Marker II) Electronic Unit -including system computer and electronic. III) Controller Station Unit - Including the HMI of the system. This article discusses the system's components definition and optimization processes, and also show how SPOTLITE designers successfully managed to introduce excellent solutions for other system parameters.

  6. ADAPTIVE MONITORING TO ENHANCE WATER SENSOR CAPABILITIES FOR CHEMICAL AND BIOLOGICAL CONTAMINANT DETECTION IN DRINKING WATER SYSTEMS

    EPA Science Inventory

    Optoelectronic and other conventional water quality sensors offer a potential for real-time online detection of chemical and biological contaminants in a drinking water supply and distribution system. The nature of the application requires sensors of detection capabilities at lo...

  7. Directed Design of Experiments for Validating Probability of Detection Capability of NDE Systems (DOEPOD)

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2015-01-01

    Directed Design of Experiments for Validating Probability of Detection Capability of NDE Systems (DOEPOD) Manual v.1.2 The capability of an inspection system is established by applications of various methodologies to determine the probability of detection (POD). One accepted metric of an adequate inspection system is that there is 95% confidence that the POD is greater than 90% (90/95 POD). Design of experiments for validating probability of detection capability of nondestructive evaluation (NDE) systems (DOEPOD) is a methodology that is implemented via software to serve as a diagnostic tool providing detailed analysis of POD test data, guidance on establishing data distribution requirements, and resolving test issues. DOEPOD demands utilization of observance of occurrences. The DOEPOD capability has been developed to provide an efficient and accurate methodology that yields observed POD and confidence bounds for both Hit-Miss or signal amplitude testing. DOEPOD does not assume prescribed POD logarithmic or similar functions with assumed adequacy over a wide range of flaw sizes and inspection system technologies, so that multi-parameter curve fitting or model optimization approaches to generate a POD curve are not required. DOEPOD applications for supporting inspector qualifications is included.

  8. Eddy Current System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose

    NASA Astrophysics Data System (ADS)

    Wincheski, Buzz; Simpson, John; Hall, George

    2009-03-01

    In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.

  9. Eddy Current System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Simpson, John; Hall, George

    2008-01-01

    In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso, Jesus

    Intelligent Optical Systems, Inc. has developed distributed intrinsic fiber optic sensors to directly quantify the concentration of dissolved or gas-phase CO 2 for leak detection or plume migration in carbon capture and sequestration (CCS). The capability of the sensor for highly sensitive detection of CO 2 in the pressure and temperature range of 15 to 2,000 psi and 25°C to 175°C was demonstrated, as was the capability of operating in highly corrosive and contaminated environments such as those often found in CO 2 injection sites. The novel sensor system was for the first time demonstrated deployed in a deep well,more » detecting multiple CO 2 releases, in real time, at varying depths. Early CO 2 release detection, by means of a sensor cable integrating multiple sensor segments, was demonstrated, as was the capability of quantifying the leak. The novel fiber optic sensor system exhibits capabilities not achieved by any other monitoring technology. This project represents a breakthrough in monitoring capabilities for CCS applications.« less

  11. Dynamic malware analysis using IntroVirt: a modified hypervisor-based system

    NASA Astrophysics Data System (ADS)

    White, Joshua S.; Pape, Stephen R.; Meily, Adam T.; Gloo, Richard M.

    2013-05-01

    In this paper, we present a system for Dynamic Malware Analysis which incorporates the use of IntroVirt™. IntroVirt is an introspective hypervisor architecture and infrastructure that supports advanced analysis techniques for stealth-malwareanalysis. This system allows for complete guest monitoring and interaction, including the manipulation and blocking of system calls. IntroVirt is capable of bypassing virtual machine detection capabilities of even the most sophisticated malware, by spoofing returns to system call responses. Additional fuzzing capabilities can be employed to detect both malware vulnerabilities and polymorphism.

  12. An explosives detection system for airline security using coherent x-ray scattering technology

    NASA Astrophysics Data System (ADS)

    Madden, Robert W.; Mahdavieh, Jacob; Smith, Richard C.; Subramanian, Ravi

    2008-08-01

    L-3 Communications Security and Detection Systems (SDS) has developed a new system for automated alarm resolution in airline baggage Explosive Detection Systems (EDS) based on coherent x-ray scattering spectroscopy. The capabilities of the system were demonstrated in tests with concealed explosives at the Transportation Security Laboratory and airline passenger baggage at Orlando International Airport. The system uses x-ray image information to identify suspicious objects and performs targeted diffraction measurements to classify them. This extra layer of detection capability affords a significant reduction in the rate of false alarm objects that must presently be resolved by opening passenger bags for hand inspection.

  13. A universal DNA-based protein detection system.

    PubMed

    Tran, Thua N N; Cui, Jinhui; Hartman, Mark R; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C; Lis, John T; Cui, Haixin; Luo, Dan

    2013-09-25

    Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability.

  14. A Universal DNA-Based Protein Detection System

    PubMed Central

    Tran, Thua N. N.; Cui, Jinhui; Hartman, Mark R.; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C.; Lis, John T.; Cui, Haixin; Luo, Dan

    2014-01-01

    Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability. PMID:23978265

  15. Performance analysis of a multispectral framing camera for detecting mines in the littoral zone and beach zone

    NASA Astrophysics Data System (ADS)

    Louchard, Eric; Farm, Brian; Acker, Andrew

    2008-04-01

    BAE Systems Sensor Systems Identification & Surveillance (IS) has developed, under contract with the Office of Naval Research, a multispectral airborne sensor system and processing algorithms capable of detecting mine-like objects in the surf zone and land mines in the beach zone. BAE Systems has used this system in a blind test at a test range established by the Naval Surface Warfare Center - Panama City Division (NSWC-PCD) at Eglin Air Force Base. The airborne and ground subsystems used in this test are described, with graphical illustrations of the detection algorithms. We report on the performance of the system configured to operate with a human operator analyzing data on a ground station. A subsurface (underwater bottom proud mine in the surf zone and moored mine in shallow water) mine detection capability is demonstrated in the surf zone. Surface float detection and proud land mine detection capability is also demonstrated. Our analysis shows that this BAE Systems-developed multispectral airborne sensor provides a robust technical foundation for a viable system for mine counter-measures, and would be a valuable asset for use prior to an amphibious assault.

  16. Autonomous power expert system advanced development

    NASA Technical Reports Server (NTRS)

    Quinn, Todd M.; Walters, Jerry L.

    1991-01-01

    The autonomous power expert (APEX) system is being developed at Lewis Research Center to function as a fault diagnosis advisor for a space power distribution test bed. APEX is a rule-based system capable of detecting faults and isolating the probable causes. APEX also has a justification facility to provide natural language explanations about conclusions reached during fault isolation. To help maintain the health of the power distribution system, additional capabilities were added to APEX. These capabilities allow detection and isolation of incipient faults and enable the expert system to recommend actions/procedure to correct the suspected fault conditions. New capabilities for incipient fault detection consist of storage and analysis of historical data and new user interface displays. After the cause of a fault is determined, appropriate recommended actions are selected by rule-based inferencing which provides corrective/extended test procedures. Color graphics displays and improved mouse-selectable menus were also added to provide a friendlier user interface. A discussion of APEX in general and a more detailed description of the incipient detection, recommended actions, and user interface developments during the last year are presented.

  17. Integrated multisensor perimeter detection systems

    NASA Astrophysics Data System (ADS)

    Kent, P. J.; Fretwell, P.; Barrett, D. J.; Faulkner, D. A.

    2007-10-01

    The report describes the results of a multi-year programme of research aimed at the development of an integrated multi-sensor perimeter detection system capable of being deployed at an operational site. The research was driven by end user requirements in protective security, particularly in threat detection and assessment, where effective capability was either not available or prohibitively expensive. Novel video analytics have been designed to provide robust detection of pedestrians in clutter while new radar detection and tracking algorithms provide wide area day/night surveillance. A modular integrated architecture based on commercially available components has been developed. A graphical user interface allows intuitive interaction and visualisation with the sensors. The fusion of video, radar and other sensor data provides the basis of a threat detection capability for real life conditions. The system was designed to be modular and extendable in order to accommodate future and legacy surveillance sensors. The current sensor mix includes stereoscopic video cameras, mmWave ground movement radar, CCTV and a commercially available perimeter detection cable. The paper outlines the development of the system and describes the lessons learnt after deployment in a pilot trial.

  18. Evaluation of two-stage system for neutron measurement aiming at increase in count rate at Japan Atomic Energy Agency-Fusion Neutronics Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinohara, K., E-mail: shinohara.koji@jaea.go.jp; Ochiai, K.; Sukegawa, A.

    In order to increase the count rate capability of a neutron detection system as a whole, we propose a multi-stage neutron detection system. Experiments to test the effectiveness of this concept were carried out on Fusion Neutronics Source. Comparing four configurations of alignment, it was found that the influence of an anterior stage on a posterior stage was negligible for the pulse height distribution. The two-stage system using 25 mm thickness scintillator was about 1.65 times the count rate capability of a single detector system for d-D neutrons and was about 1.8 times the count rate capability for d-T neutrons.more » The results suggested that the concept of a multi-stage detection system will work in practice.« less

  19. Small Arrays for Seismic Intruder Detections: A Simulation Based Experiment

    NASA Astrophysics Data System (ADS)

    Pitarka, A.

    2014-12-01

    Seismic sensors such as geophones and fiber optic have been increasingly recognized as promising technologies for intelligence surveillance, including intruder detection and perimeter defense systems. Geophone arrays have the capability to provide cost effective intruder detection in protecting assets with large perimeters. A seismic intruder detection system uses one or multiple arrays of geophones design to record seismic signals from footsteps and ground vehicles. Using a series of real-time signal processing algorithms the system detects, classify and monitors the intruder's movement. We have carried out numerical experiments to demonstrate the capability of a seismic array to detect moving targets that generate seismic signals. The seismic source is modeled as a vertical force acting on the ground that generates continuous impulsive seismic signals with different predominant frequencies. Frequency-wave number analysis of the synthetic array data was used to demonstrate the array's capability at accurately determining intruder's movement direction. The performance of the array was also analyzed in detecting two or more objects moving at the same time. One of the drawbacks of using a single array system is its inefficiency at detecting seismic signals deflected by large underground objects. We will show simulation results of the effect of an underground concrete block at shielding the seismic signal coming from an intruder. Based on simulations we found that multiple small arrays can greatly improve the system's detection capability in the presence of underground structures. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

  20. 46 CFR 27.203 - What are the requirements for fire detection on towing vessels?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... detection on towing vessels? You must have a fire-detection system installed on your vessel to detect engine... use an existing engine-room-monitoring system (with fire-detection capability) instead of a fire-detection system, if the monitoring system is operable and complies with this section. You must ensure that...

  1. Integrated System Health Management (ISHM) for Test Stand and J-2X Engine: Core Implementation

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge F.; Schmalzel, John L.; Aguilar, Robert; Shwabacher, Mark; Morris, Jon

    2008-01-01

    ISHM capability enables a system to detect anomalies, determine causes and effects, predict future anomalies, and provides an integrated awareness of the health of the system to users (operators, customers, management, etc.). NASA Stennis Space Center, NASA Ames Research Center, and Pratt & Whitney Rocketdyne have implemented a core ISHM capability that encompasses the A1 Test Stand and the J-2X Engine. The implementation incorporates all aspects of ISHM; from anomaly detection (e.g. leaks) to root-cause-analysis based on failure mode and effects analysis (FMEA), to a user interface for an integrated visualization of the health of the system (Test Stand and Engine). The implementation provides a low functional capability level (FCL) in that it is populated with few algorithms and approaches for anomaly detection, and root-cause trees from a limited FMEA effort. However, it is a demonstration of a credible ISHM capability, and it is inherently designed for continuous and systematic augmentation of the capability. The ISHM capability is grounded on an integrating software environment used to create an ISHM model of the system. The ISHM model follows an object-oriented approach: includes all elements of the system (from schematics) and provides for compartmentalized storage of information associated with each element. For instance, a sensor object contains a transducer electronic data sheet (TEDS) with information that might be used by algorithms and approaches for anomaly detection, diagnostics, etc. Similarly, a component, such as a tank, contains a Component Electronic Data Sheet (CEDS). Each element also includes a Health Electronic Data Sheet (HEDS) that contains health-related information such as anomalies and health state. Some practical aspects of the implementation include: (1) near real-time data flow from the test stand data acquisition system through the ISHM model, for near real-time detection of anomalies and diagnostics, (2) insertion of the J-2X predictive model providing predicted sensor values for comparison with measured values and use in anomaly detection and diagnostics, and (3) insertion of third-party anomaly detection algorithms into the integrated ISHM model.

  2. Integrated analysis of error detection and recovery

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Lee, Y. H.

    1985-01-01

    An integrated modeling and analysis of error detection and recovery is presented. When fault latency and/or error latency exist, the system may suffer from multiple faults or error propagations which seriously deteriorate the fault-tolerant capability. Several detection models that enable analysis of the effect of detection mechanisms on the subsequent error handling operations and the overall system reliability were developed. Following detection of the faulty unit and reconfiguration of the system, the contaminated processes or tasks have to be recovered. The strategies of error recovery employed depend on the detection mechanisms and the available redundancy. Several recovery methods including the rollback recovery are considered. The recovery overhead is evaluated as an index of the capabilities of the detection and reconfiguration mechanisms.

  3. Combined hostile fire and optics detection

    NASA Astrophysics Data System (ADS)

    Brännlund, Carl; Tidström, Jonas; Henriksson, Markus; Sjöqvist, Lars

    2013-10-01

    Snipers and other optically guided weapon systems are serious threats in military operations. We have studied a SWIR (Short Wave Infrared) camera-based system with capability to detect and locate snipers both before and after shot over a large field-of-view. The high frame rate SWIR-camera allows resolution of the temporal profile of muzzle flashes which is the infrared signature associated with the ejection of the bullet from the rifle. The capability to detect and discriminate sniper muzzle flashes with this system has been verified by FOI in earlier studies. In this work we have extended the system by adding a laser channel for optics detection. A laser diode with slit-shaped beam profile is scanned over the camera field-of-view to detect retro reflection from optical sights. The optics detection system has been tested at various distances up to 1.15 km showing the feasibility to detect rifle scopes in full daylight. The high speed camera gives the possibility to discriminate false alarms by analyzing the temporal data. The intensity variation, caused by atmospheric turbulence, enables discrimination of small sights from larger reflectors due to aperture averaging, although the targets only cover a single pixel. It is shown that optics detection can be integrated in combination with muzzle flash detection by adding a scanning rectangular laser slit. The overall optics detection capability by continuous surveillance of a relatively large field-of-view looks promising. This type of multifunctional system may become an important tool to detect snipers before and after shot.

  4. Insect-gene-activity detection system for chemical and biological warfare agents and toxic industrial chemicals

    NASA Astrophysics Data System (ADS)

    Mackie, Ryan S.; Schilling, Amanda S.; Lopez, Arturo M.; Rayms-Keller, Alfredo

    2002-02-01

    Detection of multiple chemical and biological weapons (CBW) agents and/or complex mixtures of toxic industrial chemicals (TIC) is imperative for both the commercial and military sectors. In a military scenario, a multi-CBW attack would create confusion, thereby delaying decontamination and therapeutic efforts. In the commercial sector, polluted sites invariably contain a mixture of TIC. Novel detection systems capable of detecting CBW and TIC are sorely needed. While it may be impossible to build a detector capable of discriminating all the possible combinations of CBW, a detection system capable of statistically predicting the most likely composition of a given mixture is within the reach of current emerging technologies. Aquatic insect-gene activity may prove to be a sensitive, discriminating, and elegant paradigm for the detection of CBW and TIC. We propose to systematically establish the expression patterns of selected protein markers in insects exposed to specific mixtures of chemical and biological warfare agents to generate a library of biosignatures of exposure. The predicting capabilities of an operational library of biosignatures of exposures will allow the detection of emerging novel or genetically engineered agents, as well as complex mixtures of chemical and biological weapons agents. CBW and TIC are discussed in the context of war, terrorism, and pollution.

  5. Development of an imaging system for the detection of alumina on turbine blades

    NASA Astrophysics Data System (ADS)

    Greenwell, S. J.; Kell, J.; Day, J. C. C.

    2014-03-01

    An imaging system capable of detecting alumina on turbine blades by acquiring LED-induced fluorescence images has been developed. Acquiring fluorescence images at adjacent spectral bands allows the system to distinguish alumina from fluorescent surface contaminants. Repair and overhaul processes require that alumina is entirely removed from the blades by grit blasting and chemical stripping. The capability of the system to detect alumina has been investigated with two series of turbine blades provided by Rolls-Royce plc. The results illustrate that the system provides a superior inspection method to visual assessment when ascertaining whether alumina is present on turbine blades during repair and overhaul processes.

  6. Cassette bacteria detection system. [for monitoring the sterility of regenerated water in spacecraft

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design, fabrication, and testing of an automatic bacteria detection system, with a zero-g capability, based on the filter-capable approach, and intended for monitoring the sterility of regenerated water in spacecraft is discussed. The principle of detection is based on measuring the increase in chemiluminescence produced by the action of bacterial porphyrins on a luminol-hydrogen peroxide mixture. Viable organisms are detected by comparing the signal of an incubated water sample with an unincubated control. High signals for the incubated water sample indicate the presence of viable organisms.

  7. A knowledge-based system for monitoring the electrical power system of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Eddy, Pat

    1987-01-01

    The design and the prototype for the expert system for the Hubble Space Telescope's electrical power system are discussed. This prototype demonstrated the capability to use real time data from a 32k telemetry stream and to perform operational health and safety status monitoring, detect trends such as battery degradation, and detect anomalies such as solar array failures. This prototype, along with the pointing control system and data management system expert systems, forms the initial Telemetry Analysis for Lockheed Operated Spacecraft (TALOS) capability.

  8. Improved dual-loop detection system for collecting real-time truck data

    DOT National Transportation Integrated Search

    2005-02-01

    The WSDOTs dual-loop detectors capability of measuring vehicle lengths makes the dual-loop detection system a potential real-time truck data source for freight movement study. However, a previous study found the WSDOT dual-loop detection system...

  9. Navy/Marine Corps innovative science and technology developments for future enhanced mine detection capabilities

    NASA Astrophysics Data System (ADS)

    Holloway, John H., Jr.; Witherspoon, Ned H.; Miller, Richard E.; Davis, Kenn S.; Suiter, Harold R.; Hilton, Russell J.

    2000-08-01

    JMDT is a Navy/Marine Corps 6.2 Exploratory Development program that is closely coordinated with the 6.4 COBRA acquisition program. The objective of the program is to develop innovative science and technology to enhance future mine detection capabilities. The objective of the program is to develop innovative science and technology to enhance future mine detection capabilities. Prior to transition to acquisition, the COBRA ATD was extremely successful in demonstrating a passive airborne multispectral video sensor system operating in the tactical Pioneer unmanned aerial vehicle (UAV), combined with an integrated ground station subsystem to detect and locate minefields from surf zone to inland areas. JMDT is investigating advanced technology solutions for future enhancements in mine field detection capability beyond the current COBRA ATD demonstrated capabilities. JMDT has recently been delivered next- generation, innovative hardware which was specified by the Coastal System Station and developed under contract. This hardware includes an agile-tuning multispectral, polarimetric, digital video camera and advanced multi wavelength laser illumination technologies to extend the same sorts of multispectral detections from a UAV into the night and over shallow water and other difficult littoral regions. One of these illumination devices is an ultra- compact, highly-efficient near-IR laser diode array. The other is a multi-wavelength range-gateable laser. Additionally, in conjunction with this new technology, algorithm enhancements are being developed in JMDT for future naval capabilities which will outperform the already impressive record of automatic detection of minefields demonstrated by the COBAR ATD.

  10. 40 CFR 63.1184 - What do I need to know about the design specifications, installation, and operation of a bag leak...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... design specifications, installation, and operation of a bag leak detection system? 63.1184 Section 63... bag leak detection system? A bag leak detection system must meet the following requirements: (a) The bag leak detection system must be certified by the manufacturer to be capable of detecting PM...

  11. Prospects for detecting decreasing exoplanet frequency with main-sequence age using PLATO

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Brown, David J. A.; Mustill, Alexander J.; Pollacco, Don

    2015-10-01

    The space mission PLATO will usher in a new era of exoplanetary science by expanding our current inventory of transiting systems and constraining host star ages, which are currently highly uncertain. This capability might allow PLATO to detect changes in planetary system architecture with time, particularly because planetary scattering due to Lagrange instability may be triggered long after the system was formed. Here, we utilize previously published instability time-scale prescriptions to determine PLATO's capability to detect a trend of decreasing planet frequency with age for systems with equal-mass planets. For two-planet systems, our results demonstrate that PLATO may detect a trend for planet masses which are at least as massive as super-Earths. For systems with three or more planets, we link their initial compactness to potentially detectable frequency trends in order to aid future investigations when these populations will be better characterized.

  12. Prospects for detecting decreasing exoplanet frequency with main-sequence age using PLATO

    NASA Astrophysics Data System (ADS)

    Veras, D.; Brown, D. J. A.; Mustill, A. J.; Pollacco, D.

    2017-09-01

    The space mission PLATO will usher in a new era of exoplanetary science by expanding our current inventory of transiting systems and constraining host star ages, which are currently highly uncertain. This capability might allow PLATO to detect changes in planetary system architecture with time, particularly because planetary scattering due to Lagrange instability may be triggered long after the system was formed. Here, we utilize previously published instability time-scale prescriptions to determine PLATO's capability to detect a trend of decreasing planet frequency with age for systems with equal- mass planets. For two-planet systems, our results demonstrate that PLATO may detect a trend for planet masses which are at least as massive as super-Earths. For systems with three or more planets, we link their initial compactness to potentially detectable frequency trends in order to aid future investigations when these populations will be better characterized.

  13. Foliage penetration by using 4-D point cloud data

    NASA Astrophysics Data System (ADS)

    Méndez Rodríguez, Javier; Sánchez-Reyes, Pedro J.; Cruz-Rivera, Sol M.

    2012-06-01

    Real-time awareness and rapid target detection are critical for the success of military missions. New technologies capable of detecting targets concealed in forest areas are needed in order to track and identify possible threats. Currently, LAser Detection And Ranging (LADAR) systems are capable of detecting obscured targets; however, tracking capabilities are severely limited. Now, a new LADAR-derived technology is under development to generate 4-D datasets (3-D video in a point cloud format). As such, there is a new need for algorithms that are able to process data in real time. We propose an algorithm capable of removing vegetation and other objects that may obfuscate concealed targets in a real 3-D environment. The algorithm is based on wavelets and can be used as a pre-processing step in a target recognition algorithm. Applications of the algorithm in a real-time 3-D system could help make pilots aware of high risk hidden targets such as tanks and weapons, among others. We will be using a 4-D simulated point cloud data to demonstrate the capabilities of our algorithm.

  14. Concept of electro-optical sensor module for sniper detection system

    NASA Astrophysics Data System (ADS)

    Trzaskawka, Piotr; Dulski, Rafal; Kastek, Mariusz

    2010-10-01

    The paper presents an initial concept of the electro-optical sensor unit for sniper detection purposes. This unit, comprising of thermal and daylight cameras, can operate as a standalone device but its primary application is a multi-sensor sniper and shot detection system. Being a part of a larger system it should contribute to greater overall system efficiency and lower false alarm rate thanks to data and sensor fusion techniques. Additionally, it is expected to provide some pre-shot detection capabilities. Generally acoustic (or radar) systems used for shot detection offer only "after-the-shot" information and they cannot prevent enemy attack, which in case of a skilled sniper opponent usually means trouble. The passive imaging sensors presented in this paper, together with active systems detecting pointed optics, are capable of detecting specific shooter signatures or at least the presence of suspected objects in the vicinity. The proposed sensor unit use thermal camera as a primary sniper and shot detection tool. The basic camera parameters such as focal plane array size and type, focal length and aperture were chosen on the basis of assumed tactical characteristics of the system (mainly detection range) and current technology level. In order to provide costeffective solution the commercially available daylight camera modules and infrared focal plane arrays were tested, including fast cooled infrared array modules capable of 1000 fps image acquisition rate. The daylight camera operates as a support, providing corresponding visual image, easier to comprehend for a human operator. The initial assumptions concerning sensor operation were verified during laboratory and field test and some example shot recording sequences are presented.

  15. 30 CFR 250.1629 - Additional production and fuel gas system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... structure. (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed... explosive limit. One approved method of providing adequate ventilation is a change of air volume each 5... detection systems shall be capable of continuous monitoring. Fire-detection systems and portions of...

  16. 30 CFR 250.1629 - Additional production and fuel gas system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... structure. (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed... explosive limit. One approved method of providing adequate ventilation is a change of air volume each 5... detection systems shall be capable of continuous monitoring. Fire-detection systems and portions of...

  17. Method and system for monitoring environmental conditions

    DOEpatents

    Kulesz, James J [Oak Ridge, TN; Lee, Ronald W [Oak Ridge, TN

    2010-11-16

    A system for detecting the occurrence of anomalies includes a plurality of spaced apart nodes, with each node having adjacent nodes, each of the nodes having one or more sensors associated with the node and capable of detecting anomalies, and each of the nodes having a controller connected to the sensors associated with the node. The system also includes communication links between adjacent nodes, whereby the nodes form a network. At least one software agent is capable of changing the operation of at least one of the controllers in response to the detection of an anomaly by a sensor.

  18. Advanced sensor-simulation capability

    NASA Astrophysics Data System (ADS)

    Cota, Stephen A.; Kalman, Linda S.; Keller, Robert A.

    1990-09-01

    This paper provides an overview of an advanced simulation capability currently in use for analyzing visible and infrared sensor systems. The software system, called VISTAS (VISIBLE/INFRARED SENSOR TRADES, ANALYSES, AND SIMULATIONS) combines classical image processing techniques with detailed sensor models to produce static and time dependent simulations of a variety of sensor systems including imaging, tracking, and point target detection systems. Systems modelled to date include space-based scanning line-array sensors as well as staring 2-dimensional array sensors which can be used for either imaging or point source detection.

  19. Performance analysis of a multispectral system for mine detection in the littoral zone

    NASA Astrophysics Data System (ADS)

    Hargrove, John T.; Louchard, Eric

    2004-09-01

    Science & Technology International (STI) has developed, under contract with the Office of Naval Research, a system of multispectral airborne sensors and processing algorithms capable of detecting mine-like objects in the surf zone. STI has used this system to detect mine-like objects in a littoral environment as part of blind tests at Kaneohe Marine Corps Base Hawaii, and Panama City, Florida. The airborne and ground subsystems are described. The detection algorithm is graphically illustrated. We report on the performance of the system configured to operate without a human in the loop. A subsurface (underwater bottom proud mine in the surf zone and moored mine in shallow water) mine detection capability is demonstrated in the surf zone, and in shallow water with wave spillage and foam. Our analysis demonstrates that this STI-developed multispectral airborne mine detection system provides a technical foundation for a viable mine counter-measures system for use prior to an amphibious assault.

  20. Probabilistic evaluation of on-line checks in fault-tolerant multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Nair, V. S. S.; Hoskote, Yatin V.; Abraham, Jacob A.

    1992-01-01

    The analysis of fault-tolerant multiprocessor systems that use concurrent error detection (CED) schemes is much more difficult than the analysis of conventional fault-tolerant architectures. Various analytical techniques have been proposed to evaluate CED schemes deterministically. However, these approaches are based on worst-case assumptions related to the failure of system components. Often, the evaluation results do not reflect the actual fault tolerance capabilities of the system. A probabilistic approach to evaluate the fault detecting and locating capabilities of on-line checks in a system is developed. The various probabilities associated with the checking schemes are identified and used in the framework of the matrix-based model. Based on these probabilistic matrices, estimates for the fault tolerance capabilities of various systems are derived analytically.

  1. Integrated failure detection and management for the Space Station Freedom external active thermal control system

    NASA Technical Reports Server (NTRS)

    Mesloh, Nick; Hill, Tim; Kosyk, Kathy

    1993-01-01

    This paper presents the integrated approach toward failure detection, isolation, and recovery/reconfiguration to be used for the Space Station Freedom External Active Thermal Control System (EATCS). The on-board and on-ground diagnostic capabilities of the EATCS are discussed. Time and safety critical features, as well as noncritical failures, and the detection coverage for each provided by existing capabilities are reviewed. The allocation of responsibility between on-board software and ground-based systems, to be shown during ground testing at the Johnson Space Center, is described. Failure isolation capabilities allocated to the ground include some functionality originally found on orbit but moved to the ground to reduce on-board resource requirements. Complex failures requiring the analysis of multiple external variables, such as environmental conditions, heat loads, or station attitude, are also allocated to ground personnel.

  2. Universal explosive detection system for homeland security applications

    NASA Astrophysics Data System (ADS)

    Lee, Vincent Y.; Bromberg, Edward E. A.

    2010-04-01

    L-3 Communications CyTerra Corporation has developed a high throughput universal explosive detection system (PassPort) to automatically screen the passengers in airports without requiring them to remove their shoes. The technical approach is based on the patented energetic material detection (EMD) technology. By analyzing the results of sample heating with an infrared camera, one can distinguish the deflagration or decomposition of an energetic material from other clutters such as flammables and general background substances. This becomes the basis of a universal explosive detection system that does not require a library and is capable of detecting trace levels of explosives with a low false alarm rate. The PassPort is a simple turnstile type device and integrates a non-intrusive aerodynamic sampling scheme that has been shown capable of detecting trace levels of explosives on shoes. A detailed description of the detection theory and the automated sampling techniques, as well as the field test results, will be presented.

  3. Dolphin sonar detection and discrimination capabilities

    NASA Astrophysics Data System (ADS)

    Au, Whitlow W. L.

    2004-05-01

    Dolphins have a very sophisticated short range sonar that surpasses all technological sonar in its capabilities to perform complex target discrimination and recognition tasks. The system that the U.S. Navy has for detecting mines buried under ocean sediment is one that uses Atlantic bottlenose dolphins. However, close examination of the dolphin sonar system will reveal that the dolphin acoustic hardware is fairly ordinary and not very special. The transmitted signals have peak-to-peak amplitudes as high as 225-228 dB re 1 μPa which translates to an rms value of approximately 210-213 dB. The transmit beamwidth is fairly broad at about 10o in both the horizontal and vertical planes and the receiving beamwidth is slightly broader by several degrees. The auditory filters are not very narrow with Q values of about 8.4. Despite these fairly ordinary features of the acoustic system, these animals still demonstrate very unusual and astonishing capabilities. Some of the capabilities of the dolphin sonar system will be presented and the reasons for their keen sonar capabilities will be discussed. Important features of their sonar include the broadband clicklike signals used, adaptive sonar search capabilities and large dynamic range of its auditory system.

  4. Research on capability of detecting ballistic missile by near space infrared system

    NASA Astrophysics Data System (ADS)

    Lu, Li; Sheng, Wen; Jiang, Wei; Jiang, Feng

    2018-01-01

    The infrared detection technology of ballistic missile based on near space platform can effectively make up the shortcomings of high-cost of traditional early warning satellites and the limited earth curvature of ground-based early warning radar. In terms of target detection capability, aiming at the problem that the formula of the action distance based on contrast performance ignores the background emissivity in the calculation process and the formula is only valid for the monochromatic light, an improved formula of the detecting range based on contrast performance is proposed. The near space infrared imaging system parameters are introduced, the expression of the contrastive action distance formula based on the target detection of the near space platform is deduced. The detection range of the near space infrared system for the booster stage ballistic missile skin, the tail nozzle and the tail flame is calculated. The simulation results show that the near-space infrared system has the best effect on the detection of tail-flame radiation.

  5. 40 CFR 264.1101 - Design and operating standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hazardous waste (e.g., upon detection of leakage from the primary barrier) the owner or operator must: (A... constituents into the barrier, and a leak detection system that is capable of detecting failure of the primary... requirements of the leak detection component of the secondary containment system are satisfied by installation...

  6. Development of a wireless, self-sustaining damage detection sensor system based on chemiluminescence for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Kuang, K. S. C.

    2014-03-01

    A novel application of chemiluminescence resulting from the chemical reaction in a glow-stick as sensors for structural health monitoring is demonstrated here. By detecting the presence of light emitting from these glow-sticks, it is possible to develop a low-cost sensing device with the potential to provide early warning of damage in a variety of engineering applications such as monitoring of cracks or damage in concrete shear walls, detecting of ground settlement, soil liquefaction, slope instability, liquefaction-related damage of underground structure and others. In addition, this paper demonstrates the ease of incorporating wireless capability to the sensor device and the possibility of making the sensor system self-sustaining by means of a renewable power source for the wireless module. A significant advantage of the system compared to previous work on the use of plastic optical fibre (POF) for damage detection is that here the system does not require an electrically-powered light source. Here, the sensing device, embedded in a cement host, is shown to be capable of detecting damage. A series of specimens with embedded glow-sticks have been investigated and an assessment of their damage detection capability will be reported. The specimens were loaded under flexure and the sensor responses were transmitted via a wireless connection.

  7. International-Aerial Measuring System (I-AMS) Training Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasiolek, Piotre T.; Malchor, Russell L.; Maurer, Richard J.

    2015-10-01

    Since the Fukushima reactor accident in 2011, there has been an increased interest worldwide in developing national capabilities to rapidly map and assess ground contamination resulting from nuclear reactor accidents. The capability to rapidly measure the size of the contaminated area, determine the activity level, and identify the radionuclides can aid emergency managers and decision makers in providing timely protective action recommendations to the public and first responders. The development of an aerial detection capability requires interagency coordination to assemble the radiation experts, detection system operators, and aviation aircrews to conduct the aerial measurements, analyze and interpret the data, andmore » provide technical assessments. The Office of International Emergency Management and Cooperation (IEMC) at the U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) sponsors an International - Aerial Measuring System (I-AMS) training program for partner nations to develop and enhance their response to radiological emergencies. An initial series of courses can be conducted in the host country to assist in developing an aerial detection capability. As the capability develops and expands, additional experience can be gained through advanced courses with the opportunity to conduct aerial missions over a broad range of radiation environments.« less

  8. Seeing Eye Drones: How The DOD Can Transform CBM And Disaster Response In The Homeland

    DTIC Science & Technology

    2016-12-01

    thesis explores the possibility of integrating small unmanned aircraft systems (sUAS) with video capability and CBRN detection and identification sensors...small, unmanned aircraft systems (sUAS) with video capability and CBRN detection and identification sensors for use by National Guard civil support...CBRN) and hazardous material (HAZMAT) materials, as well as providing video to the incident commander. One of the primary benefits of providing

  9. Application of a CO2 dial system for infrared detection of forest fire and reduction of false alarm

    NASA Astrophysics Data System (ADS)

    Bellecci, C.; Francucci, M.; Gaudio, P.; Gelfusa, M.; Martellucci, S.; Richetta, M.; Lo Feudo, T.

    2007-04-01

    Forest fires can be the cause of serious environmental and economic damages. For this reason considerable effort has been directed toward forest protection and fire fighting. The means traditionally used for early fire detection mainly consist in human observers dispersed over forest regions. A significant improvement in early warning capabilities could be obtained by using automatic detection apparatus. In order to early detect small forest fires and minimize false alarms, the use of a lidar system and dial technique will be considered. A first evaluation of the lowest detectable concentration will be estimated by numerical simulation. The theoretical model will also be used to get the capability of the dial system to control wooded areas. Fixing the burning rate for several fuels, the maximum range of detection will be evaluated. Finally results of simulations will be reported.

  10. Capability of long distance 100  GHz FMCW using a single GDD lamp sensor.

    PubMed

    Levanon, Assaf; Rozban, Daniel; Aharon Akram, Avihai; Kopeika, Natan S; Yitzhaky, Yitzhak; Abramovich, Amir

    2014-12-20

    Millimeter wave (MMW)-based imaging systems are required for applications in medicine, homeland security, concealed weapon detection, and space technology. The lack of inexpensive room temperature imaging sensors makes it difficult to provide a suitable MMW system for many of the above applications. A 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The radar system requires that the millimeter wave detector will be able to operate as a heterodyne detector. Since the source of radiation is a frequency modulated continuous wave (FMCW), the detected signal as a result of heterodyne detection gives the object's depth information according to value of difference frequency, in addition to the reflectance of the 2D image. New experiments show the capability of long distance FMCW detection by using a large scale Cassegrain projection system, described first (to our knowledge) in this paper. The system presents the capability to employ a long distance of at least 20 m with a low-cost plasma-based glow discharge detector (GDD) focal plane array (FPA). Each point on the object corresponds to a point in the image and includes the distance information. This will enable relatively inexpensive 3D MMW imaging.

  11. A Stochastic Model for the Landing Dispersion of Hazard Detection and Avoidance Capable Flight Systems

    NASA Astrophysics Data System (ADS)

    Witte, L.

    2014-06-01

    To support landing site assessments for HDA-capable flight systems and to facilitate trade studies between the potential HDA architectures versus the yielded probability of safe landing a stochastic landing dispersion model has been developed.

  12. PDSS/IMC requirements and functional specifications

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The system (software and hardware) requirements for the Payload Development Support System (PDSS)/Image Motion Compensator (IMC) are provided. The PDSS/IMC system provides the capability for performing Image Motion Compensator Electronics (IMCE) flight software test, checkout, and verification and provides the capability for monitoring the IMC flight computer system during qualification testing for fault detection and fault isolation.

  13. Traffic jam driving with NMV avoidance

    NASA Astrophysics Data System (ADS)

    Milanés, Vicente; Alonso, Luciano; Villagrá, Jorge; Godoy, Jorge; de Pedro, Teresa; Oria, Juan P.

    2012-08-01

    In recent years, the development of advanced driver assistance systems (ADAS) - mainly based on lidar and cameras - has considerably improved the safety of driving in urban environments. These systems provide warning signals for the driver in the case that any unexpected traffic circumstance is detected. The next step is to develop systems capable not only of warning the driver but also of taking over control of the car to avoid a potential collision. In the present communication, a system capable of autonomously avoiding collisions in traffic jam situations is presented. First, a perception system was developed for urban situations—in which not only vehicles have to be considered, but also pedestrians and other non-motor-vehicles (NMV). It comprises a differential global positioning system (DGPS) and wireless communication for vehicle detection, and an ultrasound sensor for NMV detection. Then, the vehicle's actuators - brake and throttle pedals - were modified to permit autonomous control. Finally, a fuzzy logic controller was implemented capable of analyzing the information provided by the perception system and of sending control commands to the vehicle's actuators so as to avoid accidents. The feasibility of the integrated system was tested by mounting it in a commercial vehicle, with the results being encouraging.

  14. Sniper detection using infrared camera: technical possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Dulski, R.; Trzaskawka, P.; Bieszczad, G.

    2010-04-01

    The paper discusses technical possibilities to build an effective system for sniper detection using infrared cameras. Descriptions of phenomena which make it possible to detect sniper activities in infrared spectra as well as analysis of physical limitations were performed. Cooled and uncooled detectors were considered. Three phases of sniper activities were taken into consideration: before, during and after the shot. On the basis of experimental data the parameters defining the target were determined which are essential in assessing the capability of infrared camera to detect sniper activity. A sniper body and muzzle flash were analyzed as targets. The simulation of detection ranges was done for the assumed scenario of sniper detection task. The infrared sniper detection system was discussed, capable of fulfilling the requirements. The discussion of the results of analysis and simulations was finally presented.

  15. NASA Stennis Space Center Integrated System Health Management Test Bed and Development Capabilities

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Holland, Randy; Coote, David

    2006-01-01

    Integrated System Health Management (ISHM) is a capability that focuses on determining the condition (health) of every element in a complex System (detect anomalies, diagnose causes, prognosis of future anomalies), and provide data, information, and knowledge (DIaK)-not just data-to control systems for safe and effective operation. This capability is currently done by large teams of people, primarily from ground, but needs to be embedded on-board systems to a higher degree to enable NASA's new Exploration Mission (long term travel and stay in space), while increasing safety and decreasing life cycle costs of spacecraft (vehicles; platforms; bases or outposts; and ground test, launch, and processing operations). The topics related to this capability include: 1) ISHM Related News Articles; 2) ISHM Vision For Exploration; 3) Layers Representing How ISHM is Currently Performed; 4) ISHM Testbeds & Prototypes at NASA SSC; 5) ISHM Functional Capability Level (FCL); 6) ISHM Functional Capability Level (FCL) and Technology Readiness Level (TRL); 7) Core Elements: Capabilities Needed; 8) Core Elements; 9) Open Systems Architecture for Condition-Based Maintenance (OSA-CBM); 10) Core Elements: Architecture, taxonomy, and ontology (ATO) for DIaK management; 11) Core Elements: ATO for DIaK Management; 12) ISHM Architecture Physical Implementation; 13) Core Elements: Standards; 14) Systematic Implementation; 15) Sketch of Work Phasing; 16) Interrelationship Between Traditional Avionics Systems, Time Critical ISHM and Advanced ISHM; 17) Testbeds and On-Board ISHM; 18) Testbed Requirements: RETS AND ISS; 19) Sustainable Development and Validation Process; 20) Development of on-board ISHM; 21) Taxonomy/Ontology of Object Oriented Implementation; 22) ISHM Capability on the E1 Test Stand Hydraulic System; 23) Define Relationships to Embed Intelligence; 24) Intelligent Elements Physical and Virtual; 25) ISHM Testbeds and Prototypes at SSC Current Implementations; 26) Trailer-Mounted RETS; 27) Modeling and Simulation; 28) Summary ISHM Testbed Environments; 29) Data Mining - ARC; 30) Transitioning ISHM to Support NASA Missions; 31) Feature Detection Routines; 32) Sample Features Detected in SSC Test Stand Data; and 33) Health Assessment Database (DIaK Repository).

  16. An objectively-analyzed method for measuring the useful penetration of x-ray imaging systems.

    PubMed

    Glover, Jack L; Hudson, Lawrence T

    2016-06-01

    The ability to detect wires is an important capability of the cabinet x-ray imaging systems that are used in aviation security as well as the portable x-ray systems that are used by domestic law enforcement and military bomb squads. A number of national and international standards describe methods for testing this capability using the so called useful penetration test metric, where wires are imaged behind different thicknesses of blocking material. Presently, these tests are scored based on human judgments of wire visibility, which are inherently subjective. We propose a new method in which the useful penetration capabilities of an x-ray system are objectively evaluated by an image processing algorithm operating on digital images of a standard test object. The algorithm advantageously applies the Radon transform for curve parameter detection that reduces the problem of wire detection from two dimensions to one. The sensitivity of the wire detection method is adjustable and we demonstrate how the threshold parameter can be set to give agreement with human-judged results. The method was developed to be used in technical performance standards and is currently under ballot for inclusion in a US national aviation security standard.

  17. An objectively-analyzed method for measuring the useful penetration of x-ray imaging systems

    PubMed Central

    Glover, Jack L.; Hudson, Lawrence T.

    2016-01-01

    The ability to detect wires is an important capability of the cabinet x-ray imaging systems that are used in aviation security as well as the portable x-ray systems that are used by domestic law enforcement and military bomb squads. A number of national and international standards describe methods for testing this capability using the so called useful penetration test metric, where wires are imaged behind different thicknesses of blocking material. Presently, these tests are scored based on human judgments of wire visibility, which are inherently subjective. We propose a new method in which the useful penetration capabilities of an x-ray system are objectively evaluated by an image processing algorithm operating on digital images of a standard test object. The algorithm advantageously applies the Radon transform for curve parameter detection that reduces the problem of wire detection from two dimensions to one. The sensitivity of the wire detection method is adjustable and we demonstrate how the threshold parameter can be set to give agreement with human-judged results. The method was developed to be used in technical performance standards and is currently under ballot for inclusion in a US national aviation security standard. PMID:27499586

  18. An objectively-analyzed method for measuring the useful penetration of x-ray imaging systems

    NASA Astrophysics Data System (ADS)

    Glover, Jack L.; Hudson, Lawrence T.

    2016-06-01

    The ability to detect wires is an important capability of the cabinet x-ray imaging systems that are used in aviation security as well as the portable x-ray systems that are used by domestic law enforcement and military bomb squads. A number of national and international standards describe methods for testing this capability using the so called useful penetration test metric, where wires are imaged behind different thicknesses of blocking material. Presently, these tests are scored based on human judgments of wire visibility, which are inherently subjective. We propose a new method in which the useful penetration capabilities of an x-ray system are objectively evaluated by an image processing algorithm operating on digital images of a standard test object. The algorithm advantageously applies the Radon transform for curve parameter detection that reduces the problem of wire detection from two dimensions to one. The sensitivity of the wire detection method is adjustable and we demonstrate how the threshold parameter can be set to give agreement with human-judged results. The method was developed to be used in technical performance standards and is currently under ballot for inclusion in an international aviation security standard.

  19. Manpower Requirements Report for FY (Fiscal Year) 1984.

    DTIC Science & Technology

    1983-02-01

    capability to detect cannabis brings to seven the number of drugs detectable through urinaly- sis in the DoD system. While the detection and deterrence of... toxicology . The primary purpose of these con- ferences was validation of Legal sufficiency of the DoD laboratory system by the scientific community

  20. DETECTION OR WARNING SYSTEM

    DOEpatents

    Tillman, J E

    1953-10-20

    This patent application describes a sensitive detection or protective system capable of giving an alarm or warning upon the entrance or intrusion of any body into a defined area or zone protected by a radiation field of suitable direction or extent.

  1. Advanced Ground Systems Maintenance Enterprise Architecture Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    The project implements an architecture for delivery of integrated health management capabilities for the 21st Century launch complex. Capabilities include anomaly detection, fault isolation, prognostics and physics-based diagnostics.

  2. 10 CFR 73.45 - Performance capabilities for fixed site physical protection systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... authorization schedules and entry criteria before permitting entry and to initiate response measures to deny... movement of strategic special nuclear material within material access areas. To achieve this capability the physical protection system shall: (1) Detect unauthorized placement and movement of strategic special...

  3. Software Health Management with Bayesian Networks

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole; Schumann, JOhann

    2011-01-01

    Most modern aircraft as well as other complex machinery is equipped with diagnostics systems for its major subsystems. During operation, sensors provide important information about the subsystem (e.g., the engine) and that information is used to detect and diagnose faults. Most of these systems focus on the monitoring of a mechanical, hydraulic, or electromechanical subsystem of the vehicle or machinery. Only recently, health management systems that monitor software have been developed. In this paper, we will discuss our approach of using Bayesian networks for Software Health Management (SWHM). We will discuss SWHM requirements, which make advanced reasoning capabilities for the detection and diagnosis important. Then we will present our approach to using Bayesian networks for the construction of health models that dynamically monitor a software system and is capable of detecting and diagnosing faults.

  4. Terrain Commander: a next-generation remote surveillance system

    NASA Astrophysics Data System (ADS)

    Finneral, Henry J.

    2003-09-01

    Terrain Commander is a fully automated forward observation post that provides the most advanced capability in surveillance and remote situational awareness. The Terrain Commander system was selected by the Australian Government for its NINOX Phase IIB Unattended Ground Sensor Program with the first systems delivered in August of 2002. Terrain Commander offers next generation target detection using multi-spectral peripheral sensors coupled with autonomous day/night image capture and processing. Subsequent intelligence is sent back through satellite communications with unlimited range to a highly sophisticated central monitoring station. The system can "stakeout" remote locations clandestinely for 24 hours a day for months at a time. With its fully integrated SATCOM system, almost any site in the world can be monitored from virtually any other location in the world. Terrain Commander automatically detects and discriminates intruders by precisely cueing its advanced EO subsystem. The system provides target detection capabilities with minimal nuisance alarms combined with the positive visual identification that authorities demand before committing a response. Terrain Commander uses an advanced beamforming acoustic sensor and a distributed array of seismic, magnetic and passive infrared sensors to detect, capture images and accurately track vehicles and personnel. Terrain Commander has a number of emerging military and non-military applications including border control, physical security, homeland defense, force protection and intelligence gathering. This paper reviews the development, capabilities and mission applications of the Terrain Commander system.

  5. Performance of RASS vortex detection/measurement system

    DOT National Transportation Integrated Search

    1999-06-01

    Preliminary tests conducted by WLR Research in the Fall of 1993 showed considerable promise that a Radio Acoustic Sounding System (RASS) was capable of detecting and tracking wake vortices located in the approach glide slope. Initial testing of the R...

  6. Surface-enhanced Raman detection of CW agents in water using gold sol gel substrates

    NASA Astrophysics Data System (ADS)

    Premasiri, W. Ranjith; Clarke, Richard H.; Womble, M. Edward

    2002-02-01

    The development of a water analysis system capable of detecting both inanimate trace chemical contaminants and viable microbial contaminants has long been a project of interest to our group. The capability of detecting both chemical and biological agent sources in a single device configuration would clearly add to the value of such a product. In the present work, we describe results with chemical warfare agents from our efforts to produce a Raman system for the detection of both chemical and biological warfare agents in water. We utilize laser Raman light scattering and employ Surface Enhanced Raman Spectroscopy (SERS)on solid state gold sol-gel detectors combined with fiber optic collection of the enhanced light signal in the sampling system to augment the normally low intensity Raman Scattering signal from trace materials.

  7. Evaluation and validation of a multi-residue method based on biochip technology for the simultaneous screening of six families of antibiotics in muscle and aquaculture products.

    PubMed

    Gaudin, Valérie; Hedou, Celine; Soumet, Christophe; Verdon, Eric

    2016-01-01

    The Evidence Investigator™ system (Randox, UK) is a biochip and semi-automated system. The microarray kit II (AM II) is capable of detecting several compounds belonging to different families of antibiotics: quinolones, ceftiofur, thiamphenicol, streptomycin, tylosin and tetracyclines. The performance of this innovative system was evaluated for the detection of antibiotic residues in new matrices, in muscle of different animal species and in aquaculture products. The method was validated according to the European Decision No. EC/2002/657 and the European guideline for the validation of screening methods, which represents a complete initial validation. The false-positive rate was equal to 0% in muscle and in aquaculture products. The detection capabilities CCβ for 12 validated antibiotics (enrofloxacin, difloxacin, ceftiofur, desfuroyl ceftiofur cysteine disulfide, thiamphenicol, florfenicol, tylosin, tilmicosin, streptomycin, dihydrostreptomycin, tetracycline, doxycycline) were all lower than the respective maximum residue limits (MRLs) in muscle from different animal origins (bovine, ovine, porcine, poultry). No cross-reactions were observed with other antibiotics, neither with the six detected families nor with other families of antibiotics. The AM II kit could be applied to aquaculture products but with higher detection capabilities from those in muscle. The detection capabilities CCβ in aquaculture products were respectively at 0.25, 0.10 and 0.5 of the respective MRL in aquaculture products for enrofloxacin, tylosin and oxytetracycline. The performance of the AM II kit has been compared with other screening methods and with the performance characteristics previously determined in honey.

  8. Oil pollution signatures by remote sensing.

    NASA Technical Reports Server (NTRS)

    Catoe, C. E.; Mclean, J. T.

    1972-01-01

    Study of the possibility of developing an effective remote sensing system for oil pollution monitoring which would be capable of detecting oil films on water, mapping the areal extent of oil slicks, measuring slick thickness, and identifying the oil types. In the spectral regions considered (ultraviolet, visible, infrared, microwave, and radar), the signatures were sufficiently unique when compared to the background so that it was possible to detect and map oil slicks. Both microwave and radar techniques are capable of operating in adverse weather. Fluorescence techniques show promise in identifying oil types. A multispectral system will be required to detect oil, map its distribution, estimate film thickness, and characterize the oil pollutant.

  9. Advanced Ground Systems Maintenance Enterprise Architecture Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Compiler)

    2015-01-01

    The project implements an architecture for delivery of integrated health management capabilities for the 21st Century launch complex. The delivered capabilities include anomaly detection, fault isolation, prognostics and physics based diagnostics.

  10. I-SCAD® standoff chemical agent detector overview

    NASA Astrophysics Data System (ADS)

    Popa, Mirela O.; Griffin, Matthew T.

    2012-06-01

    This paper presents a system-level description of the I-SCAD® Standoff Chemical Agent Detector, a passive Fourier Transform InfraRed (FTIR) based remote sensing system, for detecting chemical vapor threats. The passive infrared detection system automatically searches the 7 to 14 micron region of the surrounding atmosphere for agent vapor clouds. It is capable of operating while on the move to accomplish reconnaissance, surveillance, and contamination avoidance missions. Additionally, the system is designed to meet the needs for application on air and sea as well as ground mobile and fixed site platforms. The lightweight, passive, and fully automatic detection system scans the surrounding atmosphere for chemical warfare agent vapors. It provides on-the-move, 360-deg coverage from a variety of tactical and reconnaissance platforms at distances up to 5 km. The core of the system is a rugged Michelson interferometer with a flexure spring bearing mechanism and bi-directional data acquisition capability. The modular system design facilitates interfacing to many platforms. A Reduced Field of View (RFOV) variant includes novel modifications to the scanner subcomponent assembly optical design that gives extended performance in detection range and detection probability without sacrificing existing radiometric sensitivity performance. This paper will deliver an overview of system.

  11. Strategies for the screening of antibiotic residues in eggs: comparison of the validation of the classical microbiological method with an immunobiosensor method.

    PubMed

    Gaudin, Valérie; Rault, Annie; Hedou, Celine; Soumet, Christophe; Verdon, Eric

    2017-09-01

    Efficient screening methods are needed to control antibiotic residues in eggs. A microbiological kit (Explorer® 2.0 test (Zeu Inmunotech, Spain)) and an immunobiosensor kit (Microarray II (AM® II) on Evidence Investigator™ system (Randox, UK)) have been evaluated and validated for screening of antibiotic residues in eggs, according to the European decision EC/2002/657 and to the European guideline for the validation of screening methods. The e-reader™ system, a new automatic incubator/reading system, was coupled to the Explorer 2.0 test. The AM II kit can detect residues of six different families of antibiotics in different matrices including eggs. For both tests, a different liquid/liquid extraction of eggs had to be developed. Specificities of the Explorer 2.0 and AM II kit were equal to 8% and 0% respectively. The detection capabilities were determined for 19 antibiotics, with representatives from different families, for Explorer 2.0 and 12 antibiotics for the AM II kit. For the nine antibiotics having a maximum residue limit (MRL) in eggs, the detection capabilities CCβ of Explorer 2.0 were below the MRL for four antibiotics, equal to the MRL for two antibiotics and between 1 and 1.5 MRLs for the three remaining antibiotics (tetracyclines). For the antibiotics from other families, the detection capabilities were low for beta-lactams and sulfonamides and satisfactory for dihydrostreptomycin (DHS) and fluoroquinolones, which are usually difficult to detect with microbiological tests. The CCβ values of the AM II kit were much lower than the respective MRLs for three detected antibiotics (tetracycline, oxytetracycline, tylosin). Concerning the nine other antibiotics, the detection capabilities determined were low. The highest CCβ was obtained for streptomycin (100 µg kg -1 ).

  12. An astrometric facility for planetary detection on the space station

    NASA Technical Reports Server (NTRS)

    Nishioka, Kenji; Scargle, Jeffrey D.; Givens, John J.

    1987-01-01

    An Astrometric Telescope Facility (ATF) for planetary detection is being studied as a potential space station initial operating capability payload. The primary science objective of this mission is the detection and study of planetary systems around other stars. In addition, the facility will be capable of other astrometric measurements such as stellar motions of other galaxies and highly precise direct measurement of stellar distance within the Milky Way Galaxy. The results of a recently completed ATF preliminary systems definition study are summarized. Results of this study indicate that the preliminary concept for the facility is fully capable of meeting the science objective without the development of any new technologies. A simple straightforward operations approach was developed for the ATF. A real-time facility control is not normally required, but does maintain a near real-time ground monitoring capability for the facility and science data stream on a full-time basis. Facility observational sequences are normally loaded once a week. In addition, the preliminary system is designed to be fail-safe and single-fault tolerant. Routine interactions by the space station crew with the ATF will not be necessary, but onboard controls are provided for crew override as required for emergencies and maintenance.

