Use of an automatic resistivity system for detecting abandoned mine workings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, W.R.; Burdick, R.G.
1983-01-01
A high-resolution earth resistivity system has been designed and constructed for use as a means of detecting abandoned coal mine workings. The automatic pole-dipole earth resistivity technique has already been applied to the detection of subsurface voids for military applications. The hardware and software of the system are described, together with applications for surveying and mapping abandoned coal mine workings. Field tests are presented to illustrate the detection of both air-filled and water-filled mine workings.
An analysis of student privacy rights in the use of plagiarism detection systems.
Brinkman, Bo
2013-09-01
Plagiarism detection services are a powerful tool to help encourage academic integrity. Adoption of these services has proven to be controversial due to ethical concerns about students' rights. Central to these concerns is the fact that most such systems make permanent archives of student work to be re-used in plagiarism detection. This computerization and automation of plagiarism detection is changing the relationships of trust and responsibility between students, educators, educational institutions, and private corporations. Educators must respect student privacy rights when implementing such systems. Student work is personal information, not the property of the educator or institution. The student has the right to be fully informed about how plagiarism detection works, and the fact that their work will be permanently archived as a result. Furthermore, plagiarism detection should not be used if the permanent archiving of a student's work