  13. Indoor air quality inspection and analysis system based on gas sensor array

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Wang, Mingjiang; Fan, Binwen

    2017-08-01

    A detection and analysis system capable of measuring the concentration of four major gases in indoor air is designed. It uses four gas sensors constitute a gas sensor array, to achieve four indoor gas concentration detection, while the detection of data for further processing to reduce the cross-sensitivity between the gas sensor to improve the accuracy of detection.

  14. Analysis of Measurements for Solid State Lidar Development

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1996-01-01

    A Detector Characterization Facility (DCF), capable of measuring 2-micron detection devices and evaluating heterodyne receivers, was developed at the Marshall Space Flight Center. The DCF is capable of providing all the necessary detection parameters for design, development, and calibration of coherent and incoherent solid state laser radar (lidar) systems. The coherent lidars in particular require an accurate knowledge of detector heterodyne quantum efficient, nonlinearity properties, and voltage-current relationship as a function of applied optical power. At present, no detector manufacturer provides these qualities or adequately characterizes their detectors for heterodyne detection operation. In addition, the detector characterization facility measures the detectors DC and AC quantum efficiencies noise equivalent power and frequency response up to several GHz. The DCF is also capable of evaluating various heterodyne detection schemes such as balanced detectors and fiber optic interferometers. The design and analyses of measurements for the DCF were preformed over the previous year and a detailed description of its design and capabilities was provided in the NASA report NAS8-38609/DO77. It should also be noted that the DCF design was further improved to allow for the characterization of diffractive andholographical optical elements and other critical components of coherent lidar systems.

  15. Water system virus detection

    NASA Technical Reports Server (NTRS)

    Fraser, A. S.; Wells, A. F.; Tenoso, H. J.

    1975-01-01

    A monitoring system developed to test the capability of a water recovery system to reject the passage of viruses into the recovered water is described. A nonpathogenic marker virus, bacteriophage F2, is fed into the process stream before the recovery unit and the reclaimed water is assayed for its presence. Detection of the marker virus consists of two major components, concentration and isolation of the marker virus, and detection of the marker virus. The concentration system involves adsorption of virus to cellulose acetate filters in the presence of trivalent cations and low pH with subsequent desorption of the virus using volumes of high pH buffer. The detection of the virus is performed by a passive immune agglutination test utilizing specially prepared polystyrene particles. An engineering preliminary design was performed as a parallel effort to the laboratory development of the marker virus test system. Engineering schematics and drawings of a fully functional laboratory prototype capable of zero-G operation are presented. The instrument consists of reagent pump/metering system, reagent storage containers, a filter concentrator, an incubation/detector system, and an electronic readout and control system.

  16. Overview of ISS U.S. Fire Detection and Suppression System

    NASA Technical Reports Server (NTRS)

    Whitaker, Alana

    2003-01-01

    This paper presents a general overview of the International Space Station's Fire Detection and Suppression System. The topics include: 1) Introduction to Fire Detection and Suppression (FDS); 2) Description of (FDS) Subsystems; 3) FDS System Component Location and Status; 4) FDS System Capabilities; 5) FDS Automatic and Manual Response; 6) Post Fire Atmosphere Restoration and Air Quality Assessment; and 7) FDS Research Needs. This paper is in viewgraph form.

  17. Baseline Assessment and Prioritization Framework for IVHM Integrity Assurance Enabling Capabilities

    NASA Technical Reports Server (NTRS)

    Cooper, Eric G.; DiVito, Benedetto L.; Jacklin, Stephen A.; Miner, Paul S.

    2009-01-01

    Fundamental to vehicle health management is the deployment of systems incorporating advanced technologies for predicting and detecting anomalous conditions in highly complex and integrated environments. Integrated structural integrity health monitoring, statistical algorithms for detection, estimation, prediction, and fusion, and diagnosis supporting adaptive control are examples of advanced technologies that present considerable verification and validation challenges. These systems necessitate interactions between physical and software-based systems that are highly networked with sensing and actuation subsystems, and incorporate technologies that are, in many respects, different from those employed in civil aviation today. A formidable barrier to deploying these advanced technologies in civil aviation is the lack of enabling verification and validation tools, methods, and technologies. The development of new verification and validation capabilities will not only enable the fielding of advanced vehicle health management systems, but will also provide new assurance capabilities for verification and validation of current generation aviation software which has been implicated in anomalous in-flight behavior. This paper describes the research focused on enabling capabilities for verification and validation underway within NASA s Integrated Vehicle Health Management project, discusses the state of the art of these capabilities, and includes a framework for prioritizing activities.

  18. NEXT GENERATION AERIAL REFUELING: CRITICAL CAPABILITY FOR PENETRATING CHINESE DENIED ENVIRONMENTS

    DTIC Science & Technology

    2015-10-26

    defensive systems capability reduces aircraft damage, saves aircrew lives and keeps the tanker engaged in supplying a critical resource to the...legacy KC- 135. Additionally, there are requirement for a defensive system , which enhances the pilots situational awareness. The defensive system ...1 The ALR-69(V) is the world’s first all-digital radar warning receiver (RWR). The RWR system detects, identifies

  19. Thermal Expert System (TEXSYS): Systems autonomy demonstration project, volume 2. Results

    NASA Technical Reports Server (NTRS)

    Glass, B. J. (Editor)

    1992-01-01

    The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS testbed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.

  20. Thermal Expert System (TEXSYS): Systems automony demonstration project, volume 1. Overview

    NASA Technical Reports Server (NTRS)

    Glass, B. J. (Editor)

    1992-01-01

    The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS test bed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.

  1. Thermal Expert System (TEXSYS): Systems autonomy demonstration project, volume 2. Results

    NASA Astrophysics Data System (ADS)

    Glass, B. J.

    1992-10-01

    The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS testbed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.

  2. Real-Time Simulation for Verification and Validation of Diagnostic and Prognostic Algorithms

    NASA Technical Reports Server (NTRS)

    Aguilar, Robet; Luu, Chuong; Santi, Louis M.; Sowers, T. Shane

    2005-01-01

    To verify that a health management system (HMS) performs as expected, a virtual system simulation capability, including interaction with the associated platform or vehicle, very likely will need to be developed. The rationale for developing this capability is discussed and includes the limited capability to seed faults into the actual target system due to the risk of potential damage to high value hardware. The capability envisioned would accurately reproduce the propagation of a fault or failure as observed by sensors located at strategic locations on and around the target system and would also accurately reproduce the control system and vehicle response. In this way, HMS operation can be exercised over a broad range of conditions to verify that it meets requirements for accurate, timely response to actual faults with adequate margin against false and missed detections. An overview is also presented of a real-time rocket propulsion health management system laboratory which is available for future rocket engine programs. The health management elements and approaches of this lab are directly applicable for future space systems. In this paper the various components are discussed and the general fault detection, diagnosis, isolation and the response (FDIR) concept is presented. Additionally, the complexities of V&V (Verification and Validation) for advanced algorithms and the simulation capabilities required to meet the changing state-of-the-art in HMS are discussed.

  3. Modeling of a latent fault detector in a digital system

    NASA Technical Reports Server (NTRS)

    Nagel, P. M.

    1978-01-01

    Methods of modeling the detection time or latency period of a hardware fault in a digital system are proposed that explain how a computer detects faults in a computational mode. The objectives were to study how software reacts to a fault, to account for as many variables as possible affecting detection and to forecast a given program's detecting ability prior to computation. A series of experiments were conducted on a small emulated microprocessor with fault injection capability. Results indicate that the detecting capability of a program largely depends on the instruction subset used during computation and the frequency of its use and has little direct dependence on such variables as fault mode, number set, degree of branching and program length. A model is discussed which employs an analog with balls in an urn to explain the rate of which subsequent repetitions of an instruction or instruction set detect a given fault.

  4. Software-implemented fault insertion: An FTMP example

    NASA Technical Reports Server (NTRS)

    Czeck, Edward W.; Siewiorek, Daniel P.; Segall, Zary Z.

    1987-01-01

    This report presents a model for fault insertion through software; describes its implementation on a fault-tolerant computer, FTMP; presents a summary of fault detection, identification, and reconfiguration data collected with software-implemented fault insertion; and compares the results to hardware fault insertion data. Experimental results show detection time to be a function of time of insertion and system workload. For the fault detection time, there is no correlation between software-inserted faults and hardware-inserted faults; this is because hardware-inserted faults must manifest as errors before detection, whereas software-inserted faults immediately exercise the error detection mechanisms. In summary, the software-implemented fault insertion is able to be used as an evaluation technique for the fault-handling capabilities of a system in fault detection, identification and recovery. Although the software-inserted faults do not map directly to hardware-inserted faults, experiments show software-implemented fault insertion is capable of emulating hardware fault insertion, with greater ease and automation.

  5. Fluid leakage detector for vacuum applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich Ngoc (Inventor); Farkas, Tibor (Inventor); Kim, Brian Byungkyu (Inventor)

    2002-01-01

    A leak detection system for use with a fluid conducting system in a vacuum environment, such as space, is described. The system preferably includes a mesh-like member substantially disposed about the fluid conducting system, and at least one sensor disposed within the mesh-like member. The sensor is capable of detecting a decrease in temperature of the mesh-like member when a leak condition causes the fluid of the fluid conducting system to freeze when exposed to the vacuum environment. Additionally, a signal processor in preferably in communication with the sensor. The sensor transmits an electrical signal to the signal processor such that the signal processor is capable of indicating the location of the fluid leak in the fluid conducting system.

  6. LABRADOR: a learning autonomous behavior-based robot for adaptive detection and object retrieval

    NASA Astrophysics Data System (ADS)

    Yamauchi, Brian; Moseley, Mark; Brookshire, Jonathan

    2013-01-01

    As part of the TARDEC-funded CANINE (Cooperative Autonomous Navigation in a Networked Environment) Program, iRobot developed LABRADOR (Learning Autonomous Behavior-based Robot for Adaptive Detection and Object Retrieval). LABRADOR was based on the rugged, man-portable, iRobot PackBot unmanned ground vehicle (UGV) equipped with an explosives ordnance disposal (EOD) manipulator arm and a custom gripper. For LABRADOR, we developed a vision-based object learning and recognition system that combined a TLD (track-learn-detect) filter based on object shape features with a color-histogram-based object detector. Our vision system was able to learn in real-time to recognize objects presented to the robot. We also implemented a waypoint navigation system based on fused GPS, IMU (inertial measurement unit), and odometry data. We used this navigation capability to implement autonomous behaviors capable of searching a specified area using a variety of robust coverage strategies - including outward spiral, random bounce, random waypoint, and perimeter following behaviors. While the full system was not integrated in time to compete in the CANINE competition event, we developed useful perception, navigation, and behavior capabilities that may be applied to future autonomous robot systems.

  7. Integrated System Health Management: Foundational Concepts, Approach, and Implementation.

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Schmalzel, John; Walker, Mark; Venkatesh, Meera; Kapadia, Ravi; Morris, Jon; Turowski, Mark; Smith, Harvey

    2009-01-01

    Implementation of integrated system health management (ISHM) capability is fundamentally linked to the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system. It is akin to having a team of experts who are all individually and collectively observing and analyzing a complex system, and communicating effectively with each other in order to arrive to an accurate and reliable assessment of its health. We present concepts, procedures, and a specific approach as a foundation for implementing a credible ISHM capability. The capability stresses integration of DIaK from all elements of a system. The intent is also to make possible implementation of on-board ISHM capability, in contrast to a remote capability. The information presented is the result of many years of research, development, and maturation of technologies, and of prototype implementations in operational systems (rocket engine test facilities). The paper will address the following topics: 1. ISHM Model of a system 2. Detection of anomaly indicators. 3. Determination and confirmation of anomalies. 4. Diagnostic of causes and determination of effects. 5. Consistency checking cycle. 6. Management of health information 7. User Interfaces 8. Example implementation ISHM has been defined from many perspectives. We define it as a capability that might be achieved by various approaches. We describe a specific approach that has been matured throughout many years of development, and pilot implementations. ISHM is a capability that is achieved by integrating data, information, and knowledge (DIaK) that might be distributed throughout the system elements (which inherently implies capability to manage DIaK associated with distributed sub-systems). DIaK must be available to any element of a system at the right time and in accordance with a meaningful context. ISHM Functional Capability Level (FCL) is measured by how well a system performs the following functions: (1) detect anomalies, (2) diagnose causes, (3) predict future anomalies/failures, and (4) provide the user with an integrated awareness about the condition of every element in the system and guide user decisions.

  8. Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics

    NASA Astrophysics Data System (ADS)

    Jeong, Sinyoung; Kim, Yong-Il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong

    2015-03-01

    Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.

  9. 78 FR 14722 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ... capability on one engine, and in-flight shutdown of the engine. This action revises that NPRM by proposing to... maintenance planning data (MPD) document. We are proposing this supplemental NPRM to detect and correct... feed system, followed by loss of fuel system suction feed capability on one engine, and in-flight...

  10. Hand-held, mechanically cooled, radiation detection system for gamma-ray spectroscopy

    DOEpatents

    Burks, Morgan Thomas; Eckels, Joel Del

    2010-06-08

    In one embodiment, a radiation detection system is provided including a radiation detector and a first enclosure encapsulating the radiation detector, the first enclosure including a low-emissivity infra-red (IR) reflective coating used to thermally isolate the radiation detector. Additionally, a second enclosure encapsulating the first enclosure is included, the first enclosure being suspension mounted to the second enclosure. Further, a cooler capable of cooling the radiation detector is included. Still yet, a first cooling interface positioned on the second enclosure is included for coupling the cooler and the first enclosure. Furthermore, a second cooling interface positioned on the second enclosure and capable of coupling the first enclosure to a cooler separate from the radiation detection system is included. Other embodiments are also presented.

  11. Single Cell Oxygen Mapping (SCOM) by Scanning Electrochemical Microscopy Uncovers Heterogeneous Intracellular Oxygen Consumption.

    PubMed

    Santos, Carla Santana; Kowaltowski, Alicia J; Bertotti, Mauro

    2017-09-12

    We developed a highly sensitive oxygen consumption scanning microscopy system using platinized platinum disc microelectrodes. The system is capable of reliably detecting single-cell respiration, responding to classical regulators of mitochondrial oxygen consumption activity as expected. Comparisons with commercial multi-cell oxygen detection systems show that the system has comparable errors (if not smaller), with the advantage of being able to monitor inter and intra-cell heterogeneity in oxygen consumption characteristics. Our results uncover heterogeneous oxygen consumption characteristics between cells and within the same cell´s microenvironments. Single Cell Oxygen Mapping (SCOM) is thus capable of reliably studying mitochondrial oxygen consumption characteristics and heterogeneity at a single-cell level.

  12. Sensor Data Qualification System (SDQS) Implementation Study

    NASA Technical Reports Server (NTRS)

    Wong, Edmond; Melcher, Kevin; Fulton, Christopher; Maul, William

    2009-01-01

    The Sensor Data Qualification System (SDQS) is being developed to provide a sensor fault detection capability for NASA s next-generation launch vehicles. In addition to traditional data qualification techniques (such as limit checks, rate-of-change checks and hardware redundancy checks), SDQS can provide augmented capability through additional techniques that exploit analytical redundancy relationships to enable faster and more sensitive sensor fault detection. This paper documents the results of a study that was conducted to determine the best approach for implementing a SDQS network configuration that spans multiple subsystems, similar to those that may be implemented on future vehicles. The best approach is defined as one that most minimizes computational resource requirements without impacting the detection of sensor failures.

  13. Wireless LAN security management with location detection capability in hospitals.

    PubMed

    Tanaka, K; Atarashi, H; Yamaguchi, I; Watanabe, H; Yamamoto, R; Ohe, K

    2012-01-01

    In medical institutions, unauthorized access points and terminals obstruct the stable operation of a large-scale wireless local area network (LAN) system. By establishing a real-time monitoring method to detect such unauthorized wireless devices, we can improve the efficiency of security management. We detected unauthorized wireless devices by using a centralized wireless LAN system and a location detection system at 370 access points at the University of Tokyo Hospital. By storing the detected radio signal strength and location information in a database, we evaluated the risk level from the detection history. We also evaluated the location detection performance in our hospital ward using Wi-Fi tags. The presence of electric waves outside the hospital and those emitted from portable game machines with wireless communication capability was confirmed from the detection result. The location detection performance showed an error margin of approximately 4 m in detection accuracy and approximately 5% in false detection. Therefore, it was effective to consider the radio signal strength as both an index of likelihood at the detection location and an index for the level of risk. We determined the location of wireless devices with high accuracy by filtering the detection results on the basis of radio signal strength and detection history. Results of this study showed that it would be effective to use the developed location database containing radio signal strength and detection history for security management of wireless LAN systems and more general-purpose location detection applications.

  14. ALHAT System Validation

    NASA Technical Reports Server (NTRS)

    Brady, Tye; Bailey, Erik; Crain, Timothy; Paschall, Stephen

    2011-01-01

    NASA has embarked on a multiyear technology development effort to develop a safe and precise lunar landing capability. The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is investigating a range of landing hazard detection methods while developing a hazard avoidance capability to best field test the proper set of relevant autonomous GNC technologies. Ultimately, the advancement of these technologies through the ALHAT Project will provide an ALHAT System capable of enabling next generation lunar lander vehicles to globally land precisely and safely regardless of lighting condition. This paper provides an overview of the ALHAT System and describes recent validation experiments that have advanced the highly capable GNC architecture.

  15. Fingerprinting Software Defined Networks and Controllers

    DTIC Science & Technology

    2015-03-01

    24 2.5.3 Intrusion Prevention System with SDN . . . . . . . . . . . . . . . 25 2.5.4 Modular Security Services...Control Message Protocol IDS Intrusion Detection System IPS Intrusion Prevention System ISP Internet Service Provider LLDP Link Layer Discovery Protocol...layer functions (e.g., web proxies, firewalls, intrusion detection/prevention, load balancers, etc.). The increase in switch capabilities combined

  16. Centrifugal Tensioned Metastable Fluid Detectors for Trace Radiation Sources: Experimental Verification and Military Employment

    DTIC Science & Technology

    2016-06-01

    used in both CTMFD and Beckman LS 6500 Scintillation System. Actinide   Mass  of  Nalgene  (g)  Mass  of  Cap (g)  Mass  of  Nalgene,  Cap, 50 mL...both CTMFD and Beckman LS 6500 Scintillation System. Actinide   Mass  of  Nalgene  and Cap  (g)  Mass  of  Nalgene, Cap,  50 mL Acetone  (g)  Mass  of...testing comparing the CTMFD’s capabilities of actinide spectroscopy and neutron detection against other detection systems with similar capabilities. The

  17. A Distance Measure for Attention Focusing and Anaomaly Detection in Systems Monitoring

    NASA Technical Reports Server (NTRS)

    Doyle, R. J.

    1994-01-01

    Any attempt to introduce automation into the monitoring of complex physical systems must start from a robust anomaly detection capability. This task is far from straightforward, for a single definition of what constitutes an anomaly is difficult to come by.

  18. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar.

    PubMed

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-09-29

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system's capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications.

  19. An immunity-based anomaly detection system with sensor agents.

    PubMed

    Okamoto, Takeshi; Ishida, Yoshiteru

    2009-01-01

    This paper proposes an immunity-based anomaly detection system with sensor agents based on the specificity and diversity of the immune system. Each agent is specialized to react to the behavior of a specific user. Multiple diverse agents decide whether the behavior is normal or abnormal. Conventional systems have used only a single sensor to detect anomalies, while the immunity-based system makes use of multiple sensors, which leads to improvements in detection accuracy. In addition, we propose an evaluation framework for the anomaly detection system, which is capable of evaluating the differences in detection accuracy between internal and external anomalies. This paper focuses on anomaly detection in user's command sequences on UNIX-like systems. In experiments, the immunity-based system outperformed some of the best conventional systems.

  20. Monitoring Fires from Space: a case study in transitioning from research to applications

    NASA Astrophysics Data System (ADS)

    Justice, C. O.; Giglio, L.; Vadrevu, K. P.; Csiszar, I. A.; Schroeder, W.; Davies, D.

    2012-12-01

    This paper discusses the heritage and relationships between science and applications in the context of global satellite-based fire monitoring. The development of algorithms for satellite-based fire detection has been supported primarily by NASA for the polar orbiters with a global focus, and initially by NOAA and more recently by EUMETSAT for the geostationary satellites, with a regional focus. As the feasibility and importance of space-based fire monitoring was recognized, satellite missions were designed to include fire detection capabilities. As a result, the algorithms and accuracy of the detections have improved. Due to the role of fire in the Earth System and its relevance to society, at each step in the development of the sensing capability the research has made a transition into fire-related applications to such an extent that there is now broad use of these data worldwide. The origin of the polar-orbiting satellite fire detection capability was with the AVHRR sensor beginning in the early 1980s, but was transformed with the launch of the EOS MODIS instruments, which included sensor characteristics specifically for fire detection. NASA gave considerable emphasis on the accuracy assessment of the fire detection and the development of fire characterization and burned area products from MODIS. Collaboration between the MODIS Fire Team and the RSAC USFS, initiated in the context of the Montana wildfires of 2001, prompted the development of a Rapid Response System for fire data and eventually led to operational use of MODIS data by the USFS for strategic fire monitoring. Building on this success, the Fire Information for Resource Management Systems (FIRMS) project was funded by NASA Applications to further develop products and services for the fire information community. The FIRMS was developed as a web-based geospatial tool, offering a range of geospatial data services, including SMS text messaging and is now widely used. This system, developed in the research domain, has now been successfully moved to an operational home at the UN FAO, as the Global Fire Information Management System (GFIMS). With a view to operational data continuity, the Suomi-NPP/JPSS VIIRS system was also designed with a fire detection capability, and is providing promising results for fire monitoring both from the standard operational production system and experimental product enhancements. International coordination on fire observations and outreach has been successfully developed under the GOFC GOLD program.

  1. A soft robot capable of 2D mobility and self-sensing for obstacle detection and avoidance

    NASA Astrophysics Data System (ADS)

    Qin, Lei; Tang, Yucheng; Gupta, Ujjaval; Zhu, Jian

    2018-04-01

    Soft robots have shown great potential for surveillance applications due to their interesting attributes including inherent flexibility, extreme adaptability, and excellent ability to move in confined spaces. High mobility combined with the sensing systems that can detect obstacles plays a significant role in performing surveillance tasks. Extensive studies have been conducted on movement mechanisms of traditional hard-bodied robots to increase their mobility. However, there are limited efforts in the literature to explore the mobility of soft robots. In addition, little attempt has been made to study the obstacle-detection capability of a soft mobile robot. In this paper, we develop a soft mobile robot capable of high mobility and self-sensing for obstacle detection and avoidance. This robot, consisting of a dielectric elastomer actuator as the robot body and four electroadhesion actuators as the robot feet, can generate 2D mobility, i.e. translations and turning in a 2D plane, by programming the actuation sequence of the robot body and feet. Furthermore, we develop a self-sensing method which models the robot body as a deformable capacitor. By measuring the real-time capacitance of the robot body, the robot can detect an obstacle when the peak capacitance drops suddenly. This sensing method utilizes the robot body itself instead of external sensors to achieve detection of obstacles, which greatly reduces the weight and complexity of the robot system. The 2D mobility and self-sensing capability ensure the success of obstacle detection and avoidance, which paves the way for the development of lightweight and intelligent soft mobile robots.

  2. BIOHAZ: Rapid On-Site Biological Detection for First Responders

    DTIC Science & Technology

    2001-09-01

    numbers comprise the compilation report: ADP013371 thru ADP013468 UNCLASSIFIED 84. BIORAZ: Rapid On- Site Biological Detection for First Responders Randall... responders an integated capability to collect an environmental sample and to rapidly screen that sample on site for the presence of biological material. This...further analyzed on site with immunoassay tickets before being sent to a laboratory. This system provides the emergency responders with a capability that

  3. A new tool for the rapid remote detection of leaks from subsea pipelines during remotely operated vehicle inspections

    NASA Astrophysics Data System (ADS)

    McStay, D.; McIlroy, J.; Forte, A.; Lunney, F.; Greenway, T.; Thabeth, K.; Dean, G.

    2005-06-01

    A new 2000 m depth rated subsea sensor that can effectively, rapidly and remotely detect leaks of fluorescein dye, leak detection chemicals and hydraulic fluids from underwater structures is reported. The system utilizes ultra-bright LED technology to project a structured beam of light, at a wavelength suitable to excite the fluorescence of the target material, into the water column. The resultant fluorescence is collected and digital signal processing used to extract the intensity. The system is capable of detecting ppm concentrations of fluorescein at a range of 2.5 m in water in real time. The ability to stand-off from subsea structures, while rapidly detecting the chemicals makes the system highly suited to subsea leak inspections with remotely operated vehicles or autonomous underwater vehicles, as it allows the vehicles to be flown quickly and safely over the structure to be inspected. This increases both the speed and effectiveness of the inspection. The remote detection capability is also highly effective for probing complex underwater structures. The system has been successfully used in real subsea survey applications and has been found to be effective, user friendly and to dramatically reduce inspection times and hence costs.

  4. Earth physicist describes US nuclear test monitoring system

    NASA Astrophysics Data System (ADS)

    1986-01-01

    The U. S. capabilities to monitor underground nuclear weapons tests in the USSR was examined. American methods used in monitoring the underground nuclear tests are enumerated. The U. S. technical means of monitoring Solviet nuclear weapons testing, and whether it is possible to conduct tests that could not be detected by these means are examined. The worldwide seismic station network in 55 countries available to the U. S. for seismic detection and measurement of underground nuclear explosions, and also the systems of seismic research observatories in 15 countries and seismic grouping stations in 12 countries are outlined including the advanced computerized data processing capabilities of these facilities. The level of capability of the U. S. seismic system for monitoring nuclear tests, other, nonseismic means of monitoring, such as hydroacoustic and recording of effects in the atmosphere, ionosphere, and the Earth's magnetic field, are discussed.

  5. Note: An improved 3D imaging system for electron-electron coincidence measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip

    We demonstrate an improved imaging system that can achieve highly efficient 3D detection of two electrons in coincidence. The imaging system is based on a fast frame complementary metal-oxide semiconductor camera and a high-speed waveform digitizer. We have shown previously that this detection system is capable of 3D detection of ions and electrons with good temporal and spatial resolution. Here, we show that with a new timing analysis algorithm, this system can achieve an unprecedented dead-time (<0.7 ns) and dead-space (<1 mm) when detecting two electrons. A true zero dead-time detection is also demonstrated.

  6. Early Forest Fire Detection Using Radio-Acoustic Sounding System

    PubMed Central

    Sahin, Yasar Guneri; Ince, Turker

    2009-01-01

    Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967

  7. Note: An improved 3D imaging system for electron-electron coincidence measurements

    NASA Astrophysics Data System (ADS)

    Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip; Herath, Thushani; Lingenfelter, Steven; Winney, Alexander H.; Li, Wen

    2015-09-01

    We demonstrate an improved imaging system that can achieve highly efficient 3D detection of two electrons in coincidence. The imaging system is based on a fast frame complementary metal-oxide semiconductor camera and a high-speed waveform digitizer. We have shown previously that this detection system is capable of 3D detection of ions and electrons with good temporal and spatial resolution. Here, we show that with a new timing analysis algorithm, this system can achieve an unprecedented dead-time (<0.7 ns) and dead-space (<1 mm) when detecting two electrons. A true zero dead-time detection is also demonstrated.

  8. A miniaturized optoelectronic system for rapid quantitative label-free detection of harmful species in food

    NASA Astrophysics Data System (ADS)

    Raptis, Ioannis; Misiakos, Konstantinos; Makarona, Eleni; Salapatas, Alexandros; Petrou, Panagiota; Kakabakos, Sotirios; Botsialas, Athanasios; Jobst, Gerhard; Haasnoot, Willem; Fernandez-Alba, Amadeo; Lees, Michelle; Valamontes, Evangelos

    2016-03-01

    Optical biosensors have emerged in the past decade as the most promising candidates for portable, highly-sensitive bioanalytical systems that can be employed for in-situ measurements. In this work, a miniaturized optoelectronic system for rapid, quantitative, label-free detection of harmful species in food is presented. The proposed system has four distinctive features that can render to a powerful tool for the next generation of Point-of-Need applications, namely it accommodates the light sources and ten interferometric biosensors on a single silicon chip of a less-than-40mm2 footprint, each sensor can be individually functionalized for a specific target analyte, the encapsulation can be performed at the wafer-scale, and finally it exploits a new operation principle, Broad-band Mach-Zehnder Interferometry to ameliorate its analytical capabilities. Multi-analyte evaluation schemes for the simultaneous detection of harmful contaminants, such as mycotoxins, allergens and pesticides, proved that the proposed system is capable of detecting within short time these substances at concentrations below the limits imposed by regulatory authorities, rendering it to a novel tool for the near-future food safety applications.

  9. Channel simulation for direct detection optical communication systems

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.

    1974-01-01

    A technique is described for simulating the random modulation imposed by atmospheric scintillation and transmitter pointing jitter on a direct detection optical communication system. The system is capable of providing signal fading statistics which obey log normal, beta, Rayleigh, Ricean or chi-squared density functions. Experimental tests of the performance of the Channel Simulator are presented.

  10. Channel simulation for direct-detection optical communication systems

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.

    1974-01-01

    A technique is described for simulating the random modulation imposed by atmospheric scintillation and transmitter pointing jitter on a direct-detection optical communication system. The system is capable of providing signal fading statistics which obey log-normal, beta, Rayleigh, Ricean, or chi-square density functions. Experimental tests of the performance of the channel simulator are presented.

  11. Benefits and Challenges of Architecture Frameworks

    DTIC Science & Technology

    2011-06-01

    systems and identify emerging and obsolete standards. • The NATO Capability View ( NCV ) serves the analysis and optimization of military ca- pabilities... NCVs show the dependencies between different capabilities and allow detecting gaps and overlaps of capabilities. NCVs deliver indirectly requirements...Email (possibly with vendor-specific extensions/modifications) • Proprietary, and possibly not well-documented, message formats • Web services

  12. State-of-the-art technologies for intrusion and obstacle detection for railroad operations

    DOT National Transportation Integrated Search

    2007-07-01

    This report provides an update on the state-of-the-art technologies with intrusion and obstacle detection capabilities for rail rights of way (ROW) and crossings. A workshop entitled Intruder and Obstacle Detection Systems (IODS) for Railroads Requir...

  13. Study to develop improved methods to detect leakage in fluid systems, phase 2

    NASA Technical Reports Server (NTRS)

    Janus, J. C.; Cimerman, I.

    1971-01-01

    An ultrasonic contact sensor engineering prototype leak detection system was developed and its capabilities under cryogenic operations demonstrated. The results from tests indicate that the transducer performed well on liquid hydrogen plumbing, that flow and valve actuation could be monitored, and that the phase change from gaseous to liquid hydrogen could be detected by the externally mounted transducers. Tests also demonstrate the ability of the system to detect internal leaks past valve seats and to function as a flow meter. Such a system demonstrates that it is not necessary to break into welded systems to locate internal leaks.

  14. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar

    PubMed Central

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-01-01

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system’s capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications. PMID:27690051

  15. Wake Vortex Tangential Velocity Adaptive Spectral (TVAS) algorithm for pulsed Lidar systems.

    DOT National Transportation Integrated Search

    2011-06-20

    In 2008 the FAA tasked the Volpe Center with the development of a government owned processing package capable of performing wake detection, characterization and tracking. : The current paper presents the background, progress, and capabilities to date...

  16. Feasibility studies on explosive detection and homeland security applications using a neutron and x-ray combined computed tomography system

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Srivastava, A.; Lee, H. K.; Liu, X.

    2013-05-01

    The successful creation and operation of a neutron and X-ray combined computed tomography (NXCT) system has been demonstrated by researchers at the Missouri University of Science and Technology. The NXCT system has numerous applications in the field of material characterization and object identification in materials with a mixture of atomic numbers represented. Presently, the feasibility studies have been performed for explosive detection and homeland security applications, particularly in concealed material detection and determination of the light atomic number materials. These materials cannot be detected using traditional X-ray imaging. The new system has the capability to provide complete structural and compositional information due to the complementary nature of X-ray and neutron interactions with materials. The design of the NXCT system facilitates simultaneous and instantaneous imaging operation, promising enhanced detection capabilities of explosive materials, low atomic number materials and illicit materials for homeland security applications. In addition, a sample positioning system allowing the user to remotely and automatically manipulate the sample makes the system viable for commercial applications. Several explosives and weapon simulants have been imaged and the results are provided. The fusion algorithms which combine the data from the neutron and X-ray imaging produce superior images. This paper is a compete overview of the NXCT system for feasibility studies of explosive detection and homeland security applications. The design of the system, operation, algorithm development, and detection schemes are provided. This is the first combined neutron and X-ray computed tomography system in operation. Furthermore, the method of fusing neutron and X-ray images together is a new approach which provides high contrast images of the desired object. The system could serve as a standardized tool in nondestructive testing of many applications, especially in explosives detection and homeland security research.

  17. Pulsed Acoustic Vortex Sensing System : Volume 1. Hardware Design

    DOT National Transportation Integrated Search

    1977-06-01

    Avco Corporation's Systems Division designed and developed an engineered Pulsed Acoustic Vortex Sensing System (PAVSS). This system is capable of real-time detection, tracking, recording, and graphic display of aircraft trailing vortices. This volume...

  18. Anomaly Detection in Power Quality at Data Centers

    NASA Technical Reports Server (NTRS)

    Grichine, Art; Solano, Wanda M.

    2015-01-01

    The goal during my internship at the National Center for Critical Information Processing and Storage (NCCIPS) is to implement an anomaly detection method through the StruxureWare SCADA Power Monitoring system. The benefit of the anomaly detection mechanism is to provide the capability to detect and anticipate equipment degradation by monitoring power quality prior to equipment failure. First, a study is conducted that examines the existing techniques of power quality management. Based on these findings, and the capabilities of the existing SCADA resources, recommendations are presented for implementing effective anomaly detection. Since voltage, current, and total harmonic distortion demonstrate Gaussian distributions, effective set-points are computed using this model, while maintaining a low false positive count.

  19. A Self Contained Method for Safe and Precise Lunar Landing

    NASA Technical Reports Server (NTRS)

    Paschall, Stephen C., II; Brady, Tye; Cohanim, Babak; Sostaric, Ronald

    2008-01-01

    The return of humans to the Moon will require increased capability beyond that of the previous Apollo missions. Longer stay times and a greater flexibility with regards to landing locations are among the many improvements planned. A descent and landing system that can land the vehicle more accurately than Apollo with a greater ability to detect and avoid hazards is essential to the development of a Lunar Outpost, and also for increasing the number of potentially reachable Lunar Sortie locations. This descent and landing system should allow landings in more challenging terrain and provide more flexibility with regards to mission timing and lighting considerations, while maintaining safety as the top priority. The lunar landing system under development by the ALHAT (Autonomous precision Landing and Hazard detection Avoidance Technology) project is addressing this by providing terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard-detection system to select safe landing locations, and an Autonomous GNC (Guidance, Navigation, and Control) capability to process these measurements and safely direct the vehicle to this landing location. This ALHAT landing system will enable safe and precise lunar landings without requiring lunar infrastructure in the form of navigation aids or a priori identified hazard-free landing locations. The safe landing capability provided by ALHAT uses onboard active sensing to detect hazards that are large enough to be a danger to the vehicle but too small to be detected from orbit, given currently planned orbital terrain resolution limits. Algorithms to interpret raw active sensor terrain data and generate hazard maps as well as identify safe sites and recalculate new trajectories to those sites are included as part of the ALHAT System. These improvements to descent and landing will help contribute to repeated safe and precise landings for a wide variety of terrain on the Moon.

  20. Self-Validating Thermocouple

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Inventor); Mata, Carlos T. (Inventor); Santiago, Josephine B. (Inventor); Vokrot, Peter (Inventor); Zavala, Carlos E. (Inventor); Burns, Bradley M. (Inventor)

    2010-01-01

    Self-Validating Thermocouple (SVT) Systems capable of detecting sensor probe open circuits, short circuits, and unnoticeable faults such as a probe debonding and probe degradation are useful in the measurement of temperatures. SVT Systems provide such capabilities by incorporating a heating or excitation element into the measuring junction of the thermocouple. By heating the measuring junction and observing the decay time for the detected DC voltage signal, it is possible to indicate whether the thermocouple is bonded or debonded. A change in the thermal transfer function of the thermocouple system causes a change in the rise and decay times of the thermocouple output. Incorporation of the excitation element does not interfere with normal thermocouple operation, thus further allowing traditional validation procedures as well.

  1. Passive IR polarization sensors: a new technology for mine detection

    NASA Astrophysics Data System (ADS)

    Barbour, Blair A.; Jones, Michael W.; Barnes, Howard B.; Lewis, Charles P.

    1998-09-01

    The problem of mine and minefield detection continues to provide a significant challenge to sensor systems. Although the various sensor technologies (infrared, ground penetrating radar, etc.) may excel in certain situations there does not exist a single sensor technology that can adequately detect mines in all conditions such as time of day, weather, buried or surface laid, etc. A truly robust mine detection system will likely require the fusion of data from multiple sensor technologies. The performance of these systems, however, will ultimately depend on the performance of the individual sensors. Infrared (IR) polarimetry is a new and innovative sensor technology that adds substantial capabilities to the detection of mines. IR polarimetry improves on basic IR imaging by providing improved spatial resolution of the target, an inherent ability to suppress clutter, and the capability for zero (Delta) T imaging. Nichols Research Corporation (Nichols) is currently evaluating the effectiveness of IR polarization for mine detection. This study is partially funded by the U.S. Army Night Vision & Electronic Sensors Directorate (NVESD). The goal of the study is to demonstrate, through phenomenology studies and limited field trials, that IR polarizaton outperforms conventional IR imaging in the mine detection arena.

  2. Unmanned Aerial Vehicle Non Line of Sight Chemical Detection Final Report

    DTIC Science & Technology

    2016-12-01

    aircraft system that is used to perform point detection of chemical warfare agents and collection of vapor, liquid, and solid samples. A modular payload...Standoff Quadcopter Unmanned aircraft system Modular payload 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF...Manufacturing Division, modular payloads are being developed to perform point detection and CBRNE sampling. The available UAS is a quadcopter capable of

  3. Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, R P; Langlois, R G; Nasarabadi, S

    2002-04-17

    This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flowmore » cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.« less

  4. Detection of Kaposi's Sarcoma Associated Herpesvirus Nucleic Acids Using a Smartphone Accessory

    PubMed Central

    Mancuso, Matthew; Cesarman, Ethel; Erickson, David

    2014-01-01

    Kaposi's sarcoma (KS) is an infectious cancer occurring in immune-compromised patients, caused by Kaposi's sarcoma associated herpesvirus (KSHV). Our vision is to simplify the process of KS diagnosis through the creation of a smartphone based point-of-care system capable of yielding an actionable diagnostic readout starting from a raw biopsy sample. In this work we develop the sensing mechanism for the overall system, a smartphone accessory capable of detecting KSHV nucleic acids. The accessory reads out microfluidic chips filled with a colorimetric nanoparticle assay targeted at KSHV. We calculate that our final device can read out gold nanoparticle solutions with an accuracy of .05 OD, and we demonstrate that it can detect DNA sequences from KSHV down to 1 nM. We believe that through integration with our previously developed components, a smartphone based system like the one studied here can provide accurate detection information, as well as a simple platform for field based clinical diagnosis and research. PMID:25117534

  5. On the Possible Detection of Lightning Storms by Elephants

    PubMed Central

    Kelley, Michael C.; Garstang, Michael

    2013-01-01

    Simple Summary We use data similar to that taken by the International Monitoring System for the detection of nuclear explosions, to determine whether elephants might be capable of detecting and locating the source of sounds generated by thunderstorms. Knowledge that elephants might be capable of responding to such storms, particularly at the end of the dry season when migrations are initiated, is of considerable interest to management and conservation. Abstract Theoretical calculations suggest that sounds produced by thunderstorms and detected by a system similar to the International Monitoring System (IMS) for the detection of nuclear explosions at distances ≥100 km, are at sound pressure levels equal to or greater than 6 × 10−3 Pa. Such sound pressure levels are well within the range of elephant hearing. Frequencies carrying these sounds might allow for interaural time delays such that adult elephants could not only hear but could also locate the source of these sounds. Determining whether it is possible for elephants to hear and locate thunderstorms contributes to the question of whether elephant movements are triggered or influenced by these abiotic sounds. PMID:26487406

  6. Test and evaluation of the Airport Surveillance Radar (ASR)-8 wind shear detection system (phase 2), revision

    NASA Astrophysics Data System (ADS)

    Offi, D. L.; Lewis, W.; Lee, T.; Delamarche, A.

    1980-08-01

    A wind shear detection system developed by the Wave Propagation Laboratory (WPL) to operate with the Federal Aviation Administration (FAA) Airport Surveillance Radar (ASR)-8 was installed and is being tested at the FAA technical Center. Initial efforts, previously reported in Report NA-78-59-LR, were directed toward hardware and software shakedown and feasibility determination. Second phase tests compared radar with aircraft and tower winds, evaluated the wind shear measurement capability under various weather conditions, and investigated the effectiveness of a simple two-azimuth pointing strategy and system capabilities and limitations. Results showed the system to be compatible with and to operate satisfactorily with the ASR-8. The processing and spectral display of clear air and precipitation returns is feasible. The accuracy of agreement between radar-measured winds and components of the aircraft-measured winds in both radially oriented flights and runway offset flights, using a two-azimuth pointing technique, was examined. Radar versus tower wind agreement was also examined. Potentially dangerous wind shears associated with weather during these tests were detectable. Certain system limitations also have been defined and considered. It is recommended that tests continue to complete definition of and demonstrate capabilities in all weather situations, to optimize performance, and to provide information to specify system design for possible development of a prototype model.

  7. 40 CFR 265.193 - Containment and detection of releases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... prevent any migration of wastes or accumulated liquid out of the system to the soil, ground water, or surface water at any time during the use of the tank system; and (2) Capable of detecting and collecting... conditions, the stress of installation, and the stress of daily operation (including stresses from nearby...

  8. 40 CFR 265.193 - Containment and detection of releases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... prevent any migration of wastes or accumulated liquid out of the system to the soil, ground water, or surface water at any time during the use of the tank system; and (2) Capable of detecting and collecting... conditions, the stress of installation, and the stress of daily operation (including stresses from nearby...

  9. APDS: the autonomous pathogen detection system.

    PubMed

    Hindson, Benjamin J; Makarewicz, Anthony J; Setlur, Ujwal S; Henderer, Bruce D; McBride, Mary T; Dzenitis, John M

    2005-04-15

    We have developed and tested a fully autonomous pathogen detection system (APDS) capable of continuously monitoring the environment for airborne biological threat agents. The system was developed to provide early warning to civilians in the event of a bioterrorism incident and can be used at high profile events for short-term, intensive monitoring or in major public buildings or transportation nodes for long-term monitoring. The APDS is completely automated, offering continuous aerosol sampling, in-line sample preparation fluidics, multiplexed detection and identification immunoassays, and nucleic acid-based polymerase chain reaction (PCR) amplification and detection. Highly multiplexed antibody-based and duplex nucleic acid-based assays are combined to reduce false positives to a very low level, lower reagent costs, and significantly expand the detection capabilities of this biosensor. This article provides an overview of the current design and operation of the APDS. Certain sub-components of the ADPS are described in detail, including the aerosol collector, the automated sample preparation module that performs multiplexed immunoassays with confirmatory PCR, and the data monitoring and communications system. Data obtained from an APDS that operated continuously for 7 days in a major U.S. transportation hub is reported.

  10. Internal seismological stations for monitoring a comprehensive test ban theory

    NASA Astrophysics Data System (ADS)

    Dahlman, O.; Israelson, H.

    1980-06-01

    Verification of the compliance with a Comprehensive Test Ban on nuclear explosions is expected to be carried out by a seismological verification system of some fifty globally distributed teleseismic stations designed to monitor underground explosions at large distances (beyond 2000 km). It is attempted to assess various technical purposes that such internal stations might serve in relation to a global network of seismological stations. The assessment is based on estimates of the detection capabilities of hypothetical networks of internal stations. Estimates pertaining to currently used detection techniques (P waves) indicate that a limited number (less than 30) of such stations would not improve significantly upon the detection capability that a global network of stations would have throughout the territories of the US and the USSR. Recently available and not yet fully analyzed data indicate however that very high detection capabilities might be obtained in certain regions.

  11. Impact detection system

    NASA Technical Reports Server (NTRS)

    Byers, Terry (Inventor); Gibbons, Frank L. (Inventor); Christiansen, Eric L. (Inventor)

    2010-01-01

    In an embodiment, an apparatus and method capable of determining the time and location of a projectile's impact is disclosed. In another embodiment, an apparatus and method capable of determining the time and location of a projectile's impact as well as the direction from whence the projectile came is disclosed.

  12. Advanced Technologies and Methodology for Automated Ultrasonic Testing Systems Quantification

    DOT National Transportation Integrated Search

    2011-04-29

    For automated ultrasonic testing (AUT) detection and sizing accuracy, this program developed a methodology for quantification of AUT systems, advancing and quantifying AUT systems imagecapture capabilities, quantifying the performance of multiple AUT...

  13. Director, Operational Test and Evaluation FY 2004 Annual Report

    DTIC Science & Technology

    2004-01-01

    HIGH) Space Based Radar (SBR) Sensor Fuzed Weapon (SFW) P3I (CBU-97/B) Small Diameter Bomb (SDB) Secure Mobile Anti-Jam Reliable Tactical Terminal...detection, identification, and sampling capability for both fixed-site and mobile operations. The system must automatically detect and identify up to ten...staffing within the Services. SYSTEM DESCRIPTION AND MISSION The Services envision JCAD as a hand-held device that automatically detects, identifies, and

  14. Impact of fiber ring laser configuration on detection capabilities in FBG based sensor systems

    NASA Astrophysics Data System (ADS)

    Osuch, Tomasz; Kossek, Tomasz; Markowski, Konrad

    2014-11-01

    In this paper fiber ring lasers (FRL) as interrogation units for distributed fiber Bragg grating (FBG) based sensor networks are studied. In particular, two configurations of the fiber laser with erbium-doped fiber amplifier (EDFA) and semiconductor optical amplifier (SOA) as gain medium were analyzed. In the case of EDFA-based fiber interrogation systems, CW as well as active-mode locking operation were taken into account. The influence of spectral overlapping of FBGs spectra on detection capabilities of examined FRLs are presented. Experimental results show that the SOA-based fiber laser interrogation unit can operate as a multi-parametric sensing system. In turn, using an actively mode-locked fiber ring laser with an EDFA, an electronically switchable FBG based sensing system can be realized.

  15. Pulsed acoustic vortex sensing system volume III: PAVSS operation and software documentation

    DOT National Transportation Integrated Search

    1977-06-01

    Avco Corporation's Systems Division designed and developed an engineered Pulsed Acoustic Vortex Sensing System (PAVSS). This system is capable of real-time detection, tracking, recording, and graphic display of aircraft trailing vortices. This volume...

  16. Pulsed Acoustic Vortex Sensing System : Volume 2, Studies of Improved PAVSS Processing Techniques

    DOT National Transportation Integrated Search

    1977-06-01

    Avco Corporation's Systems Division designed and developed an engineered Pulsed Acoustic Vortex Sensing System (PAVSS). This system is capable of real-time detection, tracking, recording, and graphic display of aircraft trailing vortices. This volume...

  17. Pulsed acoustic vortex sensing system volume IV: PAVSS program summary and recommendations

    DOT National Transportation Integrated Search

    1977-06-01

    Avco Corporation's Systems Division designed and developed an engineered Pulsed Acoustic Vortex Sensing System (PAVSS). This system is capable of real-time detection, tracking, recording, and graphic display of aircraft trailing vortices. : This volu...

  18. Detection of generalized synchronization using echo state networks

    NASA Astrophysics Data System (ADS)

    Ibáñez-Soria, D.; Garcia-Ojalvo, J.; Soria-Frisch, A.; Ruffini, G.

    2018-03-01

    Generalized synchronization between coupled dynamical systems is a phenomenon of relevance in applications that range from secure communications to physiological modelling. Here, we test the capabilities of reservoir computing and, in particular, echo state networks for the detection of generalized synchronization. A nonlinear dynamical system consisting of two coupled Rössler chaotic attractors is used to generate temporal series consisting of time-locked generalized synchronized sequences interleaved with unsynchronized ones. Correctly tuned, echo state networks are able to efficiently discriminate between unsynchronized and synchronized sequences even in the presence of relatively high levels of noise. Compared to other state-of-the-art techniques of synchronization detection, the online capabilities of the proposed Echo State Network based methodology make it a promising choice for real-time applications aiming to monitor dynamical synchronization changes in continuous signals.

  19. 40 CFR 265.1101 - Design and operating standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... led to a release of hazardous waste (e.g., upon detection of leakage from the primary barrier) the... prevent migration of hazardous constituents into the barrier, and a leak detection system that is capable... at the earliest practicable time. (i) The requirements of the leak detection component of the...

  20. Cyber-Critical Infrastructure Protection Using Real-Time Payload-Based Anomaly Detection

    NASA Astrophysics Data System (ADS)

    Düssel, Patrick; Gehl, Christian; Laskov, Pavel; Bußer, Jens-Uwe; Störmann, Christof; Kästner, Jan

    With an increasing demand of inter-connectivity and protocol standardization modern cyber-critical infrastructures are exposed to a multitude of serious threats that may give rise to severe damage for life and assets without the implementation of proper safeguards. Thus, we propose a method that is capable to reliably detect unknown, exploit-based attacks on cyber-critical infrastructures carried out over the network. We illustrate the effectiveness of the proposed method by conducting experiments on network traffic that can be found in modern industrial control systems. Moreover, we provide results of a throughput measuring which demonstrate the real-time capabilities of our system.

  1. Stray light suppression of optical and mechanical system for telescope detection

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ma, Wenli

    2013-09-01

    During telescope detection, there is atmosphere overflow and other stray light affecting the system which leads to background disturbance. Thus reduce the detection capability of the system. So it is very necessary to design mechanical structure to suppress the stray light for the telescope detection system. It can both improve the signal-to-noise and contrast of the object. This paper designs the optical and mechanical structure of the 400mm telescope. And then the main baffle, baffle vane, field stop and coating technology are used to eliminate the effect of stray light on the optical and mechanical system. Finally, software is used to analyze and simulate stray light on the whole optical and mechanical system. Using PST as the evaluating standard, separate and integrated analysis of the suppressing effect of main baffle, baffle vane and field aperture is completed. And also get the results of PST before and after eliminating the stray light. Meanwhile, the results of stray light analysis can be used to guide the design of the optical and mechanical structure. The analysis results demonstrate that reasonable optical and mechanical structure and stray light suppression measure can highly reduce the PST and also improve the detection capability of the telescope system, and the designed outside baffle, inside baffle, vanes and coating technique etc. can decrease the PST approximately 1 to 3 level.

  2. Evaluation of a Cyber Security System for Hospital Network.

    PubMed

    Faysel, Mohammad A

    2015-01-01

    Most of the cyber security systems use simulated data in evaluating their detection capabilities. The proposed cyber security system utilizes real hospital network connections. It uses a probabilistic data mining algorithm to detect anomalous events and takes appropriate response in real-time. On an evaluation using real-world hospital network data consisting of incoming network connections collected for a 24-hour period, the proposed system detected 15 unusual connections which were undetected by a commercial intrusion prevention system for the same network connections. Evaluation of the proposed system shows a potential to secure protected patient health information on a hospital network.

  3. Detection of impact damage on thermal protection systems using thin-film piezoelectric sensors for integrated structural health monitoring

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Kuhr, Samuel J.; Jata, Kumar V.

    2008-03-01

    Thermal Protection Systems (TPS) can be subjected to impact damage during flight and/or during ground maintenance and/or repair. AFRL/RXLP is developing a reliable and robust on-board sensing/monitoring capability for next generation thermal protection systems to detect and assess impact damage. This study was focused on two classes of metallic thermal protection tiles to determine threshold for impact damage and develop sensing capability of the impacts. Sensors made of PVDF piezoelectric film were employed and tested to evaluate the detectability of impact signals and assess the onset or threshold of impact damage. Testing was performed over a range of impact energy levels, where the sensors were adhered to the back of the specimens. The PVDF signal levels were analyzed and compared to assess damage, where digital microscopy, visual inspection, and white light interferometry were used for damage verification. Based on the impact test results, an assessment of the impact damage thresholds for each type of metallic TPS system was made.

  4. An autonomous fault detection, isolation, and recovery system for a 20-kHz electric power distribution test bed

    NASA Technical Reports Server (NTRS)

    Quinn, Todd M.; Walters, Jerry L.

    1991-01-01

    Future space explorations will require long term human presence in space. Space environments that provide working and living quarters for manned missions are becoming increasingly larger and more sophisticated. Monitor and control of the space environment subsystems by expert system software, which emulate human reasoning processes, could maintain the health of the subsystems and help reduce the human workload. The autonomous power expert (APEX) system was developed to emulate a human expert's reasoning processes used to diagnose fault conditions in the domain of space power distribution. APEX is a fault detection, isolation, and recovery (FDIR) system, capable of autonomous monitoring and control of the power distribution system. APEX consists of a knowledge base, a data base, an inference engine, and various support and interface software. APEX provides the user with an easy-to-use interactive interface. When a fault is detected, APEX will inform the user of the detection. The user can direct APEX to isolate the probable cause of the fault. Once a fault has been isolated, the user can ask APEX to justify its fault isolation and to recommend actions to correct the fault. APEX implementation and capabilities are discussed.

  5. Modular optical detector system

    DOEpatents

    Horn, Brent A [Livermore, CA; Renzi, Ronald F [Tracy, CA

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  6. Adaptive guidance and control for future remote sensing systems

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.; Myers, J. E.

    1980-01-01

    A unique approach to onboard processing was developed that is capable of acquiring high quality image data for users in near real time. The approach is divided into two steps: the development of an onboard cloud detection system; and the development of a landmark tracker. The results of these two developments are outlined and the requirements of an operational guidance and control system capable of providing continuous estimation of the sensor boresight position are summarized.

  7. Research of the absorbance detection and fluorescence detection for multifunctional nutrition analyzer

    NASA Astrophysics Data System (ADS)

    Ni, Zhengyuan; Yan, Huimin; Ni, Xuxiang; Zhang, Xiuda

    2017-10-01

    The research of the multifunctional analyzer which integrates absorbance detection, fluorescence detection, time-resolved fluorescence detection, biochemical luminescence detection methods, can make efficient detection and analysis for a variety of human body nutrients. This article focuses on the absorbance detection and fluorescence detection system. The two systems are modular in design and controlled by embedded system, to achieve automatic measurement according to user settings. In the optical path design, the application of confocal design can improve the optical signal acquisition capability, and reduce the interference. A photon counter is used for detection, and a high performance counter module is designed to measure the output of photon counter. In the experiment, we use neutral density filters and potassium dichromate solution to test the absorbance detection system, and use fluorescein isothiocyanate FITC for fluorescence detection system performance test. The experimental results show that the absorbance detection system has a detection range of 0 4OD, and has good linearity in the detection range, while the fluorescence detection system has a high sensitivity of 1pmol/L concentration.

  8. Error detection and correction unit with built-in self-test capability for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Timoc, Constantin

    1990-01-01

    The objective of this project was to research and develop a 32-bit single chip Error Detection and Correction unit capable of correcting all single bit errors and detecting all double bit errors in the memory systems of a spacecraft. We designed the 32-bit EDAC (Error Detection and Correction unit) based on a modified Hamming code and according to the design specifications and performance requirements. We constructed a laboratory prototype (breadboard) which was converted into a fault simulator. The correctness of the design was verified on the breadboard using an exhaustive set of test cases. A logic diagram of the EDAC was delivered to JPL Section 514 on 4 Oct. 1988.

  9. Object detection in MOUT: evaluation of a hybrid approach for confirmation and rejection of object detection hypotheses

    NASA Astrophysics Data System (ADS)

    Manger, Daniel; Metzler, Jürgen

    2014-03-01

    Military Operations in Urban Terrain (MOUT) require the capability to perceive and to analyze the situation around a patrol in order to recognize potential threats. A permanent monitoring of the surrounding area is essential in order to appropriately react to the given situation, where one relevant task is the detection of objects that can pose a threat. Especially the robust detection of persons is important, as in MOUT scenarios threats usually arise from persons. This task can be supported by image processing systems. However, depending on the scenario, person detection in MOUT can be challenging, e.g. persons are often occluded in complex outdoor scenes and the person detection also suffers from low image resolution. Furthermore, there are several requirements on person detection systems for MOUT such as the detection of non-moving persons, as they can be a part of an ambush. Existing detectors therefore have to operate on single images with low thresholds for detection in order to not miss any person. This, in turn, leads to a comparatively high number of false positive detections which renders an automatic vision-based threat detection system ineffective. In this paper, a hybrid detection approach is presented. A combination of a discriminative and a generative model is examined. The objective is to increase the accuracy of existing detectors by integrating a separate hypotheses confirmation and rejection step which is built by a discriminative and generative model. This enables the overall detection system to make use of both the discriminative power and the capability to detect partly hidden objects with the models. The approach is evaluated on benchmark data sets generated from real-world image sequences captured during MOUT exercises. The extension shows a significant improvement of the false positive detection rate.

  10. Interference and differentiation of the neighboring surface microcracks in distributed sensing with PPP-BOTDA.

    PubMed

    Meng, Dewei; Ansari, Farhad

    2016-12-01

    Detection of cracks while at their early stages of evolution is important in health monitoring of civil structures. Review of technical literature reveals that single or sparsely distributed multiple cracks can be detected by Brillouin-scattering-based optical fiber sensor systems. In a recent study, a pre-pump-pulse Brillouin optical time-domain analysis (PPP-BOTDA) system was employed for detection of a single microcrack. Specific characteristics of the Brillouin gain spectrum, such as Brillouin frequency shift, and Brillouin gain spectrum width, were utilized in order to detect the formation and growth of microcracks with crack opening displacements as small as 25 μm. In most situations, formations of neighboring microcracks are not detected due to inherent limitations of Brillouin-based systems. In the study reported here, the capability of PPP-BOTDA for detection of two neighboring microcracks was investigated in terms of the proximity of the microcracks with respect to each other, i.e., crack spacing distance, crack opening displacement, and the spatial resolution of the PPP-BOTDA. The extent of the study pertained both to theoretical as well as experimental investigations. The concept of shape index is introduced in order to establish an analytical method for gauging the influence of the neighboring microcracks in detection and microcrack differentiation capabilities of Brillouin-based optical fiber sensor systems.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Timothy D; Hollenbach, Daniel F; Shedlock, Daniel

    Radiography by Selective Detection (RSD), was investigated for its ability to determine the presence and types of defects in a UO{sub 2} fuel rod surrounded by zirconium cladding. Images created using a Monte Carlo model compared favorably with actual X-ray backscatter images from mock fuel rods. A fuel rod was modeled as a rectangular parallelepiped with zirconium cladding, and pencil beam X-ray sources of 160 kVp (79 keV avg) and 480 kVp (218 keV avg) were generated using the Monte Carlo N-Particle Transport Code to attempt to image void and palladium (Pd) defects in the interior and on the surfacemore » of the fuel pellet. It was found that the 160 kVp spectrum was unable to detect the presence of interior defects, whereas the 480 kVp spectrum detected them with both the standard and the RSD backscatter methods, though the RSD method was very inefficient. It was also found that both energy spectra were able to detect void and Pd defects on the surface using both imaging methods. Additionally, two mock fuel rods were imaged using a backscatter X-ray imaging system, one consisting of hafnium pellets in a Zircaloy-4 cladding and the other consisting of steel pellets in a Zircalloy-4 cladding which was then encased in a steel cladding (a double encapsulation configuration employed in irradiation and experiments). It was found that the system was capable of detecting individual HfO{sub 2} pellets in a Zircaloy-4 cladding and may be capable of detecting individual steel pellets in the double-encapsulated sample. It is expected that the system would also be capable of detecting individual UO{sub 2} pellets in a Zircaloy-4 cladding, though no UO{sub 2} fuel rod was available for imaging.« less

  12. Polymerase chain reaction system

    DOEpatents

    Benett, William J.; Richards, James B.; Stratton, Paul L.; Hadley, Dean R.; Milanovich, Fred P.; Belgrader, Phil; Meyer, Peter L.

    2004-03-02

    A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.

  13. An update on TED gunshot detection system development status

    NASA Astrophysics Data System (ADS)

    Tidhar, Gil A.; Aphek, Ori; Gurovich, Martin

    2009-05-01

    In recent years the TED system has been under development, starting from new SWIR sensor technology, optics and real-time sensor technologies and following with complete system architecture as a soldier mounted optical gun shot detection system with high precision and imaging means. For the first time, the modules and the concept of operation of the system will be explained, with emphasis on new sensor-to-shooter capabilities. Actual field trial results will be shown.

  14. Characterizing Density and Complexity of Imported Cargos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birrer, Nathaniel; Divin, Charles; Glenn, Steven

    X-ray inspection systems are used to detect radiological and nuclear threats in imported cargo. In order to better understand performance of these systems, system imaging capabilities and the characteristics of imported cargo need to be determined. This project involved calculation of the modulation transfer function as a metric of system imaging performance and a study of the density and inhomogeneity of imported cargos, which have been shown to correlate with human analysts, threat detection performance.

  15. Analysis of Eddy Current Capabilities for the Detection of Outer Diameter Stress Corrosion Cracking in Small Bore Metallic Structures

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Williams, Phillip; Simpson, John

    2007-01-01

    The use of eddy current techniques for the detection of outer diameter damage in tubing and many complex aerospace structures often requires the use of an inner diameter probe due to a lack of access to the outside of the part. In small bore structures the probe size and orientation are constrained by the inner diameter of the part, complicating the optimization of the inspection technique. Detection of flaws through a significant remaining wall thickness becomes limited not only by the standard depth of penetration, but also geometrical aspects of the probe. Recently, an orthogonal eddy current probe was developed for detection of such flaws in Space Shuttle Primary Reaction Control System (PRCS) Thrusters. In this case, the detection of deeply buried stress corrosion cracking by an inner diameter eddy current probe was sought. Probe optimization was performed based upon the limiting spatial dimensions, flaw orientation, and required detection sensitivity. Analysis of the probe/flaw interaction was performed through the use of finite and boundary element modeling techniques. Experimental data for the flaw detection capabilities, including a probability of detection study, will be presented along with the simulation data. The results of this work have led to the successful deployment of an inspection system for the detection of stress corrosion cracking in Space Shuttle Primary Reaction Control System (PRCS) Thrusters.

  16. A Real-Time Knowledge Based Expert System For Diagnostic Problem Solving

    NASA Astrophysics Data System (ADS)

    Esteva, Juan C.; Reynolds, Robert G.

    1986-03-01

    This paper is a preliminary report of a real-time expert system which is concerned with the detection and diagnosis of electrical deviations in on-board vehicle-based electrical systems. The target systems are being tested at radio frequencies to evaluate their capability to be operated at designed levels of efficiency in an electromagnetic environment. The measurement of this capability is known as ElectroMagnetic Compatibility (EMC). The Intelligent Deviation Diagnosis (IDD) system consists of two basic modules the Automatic Data Acquisition Module (ADAM) and the Diagnosis System (DS). In this paper only the diagnosis system is described.

  17. Portable standoff Raman system for fast detection of homemade explosives through glass, plastic, and water

    NASA Astrophysics Data System (ADS)

    Misra, Anupam K.; Sharma, Shiv K.; Acosta, Tayro E.; Porter, John N.; Lucey, Paul G.; Bates, David E.

    2012-06-01

    The University of Hawaii has been developing portable remote Raman systems capable of detecting chemicals in daylight from a safe standoff distance. We present data on standoff detection of chemicals used in the synthesis of homemade explosives (HME) using a portable standoff Raman system utilizing an 8-inch telescope. Data show that good-quality Raman spectra of various hazardous chemicals such as ammonium nitrate, potassium nitrate, potassium perchlorate, sulfur, nitrobenzene, benzene, acetone, various organic and inorganic chemicals etc. could be easily obtained from remote distances, tested up to 120 meters, with a single-pulse laser excitation and with detection time less than 1 μs. The system uses a frequency-doubled Nd:YAG pulsed laser source (532 nm, 100 mJ/pulse, 15 Hz, pulse width 10 ns) capable of firing a single or double pulse. The double-pulse configuration also allows the system to perform standoff LIBS (Laser-Induced Breakdown Spectroscopy) at 50 m range. In the standoff Raman detection, the doublepulse sequence simply doubles the signal to noise ratio. Significant improvement in the quality of Raman spectra is observed when the standoff detection is made with 1s integration time. The system uses a 50-micron slit and has spectral resolution of 8 cm-1. The HME chemicals could be easily detected through clear and brown glass bottles, PP and HDPE plastic bottles, and also through fluorescent plastic water bottles. Standoff Raman detection of HME chemical from a 10 m distance through non-visible concealed bottles in plastic bubble wrap packaging is demonstrated with 1 s integration time. Possible applications of the standoff Raman system for homeland security and environmental monitoring are discussed.

  18. Ground standoff mine detection system (GSTAMIDS) engineering, manufacturing, and development (EMD) Block 0

    NASA Astrophysics Data System (ADS)

    Pressley, Jackson R.; Pabst, Donald; Sower, Gary D.; Nee, Larry; Green, Brian; Howard, Peter

    2001-10-01

    The United States Army has contracted EG&G Technical Services to build the GSTAMIDS EMD Block 0. This system autonomously detects and marks buried anti-tank land mines from an unmanned vehicle. It consists of a remotely operated host vehicle, standard teleoperation system (STS) control, mine detection system (MDS) and a control vehicle. Two complete systems are being fabricated, along with a third MDS. The host vehicle for Block 0 is the South African Meerkat that has overpass capability for anti-tank mines, as well as armor anti-mine blast protection and ballistic protection. It is operated via the STS radio link from within the control vehicle. The Main Computer System (MCS), located in the control vehicle, receives sensor data from the MDS via a high speed radio link, processes and fuses the data to make a decision of a mine detection, and sends the information back to the host vehicle for a mark to be placed on the mine location. The MCS also has the capability to interface into the FBCB2 system via SINGARS radio. The GSTAMIDS operator station and the control vehicle communications system also connect to the MCS. The MDS sensors are mounted on the host vehicle and include Ground Penetrating Radar (GPR), Pulsed Magnetic Induction (PMI) metal detector, and (as an option) long-wave infrared (LWIR). A distributed processing architecture is used so that pre-processing is performed on data at the sensor level before transmission to the MCS, minimizing required throughput. Nine (9) channels each of GPR and PMI are mounted underneath the meerkat to provide a three-meter detection swath. Two IR cameras are mounted on the upper sides of the Meerkat, providing a field of view of the required swath with overlap underneath the vehicle. Also included on the host vehicle are an Internal Navigation System (INS), Global Positioning System (GPS), and radio communications for remote control and data transmission. The GSTAMIDS Block 0 is designed as a modular, expandable system with sufficient bandwidth and processing capability for incorporation of additional sensor systems in future Blocks. It is also designed to operate in adverse weather conditions and to be transportable around the world.

  19. Implementing GPS into Pave-IR.

    DOT National Transportation Integrated Search

    2009-03-01

    To further enhance the capabilities of the Pave-IR thermal segregation detection system developed at the Texas Transportation Institute, researchers incorporated global positioning system (GPS) data collection into the thermal profiles. This GPS capa...

  20. 10 CFR 73.25 - Performance capabilities for physical protection of strategic special nuclear material in transit.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... as conditions warrant. (2) Detect and delay any unauthorized attempt to gain access or introduce... of § 73.20(a). (3) Detect attempts to gain unauthorized access or introduce unauthorized materials... system shall: (1) Detect attempts to gain unauthorized entry or introduce unauthorized materials into...

  1. 10 CFR 73.25 - Performance capabilities for physical protection of strategic special nuclear material in transit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... as conditions warrant. (2) Detect and delay any unauthorized attempt to gain access or introduce... of § 73.20(a). (3) Detect attempts to gain unauthorized access or introduce unauthorized materials... system shall: (1) Detect attempts to gain unauthorized entry or introduce unauthorized materials into...

  2. 10 CFR 73.25 - Performance capabilities for physical protection of strategic special nuclear material in transit.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... as conditions warrant. (2) Detect and delay any unauthorized attempt to gain access or introduce... of § 73.20(a). (3) Detect attempts to gain unauthorized access or introduce unauthorized materials... system shall: (1) Detect attempts to gain unauthorized entry or introduce unauthorized materials into...

  3. An aviation security (AVSEC) screening demonstrator for the detection of non-metallic threats at 28-33 GHz

    NASA Astrophysics Data System (ADS)

    Salmon, Neil A.; Bowring, Nick; Hutchinson, Simon; Southgate, Matthew; O'Reilly, Dean

    2013-10-01

    The unique selling proposition of millimetre wave technology for security screening is that it provides a stand-off or portal scenario sensing capability for non-metallic threats. The capabilities to detect some non-metallic threats are investigated in this paper, whilst recommissioning the AVSEC portal screening system at the Manchester Metropolitan University. The AVSEC system is a large aperture (1.6 m) portal screening imager which uses spatially incoherent illumination at 28-33 GHz from mode scrambling cavities to illuminate the subject. The imaging capability is critically analysed in terms of this illumination. A novel technique for the measurement of reflectance, refractive index and extinction coefficient is investigated and this then use to characterise the signatures of nitromethane, hexane, methanol, bees wax and baking flour. Millimetre wave images are shown how these liquids in polycarbonate bottles and the other materials appear against the human body.

  4. Fly Ear Inspired Miniature Acoustic Sensors for Detection and Localization

    DTIC Science & Technology

    2011-07-31

    Micro-Opto-Electro-Mechnical-System ( MOEMS ) sensor platform that is capable of integrating multiplexed Fabry-Perot (FP) interferometer based sensors. A...on a single MOEMS chip is shown in Figure 8. Light from a low coherence light source with a coherence length Lc is first sent to the reference...towards developing a low coherence interferometer based MOEMS detection system. An optical Micro-Electro-Mechanical-System (MEMS) sensor platform was

  5. Controlled biological and biomimetic systems for landmine detection.

    PubMed

    Habib, Maki K

    2007-08-30

    Humanitarian demining requires to accurately detect, locate and deactivate every single landmine and other buried mine-like objects as safely and as quickly as possible, and in the most non-invasive manner. The quality of landmine detection affects directly the efficiency and safety of this process. Most of the available methods to detect explosives and landmines are limited by their sensitivity and/or operational complexities. All landmines leak with time small amounts of their explosives that can be found on surrounding ground and plant life. Hence, explosive signatures represent the robust primary indicator of landmines. Accordingly, developing innovative technologies and efficient techniques to identify in real-time explosives residue in mined areas represents an attractive and promising approach. Biological and biologically inspired detection technology has the potential to compete with or be used in conjunction with other artificial technology to complement performance strengths. Biological systems are sensitive to many different scents concurrently, a property that has proven difficult to replicate artificially. Understanding biological systems presents unique opportunities for developing new capabilities through direct use of trained bio-systems, integration of living and non-living components, or inspiring new design by mimicking biological capabilities. It is expected that controlled bio-systems, biotechnology and microbial techniques will contribute to the advancement of mine detection and other application domains. This paper provides directions, evaluation and analysis on the progress of controlled biological and biomimetic systems for landmine detection. It introduces and discusses different approaches developed, underlining their relative advantages and limitations, and highlighting trends, safety and ecology concern, and possible future directions.

  6. Fault Detection, Isolation and Recovery (FDIR) Portable Liquid Oxygen Hardware Demonstrator

    NASA Technical Reports Server (NTRS)

    Oostdyk, Rebecca L.; Perotti, Jose M.

    2011-01-01

    The Fault Detection, Isolation and Recovery (FDIR) hardware demonstration will highlight the effort being conducted by Constellation's Ground Operations (GO) to provide the Launch Control System (LCS) with system-level health management during vehicle processing and countdown activities. A proof-of-concept demonstration of the FDIR prototype established the capability of the software to provide real-time fault detection and isolation using generated Liquid Hydrogen data. The FDIR portable testbed unit (presented here) aims to enhance FDIR by providing a dynamic simulation of Constellation subsystems that feed the FDIR software live data based on Liquid Oxygen system properties. The LO2 cryogenic ground system has key properties that are analogous to the properties of an electronic circuit. The LO2 system is modeled using electrical components and an equivalent circuit is designed on a printed circuit board to simulate the live data. The portable testbed is also be equipped with data acquisition and communication hardware to relay the measurements to the FDIR application running on a PC. This portable testbed is an ideal capability to perform FDIR software testing, troubleshooting, training among others.

  7. Integrated System Health Management (ISHM) Implementation in Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Franzl, Richard; Walker, Mark; Kapadia, Ravi; Venkatesh, Meera

    2010-01-01

    A pilot operational ISHM capability has been implemented for the E-2 Rocket Engine Test Stand (RETS) and a Chemical Steam Generator (CSG) test article at NASA Stennis Space Center. The implementation currently includes an ISHM computer and a large display in the control room. The paper will address the overall approach, tools, and requirements. It will also address the infrastructure and architecture. Specific anomaly detection algorithms will be discussed regarding leak detection and diagnostics, valve validation, and sensor validation. It will also describe development and use of a Health Assessment Database System (HADS) as a repository for measurements, health, configuration, and knowledge related to a system with ISHM capability. It will conclude with a discussion of user interfaces, and a description of the operation of the ISHM system prior, during, and after testing.

  8. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection.

    PubMed

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-07-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications.

  9. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection

    PubMed Central

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-01-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications. PMID:26203382

  10. Standoff laser-based spectroscopy for explosives detection

    NASA Astrophysics Data System (ADS)

    Gaft, M.; Nagli, L.

    2007-10-01

    Real time detection and identification of explosives at a standoff distance is a major issue in efforts to develop defense against so-called Improvised Explosive Devices (IED). It is recognized that the only technique, which is potentially capable to standoff detection of minimal amounts of explosives is laser-based spectroscopy. LDS activity is based on a combination of laser-based spectroscopic methods with orthogonal capabilities. Our technique belongs to trace detection, namely to its micro-particles variety. It is based on commonly held belief that surface contamination was very difficult to avoid and could be exploited for standoff detection. We has applied optical techniques including gated Raman and time-resolved luminescence spectroscopy for detection of main explosive materials, both factory and homemade. We developed and tested a Raman system for the field remote detection and identification of minimal amounts of explosives on relevant surfaces at a distance of up to 30 meters.

  11. Ship-bridge collision monitoring system based on flexible quantum tunneling composite with cushioning capability

    NASA Astrophysics Data System (ADS)

    Zheng, Qiaofeng; Han, Baoguo; Ou, Jinping

    2018-07-01

    In this paper, a ship-bridge collision monitoring system based on flexible quantum tunneling composite (QTC) with cushioning capability is proposed by investigating the sensing capability and positioning capability of QTC to collisions. QTCs with different rubber matrix and thickness were fabricated, and collision tests between steel ball and QTCs sensors were designed to simulate ship-bridge collision. The results show that QTCs have a sensing range over 50 MPa with stress resolution ranging between 0.017 and 0.13 MPa, enough to achieve the full-time monitoring of ship-bridge collision. The system has instant and repeatable respond to impact load, and can accurately position the collisions. Moreover, QTC can remarkably absorb the kinetic energy during collisions, exhibiting excellent cushioning capability. These findings indicate the proposed ship-bridge collision monitoring system has great potential for application to detecting collision information such as collision occurrence and duration, impact load and collision location, as well as providing basis for citizen evacuation, post-accident damage estimation and rescue strategy.

  12. Recent Results on "Approximations to Optimal Alarm Systems for Anomaly Detection"

    NASA Technical Reports Server (NTRS)

    Martin, Rodney Alexander

    2009-01-01

    An optimal alarm system and its approximations may use Kalman filtering for univariate linear dynamic systems driven by Gaussian noise to provide a layer of predictive capability. Predicted Kalman filter future process values and a fixed critical threshold can be used to construct a candidate level-crossing event over a predetermined prediction window. An optimal alarm system can be designed to elicit the fewest false alarms for a fixed detection probability in this particular scenario.

  13. Detection of biological molecules using chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2000-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  14. System for evaluating weld quality using eddy currents

    DOEpatents

    Todorov, Evgueni I.; Hay, Jacob

    2017-12-12

    Electromagnetic and eddy current techniques for fast automated real-time and near real-time inspection and monitoring systems for high production rate joining processes. An eddy current system, array and method for the fast examination of welds to detect anomalies such as missed seam (MS) and lack of penetration (LOP) the system, array and methods capable of detecting and sizing surface and slightly subsurface flaws at various orientations in connection with at least the first and second weld pass.

  15. Detection of biological molecules using chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2004-10-12

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  16. Automated night/day standoff detection, tracking, and identification of personnel for installation protection

    NASA Astrophysics Data System (ADS)

    Lemoff, Brian E.; Martin, Robert B.; Sluch, Mikhail; Kafka, Kristopher M.; McCormick, William; Ice, Robert

    2013-06-01

    The capability to positively and covertly identify people at a safe distance, 24-hours per day, could provide a valuable advantage in protecting installations, both domestically and in an asymmetric warfare environment. This capability would enable installation security officers to identify known bad actors from a safe distance, even if they are approaching under cover of darkness. We will describe an active-SWIR imaging system being developed to automatically detect, track, and identify people at long range using computer face recognition. The system illuminates the target with an eye-safe and invisible SWIR laser beam, to provide consistent high-resolution imagery night and day. SWIR facial imagery produced by the system is matched against a watch-list of mug shots using computer face recognition algorithms. The current system relies on an operator to point the camera and to review and interpret the face recognition results. Automation software is being developed that will allow the system to be cued to a location by an external system, automatically detect a person, track the person as they move, zoom in on the face, select good facial images, and process the face recognition results, producing alarms and sharing data with other systems when people are detected and identified. Progress on the automation of this system will be presented along with experimental night-time face recognition results at distance.

  17. An integrated knowledge system for the Space Shuttle hazardous gas detection system

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Shi, George Z.; Bangasser, Carl; Fensky, Connie; Cegielski, Eric; Overbey, Glenn

    1993-01-01

    A computer-based integrated Knowledge-Based System, the Intelligent Hypertext Manual (IHM), was developed for the Space Shuttle Hazardous Gas Detection System (HGDS) at NASA Marshall Space Flight Center (MSFC). The IHM stores HGDS related knowledge and presents it in an interactive and intuitive manner. This manual is a combination of hypertext and an expert system which store experts' knowledge and experience in hazardous gas detection and analysis. The IHM's purpose is to provide HGDS personnel with the capabilities of: locating applicable documentation related to procedures, constraints, and previous fault histories; assisting in the training of personnel; enhancing the interpretation of real time data; and recognizing and identifying possible faults in the Space Shuttle sub-systems related to hazardous gas detection.

  18. TED: a novel man portable infrared detection and situation awareness system

    NASA Astrophysics Data System (ADS)

    Tidhar, Gil; Manor, Ran

    2007-04-01

    Infrared Search and Track (IRST) and threat warning systems are used in vehicle mounted or in fixed land positions. Migration of this technology to the man portable applications proves to be difficult due to the tight constraints of power consumption, dimensions, weight and due to the high video rate requirements. In this report we provide design details of a novel transient event detection (TED) system, capable of detection of blasts and gun shot events in a very wide field of view, while used by an operator in motion

  19. Commissioning and field tests of a van-mounted system for the detection of radioactive sources and Special Nuclear Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cester, D.; Lunardon, M.; Stevanato, L.

    2015-07-01

    MODES SNM project aimed to carry out technical research in order to develop a prototype for a mobile, modular detection system for radioactive sources and Special Nuclear Materials (SNM). Its main goal was to deliver a tested prototype of a modular mobile system capable of passively detecting weak or shielded radioactive sources with accuracy higher than that of currently available systems. By the end of the project all the objectives have been successfully achieved. Results from the laboratory commissioning and the field tests will be presented. (authors)

  20. The capability of fluoroscopic systems to determine differential Roentgen-ray absorption

    NASA Technical Reports Server (NTRS)

    Baily, N. A.; Crepeau, R. L.

    1975-01-01

    A clinical fluoroscopic unit used in conjunction with a TV image digitization system was investigated to determine its capability to evaluate differential absorption between two areas in the same field. Fractional contrasts and minimum detectability for air, several concentrations of Renografin-60, and aluminum were studied using phantoms of various thicknesses. Results showed that the videometric response, when treated as contrast, shows a linear response with absorber thickness up to considerable thicknesses.

  1. Improving the Effectiveness and Acquisition Management of Selected Weapon Systems: A Summary of Major Issues and Recommended Actions.

    DTIC Science & Technology

    1982-05-14

    need for effective training--a situation which will be impaired until the AH-64 combat mission simulator , now under development, becomes available in...antisubmarine warfare system includes the capability to detect, classify, localize, and destroy the enemy. This capability includes multimillion dollar...to simulate combat situations will simulate only air-to-air activity. Air-to-ground and electronic counter countermeasures simulations were deleted

  2. Airborne lidar wind detection at 2 μm

    NASA Astrophysics Data System (ADS)

    Targ, Russell; Hawley, James G.; Steakley, Bruce C.; Ames, Lawrence L.; Robinson, Paul A.

    1995-06-01

    NASA and the FAA have expressed interest in laser radar's capabilities to detect wind profiles at altitude. A number of programs have been addressing the technical feasibility and utility of laser radar atmospheric backscatter data to determine wind profiles and wind hazards for aircraft guidance and navigation. In addition, the U.S. Air Force is investigating the use of airborne lidar to achieve precision air drop capability, and to increase the accuracy of the AC- 130 gunship and the B-52 bomber by measuring the wind field from the aircraft to the ground. There are emerging capabilities of airborne laser radar to measure wind velocities and detect turbulence and other atmospheric disturbances out in front of an aircraft in real time. The measurement of these parameters can significantly increase fuel efficiency, flight safety, airframe lifetime, and terminal area capacity for new and existing aircraft. This is achieved through wind velocity detection, turbulence avoidance, active control utilization to alleviate gust loading, and detection of wingtip wake vortices produced by landing aircraft. This paper presents the first flight test results of an all solid-state 2-micrometers laser radar system measuring the wind field profile 1 to 2 km in front of an aircraft in real time. We find 0.7-m/s wind measurement accuracy for the system which is configured in a rugged, light weight, high- performance ARINC package.

  3. Development and deployment of the Collimated Directional Radiation Detection System

    NASA Astrophysics Data System (ADS)

    Guckes, Amber L.; Barzilov, Alexander

    2017-09-01

    The Collimated Directional Radiation Detection System (CDRDS) is capable of imaging radioactive sources in two dimensions (as a directional detector). The detection medium of the CDRDS is a single Cs2LiYCl6:Ce3+ scintillator cell enriched in 7Li (CLYC-7). The CLYC-7 is surrounded by a heterogeneous high-density polyethylene (HDPE) and lead (Pb) collimator. These materials make-up a coded aperture inlaid in the collimator. The collimator is rotated 360° by a stepper motor which enables time-encoded imaging of a radioactive source. The CDRDS is capable of spectroscopy and pulse shape discrimination (PSD) of photons and fast neutrons. The measurements of a radioactive source are carried out in discrete time steps that correlate to the angular rotation of the collimator. The measurement results are processed using a maximum likelihood expectation (MLEM) algorithm to create an image of the measured radiation. This collimator design allows for the directional detection of photons and fast neutrons simultaneously by utilizing only one CLYC-7 scintillator. Directional detection of thermal neutrons can also be performed by utilizing another suitable scintillator. Moreover, the CDRDS is portable, robust, and user friendly. This unit is capable of utilizing wireless data transfer for possible radiation mapping and network-centric applications. The CDRDS was tested by performing laboratory measurements with various gamma-ray and neutron sources.

  4. Status of the prototype Pulsed Photonuclear Assessment (PPA) inspection system

    NASA Astrophysics Data System (ADS)

    Jones, James L.; Blackburn, Brandon W.; Norman, Daren R.; Watson, Scott M.; Haskell, Kevin J.; Johnson, James T.; Hunt, Alan W.; Harmon, Frank; Moss, Calvin

    2007-08-01

    The Idaho National Laboratory, in collaboration with Idaho State University's Idaho Accelerator Center and the Los Alamos National Laboratory, continues to develop the Pulsed Photonuclear Assessment (PPA) technique for shielded nuclear material detection in large volume configurations, such as cargo containers. In recent years, the Department of Homeland Security has supported the development of a prototype PPA cargo inspection system. This PPA system integrates novel neutron and gamma-ray detectors for nuclear material detection along with a complementary and unique gray scale, density mapping component for significant shield material detection. This paper will present the developmental status of the prototype system, its detection performance using several INL Calibration Pallets, and planned enhancements to further increase its nuclear material detection capability.

  5. Development of a Fluorescence Resonance Energy Transfer (FRET)-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense.

    PubMed

    Bakhori, Noremylia Mohd; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir

    2013-12-12

    An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10-9 M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.

  6. Development of a Fluorescence Resonance Energy Transfer (FRET)-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense.

    PubMed

    Mohd Bakhori, Noremylia; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir

    2013-12-01

    An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10(-9) M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.

  7. Multiplexed colorimetric detection of Kaposi's sarcoma associated herpesvirus and Bartonella DNA using gold and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Mancuso, Matthew; Jiang, Li; Cesarman, Ethel; Erickson, David

    2013-01-01

    Kaposi's sarcoma (KS) is an infectious cancer occurring most commonly in human immunodeficiency virus (HIV) positive patients and in endemic regions, such as Sub-Saharan Africa, where KS is among the top four most prevalent cancers. The cause of KS is the Kaposi's sarcoma-associated herpesvirus (KSHV, also called HHV-8), an oncogenic herpesvirus that while routinely diagnosed in developed nations, provides challenges to developing world medical providers and point-of-care detection. A major challenge in the diagnosis of KS is the existence of a number of other diseases with similar clinical presentation and histopathological features, requiring the detection of KSHV in a biopsy sample. In this work we develop an answer to this challenge by creating a multiplexed one-pot detection system for KSHV DNA and DNA from a frequently confounding disease, bacillary angiomatosis. Gold and silver nanoparticle aggregation reactions are tuned for each target and a multi-color change system is developed capable of detecting both targets down to levels between 1 nM and 2 nM. The system developed here could later be integrated with microfluidic sample processing to create a final device capable of solving the two major challenges in point-of-care KS detection.

  8. Hair cell heterogeneity and ultrasonic hearing: recent advances in understanding fish hearing.

    PubMed Central

    Popper, A N

    2000-01-01

    The past decade has seen a wealth of new data on the auditory capabilities and mechanisms of fishes. We now have a significantly better appreciation of the structure and function of the auditory system in fishes with regard to their peripheral and central anatomy, physiology, behaviour, sound source localization and hearing capabilities. This paper deals with two of the newest of these findings, hair cell heterogeneity and the detection of ultrasound. As a result of this recent work, we now know that fishes have several different types of sensory hair cells in both the ear and lateral line and there is a growing body of evidence to suggest that these hair cell types arose very early in the evolution of the octavolateralis system. There is also some evidence to suggest that the differences in the hair cell types have functional implications for the way the ear and lateral line of fishes detect and process stimuli. Behavioural studies have shown that, whereas most fishes can only detect sound to 1-3 kHz, several species of the genus Alosa (Clupeiformes, i.e. herrings and their relatives) can detect sounds up to 180 kHz (or even higher). It is suggested that this capability evolved so that these fishes can detect one of their major predators, echolocating dolphins. The mechanism for ultrasound detection remains obscure, though it is hypothesized that the highly derived utricle of the inner ear in these species is involved. PMID:11079414

  9. Detection of underground water distribution piping system and leakages using ground penetrating radar (GPR)

    NASA Astrophysics Data System (ADS)

    Amran, Tengku Sarah Tengku; Ismail, Mohamad Pauzi; Ahmad, Mohamad Ridzuan; Amin, Mohamad Syafiq Mohd; Sani, Suhairy; Masenwat, Noor Azreen; Ismail, Mohd Azmi; Hamid, Shu-Hazri Abdul

    2017-01-01

    A water pipe is any pipe or tubes designed to transport and deliver water or treated drinking with appropriate quality, quantity and pressure to consumers. The varieties include large diameter main pipes, which supply entire towns, smaller branch lines that supply a street or group of buildings or small diameter pipes located within individual buildings. This distribution system (underground) is used to describe collectively the facilities used to supply water from its source to the point of usage. Therefore, a leaking in the underground water distribution piping system increases the likelihood of safe water leaving the source or treatment facility becoming contaminated before reaching the consumer. Most importantly, leaking can result in wastage of water which is precious natural resources. Furthermore, they create substantial damage to the transportation system and structure within urban and suburban environments. This paper presents a study on the possibility of using ground penetrating radar (GPR) with frequency of 1GHz to detect pipes and leakages in underground water distribution piping system. Series of laboratory experiment was designed to investigate the capability and efficiency of GPR in detecting underground pipes (metal and PVC) and water leakages. The data was divided into two parts: 1. detecting/locating underground water pipe, 2. detecting leakage of underground water pipe. Despite its simplicity, the attained data is proved to generate a satisfactory result indicating GPR is capable and efficient, in which it is able to detect the underground pipe and presence of leak of the underground pipe.

  10. NetMOD v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion J

    2015-12-22

    NetMOD is a tool to model the performance of global ground-based explosion monitoring systems. The version 2.0 of the software supports the simulation of seismic, hydroacoustic, and infrasonic detection capability. The tool provides a user interface to execute simulations based upon a hypothetical definition of the monitoring system configuration, geophysical properties of the Earth, and detection analysis criteria. NetMOD will be distributed with a project file defining the basic performance characteristics of the International Monitoring System (IMS), a network of sensors operated by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). Network modeling is needed to be able to assess and explainmore » the potential effect of changes to the IMS, to prioritize station deployment and repair, and to assess the overall CTBTO monitoring capability currently and in the future. Currently the CTBTO uses version 1.0 of NetMOD, provided to them in early 2014. NetMOD will provide a modern tool that will cover all the simulations currently available and allow for the development of additional simulation capabilities of the IMS in the future. NetMOD simulates the performance of monitoring networks by estimating the relative amplitudes of the signal and noise measured at each of the stations within the network based upon known geophysical principles. From these signal and noise estimates, a probability of detection may be determined for each of the stations. The detection probabilities at each of the stations may then be combined to produce an estimate of the detection probability for the entire monitoring network.« less

  11. NASA DOEPOD NDE Capabilities Data Book

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2015-01-01

    This data book contains the Directed Design of Experiments for Validating Probability of Detection (POD) Capability of NDE Systems (DOEPOD) analyses of the nondestructive inspection data presented in the NTIAC, Nondestructive Evaluation (NDE) Capabilities Data Book. DOEPOD is designed as a decision support system to validate inspection system, personnel, and protocol demonstrating 0.90 POD with 95% confidence at critical flaw sizes, a90/95. Although 0.90 POD with 95% confidence at critical flaw sizes is often stated as an inspection requirement in inspection documents, including NASA Standards, NASA critical aerospace applications have historically only accepted 0.978 POD or better with a 95% one-sided lower confidence bound exceeding 0.90 at critical flaw sizes, a90/95.

  12. Real World Experience With Ion Implant Fault Detection at Freescale Semiconductor

    NASA Astrophysics Data System (ADS)

    Sing, David C.; Breeden, Terry; Fakhreddine, Hassan; Gladwin, Steven; Locke, Jason; McHugh, Jim; Rendon, Michael

    2006-11-01

    The Freescale automatic fault detection and classification (FDC) system has logged data from over 3.5 million implants in the past two years. The Freescale FDC system is a low cost system which collects summary implant statistics at the conclusion of each implant run. The data is collected by either downloading implant data log files from the implant tool workstation, or by exporting summary implant statistics through the tool's automation interface. Compared to the traditional FDC systems which gather trace data from sensors on the tool as the implant proceeds, the Freescale FDC system cannot prevent scrap when a fault initially occurs, since the data is collected after the implant concludes. However, the system can prevent catastrophic scrap events due to faults which are not detected for days or weeks, leading to the loss of hundreds or thousands of wafers. At the Freescale ATMC facility, the practical applications of the FD system fall into two categories: PM trigger rules which monitor tool signals such as ion gauges and charge control signals, and scrap prevention rules which are designed to detect specific failure modes that have been correlated to yield loss and scrap. PM trigger rules are designed to detect shifts in tool signals which indicate normal aging of tool systems. For example, charging parameters gradually shift as flood gun assemblies age, and when charge control rules start to fail a flood gun PM is performed. Scrap prevention rules are deployed to detect events such as particle bursts and excessive beam noise, events which have been correlated to yield loss. The FDC system does have tool log-down capability, and scrap prevention rules often use this capability to automatically log the tool into a maintenance state while simultaneously paging the sustaining technician for data review and disposition of the affected product.

  13. Damage Detection Sensor System for Aerospace and Multiple Applications

    NASA Technical Reports Server (NTRS)

    Williams, M.; Lewis, M.; Gibson, T.; Medelius, P.; Lane, J.

    2017-01-01

    The damage detection sensory system is an intelligent damage detection ‘skin’ that can be embedded into rigid or flexible structures, providing a lightweight capability for in-situ health monitoring for applications such as spacecraft, expandable or inflatable structures, extravehicular activities (EVA) suits, smart wearables, and other applications where diagnostic impact damage monitoring might be critical. The sensor systems can be customized for detecting location, damage size, and depth, with velocity options and can be designed for particular environments for monitoring of impact or physical damage to a structure. The operation of the sensor detection system is currently based on the use of parallel conductive traces placed on a firm or flexible surface. Several detection layers can be implemented, where alternate layers are arranged in orthogonal direction with respect to the adjacent layers allowing for location and depth calculations. Increased flexibility of the damage detection sensor system designs will also be introduced.

  14. Gas House Autonomous System Monitoring

    NASA Technical Reports Server (NTRS)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  15. A Parallel Finite Set Statistical Simulator for Multi-Target Detection and Tracking

    NASA Astrophysics Data System (ADS)

    Hussein, I.; MacMillan, R.

    2014-09-01

    Finite Set Statistics (FISST) is a powerful Bayesian inference tool for the joint detection, classification and tracking of multi-target environments. FISST is capable of handling phenomena such as clutter, misdetections, and target birth and decay. Implicit within the approach are solutions to the data association and target label-tracking problems. Finally, FISST provides generalized information measures that can be used for sensor allocation across different types of tasks such as: searching for new targets, and classification and tracking of known targets. These FISST capabilities have been demonstrated on several small-scale illustrative examples. However, for implementation in a large-scale system as in the Space Situational Awareness problem, these capabilities require a lot of computational power. In this paper, we implement FISST in a parallel environment for the joint detection and tracking of multi-target systems. In this implementation, false alarms and misdetections will be modeled. Target birth and decay will not be modeled in the present paper. We will demonstrate the success of the method for as many targets as we possibly can in a desktop parallel environment. Performance measures will include: number of targets in the simulation, certainty of detected target tracks, computational time as a function of clutter returns and number of targets, among other factors.

  16. Detecting Lyme disease using antibody-functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dailey, Jennifer; Lerner, Mitchell; Goldsmith, Brett; Brisson, Dustin; Johnson, A. T. Charlie

    2011-03-01

    We combine antibodies for Lyme flagellar protein with carbon nanotube transistors to create an electronic sensor capable of definitive detection of Lyme disease. Over 35,000 cases of Lyme disease are reported in the United States each year, of which more than 23 percent are originally misdiagnosed. Rational design of the coupling of the biological system to the electronic system gives us a flexible sensor platform which we can apply to several biological systems. By coupling these antibodies to carbon nanotubes in particular, we allow for fast, sensitive, highly selective, electronic detection. Unlike antibody or biomarker detection, bacterial protein detection leads to positive identification of both early and late stage bacterial infections, and is easily expandable to environmental monitoring.

  17. Performance estimation for threat detection in CT systems

    NASA Astrophysics Data System (ADS)

    Montgomery, Trent; Karl, W. Clem; Castañón, David A.

    2017-05-01

    Detecting the presence of hazardous materials in suitcases and carry-on luggage is an important problem in aviation security. As the set of threats is expanding, there is a corresponding need to increase the capabilities of explosive detection systems to address these threats. However, there is a lack of principled tools for predicting the performance of alternative designs for detection systems. In this paper, we describe an approach for computing bounds on the achievable classification performance of material discrimination systems based on empirical statistics that estimate the f-divergence of the underlying features. Our approach can be used to examine alternative physical observation modalities and measurement configurations, as well as variations in reconstruction and feature extraction algorithms.

  18. Anomaly Detection for Next-Generation Space Launch Ground Operations

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Iverson, David L.; Hall, David R.; Taylor, William M.; Patterson-Hine, Ann; Brown, Barbara; Ferrell, Bob A.; Waterman, Robert D.

    2010-01-01

    NASA is developing new capabilities that will enable future human exploration missions while reducing mission risk and cost. The Fault Detection, Isolation, and Recovery (FDIR) project aims to demonstrate the utility of integrated vehicle health management (IVHM) tools in the domain of ground support equipment (GSE) to be used for the next generation launch vehicles. In addition to demonstrating the utility of IVHM tools for GSE, FDIR aims to mature promising tools for use on future missions and document the level of effort - and hence cost - required to implement an application with each selected tool. One of the FDIR capabilities is anomaly detection, i.e., detecting off-nominal behavior. The tool we selected for this task uses a data-driven approach. Unlike rule-based and model-based systems that require manual extraction of system knowledge, data-driven systems take a radically different approach to reasoning. At the basic level, they start with data that represent nominal functioning of the system and automatically learn expected system behavior. The behavior is encoded in a knowledge base that represents "in-family" system operations. During real-time system monitoring or during post-flight analysis, incoming data is compared to that nominal system operating behavior knowledge base; a distance representing deviation from nominal is computed, providing a measure of how far "out of family" current behavior is. We describe the selected tool for FDIR anomaly detection - Inductive Monitoring System (IMS), how it fits into the FDIR architecture, the operations concept for the GSE anomaly monitoring, and some preliminary results of applying IMS to a Space Shuttle GSE anomaly.

  19. A Thermal Expert System (TEXSYS) development overview - AI-based control of a Space Station prototype thermal bus

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Hack, E. C.

    1990-01-01

    A knowledge-based control system for real-time control and fault detection, isolation and recovery (FDIR) of a prototype two-phase Space Station Freedom external thermal control system (TCS) is discussed in this paper. The Thermal Expert System (TEXSYS) has been demonstrated in recent tests to be capable of both fault anticipation and detection and real-time control of the thermal bus. Performance requirements were achieved by using a symbolic control approach, layering model-based expert system software on a conventional numerical data acquisition and control system. The model-based capabilities of TEXSYS were shown to be advantageous during software development and testing. One representative example is given from on-line TCS tests of TEXSYS. The integration and testing of TEXSYS with a live TCS testbed provides some insight on the use of formal software design, development and documentation methodologies to qualify knowledge-based systems for on-line or flight applications.

  20. Optimization of Second Fault Detection Thresholds to Maximize Mission POS

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan

    2018-01-01

    In order to support manned spaceflight safety requirements, the Space Launch System (SLS) has defined program-level requirements for key systems to ensure successful operation under single fault conditions. To accommodate this with regards to Navigation, the SLS utilizes an internally redundant Inertial Navigation System (INS) with built-in capability to detect, isolate, and recover from first failure conditions and still maintain adherence to performance requirements. The unit utilizes multiple hardware- and software-level techniques to enable detection, isolation, and recovery from these events in terms of its built-in Fault Detection, Isolation, and Recovery (FDIR) algorithms. Successful operation is defined in terms of sufficient navigation accuracy at insertion while operating under worst case single sensor outages (gyroscope and accelerometer faults at launch). In addition to first fault detection and recovery, the SLS program has also levied requirements relating to the capability of the INS to detect a second fault, tracking any unacceptable uncertainty in knowledge of the vehicle's state. This detection functionality is required in order to feed abort analysis and ensure crew safety. Increases in navigation state error and sensor faults can drive the vehicle outside of its operational as-designed environments and outside of its performance envelope causing loss of mission, or worse, loss of crew. The criteria for operation under second faults allows for a larger set of achievable missions in terms of potential fault conditions, due to the INS operating at the edge of its capability. As this performance is defined and controlled at the vehicle level, it allows for the use of system level margins to increase probability of mission success on the operational edges of the design space. Due to the implications of the vehicle response to abort conditions (such as a potentially failed INS), it is important to consider a wide range of failure scenarios in terms of both magnitude and time. As such, the Navigation team is taking advantage of the INS's capability to schedule and change fault detection thresholds in flight. These values are optimized along a nominal trajectory in order to maximize probability of mission success, and reducing the probability of false positives (defined as when the INS would report a second fault condition resulting in loss of mission, but the vehicle would still meet insertion requirements within system-level margins). This paper will describe an optimization approach using Genetic Algorithms to tune the threshold parameters to maximize vehicle resilience to second fault events as a function of potential fault magnitude and time of fault over an ascent mission profile. The analysis approach, and performance assessment of the results will be presented to demonstrate the applicability of this process to second fault detection to maximize mission probability of success.

  1. Real-Time Integration of Positioning and Accelerometer Data for Early Earthquake Warning on Canada's West Coast

    NASA Astrophysics Data System (ADS)

    Biffard, B.; Rosenberger, A.; Pirenne, B.; Valenzuela, M.; MacArthur, M.

    2017-12-01

    Ocean Networks Canada (ONC) operates ocean and coastal observatories on all three of Canada's coasts, and more particularly across the Cascadia subduction zone. The data are acquired, parsed, calibrated and archived by ONC's data management system (Oceans 2.0), with real-time event detection, reaction and access capabilities. As such, ONC is in a unique position to develop early warning systems for earthquakes, near- and far-field tsunamis and other events. ONC is leading the development of a system to alert southwestern British Columbia of an impending Cascadia subduction zone earthquake on behalf of the provincial government and with the support of the Canadian Federal Government. Similarly to other early earthquake warning systems, an array of accelerometers is used to detect the initial earthquake p-waves. This can provide 5-60 seconds of warning to subscribers who can then take action, such as stopping trains and surgeries, closing valves, taking cover, etc. To maximize the detection capability and the time available to react to a notification, instruments are placed both underwater and on land on Vancouver Island. A novel feature of ONC's system is, for land-based sites, the combination of real-time satellite positioning (GNSS) and accelerometer data in the calculations to improve earthquake intensity estimates. This results in higher accuracy, dynamic range and responsiveness than either type of sensor is capable of alone. P-wave detections and displacement data are sent from remote stations to a data centre that must calculate epicentre locations and magnitude. The latter are then delivered to subscribers with client software that, given their position, will calculate arrival time and intensity. All of this must occur with very high standards for latency, reliability and accuracy.

  2. From Data to Knowledge — Faster: GOES Early Fire Detection System to Inform Operational Wildfire Response and Management

    NASA Astrophysics Data System (ADS)

    Koltunov, A.; Quayle, B.; Prins, E. M.; Ambrosia, V. G.; Ustin, S.

    2014-12-01

    Fire managers at various levels require near-real-time, low-cost, systematic, and reliable early detection capabilities with minimal latency to effectively respond to wildfire ignitions and minimize the risk of catastrophic development. The GOES satellite images collected for vast territories at high temporal frequencies provide a consistent and reliable source for operational active fire mapping realized by the WF-ABBA algorithm. However, their potential to provide early warning or rapid confirmation of initial fire ignition reports from conventional sources remains underutilized, partly because the operational wildfire detection has been successfully optimized for users and applications for which timeliness of initial detection is a low priority, contrasting to the needs of first responders. We present our progress in developing the GOES Early Fire Detection (GOES-EFD) system, a collaborative effort led by University of California-Davis and USDA Forest Service. The GOES-EFD specifically focuses on first detection timeliness for wildfire incidents. It is automatically trained for a monitored scene and capitalizes on multiyear cross-disciplinary algorithm research. Initial retrospective tests in Western US demonstrate significantly earlier identification detection of new ignitions than existing operational capabilities and a further improvement prospect. The GOES-EFD-β prototype will be initially deployed for the Western US region to process imagery from GOES-NOP and the rapid and 4 times higher spatial resolution imagery from GOES-R — the upcoming next generation of GOES satellites. These and other enhanced capabilities of GOES-R are expected to significantly improve the timeliness of fire ignition information from GOES-EFD.

  3. TMD detection and tracking using improved AWACS sensors

    NASA Astrophysics Data System (ADS)

    Petersen, Steve; Kinashi, Yasuhiro; Leslie, Daniel

    1995-01-01

    This paper identifies an UOES (User Operational Evaluation Systems) version of an airborne surveillance sensor funded by the BMDO (Ballistic Missile Defense Organization). The sensors will be integrated into an operational AWACS E-3 upgrade program. This BMDO program initiative is called Extended Airborne Global Launch Evaluator, or EAGLE. Initial Operational Capability (IOC) of the EAGLE system will be ready in time to support the THAAD/GBR UOES capability. This airborne system, when developed, will consist of a passive infrared surveillance sensor (IRSS) with an active laser-ranger, on board an upgraded AWACS E3 aircraft to operate effectively in the TMD (theater missile defense) mission. The objective for the EAGLE is to field, in a reasonably short time and at a relatively low cost, a cueing sensor capability in regional conflicts to augment the existing space-based surveillance systems. With autonomous surveillance capability to search a wide-sector field, the EAGLE can detect and track boosting TBM's shortly after launch or as they break the clouds. Its passive IR sensor can also detect and track warm hardbody targets. Together with its laser-ranger, it is able to determine, immediately after the booster burn-out, very precise target state vectors that are accurate enough to predict their eventual impact points, to cue fire control radars, and to engage the weapons, if needed. Its primary TMD mission is to provide precise cueing of fire control radars to initiate the active defense weapon systems. Accurate cues from the EAGLE will off load radar resources to enable earlier detection of the targets at longer extended ranges, thereby increasing the interceptor battlespace for potentially more effective defense engagements and opportunities. It can also provide a precise early warning message to enable immediate TBM attack assessment and appropriate selection of defense engagement options by the battle manager. The functions of the sensor suite can be distributed, such that it can be tasked independently to observe the threat intercept, while providing continuous surveillance of new TBM launches, to support the kill assessment function for shoot-look-shoot opportunities. Another potential function that can be performed by the EAGLE is the estimation of TMD launch points (LPE) for counterforce support. This technical paper provides an expanded discussion of the EAGLE's mission roles, specific system functions, and its detection and tracking performance capability. The paper also addresses the sensor and the laser subsystem design characteristics and operational modes required to accomplish all its functions. Initial analyses indicate that the impact of scattering and absorption of the IR signatures and laser signals will be minimal on the performance of the system. Recent satellite data provides measurement of atmospheric extinction.

  4. Sample preparation and detection device for infectious agents

    DOEpatents

    Miles, Robin R.; Wang, Amy W.; Fuller, Christopher K.; Lemoff, Asuncion V.; Bettencourt, Kerry A.; Yu, June

    2003-06-10

    A sample preparation and analysis device which incorporates both immunoassays and PCR assays in one compact, field-portable microchip. The device provides new capabilities in fluid and particle control which allows the building of a fluidic chip with no moving parts, thus decreasing fabrication cost and increasing the robustness of the device. The device can operate in a true continuous (not batch) mode. The device incorporates magnetohydrodynamic (MHD) pumps to move the fluid through the system, acoustic mixing and fractionation, dielectropheretic (DEP) sample concentration and purification, and on-chip optical detection capabilities.

  5. Development of nondestructive testing techniques for plated-through holes in multilayer printed circuit boards

    NASA Technical Reports Server (NTRS)

    Anthony, P. L.; Mcmurtrey, J. E.

    1971-01-01

    The development of a nondestructive test with the capability to interrogate plated-through holes as small as 0.51 millimeters inside diameter is discussed. The system can detect defects such as holes, voids, cracks, and thin spots that reduce the current carrying capability of plates-through interconnects by 20 percent or more. Efforts were directed toward the design and fabrication of magnetic circuitry mutual coupling probes and to evaluate the effectiveness of these devices for detecting in multilayer board plated-through holes.

  6. Smart sensing surveillance video system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Szu, Harold

    2016-05-01

    An intelligent video surveillance system is able to detect and identify abnormal and alarming situations by analyzing object movement. The Smart Sensing Surveillance Video (S3V) System is proposed to minimize video processing and transmission, thus allowing a fixed number of cameras to be connected on the system, and making it suitable for its applications in remote battlefield, tactical, and civilian applications including border surveillance, special force operations, airfield protection, perimeter and building protection, and etc. The S3V System would be more effective if equipped with visual understanding capabilities to detect, analyze, and recognize objects, track motions, and predict intentions. In addition, alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. The S3V System capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded environments. It would be directly applicable to solutions for emergency response personnel, law enforcement, and other homeland security missions, as well as in applications requiring the interoperation of sensor networks with handheld or body-worn interface devices.

  7. Real-time classification of signals from three-component seismic sensors using neural nets

    NASA Astrophysics Data System (ADS)

    Bowman, B. C.; Dowla, F.

    1992-05-01

    Adaptive seismic data acquisition systems with capabilities of signal discrimination and event classification are important in treaty monitoring, proliferation, and earthquake early detection systems. Potential applications include monitoring underground chemical explosions, as well as other military, cultural, and natural activities where characteristics of signals change rapidly and without warning. In these applications, the ability to detect and interpret events rapidly without falling behind the influx of the data is critical. We developed a system for real-time data acquisition, analysis, learning, and classification of recorded events employing some of the latest technology in computer hardware, software, and artificial neural networks methods. The system is able to train dynamically, and updates its knowledge based on new data. The software is modular and hardware-independent; i.e., the front-end instrumentation is transparent to the analysis system. The software is designed to take advantage of the multiprocessing environment of the Unix operating system. The Unix System V shared memory and static RAM protocols for data access and the semaphore mechanism for interprocess communications were used. As the three-component sensor detects a seismic signal, it is displayed graphically on a color monitor using X11/Xlib graphics with interactive screening capabilities. For interesting events, the triaxial signal polarization is computed, a fast Fourier Transform (FFT) algorithm is applied, and the normalized power spectrum is transmitted to a backpropagation neural network for event classification. The system is currently capable of handling three data channels with a sampling rate of 500 Hz, which covers the bandwidth of most seismic events. The system has been tested in laboratory setting with artificial events generated in the vicinity of a three-component sensor.

  8. Counter unmanned aerial system testing and evaluation methodology

    NASA Astrophysics Data System (ADS)

    Kouhestani, C.; Woo, B.; Birch, G.

    2017-05-01

    Unmanned aerial systems (UAS) are increasing in flight times, ease of use, and payload sizes. Detection, classification, tracking, and neutralization of UAS is a necessary capability for infrastructure and facility protection. We discuss test and evaluation methodology developed at Sandia National Laboratories to establish a consistent, defendable, and unbiased means for evaluating counter unmanned aerial system (CUAS) technologies. The test approach described identifies test strategies, performance metrics, UAS types tested, key variables, and the necessary data analysis to accurately quantify the capabilities of CUAS technologies. The tests conducted, as defined by this approach, will allow for the determination of quantifiable limitations, strengths, and weaknesses in terms of detection, tracking, classification, and neutralization. Communicating the results of this testing in such a manner informs decisions by government sponsors and stakeholders that can be used to guide future investments and inform procurement, deployment, and advancement of such systems into their specific venues.

  9. Detection of biological molecules using boronate-based chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph; Lane, Stephen M.; Satcher, Jr., Joe H.; Darrow, Christopher B.; Peyser, Thomas A.; Harder, Jennifer

    1999-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  10. Detection of biological molecules using boronate-based chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph; Lane, Stephen M.; Satcher, Jr., Joe H.; Darrow, Christopher B.; Peyser, Thomas A.; Harder, Jennifer

    2004-06-15

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  11. Detection and classification of underwater targets by echolocating dolphins

    NASA Astrophysics Data System (ADS)

    Au, Whitlow

    2003-10-01

    Many experiments have been performed with echolocating dolphins to determine their target detection and discrimination capabilities. Target detection experiments have been performed in a naturally noisy environment, with masking noise and with both phantom echoes and masking noise, and in reverberation. The echo energy to rms noise spectral density for the Atlantic bottlenose dolphin (Tursiops truncatus) at the 75% correct response threshold is approximately 7.5 dB whereas for the beluga whale (Delphinapterus leucas) the threshold is approximately 1 dB. The dolphin's detection threshold in reverberation is approximately 2.5 dB vs 2 dB for the beluga. The difference in performance between species can probably be ascribed to differences in how both species perceived the task. The bottlenose dolphin may be performing a combination detection/discrimination task whereas the beluga may be performing a simple detection task. Echolocating dolphins also have the capability to make fine discriminate of target properties such as wall thickness difference of water-filled cylinders and material differences in metallic plates. The high resolution property of the animal's echolocation signals and the high dynamic range of its auditory system are important factors in their outstanding discrimination capabilities.

  12. Radioactive threat detection using scintillant-based detectors

    NASA Astrophysics Data System (ADS)

    Chalmers, Alex

    2004-09-01

    An update to the performance of AS&E's Radioactive Threat Detection sensor technology. A model is presented detailing the components of the scintillant-based RTD system employed in AS&E products aimed at detecting radiological WMD. An overview of recent improvements in the sensors, electrical subsystems and software algorithms are presented. The resulting improvements in performance are described and sample results shown from existing systems. Advanced and future capabilities are described with an assessment of their feasibility and their application to Homeland Defense.

  13. Directed Design of Experiments (DOE) for Determining Probability of Detection (POD) Capability of NDE Systems (DOEPOD)

    NASA Technical Reports Server (NTRS)

    Generazio, Ed

    2007-01-01

    This viewgraph presentation reviews some of the issues that people who specialize in Non destructive evaluation (NDE) have with determining the statistics of the probability of detection. There is discussion of the use of the binominal distribution, and the probability of hit. The presentation then reviews the concepts of Directed Design of Experiments for Validating Probability of Detection of Inspection Systems (DOEPOD). Several cases are reviewed, and discussed. The concept of false calls is also reviewed.

  14. Integrated multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Tan, Hongdong

    2002-05-14

    The present invention provides an integrated multiplexed capillary electrophoresis system for the analysis of sample analytes. The system integrates and automates multiple components, such as chromatographic columns and separation capillaries, and further provides a detector for the detection of analytes eluting from the separation capillaries. The system employs multiplexed freeze/thaw valves to manage fluid flow and sample movement. The system is computer controlled and is capable of processing samples through reaction, purification, denaturation, pre-concentration, injection, separation and detection in parallel fashion. Methods employing the system of the invention are also provided.

  15. Wavelength dependence of coherent and incoherent satellite-based lidar measurements of wind velocity and aerosol backscatter

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J.; Huffaker, R. M.

    1986-01-01

    The results are presented of a capability study of Earth orbiting lidar systems, at various wavelengths from 1.06 to 10.6 microns, for the measurement of wind velocity and aerosol backscatter, and for the detection of clouds. Both coherent and incoherent lidar systems were modeled and compared for the aerosol backscatter and cloud detection applications.

  16. Detecting GNSS spoofing attacks using INS coupling

    NASA Astrophysics Data System (ADS)

    Tanil, Cagatay

    Vulnerability of Global Navigation Satellite Systems (GNSS) users to signal spoofing is a critical threat to positioning integrity, especially in aviation applications, where the consequences are potentially catastrophic. In response, this research describes and evaluates a new approach to directly detect spoofing using integrated Inertial Navigation Systems (INS) and fault detection concepts based on integrity monitoring. The monitors developed here can be implemented into positioning systems using INS/GNSS integration via 1) tightly-coupled, 2) loosely-coupled, and 3) uncoupled schemes. New evaluation methods enable the statistical computation of integrity risk resulting from a worst-case spoofing attack - without needing to simulate an unmanageably large number of individual aircraft approaches. Integrity risk is an absolute measure of safety and a well-established metric in aircraft navigation. A novel closed-form solution to the worst-case time sequence of GNSS signals is derived to maximize the integrity risk for each monitor and used in the covariance analyses. This methodology tests the performance of the monitors against the most sophisticated spoofers, capable of tracking the aircraft position - for example, by means of remote tracking or onboard sensing. Another contribution is a comprehensive closed-loop model that encapsulates the vehicle and compensator (estimator and controller) dynamics. A sensitivity analysis uses this model to quantify the leveraging impact of the vehicle's dynamic responses (e.g., to wind gusts, or to autopilot's acceleration commands) on the monitor's detection capability. The performance of the monitors is evaluated for two safety-critical terminal area navigation applications: 1) autonomous shipboard landing and 2) Boeing 747 (B747) landing assisted with Ground Based Augmentation Systems (GBAS). It is demonstrated that for both systems, the monitors are capable of meeting the most stringent precision approach and landing integrity requirements of the International Civil Aviation Organization (ICAO). The statistical evaluation methods developed here can be used as a baseline procedure in the Federal Aviation Administration's (FAA) certification of spoof-free navigation systems. The final contribution is an investigation of INS sensor quality on detection performance. This determines the minimum sensor requirements to perform standalone GNSS positioning in general en route applications with guaranteed spoofing detection integrity.

  17. Data collection and simulation of high range resolution laser radar for surface mine detection

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Chevalier, Tomas; Larsson, Håkan

    2006-05-01

    Rapid and efficient detection of surface mines, IED's (Improvised Explosive Devices) and UXO (Unexploded Ordnance) is of high priority in military conflicts. High range resolution laser radars combined with passive hyper/multispectral sensors offer an interesting concept to help solving this problem. This paper reports on laser radar data collection of various surface mines in different types of terrain. In order to evaluate the capability of 3D imaging for detecting and classifying the objects of interest a scanning laser radar was used to scan mines and surrounding terrain with high angular and range resolution. These data were then fed into a laser radar model capable of generating range waveforms for a variety of system parameters and combinations of different targets and backgrounds. We can thus simulate a potential system by down sampling to relevant pixel sizes and laser/receiver characteristics. Data, simulations and examples will be presented.

  18. Lunar Landing Trajectory Design for Onboard Hazard Detection and Avoidance

    NASA Technical Reports Server (NTRS)

    Paschall, Steve; Brady, Tye; Sostaric, Ron

    2009-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing the software and hardware technology needed to support a safe and precise landing for the next generation of lunar missions. ALHAT provides this capability through terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard detection system to select safe landing locations, and an Autonomous Guidance, Navigation, and Control (AGNC) capability to process these measurements and safely direct the vehicle to a landing location. This paper focuses on the key trajectory design issues relevant to providing an onboard Hazard Detection and Avoidance (HDA) capability for the lander. Hazard detection can be accomplished by the crew visually scanning the terrain through a window, a sensor system imaging the terrain, or some combination of both. For ALHAT, this hazard detection activity is provided by a sensor system, which either augments the crew s perception or entirely replaces the crew in the case of a robotic landing. Detecting hazards influences the trajectory design by requiring the proper perspective, range to the landing site, and sufficient time to view the terrain. Following this, the trajectory design must provide additional time to process this information and make a decision about where to safely land. During the final part of the HDA process, the trajectory design must provide sufficient margin to enable a hazard avoidance maneuver. In order to demonstrate the effects of these constraints on the landing trajectory, a tradespace of trajectory designs was created for the initial ALHAT Design Analysis Cycle (ALDAC-1) and each case evaluated with these HDA constraints active. The ALHAT analysis process, described in this paper, narrows down this tradespace and subsequently better defines the trajectory design needed to support onboard HDA. Future ALDACs will enhance this trajectory design by balancing these issues and others in an overall system design process.

  19. Flight test of a full authority Digital Electronic Engine Control system in an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Barrett, W. J.; Rembold, J. P.; Burcham, F. W.; Myers, L.

    1981-01-01

    The Digital Electronic Engine Control (DEEC) system considered is a relatively low cost digital full authority control system containing selectively redundant components and fault detection logic with capability for accommodating faults to various levels of operational capability. The DEEC digital control system is built around a 16-bit, 1.2 microsecond cycle time, CMOS microprocessor, microcomputer system with approximately 14 K of available memory. Attention is given to the control mode, component bench testing, closed loop bench testing, a failure mode and effects analysis, sea-level engine testing, simulated altitude engine testing, flight testing, the data system, cockpit, and real time display.

  20. Photoresist thin-film effects on alignment process capability

    NASA Astrophysics Data System (ADS)

    Flores, Gary E.; Flack, Warren W.

    1993-08-01

    Two photoresists were selected for alignment characterization based on their dissimilar coating properties and observed differences on alignment capability. The materials are Dynachem OFPR-800 and Shipley System 8. Both photoresists were examined on two challenging alignment levels in a submicron CMOS process, a nitride level and a planarized second level metal. An Ultratech Stepper model 1500 which features a darkfield alignment system with a broadband green light for alignment signal detection was used for this project. Initially, statistically designed linear screening experiments were performed to examine six process factors for each photoresist: viscosity, spin acceleration, spin speed, spin time, softbake time, and softbake temperature. Using the results derived from the screening experiments, a more thorough examination of the statistically significant process factors was performed. A full quadratic experimental design was conducted to examine viscosity, spin speed, and spin time coating properties on alignment. This included a characterization of both intra and inter wafer alignment control and alignment process capability. Insight to the different alignment behavior is analyzed in terms of photoresist material properties and the physical nature of the alignment detection system.

  1. Swept-source based, single-shot, multi-detectable velocity range Doppler optical coherence tomography

    PubMed Central

    Meemon, Panomsak; Rolland, Jannick P.

    2010-01-01

    Phase-Resolved Doppler Optical Coherence Tomography (PR-DOCT) allows visualization and characterization of the location, direction, velocity, and profile of flow activity embedded in a static sample structure. The detectable Velocity Dynamic Range (VDR) of each particular PR-DOCT system is governed by a detectable Doppler phase shift, a flow angle, and an acquisition time interval used to determine the Doppler phase shift. In general, the lower boundary of the detectable Doppler phase shift is limited by the phase stability of the system, while the upper boundary is limited by the π phase ambiguity. For a given range of detectable Doppler phase shift, shortening the acquisition duration will increase not only the maximum detectable velocity but unfortunately also the minimum detectable velocity, which may lead to the invisibility of a slow flow. In this paper, we present an alternative acquisition scheme for PR-DOCT that extends the lower limit of the velocity dynamic range, while maintaining the maximum detectable velocity, hence increasing the overall VDR of PR-DOCT system. The essence of the approach is to implement a technique of multi-scale measurement to simultaneously acquire multiple VDRs in a single measurement. We demonstrate an example of implementation of the technique in a dual VDR DOCT, where two Doppler maps having different detectable VDRs were simultaneously detected, processed, and displayed in real time. One was a fixed VDR DOCT capable of measuring axial velocity of up to 10.9 mm/s without phase unwrapping. The other was a variable VDR DOCT capable of adjusting its detectable VDR to reveal slow flow information down to 11.3 μm/s. The technique is shown to effectively extend the overall detectable VDR of the PR-DOCT system. Examples of real time Doppler imaging of an African frog tadpole are demonstrated using the dual-VDR DOCT system. PMID:21258521

  2. Development of intraoperative electrochemical detection: wireless instantaneous neurochemical concentration sensor for deep brain stimulation feedback

    PubMed Central

    Van Gompel, Jamie J.; Chang, Su-Youne; Goerss, Stephan J.; Kim, In Yong; Kimble, Christopher; Bennet, Kevin E.; Lee, Kendall H.

    2010-01-01

    Deep brain stimulation (DBS) is effective when there appears to be a distortion in the complex neurochemical circuitry of the brain. Currently, the mechanism of DBS is incompletely understood; however, it has been hypothesized that DBS evokes release of neurochemicals. Well-established chemical detection systems such as microdialysis and mass spectrometry are impractical if one is assessing changes that are happening on a second-to-second time scale or for chronically used implanted recordings, as would be required for DBS feedback. Electrochemical detection techniques such as fast-scan cyclic voltammetry (FSCV) and amperometry have until recently remained in the realm of basic science; however, it is enticing to apply these powerful recording technologies to clinical and translational applications. The Wireless Instantaneous Neurochemical Concentration Sensor (WINCS) currently is a research device designed for human use capable of in vivo FSCV and amperometry, sampling at subsecond time resolution. In this paper, the authors review recent advances in this electrochemical application to DBS technologies. The WINCS can detect dopamine, adenosine, and serotonin by FSCV. For example, FSCV is capable of detecting dopamine in the caudate evoked by stimulation of the subthalamic nucleus/substantia nigra in pig and rat models of DBS. It is further capable of detecting dopamine by amperometry and, when used with enzyme linked sensors, both glutamate and adenosine. In conclusion, WINCS is a highly versatile instrument that allows near real-time (millisecond) detection of neurochemicals important to DBS research. In the future, the neurochemical changes detected using WINCS may be important as surrogate markers for proper DBS placement as well as the sensor component for a “smart” DBS system with electrochemical feedback that allows automatic modulation of stimulation parameters. Current work is under way to establish WINCS use in humans. PMID:20672923

  3. Advanced power system protection and incipient fault detection and protection of spaceborne power systems

    NASA Technical Reports Server (NTRS)

    Russell, B. Don

    1989-01-01

    This research concentrated on the application of advanced signal processing, expert system, and digital technologies for the detection and control of low grade, incipient faults on spaceborne power systems. The researchers have considerable experience in the application of advanced digital technologies and the protection of terrestrial power systems. This experience was used in the current contracts to develop new approaches for protecting the electrical distribution system in spaceborne applications. The project was divided into three distinct areas: (1) investigate the applicability of fault detection algorithms developed for terrestrial power systems to the detection of faults in spaceborne systems; (2) investigate the digital hardware and architectures required to monitor and control spaceborne power systems with full capability to implement new detection and diagnostic algorithms; and (3) develop a real-time expert operating system for implementing diagnostic and protection algorithms. Significant progress has been made in each of the above areas. Several terrestrial fault detection algorithms were modified to better adapt to spaceborne power system environments. Several digital architectures were developed and evaluated in light of the fault detection algorithms.

  4. Overview of the joint services lightweight standoff chemical agent detector (JSLSCAD)

    NASA Astrophysics Data System (ADS)

    Hammond, Barney; Popa, Mirela

    2005-05-01

    This paper presents a system-level description of the Joint Services Lightweight Standoff Chemical Agent Detector (JSLSCAD). JSLSCAD is a passive Fourier Transform InfraRed (FTIR) based remote sensing system for detecting chemical warfare agents. Unlike predecessor systems, JSLSCAD is capable of operating while on the move to accomplish reconnaissance, surveillance, and contamination avoidance missions. Additionally, the system is designed to meet the needs for application on air and sea as well as ground mobile and fixed site platforms. The core of the system is a rugged Michelson interferometer with a flexure spring bearing mechanism and bi-directional data acquisition capability. The sensor is interfaced to a small, high performance spatial scanner that provides high-speed, two-axis area coverage. Command, control, and processing electronics have been coupled with real time control software and robust detection/discrimination algorithms. Operator interfaces include local and remote options in addition to interfaces to external communications networks. The modular system design facilitates interfacing to the many platforms targeted for JSLSCAD.

  5. Detection, Identification, Location, and Remote Sensing using SAW RFID Sensor Tags

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2009-01-01

    In this presentation, we will consider the problem of simultaneous detection, identification, location estimation, and remote sensing for multiple objects. In particular, we will describe the design and testing of a wireless system capable of simultaneously detecting the presence of multiple objects, identifying each object, and acquiring both a low-resolution estimate of location and a high-resolution estimate of temperature for each object based on wireless interrogation of passive surface acoustic wave (SAW) radiofrequency identification (RFID) sensor tags affixed to each object. The system is being studied for application on the lunar surface as well as for terrestrial remote sensing applications such as pre-launch monitoring and testing of spacecraft on the launch pad and monitoring of test facilities. The system utilizes a digitally beam-formed planar receiving antenna array to extend range and provide direction-of-arrival information coupled with an approximate maximum-likelihood signal processing algorithm to provide near-optimal estimation of both range and temperature. The system is capable of forming a large number of beams within the field of view and resolving the information from several tags within each beam. The combination of both spatial and waveform discrimination provides the capability to track and monitor telemetry from a large number of objects appearing simultaneously within the field of view of the receiving array. In the presentation, we will summarize the system design and illustrate several aspects of the operational characteristics and signal structure. We will examine the theoretical performance characteristics of the system and compare the theoretical results with results obtained from experiments in both controlled laboratory environments and in the field.

  6. Monolithic graphene transistor biointerface.

    PubMed

    Nam, SungWoo; Lee, Mi-Sun; Park, Jang-Ung

    2012-01-01

    We report monolithic integration of graphene and graphite for all-carbon integrated bioelectronics. First, we demonstrate that the electrical properties of graphene and graphite can be modulated by controlling the number of graphene layers, and such capabilities allow graphene to be used as active channels and graphite as metallic interconnects for all-carbon bioelectronics. Furthermore, we show that monolithic graphene-graphite devices exhibit mechanical flexibility and robustness while their electrical responses are not perturbed by mechanical deformation, demonstrating their unique electromechanical properties. Chemical sensing capability of all-carbon integrated bioelectronics is manifested in real-time, complementary pH detection. These unique capabilities of our monolithic graphene-graphite bioelectronics could be exploited in chemical and biological detection and conformal interface with biological systems in the future.

  7. Metamaterial split ring resonator as a sensitive mechanical vibration sensor

    NASA Astrophysics Data System (ADS)

    Sikha Simon, K.; Chakyar, Sreedevi P.; Andrews, Jolly; Joseph V., P.

    2017-06-01

    This paper introduces a sensitive vibration sensor based on microwave metamaterial Split Ring Resonator (SRR) capable of detecting any ground vibration. The experimental setup consists of single Broad-side Coupled SRR (BCSRR) unit fixed on a cantilever capable of sensitive vibrations. It is arranged between transmitting and receiving probes of a microwave measurement system. The absorption level variations at the resonant frequency due to the displacement from the reference plane of SRR, which is a function of the strength of external mechanical vibration, is analyzed. This portable and cost effective sensor working on a single frequency is observed to be capable of detecting even very weak vibrations. This may find potential applications in the field of tamper-proofing, mining, quarrying and earthquake sensing.

  8. Setting up a mobile Lidar (DIAL) system for detecting chemical warfare agents

    NASA Astrophysics Data System (ADS)

    Kavosh Tehrani, M.; Mohammad, M. Malek; Jaafari, E.; Mobashery, A.

    2015-03-01

    The mobile light detection and ranging DIAL system of Malek Ashtar University of Technology has been developed for the detection of chemical warfare agents whose absorption wavelengths are in the range of 9.2-10.8 μm tunable CO2 lasers of the system. In this paper, this system is first described and then ammonia detection is analyzed experimentally. Also, experimental results of detecting a sarin agent simulant, dimethyl-methyl phosphonate (DMMP), are presented. The power levels received from different ranges to detect specific concentrations of NH3 and DMMP have been measured and debated. The primary test results with a 150 ns clipped pulse width by passive pinhole plasma shutter indicate that the system is capable of monitoring several species of pollutants in the range of about 1 km, with a 20 m spatial and 2 min temporal resolution.

  9. Performance Evaluation of Target Detection with a Near-Space Vehicle-Borne Radar in Blackout Condition.

    PubMed

    Li, Yanpeng; Li, Xiang; Wang, Hongqiang; Deng, Bin; Qin, Yuliang

    2016-01-06

    Radar is a very important sensor in surveillance applications. Near-space vehicle-borne radar (NSVBR) is a novel installation of a radar system, which offers many benefits, like being highly suited to the remote sensing of extremely large areas, having a rapidly deployable capability and having low vulnerability to electronic countermeasures. Unfortunately, a target detection challenge arises because of complicated scenarios, such as nuclear blackout, rain attenuation, etc. In these cases, extra care is needed to evaluate the detection performance in blackout situations, since this a classical problem along with the application of an NSVBR. However, the existing evaluation measures are the probability of detection and the receiver operating curve (ROC), which cannot offer detailed information in such a complicated application. This work focuses on such requirements. We first investigate the effect of blackout on an electromagnetic wave. Performance evaluation indexes are then built: three evaluation indexes on the detection capability and two evaluation indexes on the robustness of the detection process. Simulation results show that the proposed measure will offer information on the detailed performance of detection. These measures are therefore very useful in detecting the target of interest in a remote sensing system and are helpful for both the NSVBR designers and users.

  10. Performance Evaluation of Target Detection with a Near-Space Vehicle-Borne Radar in Blackout Condition

    PubMed Central

    Li, Yanpeng; Li, Xiang; Wang, Hongqiang; Deng, Bin; Qin, Yuliang

    2016-01-01

    Radar is a very important sensor in surveillance applications. Near-space vehicle-borne radar (NSVBR) is a novel installation of a radar system, which offers many benefits, like being highly suited to the remote sensing of extremely large areas, having a rapidly deployable capability and having low vulnerability to electronic countermeasures. Unfortunately, a target detection challenge arises because of complicated scenarios, such as nuclear blackout, rain attenuation, etc. In these cases, extra care is needed to evaluate the detection performance in blackout situations, since this a classical problem along with the application of an NSVBR. However, the existing evaluation measures are the probability of detection and the receiver operating curve (ROC), which cannot offer detailed information in such a complicated application. This work focuses on such requirements. We first investigate the effect of blackout on an electromagnetic wave. Performance evaluation indexes are then built: three evaluation indexes on the detection capability and two evaluation indexes on the robustness of the detection process. Simulation results show that the proposed measure will offer information on the detailed performance of detection. These measures are therefore very useful in detecting the target of interest in a remote sensing system and are helpful for both the NSVBR designers and users. PMID:26751445

  11. Extreme ultraviolet patterned mask inspection performance of advanced projection electron microscope system for 11nm half-pitch generation

    NASA Astrophysics Data System (ADS)

    Hirano, Ryoichi; Iida, Susumu; Amano, Tsuyoshi; Watanabe, Hidehiro; Hatakeyama, Masahiro; Murakami, Takeshi; Suematsu, Kenichi; Terao, Kenji

    2016-03-01

    Novel projection electron microscope optics have been developed and integrated into a new inspection system named EBEYE-V30 ("Model EBEYE" is an EBARA's model code) , and the resulting system shows promise for application to half-pitch (hp) 16-nm node extreme ultraviolet lithography (EUVL) patterned mask inspection. To improve the system's inspection throughput for 11-nm hp generation defect detection, a new electron-sensitive area image sensor with a high-speed data processing unit, a bright and stable electron source, and an image capture area deflector that operates simultaneously with the mask scanning motion have been developed. A learning system has been used for the mask inspection tool to meet the requirements of hp 11-nm node EUV patterned mask inspection. Defects are identified by the projection electron microscope system using the "defectivity" from the characteristics of the acquired image. The learning system has been developed to reduce the labor and costs associated with adjustment of the detection capability to cope with newly-defined mask defects. We describe the integration of the developed elements into the inspection tool and the verification of the designed specification. We have also verified the effectiveness of the learning system, which shows enhanced detection capability for the hp 11-nm node.

  12. Microwave frequency sensor for detection of biological cells in microfluidic channels.

    PubMed

    Nikolic-Jaric, M; Romanuik, S F; Ferrier, G A; Bridges, G E; Butler, M; Sunley, K; Thomson, D J; Freeman, M R

    2009-08-12

    We present details of an apparatus for capacitive detection of biomaterials in microfluidic channels operating at microwave frequencies where dielectric effects due to interfacial polarization are minimal. A circuit model is presented, which can be used to adapt this detection system for use in other microfluidic applications and to identify ones where it would not be suitable. The detection system is based on a microwave coupled transmission line resonator integrated into an interferometer. At 1.5 GHz the system is capable of detecting changes in capacitance of 650 zF with a 50 Hz bandwidth. This system is well suited to the detection of biomaterials in a variety of suspending fluids, including phosphate-buffered saline. Applications involving both model particles (polystyrene microspheres) and living cells-baker's yeast (Saccharomyces cerevisiae) and Chinese hamster ovary cells-are presented.

  13. Applying a System-of-Systems Engineering Perspective to Current and Future Army Acquisitions

    DTIC Science & Technology

    2015-06-01

    of detecting short- and long-range rockets and mortars. They currently provide detection capability for the C-RAM ( Higgins 2007). The weapon system... Higgins 2007). This is where the Army Air Defense came into play. The decision makers demonstrated understanding that the FAAD C2 and AMDWS...from the mortars 28 will endanger civilians. As stated in Higgins ’ study, “At the tactical level, the clearing of fires before the gun could

  14. Instrumentation System Diagnoses a Thermocouple

    NASA Technical Reports Server (NTRS)

    Perotti, Jose; Santiago, Josephine; Mata, Carlos; Vokrot, Peter; Zavala, Carlos; Burns, Bradley

    2008-01-01

    An improved self-validating thermocouple (SVT) instrumentation system not only acquires readings from a thermocouple but is also capable of detecting deterioration and a variety of discrete faults in the thermocouple and its lead wires. Prime examples of detectable discrete faults and deterioration include open- and short-circuit conditions and debonding of the thermocouple junction from the object, the temperature of which one seeks to measure. Debonding is the most common cause of errors in thermocouple measurements, but most prior SVT instrumentation systems have not been capable of detecting debonding. The improved SVT instrumentation system includes power circuitry, a cold-junction compensator, signal-conditioning circuitry, pulse-width-modulation (PWM) thermocouple-excitation circuitry, an analog-to-digital converter (ADC), a digital data processor, and a universal serial bus (USB) interface. The system can operate in any of the following three modes: temperature measurement, thermocouple validation, and bonding/debonding detection. The software running in the processor includes components that implement statistical algorithms to evaluate the state of the thermocouple and the instrumentation system. When the power is first turned on, the user can elect to start a diagnosis/ monitoring sequence, in which the PWM is used to estimate the characteristic times corresponding to the correct configuration. The user also has the option of using previous diagnostic values, which are stored in an electrically erasable, programmable read-only memory so that they are available every time the power is turned on.

  15. Development of a multiplex assay for genus- and species-specific detection of Phytophthora based on differences in mitochondrial gene order

    Treesearch

    G. J. Bilodeau; F. N. Martin; M. D. Coffey; C. L. Blomquist

    2014-01-01

    A molecular diagnostic assay for Phytophthora spp. that is specific, sensitive, has both genus- and species-specific detection capabilities multiplexed, and can be used to systematically develop markers for detection of a wide range of species would facilitate research and regulatory efforts. To address this need, a marker system was developed...

  16. Detection systems for mass spectrometry imaging: a perspective on novel developments with a focus on active pixel detectors.

    PubMed

    Jungmann, Julia H; Heeren, Ron M A

    2013-01-15

    Instrumental developments for imaging and individual particle detection for biomolecular mass spectrometry (imaging) and fundamental atomic and molecular physics studies are reviewed. Ion-counting detectors, array detection systems and high mass detectors for mass spectrometry (imaging) are treated. State-of-the-art detection systems for multi-dimensional ion, electron and photon detection are highlighted. Their application and performance in three different imaging modes--integrated, selected and spectral image detection--are described. Electro-optical and microchannel-plate-based systems are contrasted. The analytical capabilities of solid-state pixel detectors--both charge coupled device (CCD) and complementary metal oxide semiconductor (CMOS) chips--are introduced. The Medipix/Timepix detector family is described as an example of a CMOS hybrid active pixel sensor. Alternative imaging methods for particle detection and their potential for future applications are investigated. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Integrated System Health Management: Foundational Concepts, Approach, and Implementation

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    2009-01-01

    A sound basis to guide the community in the conception and implementation of ISHM (Integrated System Health Management) capability in operational systems was provided. The concept of "ISHM Model of a System" and a related architecture defined as a unique Data, Information, and Knowledge (DIaK) architecture were described. The ISHM architecture is independent of the typical system architecture, which is based on grouping physical elements that are assembled to make up a subsystem, and subsystems combine to form systems, etc. It was emphasized that ISHM capability needs to be implemented first at a low functional capability level (FCL), or limited ability to detect anomalies, diagnose, determine consequences, etc. As algorithms and tools to augment or improve the FCL are identified, they should be incorporated into the system. This means that the architecture, DIaK management, and software, must be modular and standards-based, in order to enable systematic augmentation of FCL (no ad-hoc modifications). A set of technologies (and tools) needed to implement ISHM were described. One essential tool is a software environment to create the ISHM Model. The software environment encapsulates DIaK, and an infrastructure to focus DIaK on determining health (detect anomalies, determine causes, determine effects, and provide integrated awareness of the system to the operator). The environment includes gateways to communicate in accordance to standards, specially the IEEE 1451.1 Standard for Smart Sensors and Actuators.

  18. Utilization of artificial intelligence techniques for the Space Station power system

    NASA Technical Reports Server (NTRS)

    Evatt, Thomas C.; Gholdston, Edward W.

    1988-01-01

    Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.

  19. An approach to evaluating reactive airborne wind shear systems

    NASA Technical Reports Server (NTRS)

    Gibson, Joseph P., Jr.

    1992-01-01

    An approach to evaluating reactive airborne windshear detection systems was developed to support a deployment study for future FAA ground-based windshear detection systems. The deployment study methodology assesses potential future safety enhancements beyond planned capabilities. The reactive airborne systems will be an integral part of planned windshear safety enhancements. The approach to evaluating reactive airborne systems involves separate analyses for both landing and take-off scenario. The analysis estimates the probability of effective warning considering several factors including NASA energy height loss characteristics, reactive alert timing, and a probability distribution for microburst strength.

  20. Integrated System Health Management: Foundational Concepts, Approach, and Implementation

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    2009-01-01

    Implementation of integrated system health management (ISHM) capability is fundamentally linked to the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system. It is akin to having a team of experts who are all individually and collectively observing and analyzing a complex system, and communicating effectively with each other in order to arrive to an accurate and reliable assessment of its health. This paper presents concepts, procedures, and a specific approach as a foundation for implementing a credible ISHM capability. The capability stresses integration of DIaK from all elements of a subsystem. The intent is also to make possible implementation of on-board ISHM capability, in contrast to a remote capability. The information presented is the result of many years of research, development, and maturation of technologies, and of prototype implementations in operational systems (rocket engine test facilities). The paper will address the following topics: ISHM Model of a system; detection of anomaly indicators; determination and confirmation of anomalies; diagnostic of causes and determination of effects; consistency checking cycle; sharing of health information; sharing of display information; storage and retrieval of health information; and example implementation.

  1. Digital image profilers for detecting faint sources which have bright companions, phase 2

    NASA Technical Reports Server (NTRS)

    Morris, Elena; Flint, Graham

    1991-01-01

    A breadboard image profiling system developed for the first phase of this project demonstrated the potential for detecting extremely faint optical sources in the presence of light companions. Experimental data derived from laboratory testing of the device supports the theory that image profilers of this type may approach the theoretical limit imposed by photon statistics. The objective of Phase 2 of this program is the development of a ground-based multichannel image profiling system capable of detecting faint stellar objects slightly displaced from brighter stars. We have finalized the multichannel image profiling system and attempted three field tests.

  2. 40 CFR 63.1383 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manufacturer to be capable of detecting PM emissions at concentrations of 10 milligrams per actual cubic meter (0.0044 grains per actual cubic foot) or less. (ii) The bag leak detection system sensor must produce... be monitored and recorded once per day. (2) On any new glass-melting furnace, the owner or operator...

  3. Capacitance-based damage detection sensing for aerospace structural composites

    NASA Astrophysics Data System (ADS)

    Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.

    2014-04-01

    Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (< 0.1 mm), but their detection capabilities is limited by defect locations and orientations and require massive inspection devices. System health monitoring (SHM) methods are often paired with NDE technologies to signal out sensed damage, but their data collection and analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket fairings for example. The sensors can also be operating in space and harsh environment such as high temperature and vacuum.

  4. Acoustic Emission and Echo Signal Compensation Techniques Applied to an Ultrasonic Logging-While-Drilling Caliper.

    PubMed

    Yao, Yongchao; Ju, Xiaodong; Lu, Junqiang; Men, Baiyong

    2017-06-10

    A logging-while-drilling (LWD) caliper is a tool used for the real-time measurement of a borehole diameter in oil drilling engineering. This study introduces the mechanical structure and working principle of a new LWD caliper based on ultrasonic distance measurement (UDM). The detection range is a major performance index of a UDM system. This index is determined by the blind zone length and remote reflecting interface detection capability of the system. To reduce the blind zone length and detect near the reflecting interface, a full bridge acoustic emission technique based on bootstrap gate driver (BGD) and metal-oxide-semiconductor field effect transistor (MOSFET) is designed by analyzing the working principle and impedance characteristics of a given piezoelectric transducer. To detect the remote reflecting interface and reduce the dynamic range of the received echo signals, the relationships between the echo amplitude and propagation distance of ultrasonic waves are determined. A signal compensation technique based on time-varying amplification theory, which can automatically change the gain according to the echo arrival time is designed. Lastly, the aforementioned techniques and corresponding circuits are experimentally verified. Results show that the blind zone length in the UDM system of the LWD caliper is significantly reduced and the capability to detect the remote reflecting interface is considerably improved.

  5. Acoustic Emission and Echo Signal Compensation Techniques Applied to an Ultrasonic Logging-While-Drilling Caliper

    PubMed Central

    Yao, Yongchao; Ju, Xiaodong; Lu, Junqiang; Men, Baiyong

    2017-01-01

    A logging-while-drilling (LWD) caliper is a tool used for the real-time measurement of a borehole diameter in oil drilling engineering. This study introduces the mechanical structure and working principle of a new LWD caliper based on ultrasonic distance measurement (UDM). The detection range is a major performance index of a UDM system. This index is determined by the blind zone length and remote reflecting interface detection capability of the system. To reduce the blind zone length and detect near the reflecting interface, a full bridge acoustic emission technique based on bootstrap gate driver (BGD) and metal-oxide-semiconductor field effect transistor (MOSFET) is designed by analyzing the working principle and impedance characteristics of a given piezoelectric transducer. To detect the remote reflecting interface and reduce the dynamic range of the received echo signals, the relationships between the echo amplitude and propagation distance of ultrasonic waves are determined. A signal compensation technique based on time-varying amplification theory, which can automatically change the gain according to the echo arrival time is designed. Lastly, the aforementioned techniques and corresponding circuits are experimentally verified. Results show that the blind zone length in the UDM system of the LWD caliper is significantly reduced and the capability to detect the remote reflecting interface is considerably improved. PMID:28604603

  6. NIITEK-NVESD AMDS program and interim field-ready system

    NASA Astrophysics Data System (ADS)

    Hibbard, Mark W.; Etebari, Ali

    2010-04-01

    NIITEK (Non-Intrusive Inspection Technology, Inc) develops and fields vehicle-mounted mine and buried threat detection systems. Since 2003, the NIITEK has developed and tested a remote robot-mounted mine detection system for use in the NVESD AMDS program. This paper will discuss the road map of development since the outset of the program, including transition from a data collection platform towards a militarized field-ready system for immediate use as a remote countermine and buried threat detection solution with real-time autonomous threat classification. The detection system payload has been integrated on both the iRobot Packbot and the Foster-Miller Talon robot. This brief will discuss the requirements for a successful near-term system, the progressive development of the system, our current real-time capabilities, and our planned upgrades for moving into and supporting field testing, evaluation, and ongoing operation.

  7. Combining hyperspectral imaging and Raman spectroscopy for remote chemical sensing

    NASA Astrophysics Data System (ADS)

    Ingram, John M.; Lo, Edsanter

    2008-04-01

    The Photonics Research Center at the United States Military Academy is conducting research to demonstrate the feasibility of combining hyperspectral imaging and Raman spectroscopy for remote chemical detection over a broad area of interest. One limitation of future trace detection systems is their ability to analyze large areas of view. Hyperspectral imaging provides a balance between fast spectral analysis and scanning area. Integration of a hyperspectral system capable of remote chemical detection will greatly enhance our soldiers' ability to see the battlefield to make threat related decisions. It can also queue the trace detection systems onto the correct interrogation area saving time and reconnaissance/surveillance resources. This research develops both the sensor design and the detection/discrimination algorithms. The one meter remote detection without background radiation is a simple proof of concept.

  8. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers.

    PubMed

    López, Yuri Álvarez; Lorenzo, José Ángel Martínez

    2017-01-15

    One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS) techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated.

  9. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers

    PubMed Central

    Álvarez López, Yuri; Martínez Lorenzo, José Ángel

    2017-01-01

    One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS) techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated. PMID:28098841

  10. Detecting method of subjects' 3D positions and experimental advanced camera control system

    NASA Astrophysics Data System (ADS)

    Kato, Daiichiro; Abe, Kazuo; Ishikawa, Akio; Yamada, Mitsuho; Suzuki, Takahito; Kuwashima, Shigesumi

    1997-04-01

    Steady progress is being made in the development of an intelligent robot camera capable of automatically shooting pictures with a powerful sense of reality or tracking objects whose shooting requires advanced techniques. Currently, only experienced broadcasting cameramen can provide these pictures.TO develop an intelligent robot camera with these abilities, we need to clearly understand how a broadcasting cameraman assesses his shooting situation and how his camera is moved during shooting. We use a real- time analyzer to study a cameraman's work and his gaze movements at studios and during sports broadcasts. This time, we have developed a detecting method of subjects' 3D positions and an experimental camera control system to help us further understand the movements required for an intelligent robot camera. The features are as follows: (1) Two sensor cameras shoot a moving subject and detect colors, producing its 3D coordinates. (2) Capable of driving a camera based on camera movement data obtained by a real-time analyzer. 'Moving shoot' is the name we have given to the object position detection technology on which this system is based. We used it in a soccer game, producing computer graphics showing how players moved. These results will also be reported.

  11. Automatic Fall Detection System Based on the Combined Use of a Smartphone and a Smartwatch.

    PubMed

    Casilari, Eduardo; Oviedo-Jiménez, Miguel A

    2015-01-01

    Due to their widespread popularity, decreasing costs, built-in sensors, computing power and communication capabilities, Android-based personal devices are being seen as an appealing technology for the deployment of wearable fall detection systems. In contrast with previous solutions in the existing literature, which are based on the performance of a single element (a smartphone), this paper proposes and evaluates a fall detection system that benefits from the detection performed by two popular personal devices: a smartphone and a smartwatch (both provided with an embedded accelerometer and a gyroscope). In the proposed architecture, a specific application in each component permanently tracks and analyses the patient's movements. Diverse fall detection algorithms (commonly employed in the literature) were implemented in the developed Android apps to discriminate falls from the conventional activities of daily living of the patient. As a novelty, a fall is only assumed to have occurred if it is simultaneously and independently detected by the two Android devices (which can interact via Bluetooth communication). The system was systematically evaluated in an experimental testbed with actual test subjects simulating a set of falls and conventional movements associated with activities of daily living. The tests were repeated by varying the detection algorithm as well as the pre-defined mobility patterns executed by the subjects (i.e., the typology of the falls and non-fall movements). The proposed system was compared with the cases where only one device (the smartphone or the smartwatch) is considered to recognize and discriminate the falls. The obtained results show that the joint use of the two detection devices clearly increases the system's capability to avoid false alarms or 'false positives' (those conventional movements misidentified as falls) while maintaining the effectiveness of the detection decisions (that is to say, without increasing the ratio of 'false negatives' or actual falls that remain undetected).

  12. Statistical Hypothesis Testing using CNN Features for Synthesis of Adversarial Counterexamples to Human and Object Detection Vision Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raj, Sunny; Jha, Sumit Kumar; Pullum, Laura L.

    Validating the correctness of human detection vision systems is crucial for safety applications such as pedestrian collision avoidance in autonomous vehicles. The enormous space of possible inputs to such an intelligent system makes it difficult to design test cases for such systems. In this report, we present our tool MAYA that uses an error model derived from a convolutional neural network (CNN) to explore the space of images similar to a given input image, and then tests the correctness of a given human or object detection system on such perturbed images. We demonstrate the capability of our tool on themore » pre-trained Histogram-of-Oriented-Gradients (HOG) human detection algorithm implemented in the popular OpenCV toolset and the Caffe object detection system pre-trained on the ImageNet benchmark. Our tool may serve as a testing resource for the designers of intelligent human and object detection systems.« less

  13. Preliminary Cost Benefit Assessment of Systems for Detection of Hazardous Weather. Volume I,

    DTIC Science & Technology

    1981-07-01

    not be sufficient for adequate stream flow forecasting , it has important potential for real - time flash flood warning. This was illustrated by the 1977...provide a finer spatial resolution of the gridded data. See Table 9. 42 The results of a demonstration of the real - time capabilities of a radar-man system ...detailed real time measurement capabilities and scope for quantitative forecasting is most likely to provide the degree of lead time required if maximum

  14. ISHM Implementation for Constellation Systems

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Holland, Randy; Schmalzel, John; Duncavage, Dan; Crocker, Alan; Alena, Rick

    2006-01-01

    Integrated System Health Management (ISHM) is a capability that focuses on determining the condition (health) of every element in a complex System (detect anomalies, diagnose causes, prognosis of future anomalies), and provide data, information, and knowledge (DIaK) "not just data" to control systems for safe and effective operation. This capability is currently done by large teams of people, primarily from ground, but needs to be embedded on-board systems to a higher degree to enable NASA's new Exploration Mission (long term travel and stay in space), while increasing safety and decreasing life cycle costs of systems (vehicles; platforms; bases or outposts; and ground test, launch, and processing operations). This viewgraph presentation reviews the use of ISHM for the Constellation system.

  15. A portable microscopy system for fluorescence, polarized, and brightfield imaging

    NASA Astrophysics Data System (ADS)

    Gordon, Paul; Wattinger, Rolla; Lewis, Cody; Venancio, Vinicius Paula; Mertens-Talcott, Susanne U.; Coté, Gerard

    2018-02-01

    The use of mobile phones to conduct diagnostic microscopy at the point-of-care presents intriguing possibilities for the advancement of high-quality medical care in remote settings. However, it is challenging to create a single device that can adapt to the ever-varying camera technologies in phones or that can image with the customization that multiple modalities require for applications such as malaria diagnosis. A portable multi-modal microscope system is presented that utilizes a Raspberry Pi to collect and transmit data wirelessly to a myriad of electronic devices for image analysis. The microscopy system is capable of providing to the user correlated brightfield, polarized, and fluorescent images of samples fixed on traditional microscopy slides. The multimodal diagnostic capabilities of the microscope were assessed by measuring parasitemia of Plasmodium falciparum-infected thin blood smears. The device is capable of detecting fluorescently-labeled DNA using FITC excitation (490 nm) and emission (525 nm), the birefringent P. falciparum byproduct hemozoin, and detecting brightfield absorption with a resolution of 0.78 micrometers (element 9-3 of a 1951 Air Force Target). This microscopy system is a novel portable imaging tool that may be a viable candidate for field implementation if challenges of system durability, cost considerations, and full automation can be overcome.

  16. Fabrication and testing of a standoff trace explosives detection system

    NASA Astrophysics Data System (ADS)

    Waterbury, Robert; Rose, Jeremy; Vunck, Darius; Blank, Thomas; Pohl, Ken; Ford, Alan; McVay, Troy; Dottery, Ed

    2011-05-01

    In order to stop the transportation of materials used for IED manufacture, a standoff checkpoint explosives detection system (CPEDS) has recently been fabricated. The system incorporates multi-wavelength Raman spectroscopy and laser induced breakdown spectroscopy (LIBS) modalities with a LIBS enhancement technique called TEPS to be added later into a single unit for trace detection of explosives at military checkpoints. Newly developed spectrometers and other required sensors all integrated with a custom graphical user interface for producing simplified, real-time detection results are also included in the system. All equipment is housed in a military ruggedized shelter for potential deployment intheater for signature collection. Laboratory and performance data, as well as the construction of the CPEDS system and its potential deployment capabilities, will be presented in the current work.

  17. Helmet-mounted acoustic array for hostile fire detection and localization in an urban environment

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2008-04-01

    The detection and localization of hostile weapons firing has been demonstrated successfully with acoustic sensor arrays on unattended ground sensors (UGS), ground-vehicles, and unmanned aerial vehicles (UAVs). Some of the more mature systems have demonstrated significant capabilities and provide direct support to ongoing counter-sniper operations. The Army Research Laboratory (ARL) is conducting research and development for a helmet-mounted system to acoustically detect and localize small arms firing, or other events such as RPG, mortars, and explosions, as well as other non-transient signatures. Since today's soldier is quickly being asked to take on more and more reconnaissance, surveillance, & target acquisition (RSTA) functions, sensor augmentation enables him to become a mobile and networked sensor node on the complex and dynamic battlefield. Having a body-worn threat detection and localization capability for events that pose an immediate danger to the soldiers around him can significantly enhance their survivability and lethality, as well as enable him to provide and use situational awareness clues on the networked battlefield. This paper addresses some of the difficulties encountered by an acoustic system in an urban environment. Complex reverberation, multipath, diffraction, and signature masking by building structures makes this a very harsh environment for robust detection and classification of shockwaves and muzzle blasts. Multifunctional acoustic detection arrays can provide persistent surveillance and enhanced situational awareness for every soldier.

  18. Development of a Fluorescence Resonance Energy Transfer (FRET)-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense

    PubMed Central

    Mohd Bakhori, Noremylia; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir

    2013-01-01

    An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10−9 M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense. PMID:25587406

  19. Rotorcraft Diagnostics

    NASA Technical Reports Server (NTRS)

    Haste, Deepak; Azam, Mohammad; Ghoshal, Sudipto; Monte, James

    2012-01-01

    Health management (HM) in any engineering systems requires adequate understanding about the system s functioning; a sufficient amount of monitored data; the capability to extract, analyze, and collate information; and the capability to combine understanding and information for HM-related estimation and decision-making. Rotorcraft systems are, in general, highly complex. Obtaining adequate understanding about functioning of such systems is quite difficult, because of the proprietary (restricted access) nature of their designs and dynamic models. Development of an EIM (exact inverse map) solution for rotorcraft requires a process that can overcome the abovementioned difficulties and maximally utilize monitored information for HM facilitation via employing advanced analytic techniques. The goal was to develop a versatile HM solution for rotorcraft for facilitation of the Condition Based Maintenance Plus (CBM+) capabilities. The effort was geared towards developing analytic and reasoning techniques, and proving the ability to embed the required capabilities on a rotorcraft platform, paving the way for implementing the solution on an aircraft-level system for consolidation and reporting. The solution for rotorcraft can he used offboard or embedded directly onto a rotorcraft system. The envisioned solution utilizes available monitored and archived data for real-time fault detection and identification, failure precursor identification, and offline fault detection and diagnostics, health condition forecasting, optimal guided troubleshooting, and maintenance decision support. A variant of the onboard version is a self-contained hardware and software (HW+SW) package that can be embedded on rotorcraft systems. The HM solution comprises components that gather/ingest data and information, perform information/feature extraction, analyze information in conjunction with the dependency/diagnostic model of the target system, facilitate optimal guided troubleshooting, and offer decision support for optimal maintenance.

  20. Fiber optic gas detection system for health monitoring of oil-filled transformer

    NASA Astrophysics Data System (ADS)

    Ho, H. L.; Ju, J.; Jin, W.

    2009-10-01

    This paper reports the development of a fiber-optic gas detection system capable of detecting three types of dissolved fault gases in oil-filled power transformers or equipment. The system is based on absorption spectroscopy and the target gases include acetylene (C2H2), methane (CH4) and ethylene (C2H4). Low-cost multi-pass sensor heads using fiber coupled micro-optic cells are employed for which the interaction length is up to 4m. Also, reference gas cells made of photonic bandgap (PBG) fiber are implemented. The minimum detectable gas concentrations for methane, acetylene and ethylene are 5ppm, 2ppm and 50ppm respectively.

  1. CTBT infrasound network performance to detect the 2013 Russian fireball event

    DOE PAGES

    Pilger, Christoph; Ceranna, Lars; Ross, J. Ole; ...

    2015-03-18

    The explosive fragmentation of the 2013 Chelyabinsk meteorite generated a large airburst with an equivalent yield of 500 kT TNT. It is the most energetic event recorded by the infrasound component of the Comprehensive Nuclear-Test-Ban Treaty-International Monitoring System (CTBT-IMS), globally detected by 20 out of 42 operational stations. This study performs a station-by-station estimation of the IMS detection capability to explain infrasound detections and nondetections from short to long distances, using the Chelyabinsk meteorite as global reference event. Investigated parameters influencing the detection capability are the directivity of the line source signal, the ducting of acoustic energy, and the individualmore » noise conditions at each station. Findings include a clear detection preference for stations perpendicular to the meteorite trajectory, even over large distances. Only a weak influence of stratospheric ducting is observed for this low-frequency case. As a result, a strong dependence on the diurnal variability of background noise levels at each station is observed, favoring nocturnal detections.« less

  2. Detection, Identification, Location, and Remote Sensing Using SAW RFID Sensor Tags

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.; Kennedy, Timothy F.; Williams, Robert M.; Fink, Patrick W.; Ngo, Phong H.

    2009-01-01

    The Electromagnetic Systems Branch (EV4) of the Avionic Systems Division at NASA Johnson Space Center in Houston, TX is studying the utility of surface acoustic wave (SAW) radiofrequency identification (RFID) tags for multiple wireless applications including detection, identification, tracking, and remote sensing of objects on the lunar surface, monitoring of environmental test facilities, structural shape and health monitoring, and nondestructive test and evaluation of assets. For all of these applications, it is anticipated that the system utilized to interrogate the SAW RFID tags may need to operate at fairly long range and in the presence of considerable multipath and multiple-access interference. Towards that end, EV4 is developing a prototype SAW RFID wireless interrogation system for use in such environments called the Passive Adaptive RFID Sensor Equipment (PARSED) system. The system utilizes a digitally beam-formed planar receiving antenna array to extend range and provide direction-of-arrival information coupled with an approximate maximum-likelihood signal processing algorithm to provide near-optimal estimation of both range and temperature. The system is capable of forming a large number of beams within the field of view and resolving the information from several tags within each beam. The combination of both spatial and waveform discrimination provides the capability to track and monitor telemetry from a large number of objects appearing simultaneously within the field of view of the receiving array. In this paper, we will consider the application of the PARSEQ system to the problem of simultaneous detection, identification, localization, and temperature estimation for multiple objects. We will summarize the overall design of the PARSEQ system and present a detailed description of the design and performance of the signal detection and estimation algorithms incorporated in the system. The system is currently configured only to measure temperature (jointly with range and tag ID), but future versions will be revised to measure parameters other than temperature as SAW tags capable of interfacing with external sensors become available. It is anticipated that the estimation of arbitrary parameters measured using SAW-based sensors will be based on techniques very similar to the joint range and temperature estimation techniques described in this paper.

  3. Applying a System-of-Systems Engineering Perspective to Current and Future Army Acquisitions

    DTIC Science & Technology

    2015-06-01

    detecting short- and long-range rockets and mortars. They currently provide detection capability for the C-RAM ( Higgins 2007). The weapon system for... Higgins 2007). This is where the Army Air Defense came into play. The decision makers demonstrated understanding that the FAAD C2 and AMDWS provided...the mortars 28 will endanger civilians. As stated in Higgins ’ study, “At the tactical level, the clearing of fires before the gun could engage a

  4. Experimental evaluation of penetration capabilities of a Geiger-mode APD array laser radar system

    NASA Astrophysics Data System (ADS)

    Jonsson, Per; Tulldahl, Michael; Hedborg, Julia; Henriksson, Markus; Sjöqvist, Lars

    2017-10-01

    Laser radar 3D imaging has the potential to improve target recognition in many scenarios. One case that is challenging for most optical sensors is to recognize targets hidden in vegetation or behind camouflage. The range resolution of timeof- flight 3D sensors allows segmentation of obscuration and target if the surfaces are separated far enough so that they can be resolved as two distances. Systems based on time-correlated single-photon counting (TCSPC) have the potential to resolve surfaces closer to each other compared to laser radar systems based on proportional mode detection technologies and is therefore especially interesting. Photon counting detection is commonly performed with Geigermode Avalanche Photodiodes (GmAPD) that have the disadvantage that they can only detect one photon per laser pulse per pixel. A strong return from an obscuring object may saturate the detector and thus limit the possibility to detect the hidden target even if photons from the target reach the detector. The operational range where good foliage penetration is observed is therefore relatively narrow for GmAPD systems. In this paper we investigate the penetration capability through semi-transparent surfaces for a laser radar with a 128×32 pixel GmAPD array and a 1542 nm wavelength laser operating at a pulse repetition frequency of 90 kHz. In the evaluation a screen was placed behind different canvases with varying transmissions and the detected signals from the surfaces for different laser intensities were measured. The maximum return from the second surface occurs when the total detection probability is around 0.65-0.75 per pulse. At higher laser excitation power the signal from the second surface decreases. To optimize the foliage penetration capability it is thus necessary to adaptively control the laser power to keep the returned signal within this region. In addition to the experimental results, simulations to study the influence of the pulse energy on penetration through foliage in a scene with targets behind vegetation are presented. The optimum detection of targets occurs here at a slightly higher total photon count rate probability because a number of pixel have no obscuration in front the target in their field of view.

  5. 46 CFR 58.25-85 - Special requirements for tank vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...” in paragraph (g) of this section refers to the pressure-containing components in hydraulic or electro... least two identical hydraulic-power actuating systems, which, acting simultaneously in normal operation... hydraulic fluid from one system must be capable of being detected, and the defective system automatically...

  6. 46 CFR 58.25-85 - Special requirements for tank vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...” in paragraph (g) of this section refers to the pressure-containing components in hydraulic or electro... least two identical hydraulic-power actuating systems, which, acting simultaneously in normal operation... hydraulic fluid from one system must be capable of being detected, and the defective system automatically...

  7. Near-infrared face recognition utilizing open CV software

    NASA Astrophysics Data System (ADS)

    Sellami, Louiza; Ngo, Hau; Fowler, Chris J.; Kearney, Liam M.

    2014-06-01

    Commercially available hardware, freely available algorithms, and authors' developed software are synergized successfully to detect and recognize subjects in an environment without visible light. This project integrates three major components: an illumination device operating in near infrared (NIR) spectrum, a NIR capable camera and a software algorithm capable of performing image manipulation, facial detection and recognition. Focusing our efforts in the near infrared spectrum allows the low budget system to operate covertly while still allowing for accurate face recognition. In doing so a valuable function has been developed which presents potential benefits in future civilian and military security and surveillance operations.

  8. Thermal bioaerosol cloud tracking with Bayesian classification

    NASA Astrophysics Data System (ADS)

    Smith, Christian W.; Dupuis, Julia R.; Schundler, Elizabeth C.; Marinelli, William J.

    2017-05-01

    The development of a wide area, bioaerosol early warning capability employing existing uncooled thermal imaging systems used for persistent perimeter surveillance is discussed. The capability exploits thermal imagers with other available data streams including meteorological data and employs a recursive Bayesian classifier to detect, track, and classify observed thermal objects with attributes consistent with a bioaerosol plume. Target detection is achieved based on similarity to a phenomenological model which predicts the scene-dependent thermal signature of bioaerosol plumes. Change detection in thermal sensor data is combined with local meteorological data to locate targets with the appropriate thermal characteristics. Target motion is tracked utilizing a Kalman filter and nearly constant velocity motion model for cloud state estimation. Track management is performed using a logic-based upkeep system, and data association is accomplished using a combinatorial optimization technique. Bioaerosol threat classification is determined using a recursive Bayesian classifier to quantify the threat probability of each tracked object. The classifier can accept additional inputs from visible imagers, acoustic sensors, and point biological sensors to improve classification confidence. This capability was successfully demonstrated for bioaerosol simulant releases during field testing at Dugway Proving Grounds. Standoff detection at a range of 700m was achieved for as little as 500g of anthrax simulant. Developmental test results will be reviewed for a range of simulant releases, and future development and transition plans for the bioaerosol early warning platform will be discussed.

  9. Autonomous collection of dynamically-cued multi-sensor imagery

    NASA Astrophysics Data System (ADS)

    Daniel, Brian; Wilson, Michael L.; Edelberg, Jason; Jensen, Mark; Johnson, Troy; Anderson, Scott

    2011-05-01

    The availability of imagery simultaneously collected from sensors of disparate modalities enhances an image analyst's situational awareness and expands the overall detection capability to a larger array of target classes. Dynamic cooperation between sensors is increasingly important for the collection of coincident data from multiple sensors either on the same or on different platforms suitable for UAV deployment. Of particular interest is autonomous collaboration between wide area survey detection, high-resolution inspection, and RF sensors that span large segments of the electromagnetic spectrum. The Naval Research Laboratory (NRL) in conjunction with the Space Dynamics Laboratory (SDL) is building sensors with such networked communications capability and is conducting field tests to demonstrate the feasibility of collaborative sensor data collection and exploitation. Example survey / detection sensors include: NuSAR (NRL Unmanned SAR), a UAV compatible synthetic aperture radar system; microHSI, an NRL developed lightweight hyper-spectral imager; RASAR (Real-time Autonomous SAR), a lightweight podded synthetic aperture radar; and N-WAPSS-16 (Nighttime Wide-Area Persistent Surveillance Sensor-16Mpix), a MWIR large array gimbaled system. From these sensors, detected target cues are automatically sent to the NRL/SDL developed EyePod, a high-resolution, narrow FOV EO/IR sensor, for target inspection. In addition to this cooperative data collection, EyePod's real-time, autonomous target tracking capabilities will be demonstrated. Preliminary results and target analysis will be presented.

  10. Sensor Failure Detection of FASSIP System using Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Sudarno; Juarsa, Mulya; Santosa, Kussigit; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    In the nuclear reactor accident of Fukushima Daiichi in Japan, the damages of core and pressure vessel were caused by the failure of its active cooling system (diesel generator was inundated by tsunami). Thus researches on passive cooling system for Nuclear Power Plant are performed to improve the safety aspects of nuclear reactors. The FASSIP system (Passive System Simulation Facility) is an installation used to study the characteristics of passive cooling systems at nuclear power plants. The accuracy of sensor measurement of FASSIP system is essential, because as the basis for determining the characteristics of a passive cooling system. In this research, a sensor failure detection method for FASSIP system is developed, so the indication of sensor failures can be detected early. The method used is Principal Component Analysis (PCA) to reduce the dimension of the sensor, with the Squarred Prediction Error (SPE) and statistic Hotteling criteria for detecting sensor failure indication. The results shows that PCA method is capable to detect the occurrence of a failure at any sensor.

  11. Quantifying the tracking capability of space-based AIS systems

    NASA Astrophysics Data System (ADS)

    Skauen, Andreas Nordmo

    2016-01-01

    The Norwegian Defence Research Establishment (FFI) has operated three Automatic Identification System (AIS) receivers in space. Two are on dedicated nano-satellites, AISSat-1 and AISSat-2. The third, the NORAIS Receiver, was installed on the International Space Station. A general method for calculating the upper bound on the tracking capability of a space-based AIS system has been developed and the results from the algorithm applied to AISSat-1 and the NORAIS Receiver individually. In addition, a constellation of AISSat-1 and AISSat-2 is presented. The tracking capability is defined as the probability of re-detecting ships as they move around the globe and is explained to represent and upper bound on a space-based AIS system performance. AISSat-1 and AISSat-2 operates on the nominal AIS1 and AIS2 channels, while the NORAIS Receiver data used are from operations on the dedicated space AIS channels, AIS3 and AIS4. The improved tracking capability of operations on the space AIS channels is presented.

  12. Integrated System Health Management Development Toolkit

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge; Smith, Harvey; Morris, Jon

    2009-01-01

    This software toolkit is designed to model complex systems for the implementation of embedded Integrated System Health Management (ISHM) capability, which focuses on determining the condition (health) of every element in a complex system (detect anomalies, diagnose causes, and predict future anomalies), and to provide data, information, and knowledge (DIaK) to control systems for safe and effective operation.

  13. Classifying threats with a 14-MeV neutron interrogation system.

    PubMed

    Strellis, Dan; Gozani, Tsahi

    2005-01-01

    SeaPODDS (Sea Portable Drug Detection System) is a non-intrusive tool for detecting concealed threats in hidden compartments of maritime vessels. This system consists of an electronic neutron generator, a gamma-ray detector, a data acquisition computer, and a laptop computer user-interface. Although initially developed to detect narcotics, recent algorithm developments have shown that the system is capable of correctly classifying a threat into one of four distinct categories: narcotic, explosive, chemical weapon, or radiological dispersion device (RDD). Detection of narcotics, explosives, and chemical weapons is based on gamma-ray signatures unique to the chemical elements. Elements are identified by their characteristic prompt gamma-rays induced by fast and thermal neutrons. Detection of RDD is accomplished by detecting gamma-rays emitted by common radioisotopes and nuclear reactor fission products. The algorithm phenomenology for classifying threats into the proper categories is presented here.

  14. Detection of biological molecules using chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2001-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal. Specifically, the analyte transducer immobilized in a polymeric matrix can be a boronic acid moiety.

  15. An Astrometric Facility For Planetary Detection On The Space Station

    NASA Astrophysics Data System (ADS)

    Nishioka, Kenji; Scargle, Jeffrey D.; Givens, John J.

    1987-09-01

    An Astrometric Telescope Facility (ATF) for planetary detection is being studied as a potential Space Station initial operating capability payload. The primary science objective of this mission is the detection and study of planetary systems around other stars. In addition, the facility will be capable of other astrometric measurements such as stellar motions of other galaxies and highly precise direct measurement of stellar distances within the Milky Way Galaxy. This paper summarizes the results of a recently completed ATF preliminary systems definition study. Results of this study indicate that the preliminary concept for the facility is fully capable of meeting the science objectives without the development of any new technologies. This preliminary systems study started with the following basic assumptions: 1) the facility will be placed in orbit by a single Shuttle launch, 2) the Space Station will provide a coarse pointing system , electrical power, communications, assembly and checkout, maintenance and refurbishment services, and 3) the facility will be operated from a ground facility. With these assumptions and the science performance requirements a preliminary "strawman" facility was designed. The strawman facility design with a prime-focus telescope of 1.25-m aperture, f-ratio of 13 and a single prime-focus instrument was chosen to minimize random and systemmatic errors. Total facility mass is 5100 kg and overall dimensions are 1.85-m diam by 21.5-m long. A simple straightforward operations approach has been developed for ATF. A real-time facility control is not normally required, but does maintain a near real-time ground monitoring capability for facility and science data stream on a full-time basis. Facility observational sequences are normally loaded once a week. In addition, the preliminary system is designed to be fail-safe and single-fault tolerant. Routine interactions by the Space Station crew with ATF will not be necessary, but onboard controls are provided for crew override as required for emergencies and maintenance.

  16. An artificial bioindicator system for network intrusion detection.

    PubMed

    Blum, Christian; Lozano, José A; Davidson, Pedro Pinacho

    An artificial bioindicator system is developed in order to solve a network intrusion detection problem. The system, inspired by an ecological approach to biological immune systems, evolves a population of agents that learn to survive in their environment. An adaptation process allows the transformation of the agent population into a bioindicator that is capable of reacting to system anomalies. Two characteristics stand out in our proposal. On the one hand, it is able to discover new, previously unseen attacks, and on the other hand, contrary to most of the existing systems for network intrusion detection, it does not need any previous training. We experimentally compare our proposal with three state-of-the-art algorithms and show that it outperforms the competing approaches on widely used benchmark data.

  17. A novel forward and backward scattering wave measurement system for optimizing GPR standoff mine/IED detector

    NASA Astrophysics Data System (ADS)

    Fuse, Yukinori

    2012-06-01

    Standoff detection of mines and improvised explosive devices by ground penetrating radar has advantages in terms of safety and efficiency. However, the reflected signals from buried targets are often disturbed by those from the ground surface, which vary with the antennas angle, making it more difficult to detect at a safe distance. An understanding of the forward and backward scattering wave is thus essential for improving standoff detection capability. We present some experimental results from using our measurement system for such an analysis.

  18. Detection capability of the IMS seismic network based on ambient seismic noise measurements

    NASA Astrophysics Data System (ADS)

    Gaebler, Peter J.; Ceranna, Lars

    2016-04-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection threshold can be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  19. Measurement system for nitrous oxide based on amperometric gas sensor

    NASA Astrophysics Data System (ADS)

    Siswoyo, S.; Persaud, K. C.; Phillips, V. R.; Sneath, R.

    2017-03-01

    It has been well known that nitrous oxide is an important greenhouse gas, so monitoring and control of its concentration and emission is very important. In this work a nitrous oxide measurement system has been developed consisting of an amperometric sensor and an appropriate lab-made potentiostat that capable measuring picoampere current ranges. The sensor was constructed using a gold microelectrode as working electrode surrounded by a silver wire as quasi reference electrode, with tetraethyl ammonium perchlorate and dimethylsulphoxide as supporting electrolyte and solvent respectively. The lab-made potentiostat was built incorporating a transimpedance amplifier capable of picoampere measurements. This also incorporated a microcontroller based data acquisition system, controlled by a host personal computer using a dedicated computer program. The system was capable of detecting N2O concentrations down to 0.07 % v/v.

  20. Comet/Asteroid Protection System (CAPS): A Space-Based System Concept for Revolutionizing Earth Protection and Utilization of Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Roithmayr, Carlos M.; Antol, Jeffrey; Kay-Bunnell, Linda; Werner, Martin R.; Park, Sang-Young; Kumar, Renjith R.

    2002-01-01

    There exists an infrequent, but significant hazard to life and property due to impacting asteroids and comets. There is currently no specific search for long-period comets, smaller near-Earth asteroids, or smaller short-period comets. These objects represent a threat with potentially little or no warning time using conventional ground-based telescopes. These planetary bodies also represent a significant resource for commercial exploitation, long-term sustained space exploration, and scientific research. The Comet/Asteroid Protection System (CAPS) would expand the current detection effort to include long-period comets, as well as small asteroids and short-period comets capable of regional destruction. A space-based detection system, despite being more costly and complex than Earth-based initiatives, is the most promising way of expanding the range of detectable objects, and surveying the entire celestial sky on a regular basis. CAPS is a future spacebased system concept that provides permanent, continuous asteroid and comet monitoring, and rapid, controlled modification of the orbital trajectories of selected bodies. CAPS would provide an orbit modification system capable of diverting kilometer class objects, and modifying the orbits of smaller asteroids for impact defense and resource utilization. This paper provides a summary of CAPS and discusses several key areas and technologies that are being investigated.

  1. The Effects of Sensor Performance as Modeled by Signal Detection Theory on the Performance of Reinforcement Learning in a Target Acquisition Task

    NASA Astrophysics Data System (ADS)

    Quirion, Nate

    Unmanned Aerial Systems (UASs) today are fulfilling more roles than ever before. There is a general push to have these systems feature more advanced autonomous capabilities in the near future. To achieve autonomous behavior requires some unique approaches to control and decision making. More advanced versions of these approaches are able to adapt their own behavior and examine their past experiences to increase their future mission performance. To achieve adaptive behavior and decision making capabilities this study used Reinforcement Learning algorithms. In this research the effects of sensor performance, as modeled through Signal Detection Theory (SDT), on the ability of RL algorithms to accomplish a target localization task are examined. Three levels of sensor sensitivity are simulated and compared to the results of the same system using a perfect sensor. To accomplish the target localization task, a hierarchical architecture used two distinct agents. A simulated human operator is assumed to be a perfect decision maker, and is used in the system feedback. An evaluation of the system is performed using multiple metrics, including episodic reward curves and the time taken to locate all targets. Statistical analyses are employed to detect significant differences in the comparison of steady-state behavior of different systems.

  2. Detection and Characterization of Micrometeoroid Impacts on LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Hourihane, S.; Littenberg, T.; Baker, J. G.; Pagane, N.; Slutsky, J. P.; Thorpe, J. I.

    2017-12-01

    LISA Pathfinder (LPF) was a joint ESA/NASA technology demonstration mission for the Laser Interferometer Space Antenna (LISA) gravitational wave observatory. LPF, the most sensitive accelerometer ever flown in space, was launched in December 2015 and successfully concluded its mission in July 2017. Due in part to LPFs success, LISA was selected by the European Space Agency for launch in the early 2030s. An ancillary benefit of LPFs capabilities made it a sensitive detector of micrometeoroid impacts. We report on the capabilities of LPF to detect and characterize impacts, and progress towards using those inferences to advance our understanding of the micrometeoroid environment in the solar system. In doing so, we assess the prospect of space-based gravitational wave observatories as micrometeoroid detection instruments.

  3. NBC detection in air and water

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Smith, Steven J.; McMurtry, Gary M.

    2003-01-01

    Participating in a Navy STTR project to develop a system capable of the 'real-time' detection and quanitification of nuclear, biological and chemical (NBC) warfare agents, and of related industrial chemicals including NBC agent synthesis by-products in water and in air immediately above the water's surface. This project uses JPL's Soft Ionization Membrane (SIM) technology which totally ionizes molecules without fragmentation (a process that can markedly improve the sensitivity and specificity of molecule compostition identification), and JPL's Rotating Field Mass Spectrometer (RFMS) technology which has large enough dynamic mass range to enable detection of nuclear materials as well as biological and chemical agents. This Navy project integrates these JPL Environmental Monitoring UnitS (REMUS) an autonomous underwater vehicle (AUV). It is anticipated that the REMUS AUV will be capable of 'real-time' detection and quantification of NBC warefare agents.

  4. Integrated testing and verification system for research flight software design document

    NASA Technical Reports Server (NTRS)

    Taylor, R. N.; Merilatt, R. L.; Osterweil, L. J.

    1979-01-01

    The NASA Langley Research Center is developing the MUST (Multipurpose User-oriented Software Technology) program to cut the cost of producing research flight software through a system of software support tools. The HAL/S language is the primary subject of the design. Boeing Computer Services Company (BCS) has designed an integrated verification and testing capability as part of MUST. Documentation, verification and test options are provided with special attention on real time, multiprocessing issues. The needs of the entire software production cycle have been considered, with effective management and reduced lifecycle costs as foremost goals. Capabilities have been included in the design for static detection of data flow anomalies involving communicating concurrent processes. Some types of ill formed process synchronization and deadlock also are detected statically.

  5. Feasibility of fast neutron analysis for the detection of explosives buried in soil

    NASA Astrophysics Data System (ADS)

    Faust, A. A.; McFee, J. E.; Bowman, C. L.; Mosquera, C.; Andrews, H. R.; Kovaltchouk, V. D.; Ing, H.

    2011-12-01

    A commercialized thermal neutron analysis (TNA) sensor has been developed to confirm the presence of buried bulk explosives as part of a multi-sensor anti-tank landmine detection system. Continuing improvements to the TNA system have included the use of an electronic pulsed neutron generator that offers the possibility of applying fast neutron analysis (FNA) methods to improve the system's detection capability. This paper describes an investigation into the use of FNA as a complementary component in such a TNA system. The results of a modeling study using simple geometries and a full model of the TNA sensor head are presented, as well as preliminary results from an experimental associated particle imaging (API) system that supports the modeling study results. The investigation has concluded that the pulsed beam FNA approach would not improve the detection performance of a TNA system for landmine or buried IED detection in a confirmation role, and could not be made into a practical stand-alone detection system for buried anti-tank landmines. Detection of buried landmines and IEDs by FNA remains a possibility, however, through the use of the API technique.

  6. 75 FR 68693 - Airworthiness Directives; Airbus Model A380-800 Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... may lead to a degraded leak detection capability have been reported. In case of hot air leakage, the... inspection in production and on in-service aircraft, a number of OverHeat Detection System (OHDS... could allow undetected leakage of bleed air from the hot engine/auxiliary power unit causing damage to...

  7. Indirect Charged Particle Detection: Concepts and a Classroom Demonstration

    ERIC Educational Resources Information Center

    Childs, Nicholas B.; Horányi, Mihály; Collette, Andrew

    2013-01-01

    We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1-100 km/s), are a critical tool for space exploration. Dust grains in space typically have…

  8. Effect of chemical compounds on electronic tongue response to citrus juices

    USDA-ARS?s Scientific Manuscript database

    The electronic tongue system mimics the process of taste detection by human taste buds and recognition by the brain, hence helping in prediction of taste. With this unique capability, the electronic tongue has been used for taste detection of a wide range of food products. As a preliminary step in p...

  9. Planning and Execution for an Autonomous Aerobot

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara A.; Schaffer, Steven R.; Chouinard, Caroline M.

    2010-01-01

    The Aerial Onboard Autonomous Science Investigation System (AerOASIS) system provides autonomous planning and execution capabilities for aerial vehicles (see figure). The system is capable of generating high-quality operations plans that integrate observation requests from ground planning teams, as well as opportunistic science events detected onboard the vehicle while respecting mission and resource constraints. AerOASIS allows an airborne planetary exploration vehicle to summarize and prioritize the most scientifically relevant data; identify and select high-value science sites for additional investigation; and dynamically plan, schedule, and monitor the various science activities being performed, even during extended communications blackout periods with Earth.

  10. Fusion solution for soldier wearable gunfire detection systems

    NASA Astrophysics Data System (ADS)

    Cakiades, George; Desai, Sachi; Deligeorges, Socrates; Buckland, Bruce E.; George, Jemin

    2012-06-01

    Currently existing acoustic based Gunfire Detection Systems (GDS) such as soldier wearable, vehicle mounted, and fixed site devices provide enemy detection and localization capabilities to the user. However, the solution to the problem of portability versus performance tradeoff remains elusive. The Data Fusion Module (DFM), described herein, is a sensor/platform agnostic software supplemental tool that addresses this tradeoff problem by leveraging existing soldier networks to enhance GDS performance across a Tactical Combat Unit (TCU). The DFM software enhances performance by leveraging all available acoustic GDS information across the TCU synergistically to calculate highly accurate solutions more consistently than any individual GDS in the TCU. The networked sensor architecture provides additional capabilities addressing the multiple shooter/fire-fight problems in addition to sniper detection/localization. The addition of the fusion solution to the overall Size, Weight and Power & Cost (SWaP&C) is zero to negligible. At the end of the first-year effort, the DFM integrated sensor network's performance was impressive showing improvements upwards of 50% in comparison to a single sensor solution. Further improvements are expected when the networked sensor architecture created in this effort is fully exploited.

  11. Retro-detective control structures for free-space optical communication links.

    PubMed

    Jin, Xian; Barg, Jason E; Holzman, Jonathan F

    2009-12-21

    A corner-cube-based retro-detection photocell is introduced. The structure consists of three independent and mutually perpendicular photodiodes (PDs), whose differential photocurrents can be used to probe the alignment state of incident beams. These differential photocurrents are used in an actively-controlled triangulation procedure to optimize the communication channel alignment in a free-space optical (FSO) system. The active downlink and passive uplink communication capabilities of this system are demonstrated.

  12. Digital electronic engine control fault detection and accommodation flight evaluation

    NASA Technical Reports Server (NTRS)

    Baer-Ruedhart, J. L.

    1984-01-01

    The capabilities and performance of various fault detection and accommodation (FDA) schemes in existing and projected engine control systems were investigated. Flight tests of the digital electronic engine control (DEEC) in an F-15 aircraft show discrepancies between flight results and predictions based on simulation and altitude testing. The FDA methodology and logic in the DEEC system, and the results of the flight failures which occurred to date are described.

  13. Concept for Inclusion of Analytical and Computational Capability in Optical Plume Anomaly Detection (OPAD) for Measurement of Neutron Flux

    NASA Technical Reports Server (NTRS)

    Patrick, M. Clinton; Cooper, Anita E.; Powers, W. T.

    2004-01-01

    Researchers are working on many konts to make possible high speed, automated classification and quantification of constituent materials in numerous environments. NASA's Marshall Space Flight Center has implemented a system for rocket engine flow fields/plumes; the Optical Plume Anomaly Detection (OPAD) system was designed to utilize emission and absorption spectroscopy for monitoring molecular and atomic particulates in gas plasma. An accompanying suite of tools and analytical package designed to utilize information collected by OPAD is known as the Engine Diagnostic Filtering System (EDIFIS). The current combination of these systems identifies atomic and molecular species and quantifies mass loss rates in H2/O2 rocket plumes. Additionally, efforts are being advanced to hardware encode components of the EDIFIS in order to address real-time operational requirements for health monitoring and management. This paper addresses the OPAD with its tool suite, and discusses what is considered a natural progression: a concept for migrating OPAD towards detection of high energy particles, including neutrons and gamma rays. The integration of these tools and capabilities will provide NASA with a systematic approach to monitor space vehicle internal and external environment.

  14. Chemical Detection and Identification Techniques for Exobiology Flight Experiments

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Sheverev, Valery A.; Khromov, Nikolai A.

    2002-01-01

    Exobiology flight experiments require highly sensitive instrumentation for in situ analysis of the volatile chemical species that occur in the atmospheres and surfaces of various bodies within the solar system. The complex mixtures encountered place a heavy burden on the analytical Instrumentation to detect and identify all species present. The minimal resources available onboard for such missions mandate that the instruments provide maximum analytical capabilities with minimal requirements of volume, weight and consumables. Advances in technology may be achieved by increasing the amount of information acquired by a given technique with greater analytical capabilities and miniaturization of proven terrestrial technology. We describe here methods to develop analytical instruments for the detection and identification of a wide range of chemical species using Gas Chromatography. These efforts to expand the analytical capabilities of GC technology are focused on the development of detectors for the GC which provide sample identification independent of the GC retention time data. A novel new approach employs Penning Ionization Electron Spectroscopy (PIES).

  15. Automatic Fall Detection System Based on the Combined Use of a Smartphone and a Smartwatch

    PubMed Central

    Casilari, Eduardo; Oviedo-Jiménez, Miguel A.

    2015-01-01

    Due to their widespread popularity, decreasing costs, built-in sensors, computing power and communication capabilities, Android-based personal devices are being seen as an appealing technology for the deployment of wearable fall detection systems. In contrast with previous solutions in the existing literature, which are based on the performance of a single element (a smartphone), this paper proposes and evaluates a fall detection system that benefits from the detection performed by two popular personal devices: a smartphone and a smartwatch (both provided with an embedded accelerometer and a gyroscope). In the proposed architecture, a specific application in each component permanently tracks and analyses the patient’s movements. Diverse fall detection algorithms (commonly employed in the literature) were implemented in the developed Android apps to discriminate falls from the conventional activities of daily living of the patient. As a novelty, a fall is only assumed to have occurred if it is simultaneously and independently detected by the two Android devices (which can interact via Bluetooth communication). The system was systematically evaluated in an experimental testbed with actual test subjects simulating a set of falls and conventional movements associated with activities of daily living. The tests were repeated by varying the detection algorithm as well as the pre-defined mobility patterns executed by the subjects (i.e., the typology of the falls and non-fall movements). The proposed system was compared with the cases where only one device (the smartphone or the smartwatch) is considered to recognize and discriminate the falls. The obtained results show that the joint use of the two detection devices clearly increases the system’s capability to avoid false alarms or ‘false positives’ (those conventional movements misidentified as falls) while maintaining the effectiveness of the detection decisions (that is to say, without increasing the ratio of ‘false negatives’ or actual falls that remain undetected). PMID:26560737

  16. Assessment of velocity/trajectory measurement technologies during a particle capture event

    NASA Technical Reports Server (NTRS)

    Tanner, William G.; Maag, Carl R.; Alexander, W. M.; Stephenson, Stepheni

    1994-01-01

    Since the early 1960s, the means to measure the time of flight (TOF) of dust grain within a mechanical detection array has existed, first in the laboratory and then in space experiments. Laboratory hypervelocity dust particle accelerators have used electrostatic detection of charge on accelerated particles for TOF and particle mass detections. These laboratory studies have led to the development of ultra-thin-film sensors that have been used for TOF measurements in dust particle space experiments. The prototypes for such devices were ultra-thin-film capacitors that were used in the OGO series of satellites. The main goal of the experimental work to be described is the development of the capability to determine the velocity vector or trajectory of a dust grain traversing an integrated dust detection array. The results of these studies have shown that the capability of detecting the charge liberated by hypervelocity dust grains with diameters in the micrometer range can be detected. Based on these results, detection systems have been designed to provide a precise analysis of the physical and dynamic properties of micrometer and submicrometer dust grains, namely the design verification unit (DVU). Through unique combinations of in situ detection systems, direct measurements of particle surface charge, velocity, momentum, kinetic energy, and trajectory have been achieved. From these measurements, the remaining physical parameters of mass, size, and density can be determined.

  17. An Android malware detection system based on machine learning

    NASA Astrophysics Data System (ADS)

    Wen, Long; Yu, Haiyang

    2017-08-01

    The Android smartphone, with its open source character and excellent performance, has attracted many users. However, the convenience of the Android platform also has motivated the development of malware. The traditional method which detects the malware based on the signature is unable to detect unknown applications. The article proposes a machine learning-based lightweight system that is capable of identifying malware on Android devices. In this system we extract features based on the static analysis and the dynamitic analysis, then a new feature selection approach based on principle component analysis (PCA) and relief are presented in the article to decrease the dimensions of the features. After that, a model will be constructed with support vector machine (SVM) for classification. Experimental results show that our system provides an effective method in Android malware detection.

  18. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Gisser, D. G.; Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Yerazunis, S. Y.

    1975-01-01

    Problems related to an unmanned exploration of the planet Mars by means of an autonomous roving planetary vehicle are investigated. These problems include: design, construction and evaluation of the vehicle itself and its control and operating systems. More specifically, vehicle configuration, dynamics, control, propulsion, hazard detection systems, terrain sensing and modelling, obstacle detection concepts, path selection, decision-making systems, and chemical analyses of samples are studied. Emphasis is placed on development of a vehicle capable of gathering specimens and data for an Augmented Viking Mission or to provide the basis for a Sample Return Mission.

  19. Integrating Oil Debris and Vibration Gear Damage Detection Technologies Using Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Afjeh, Abdollah A.

    2002-01-01

    A diagnostic tool for detecting damage to spur gears was developed. Two different measurement technologies, wear debris analysis and vibration, were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Test Rig. Experimental data were collected during experiments performed in this test rig with and without pitting. Results show combining the two measurement technologies improves the detection of pitting damage on spur gears.

  20. Spiral Bevel Gear Damage Detection Using Decision Fusion Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Handschuh, Robert F.; Afjeh, Abdollah A.

    2002-01-01

    A diagnostic tool for detecting damage to spiral bevel gears was developed. Two different monitoring technologies, oil debris analysis and vibration, were integrated using data fusion into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual monitoring technologies. This diagnostic tool was evaluated by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spiral Bevel Gear Fatigue Rigs. Data was collected during experiments performed in this test rig when pitting damage occurred. Results show that combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spiral bevel gears.

  1. Bird Radar Validation in the Field by Time-Referencing Line-Transect Surveys

    PubMed Central

    Dokter, Adriaan M.; Baptist, Martin J.; Ens, Bruno J.; Krijgsveld, Karen L.; van Loon, E. Emiel

    2013-01-01

    Track-while-scan bird radars are widely used in ornithological studies, but often the precise detection capabilities of these systems are unknown. Quantification of radar performance is essential to avoid observational biases, which requires practical methods for validating a radar’s detection capability in specific field settings. In this study a method to quantify the detection capability of a bird radar is presented, as well a demonstration of this method in a case study. By time-referencing line-transect surveys, visually identified birds were automatically linked to individual tracks using their transect crossing time. Detection probabilities were determined as the fraction of the total set of visual observations that could be linked to radar tracks. To avoid ambiguities in assigning radar tracks to visual observations, the observer’s accuracy in determining a bird’s transect crossing time was taken into account. The accuracy was determined by examining the effect of a time lag applied to the visual observations on the number of matches found with radar tracks. Effects of flight altitude, distance, surface substrate and species size on the detection probability by the radar were quantified in a marine intertidal study area. Detection probability varied strongly with all these factors, as well as species-specific flight behaviour. The effective detection range for single birds flying at low altitude for an X-band marine radar based system was estimated at ∼1.5 km. Within this range the fraction of individual flying birds that were detected by the radar was 0.50±0.06 with a detection bias towards higher flight altitudes, larger birds and high tide situations. Besides radar validation, which we consider essential when quantification of bird numbers is important, our method of linking radar tracks to ground-truthed field observations can facilitate species-specific studies using surveillance radars. The methodology may prove equally useful for optimising tracking algorithms. PMID:24066103

  2. Bird radar validation in the field by time-referencing line-transect surveys.

    PubMed

    Dokter, Adriaan M; Baptist, Martin J; Ens, Bruno J; Krijgsveld, Karen L; van Loon, E Emiel

    2013-01-01

    Track-while-scan bird radars are widely used in ornithological studies, but often the precise detection capabilities of these systems are unknown. Quantification of radar performance is essential to avoid observational biases, which requires practical methods for validating a radar's detection capability in specific field settings. In this study a method to quantify the detection capability of a bird radar is presented, as well a demonstration of this method in a case study. By time-referencing line-transect surveys, visually identified birds were automatically linked to individual tracks using their transect crossing time. Detection probabilities were determined as the fraction of the total set of visual observations that could be linked to radar tracks. To avoid ambiguities in assigning radar tracks to visual observations, the observer's accuracy in determining a bird's transect crossing time was taken into account. The accuracy was determined by examining the effect of a time lag applied to the visual observations on the number of matches found with radar tracks. Effects of flight altitude, distance, surface substrate and species size on the detection probability by the radar were quantified in a marine intertidal study area. Detection probability varied strongly with all these factors, as well as species-specific flight behaviour. The effective detection range for single birds flying at low altitude for an X-band marine radar based system was estimated at ~1.5 km. Within this range the fraction of individual flying birds that were detected by the radar was 0.50 ± 0.06 with a detection bias towards higher flight altitudes, larger birds and high tide situations. Besides radar validation, which we consider essential when quantification of bird numbers is important, our method of linking radar tracks to ground-truthed field observations can facilitate species-specific studies using surveillance radars. The methodology may prove equally useful for optimising tracking algorithms.

  3. Analysis of the development of missile-borne IR imaging detecting technologies

    NASA Astrophysics Data System (ADS)

    Fan, Jinxiang; Wang, Feng

    2017-10-01

    Today's infrared imaging guiding missiles are facing many challenges. With the development of targets' stealth, new-style IR countermeasures and penetrating technologies as well as the complexity of the operational environments, infrared imaging guiding missiles must meet the higher requirements of efficient target detection, capability of anti-interference and anti-jamming and the operational adaptability in complex, dynamic operating environments. Missileborne infrared imaging detecting systems are constrained by practical considerations like cost, size, weight and power (SWaP), and lifecycle requirements. Future-generation infrared imaging guiding missiles need to be resilient to changing operating environments and capable of doing more with fewer resources. Advanced IR imaging detecting and information exploring technologies are the key technologies that affect the future direction of IR imaging guidance missiles. Infrared imaging detecting and information exploring technologies research will support the development of more robust and efficient missile-borne infrared imaging detecting systems. Novelty IR imaging technologies, such as Infrared adaptive spectral imaging, are the key to effectively detect, recognize and track target under the complicated operating and countermeasures environments. Innovative information exploring techniques for the information of target, background and countermeasures provided by the detection system is the base for missile to recognize target and counter interference, jamming and countermeasure. Modular hardware and software development is the enabler for implementing multi-purpose, multi-function solutions. Uncooled IRFPA detectors and High-operating temperature IRFPA detectors as well as commercial-off-the-shelf (COTS) technology will support the implementing of low-cost infrared imaging guiding missiles. In this paper, the current status and features of missile-borne IR imaging detecting technologies are summarized. The key technologies and its development trends of missiles' IR imaging detecting technologies are analyzed.

  4. GTEX: An expert system for diagnosing faults in satellite ground stations

    NASA Technical Reports Server (NTRS)

    Schlegelmilch, Richard F.; Durkin, John; Petrik, Edward J.

    1991-01-01

    A proof of concept expert system called Ground Terminal Expert (GTEX) was developed at The University of Akron in collaboration with NASA Lewis Research Center. The objective of GTEX is to aid in diagnosing data faults occurring with a digital ground terminal. This strategy can also be applied to the Very Small Aperture Terminal (VSAT) technology. An expert system which detects and diagnoses faults would enhance the performance of the VSAT by improving reliability and reducing maintenance time. GTEX is capable of detecting faults, isolating the cause and recommending appropriate actions. Isolation of faults is completed to board-level modules. A graphical user interface provides control and a medium where data can be requested and cryptic information logically displayed. Interaction with GTEX consists of user responses and input from data files. The use of data files provides a method of simulating dynamic interaction between the digital ground terminal and the expert system. GTEX as described is capable of both improving reliability and reducing the time required for necessary maintenance.

  5. Coincidence ion imaging with a fast frame camera

    NASA Astrophysics Data System (ADS)

    Lee, Suk Kyoung; Cudry, Fadia; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander H.; Fan, Lin; Li, Wen

    2014-12-01

    A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide.

  6. GTEX: An expert system for diagnosing faults in satellite ground stations

    NASA Astrophysics Data System (ADS)

    Schlegelmilch, Richard F.; Durkin, John; Petrik, Edward J.

    1991-11-01

    A proof of concept expert system called Ground Terminal Expert (GTEX) was developed at The University of Akron in collaboration with NASA Lewis Research Center. The objective of GTEX is to aid in diagnosing data faults occurring with a digital ground terminal. This strategy can also be applied to the Very Small Aperture Terminal (VSAT) technology. An expert system which detects and diagnoses faults would enhance the performance of the VSAT by improving reliability and reducing maintenance time. GTEX is capable of detecting faults, isolating the cause and recommending appropriate actions. Isolation of faults is completed to board-level modules. A graphical user interface provides control and a medium where data can be requested and cryptic information logically displayed. Interaction with GTEX consists of user responses and input from data files. The use of data files provides a method of simulating dynamic interaction between the digital ground terminal and the expert system. GTEX as described is capable of both improving reliability and reducing the time required for necessary maintenance.

  7. Integrated System Health Management (ISHM) and Autonomy

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Walker, Mark G.

    2018-01-01

    Systems capabilities on ISHM (Integrated System Health Management) and autonomy have traditionally been addressed separately. This means that ISHM functions, such as anomaly detection, diagnostics, prognostics, and comprehensive system awareness have not been considered traditionally in the context of autonomy functions such as planning, scheduling, and mission execution. One key reason is that although they address systems capabilities, both ISHM and autonomy have traditionally individually been approached as independent strategies and models for analysis. Additionally, to some degree, a unified paradigm for ISHM and autonomy has been difficult to implement due to limitations of hardware and software. This paper explores a unified treatment of ISHM and autonomy in the context of distributed hierarchical autonomous operations.

  8. Methods and systems for detection of radionuclides

    DOEpatents

    Coates, Jr., John T.; DeVol, Timothy A.

    2010-05-25

    Disclosed are materials and systems useful in determining the existence of radionuclides in an aqueous sample. The materials provide the dual function of both extraction and scintillation to the systems. The systems can be both portable and simple to use, and as such can beneficially be utilized to determine presence and optionally concentration of radionuclide contamination in an aqueous sample at any desired location and according to a relatively simple process without the necessity of complicated sample handling techniques. The disclosed systems include a one-step process, providing simultaneous extraction and detection capability, and a two-step process, providing a first extraction step that can be carried out in a remote field location, followed by a second detection step that can be carried out in a different location.

  9. Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection

    NASA Astrophysics Data System (ADS)

    Gottfried, Jennifer L.; De Lucia, Frank C.; Munson, Chase A.; Miziolek, Andrzej W.

    2007-12-01

    We have developed a double-pulse standoff laser-induced breakdown spectroscopy (ST-LIBS) system capable of detecting a variety of hazardous materials at tens of meters. The use of a double-pulse laser improves the sensitivity and selectivity of ST-LIBS, especially for the detection of energetic materials. In addition to various metallic and plastic materials, the system has been used to detect bulk explosives RDX and Composition-B, explosive residues, biological species such as the anthrax surrogate Bacillus subtilis, and chemical warfare simulants at 20 m. We have also demonstrated the discrimination of explosive residues from various interferents on an aluminum substrate.

  10. Army Logistician. Volume 39, Issue 1, January-February 2007

    DTIC Science & Technology

    2007-02-01

    of electronic systems using statistical methods. P& C , however, requires advanced prognostic capabilities not only to detect the early onset of...patterns. Entities operating in a P& C -enabled environment will sense and understand contextual meaning , communicate their state and mission, and act to...accessing of historical and simulation patterns; on- board prognostics capabilities; physics of failure analyses; and predictive modeling. P& C also

  11. Cyber Security Audit and Attack Detection Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Dale

    2012-05-31

    This goal of this project was to develop cyber security audit and attack detection tools for industrial control systems (ICS). Digital Bond developed and released a tool named Bandolier that audits ICS components commonly used in the energy sector against an optimal security configuration. The Portaledge Project developed a capability for the PI Historian, the most widely used Historian in the energy sector, to aggregate security events and detect cyber attacks.

  12. Microfluidic devices to enrich and isolate circulating tumor cells

    PubMed Central

    Myung, J. H.; Hong, S.

    2015-01-01

    Given the potential clinical impact of circulating tumor cells (CTCs) in blood as a clinical biomarker for diagnosis and prognosis of various cancers, a myriad of detection methods for CTCs have been recently introduced. Among those, a series of microfluidic devices are particularly promising as these uniquely offer micro-scale analytical systems that are highlighted by low consumption of samples and reagents, high flexibility to accommodate other cutting-edge technologies, precise and well-defined flow behaviors, and automation capability, presenting significant advantages over the conventional larger scale systems. In this review, we highlight the advantages of microfluidic devices and their translational potential into CTC detection methods, categorized by miniaturization of bench-top analytical instruments, integration capability with nanotechnologies, and in situ or sequential analysis of captured CTCs. This review provides a comprehensive overview of recent advances in the CTC detection achieved through application of microfluidic devices and their challenges that these promising technologies must overcome to be clinically impactful. PMID:26549749

  13. Hybrid AlGaN-SiC Avalanche Photodiode for Deep-UV Photon Detection

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Herrero, Federico A.; Sigwarth, John; Goldsman, Neil; Akturk, Akin

    2010-01-01

    The proposed device is capable of counting ultraviolet (UV) photons, is compatible for inclusion into space instruments, and has applications as deep- UV detectors for calibration systems, curing systems, and crack detection. The device is based on a Separate Absorption and Charge Multiplication (SACM) structure. It is based on aluminum gallium nitride (AlGaN) absorber on a silicon carbide APD (avalanche photodiode). The AlGaN layer absorbs incident UV photons and injects photogenerated carriers into an underlying SiC APD that is operated in Geiger mode and provides current multiplication via avalanche breakdown. The solid-state detector is capable of sensing 100-to-365-nanometer wavelength radiation at a flux level as low as 6 photons/pixel/s. Advantages include, visible-light blindness, operation in harsh environments (e.g., high temperatures), deep-UV detection response, high gain, and Geiger mode operation at low voltage. Furthermore, the device can also be designed in array formats, e.g., linear arrays or 2D arrays (micropixels inside a superpixel).

  14. Utilization of Local Law Enforcement Aerial Resources in Consequence Management (CM) Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasiolek, Piotr T.; Malchow, Russell L.

    2013-03-12

    During the past decade the U.S. Department of Homeland Security (DHS) was instrumental in enhancing the nation’s ability to detect and prevent a radiological or nuclear attack in the highest risk cities. Under the DHS Securing the Cities initiative, nearly 13,000 personnel in the New York City region have been trained in preventive radiological and nuclear detection operations, and nearly 8,500 pieces of radiological detection equipment have been funded. As part of the preventive radiological/nuclear detection (PRND) mission, several cities have received funding to purchase commercial aerial radiation detection systems. In 2008, the U.S. Department of Energy, National Nuclear Securitymore » Administration Aerial Measuring System (AMS) program started providing Mobile Aerial Radiological Surveillance (MARS) training to such assets, resulting in over 150 HAZMAT teams’ officers and pilots from 10 law enforcement organizations and fire departments being trained in the aerial radiation detection. From the beginning, the MARS training course covered both the PRND and consequence management (CM) missions. Even if the law enforcement main focus is PRND, their aerial assets can be utilized in the collection of initial radiation data for post-event radiological CM response. Based on over 50 years of AMS operational experience and information collected during MARS training, this presentation will focus on the concepts of CM response using aerial assets as well as utilizing law enforcement/fire department aerial assets in CM. Also discussed will be the need for establishing closer relationships between local jurisdictions’ aerial radiation detection capabilities and state and local radiation control program directors, radiological health department managers, etc. During radiological events these individuals may become primary experts/advisers to Incident Commanders for radiological emergency response, especially in the early stages of a response. The knowledge of the existence, specific capabilities, and use of local aerial radiation detection systems would be critical in planning the response, even before federal assets arrive on the scene. The relationship between local and federal aerial assets and the potential role for the further use of the MARS training and expanded AMS Reachback capabilities in facilitating such interactions will be discussed.« less

  15. Non-iterative Voltage Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Vyakaranam, Bharat; Hou, Zhangshuan

    2014-09-30

    This report demonstrates promising capabilities and performance characteristics of the proposed method using several power systems models. The new method will help to develop a new generation of highly efficient tools suitable for real-time parallel implementation. The ultimate benefit obtained will be early detection of system instability and prevention of system blackouts in real time.

  16. OKCARS : Oklahoma Collision Analysis and Response System.

    DOT National Transportation Integrated Search

    2012-10-01

    By continuously monitoring traffic intersections to automatically detect that a collision or nearcollision : has occurred, automatically call for assistance, and automatically forewarn oncoming traffic, : our OKCARS has the capability to effectively ...

  17. Highly sensitive detection of naphthalene in solvent vapor using a functionalized PBG refractive index sensor.

    PubMed

    Girschikofsky, Maiko; Rosenberger, Manuel; Belle, Stefan; Brutschy, Malte; Waldvogel, Siegfried R; Hellmann, Ralf

    2012-01-01

    We report an optical refractive index sensor system based on a planar Bragg grating which is functionalized by substituted γ-cyclodextrin to determine low concentrations of naphthalene in solvent vapor. The sensor system exhibits a quasi-instantaneous shift of the Bragg wavelength and is therefore capable for online detection. The overall shift of the Bragg wavelength reveals a linear relationship to the analyte concentration with a gradient of 12.5 ± 1.5 pm/ppm. Due to the spectral resolution and repeatability of the interrogation system, this corresponds to acquisition steps of 80 ppb. Taking into account the experimentally detected signal noise a minimum detection limit of 0.48 ± 0.05 ppm is deduced.

  18. Smart sensing surveillance system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen

    2010-04-01

    An effective public safety sensor system for heavily-populated applications requires sophisticated and geographically-distributed infrastructures, centralized supervision, and deployment of large-scale security and surveillance networks. Artificial intelligence in sensor systems is a critical design to raise awareness levels, improve the performance of the system and adapt to a changing scenario and environment. In this paper, a highly-distributed, fault-tolerant, and energy-efficient Smart Sensing Surveillance System (S4) is presented to efficiently provide a 24/7 and all weather security operation in crowded environments or restricted areas. Technically, the S4 consists of a number of distributed sensor nodes integrated with specific passive sensors to rapidly collect, process, and disseminate heterogeneous sensor data from near omni-directions. These distributed sensor nodes can cooperatively work to send immediate security information when new objects appear. When the new objects are detected, the S4 will smartly select the available node with a Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR camera to track the objects and capture associated imagery. The S4 provides applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. Other imaging processes can be updated to meet specific requirements and operations. In the S4, all the sensor nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology. This UWB RF technology can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The Service Oriented Architecture of S4 enables remote applications to interact with the S4 network and use the specific presentation methods. In addition, the S4 is compliant with Open Geospatial Consortium - Sensor Web Enablement (OGC-SWE) standards to efficiently discover, access, use, and control heterogeneous sensors and their metadata. These S4 capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded environments. The S4 system is directly applicable to solutions for emergency response personnel, law enforcement, and other homeland security missions, as well as in applications requiring the interoperation of sensor networks with handheld or body-worn interface devices.

  19. Flat Surface Damage Detection System (FSDDS)

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Lewis, Mark; Gibson, Tracy; Lane, John; Medelius, Pedro; Snyder, Sarah; Ciarlariello, Dan; Parks, Steve; Carrejo, Danny; Rojdev, Kristina

    2013-01-01

    The Flat Surface Damage Detection system (FSDDS} is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring. The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI). The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph. Successfully demonstrated as a stand alone technology during 2011 D-RATS. Software modification also allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC} during 2012 integration testing. Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF} network in 2012. FY13, FSDDS multi-panel integration with JSC and SNRF network Technology can allow for integration with other complementary damage detection systems.

  20. Computational Electromagnetic Modeling of SansEC(Trade Mark) Sensors

    NASA Technical Reports Server (NTRS)

    Smith, Laura J.; Dudley, Kenneth L.; Szatkowski, George N.

    2011-01-01

    This paper describes the preliminary effort to apply computational design tools to aid in the development of an electromagnetic SansEC resonant sensor composite materials damage detection system. The computational methods and models employed on this research problem will evolve in complexity over time and will lead to the development of new computational methods and experimental sensor systems that demonstrate the capability to detect, diagnose, and monitor the damage of composite materials and structures on aerospace vehicles.

  1. Comet/Asteroid Protection System (CAPS): Preliminary Space-Based Concept and Study Results

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Roithmayr, Carlos M.; Antol, Jeffrey; Park, Sang-Young; Koons, Robert H.; Bremer, James C.; Murphy, Douglas G.; Hoffman, James A.; Kumar, Renjith R.; Seywald, Hans

    2005-01-01

    There exists an infrequent, but significant hazard to life and property due to impacting asteroids and comets. There is currently no specific search for long-period comets, smaller near-Earth asteroids, or smaller short-period comets. These objects represent a threat with potentially little or no warning time using conventional ground-based telescopes. These planetary bodies also represent a significant resource for commercial exploitation, long-term sustained space exploration, and scientific research. The Comet/Asteroid Protection System (CAPS) is a future space-based system concept that provides permanent, continuous asteroid and comet monitoring, and rapid, controlled modification of the orbital trajectories of selected bodies. CAPS would expand the current detection effort to include long-period comets, as well as small asteroids and short-period comets capable of regional destruction. A space-based detection system, despite being more costly and complex than Earth-based initiatives, is the most promising way of expanding the range of detectable objects, and surveying the entire celestial sky on a regular basis. CAPS would provide an orbit modification system capable of diverting kilometer class objects, and modifying the orbits of smaller asteroids for impact defense and resource utilization. This Technical Memorandum provides a compilation of key related topics and analyses performed during the CAPS study, which was performed under the Revolutionary Aerospace Systems Concepts (RASC) program, and discusses technologies that could enable the implementation of this future system.

  2. Neurotechnology for intelligence analysts

    NASA Astrophysics Data System (ADS)

    Kruse, Amy A.; Boyd, Karen C.; Schulman, Joshua J.

    2006-05-01

    Geospatial Intelligence Analysts are currently faced with an enormous volume of imagery, only a fraction of which can be processed or reviewed in a timely operational manner. Computer-based target detection efforts have failed to yield the speed, flexibility and accuracy of the human visual system. Rather than focus solely on artificial systems, we hypothesize that the human visual system is still the best target detection apparatus currently in use, and with the addition of neuroscience-based measurement capabilities it can surpass the throughput of the unaided human severalfold. Using electroencephalography (EEG), Thorpe et al1 described a fast signal in the brain associated with the early detection of targets in static imagery using a Rapid Serial Visual Presentation (RSVP) paradigm. This finding suggests that it may be possible to extract target detection signals from complex imagery in real time utilizing non-invasive neurophysiological assessment tools. To transform this phenomenon into a capability for defense applications, the Defense Advanced Research Projects Agency (DARPA) currently is sponsoring an effort titled Neurotechnology for Intelligence Analysts (NIA). The vision of the NIA program is to revolutionize the way that analysts handle intelligence imagery, increasing both the throughput of imagery to the analyst and overall accuracy of the assessments. Successful development of a neurobiologically-based image triage system will enable image analysts to train more effectively and process imagery with greater speed and precision.

  3. Novel approach for low-cost muzzle flash detection system

    NASA Astrophysics Data System (ADS)

    Voskoboinik, Asher

    2008-04-01

    A low-cost muzzle flash detection based on CMOS sensor technology is proposed. This low-cost technology makes it possible to detect various transient events with characteristic times between dozens of microseconds up to dozens of milliseconds while sophisticated algorithms successfully separate them from false alarms by utilizing differences in geometrical characteristics and/or temporal signatures. The proposed system consists of off-the-shelf smart CMOS cameras with built-in signal and image processing capabilities for pre-processing together with allocated memory for storing a buffer of images for further post-processing. Such a sensor does not require sending giant amounts of raw data to a real-time processing unit but provides all calculations in-situ where processing results are the output of the sensor. This patented CMOS muzzle flash detection concept exhibits high-performance detection capability with very low false-alarm rates. It was found that most false-alarms due to sun glints are from sources at distances of 500-700 meters from the sensor and can be distinguished by time examination techniques from muzzle flash signals. This will enable to eliminate up to 80% of falsealarms due to sun specular reflections in the battle field. Additional effort to distinguish sun glints from suspected muzzle flash signal is made by optimization of the spectral band in Near-IR region. The proposed system can be used for muzzle detection of small arms, missiles and rockets and other military applications.

  4. 3.5 GHz Environmental Sensing Capability Detection Thresholds and Deployment

    PubMed Central

    Nguyen, Thao T.; Souryal, Michael R.; Sahoo, Anirudha; Hall, Timothy A.

    2017-01-01

    Spectrum sharing in the 3.5 GHz band between commercial and government users along U.S. coastal areas depends on an environmental sensing capability (ESC)—that is, a network of radio frequency sensors and a decision system—to detect the presence of incumbent shipborne radar systems and trigger protective measures, as needed. It is well known that the sensitivity of these sensors depends on the aggregate interference generated by commercial systems to the incumbent radar receivers, but to date no comprehensive study has been made of the aggregate interference in realistic scenarios and its impact on the requirement for detection of the radar signal. This paper presents systematic methods for determining the placement of ESC sensors and their detection thresholds to adequately protect incumbent shipborne radar systems from harmful interference. Using terrain-based propagation models and a population-based deployment model, the analysis finds the offshore distances at which protection must be triggered and relates these to the detection levels of coastline sensors. We further show that sensor placement is a form of the well-known set cover problem, which has been shown to be NP-complete, and demonstrate practical solutions achieved with a greedy algorithm. Results show detection thresholds to be as much as 22 dB lower than required by current industry standards. The methodology and results presented in this paper can be used by ESC operators for planning and deployment of sensors and by regulators for testing sensor performance. PMID:29303162

  5. Hardware fault insertion and instrumentation system: Mechanization and validation

    NASA Technical Reports Server (NTRS)

    Benson, J. W.

    1987-01-01

    Automated test capability for extensive low-level hardware fault insertion testing is developed. The test capability is used to calibrate fault detection coverage and associated latency times as relevant to projecting overall system reliability. Described are modifications made to the NASA Ames Reconfigurable Flight Control System (RDFCS) Facility to fully automate the total test loop involving the Draper Laboratories' Fault Injector Unit. The automated capability provided included the application of sequences of simulated low-level hardware faults, the precise measurement of fault latency times, the identification of fault symptoms, and bulk storage of test case results. A PDP-11/60 served as a test coordinator, and a PDP-11/04 as an instrumentation device. The fault injector was controlled by applications test software in the PDP-11/60, rather than by manual commands from a terminal keyboard. The time base was especially developed for this application to use a variety of signal sources in the system simulator.

  6. Finite-difference simulation and visualization of elastodynamics in time-evolving generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K. (Inventor)

    2009-01-01

    Modeling and simulation of free and forced structural vibrations is essential to an overall structural health monitoring capability. In the various embodiments, a first principles finite-difference approach is adopted in modeling a structural subsystem such as a mechanical gear by solving elastodynamic equations in generalized curvilinear coordinates. Such a capability to generate a dynamic structural response is widely applicable in a variety of structural health monitoring systems. This capability (1) will lead to an understanding of the dynamic behavior of a structural system and hence its improved design, (2) will generate a sufficiently large space of normal and damage solutions that can be used by machine learning algorithms to detect anomalous system behavior and achieve a system design optimization and (3) will lead to an optimal sensor placement strategy, based on the identification of local stress maxima all over the domain.

  7. Road detection and buried object detection in elevated EO/IR imagery

    NASA Astrophysics Data System (ADS)

    Kennedy, Levi; Kolba, Mark P.; Walters, Joshua R.

    2012-06-01

    To assist the warfighter in visually identifying potentially dangerous roadside objects, the U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) has developed an elevated video sensor system testbed for data collection. This system provides color and mid-wave infrared (MWIR) imagery. Signal Innovations Group (SIG) has developed an automated processing capability that detects the road within the sensor field of view and identifies potentially threatening buried objects within the detected road. The road detection algorithm leverages system metadata to project the collected imagery onto a flat ground plane, allowing for more accurate detection of the road as well as the direct specification of realistic physical constraints in the shape of the detected road. Once the road has been detected in an image frame, a buried object detection algorithm is applied to search for threatening objects within the detected road space. The buried object detection algorithm leverages textural and pixel intensity-based features to detect potential anomalies and then classifies them as threatening or non-threatening objects. Both the road detection and the buried object detection algorithms have been developed to facilitate their implementation in real-time in the NVESD system.

  8. Development of a remote sensing network for time-sensitive detection of fine scale damage to transportation infrastructure : [final report].

    DOT National Transportation Integrated Search

    2015-09-23

    This research project aimed to develop a remote sensing system capable of rapidly identifying fine-scale damage to critical transportation infrastructure following hazard events. Such a system must be pre-planned for rapid deployment, automate proces...

  9. Detection, Location, and Characterization of Hydroacoustic Signals Using Seafloor Cable Networks Offshore Japan

    NASA Astrophysics Data System (ADS)

    Suyehiro, K.; Sugioka, H.; Watanabe, T.

    2008-12-01

    The hydroacoustic monitoring by the International Monitoring System for CTBT (Comprehensive Nuclear- Test-Ban Treaty) verification system utilizes hydrophone stations (6) and seismic stations (5 and called T- phase stations) for worldwide detection. Some conspicuous signals of natural origin include those from earthquakes, volcanic eruptions, or whale calls. Among artificial sources are non-nuclear explosions and airgun shots. It is important for the IMS system to detect and locate hydroacoustic events with sufficient accuracy and correctly characterize the signals and identify the source. As there are a number of seafloor cable networks operated offshore Japanese islands basically facing the Pacific Ocean for monitoring regional seismicity, the data from these stations (pressure and seismic sensors) may be utilized to increase the capability of IMS. We use these data to compare some selected event parameters with those by IMS. In particular, there have been several unconventional acoustic signals in the western Pacific,which were also captured by IMS hydrophones across the Pacific in the time period of 2007-present. These anomalous examples and also dynamite shots used for seismic crustal structure studies and other natural sources will be presented in order to help improve the IMS verification capabilities for detection, location and characterization of anomalous signals.

  10. Kepler Mission: End-to-End System Demonstration

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, D.; Dunham, E.; Jenkins, J.; Witteborn, F.; Updike, T.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    A test facility has been constructed to demonstrate the capability of differential ensemble photometry to detect transits of Earth-size planets orbiting solar-like stars. The main objective is to determine the effects of various noise sources on the capability of a CCD photometer to maintain a system relative precision of 1 x $10^(-5)$ for mv = 12 stars in the presence of system-induced noise sources. The facility includes a simulated star field, fast optics to simulate the telescope, a thinned back-illuminated CCD similar to those to be used on the spacecraft and computers to perform the onboard control, data processing and extraction. The test structure is thermally and mechanically isolated so that each source of noise can be introduced in a controlled fashion and evaluated for its contribution to the total noise budget. The effects of pointing errors or a changing thermal environment are imposed by piezo-electric devices. Transits are injected by heating small wires crossing apertures in the star plate. Signals as small as those from terrestrial-size transits of solar-like stars are introduced to demonstrate that such planets can be detected under realistic noise conditions. Examples of imposing several noise sources and the resulting detectabilities are presented. These show that a differential ensemble photometric approach CCD photometer can readily detect signals associated with Earth-size transits.

  11. 40 CFR 60.482-2a - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)(iii) of this section shall be repaired within 15 days of detection by eliminating the conditions that... repaired within 15 days of detection by eliminating visual indications of liquids dripping. (e) Any pump... system capable of capturing and transporting any leakage from the seal or seals to a process or to a fuel...

  12. An automated tool joint inspection device for the drill string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, M.C.; Dale, B.A.; Kusenberger, F.N.

    1983-02-01

    This paper discusses the development of an automated tool joint inspection device (i.e., the Fatigue Crack Detector), which is capable of detecting defects in the threaded region of drill pipe and drill collars. On the basis of inspection tests conducted at a research test facility and at drilling rig sites, this device is capable of detecting both simulated defects (saw slots and drilled holes) and service-induced defects, such as fatigue cracks, pin stretch (plastic deformation), mashed threads, and corrosion pitting. The system employs an electromagnetic flux-leakage principle and has several advantages over the conventional method of magnetic particle inspection.

  13. Testing the Wildlink activity-detection system on wolves and white-tailed deer

    USGS Publications Warehouse

    Kunkel, K.E.; Chapman, R.C.; Mech, L.D.; Gese, E.M.

    1991-01-01

    We tested the reliability and predictive capabilities of the activity meter in the new Wildlink Data Acquisition and Recapture System by comparing activity counts with concurrent observations of captive wolf (Canis lupus) and free-ranging white-tailed deer (Odocoileus virginianus) activity. The Wildlink system stores activity data in a computer within a radio collar with which a biologist can communicate. Three levels of activity could be detected. The Wildlink system provided greater activity discrimination and was more reliable, adaptable, and efficient and was easier to use than conventional telemetry activity systems. The Wildlink system could be highly useful for determining wildlife energy budgets.

  14. Thermal imaging measurement of lateral diffusivity and non-invasive material defect detection

    DOEpatents

    Sun, Jiangang; Deemer, Chris

    2003-01-01

    A system and method for determining lateral thermal diffusivity of a material sample using a heat pulse; a sample oriented within an orthogonal coordinate system; an infrared camera; and a computer that has a digital frame grabber, and data acquisition and processing software. The mathematical model used within the data processing software is capable of determining the lateral thermal diffusivity of a sample of finite boundaries. The system and method may also be used as a nondestructive method for detecting and locating cracks within the material sample.

  15. A novel mobile system for radiation detection and monitoring

    NASA Astrophysics Data System (ADS)

    Biafore, Mauro

    2014-05-01

    A novel mobile system for real time, wide area radiation surveillance has been developed within the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). The REWARD sensing units are small, mobile portable units with low energy consumption, which consist of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit is integrated by a wireless communication interface to send the data remotely to a monitoring base station as well as a GPS system to calculate the position of the tag. The system also incorporates middleware and high-level software to provide web-service interfaces for the exchange of information. A central monitoring and decision support system has been designed to process the data from the sensing units and to compare them with historical record in order to generate an alarm when an abnormal situation is detected. A security framework ensures protection against unauthorized access to the network and data, ensuring the privacy of the communications and contributing to the overall robustness and reliability of the REWARD system. The REWARD system has been designed for many different scenarios such as nuclear terrorism threats, lost radioactive sources, radioactive contamination or nuclear accidents. It can be deployed in emergency units and in general in any type of mobile or static equipment, but also inside public/private buildings or infrastructures. The complete system is scalable in terms of complexity and cost and offers very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system allows for a realistic introduction to the market. Authorities may start with a basic, low cost system and increase the complexity based on their evolving needs and budget constraints. On 24th September 2013, REWARD project received a prize as the best Innovative project related to the Not Conventional Threat (NCT) Chemical Biological Radiological Nuclear explosives (CBRNe) products. A highly distinguished jury stated that "the developed detection and surveillance system offers a perfect solution for end-users to enhance crucial capabilities in RN analysis, risk communication and surveillance in case of a radiation incident". A demonstration of the REWARD system is planned in Naples on September 2014. More information about the REWARD project can be found at www.reward-project.eu.

  16. Systems Modeling to Implement Integrated System Health Management Capability

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge F.; Walker, Mark; Morris, Jonathan; Smith, Harvey; Schmalzel, John

    2007-01-01

    ISHM capability includes: detection of anomalies, diagnosis of causes of anomalies, prediction of future anomalies, and user interfaces that enable integrated awareness (past, present, and future) by users. This is achieved by focused management of data, information and knowledge (DIaK) that will likely be distributed across networks. Management of DIaK implies storage, sharing (timely availability), maintaining, evolving, and processing. Processing of DIaK encapsulates strategies, methodologies, algorithms, etc. focused on achieving high ISHM Functional Capability Level (FCL). High FCL means a high degree of success in detecting anomalies, diagnosing causes, predicting future anomalies, and enabling health integrated awareness by the user. A model that enables ISHM capability, and hence, DIaK management, is denominated the ISHM Model of the System (IMS). We describe aspects of the IMS that focus on processing of DIaK. Strategies, methodologies, and algorithms require proper context. We describe an approach to define and use contexts, implementation in an object-oriented software environment (G2), and validation using actual test data from a methane thruster test program at NASA SSC. Context is linked to existence of relationships among elements of a system. For example, the context to use a strategy to detect leak is to identify closed subsystems (e.g. bounded by closed valves and by tanks) that include pressure sensors, and check if the pressure is changing. We call these subsystems Pressurizable Subsystems. If pressure changes are detected, then all members of the closed subsystem become suspect of leakage. In this case, the context is defined by identifying a subsystem that is suitable for applying a strategy. Contexts are defined in many ways. Often, a context is defined by relationships of function (e.g. liquid flow, maintaining pressure, etc.), form (e.g. part of the same component, connected to other components, etc.), or space (e.g. physically close, touching the same common element, etc.). The context might be defined dynamically (if conditions for the context appear and disappear dynamically) or statically. Although this approach is akin to case-based reasoning, we are implementing it using a software environment that embodies tools to define and manage relationships (of any nature) among objects in a very intuitive manner. Context for higher level inferences (that use detected anomalies or events), primarily for diagnosis and prognosis, are related to causal relationships. This is useful to develop root-cause analysis trees showing an event linked to its possible causes and effects. The innovation pertaining to RCA trees encompasses use of previously defined subsystems as well as individual elements in the tree. This approach allows more powerful implementations of RCA capability in object-oriented environments. For example, if a pressurizable subsystem is leaking, its root-cause representation within an RCA tree will show that the cause is that all elements of that subsystem are suspect of leak. Such a tree would apply to all instances of leak-events detected and all elements in all pressurizable subsystems in the system. Example subsystems in our environment to build IMS include: Pressurizable Subsystem, Fluid-Fill Subsystem, Flow-Thru-Valve Subsystem, and Fluid Supply Subsystem. The software environment for IMS is designed to potentially allow definition of any relationship suitable to create a context to achieve ISHM capability.

  17. A solid phase enzyme-linked immunosorbent assay for the antigenic detection of Legionella pneumophila (serogroup 1): A compliment for the space station diagnostic capability

    NASA Technical Reports Server (NTRS)

    Hejtmancik, Kelly E.

    1987-01-01

    It is necessary that an adequate microbiology capability be provided as part of the Health Maintenance Facility (HMF) to support expected microbial disease events and environmental monitoring during long periods of space flight. The application of morphological and biochemical studies to confirm the presence of certain bacterial and fungal disease agents are currently available and under consideration. This confirmation would be facilitated through employment of serological methods to aid in the identification of bacterial, fungal, and viral agents. A number of serological approaches are currently being considered, including the use of Enzyme Linked Immunosorbent Assay (ELISA) technology, which could be utilized during microgravity conditions. A solid phase, membrane supported ELISA for the detection of Legionella pneumophila, an expected disease agent, was developed to show a potential model system that would meet the HMF requirements and specifications for the future space station. These studies demonstrate the capability of membrane supported ELISA systems for identification of expected microbial disease agents as part of the HMF.

  18. Method for oil pipeline leak detection based on distributed fiber optic technology

    NASA Astrophysics Data System (ADS)

    Chen, Huabo; Tu, Yaqing; Luo, Ting

    1998-08-01

    Pipeline leak detection is a difficult problem to solve up to now. Some traditional leak detection methods have such problems as high rate of false alarm or missing detection, low location estimate capability. For the problems given above, a method for oil pipeline leak detection based on distributed optical fiber sensor with special coating is presented. The fiber's coating interacts with hydrocarbon molecules in oil, which alters the refractive indexed of the coating. Therefore the light-guiding properties of the fiber are modified. Thus pipeline leak location can be determined by OTDR. Oil pipeline lead detection system is designed based on the principle. The system has some features like real time, multi-point detection at the same time and high location accuracy. In the end, some factors that probably influence detection are analyzed and primary improving actions are given.

  19. NORAD's PARCS small satellite tests (1976 and 1978)

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1985-01-01

    NORAD sponsored small satellite tests in 1976 and 1978. The purpose of the tests was to use their more sensitive radar to determine the number of Earth orbiting objects which are not part of the official catalogue. Both tests used the PARCS radar. The characteristics of this radar are given. The detection capability of NORAD's operational system is estimated and compared to the PARC's radar sensitivity during these tests. The tests only slightly improved the detection capability, and the largest improvements were at the lowest and highest regions of its sensitivity range. The major conclusion of the test is that 17.7% of the objects detected were uncorrelated (i.e., not in the official catalogue). However, perhaps most significant is the altitutde and size distribution of detected objects are illustrated. The 1978 results are also summarized. This test concluded that at least 7% of the objects detected were not in the official catalogue. Another 6% of the detected objects were not tracked well enough to determine their status. Again, a large percentage of the detected objects at lower altitudes were not in the catalogue.

  20. NORAD's PARCS small satellite tests (1976 and 1978)

    NASA Astrophysics Data System (ADS)

    Kessler, D. J.

    1985-03-01

    NORAD sponsored small satellite tests in 1976 and 1978. The purpose of the tests was to use their more sensitive radar to determine the number of Earth orbiting objects which are not part of the official catalogue. Both tests used the PARCS radar. The characteristics of this radar are given. The detection capability of NORAD's operational system is estimated and compared to the PARC's radar sensitivity during these tests. The tests only slightly improved the detection capability, and the largest improvements were at the lowest and highest regions of its sensitivity range. The major conclusion of the test is that 17.7% of the objects detected were uncorrelated (i.e., not in the official catalogue). However, perhaps most significant is the altitutde and size distribution of detected objects are illustrated. The 1978 results are also summarized. This test concluded that at least 7% of the objects detected were not in the official catalogue. Another 6% of the detected objects were not tracked well enough to determine their status. Again, a large percentage of the detected objects at lower altitudes were not in the catalogue.

  1. Investigation of advanced navigation and guidance system concepts for all-weather rotorcraft operations

    NASA Technical Reports Server (NTRS)

    Upton, H. W.; Boen, G. E.; Moore, J.

    1982-01-01

    Results are presented of a survey conducted of active helicopter operators to determine the extent to which they wish to operate in IMC conditions, the visibility limits under which they would operate, the revenue benefits to be gained, and the percent of aircraft cost they would pay for such increased capability. Candidate systems were examined for capability to meet the requirements of a mission model constructed to represent the modes of flight normally encountered in low visibility conditions. Recommendations are made for development of high resolution radar, simulation of the control display system for steep approaches, and for development of an obstacle sensing system for detecting wires. A cost feasibility analysis is included.

  2. Hydra—The National Earthquake Information Center’s 24/7 seismic monitoring, analysis, catalog production, quality analysis, and special studies tool suite

    USGS Publications Warehouse

    Patton, John M.; Guy, Michelle R.; Benz, Harley M.; Buland, Raymond P.; Erickson, Brian K.; Kragness, David S.

    2016-08-18

    This report provides an overview of the capabilities and design of Hydra, the global seismic monitoring and analysis system used for earthquake response and catalog production at the U.S. Geological Survey National Earthquake Information Center (NEIC). Hydra supports the NEIC’s worldwide earthquake monitoring mission in areas such as seismic event detection, seismic data insertion and storage, seismic data processing and analysis, and seismic data output.The Hydra system automatically identifies seismic phase arrival times and detects the occurrence of earthquakes in near-real time. The system integrates and inserts parametric and waveform seismic data into discrete events in a database for analysis. Hydra computes seismic event parameters, including locations, multiple magnitudes, moment tensors, and depth estimates. Hydra supports the NEIC’s 24/7 analyst staff with a suite of seismic analysis graphical user interfaces.In addition to the NEIC’s monitoring needs, the system supports the processing of aftershock and temporary deployment data, and supports the NEIC’s quality assurance procedures. The Hydra system continues to be developed to expand its seismic analysis and monitoring capabilities.

  3. Current Research in Lidar Technology Used for the Remote Sensing of Atmospheric Aerosols

    PubMed Central

    Comerón, Adolfo; Muñoz-Porcar, Constantino; Rocadenbosch, Francesc; Rodríguez-Gómez, Alejandro; Sicard, Michaël

    2017-01-01

    Lidars are active optical remote sensing instruments with unique capabilities for atmospheric sounding. A manifold of atmospheric variables can be profiled using different types of lidar: concentration of species, wind speed, temperature, etc. Among them, measurement of the properties of aerosol particles, whose influence in many atmospheric processes is important but is still poorly stated, stands as one of the main fields of application of current lidar systems. This paper presents a review on fundamentals, technology, methodologies and state-of-the art of the lidar systems used to obtain aerosol information. Retrieval of structural (aerosol layers profiling), optical (backscatter and extinction coefficients) and microphysical (size, shape and type) properties requires however different levels of instrumental complexity; this general outlook is structured following a classification that attends these criteria. Thus, elastic systems (detection only of emitted frequencies), Raman systems (detection also of Raman frequency-shifted spectral lines), high spectral resolution lidars, systems with depolarization measurement capabilities and multi-wavelength instruments are described, and the fundamentals in which the retrieval of aerosol parameters is based is in each case detailed. PMID:28632170

  4. Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers.

    PubMed

    Cao, Yingchun; Jin, Wei; Ho, Lut Hoi; Liu, Zhibo

    2012-01-15

    We demonstrate gas detection based on evanescent-wave photoacoustic (PA) spectroscopy with tapered optical fibers. Evanescent-field instead of open-path absorption is exploited for PA generation, and a quartz tuning fork is used for PA detection. A tapered optical fiber with a diameter down to the wavelength scale demonstrates detection sensitivity similar to an open-path system but with the advantages of easier optical alignment, smaller insertion loss, and multiplexing capability.

  5. Real-Time Projection to Verify Plan Success During Execution

    NASA Technical Reports Server (NTRS)

    Wagner, David A.; Dvorak, Daniel L.; Rasmussen, Robert D.; Knight, Russell L.; Morris, John R.; Bennett, Matthew B.; Ingham, Michel D.

    2012-01-01

    The Mission Data System provides a framework for modeling complex systems in terms of system behaviors and goals that express intent. Complex activity plans can be represented as goal networks that express the coordination of goals on different state variables of the system. Real-time projection extends the ability of this system to verify plan achievability (all goals can be satisfied over the entire plan) into the execution domain so that the system is able to continuously re-verify a plan as it is executed, and as the states of the system change in response to goals and the environment. Previous versions were able to detect and respond to goal violations when they actually occur during execution. This new capability enables the prediction of future goal failures; specifically, goals that were previously found to be achievable but are no longer achievable due to unanticipated faults or environmental conditions. Early detection of such situations enables operators or an autonomous fault response capability to deal with the problem at a point that maximizes the available options. For example, this system has been applied to the problem of managing battery energy on a lunar rover as it is used to explore the Moon. Astronauts drive the rover to waypoints and conduct science observations according to a plan that is scheduled and verified to be achievable with the energy resources available. As the astronauts execute this plan, the system uses this new capability to continuously re-verify the plan as energy is consumed to ensure that the battery will never be depleted below safe levels across the entire plan.

  6. Active State Model for Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Park, Han; Chien, Steve; Zak, Michail; James, Mark; Mackey, Ryan; Fisher, Forest

    2003-01-01

    The concept of the active state model (ASM) is an architecture for the development of advanced integrated fault-detection-and-isolation (FDI) systems for robotic land vehicles, pilotless aircraft, exploratory spacecraft, or other complex engineering systems that will be capable of autonomous operation. An FDI system based on the ASM concept would not only provide traditional diagnostic capabilities, but also integrate the FDI system under a unified framework and provide mechanism for sharing of information between FDI subsystems to fully assess the overall health of the system. The ASM concept begins with definitions borrowed from psychology, wherein a system is regarded as active when it possesses self-image, self-awareness, and an ability to make decisions itself, such that it is able to perform purposeful motions and other transitions with some degree of autonomy from the environment. For an engineering system, self-image would manifest itself as the ability to determine nominal values of sensor data by use of a mathematical model of itself, and selfawareness would manifest itself as the ability to relate sensor data to their nominal values. The ASM for such a system may start with the closed-loop control dynamics that describe the evolution of state variables. As soon as this model was supplemented with nominal values of sensor data, it would possess self-image. The ability to process the current sensor data and compare them with the nominal values would represent self-awareness. On the basis of self-image and self-awareness, the ASM provides the capability for self-identification, detection of abnormalities, and self-diagnosis.

  7. Damage Detection Sensor System for Aerospace and Multiple Applications

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Lewis, Mark; Gibson, Tracy L.; Lane, John; Medelius, Pedro

    2017-01-01

    NASA has identified structural health monitoring and damage detection and verification as critical needs in multiple technology roadmaps. The sensor systems can be customized for detecting location, damage size, and depth, with velocity options and can be designed for particular environments for monitoring of impact or physical damage to a structure. The damage detection system has been successfully demonstrated in a harsh environment and remote integration tested over 1000 miles apart. Multiple applications includes: Spacecraft and Aircraft; Inflatable, Deployable and Expandable Structures; Space Debris Monitoring; Space Habitats; Military Shelters; Solar Arrays, Smart Garments and Wearables, Extravehicular activity (EVA) suits; Critical Hardware Enclosures; Embedded Composite Structures; and Flexible Hybrid Printed Electronics and Systems. For better implementation and infusion into more flexible architectures, important and improved designs in advancing embedded software and GUI interface, and increasing flexibility, modularity, and configurable capabilities of the system are currently being carried out.

  8. Mobile Measurement of Methane and Ethane for the Detection and Attribution of Natural Gas Pipeline Leaks Using Off-Axis Integrated Output Spectroscopy

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Spillane, S.; Gardner, A.; Hansen, P. C.; Gupta, M.; Baer, D. S.

    2015-12-01

    Natural gas leaks pose a risk to public safety both because of potential explosions as well as from the greenhouse gas potential of fugitive methane. The rapid and cost effective detection of leaks in natural gas distribution is critical to providing a system that is safe for the public and the environment. Detection of methane from a mobile platform (vehicles, aircraft, etc.) is an accepted method of identifying leaks. A robust approach to differentiating pipeline gas (thermogenic) from other biogenic sources is the detection of ethane along with methane. Ethane is present in nearly all thermogenic gas but not in biogenic sources and its presence can be used to positively identify a gas sample. We present a mobile system for the simultaneous measurement of methane and ethane that is capable of detecting pipeline leaks and differentiating pipeline gas from other biogenic sources such as landfills, swamps, sewers, and enteric fermentation. The mobile system consists of a high precision GPS, sonic anemometer, and methane/ethane analyzer based on off-axis integrated cavity output spectroscopy (OA-ICOS). In order to minimize the system cost and facilitate the wide use of mobile leak detection, the analyzer operates in the near-infrared portion of the spectrum where lasers and optics are significantly less costly than in the mid-infrared. The analyzer is capable of detecting methane with a precision of <2 ppb (1σ in 1 sec) and detecting ethane with a precision of <30 ppb (1σ in 1 sec). Additionally, measurement rates of 5 Hz allow for detection of leaks at speeds up to 50 mph. The sonic anemometer, GPS and analyzer inlet are mounted to a generic roof rack for attachment to available fleet vehicles. The system can detect leaks having a downwind concentration of as little as 10 ppb of methane above ambient, while leaks 500 ppb above ambient can be identified as thermogenic with greater than 99% certainty (for gas with 6% ethane). Finally, analysis of wind data provides an estimate of leak direction and distance. The system presented provides a robust, cost effective solution to natural gas leak detection and attribution to maximize safety and minimize greenhouse gas impacts of distribution systems.

  9. An Adaptive Technique for a Redundant-Sensor Navigation System. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chien, T. T.

    1972-01-01

    An on-line adaptive technique is developed to provide a self-contained redundant-sensor navigation system with a capability to utilize its full potentiality in reliability and performance. The gyro navigation system is modeled as a Gauss-Markov process, with degradation modes defined as changes in characteristics specified by parameters associated with the model. The adaptive system is formulated as a multistage stochastic process: (1) a detection system, (2) an identification system and (3) a compensation system. It is shown that the sufficient statistics for the partially observable process in the detection and identification system is the posterior measure of the state of degradation, conditioned on the measurement history.

  10. System and method for ultrasonic tomography

    DOEpatents

    Haddad, Waleed Sami

    2002-01-01

    A system and method for doing both transmission mode and reflection mode three-dimensional ultrasonic imagining. The multimode imaging capability may be used to provide enhanced detectability of cancer tumors within human breast, however, similar imaging systems are applicable to a number of other medical problems as well as a variety of non-medical problems in non-destructive evaluation (NDE).

  11. Detection of arcing location on photovoltaic systems using filters

    DOEpatents

    Johnson, Jay

    2018-02-20

    The present invention relates to photovoltaic systems capable of identifying the location of an arc-fault. In particular, such systems include a unique filter connected to each photovoltaic (PV) string, thereby providing a unique filtered noise profile associated with a particular PV string. Also described herein are methods for identifying and isolating such arc-faults.

  12. Self-checking self-repairing computer nodes using the mirror processor

    NASA Technical Reports Server (NTRS)

    Tamir, Yuval

    1992-01-01

    Circuitry added to fault-tolerant systems for concurrent error deduction usually reduces performance. Using a technique called micro rollback, it is possible to eliminate most of the performance penalty of concurrent error detection. Error detection is performed in parallel with intermodule communication, and erroneous state changes are later undone. The author reports on the design and implementation of a VLSI RISC microprocessor, called the Mirror Processor (MP), which is capable of micro rollback. In order to achieve concurrent error detection, two MP chips operate in lockstep, comparing external signals and a signature of internal signals every clock cycle. If a mismatch is detected, both processors roll back to the beginning of the cycle when the error occurred. In some cases the erroneous state is corrected by copying a value from the fault-free processor to the faulty processor. The architecture, microarchitecture, and VLSI implementation of the MP, emphasizing its error-detection, error-recovery, and self-diagnosis capabilities, are described.

  13. Pulsation Detection from Noisy Ultrasound-Echo Moving Images of Newborn Baby Head Using Fourier Transform

    NASA Astrophysics Data System (ADS)

    Yamada, Masayoshi; Fukuzawa, Masayuki; Kitsunezuka, Yoshiki; Kishida, Jun; Nakamori, Nobuyuki; Kanamori, Hitoshi; Sakurai, Takashi; Kodama, Souichi

    1995-05-01

    In order to detect pulsation from a series of noisy ultrasound-echo moving images of a newborn baby's head for pediatric diagnosis, a digital image processing system capable of recording at the video rate and processing the recorded series of images was constructed. The time-sequence variations of each pixel value in a series of moving images were analyzed and then an algorithm based on Fourier transform was developed for the pulsation detection, noting that the pulsation associated with blood flow was periodically changed by heartbeat. Pulsation detection for pediatric diagnosis was successfully made from a series of noisy ultrasound-echo moving images of newborn baby's head by using the image processing system and the pulsation detection algorithm developed here.

  14. Combination neutron-gamma ray detector

    DOEpatents

    Stuart, Travis P.; Tipton, Wilbur J.

    1976-10-26

    A radiation detection system capable of detecting neutron and gamma events and distinguishing therebetween. The system includes a detector for a photomultiplier which utilizes a combination of two phosphor materials, the first of which is in the form of small glass beads which scintillate primarily in response to neutrons and the second of which is a plastic matrix which scintillates in response to gammas. A combination of pulse shape and pulse height discrimination techniques is utilized to provide an essentially complete separation of the neutron and gamma events.

  15. Structural Health Monitoring Using High-Density Fiber Optic Strain Sensor and Inverse Finite Element Methods

    NASA Technical Reports Server (NTRS)

    Vazquez, Sixto L.; Tessler, Alexander; Quach, Cuong C.; Cooper, Eric G.; Parks, Jeffrey; Spangler, Jan L.

    2005-01-01

    In an effort to mitigate accidents due to system and component failure, NASA s Aviation Safety has partnered with industry, academia, and other governmental organizations to develop real-time, on-board monitoring capabilities and system performance models for early detection of airframe structure degradation. NASA Langley is investigating a structural health monitoring capability that uses a distributed fiber optic strain system and an inverse finite element method for measuring and modeling structural deformations. This report describes the constituent systems that enable this structural monitoring function and discusses results from laboratory tests using the fiber strain sensor system and the inverse finite element method to demonstrate structural deformation estimation on an instrumented test article

  16. Comparing the detection of iron-based pottery pigment on a carbon-coated sherd by SEM-EDS and by Micro-XRF-SEM.

    PubMed

    Pendleton, Michael W; Washburn, Dorothy K; Ellis, E Ann; Pendleton, Bonnie B

    2014-03-01

    The same sherd was analyzed using a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) and a micro X-ray fluorescence tube attached to a scanning electron microscope (Micro-XRF-SEM) to compare the effectiveness of elemental detection of iron-based pigment. To enhance SEM-EDS mapping, the sherd was carbon coated. The carbon coating was not required to produce Micro-XRF-SEM maps but was applied to maintain an unbiased comparison between the systems. The Micro-XRF-SEM analysis was capable of lower limits of detection than that of the SEM-EDS system, and therefore the Micro-XRF-SEM system could produce elemental maps of elements not easily detected by SEM-EDS mapping systems. Because SEM-EDS and Micro-XRF-SEM have been used for imaging and chemical analysis of biological samples, this comparison of the detection systems should be useful to biologists, especially those involved in bone or tooth (hard tissue) analysis.

  17. Comparing the Detection of Iron-Based Pottery Pigment on a Carbon-Coated Sherd by SEM-EDS and by Micro-XRF-SEM

    PubMed Central

    Pendleton, Michael W.; Washburn, Dorothy K.; Ellis, E. Ann; Pendleton, Bonnie B.

    2014-01-01

    The same sherd was analyzed using a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) and a micro X-ray fluorescence tube attached to a scanning electron microscope (Micro-XRF-SEM) to compare the effectiveness of elemental detection of iron-based pigment. To enhance SEM-EDS mapping, the sherd was carbon coated. The carbon coating was not required to produce Micro-XRF-SEM maps but was applied to maintain an unbiased comparison between the systems. The Micro-XRF-SEM analysis was capable of lower limits of detection than that of the SEM-EDS system, and therefore the Micro-XRF-SEM system could produce elemental maps of elements not easily detected by SEM-EDS mapping systems. Because SEM-EDS and Micro-XRF-SEM have been used for imaging and chemical analysis of biological samples, this comparison of the detection systems should be useful to biologists, especially those involved in bone or tooth (hard tissue) analysis. PMID:24600333

  18. Imaging of Keratoconic and normal human cornea with a Brillouin imaging system (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Besner, Sebastien; Shao, Peng; Scarcelli, Giuliano; Pineda, Roberto; Yun, Seok-Hyun (Andy)

    2016-03-01

    Keratoconus is a degenerative disorder of the eye characterized by human cornea thinning and morphological change to a more conical shape. Current diagnosis of this disease relies on topographic imaging of the cornea. Early and differential diagnosis is difficult. In keratoconus, mechanical properties are found to be compromised. A clinically available invasive technique capable of measuring the mechanical properties of the cornea is of significant importance for understanding the mechanism of keratoconus development and improve detection and intervention in keratoconus. The capability of Brillouin imaging to detect local longitudinal modulus in human cornea has been demonstrated previously. We report our non-contact, non-invasive, clinically viable Brillouin imaging system engineered to evaluate mechanical properties human cornea in vivo. The system takes advantage of a highly dispersive 2-stage virtually imaged phased array (VIPA) to detect weak Brillouin scattering signal from biological samples. With a 1.5-mW light beam from a 780-nm single-wavelength laser source, the system is able to detect Brillouin frequency shift of a single point in human cornea less than 0.3 second, at a 5μm/30μm lateral/axial resolution. Sensitivity of the system was quantified to be ~ 10 MHz. A-scans at different sample locations on a human cornea with a motorized human interface. We imaged both normal and keratoconic human corneas with this system. Whereas no significantly difference were observed outside keratocnic cones compared with normal cornea, a highly statistically significantly decrease was found in the cone regions.

  19. The Design of Optical Sensor for the Pinhole/Occulter Facility

    NASA Technical Reports Server (NTRS)

    Greene, Michael E.

    1990-01-01

    Three optical sight sensor systems were designed, built and tested. Two optical lines of sight sensor system are capable of measuring the absolute pointing angle to the sun. The system is for use with the Pinhole/Occulter Facility (P/OF), a solar hard x ray experiment to be flown from Space Shuttle or Space Station. The sensor consists of a pinhole camera with two pairs of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the pinhole, track and hold circuitry for data reduction, an analog to digital converter, and a microcomputer. The deflection of the image center is calculated from these data using an approximation for the solar image. A second system consists of a pinhole camera with a pair of perpendicularly mounted linear photodiode arrays, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed. A third optical sensor system is capable of measuring the internal vibration of the P/OF between the mask and base. The system consists of a white light source, a mirror and a pair of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the mirror, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image and hence the vibration of the structure is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed.

  20. Development of Eddy Current Techniques for the Detection of Cracking in Space Shuttle Primary Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz A.; Simpson, John W.; Koshti, Ajay

    2007-01-01

    A recent identification of cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.

  1. Development of Eddy Current Technique for the Detection of Stress Corrosion Cracking in Space Shuttle Primary Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Simpson, John; Koshti, Ajay

    2006-01-01

    A recent identification of stress corrosion cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.

  2. A Kinect based intelligent e-rehabilitation system in physical therapy.

    PubMed

    Gal, Norbert; Andrei, Diana; Nemeş, Dan Ion; Nădăşan, Emanuela; Stoicu-Tivadar, Vasile

    2015-01-01

    This paper presents an intelligent Kinect and fuzzy inference system based e-rehabilitation system. The Kinect can detect the posture and motion of the patients while the fuzzy inference system can interpret the acquired data on the cognitive level. The system is capable to assess the initial posture and motion ranges of 20 joints. Using angles to describe the motion of the joints, exercise patterns can be developed for each patient. Using the exercise descriptors the fuzzy inference system can track the patient and deliver real-time feedback to maximize the efficiency of the rehabilitation. The first laboratory tests confirm the utility of this system for the initial posture detection, motion range and exercise tracking.

  3. Design and Efficiency Analysis of Operational Scenarios for Space Situational Awareness Radar System

    NASA Astrophysics Data System (ADS)

    Choi, E. J.; Cho, S.; Jo, J. H.; Park, J.; Chung, T.; Park, J.; Jeon, H.; Yun, A.; Lee, Y.

    In order to perform the surveillance and tracking of space objects, optical and radar sensors are the technical components for space situational awareness system. Especially, space situational awareness radar system in combination with optical sensors network plays an outstanding role for space situational awareness. At present, OWL-Net(Optical Wide Field patrol Network) optical system, which is the only infra structures for tracking of space objects in Korea is very limited in all-weather and observation time. Therefore, the development of radar system capable of continuous operation is becoming an essential space situational awareness element. Therefore, for an efficient space situational awareness at the current state, the strategy of the space situational awareness radar development should be considered. The purpose of this paper is to analyze the efficiency of radar system for detection and tracking of space objects. The detection capabilities are limited to an altitude of 2,000 km with debris size of 1 m2 in radar cross section (RCS) for the radar operating frequencies of L, S, C, X, and Ku-band. The power budget analysis results showed that the maximum detection range of 2,000km can be achieved with the transmitted power of 900 kW, transmit and receive antenna gains of 40 dB and 43 dB, respectively, pulse width of 2 ms, and a signal processing gain of 13.3dB, at frequency of 1.3GHz. The required signal-to-noise ratio (SNR) was assumed to be 12.6 dB for probability of detection of 80% with false alarm rate 10-6. Through the efficiency analysis and trade-off study, the key parameters of the radar system are designed. As a result, this research will provide the guideline for the conceptual design of space situational awareness system.

  4. A Comparison of Vibration and Oil Debris Gear Damage Detection Methods Applied to Pitting Damage

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2000-01-01

    Helicopter Health Usage Monitoring Systems (HUMS) must provide reliable, real-time performance monitoring of helicopter operating parameters to prevent damage of flight critical components. Helicopter transmission diagnostics are an important part of a helicopter HUMS. In order to improve the reliability of transmission diagnostics, many researchers propose combining two technologies, vibration and oil monitoring, using data fusion and intelligent systems. Some benefits of combining multiple sensors to make decisions include improved detection capabilities and increased probability the event is detected. However, if the sensors are inaccurate, or the features extracted from the sensors are poor predictors of transmission health, integration of these sensors will decrease the accuracy of damage prediction. For this reason, one must verify the individual integrity of vibration and oil analysis methods prior to integrating the two technologies. This research focuses on comparing the capability of two vibration algorithms, FM4 and NA4, and a commercially available on-line oil debris monitor to detect pitting damage on spur gears in the NASA Glenn Research Center Spur Gear Fatigue Test Rig. Results from this research indicate that the rate of change of debris mass measured by the oil debris monitor is comparable to the vibration algorithms in detecting gear pitting damage.

  5. Autonomous detection of indoor and outdoor signs

    NASA Astrophysics Data System (ADS)

    Holden, Steven; Snorrason, Magnus; Goodsell, Thomas; Stevens, Mark R.

    2005-05-01

    Most goal-oriented mobile robot tasks involve navigation to one or more known locations. This is generally done using GPS coordinates and landmarks outdoors, or wall-following and fiducial marks indoors. Such approaches ignore the rich source of navigation information that is already in place for human navigation in all man-made environments: signs. A mobile robot capable of detecting and reading arbitrary signs could be tasked using directions that are intuitive to hu-mans, and it could report its location relative to intuitive landmarks (a street corner, a person's office, etc.). Such ability would not require active marking of the environment and would be functional in the absence of GPS. In this paper we present an updated version of a system we call Sign Understanding in Support of Autonomous Navigation (SUSAN). This system relies on cues common to most signs, the presence of text, vivid color, and compact shape. By not relying on templates, SUSAN can detect a wide variety of signs: traffic signs, street signs, store-name signs, building directories, room signs, etc. In this paper we focus on the text detection capability. We present results summarizing probability of detection and false alarm rate across many scenes containing signs of very different designs and in a variety of lighting conditions.

  6. A MEMS torsion magnetic sensor with reflective blazed grating integration

    NASA Astrophysics Data System (ADS)

    Long, Liang; Zhong, Shaolong

    2016-07-01

    A novel magnetic sensor based on a permanent magnet and blazed grating is presented in this paper. The magnetic field is detected by measuring the diffracted wavelength of the blazed grating which is changed by the torsion motion of a torsion sensitive micro-electromechanical system (MEMS) structure with a permanent magnet attached. A V-shape grating structure is obtained by wet etching on a (1 0 0) SOI substrate. When the magnet is magnetized in different directions, the in-plane or out-of-plane magnetic field is detected by a sensor. The MEMS magnetic sensor with a permanent magnet is fabricated after analytical design and bulk micromachining processes. The magnetic-sensing capability of the sensor is tested by fiber-optic detection system. The result shows the sensitivities of the in-plane and out-of-plane magnetic fields are 3.6 pm μT-1 and 5.7 pm μT-1, respectively. Due to utilization of the permanent magnet and fiber-optic detection, the sensor shows excellent capability of covering the high-resolution detection of low-frequency signals. In addition, the sensitive direction of the magnetic sensor can be easily switched by varying the magnetized direction of the permanent magnet, which offers a simple way to achieve tri-axis magnetic sensor application.

  7. A compact 45 kV curve tracer with picoampere current measurement capability.

    PubMed

    Sullivan, W W; Mauch, D; Bullick, A; Hettler, C; Neuber, A; Dickens, J

    2013-03-01

    This paper discusses a compact high voltage curve tracer for high voltage semiconductor device characterization. The system sources up to 3 mA at up to 45 kV in dc conditions. It measures from 328 V to 60 kV with 15 V resolution and from 9.4 pA to 4 mA with 100 fA minimum resolution. Control software for the system is written in Microsoft Visual C# and features real-time measurement control and IV plotting, arc-protection and detection, an electrically isolated universal serial bus interface, and easy data exporting capabilities. The system has survived numerous catastrophic high voltage device-under-test arcing failures with no loss of measurement capability or system damage. Overall sweep times are typically under 2 min, and the curve tracer system was used to characterize the blocking performance of high voltage ceramic capacitors, high voltage silicon carbide photoconductive semiconductor switches, and high voltage coaxial cable.

  8. Accurate mobile malware detection and classification in the cloud.

    PubMed

    Wang, Xiaolei; Yang, Yuexiang; Zeng, Yingzhi

    2015-01-01

    As the dominator of the Smartphone operating system market, consequently android has attracted the attention of s malware authors and researcher alike. The number of types of android malware is increasing rapidly regardless of the considerable number of proposed malware analysis systems. In this paper, by taking advantages of low false-positive rate of misuse detection and the ability of anomaly detection to detect zero-day malware, we propose a novel hybrid detection system based on a new open-source framework CuckooDroid, which enables the use of Cuckoo Sandbox's features to analyze Android malware through dynamic and static analysis. Our proposed system mainly consists of two parts: anomaly detection engine performing abnormal apps detection through dynamic analysis; signature detection engine performing known malware detection and classification with the combination of static and dynamic analysis. We evaluate our system using 5560 malware samples and 6000 benign samples. Experiments show that our anomaly detection engine with dynamic analysis is capable of detecting zero-day malware with a low false negative rate (1.16 %) and acceptable false positive rate (1.30 %); it is worth noting that our signature detection engine with hybrid analysis can accurately classify malware samples with an average positive rate 98.94 %. Considering the intensive computing resources required by the static and dynamic analysis, our proposed detection system should be deployed off-device, such as in the Cloud. The app store markets and the ordinary users can access our detection system for malware detection through cloud service.

  9. Global Monitoring of the CTBT: Progress, Capabilities and Plans (Invited)

    NASA Astrophysics Data System (ADS)

    Zerbo, L.

    2013-12-01

    The Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), established in 1996, is tasked with building up the verification regime of the CTBT. The regime includes a global system for monitoring the earth, the oceans and the atmosphere for nuclear tests, and an on-site inspection (OSI) capability. More than 80% of the 337 facilities of the International Monitoring System (IMS) have been installed and are sending data to the International Data Centre (IDC) in Vienna, Austria for processing. These IMS data along with IDC processed and reviewed products are available to all States that have signed the Treaty. Concurrent with the build-up of the global monitoring networks, near-field geophysical methods are being developed and tested for OSIs. The monitoring system is currently operating in a provisional mode, as the Treaty has not yet entered into force. Progress in installing and operating the IMS and the IDC and in building up an OSI capability will be described. The capabilities of the monitoring networks have progressively improved as stations are added to the IMS and IDC processing techniques refined. Detection thresholds for seismic, hydroacoustic, infrasound and radionuclide events have been measured and in general are equal to or lower than the predictions used during the Treaty negotiations. The measurements have led to improved models and tools that allow more accurate predictions of future capabilities and network performance under any configuration. Unplanned tests of the monitoring network occurred when the DPRK announced nuclear tests in 2006, 2009, and 2013. All three tests were well above the detection threshold and easily detected and located by the seismic monitoring network. In addition, noble gas consistent with the nuclear tests in 2006 and 2013 (according to atmospheric transport models) was detected by stations in the network. On-site inspections of these tests were not conducted as the Treaty has not entered into force. In order to achieve a credible and trustworthy Verification System, increased focus is being put on the development of OSI operational capabilities while operating and sustaining the existing monitoring system, increasing the data availability and quality, and completing the remaining facilities of the IMS. Furthermore, as mandated by the Treaty, the CTBTO also seeks to continuously improve its technologies and methods through interaction with the scientific community. Workshops and scientific conferences such as the CTBT Science and Technology Conference series provide venues for exchanging ideas, and mechanisms have been developed for sharing IMS data with researchers who are developing and testing new and innovative methods pertinent to the verification regime. While progress is steady on building up the verification regime, there is also progress in gaining entry into force of the Treaty, which requires the signatures and ratifications of the DPRK, India and Pakistan; it also requires the ratifications of China, Egypt, Iran, Israel and the United States. Thirty-six other States, whose signatures and ratifications are needed for entry into force have already done so.

  10. Integrated active sensor system for real time vibration monitoring.

    PubMed

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  11. Integrated active sensor system for real time vibration monitoring

    PubMed Central

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-01-01

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0–60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems. PMID:26538293

  12. Detecting aromatic compounds on planetary surfaces using ultraviolet time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.

    2018-02-01

    Many aromatic organic molecules exhibit strong and characteristic fluorescence when excited with ultraviolet radiation. As laser excitation in the ultraviolet generates both fluorescence and resonantly enhanced Raman scattering of aromatic vibrational modes, combined Raman and fluorescence instruments have been proposed to search for organic compounds on Mars. In this work the time-resolved fluorescence of a suite of 24 compounds composed of 2-5 ringed alternant, non-alternant, and heterocyclic PAHs was measured. Fluorescence instrumentation with similar specifications to a putative flight instrument was capable of observing the fluorescence decay of these compounds with a sub-ns resolution. Incorporating time-resolved capabilities was also found to increase the ability to discriminate between individual PAHs. Incorporating time-resolved fluorescence capabilities into an ultraviolet gated Raman system intended for a rover or lander can increase the ability to detect and characterize PAHs on planetary surfaces.

  13. Results of field testing with the FightSight infrared-based projectile tracking and weapon-fire characterization technology

    NASA Astrophysics Data System (ADS)

    Snarski, Steve; Menozzi, Alberico; Sherrill, Todd; Volpe, Chris; Wille, Mark

    2010-04-01

    This paper describes experimental results from recent live-fire data collects that demonstrate the capability of a prototype system for projectile detection and tracking. This system, which is being developed at Applied Research Associates, Inc., under the FightSight program, consists of a high-speed thermal camera and sophisticated image processing algorithms to detect and track projectiles. The FightSight operational vision is automated situational intelligence to detect, track, and graphically map large-scale firefights and individual shooting events onto command and control (C2) systems in real time (shot location and direction, weapon ID, movements and trends). Gaining information on enemy-fire trajectories allows educated inferences on the enemy's intent, disposition, and strength. Our prototype projectile detection and tracking system has been tested at the Joint Readiness Training Center (Ft Polk, LA) during live-fire convoy and mortar registration exercises, in the summer of 2009. It was also tested during staged military-operations- on-urban-terrain (MOUT) firefight events at Aberdeen Test Center (Aberdeen, MD) under the Hostile Fire Defeat Army Technology Objective midterm experiment, also in the summer of 2009, where we introduced fusion with acoustic and EO sensors to provide 3D localization and near-real time display of firing events. Results are presented in this paper that demonstrate effective and accurate detection and localization of weapon fire (5.56mm, 7.62mm, .50cal, 81/120mm mortars, 40mm) in diverse and challenging environments (dust, heat, day and night, rain, arid open terrain, urban clutter). FightSight's operational capabilities demonstrated under these live-fire data collects can support closecombat scenarios. As development continues, FightSight will be able to feed C2 systems with a symbolic map of enemy actions.

  14. Passive wireless sensor systems can recognize activites of daily living.

    PubMed

    Urwyler, Prabitha; Stucki, Reto; Muri, Rene; Mosimann, Urs P; Nef, Tobias

    2015-08-01

    The ability to determine what activity of daily living a person performs is of interest in many application domains. It is possible to determine the physical and cognitive capabilities of the elderly by inferring what activities they perform in their houses. Our primary aim was to establish a proof of concept that a wireless sensor system can monitor and record physical activity and these data can be modeled to predict activities of daily living. The secondary aim was to determine the optimal placement of the sensor boxes for detecting activities in a room. A wireless sensor system was set up in a laboratory kitchen. The ten healthy participants were requested to make tea following a defined sequence of tasks. Data were collected from the eight wireless sensor boxes placed in specific places in the test kitchen and analyzed to detect the sequences of tasks performed by the participants. These sequence of tasks were trained and tested using the Markov Model. Data analysis focused on the reliability of the system and the integrity of the collected data. The sequence of tasks were successfully recognized for all subjects and the averaged data pattern of tasks sequences between the subjects had a high correlation. Analysis of the data collected indicates that sensors placed in different locations are capable of recognizing activities, with the movement detection sensor contributing the most to detection of tasks. The central top of the room with no obstruction of view was considered to be the best location to record data for activity detection. Wireless sensor systems show much promise as easily deployable to monitor and recognize activities of daily living.

  15. In-Situ Wire Damage Detection System

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Tate, Lanetra; Smith, Trent; Gibson, Tracy; Medelius, Pedro; Jolley, Scott

    2012-01-01

    An In-Situ Wire Damage Detection System (ISWDDS) has been developed that is capable of detecting damage to a wire insulation, or a wire conductor, or to both. The system will allow for realtime, continuous monitoring of wiring health/integrity and reduce the number of false negatives and false positives while being smaller, lighter in weight, and more robust than current systems. The technology allows for improved safety and significant reduction in maintenance hours for aircraft, space vehicles, satellites, and other critical high-performance wiring systems for industries such as energy production and mining. The integrated ISWDDS is comprised of two main components: (1) a wire with an innermost core conductor, an inner insulation film, a conductive layer or inherently conductive polymer (ICP) covering the inner insulation film, an outermost insulation jacket; and (2) smart connectors and electronics capable of producing and detecting electronic signals, and a central processing unit (CPU) for data collection and analysis. The wire is constructed by applying the inner insulation films to the conductor, followed by the outer insulation jacket. The conductive layer or ICP is on the outer surface of the inner insulation film. One or more wires are connected to the CPU using the smart connectors, and up to 64 wires can be monitored in real-time. The ISWDDS uses time domain reflectometry for damage detection. A fast-risetime pulse is injected into either the core conductor or conductive layer and referenced against the other conductor, producing transmission line behavior. If either conductor is damaged, then the signal is reflected. By knowing the speed of propagation of the pulse, and the time it takes to reflect, one can calculate the distance to and location of the damage.

  16. Comprehensive study of solid pharmaceutical tablets in visible, near infrared (NIR), and longwave infrared (LWIR) spectral regions using a rapid simultaneous ultraviolet/visible/NIR (UVN) + LWIR laser-induced breakdown spectroscopy linear arrays detection system and a fast acousto-optic tunable filter NIR spectrometer.

    PubMed

    Yang, Clayton S C; Jin, Feng; Swaminathan, Siva R; Patel, Sita; Ramer, Evan D; Trivedi, Sudhir B; Brown, Ei E; Hommerich, Uwe; Samuels, Alan C

    2017-10-30

    This is the first report of a simultaneous ultraviolet/visible/NIR and longwave infrared laser-induced breakdown spectroscopy (UVN + LWIR LIBS) measurement. In our attempt to study the feasibility of combining the newly developed rapid LWIR LIBS linear array detection system to existing rapid analytical techniques for a wide range of chemical analysis applications, two different solid pharmaceutical tablets, Tylenol arthritis pain and Bufferin, were studied using both a recently designed simultaneous UVN + LWIR LIBS detection system and a fast AOTF NIR (1200 to 2200 nm) spectrometer. Every simultaneous UVN + LWIR LIBS emission spectrum in this work was initiated by one single laser pulse-induced micro-plasma in the ambient air atmosphere. Distinct atomic and molecular LIBS emission signatures of the target compounds measured simultaneously in UVN (200 to 1100 nm) and LWIR (5.6 to 10 µm) spectral regions are readily detected and identified without the need to employ complex data processing. In depth profiling studies of these two pharmaceutical tablets without any sample preparation, one can easily monitor the transition of the dominant LWIR emission signatures from coating ingredients gradually to the pharmaceutical ingredients underneath the coating. The observed LWIR LIBS emission signatures provide complementary molecular information to the UVN LIBS signatures, thus adding robustness to identification procedures. LIBS techniques are more surface specific while NIR spectroscopy has the capability to probe more bulk materials with its greater penetration depth. Both UVN + LWIR LIBS and NIR absorption spectroscopy have shown the capabilities of acquiring useful target analyte spectral signatures in comparable short time scales. The addition of a rapid LWIR spectroscopic probe to these widely used optical analytical methods, such as NIR spectroscopy and UVN LIBS, may greatly enhance the capability and accuracy of the combined system for a comprehensive analysis.

  17. Target molecules detection by waveguiding in a photonic silicon membrane

    DOEpatents

    Letant, Sonia E [Livermore, CA; Van Buuren, Anthony [Livermore, CA; Terminello, Louis [Danville, CA; Hart, Bradley R [Brentwood, CA

    2006-12-26

    Disclosed herein is a porous silicon filter capable of binding and detecting biological and chemical target molecules in liquid or gas samples. A photonic waveguiding silicon filter with chemical and/or biological anchors covalently attached to the pore walls bind target molecules. The system uses transmission curve engineering principles to allow measurements to be made in situ and in real time to detect the presence of various target molecules and calculate the concentration of bound target.

  18. Target molecules detection by waveguiding in a photonic silicon membrane

    DOEpatents

    Letant, Sonia; Van Buuren, Anthony; Terminello, Louis

    2004-08-31

    Disclosed herein is a photonic silicon filter capable of binding and detecting biological and chemical target molecules in liquid or gas samples. A photonic waveguiding silicon filter with chemical and/or biological anchors covalently attached to the pore walls selectively bind target molecules. The system uses transmission curve engineering principles to allow measurements to be made in situ and in real time to detect the presence of various target molecules and determine the concentration of bound target.

  19. Joint chemical agent detector (JCAD): the future of chemical agent detection

    NASA Astrophysics Data System (ADS)

    Laljer, Charles E.

    2003-08-01

    The Joint Chemical Agent Detector (JCAD) has continued development through 2002. The JCAD has completed Contractor Validation Testing (CVT) that included chemical warfare agent testing, environmental testing, electromagnetic interferent testing, and platform integration validation. The JCAD provides state of the art chemical warfare agent detection capability to military and homeland security operators. Intelligence sources estimate that over twenty countries have active chemical weapons programs. The spread of weapons of mass destruction (and the industrial capability for manufacture of these weapons) to third world nations and terrorist organizations has greatly increased the chemical agent threat to U.S. interests. Coupled with the potential for U.S. involvement in localized conflicts in an operational or support capacity, increases the probability that the military Joint Services may encounter chemical agents anywhere in the world. The JCAD is a small (45 in3), lightweight (2 lb.) chemical agent detector for vehicle interiors, aircraft, individual personnel, shipboard, and fixed site locations. The system provides a common detection component across multi-service platforms. This common detector system will allow the Joint Services to use the same operational and support concept for more efficient utilization of resources. The JCAD detects, identifies, quantifies, and warns of the presence of chemical agents prior to onset of miosis. Upon detection of chemical agents, the detector provides local and remote audible and visual alarms to the operators. Advance warning will provide the vehicle crew and other personnel in the local area with the time necessary to protect themselves from the lethal effects of chemical agents. The JCAD is capable of being upgraded to protect against future chemical agent threats. The JCAD provides the operator with the warning necessary to survive and fight in a chemical warfare agent threat environment.

  20. Detection, recognition, identification, and tracking of military vehicles using biomimetic intelligence

    NASA Astrophysics Data System (ADS)

    Pace, Paul W.; Sutherland, John

    2001-10-01

    This project is aimed at analyzing EO/IR images to provide automatic target detection/recognition/identification (ATR/D/I) of militarily relevant land targets. An increase in performance was accomplished using a biomimetic intelligence system functioning on low-cost, commercially available processing chips. Biomimetic intelligence has demonstrated advanced capabilities in the areas of hand- printed character recognition, real-time detection/identification of multiple faces in full 3D perspectives in cluttered environments, advanced capabilities in classification of ground-based military vehicles from SAR, and real-time ATR/D/I of ground-based military vehicles from EO/IR/HRR data in cluttered environments. The investigation applied these tools to real data sets and examined the parameters such as the minimum resolution for target recognition, the effect of target size, rotation, line-of-sight changes, contrast, partial obscuring, background clutter etc. The results demonstrated a real-time ATR/D/I capability against a subset of militarily relevant land targets operating in a realistic scenario. Typical results on the initial EO/IR data indicate probabilities of correct classification of resolved targets to be greater than 95 percent.

  1. Implementing a real time reasoning system for robust diagnosis

    NASA Technical Reports Server (NTRS)

    Hill, Tim; Morris, William; Robertson, Charlie

    1993-01-01

    The objective of the Thermal Control System Automation Project (TCSAP) is to develop an advanced fault detection, isolation, and recovery (FDIR) capability for use on the Space Station Freedom (SSF) External Active Thermal Control System (EATCS). Real-time monitoring, control, and diagnosis of the EATCS will be performed with a knowledge based system (KBS). Implementation issues for the current version of the KBS are discussed.

  2. The Global Detection Capability of the IMS Seismic Network in 2013 Inferred from Ambient Seismic Noise Measurements

    NASA Astrophysics Data System (ADS)

    Gaebler, P. J.; Ceranna, L.

    2016-12-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection thresholdcan be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  3. Detection and tracking of a moving target using SAR images with the particle filter-based track-before-detect algorithm.

    PubMed

    Gao, Han; Li, Jingwen

    2014-06-19

    A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB.

  4. Detection and Tracking of a Moving Target Using SAR Images with the Particle Filter-Based Track-Before-Detect Algorithm

    PubMed Central

    Gao, Han; Li, Jingwen

    2014-01-01

    A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB. PMID:24949640

  5. Improved Cloud Detection Utilizing Defense Meteorological Satellite Program near Infrared Measurements

    DTIC Science & Technology

    1982-01-27

    Visible 3. 3 Ea r th Location, Colocation, and Normalization 4. IMAGE ANALYSIS 4. 1 Interactive Capabilities 4.2 Examples 5. AUTOMATED CLOUD...computer Interactive Data Access System (McIDAS) before image analysis and algorithm development were done. Earth-location is an automated procedure to...the factor l / s in (SSE) toward the gain settings given in Table 5. 4. IMAGE ANALYSIS 4.1 Interactive Capabilities The development of automated

  6. Fundamentals and practice for ultrasensitive laser-induced fluorescence detection in microanalytical systems.

    PubMed

    Johnson, Mitchell E; Landers, James P

    2004-11-01

    Laser-induced fluorescence is an extremely sensitive method for detection in chemical separations. In addition, it is well-suited to detection in small volumes, and as such is widely used for capillary electrophoresis and microchip-based separations. This review explores the detailed instrumental conditions required for sub-zeptomole, sub-picomolar detection limits. The key to achieving the best sensitivity is to use an excitation and emission volume that is matched to the separation system and that, simultaneously, will keep scattering and luminescence background to a minimum. We discuss how this is accomplished with confocal detection, 90 degrees on-capillary detection, and sheath-flow detection. It is shown that each of these methods have their advantages and disadvantages, but that all can be used to produce extremely sensitive detectors for capillary- or microchip-based separations. Analysis of these capabilities allows prediction of the optimal means of achieving ultrasensitive detection on microchips.

  7. Electro-optical system for gunshot detection: analysis, concept, and performance

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Dulski, R.; Madura, H.; Trzaskawka, P.; Bieszczad, G.; Sosnowski, T.

    2011-08-01

    The paper discusses technical possibilities to build an effective electro-optical sensor unit for sniper detection using infrared cameras. This unit, comprising of thermal and daylight cameras, can operate as a standalone device but its primary application is a multi-sensor sniper and shot detection system. At first, the analysis was presented of three distinguished phases of sniper activity: before, during and after the shot. On the basis of experimental data the parameters defining the relevant sniper signatures were determined which are essential in assessing the capability of infrared camera to detect sniper activity. A sniper body and muzzle flash were analyzed as targets and the descriptions of phenomena which make it possible to detect sniper activities in infrared spectra as well as analysis of physical limitations were performed. The analyzed infrared systems were simulated using NVTherm software. The calculations for several cameras, equipped with different lenses and detector types were performed. The simulation of detection ranges was performed for the selected scenarios of sniper detection tasks. After the analysis of simulation results, the technical specifications of infrared sniper detection system were discussed, required to provide assumed detection range. Finally the infrared camera setup was proposed which can detected sniper from 1000 meters range.

  8. SIRU development. Volume 3: Software description and program documentation

    NASA Technical Reports Server (NTRS)

    Oehrle, J.

    1973-01-01

    The development and initial evaluation of a strapdown inertial reference unit (SIRU) system are discussed. The SIRU configuration is a modular inertial subsystem with hardware and software features that achieve fault tolerant operational capabilities. The SIRU redundant hardware design is formulated about a six gyro and six accelerometer instrument module package. The six axes array provides redundant independent sensing and the symmetry enables the formulation of an optimal software redundant data processing structure with self-contained fault detection and isolation (FDI) capabilities. The basic SIRU software coding system used in the DDP-516 computer is documented.

  9. Impact of upgraded in vivo lung measurement capability on an internal dosimetry program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.; Sula, M.J.; Aldridge, T.L.

    1985-08-01

    Implementation of high-purity germanium (Ge) detectors in place of sodium iodide (NaI) detectors for in vivo lung measurements of low-energy photon-emitting radionuclides resulted in significant improvement in detection capability and corresponding improvements in the monitoring of potentially exposed workers. Lung activities below those detectable with the NaI system were discovered during the first 18 months of operation. In a number of cases, these activities were estimated to represent intakes resulting in lung doses as high as 25% of the 15 rem/y United States Department of Energy Radiation Protection Standard. Evaluation of these lung activities and their associated intakes was substantiallymore » more time consuming than originally anticipated due to calibration differences between the Ge and NaI systems and to the difficulty of completing some of the follow-up investigations.« less

  10. Enhanced visualization of the bile duct via parallel white light and indocyanine green fluorescence laparoscopic imaging

    NASA Astrophysics Data System (ADS)

    Demos, Stavros G.; Urayama, Shiro

    2014-03-01

    Despite best efforts, bile duct injury during laparoscopic cholecystectomy is a major potential complication. Precise detection method of extrahepatic bile duct during laparoscopic procedures would minimize the risk of injury. Towards this goal, we have developed a compact imaging instrumentation designed to enable simultaneous acquisition of conventional white color and NIR fluorescence endoscopic/laparoscopic imaging using ICG as contrast agent. The capabilities of this system, which offers optimized sensitivity and functionality, are demonstrated for the detection of the bile duct in an animal model. This design could also provide a low-cost real-time surgical navigation capability to enhance the efficacy of a variety of other image-guided minimally invasive procedures.

  11. Width-Increased Dual-Pump Enhanced Coherent Anti-Stokes Raman Spectroscopy (WIDECARS)

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Wheeler, Jeffrey L.; Danehy, Paul M.

    2010-01-01

    WIDECARS is a dual-pump coherent anti-Stokes Raman Spectroscopy technique that is capable of simultaneously measuring temperature and species mole fractions of N2, O2, H2, C2H4, CO, and CO2. WIDECARS is designed for measurements of all the major species (except water) in supersonic combustion flows fueled with hydrogen and hydrogen/ethylene mixtures. The two lowest rotational energy levels of hydrogen detectable by WIDECARS are H2 S(3) and H2 S(4). The detection of these lines gives the system the capability to measure temperature and species concentrations in regions of the flow containing pure hydrogen fuel at room temperature.

  12. Hearing of the African lungfish (Protopterus annectens) suggests underwater pressure detection and rudimentary aerial hearing in early tetrapods.

    PubMed

    Christensen, Christian Bech; Christensen-Dalsgaard, Jakob; Madsen, Peter Teglberg

    2015-02-01

    In the transition from an aquatic to a terrestrial lifestyle, vertebrate auditory systems have undergone major changes while adapting to aerial hearing. Lungfish are the closest living relatives of tetrapods and their auditory system may therefore be a suitable model of the auditory systems of early tetrapods such as Acanthostega. Therefore, experimental studies on the hearing capabilities of lungfish may shed light on the possible hearing capabilities of early tetrapods and broaden our understanding of hearing across the water-to-land transition. Here, we tested the hypotheses that (i) lungfish are sensitive to underwater pressure using their lungs as pressure-to-particle motion transducers and (ii) lungfish can detect airborne sound. To do so, we used neurophysiological recordings to estimate the vibration and pressure sensitivity of African lungfish (Protopterus annectens) in both water and air. We show that lungfish detect underwater sound pressure via pressure-to-particle motion transduction by air volumes in their lungs. The morphology of lungfish shows no specialized connection between these air volumes and the inner ears, and so our results imply that air breathing may have enabled rudimentary pressure detection as early as the Devonian era. Additionally, we demonstrate that lungfish in spite of their atympanic middle ear can detect airborne sound through detection of sound-induced head vibrations. This strongly suggests that even vertebrates with no middle ear adaptations for aerial hearing, such as the first tetrapods, had rudimentary aerial hearing that may have led to the evolution of tympanic middle ears in recent tetrapods. © 2015. Published by The Company of Biologists Ltd.

  13. Integration of a Self-Coherence Algorithm into DISAT for Forced Oscillation Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follum, James D.; Tuffner, Francis K.; Amidan, Brett G.

    2015-03-03

    With the increasing number of phasor measurement units on the power system, behaviors typically not observable on the power system are becoming more apparent. Oscillatory behavior on the power system, notably forced oscillations, are one such behavior. However, the large amounts of data coming from the PMUs makes manually detecting and locating these oscillations difficult. To automate portions of the process, an oscillation detection routine was coded into the Data Integrity and Situational Awareness Tool (DISAT) framework. Integration into the DISAT framework allows forced oscillations to be detected and information about the event provided to operational engineers. The oscillation detectionmore » algorithm integrates with the data handling and atypical data detecting capabilities of DISAT, building off of a standard library of functions. This report details that integration with information on the algorithm, some implementation issues, and some sample results from the western United States’ power grid.« less

  14. Overview of IMS infrasound station and engineering projects

    NASA Astrophysics Data System (ADS)

    Marty, J.; Doury, B.; Kramer, A.; Martysevich, P.

    2015-12-01

    The Provisional Technical Secretariat (PTS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBTO) has a continuous interest in enhancing its capability in acoustic source detection, localization and characterization. The infrasound component of the International Monitoring System (IMS) constitutes the only worldwide ground-based infrasound network. It consists of sixty stations, among which forty-eight are already certified and continuously transmit data to the International Data Centre (IDC) in Vienna, Austria. Each infrasound station is composed of an array of infrasound sensors capable of measuring micro-pressure changes produced at ground level by infrasonic waves. The characteristics of infrasonic waves are computed in near real-time by IDC automatic detection software and are used as an input to IDC source categorization and localization algorithms. The PTS is continuously working towards the completion and sustainment of the IMS infrasound network. The objective of this presentation is to review the main activities performed in the IMS infrasound network over the last five years. This includes construction, installation, certification, major upgrade and revalidation activities. Major technology development projects to improve the reliability and robustness of IMS infrasound stations as well as their compliance with IMS Operational Manual requirements will also be presented. This includes advances in array geometry, wind noise reduction, system calibration, meteorological data as well as power and communication infrastructures. Finally the impact of all these changes on the overall detection capability of the IMS infrasound network will be highlighted.

  15. A Communications Modeling System for Swarm-Based Sensors

    DTIC Science & Technology

    2003-09-01

    6-10 6.6. Digital and Swarm System Performance Measures . . . . . . . . . . 6-21 7.1. Simulation computing hardware...detection and monitoring, and advances in computational capabilities have provided for embedded data analysis and the generation of information from raw... computing and manufacturing technology have made such systems possible. In order to harness this potential for Air Force applica- tions, a method of

  16. NATUREYES: Development of surveillance monitoring system for open spaces based on the analysis of different optical sensors data and environmental conditions

    NASA Astrophysics Data System (ADS)

    Molina-Jimenez, Teresa; Caballero-Aroca, Jose; Simón-Martín, Santiago; Hervás-Juan, Juan; García-Martínez, Jose-David; Pérez-Picazo, Emilio; Dolz-García, Ramón; Pons-Vila, Alejandro; Quintana-Rumbau, Salvador; Valiente Pardo, Jose Antonio; Estrela, Maria José; Pastor-Guzmán, Francisco

    2005-09-01

    We present results of a R&D project aimed to produce an environmental surveillance system that, working in wild areas, allows for a real-time observation and control of some ambient factors that could produce a natural disaster. The main objective of the project is the development of an open platform capable to work with several kinds of sensors, in order to adapt itself to the needs of each situation. The detection of environmental risks and management of this data to give a real-time response is the overall objective of the project. The main parts of the system are: 1.- Detection system: capable to perform real-time data and image communication, fully autonomous and designed to consider the environmental conditions. 2.- Alarm management headquaters: reception on real-time of data from the detector network. All the data is analysed to enable a decision about whether there is or not an alarm situation. 3.- Mobile alarm-reception system: portable system for reception of the alarm signal from the headquaters. The project was financed by the Science and Technology Ministry, National Research and Development Programme (TIC2000-0366-P4, 2001-2004).

  17. Inferring Gear Damage from Oil-Debris and Vibration Data

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula

    2006-01-01

    A system for real-time detection of surface-fatigue-pitting damage to gears for use in a helicopter transmission is based on fuzzy-logic used to fuse data from sensors that measure oil-borne debris, referred to as "oil debris" in the article, and vibration signatures. A system to detect helicopter-transmission gear damage is beneficial because the power train of a helicopter is essential for propulsion, lift, and maneuvering, hence, the integrity of the transmission is critical to helicopter safety. To enable detection of an impending transmission failure, an ideal diagnostic system should provide real-time monitoring of the "health" of the transmission, be capable of a high level of reliable detection (with minimization of false alarms), and provide human users with clear information on the health of the system without making it necessary for them to interpret large amounts of sensor data.

  18. Procedures for the interpretation and use of elevation scanning laser/multi-sensor data for short range hazard detection and avoidance for an autonomous planetary rover

    NASA Technical Reports Server (NTRS)

    Troiani, N.; Yerazunis, S. W.

    1978-01-01

    An autonomous roving science vehicle that relies on terrain data acquired by a hierarchy of sensors for navigation was one method of carrying out such a mission. The hierarchy of sensors included a short range sensor with sufficient resolution to detect every possible obstacle and with the ability to make fast and reliable terrain characterizations. A multilaser, multidetector triangulation system was proposed as a short range sensor. The general system was studied to determine its perception capabilities and limitations. A specific rover and low resolution sensor system was then considered. After studying the data obtained, a hazard detection algorithm was developed that accounts for all possible terrains given the sensor resolution. Computer simulation of the rover on various terrains was used to test the entire hazard detection system.

  19. High-resolution imaging of living mammalian cells bound by nanobeads-connected antibodies in a medium using scanning electron-assisted dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Okada, Tomoko; Ogura, Toshihiko

    2017-02-01

    Nanometre-scale-resolution imaging technologies for liquid-phase specimens are indispensable tools in various scientific fields. In biology, observing untreated living cells in a medium is essential for analysing cellular functions. However, nanoparticles that bind living cells in a medium are hard to detect directly using traditional optical or electron microscopy. Therefore, we previously developed a novel scanning electron-assisted dielectric microscope (SE-ADM) capable of nanoscale observations. This method enables observation of intact cells in aqueous conditions. Here, we use this SE-ADM system to clearly observe antibody-binding nanobeads in liquid-phase. We also report the successful direct detection of streptavidin-conjugated nanobeads binding to untreated cells in a medium via a biotin-conjugated anti-CD44 antibody. Our system is capable of obtaining clear images of cellular organelles and beads on the cells at the same time. The direct observation of living cells with nanoparticles in a medium allowed by our system may contribute the development of carriers for drug delivery systems (DDS).

  20. Coincidence ion imaging with a fast frame camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Suk Kyoung; Cudry, Fadia; Lin, Yun Fei

    2014-12-15

    A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots onmore » each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide.« less

  1. Validation of a Hybrid Microwave-Optical Monitor to Investigate Thermal Provocation in the Microvasculature.

    PubMed

    Al-Armaghany, Allann; Tong, Kenneth; Highton, David; Leung, Terence S

    2016-01-01

    We have previously developed a hybrid microwave-optical system to monitor microvascular changes in response to thermal provocation in muscle. The hybrid probe is capable of inducing deep heat from the skin surface using mild microwaves (1-3 W) and raises the tissue temperature by a few degrees Celsius. This causes vasodilation and the subsequent increase in blood volume is detected by the hybrid probe using near infrared spectroscopy. The hybrid probe is also equipped with a skin cooling system which lowers the skin temperature while allowing microwaves to warm up deeper tissues. The hybrid system can be used to assess the condition of the vasculature in response to thermal stimulation. In this validation study, thermal imaging has been used to assess the temperature distribution on the surface of phantoms and human calf, following microwave warming. The results show that the hybrid system is capable of changing the skin temperature with a combination of microwave warming and skin cooling. It can also detect thermal responses in terms of changes of oxy/deoxy-hemoglobin concentrations.

  2. Characterization of Geiger mode avalanche photodiodes for fluorescence decay measurements

    NASA Astrophysics Data System (ADS)

    Jackson, John C.; Phelan, Don; Morrison, Alan P.; Redfern, R. Michael; Mathewson, Alan

    2002-05-01

    Geiger mode avalanche photodiodes (APD) can be biased above the breakdown voltage to allow detection of single photons. Because of the increase in quantum efficiency, magnetic field immunity, robustness, longer operating lifetime and reduction in costs, solid-state detectors capable of operating at non-cryogenic temperatures and providing single photon detection capabilities provide attractive alternatives to the photomultiplier tube (PMT). Shallow junction Geiger mode APD detectors provide the ability to manufacture photon detectors and detector arrays with CMOS compatible processing steps and allows the use of novel Silicon-on-Insulator(SoI) technology to provide future integrated sensing solutions. Previous work on Geiger mode APD detectors has focused on increasing the active area of the detector to make it more PMT like, easing the integration of discrete reaction, detection and signal processing into laboratory experimental systems. This discrete model for single photon detection works well for laboratory sized test and measurement equipment, however the move towards microfluidics and systems on a chip requires integrated sensing solutions. As we move towards providing integrated functionality of increasingly nanoscopic sized emissions, small area detectors and detector arrays that can be easily integrated into marketable systems, with sensitive small area single photon counting detectors will be needed. This paper will demonstrate the 2-dimensional and 3-dimensional simulation of optical coupling that occurs in Geiger mode APDs. Fabricated Geiger mode APD detectors optimized for fluorescence decay measurements were characterized and preliminary results show excellent results for their integration into fluorescence decay measurement systems.

  3. An adaptive technique for a redundant-sensor navigation system.

    NASA Technical Reports Server (NTRS)

    Chien, T.-T.

    1972-01-01

    An on-line adaptive technique is developed to provide a self-contained redundant-sensor navigation system with a capability to utilize its full potentiality in reliability and performance. This adaptive system is structured as a multistage stochastic process of detection, identification, and compensation. It is shown that the detection system can be effectively constructed on the basis of a design value, specified by mission requirements, of the unknown parameter in the actual system, and of a degradation mode in the form of a constant bias jump. A suboptimal detection system on the basis of Wald's sequential analysis is developed using the concept of information value and information feedback. The developed system is easily implemented, and demonstrates a performance remarkably close to that of the optimal nonlinear detection system. An invariant transformation is derived to eliminate the effect of nuisance parameters such that the ambiguous identification system can be reduced to a set of disjoint simple hypotheses tests. By application of a technique of decoupled bias estimation in the compensation system the adaptive system can be operated without any complicated reorganization.

  4. A neural network approach to burst detection.

    PubMed

    Mounce, S R; Day, A J; Wood, A S; Khan, A; Widdop, P D; Machell, J

    2002-01-01

    This paper describes how hydraulic and water quality data from a distribution network may be used to provide a more efficient leakage management capability for the water industry. The research presented concerns the application of artificial neural networks to the issue of detection and location of leakage in treated water distribution systems. An architecture for an Artificial Neural Network (ANN) based system is outlined. The neural network uses time series data produced by sensors to directly construct an empirical model for predication and classification of leaks. Results are presented using data from an experimental site in Yorkshire Water's Keighley distribution system.

  5. A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults.

    PubMed

    Sun, Rui; Cheng, Qi; Wang, Guanyu; Ochieng, Washington Yotto

    2017-09-29

    The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs' flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate.

  6. Motion-Based Immunological Detection of Zika Virus Using Pt-Nanomotors and a Cellphone.

    PubMed

    Draz, Mohamed Shehata; Lakshminaraasimulu, Nivethitha Kota; Krishnakumar, Sanchana; Battalapalli, Dheerendranath; Vasan, Anish; Kanakasabapathy, Manoj Kumar; Sreeram, Aparna; Kallakuri, Shantanu; Thirumalaraju, Prudhvi; Li, Yudong; Hua, Stephane; Yu, Xu G; Kuritzkes, Daniel R; Shafiee, Hadi

    2018-05-16

    Zika virus (ZIKV) infection is an emerging pandemic threat to humans that can be fatal in newborns. Advances in digital health systems and nanoparticles can facilitate the development of sensitive and portable detection technologies for timely management of emerging viral infections. Here we report a nanomotor-based bead-motion cellphone (NBC) system for the immunological detection of ZIKV. The presence of virus in a testing sample results in the accumulation of platinum (Pt)-nanomotors on the surface of beads, causing their motion in H 2 O 2 solution. Then the virus concentration is detected in correlation with the change in beads motion. The developed NBC system was capable of detecting ZIKV in samples with virus concentrations as low as 1 particle/μL. The NBC system allowed a highly specific detection of ZIKV in the presence of the closely related dengue virus and other neurotropic viruses, such as herpes simplex virus type 1 and human cytomegalovirus. The NBC platform technology has the potential to be used in the development of point-of-care diagnostics for pathogen detection and disease management in developed and developing countries.

  7. The detection of organophosphonates by polymer films on a surface acoustic wave device and a micromirror fiber optic sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, R.C.; Ricco, A.J.; Butler, M.A.

    There is a need for sensitive detection of organophosphonates by, inexpensive, portable instruments. Two kinds of chemical sensors, based on surface acoustic wave (SAW) devices and fiber optic micromirrors, show promise for such sensing systems. Chemically sensitive coatings are required for detection and data for thin films of the polymer polysiloxane are reported for both kinds of physical transducers. Both kinds of sensor are shown to be capable of detecting concentrations of diisopropylmethylphosphonate (DIMP) down to 1 ppM.

  8. Health management and controls for earth to orbit propulsion systems

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.

    1992-01-01

    Fault detection and isolation for advanced rocket engine controllers are discussed focusing on advanced sensing systems and software which significantly improve component failure detection for engine safety and health management. Aerojet's Space Transportation Main Engine controller for the National Launch System is the state of the art in fault tolerant engine avionics. Health management systems provide high levels of automated fault coverage and significantly improve vehicle delivered reliability and lower preflight operations costs. Key technologies, including the sensor data validation algorithms and flight capable spectrometers, have been demonstrated in ground applications and are found to be suitable for bridging programs into flight applications.

  9. Investigation into the use of smartphone as a machine vision device for engineering metrology and flaw detection, with focus on drilling

    NASA Astrophysics Data System (ADS)

    Razdan, Vikram; Bateman, Richard

    2015-05-01

    This study investigates the use of a Smartphone and its camera vision capabilities in Engineering metrology and flaw detection, with a view to develop a low cost alternative to Machine vision systems which are out of range for small scale manufacturers. A Smartphone has to provide a similar level of accuracy as Machine Vision devices like Smart cameras. The objective set out was to develop an App on an Android Smartphone, incorporating advanced Computer vision algorithms written in java code. The App could then be used for recording measurements of Twist Drill bits and hole geometry, and analysing the results for accuracy. A detailed literature review was carried out for in-depth study of Machine vision systems and their capabilities, including a comparison between the HTC One X Android Smartphone and the Teledyne Dalsa BOA Smart camera. A review of the existing metrology Apps in the market was also undertaken. In addition, the drilling operation was evaluated to establish key measurement parameters of a twist Drill bit, especially flank wear and diameter. The methodology covers software development of the Android App, including the use of image processing algorithms like Gaussian Blur, Sobel and Canny available from OpenCV software library, as well as designing and developing the experimental set-up for carrying out the measurements. The results obtained from the experimental set-up were analysed for geometry of Twist Drill bits and holes, including diametrical measurements and flaw detection. The results show that Smartphones like the HTC One X have the processing power and the camera capability to carry out metrological tasks, although dimensional accuracy achievable from the Smartphone App is below the level provided by Machine vision devices like Smart cameras. A Smartphone with mechanical attachments, capable of image processing and having a reasonable level of accuracy in dimensional measurement, has the potential to become a handy low-cost Machine vision system for small scale manufacturers, especially in field metrology and flaw detection.

  10. Identification Of Cells With A Compact Microscope Imaging System With Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2006-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking mic?oscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  11. Tracking of Cells with a Compact Microscope Imaging System with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2007-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously

  12. Tracking of cells with a compact microscope imaging system with intelligent controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2007-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to auto-focus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  13. Operation of a Cartesian Robotic System in a Compact Microscope with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2006-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  14. Fault Management Technology Maturation for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Waterman, Robert D.

    2010-01-01

    This slide presentation reviews the maturation of fault management technology in preparation for the Constellation Program. There is a review of the Space Shuttle Main Engine (SSME) and a discussion of a couple of incidents with the shuttle main engine and tanking that indicated the necessity for predictive maintenance. Included is a review of the planned Ares I-X Ground Diagnostic Prototype (GDP) and further information about detection and isolation of faults using Testability Engineering and Maintenance System (TEAMS). Another system that being readied for use that detects anomalies, the Inductive Monitoring System (IMS). The IMS automatically learns how the system behaves and alerts operations it the current behavior is anomalous. The comparison of STS-83 and STS-107 (i.e., the Columbia accident) is shown as an example of the anomaly detection capabilities.

  15. Avionic Air Data Sensors Fault Detection and Isolation by means of Singular Perturbation and Geometric Approach

    PubMed Central

    2017-01-01

    Singular Perturbations represent an advantageous theory to deal with systems characterized by a two-time scale separation, such as the longitudinal dynamics of aircraft which are called phugoid and short period. In this work, the combination of the NonLinear Geometric Approach and the Singular Perturbations leads to an innovative Fault Detection and Isolation system dedicated to the isolation of faults affecting the air data system of a general aviation aircraft. The isolation capabilities, obtained by means of the approach proposed in this work, allow for the solution of a fault isolation problem otherwise not solvable by means of standard geometric techniques. Extensive Monte-Carlo simulations, exploiting a high fidelity aircraft simulator, show the effectiveness of the proposed Fault Detection and Isolation system. PMID:28946673

  16. Towards an integrated optofluidic system for highly sensitive detection of antibiotics in seawater incorporating bimodal waveguide photonic biosensors and complex, active microfluidics

    NASA Astrophysics Data System (ADS)

    Szydzik, C.; Gavela, A. F.; Roccisano, J.; Herranz de Andrés, S.; Mitchell, A.; Lechuga, L. M.

    2016-12-01

    We present recent results on the realisation and demonstration of an integrated optofluidic lab-on-a-chip measurement system. The system consists of an integrated on-chip automated microfluidic fluid handling subsystem, coupled with bimodal nano-interferometer waveguide technology, and is applied in the context of detection of antibiotics in seawater. The bimodal waveguide (BMWG) is a highly sensitive label-free biosensor. Integration of complex microfluidic systems with bimodal waveguide technology enables on-chip sample handling and fluid processing capabilities and allows for significant automation of experimental processes. The on-chip fluid-handling subsystem is realised through the integration of pneumatically actuated elastomer pumps and valves, enabling high temporal resolution sample and reagent delivery and facilitating multiplexed detection processes.

  17. Advanced Fire Detector for Space Applications

    NASA Technical Reports Server (NTRS)

    Kutzner, Joerg

    2012-01-01

    A document discusses an optical carbon monoxide sensor for early fire detection. During the sensor development, a concept was implemented to allow reliable carbon monoxide detection in the presence of interfering absorption signals. Methane interference is present in the operating wavelength range of the developed prototype sensor for carbon monoxide detection. The operating parameters of the prototype sensor have been optimized so that interference with methane is minimized. In addition, simultaneous measurement of methane is implemented, and the instrument automatically corrects the carbon monoxide signal at high methane concentrations. This is possible because VCSELs (vertical cavity surface emitting lasers) with extended current tuning capabilities are implemented in the optical device. The tuning capabilities of these new laser sources are sufficient to cover the wavelength range of several absorption lines. The delivered carbon monoxide sensor (COMA 1) reliably measures low carbon monoxide levels even in the presence of high methane signals. The signal bleed-over is determined during system calibration and is then accounted for in the system parameters. The sensor reports carbon monoxide concentrations reliably for (interfering) methane concentrations up to several thousand parts per million.

  18. Inspection applications with higher electron beam energies

    NASA Astrophysics Data System (ADS)

    Norman, D. R.; Jones, J. L.; Yoon, W. Y.; Haskell, K. J.; Sterbentz, J. W.; Zabriskie, J. M.; Hunt, A. W.; Harmon, F.; Kinlaw, M. T.

    2005-12-01

    The Idaho National Laboratory has developed prototype shielded nuclear material detection systems based on pulsed photonuclear assessment (PPA) techniques for the inspection of cargo containers. During this work, increased nuclear material detection capabilities have been demonstrated at higher electron beam energies than those allowed by federal regulations for cargo inspection. This paper gives a general overview of a nuclear material detection system, the PPA technique and discusses the benefits of using these higher energies. This paper also includes a summary of the numerical and test results from LINAC operations up to 24 MeV and discusses some of the federal energy limitations associated with cargo inspection.

  19. Real-time, continuous-wave terahertz imaging using a microbolometer focal-plane array

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Min Lee, Alan W. (Inventor)

    2010-01-01

    The present invention generally provides a terahertz (THz) imaging system that includes a source for generating radiation (e.g., a quantum cascade laser) having one or more frequencies in a range of about 0.1 THz to about 10 THz, and a two-dimensional detector array comprising a plurality of radiation detecting elements that are capable of detecting radiation in that frequency range. An optical system directs radiation from the source to an object to be imaged. The detector array detects at least a portion of the radiation transmitted through the object (or reflected by the object) so as to form a THz image of that object.

  20. Remote detection of explosives using field asymmetric ion mobility spectrometer installed on multicopter.

    PubMed

    Kostyukevich, Yury; Efremov, Denis; Ionov, Vladimir; Kukaev, Eugene; Nikolaev, Eugene

    2017-11-01

    The detection of explosives and drugs in hard-to-reach places is a considerable challenge. We report the development and initial experimental characterization of the air analysis system that includes Field Asymmetric Ion Mobility Spectrometer, array of the semiconductor gas sensors and is installed on multicopter. The system was developed based on the commercially available DJI Matrix 100 platform. For data collection and communication with operator, the special compact computer (Intel Compute Stick) was installed onboard. The total weight of the system was 3.3 kg. The system allows the 15-minute flight and provides the remote access to the obtained data. The developed system can be effectively used for the detection of impurities in the air, ecology monitoring, detection of chemical warfare agents, and explosives, what is especially important in light of recent terroristic attacks. The capabilities of the system were tested on the several explosives such as trinitrotoluene and nitro powder. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Predicting crash-relevant violations at stop sign-controlled intersections for the development of an intersection driver assistance system.

    PubMed

    Scanlon, John M; Sherony, Rini; Gabler, Hampton C

    2016-09-01

    Intersection crashes resulted in over 5,000 fatalities in the United States in 2014. Intersection Advanced Driver Assistance Systems (I-ADAS) are active safety systems that seek to help drivers safely traverse intersections. I-ADAS uses onboard sensors to detect oncoming vehicles and, in the event of an imminent crash, can either alert the driver or take autonomous evasive action. The objective of this study was to develop and evaluate a predictive model for detecting whether a stop sign violation was imminent. Passenger vehicle intersection approaches were extracted from a data set of typical driver behavior (100-Car Naturalistic Driving Study) and violations (event data recorders downloaded from real-world crashes) and were assigned weighting factors based on real-world frequency. A k-fold cross-validation procedure was then used to develop and evaluate 3 hypothetical stop sign warning algorithms (i.e., early, intermediate, and delayed) for detecting an impending violation during the intersection approach. Violation detection models were developed using logistic regression models that evaluate likelihood of a violation at various locations along the intersection approach. Two potential indicators of driver intent to stop-that is, required deceleration parameter (RDP) and brake application-were used to develop the predictive models. The earliest violation detection opportunity was then evaluated for each detection algorithm in order to (1) evaluate the violation detection accuracy and (2) compare braking demand versus maximum braking capabilities. A total of 38 violating and 658 nonviolating approaches were used in the analysis. All 3 algorithms were able to detect a violation at some point during the intersection approach. The early detection algorithm, as designed, was able to detect violations earlier than all other algorithms during the intersection approach but gave false alarms for 22.3% of approaches. In contrast, the delayed detection algorithm sacrificed some time for detecting violations but was able to substantially reduce false alarms to only 3.3% of all nonviolating approaches. Given good surface conditions (maximum braking capabilities = 0.8 g) and maximum effort, most drivers (55.3-71.1%) would be able to stop the vehicle regardless of the detection algorithm. However, given poor surface conditions (maximum braking capabilities = 0.4 g), few drivers (10.5-26.3%) would be able to stop the vehicle. Automatic emergency braking (AEB) would allow for early braking prior to driver reaction. If equipped with an AEB system, the results suggest that, even for the poor surface conditions scenario, over one half (55.3-65.8%) of the vehicles could have been stopped. This study demonstrates the potential of I-ADAS to incorporate a stop sign violation detection algorithm. Repeating the analysis on a larger, more extensive data set will allow for the development of a more comprehensive algorithm to further validate the findings.

  2. Improving the detection of wind fields from LIDAR aerosol backscatter using feature extraction

    NASA Astrophysics Data System (ADS)

    Bickel, Brady R.; Rotthoff, Eric R.; Walters, Gage S.; Kane, Timothy J.; Mayor, Shane D.

    2016-04-01

    The tracking of winds and atmospheric features has many applications, from predicting and analyzing weather patterns in the upper and lower atmosphere to monitoring air movement from pig and chicken farms. Doppler LIDAR systems exist to quantify the underlying wind speeds, but cost of these systems can sometimes be relatively high, and processing limitations exist. The alternative is using an incoherent LIDAR system to analyze aerosol backscatter. Improving the detection and analysis of wind information from aerosol backscatter LIDAR systems will allow for the adoption of these relatively low cost instruments in environments where the size, complexity, and cost of other options are prohibitive. Using data from a simple aerosol backscatter LIDAR system, we attempt to extend the processing capabilities by calculating wind vectors through image correlation techniques to improve the detection of wind features.

  3. Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation

    NASA Technical Reports Server (NTRS)

    Haley, D. C.; Almand, B. J.; Thomas, M. M.; Krauze, L. D.; Gremban, K. D.; Sanborn, J. C.; Kelly, J. H.; Depkovich, T. M.

    1984-01-01

    A generic computer simulation for manipulator systems (ROBSIM) was implemented and the specific technologies necessary to increase the role of automation in various missions were developed. The specific items developed are: (1) capability for definition of a manipulator system consisting of multiple arms, load objects, and an environment; (2) capability for kinematic analysis, requirements analysis, and response simulation of manipulator motion; (3) postprocessing options such as graphic replay of simulated motion and manipulator parameter plotting; (4) investigation and simulation of various control methods including manual force/torque and active compliances control; (5) evaluation and implementation of three obstacle avoidance methods; (6) video simulation and edge detection; and (7) software simulation validation.

  4. A Wireless Sensor Network-Based Portable Vehicle Detector Evaluation System

    PubMed Central

    Yoo, Seong-eun

    2013-01-01

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy. PMID:23344388

  5. A wireless sensor network-based portable vehicle detector evaluation system.

    PubMed

    Yoo, Seong-eun

    2013-01-17

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy.

  6. The Dolphin Sonar: Excellent Capabilities In Spite of Some Mediocre Properties

    NASA Astrophysics Data System (ADS)

    Au, Whitlow W. L.

    2004-11-01

    Dolphin sonar research has been conducted for several decades and much has been learned about the capabilities of echolocating dolphins to detect, discriminate and recognize underwater targets. The results of these research projects suggest that dolphins possess the most sophisticated of all sonar for short ranges and shallow water where reverberation and clutter echoes are high. The critical feature of the dolphin sonar is the capability of discriminating and recognizing complex targets in a highly reverberant and noisy environment. The dolphin's detection threshold in reverberation occurs at a echo-to reverberation ratio of approximately 4 dB. Echolocating dolphins also have the capability to make fine discriminate of target properties such as wall thickness difference of water-filled cylinders and material differences in metallic plates. The high-resolution property of the animal's echolocation signals and the high dynamic range of its auditory system are important factors in their outstanding discrimination capabilities. In the wall thickness discrimination of cylinder experiment, time differences between echo highlights at small as 500-600 ns can be resolved by echolocating dolphins. Measurements of the targets used in the metallic plate composition experiment suggest that dolphins attended to echo components that were 20-30 dB below the maximum level for a specific target. It is interesting to realize that some of the properties of the dolphin sonar system are fairly mediocre, yet the total performance of the system is often outstanding. When compared to some technological sonar, the energy content of the dolphin sonar signal is not very high, the transmission and receiving beamwidths are fairly large, and the auditory filters are not very narrow. Yet the dolphin sonar has demonstrated excellent capabilities in spite the mediocre features of its "hardware." Reasons why dolphins can perform complex sonar task will be discussed in light of the "equipment" they possess.

  7. Rocket Testing and Integrated System Health Management

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Schmalzel, John

    2005-01-01

    Integrated System Health Management (ISHM) describes a set of system capabilities that in aggregate perform: determination of condition for each system element, detection of anomalies, diagnosis of causes for anomalies, and prognostics for future anomalies and system behavior. The ISHM should also provide operators with situational awareness of the system by integrating contextual and timely data, information, and knowledge (DIaK) as needed. ISHM capabilities can be implemented using a variety of technologies and tools. This chapter provides an overview of ISHM contributing technologies and describes in further detail a novel implementation architecture along with associated taxonomy, ontology, and standards. The operational ISHM testbed is based on a subsystem of a rocket engine test stand. Such test stands contain many elements that are common to manufacturing systems, and thereby serve to illustrate the potential benefits and methodologies of the ISHM approach for intelligent manufacturing.

  8. Vision System for Coarsely Estimating Motion Parameters for Unknown Fast Moving Objects in Space

    PubMed Central

    Chen, Min; Hashimoto, Koichi

    2017-01-01

    Motivated by biological interests in analyzing navigation behaviors of flying animals, we attempt to build a system measuring their motion states. To do this, in this paper, we build a vision system to detect unknown fast moving objects within a given space, calculating their motion parameters represented by positions and poses. We proposed a novel method to detect reliable interest points from images of moving objects, which can be hardly detected by general purpose interest point detectors. 3D points reconstructed using these interest points are then grouped and maintained for detected objects, according to a careful schedule, considering appearance and perspective changes. In the estimation step, a method is introduced to adapt the robust estimation procedure used for dense point set to the case for sparse set, reducing the potential risk of greatly biased estimation. Experiments are conducted against real scenes, showing the capability of the system of detecting multiple unknown moving objects and estimating their positions and poses. PMID:29206189

  9. Integration, Testing, and Analysis of Multispectral Imager on Small Unmanned Aerial System for Skin Detection

    DTIC Science & Technology

    2014-03-01

    U.S. Air Force, and others have demonstrated the utility of SUAS in natural disasters such as the Fukushima Daiichi meltdown to take photographs at...factor. Multispectral Imagery (MSI) has proven capable of dismount detection with several distinct wavelengths. This research proposes a spectral...Epipolar lines depicted in blue, show the geometric relationship between the two cameras after stereo rectification

  10. Nonlinear Structural Health Monitoring of the Responsive Space Satellite Systems Using Magneto Elastic Active Sensors (MEAS)

    DTIC Science & Technology

    2011-11-30

    detection of fatigue damage at early stage, well before onset of fracture and crack development. Analytical and numerical models of MEAS and MMI are...stage, well before onset of fracture and crack development. Analytical and numerical models of MEAS and MMI are suggested. Finally, MEAS capability...47  2.4.1  Far-Field Crack Detection

  11. Aspects of Tactical Biological Defense

    DTIC Science & Technology

    1994-06-03

    physical proof of Soviet emplcyment of mycotoxins in those countries had been obtained. 30 Biochemical casualties in Laos, Kampuchea and Afghanistan...detection capability. The current system planned for use is the XM-21 Remote Sensing Chemical Agent Alarm (RSCAAL). It uses infrared sensors to detect...Micrometer(s). min. Minute(s). MS. Mans spectroscopy /mass spectrometer. NBC, Nuclear, biological and chemical. pfu. Plaque forming units--the number of

  12. Directed Design of Experiments (DOE) for Determining Probability of Detection (POD) Capability of NDE Systems (DOEPOD)

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2007-01-01

    This viewgraph presentation reviews some of the problems that are encountered by designers of Non-Destructive Examination (NDE) have in determining the probability of detection. According to the author "[the] NDE community should not blindly accept statistical results due to lack of knowledge." This is an attempt to bridge the gap between people doing NDE, and statisticians.

  13. An interactive machine-learning approach for defect detection in computed tomogaraphy (CT) images of hardwood logs

    Treesearch

    Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt; Philip A. Araman

    2005-01-01

    This paper describes recent progress in the analysis of computed tomography (CT) images of hardwood logs. The long-term goal of the work is to develop a system that is capable of autonomous (or semiautonomous) detection of internal defects, so that log breakdown decisions can be optimized based on defect locations. The problem is difficult because wood exhibits large...

  14. Unattended Sensor System With CLYC Detectors

    NASA Astrophysics Data System (ADS)

    Myjak, Mitchell J.; Becker, Eric M.; Gilbert, Andrew J.; Hoff, Jonathan E.; Knudson, Christa K.; Landgren, Peter C.; Lee, Samantha F.; McDonald, Benjamin S.; Pfund, David M.; Redding, Rebecca L.; Smart, John E.; Taubman, Matthew S.; Torres-Torres, Carlos R.; Wiseman, Clinton G.

    2016-06-01

    We have developed an unattended sensor for detecting anomalous radiation sources. The system combines several technologies to reduce size and weight, increase battery lifetime, and improve decision-making capabilities. Sixteen Cs2LiYCl6:Ce (CLYC) scintillators allow for gamma-ray spectroscopy and neutron detection in the same volume. Low-power electronics for readout, high voltage bias, and digital processing reduce the total operating power to 1.7 W. Computationally efficient analysis algorithms perform spectral anomaly detection and isotope identification. When an alarm occurs, the system transmits alarm information over a cellular modem. In this paper, we describe the overall design of the unattended sensor, present characterization results, and compare the performance to stock NaI:Tl and 3He detectors.

  15. On-loom, real-time, noncontact detection of fabric defects by ultrasonic imaging.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, H. T.

    1998-09-08

    A noncontact, on-loom ultrasonic inspection technique was developed for real-time 100% defect inspection of fabrics. A prototype was built and tested successfully on loom. The system is compact, rugged, low cost, requires minimal maintenance, is not sensitive to fabric color and vibration, and can easily be adapted to current loom configurations. Moreover, it can detect defects in both the pick and warp directions. The system is capable of determining the size, location, and orientation of each defect. To further improve the system, air-coupled transducers with higher efficiency and sensitivity need to be developed. Advanced detection algorithms also need to bemore » developed for better classification and categorization of defects in real-time.« less

  16. Unattended Sensor System With CLYC Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myjak, Mitchell J.; Becker, Eric M.; Gilbert, Andrew J.

    2016-06-01

    We have developed a next-generation unattended sensor for detecting anomalous radiation sources. The system combines several technologies to reduce size and weight, increase battery lifetime, and improve decision-making capabilities. Sixteen Cs2LiYCl6:Ce (CLYC) scintillators allow for gamma-ray spectroscopy and neutron detection in the same volume. Low-power electronics for readout, high voltage bias, and digital processing reduce the total operating power to 1.3 W. Computationally efficient analysis algorithms perform spectral anomaly detection and isotope identification. When an alarm occurs, the system transmits alarm information over a cellular modem. In this paper, we describe the overall design of the unattended sensor, present characterizationmore » results, and compare the performance to stock NaI:Tl and 3He detectors.« less

  17. Data-Fusion for a Vision-Aided Radiological Detection System: Sensor dependence and Source Tracking

    NASA Astrophysics Data System (ADS)

    Stadnikia, Kelsey; Martin, Allan; Henderson, Kristofer; Koppal, Sanjeev; Enqvist, Andreas

    2018-01-01

    The University of Florida is taking a multidisciplinary approach to fuse the data between 3D vision sensors and radiological sensors in hopes of creating a system capable of not only detecting the presence of a radiological threat, but also tracking it. The key to developing such a vision-aided radiological detection system, lies in the count rate being inversely dependent on the square of the distance. Presented in this paper are the results of the calibration algorithm used to predict the location of the radiological detectors based on 3D distance from the source to the detector (vision data) and the detectors count rate (radiological data). Also presented are the results of two correlation methods used to explore source tracking.

  18. Development of High-Speed Fluorescent X-Ray Micro-Computed Tomography

    NASA Astrophysics Data System (ADS)

    Takeda, T.; Tsuchiya, Y.; Kuroe, T.; Zeniya, T.; Wu, J.; Lwin, Thet-Thet; Yashiro, T.; Yuasa, T.; Hyodo, K.; Matsumura, K.; Dilmanian, F. A.; Itai, Y.; Akatsuka, T.

    2004-05-01

    A high-speed fluorescent x-ray CT (FXCT) system using monochromatic synchrotron x rays was developed to detect very low concentration of medium-Z elements for biomedical use. The system is equipped two types of high purity germanium detectors, and fast electronics and software. Preliminary images of a 10mm diameter plastic phantom containing channels field with iodine solutions of different concentrations showed a minimum detection level of 0.002 mg I/ml at an in-plane spatial resolution of 100μm. Furthermore, the acquisition time was reduced about 1/2 comparing to previous system. The results indicate that FXCT is a highly sensitive imaging modality capable of detecting very low concentration of iodine, and that the method has potential in biomedical applications.

  19. Observing Active Volcanism on Earth and Beyond With an Autonomous Science Investigation Capability

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Mjolsness, E. D.; Fink, W.; Castano, R.; Park, H. G.; Zak, M.; Burl, M. C.

    2001-12-01

    Operational constraints imposed by restricted downlink and long communication delays make autonomous systems a necessity for exploring dynamic processes in the Solar System and beyond. Our objective is to develop an onboard, modular, automated science analysis tool that will autonomously detect unexpected events, identify rare events at predicted sites, quantify the processes under study, and prioritize the science data and analyses as they are collected. A primary target for this capability is terrestrial active volcanism. Our integrated, science-driven command and control package represents the next stage of the automatic monitoring of volcanic activity pioneered by GOES. The resulting system will maximize science return from day-to-day instrument use and provide immediate reaction to capture the fullest information from infrequent events. For example, a sensor suite consisting of a Galileo-like multi-filter visible wavelength camera and an infrared spectrometer, can acquire high-spatial resolution data of eruptions of lava and volcanic plumes and identify large concentrations of volcanic SO2. After image/spectrum formation, software is applied to the data which is capable of change detection (in the visible and infrared), feature identification (both in imagery and spectra), and novelty detection. In this particular case, the latter module detects change in the parameter space of an advanced multi-component black-body volcanic thermal emission model by means of a novel technique called the "Grey-Box" method which analyzes time series data through a combination of deterministic and stochastic models. This approach can be demonstrated using data obtained by the Galileo spacecraft of ionian volcanism. The system autonomously identifies the most scientifically important targets and prioritizes data and analyses for return. All of these techniques have been successfully demonstrated in laboratory experiments, and are ready to be tested in an operational environment. After identification of a target of interest, an onboard planner prioritizes resources to obtain the best possible dataset of the identified process. We emphasize that the software is modular. The change detection and feature identification modules can be applied to any imaged dataset, and are not confined to volcanic targets. Applications are therefore widespread, across all NASA Enterprises. Examples include detection and quantification of extraterrestrial volcanism (Io, Triton), the monitoring of features in planetary atmospheres (Earth, Gas Giants), the ebb and flow of ices (Earth, Mars), asteriod, comet and supernova detection, change detection in magnetic fields, and identification of structure within radio outbursts.

  20. Putting Integrated Systems Health Management Capabilities to Work: Development of an Advanced Caution and Warning System for Next-Generation Crewed Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Mccann, Robert S.; Spirkovska, Lilly; Smith, Irene

    2013-01-01

    Integrated System Health Management (ISHM) technologies have advanced to the point where they can provide significant automated assistance with real-time fault detection, diagnosis, guided troubleshooting, and failure consequence assessment. To exploit these capabilities in actual operational environments, however, ISHM information must be integrated into operational concepts and associated information displays in ways that enable human operators to process and understand the ISHM system information rapidly and effectively. In this paper, we explore these design issues in the context of an advanced caution and warning system (ACAWS) for next-generation crewed spacecraft missions. User interface concepts for depicting failure diagnoses, failure effects, redundancy loss, "what-if" failure analysis scenarios, and resolution of ambiguity groups are discussed and illustrated.

  1. Differential detection of Gaussian MSK in a mobile radio environment

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Wang, C. C.

    1984-01-01

    Minimum shift keying with Gaussian shaped transmit pulses is a strong candidate for a modulation technique that satisfies the stringent out-of-band radiated power requirements of the mobil radio application. Numerous studies and field experiments have been conducted by the Japanese on urban and suburban mobile radio channels with systems employing Gaussian minimum-shift keying (GMSK) transmission and differentially coherent reception. A comprehensive analytical treatment is presented of the performance of such systems emphasizing the important trade-offs among the various system design parameters such as transmit and receiver filter bandwidths and detection threshold level. It is shown that two-bit differential detection of GMSK is capable of offering far superior performance to the more conventional one-bit detection method both in the presence of an additive Gaussian noise background and Rician fading.

  2. Detecting insider activity using enhanced directory virtualization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Dongwan; Claycomb, William R.

    2010-07-01

    Insider threats often target authentication and access control systems, which are frequently based on directory services. Detecting these threats is challenging, because malicious users with the technical ability to modify these structures often have sufficient knowledge and expertise to conceal unauthorized activity. The use of directory virtualization to monitor various systems across an enterprise can be a valuable tool for detecting insider activity. The addition of a policy engine to directory virtualization services enhances monitoring capabilities by allowing greater flexibility in analyzing changes for malicious intent. The resulting architecture is a system-based approach, where the relationships and dependencies between datamore » sources and directory services are used to detect an insider threat, rather than simply relying on point solutions. This paper presents such an architecture in detail, including a description of implementation results.« less

  3. Differential detection of Gaussian MSK in a mobile radio environment

    NASA Astrophysics Data System (ADS)

    Simon, M. K.; Wang, C. C.

    1984-11-01

    Minimum shift keying with Gaussian shaped transmit pulses is a strong candidate for a modulation technique that satisfies the stringent out-of-band radiated power requirements of the mobil radio application. Numerous studies and field experiments have been conducted by the Japanese on urban and suburban mobile radio channels with systems employing Gaussian minimum-shift keying (GMSK) transmission and differentially coherent reception. A comprehensive analytical treatment is presented of the performance of such systems emphasizing the important trade-offs among the various system design parameters such as transmit and receiver filter bandwidths and detection threshold level. It is shown that two-bit differential detection of GMSK is capable of offering far superior performance to the more conventional one-bit detection method both in the presence of an additive Gaussian noise background and Rician fading.

  4. 49 CFR 176.905 - Motor vehicles or mechanical equipment powered by internal combustion engines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of ignition. A motor vehicle or mechanical equipment showing any signs of leakage or electrical fault... smoke or fire detection system capable of alerting personnel on the bridge. (h) All electrical equipment...

  5. Smart pipeline network : pipe and repair sensor system.

    DOT National Transportation Integrated Search

    2013-07-26

    Leak detection within the national pipeline network has long been recognized as a much-needed : capability to reduce the loss of high value product, improve public safety, and to reduce the : emissions of environmentally damaging substances. : In rec...

  6. 78 FR 12337 - Published Privacy Impact Assessments on the Web

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... system for intrusion detection, analysis, intrusion prevention, and information sharing capabilities that... equivalent protection to participating Federal civilian agencies pending deployment of EINSTEIN intrusion...-008 Homeland Security Information Network R3 User Accounts (HSIN). Component: Operations Coordination...

  7. On-board fault management for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Fesq, Lorraine M.; Stephan, Amy; Doyle, Susan C.; Martin, Eric; Sellers, Suzanne

    1991-01-01

    The dynamic nature of the Cargo Transfer Vehicle's (CTV) mission and the high level of autonomy required mandate a complete fault management system capable of operating under uncertain conditions. Such a fault management system must take into account the current mission phase and the environment (including the target vehicle), as well as the CTV's state of health. This level of capability is beyond the scope of current on-board fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems that can meet the needs of spacecraft that have long-range autonomy requirements. We have implemented a model-based approach to fault detection and isolation that does not require explicit characterization of failures prior to launch. It is thus able to detect failures that were not considered in the failure and effects analysis. We have applied this technique to several different subsystems and tested our approach against both simulations and an electrical power system hardware testbed. We present findings from simulation and hardware tests which demonstrate the ability of our model-based system to detect and isolate failures, and describe our work in porting the Ada version of this system to a flight-qualified processor. We also discuss current research aimed at expanding our system to monitor the entire spacecraft.

  8. Real-time capability of GEONET system and its application to crust monitoring

    NASA Astrophysics Data System (ADS)

    Yamagiwa, Atsushi; Hatanaka, Yuki; Yutsudo, Toru; Miyahara, Basara

    2006-03-01

    The GPS Earth Observation Network system (GEONET) has been playing an important role in monitoring the crustal deformation of Japan. Since its start of operation, the requirements for accuracy and timeliness have become higher and higher. On the other hand, recent broadband communication infrastructure has had capability to realize real-time crust monitoring and to aid the development of a location-based service. In early 2003, the Geographical Survey Institute (GSI) upgraded the GEONET system to meet new requirements. The number of stations became 1200 in total by March, 2003. The antennas were unified to the choke ring antennas of Dorne Margolin T-type and the receivers were replaced with new ones that are capable of real-time observation and data transfer. The new system uses IP-connection through IP-VPN (Internet Protocol Virtual Private Network) for data transfer, which is provided by communication companies. The Data Processing System, which manages the observation data and analyses in GEONET, has 7 units. GEONET carries out three kinds of routine analyses and an analysis of RTK-type for emergencies. The new system has shown its capability for real-time crust monitoring, for example, the precise and rapid detection of coseismic (and post-seismic) motion caused by 2003 Tokachi-Oki earthquake.

  9. A Generalized Machine Fault Detection Method Using Unified Change Detection

    DTIC Science & Technology

    2014-10-02

    SOCIETY 2014 11 of the extension shaft. It can be induced by a lack of tightening torque of the end-nut and consequently causes a load...Test Facility (HTTF). The objective of the study was to provide HUMS systems with the capability to detect the loss of tightening torque of the end...from pinion SSA (at Ring-Front sensor & cruise power) change signal with cross-over at 75th shaft order Ten end-nut tightening torques were used in

  10. Towards Autonomous Inspection of Space Systems Using Mobile Robotic Sensor Platforms

    NASA Technical Reports Server (NTRS)

    Wong, Edmond; Saad, Ashraf; Litt, Jonathan S.

    2007-01-01

    The space transportation systems required to support NASA's Exploration Initiative will demand a high degree of reliability to ensure mission success. This reliability can be realized through autonomous fault/damage detection and repair capabilities. It is crucial that such capabilities are incorporated into these systems since it will be impractical to rely upon Extra-Vehicular Activity (EVA), visual inspection or tele-operation due to the costly, labor-intensive and time-consuming nature of these methods. One approach to achieving this capability is through the use of an autonomous inspection system comprised of miniature mobile sensor platforms that will cooperatively perform high confidence inspection of space vehicles and habitats. This paper will discuss the efforts to develop a small scale demonstration test-bed to investigate the feasibility of using autonomous mobile sensor platforms to perform inspection operations. Progress will be discussed in technology areas including: the hardware implementation and demonstration of robotic sensor platforms, the implementation of a hardware test-bed facility, and the investigation of collaborative control algorithms.

  11. Correlation of scanning microwave interferometry and digital X-ray images for damage detection in ceramic composite armor

    NASA Astrophysics Data System (ADS)

    Schmidt, Karl F.; Goitia, Ryan M.; Ellingson, William A.; Green, William

    2012-05-01

    Application of non-contact, scanning, microwave interferometry for inspection of ceramic-based composite armor facilitates detection of defects which may occur in manufacturing or in service. Non-contact, one-side access permits inspection of panels while on the vehicle. The method was applied as a base line inspection and post-damage inspection of composite ceramic armor containing artificial defects, fiduciaries, and actual damage. Detection, sizing, and depth location capabilities were compared using microwave interferometry system and micro-focus digital x-ray imaging. The data demonstrates corroboration of microwave interference scanning detection of cracks and laminar features. The authors present details of the system operation, descriptions of the test samples used, and recent results obtained.

  12. Performance metrics for the evaluation of hyperspectral chemical identification systems

    NASA Astrophysics Data System (ADS)

    Truslow, Eric; Golowich, Steven; Manolakis, Dimitris; Ingle, Vinay

    2016-02-01

    Remote sensing of chemical vapor plumes is a difficult but important task for many military and civilian applications. Hyperspectral sensors operating in the long-wave infrared regime have well-demonstrated detection capabilities. However, the identification of a plume's chemical constituents, based on a chemical library, is a multiple hypothesis testing problem which standard detection metrics do not fully describe. We propose using an additional performance metric for identification based on the so-called Dice index. Our approach partitions and weights a confusion matrix to develop both the standard detection metrics and identification metric. Using the proposed metrics, we demonstrate that the intuitive system design of a detector bank followed by an identifier is indeed justified when incorporating performance information beyond the standard detection metrics.

  13. Evaluation of the Self-Nulling Rotating Eddy Current Probe System

    NASA Technical Reports Server (NTRS)

    Hagemaier, Don; Rengel, Kent; Wincheski, Buzz; Namkung, Min

    1999-01-01

    In order to detect multi-site fatigue cracks located under flush-head rivets, automated eddy current equipment is required. To assure a reliable system, the eddy current probe must be centered easily over the installed rivets. To meet these requirements, the NDE Group at NASA LaRC developed the Self-Nulling Rotating Eddy Current Probe System (SNRECPS) which will be referred to as RPS in this document. The system was evaluated at the FAA, NDI Validation Center, in Albuquerque, New Mexico. The system was capable of detecting a 0.032 inch long crack with a 90/95% PoD. Further evaluations were conducted at Boeing in Long Beach, California. These evaluations included fatigue cracks and notches in a range from 0.025 to 0.100 inch long under flush-head aluminum rivets, and titanium or steel flush-head fasteners. The results of these tests are reported herein. Subsequently, the system was loaned to the USAF Structures Laboratory for the purpose of detecting and measuring short cracks under flush-head rivets in a variety of fatigue test specimens. The inspection task was to detect and plot crack growth from numbered fasteners in lettered rows. In January, 1998, the system was taken to Northwest Airlines Maintenance Base, in Atlanta, to inspect a DC-9, for multi-site cracks in three circumferential splices. The aircraft had 83,000 cycles. The inspection was conducted at 30 kHz from longeron 5 left to longeron 5 right. The system was calibrated using a 0,030 EDM first layer notch. The instrument gain was set to 19 mV from the notch. The reject level was set at 10 mV and the unflawed fasteners yielded a signal amplitude of 2 to 3 mV. Only one fastener location, out of about 2,500 tested, yielded a signal of 58 mV. The rivet was removed and visually evaluated. It appeared to be a slight gouge in the counter-sink zone. No fatigue cracks were detected. The same fastener locations were also inspected using the Boeing MAUS system at 60 kHz. No cracks were detected. Thus far, the rotating probe eddy current system has been found to be very user friendly and capable of detecting first layer cracks on the order of 0.030 inch long or longer.

  14. Detection of melamine in milk powder using MCT-based short-wave infrared hyperspectral imaging system.

    PubMed

    Lee, Hoonsoo; Kim, Moon S; Lohumi, Santosh; Cho, Byoung-Kwan

    2018-06-05

    Extensive research has been conducted on non-destructive and rapid detection of melamine in powdered foods in the last decade. While Raman and near-infrared hyperspectral imaging techniques have been successful in terms of non-destructive and rapid measurement, they have limitations with respect to measurement time and detection capability, respectively. Therefore, the objective of this study was to develop a mercury cadmium telluride (MCT)-based short-wave infrared (SWIR) hyperspectral imaging system and algorithm to detect melamine quantitatively in milk powder. The SWIR hyperspectral imaging system consisted of a custom-designed illumination system, a SWIR hyperspectral camera, a data acquisition module and a sample transfer table. SWIR hyperspectral images were obtained for melamine-milk samples with different melamine concentrations, pure melamine and pure milk powder. Analysis of variance and the partial least squares regression method over the 1000-2500 nm wavelength region were used to develop an optimal model for detection. The results showed that a melamine concentration as low as 50 ppm in melamine-milk powder samples could be detected. Thus, the MCT-based SWIR hyperspectral imaging system has the potential for quantitative and qualitative detection of adulterants in powder samples.

  15. The design and development of a long-term fall detection system incorporated into a custom vest for the elderly.

    PubMed

    Bourke, Alan K; van de Ven, Pepijn W J; Chaya, Amy E; OLaighin, Gearóid M; Nelson, John

    2008-01-01

    A fall detection system and algorithm, incorporated into a custom designed garment has been developed. The developed fall detection system uses a tri-axial accelerometer, microcontroller, battery and Bluetooth module. This sensor is attached to a custom designed vest, designed to be worn by the elderly person under clothing. The fall detection algorithm was developed and incorporates both impact and posture detection capability. The vest and fall algorithm was tested on young healthy subjects performing normal activities of daily living (ADL) and falls onto crash mats, while wearing the best and sensor. Results show that falls can de distinguished from normal activities with a sensitivity >90% and a specificity of >99%, from a total data set of 264 falls and 165 normal ADL. By incorporating the fall-detection sensor into a custom designed garment it is anticipated that greater compliance when wearing a fall-detection system can be achieved and will help reduce the incidence of the long-lie, when falls occur in the elderly population. However further long-term testing using elderly subjects is required to validate the systems performance.

  16. Study of Command and Control (C&C) Structures on the Employment of Collaborative Engagement Capability (CEC) on Land Systems

    DTIC Science & Technology

    2012-09-01

    especially the sophisticated sea- skimming missiles that take advantage of the earth’s spherical nature as well the “sea clutter” that obstructs...radar capabilities such as the radar scanning range and ability to filter sea clutter to detect sea- skimming missile. The longer the range and the more...sea clutter Compact, cluttered with buildings, residents Common Threats Long-range sea skimming missiles Projectiles Platform Large platform

  17. Wide-Band, High-Quantum-Efficiency Photodetector

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah; Wilson, Daniel; Stern, Jeffrey

    2007-01-01

    A design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of optiA design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of opti-

  18. Vibrissae-evoked behavior and conditioning before functional ontogeny of the somatosensory vibrissae cortex.

    PubMed

    Landers, M S; Sullivan, R M

    1999-06-15

    The following experiments determined that the somatosensory whisker system is functional and capable of experience-dependent behavioral plasticity in the neonate before functional maturation of the somatosensory whisker cortex. First, unilateral whisker stimulation caused increased behavioral activity in both postnatal day (P) 3-4 and P8 pups, whereas stimulation-evoked cortical activity (14C 2-deoxyglucose autoradiography) was detectable only in P8 pups. Second, neonatal rat pups are capable of forming associations between whisker stimulation and a reinforcer. A classical conditioning paradigm (P3-P4) showed that the learning groups (paired whisker stimulation-shock or paired whisker stimulation-warm air stream) exhibited significantly higher behavioral responsiveness to whisker stimulation than controls. Finally, stimulus-evoked somatosensory cortical activity during testing [P8; using 14C 2-deoxyglucose (2-DG) autoradiography] was assessed after somatosensory conditioning from P1-P8. No learning-associated differences in stimulus-evoked cortical activity were detected between learning and nonlearning control groups. Together, these experiments demonstrate that the whisker system is functional in neonates and capable of experience-dependent behavioral plasticity. Furthermore, in contrast to adult somatosensory classical conditioning, these data suggest that the cortex is not required for associative somatosensory learning in neonates.

  19. CATSI EDM: recent advances in the development and validation of a ruggedized passive standoff CWA sensor

    NASA Astrophysics Data System (ADS)

    Lavoie, Hugo; Thériault, Jean-Marc; Bouffard, François; Puckrin, Eldon; Turcotte, Caroline S.; Lacasse, Paul

    2008-04-01

    Defence Research and Development Canada (DRDC) - Valcartier is currently developing a ruggedized passive standoff sensor for the detection of chemical warfare agents (CWAs) based on differential Fourier-transform infrared (FTIR) radiometry. This system is referred to as the Compact ATmospheric Sounding Interferometer (CATSI) Engineering Development Model (EDM). The CATSI EDM sensor is based on the use of a double-beam FTIR spectrometer that is optimized for optical subtraction. A description of the customized sensor is given along with a discussion on the detection and identification approaches that have been developed. Preliminary results of validation from a number of laboratory measurements and open-air trials are analyzed to establish the capability of detection and identification of various toxic and non-toxic chemical vapor plumes. These results clearly demonstrate the capability of the passive differential radiometric approach for the standoff detection and identification of chemical vapors at distances up to a few kilometers from the sensor.

  20. Fast neutron counting in a mobile, trailer-based search platform

    NASA Astrophysics Data System (ADS)

    Hayward, Jason P.; Sparger, John; Fabris, Lorenzo; Newby, Robert J.

    2017-12-01

    Trailer-based search platforms for detection of radiological and nuclear threats are often based upon coded aperture gamma-ray imaging, because this method can be rendered insensitive to local variations in gamma background while still localizing the source well. Since gamma source emissions are rather easily shielded, in this work we consider the addition of fast neutron counting to a mobile platform for detection of sources containing Pu. A proof-of-concept system capable of combined gamma and neutron coded-aperture imaging was built inside of a trailer and used to detect a 252Cf source while driving along a roadway. Neutron detector types employed included EJ-309 in a detector plane and EJ-299-33 in a front mask plane. While the 252Cf gamma emissions were not readily detectable while driving by at 16.9 m standoff, the neutron emissions can be detected while moving. Mobile detection performance for this system and a scaled-up system design are presented, along with implications for threat sensing.

  1. Enzyme-linked immunosorbent assay detection and bioactivity of Cry1Ab protein fragments.

    PubMed

    Albright, Vurtice C; Hellmich, Richard L; Coats, Joel R

    2016-12-01

    The continuing use of transgenic crops has led to an increased interest in the fate of insecticidal crystalline (Cry) proteins in the environment. Enzyme-linked immunosorbent assays (ELISAs) have emerged as the preferred detection method for Cry proteins in environmental matrices. Concerns exist that ELISAs are capable of detecting fragments of Cry proteins, which may lead to an overestimation of the concentration of these proteins in the environment. Five model systems were used to generate fragments of the Cry1Ab protein, which were then analyzed by ELISAs and bioassays. Fragments from 4 of the model systems were not detectable by ELISA and did not retain bioactivity. Fragments from the proteinase K model system were detectable by ELISA and retained bioactivity. In most cases, ELISAs appear to provide an accurate estimation of the amount of Cry proteins in the environment, as detectable fragments retained bioactivity and nondetectable fragments did not retain bioactivity. Environ Toxicol Chem 2016;35:3101-3112. © 2016 SETAC. © 2016 SETAC.

  2. Systems and methods for detecting and processing

    DOEpatents

    Johnson, Michael M [Livermore, CA; Yoshimura, Ann S [Tracy, CA

    2006-03-28

    Embodiments of the present invention provides systems and method for detecting. Sensing modules are provided in communication with one or more detectors. In some embodiments, detectors are provided that are sensitive to chemical, biological, or radiological agents. Embodiments of sensing modules include processing capabilities to analyze, perform computations on, and/or run models to predict or interpret data received from one or more detectors. Embodiments of sensing modules form various network configurations with one another and/or with one or more data aggregation devices. Some embodiments of sensing modules include power management functionalities.

  3. A nano grating tunable MEMS optical filter for high-speed on-chip multispectral fluorescent detection.

    PubMed

    Truxal, Steven C; Huang, Nien-Tsu; Kurabayashi, Katsuo

    2009-01-01

    We report a microelectromechanical (MEMS) tunable optical filter and its integration in a fluorescence microscope for high speed on-chip spectral measurements. This integration allows for measurements of any fluorescence sample placed onto the microscope stage. We demonstrate the system capabilities by taking spectral measurements of multicolor fluorescent beads and fluorescently labeled cells passing through a microfluidic cytometer. The system has applications in biological studies where the measurement of multiple fluorescent peaks is restricted by the detection method's speed and sensitivity.

  4. Modeling of a bubble-memory organization with self-checking translators to achieve high reliability.

    NASA Technical Reports Server (NTRS)

    Bouricius, W. G.; Carter, W. C.; Hsieh, E. P.; Wadia, A. B.; Jessep, D. C., Jr.

    1973-01-01

    Study of the design and modeling of a highly reliable bubble-memory system that has the capabilities of: (1) correcting a single 16-adjacent bit-group error resulting from failures in a single basic storage module (BSM), and (2) detecting with a probability greater than 0.99 any double errors resulting from failures in BSM's. The results of the study justify the design philosophy adopted of employing memory data encoding and a translator to correct single group errors and detect double group errors to enhance the overall system reliability.

  5. Implications of directed energy for SETI

    NASA Astrophysics Data System (ADS)

    Lubin, Philip

    2016-09-01

    We compute the detectability of directed-energy (DE) sources from distant civilizations that may exist. Recent advances in our own DE technology suggest that our eventual capabilities will radically enhance our capacity to broadcast our presence and hence allow us to ponder the reverse case of detection. We show that DE systems are detectable at vast distances, possibly across the entire horizon, which profoundly alters conceivable search strategies for extra-terrestrial, technologically-advanced civilizations. Even modest searches are extremely effective at detecting or constraining many civilization classes. A single civilization anywhere in our galaxy of comparable technological advancement to our own can be detected with near unity probability with a cluster of 0.1 m telescopes on Earth. A 1 m class telescope can detect a single civilization anywhere in the Andromeda galaxy. A search strategy is proposed using small Earth-based telescopes to observe 1012-1020 stellar and planetary systems. Such observations could address whether there exist other civilizations which are broadcasting with similar or more advanced DE capability. We show that such searches have near-unity probability of detecting comparably advanced civilizations anywhere in our galaxy within a few years, assuming the civilization: (1) adopts a simple "intelligent targeting" beacon strategy; (2) is beaconing at a wavelength we can detect; (3) broadcast the beacon long enough for the light to reach Earth now. In this blind-beacon, blind-search strategy, the civilization need not know where we are nor do we need to know where they are. The same basic strategy can be extended to extragalactic distances.

  6. Coincidence electron/ion imaging with a fast frame camera

    NASA Astrophysics Data System (ADS)

    Li, Wen; Lee, Suk Kyoung; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander; Fan, Lin

    2015-05-01

    A new time- and position- sensitive particle detection system based on a fast frame CMOS camera is developed for coincidence electron/ion imaging. The system is composed of three major components: a conventional microchannel plate (MCP)/phosphor screen electron/ion imager, a fast frame CMOS camera and a high-speed digitizer. The system collects the positional information of ions/electrons from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of MCPs processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of electron/ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide. We further show that a time resolution of 30 ps can be achieved when measuring electron TOF spectrum and this enables the new system to achieve a good energy resolution along the TOF axis.

  7. Development of a handheld widefield hyperspectral imaging (HSI) sensor for standoff detection of explosive, chemical, and narcotic residues

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew P.; Basta, Andrew; Patil, Raju; Klueva, Oksana; Treado, Patrick J.

    2013-05-01

    The utility of Hyper Spectral Imaging (HSI) passive chemical detection employing wide field, standoff imaging continues to be advanced in detection applications. With a drive for reduced SWaP (Size, Weight, and Power), increased speed of detection and sensitivity, developing a handheld platform that is robust and user-friendly increases the detection capabilities of the end user. In addition, easy to use handheld detectors could improve the effectiveness of locating and identifying threats while reducing risks to the individual. ChemImage Sensor Systems (CISS) has developed the HSI Aperio™ sensor for real time, wide area surveillance and standoff detection of explosives, chemical threats, and narcotics for use in both government and commercial contexts. Employing liquid crystal tunable filter technology, the HSI system has an intuitive user interface that produces automated detections and real-time display of threats with an end user created library of threat signatures that is easily updated allowing for new hazardous materials. Unlike existing detection technologies that often require close proximity for sensing and so endanger operators and costly equipment, the handheld sensor allows the individual operator to detect threats from a safe distance. Uses of the sensor include locating production facilities of illegal drugs or IEDs by identification of materials on surfaces such as walls, floors, doors, deposits on production tools and residue on individuals. In addition, the sensor can be used for longer-range standoff applications such as hasty checkpoint or vehicle inspection of residue materials on surfaces or bulk material identification. The CISS Aperio™ sensor has faster data collection, faster image processing, and increased detection capability compared to previous sensors.

  8. Development of an Extraterrestrial Organic Analyzer (EOA) for Highly Sensitive Organic Detection on an Ice Shell Impact Penetrator (IceShIP)

    NASA Astrophysics Data System (ADS)

    Stockton, A. M.; Duca, Z. A.; Cato, M.; Cantrell, T.; Kim, J.; Putman, P.; Schmidt, B. E.

    2016-12-01

    Kinetic penetrators have the potential to enable low cost in situ measurements of the ice of worlds including Europa and Enceladus [1]. Their small size and mass, critical to limiting their kinetic energy, makes them ideal small landers riding on primarily orbiter missions, while enabling sampling at several m depth due to burial and excavation. In situ microfluidic-based organic analysis systems are a powerful, miniaturized approach for detecting markers of habitability and recent biological activity. Development of microfluidic technology, like that of the Mars Organic Analyzer (MOA) [2,3] and Enceladus Organic Analyzer (EOA), has led to an instrument capable of in situ organic chemical analysis compatible with a kinetic penetrator platform. This technology uses an integrated microfluidic processor to prepare samples for analysis via fluorescent derivatization prior to highly sensitive laser-induced fluorescence (LIF) detection. Selective derivatization in the presence of a chiral selector enables distinction between amino acid enantiomers. Finite element analysis of the core microfluidic processing and analytical device indicated that the device itself is more than capable of surviving the stresses associated with an impact acceleration of >50,000g. However, a number of developments were still required to enable a flight-ready system. Preliminary experiments indicated that moving from a pneumatically-actuated to a hydraulically-actuated microvalve system may provide better impact resistance. A hydraulically-actuated microvalve system was developed and tested. A modification of an established microfabricated LIF detection system would use indium bump bonding to permanently weld optical components using standard microfabrication techniques with perfect alignment. Recent work has also focused on developing and characterizing impact-resistant electronics. This work shows the low-TRL development of EOA's LIF and microfluidic subsystems for future planetary impact penetrator missions. With correct structural decisions and optimizations, EOA can survive a 50,000g impact, making it the only current optical instrument with this capability. References: [1] Gowen et al., Adv. Space Res., 2011, 725. [2] Skelley et al, PNAS USA, 2005, 102, 1041. [3] Kim J., et al, Anal. Chem., 2013, 85, 7682.

  9. Monitoring System for Storm Readiness and Recovery of Test Facilities: Integrated System Health Management (ISHM) Approach

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Franzl, Richard; Walker, Mark; Kapadia, Ravi; Venkatesh, Meera; Schmalzel, John

    2010-01-01

    Severe weather events are likely occurrences on the Mississippi Gulf Coast. It is important to rapidly diagnose and mitigate the effects of storms on Stennis Space Center's rocket engine test complex to avoid delays to critical test article programs, reduce costs, and maintain safety. An Integrated Systems Health Management (ISHM) approach and technologies are employed to integrate environmental (weather) monitoring, structural modeling, and the suite of available facility instrumentation to provide information for readiness before storms, rapid initial damage assessment to guide mitigation planning, and then support on-going assurance as repairs are effected and finally support recertification. The system is denominated Katrina Storm Monitoring System (KStorMS). Integrated Systems Health Management (ISHM) describes a comprehensive set of capabilities that provide insight into the behavior the health of a system. Knowing the status of a system allows decision makers to effectively plan and execute their mission. For example, early insight into component degradation and impending failures provides more time to develop work around strategies and more effectively plan for maintenance. Failures of system elements generally occur over time. Information extracted from sensor data, combined with system-wide knowledge bases and methods for information extraction and fusion, inference, and decision making, can be used to detect incipient failures. If failures do occur, it is critical to detect and isolate them, and suggest an appropriate course of action. ISHM enables determining the condition (health) of every element in a complex system-of-systems or SoS (detect anomalies, diagnose causes, predict future anomalies), and provide data, information, and knowledge (DIaK) to control systems for safe and effective operation. ISHM capability is achieved by using a wide range of technologies that enable anomaly detection, diagnostics, prognostics, and advise for control: (1) anomaly detection algorithms and strategies, (2) fusion of DIaK for anomaly detection (model-based, numerical, statistical, empirical, expert-based, qualitative, etc.), (3) diagnostics/prognostics strategies and methods, (4) user interface, (5) advanced control strategies, (6) integration architectures/frameworks, (7) embedding of intelligence. Many of these technologies are mature, and they are being used in the KStorMS. The paper will describe the design, implementation, and operation of the KStorMS; and discuss further evolution to support other needs such as condition-based maintenance (CBM).

  10. Prediction of topographic and bathymetric measurement performance of airborne low-SNR lidar systems

    NASA Astrophysics Data System (ADS)

    Cossio, Tristan

    Low signal-to-noise ratio (LSNR) lidar (light detection and ranging) is an alternative paradigm to traditional lidar based on the detection of return signals at the single photoelectron level. The objective of this work was to predict low altitude (600 m) LSNR lidar system performance with regards to elevation measurement and target detection capability in topographic (dry land) and bathymetric (shallow water) scenarios. A modular numerical sensor model has been developed to provide data for further analysis due to the dearth of operational low altitude LSNR lidar systems. This simulator tool is described in detail, with consideration given to atmospheric effects, surface conditions, and the effects of laser phenomenology. Measurement performance analysis of the simulated topographic data showed results comparable to commercially available lidar systems, with a standard deviation of less than 12 cm for calculated elevation values. Bathymetric results, although dependent largely on water turbidity, were indicative of meter-scale horizontal data spacing for sea depths less than 5 m. The high prevalence of noise in LSNR lidar data introduces significant difficulties in data analysis. Novel algorithms to reduce noise are described, with particular focus on their integration into an end-to-end target detection classifier for both dry and submerged targets (cube blocks, 0.5 m to 1.0 m on a side). The key characteristic exploited to discriminate signal and noise is the temporal coherence of signal events versus the random distribution of noise events. Target detection performance over dry earth was observed to be robust, reliably detecting over 90% of targets with a minimal false alarm rate. Comparable results were observed in waters of high clarity, where the investigated system was generally able to detect more than 70% of targets to a depth of 5 m. The results of the study show that CATS, the University of Florida's LSNR lidar prototype, is capable of high fidelity (decimeter-scale) coverage of the topographic zone with limited applicability to shallow waters less than 5 m deep. To increase the spatial-temporal contrast between signal and noise events, laser pulse rate is the optimal system characteristic to improve in future LSNR lidar units.

  11. Robust fault detection of wind energy conversion systems based on dynamic neural networks.

    PubMed

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.

  12. Robust Fault Detection of Wind Energy Conversion Systems Based on Dynamic Neural Networks

    PubMed Central

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate. PMID:24744774

  13. On the reliable use of satellite-derived surface water products for global flood monitoring

    NASA Astrophysics Data System (ADS)

    Hirpa, F. A.; Revilla-Romero, B.; Thielen, J.; Salamon, P.; Brakenridge, R.; Pappenberger, F.; de Groeve, T.

    2015-12-01

    Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response management. To this end, real-time flood forecasting and satellite-based detection systems have been developed at global scale. However, due to the limited availability of up-to-date ground observations, the reliability of these systems for real-time applications have not been assessed in large parts of the globe. In this study, we performed comparative evaluations of the commonly used satellite-based global flood detections and operational flood forecasting system using 10 major flood cases reported over three years (2012-2014). Specially, we assessed the flood detection capabilities of the near real-time global flood maps from the Global Flood Detection System (GFDS), and from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the operational forecasts from the Global Flood Awareness System (GloFAS) for the major flood events recorded in global flood databases. We present the evaluation results of the global flood detection and forecasting systems in terms of correctly indicating the reported flood events and highlight the exiting limitations of each system. Finally, we propose possible ways forward to improve the reliability of large scale flood monitoring tools.

  14. Quantitative investigation of a novel small field of view hybrid gamma camera (HGC) capability for sentinel lymph node detection

    PubMed Central

    Lees, John E; Bugby, Sarah L; Jambi, Layal K; Perkins, Alan C

    2016-01-01

    Objective: The hybrid gamma camera (HGC) has been developed to enhance the localization of radiopharmaceutical uptake in targeted tissues during surgical procedures such as sentinel lymph node (SLN) biopsy. To assess the capability of the HGC, a lymph node contrast (LNC) phantom was constructed to simulate medical scenarios of varying radioactivity concentrations and SLN size. Methods: The phantom was constructed using two clear acrylic glass plates. The SLNs were simulated by circular wells of diameters ranging from 10 to 2.5 mm (16 wells in total) in 1 plate. The second plate contains four larger rectangular wells to simulate tissue background activity surrounding the SLNs. The activity used to simulate each SLN ranged between 4 and 0.025 MBq. The activity concentration ratio between the background and the activity injected in the SLNs was 1 : 10. The LNC phantom was placed at different depths of scattering material ranging between 5 and 40 mm. The collimator-to-source distance was 120 mm. Image acquisition times ranged from 60 to 240 s. Results: Contrast-to-noise ratio analysis and full-width-at-half-maximum (FWHM) measurements of the simulated SLNs were carried out for the images obtained. Over the range of activities used, the HGC detected between 87.5 and 100% of the SLNs through 20 mm of scattering material and 75–93.75% of the SLNs through 40 mm of scattering material. The FWHM of the detected SLNs ranged between 11.93 and 14.70 mm. Conclusion: The HGC is capable of detecting low accumulation of activity in small SLNs, indicating its usefulness as an intraoperative imaging system during surgical SLN procedures. Advances in knowledge: This study investigates the capability of a novel small-field-of-view (SFOV) HGC to detect low activity uptake in small SLNs. The phantom and procedure described are inexpensive and could be easily replicated and applied to any SFOV camera, to provide a comparison between systems with clinically relevant results. PMID:27537079

  15. Performance test and verification of an off-the-shelf automated avian radar tracking system.

    PubMed

    May, Roel; Steinheim, Yngve; Kvaløy, Pål; Vang, Roald; Hanssen, Frank

    2017-08-01

    Microwave radar is an important tool for observation of birds in flight and represents a tremendous increase in observation capability in terms of amount of surveillance space that can be covered at relatively low cost. Based on off-the-shelf radar hardware, automated radar tracking systems have been developed for monitoring avian movements. However, radar used as an observation instrument in biological research has its limitations that are important to be aware of when analyzing recorded radar data. This article describes a method for exploring the detection capabilities of a dedicated short-range avian radar system used inside the operational Smøla wind-power plant. The purpose of the testing described was to find the maximum detection range for various sized birds, while controlling for the effects of flight tortuosity, flight orientation relative to the radar and ground clutter. The method was to use a dedicated test target in form of a remotely controlled unmanned aerial vehicle (UAV) with calibrated radar cross section (RCS), which enabled the design of virtually any test flight pattern within the area of interest. The UAV had a detection probability of 0.5 within a range of 2,340 m from the radar. The detection performance obtained by the RCS-calibrated test target (-11 dBm 2 , 0.08 m 2 RCS) was then extrapolated to find the corresponding performance of differently sized birds. Detection range depends on system sensitivity, the environment within which the radar is placed and the spatial distribution of birds. The avian radar under study enables continuous monitoring of bird activity within a maximum range up to 2 km dependent on the size of the birds in question. While small bird species may be detected up to 0.5-1 km, larger species may be detected up to 1.5-2 km distance from the radar.

  16. Integrating SAR and derived products into operational volcano monitoring and decision support systems

    NASA Astrophysics Data System (ADS)

    Meyer, F. J.; McAlpin, D. B.; Gong, W.; Ajadi, O.; Arko, S.; Webley, P. W.; Dehn, J.

    2015-02-01

    Remote sensing plays a critical role in operational volcano monitoring due to the often remote locations of volcanic systems and the large spatial extent of potential eruption pre-cursor signals. Despite the all-weather capabilities of radar remote sensing and its high performance in monitoring of change, the contribution of radar data to operational monitoring activities has been limited in the past. This is largely due to: (1) the high costs associated with radar data; (2) traditionally slow data processing and delivery procedures; and (3) the limited temporal sampling provided by spaceborne radars. With this paper, we present new data processing and data integration techniques that mitigate some of these limitations and allow for a meaningful integration of radar data into operational volcano monitoring decision support systems. Specifically, we present fast data access procedures as well as new approaches to multi-track processing that improve near real-time data access and temporal sampling of volcanic systems with SAR data. We introduce phase-based (coherent) and amplitude-based (incoherent) change detection procedures that are able to extract dense time series of hazard information from these data. For a demonstration, we present an integration of our processing system with an operational volcano monitoring system that was developed for use by the Alaska Volcano Observatory (AVO). Through an application to a historic eruption, we show that the integration of SAR into systems such as AVO can significantly improve the ability of operational systems to detect eruptive precursors. Therefore, the developed technology is expected to improve operational hazard detection, alerting, and management capabilities.

  17. Development of a prototype sensor system for ultra-high-speed LDA-PIV

    NASA Astrophysics Data System (ADS)

    Griffiths, Jennifer A.; Royle, Gary J.; Bohndiek, Sarah E.; Turchetta, Renato; Chen, Daoyi

    2008-04-01

    Laser Doppler Anemometry (LDA) and Particle Image Velocimetry (PIV) are commonly used in the analysis of particulates in fluid flows. Despite the successes of these techniques, current instrumentation has placed limitations on the size and shape of the particles undergoing measurement, thus restricting the available data for the many industrial processes now utilising nano/micro particles. Data for spherical and irregularly shaped particles down to the order of 0.1 µm is now urgently required. Therefore, an ultra-fast LDA-PIV system is being constructed for the acquisition of this data. A key component of this instrument is the PIV optical detection system. Both the size and speed of the particles under investigation place challenging constraints on the system specifications: magnification is required within the system in order to visualise particles of the size of interest, but this restricts the corresponding field of view in a linearly inverse manner. Thus, for several images of a single particle in a fast fluid flow to be obtained, the image capture rate and sensitivity of the system must be sufficiently high. In order to fulfil the instrumentation criteria, the optical detection system chosen is a high-speed, lensed, digital imaging system based on state-of-the-art CMOS technology - the 'Vanilla' sensor developed by the UK based MI3 consortium. This novel Active Pixel Sensor is capable of high frame rates and sparse readout. When coupled with an image intensifier, it will have single photon detection capabilities. An FPGA based DAQ will allow real-time operation with minimal data transfer.

  18. Intelligent Elements for ISHM

    NASA Technical Reports Server (NTRS)

    Schmalzel, John L.; Morris, Jon; Turowski, Mark; Figueroa, Fernando; Oostdyk, Rebecca

    2008-01-01

    There are a number of architecture models for implementing Integrated Systems Health Management (ISHM) capabilities. For example, approaches based on the OSA-CBM and OSA-EAI models, or specific architectures developed in response to local needs. NASA s John C. Stennis Space Center (SSC) has developed one such version of an extensible architecture in support of rocket engine testing that integrates a palette of functions in order to achieve an ISHM capability. Among the functional capabilities that are supported by the framework are: prognostic models, anomaly detection, a data base of supporting health information, root cause analysis, intelligent elements, and integrated awareness. This paper focuses on the role that intelligent elements can play in ISHM architectures. We define an intelligent element as a smart element with sufficient computing capacity to support anomaly detection or other algorithms in support of ISHM functions. A smart element has the capabilities of supporting networked implementations of IEEE 1451.x smart sensor and actuator protocols. The ISHM group at SSC has been actively developing intelligent elements in conjunction with several partners at other Centers, universities, and companies as part of our ISHM approach for better supporting rocket engine testing. We have developed several implementations. Among the key features for these intelligent sensors is support for IEEE 1451.1 and incorporation of a suite of algorithms for determination of sensor health. Regardless of the potential advantages that can be achieved using intelligent sensors, existing large-scale systems are still based on conventional sensors and data acquisition systems. In order to bring the benefits of intelligent sensors to these environments, we have also developed virtual implementations of intelligent sensors.

  19. Semiconductor Laser Multi-Spectral Sensing and Imaging

    PubMed Central

    Le, Han Q.; Wang, Yang

    2010-01-01

    Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers. PMID:22315555

  20. Semiconductor laser multi-spectral sensing and imaging.

    PubMed

    Le, Han Q; Wang, Yang

    2010-01-01

    Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  1. Prototype active scanner for nighttime oil spill mapping and classification

    NASA Technical Reports Server (NTRS)

    Sandness, G. A.; Ailes, S. B.

    1977-01-01

    A prototype, active, aerial scanner system was constructed for nighttime water pollution detection and nighttime multispectral imaging of the ground. An arc lamp was used to produce the transmitted light and four detector channels provided a multispectral measurement capability. The feasibility of the design concept was demonstrated by laboratory and flight tests of the prototype system.

  2. A common-path optical coherence tomography based electrode for structural imaging of nerves and recording of action potentials

    NASA Astrophysics Data System (ADS)

    Islam, M. Shahidul; Haque, Md. Rezuanul; Oh, Christian M.; Wang, Yan; Park, B. Hyle

    2013-03-01

    Current technologies for monitoring neural activity either use different variety of electrodes (electrical recording) or require contrast agents introduced exogenously or through genetic modification (optical imaging). Here we demonstrate an optical method for non-contact and contrast agent free detection of nerve activity using phase-resolved optical coherence tomography (pr-OCT). A common-path variation of the pr-OCT is recently implemented and the developed system demonstrated the capability to detect rapid transient structural changes that accompany neural spike propagation. No averaging over multiple trials was required, indicating its capability of single-shot detection of individual impulses from functionally stimulated Limulus optic nerve. The strength of this OCT-based optical electrode is that it is a contactless method and does not require any exogenous contrast agent. With further improvements in accuracy and sensitivity, this optical electrode will play a complementary role to the existing recording technologies in future.

  3. 2D metal profile detector using a polymeric fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Hua, Wei-Shu; Hooks, Joshua R.; Erwin, Nicholas A.; Wu, Wen-Jong; Wang, Wei-Chih

    2012-04-01

    As sensors become integrated in more applications, interest in magnetostrictive sensor technology has blossomed. Magnetostrictive materials have many advantages and useful applications in daily life, such as high efficient coupling between elastic and polymer material, large displacement, magnetic field sensors, micro actuator and motion motor, etc. The purpose of this paper is to develop a metal sensor which is capable of detecting different geometries and shapes of metal objects. The main configuration is using a Mach-Zehnder fiber-optic interferometer coated with magnetostrictive material. The metal detector system is a novel design of metal detector, easy to fabricate and capable of high sensitivity. In our design, metal detection is made possible by disrupting the magnetic flux density that encompasses the magnetostriction sensor. In this paper, experimental setups are described and metal sensing results are presented. The results of detecting complex metal's geometry and metal's mapping results are discussed.

  4. Human visual system-based smoking event detection

    NASA Astrophysics Data System (ADS)

    Odetallah, Amjad D.; Agaian, Sos S.

    2012-06-01

    Human action (e.g. smoking, eating, and phoning) analysis is an important task in various application domains like video surveillance, video retrieval, human-computer interaction systems, and so on. Smoke detection is a crucial task in many video surveillance applications and could have a great impact to raise the level of safety of urban areas, public parks, airplanes, hospitals, schools and others. The detection task is challenging since there is no prior knowledge about the object's shape, texture and color. In addition, its visual features will change under different lighting and weather conditions. This paper presents a new scheme of a system for detecting human smoking events, or small smoke, in a sequence of images. In developed system, motion detection and background subtraction are combined with motion-region-saving, skin-based image segmentation, and smoke-based image segmentation to capture potential smoke regions which are further analyzed to decide on the occurrence of smoking events. Experimental results show the effectiveness of the proposed approach. As well, the developed method is capable of detecting the small smoking events of uncertain actions with various cigarette sizes, colors, and shapes.

  5. Modeling and Detection of Ice Particle Accretion in Aircraft Engine Compression Systems

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei

    2012-01-01

    The accretion of ice particles in the core of commercial aircraft engines has been an ongoing aviation safety challenge. While no accidents have resulted from this phenomenon to date, numerous engine power loss events ranging from uneventful recoveries to forced landings have been recorded. As a first step to enabling mitigation strategies during ice accretion, a detection scheme must be developed that is capable of being implemented on board modern engines. In this paper, a simple detection scheme is developed and tested using a realistic engine simulation with approximate ice accretion models based on data from a compressor design tool. These accretion models are implemented as modified Low Pressure Compressor maps and have the capability to shift engine performance based on a specified level of ice blockage. Based on results from this model, it is possible to detect the accretion of ice in the engine core by observing shifts in the typical sensed engine outputs. Results are presented in which, for a 0.1 percent false positive rate, a true positive detection rate of 98 percent is achieved.

  6. A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles

    PubMed Central

    Garai, Ellis; Loewke, Nathan O.; Rogalla, Stephan; Mandella, Michael J.; Felt, Stephen A.; Friedland, Shai; Liu, Jonathan T. C.; Gambhir, Sanjiv S.; Contag, Christopher H.

    2015-01-01

    The detection of biomarker-targeting surface-enhanced Raman scattering (SERS) nanoparticles (NPs) in the human gastrointestinal tract has the potential to improve early cancer detection; however, a clinically relevant device with rapid Raman-imaging capability has not been described. Here we report the design and in vivo demonstration of a miniature, non-contact, opto-electro-mechanical Raman device as an accessory to clinical endoscopes that can provide multiplexed molecular data via a panel of SERS NPs. This device enables rapid circumferential scanning of topologically complex luminal surfaces of hollow organs (e.g., colon and esophagus) and produces quantitative images of the relative concentrations of SERS NPs that are present. Human and swine studies have demonstrated the speed and simplicity of this technique. This approach also offers unparalleled multiplexing capabilities by simultaneously detecting the unique spectral fingerprints of multiple SERS NPs. Therefore, this new screening strategy has the potential to improve diagnosis and to guide therapy by enabling sensitive quantitative molecular detection of small and otherwise hard-to-detect lesions in the context of white-light endoscopy. PMID:25923788

  7. Development of a QCL based IR polarimetric system for the stand-off detection and location of IEDs

    NASA Astrophysics Data System (ADS)

    Stokes, Robert J.; Normand, Erwan L.; Carrie, Iain D.; Foulger, Brian; Lewis, Colin

    2009-09-01

    Following the development of point sensing improvised explosive device (IED) technology[1] Cascade Technologies have initial work in the development of equivalent stand-off capability. Stand-off detection of IEDs is a very important technical requirement that would enable the safe identification and quantification of hazardous materials prior to a terrorist attack. This could provide advanced warning of potential danger allowing evacuation and mitigation measures to be implemented. With support from the UK government, Cascade Technologies is currently investigating technology developments aimed at addressing the above stand-off IED detection capability gap. To demonstrate and validate the concept, a novel stand-off platform will target the detection and identification of common high vapor pressure IED precursor compounds, such as hydrogen peroxide (H2O2), emanating from a point source. By actively probing a scene with polarized light, the novel platform will offer both enhanced selectivity and sensitivity as compared to traditional hyperspectral sensors, etc. The presentation will highlight the concept of this novel detection technique as well as illustrating preliminary results.

  8. A search for minor bodies in the Jovian tenuous ring system

    NASA Astrophysics Data System (ADS)

    Malinnikova Bang, A.; Joergensen, J. L.; Connerney, J. E.; Benn, M.; Denver, T.; Oliversen, R. J.; Lawton, P.

    2013-12-01

    The magnetometer experiment on the Juno spacecraft, is equipped with four fully autonomous star trackers, which apart from delivering highly accurate attitude information for the magnetometer sensors, and the inherent imaging capabilities of a low light camera system, also can detect and track luminous objects that exhibit an apparent motion rate relative to the background. The Juno magnetometer star trackers are pointed 13deg of the spacecraft anti-spin vector, each having a field of view of 13 by 18 degrees and operated at 4Hz. As the spacecraft spin, each camera will cover an annulus shaped disk with an inner radius of 7.5 degrees, and an outer radius of 20.5deg. When in science orbit, the Juno trajectory near peri-jove, will result in the anti-spin vector scanning across the tenuous rings. The combination of this scanning motion with the rotation of the camera field of view results in a near perfect opportunity to detect and track minor bodies in the inner part of the rings. The operations of this mode, is first tested in flight during the Juno Earth Flyby 9th October 2013, where the Moon is used as a known target. We present a few results of this test, and based on scale laws we will discuss the systems capability of detecting minor bodies in the Jovian ring system in terms of distance, velocity, albedo and range. Also, because the magnetometer star trackers are offset from the spin axis, the distance to a detected object can be derived by simple triangulation of the apparent direction as observed before, under and after passage under the rings. We discuss how this technique may be used to determine the orbit, size and albedo, of minor bodies thus detected and tracked.

  9. Precision Orbit of δ Delphini and Prospects for Astrometric Detection of Exoplanets

    NASA Astrophysics Data System (ADS)

    Gardner, Tyler; Monnier, John D.; Fekel, Francis C.; Williamson, Mike; Duncan, Douglas K.; White, Timothy R.; Ireland, Michael; Adams, Fred C.; Barman, Travis; Baron, Fabien; ten Brummelaar, Theo; Che, Xiao; Huber, Daniel; Kraus, Stefan; Roettenbacher, Rachael M.; Schaefer, Gail; Sturmann, Judit; Sturmann, Laszlo; Swihart, Samuel J.; Zhao, Ming

    2018-03-01

    Combining visual and spectroscopic orbits of binary stars leads to a determination of the full 3D orbit, individual masses, and distance to the system. We present a full analysis of the evolved binary system δ Delphini using astrometric data from the MIRC and PAVO instruments on the CHARA long-baseline interferometer, 97 new spectra from the Fairborn Observatory, and 87 unpublished spectra from the Lick Observatory. We determine the full set of orbital elements for δ Del, along with masses of 1.78 ± 0.07 M ⊙ and 1.62 ± 0.07 M ⊙ for each component, and a distance of 63.61 ± 0.89 pc. These results are important in two contexts: for testing stellar evolution models and for defining the detection capabilities for future planet searches. We find that the evolutionary state of this system is puzzling, as our measured flux ratios, radii, and masses imply a ∼200 Myr age difference between the components, using standard stellar evolution models. Possible explanations for this age discrepancy include mass transfer scenarios with a now-ejected tertiary companion. For individual measurements taken over a span of two years, we achieve <10 μas precision on the differential position with 10 minute observations. The high precision of our astrometric orbit suggests that exoplanet detection capabilities are within reach of MIRC at CHARA. We compute exoplanet detection limits around δ Del and conclude that, if this precision is extended to wider systems, we should be able to detect most exoplanets >2 M J on orbits >0.75 au around individual components of hot binary stars via differential astrometry.

  10. Non-Invasive Screening Techniques for Drugs of Abuse,

    DTIC Science & Technology

    1982-08-01

    documentation. The system is capable of identifying all common drugs of abuse except cannabinoids, lysergic acid diethylamide (LSD), and psilocybin ...combined with LSD, diphenhydramine (Benadryl), mari- huana or other drugs. Methods of detection: TLC, GLC, EMIT, RIA. Psilocybin (’magic mushrooms

  11. Testing the Delayed Gamma Capability in MCNP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weldon, Robert A.; Fensin, Michael L.; McKinney, Gregg W.

    The mission of the Domestic Nuclear Detection Office is to quickly and reliably detect unauthorized attempts to import or transport special nuclear material for use against the United States. Developing detection equipment to meet this objective requires accurate simulation of both the detectable signature and detection mechanism. A delayed particle capability was initially added to MCNPX 2.6.A in 2005 to sample the radioactive fission product parents and emit decay particles resulting from the decay chain. To meet the objectives of detection scenario modeling, the capability was designed to sample a particular time for emitting particular multiplicity of a particular energy.more » Because the sampling process of selecting both time and energy is interdependent, to linearize the time and emission sampling, atom densities are computed at several discrete time steps, and the time-integrated production is computed by multiplying the atom density by the decay constant and time step size to produce a cumulative distribution function for sampling the emission time, energy, and multiplicity. The delayed particle capability was initially given a time-bin structure to help reasonably reproduce, from a qualitative sense, a fission benchmark by Beddingfield, which examined the delayed gamma emission. This original benchmark was only qualitative and did not contain the magnitudes of the actual measured data but did contain relative graphical representation of the spectra. A better benchmark with measured data was later provided by Hunt, Mozin, Reedy, Selpel, and Tobin at the Idaho Accelerator Center; however, because of the complexity of the benchmark setup, sizable systematic errors were expected in the modeling, and initial results compared to MCNPX 2.7.0 showed errors outside of statistical fluctuation. Presented in this paper is a more simplified approach to benchmarking, utilizing closed form analytic solutions to the granddaughter equations for particular sets of decay systems. We examine five different decay chains (two-stage decay to stable) and show the predictability of the MCNP6 delayed gamma feature. Results do show that while the default delayed gamma calculations available in the MCNP6 1.0 release can give accurate results for some isotopes (e.g., 137Ba), the percent differences between the closed form analytic solutions and the MCNP6 calculations were often >40% ( 28Mg, 28Al, 42K, 47Ca, 47Sc, 60Co). With the MCNP6 1.1 Beta release, the tenth entry on the DBCN card allows improved calculation within <5% as compared to the closed form analytic solutions for immediate parent emissions and transient equilibrium systems. While the tenth entry on the DBCN card for MCNP6 1.1 gives much better results for transient equilibrium systems and parent emissions in general, it does little to improve daughter emissions of secular equilibrium systems. Finally, hypotheses were presented as to why daughter emissions of secular equilibrium systems might be mispredicted in some cases and not in others.« less

  12. Quantitative evaluation of patient-specific quality assurance using online dosimetry system

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Yong; Shin, Young-Ju; Sohn, Seung-Chang; Min, Jung-Whan; Kim, Yon-Lae; Kim, Dong-Su; Choe, Bo-Young; Suh, Tae-Suk

    2018-01-01

    In this study, we investigated the clinical performance of an online dosimetry system (Mobius FX system, MFX) by 1) dosimetric plan verification using gamma passing rates and dose volume metrics and 2) error-detection capability evaluation by deliberately introduced machine error. Eighteen volumetric modulated arc therapy (VMAT) plans were studied. To evaluate the clinical performance of the MFX, we used gamma analysis and dose volume histogram (DVH) analysis. In addition, to evaluate the error-detection capability, we used gamma analysis and DVH analysis utilizing three types of deliberately introduced errors (Type 1: gantry angle-independent multi-leaf collimator (MLC) error, Type 2: gantry angle-dependent MLC error, and Type 3: gantry angle error). A dosimetric verification comparison of physical dosimetry system (Delt4PT) and online dosimetry system (MFX), gamma passing rates of the two dosimetry systems showed very good agreement with treatment planning system (TPS) calculation. For the average dose difference between the TPS calculation and the MFX measurement, most of the dose metrics showed good agreement within a tolerance of 3%. For the error-detection comparison of Delta4PT and MFX, the gamma passing rates of the two dosimetry systems did not meet the 90% acceptance criterion with the magnitude of error exceeding 2 mm and 1.5 ◦, respectively, for error plans of Types 1, 2, and 3. For delivery with all error types, the average dose difference of PTV due to error magnitude showed good agreement between calculated TPS and measured MFX within 1%. Overall, the results of the online dosimetry system showed very good agreement with those of the physical dosimetry system. Our results suggest that a log file-based online dosimetry system is a very suitable verification tool for accurate and efficient clinical routines for patient-specific quality assurance (QA).

  13. A Real-Time Wireless Sweat Rate Measurement System for Physical Activity Monitoring.

    PubMed

    Brueck, Andrew; Iftekhar, Tashfin; Stannard, Alicja B; Yelamarthi, Kumar; Kaya, Tolga

    2018-02-10

    There has been significant research on the physiology of sweat in the past decade, with one of the main interests being the development of a real-time hydration monitor that utilizes sweat. The contents of sweat have been known for decades; sweat provides significant information on the physiological condition of the human body. However, it is important to know the sweat rate as well, as sweat rate alters the concentration of the sweat constituents, and ultimately affects the accuracy of hydration detection. Towards this goal, a calorimetric based flow-rate detection system was built and tested to determine sweat rate in real time. The proposed sweat rate monitoring system has been validated through both controlled lab experiments (syringe pump) and human trials. An Internet of Things (IoT) platform was embedded, with the sensor using a Simblee board and Raspberry Pi. The overall prototype is capable of sending sweat rate information in real time to either a smartphone or directly to the cloud. Based on a proven theoretical concept, our overall system implementation features a pioneer device that can truly measure the rate of sweat in real time, which was tested and validated on human subjects. Our realization of the real-time sweat rate watch is capable of detecting sweat rates as low as 0.15 µL/min/cm², with an average error in accuracy of 18% compared to manual sweat rate readings.

  14. Detection of gas leakage

    DOEpatents

    Thornberg, Steven [Peralta, NM; Brown, Jason [Albuquerque, NM

    2012-06-19

    A method of detecting leaks and measuring volumes as well as an apparatus, the Power-free Pump Module (PPM), that is a self-contained leak test and volume measurement apparatus that requires no external sources of electrical power during leak testing or volume measurement, where the invention is a portable, pneumatically-controlled instrument capable of generating a vacuum, calibrating volumes, and performing quantitative leak tests on a closed test system or device, all without the use of alternating current (AC) power. Capabilities include the ability is to provide a modest vacuum (less than 10 Torr), perform a pressure rise leak test, measure the gas's absolute pressure, and perform volume measurements. All operations are performed through a simple rotary control valve which controls pneumatically-operated manifold valves.

  15. Detection of gas leakage

    DOEpatents

    Thornberg, Steven M; Brown, Jason

    2015-02-17

    A method of detecting leaks and measuring volumes as well as a device, the Power-free Pump Module (PPM), provides a self-contained leak test and volume measurement apparatus that requires no external sources of electrical power during leak testing or volume measurement. The PPM is a portable, pneumatically-controlled instrument capable of generating a vacuum, calibrating volumes, and performing quantitative leak tests on a closed test system or device, all without the use of alternating current (AC) power. Capabilities include the ability is to provide a modest vacuum (less than 10 Torr) using a venturi pump, perform a pressure rise leak test, measure the gas's absolute pressure, and perform volume measurements. All operations are performed through a simple rotary control valve which controls pneumatically-operated manifold valves.

  16. Backscatter X-Ray Development for Space Vehicle Thermal Protection Systems

    NASA Astrophysics Data System (ADS)

    Bartha, Bence B.; Hope, Dale; Vona, Paul; Born, Martin; Corak, Tony

    2011-06-01

    The Backscatter X-Ray (BSX) imaging technique is used for various single sided inspection purposes. Previously developed BSX techniques for spray-on-foam insulation (SOFI) have been used for detecting defects in Space Shuttle External Tank foam insulation. The developed BSX hardware and techniques are currently being enhanced to advance Non-Destructive Evaluation (NDE) methods for future space vehicle applications. Various Thermal Protection System (TPS) materials were inspected using the enhanced BSX imaging techniques, investigating the capability of the method to detect voids and other discontinuities at various locations within each material. Calibration standards were developed for the TPS materials in order to characterize and develop enhanced BSX inspection capabilities. The ability of the BSX technique to detect both manufactured and natural defects was also studied and compared to through-transmission x-ray techniques. The energy of the x-ray, source to object distance, angle of x-ray, focal spot size and x-ray detector configurations were parameters playing a significant role in the sensitivity of the BSX technique to image various materials and defects. The image processing of the results also showed significant increase in the sensitivity of the technique. The experimental results showed BSX to be a viable inspection technique for space vehicle TPS systems.

  17. Escherichia coli's water load affects zebrafish (Danio rerio) behavior.

    PubMed

    Amorim, João; Fernandes, Miguel; Abreu, Isabel; Tavares, Fernando; Oliva-Teles, Luis

    2018-05-01

    Traditional physico-chemical sensors are becoming an obsolete tool for environmental quality assessment. Biomonitoring techniques, such as biological early warning systems present the advantage of being sensitivity, fast, non-invasive and ecologically relevant. In this work, we applied a video tracking system, developed with zebrafish (Danio rerio), to detect microbiological contamination in water. Using the fishs' behavior response, the system was able to detect the presence of a non-pathogenic environmental strain of Escherichia coli, at three different levels of contamination: 600, 1800 and 5000 CFU/100 mL (colony forming units/100 mL). Data was collected during 50 min of exposure and analyzed with the artificial neural networks Self-organizing Map and Multi-layer Perceptron. The behavior of exposed fish was more erratic, with pronounced and rapid changes on movement direction and with significant less exploratory activity. The accuracy, sensitivity and specificity values regarding the detection capability (distinction between presence or absence of contamination) ranged from 89 to 100%. Regarding the classification capability (distinction between experimental conditions), the values ranged from 67 to 89%. This research may be a valuable contribution to improve water monitoring and management strategies, by taking as reference the effects on biosensors, without a biased anthropocentric perspective. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Imaging characteristics of photogrammetric camera systems

    USGS Publications Warehouse

    Welch, R.; Halliday, J.

    1973-01-01

    In view of the current interest in high-altitude and space photographic systems for photogrammetric mapping, the United States Geological Survey (U.S.G.S.) undertook a comprehensive research project designed to explore the practical aspects of applying the latest image quality evaluation techniques to the analysis of such systems. The project had two direct objectives: (1) to evaluate the imaging characteristics of current U.S.G.S. photogrammetric camera systems; and (2) to develop methodologies for predicting the imaging capabilities of photogrammetric camera systems, comparing conventional systems with new or different types of systems, and analyzing the image quality of photographs. Image quality was judged in terms of a number of evaluation factors including response functions, resolving power, and the detectability and measurability of small detail. The limiting capabilities of the U.S.G.S. 6-inch and 12-inch focal length camera systems were established by analyzing laboratory and aerial photographs in terms of these evaluation factors. In the process, the contributing effects of relevant parameters such as lens aberrations, lens aperture, shutter function, image motion, film type, and target contrast procedures for analyzing image quality and predicting and comparing performance capabilities. ?? 1973.

  19. Distributed and recoverable digital control system

    NASA Technical Reports Server (NTRS)

    Stange, Kent (Inventor); Hess, Richard (Inventor); Kelley, Gerald B (Inventor); Rogers, Randy (Inventor)

    2010-01-01

    A real-time multi-tasking digital control system with rapid recovery capability is disclosed. The control system includes a plurality of computing units comprising a plurality of redundant processing units, with each of the processing units configured to generate one or more redundant control commands. One or more internal monitors are employed for detecting data errors in the control commands. One or more recovery triggers are provided for initiating rapid recovery of a processing unit if data errors are detected. The control system also includes a plurality of actuator control units each in operative communication with the computing units. The actuator control units are configured to initiate a rapid recovery if data errors are detected in one or more of the processing units. A plurality of smart actuators communicates with the actuator control units, and a plurality of redundant sensors communicates with the computing units.

  20. Model-based approach for cyber-physical attack detection in water distribution systems.

    PubMed

    Housh, Mashor; Ohar, Ziv

    2018-08-01

    Modern Water Distribution Systems (WDSs) are often controlled by Supervisory Control and Data Acquisition (SCADA) systems and Programmable Logic Controllers (PLCs) which manage their operation and maintain a reliable water supply. As such, and with the cyber layer becoming a central component of WDS operations, these systems are at a greater risk of being subjected to cyberattacks. This paper offers a model-based methodology based on a detailed hydraulic understanding of WDSs combined with an anomaly detection algorithm for the identification of complex cyberattacks that cannot be fully identified by hydraulically based rules alone. The results show that the proposed algorithm is capable of achieving the best-known performance when tested on the data published in the BATtle of the Attack Detection ALgorithms (BATADAL) competition (http://www.batadal.net). Copyright © 2018. Published by Elsevier Ltd.

Top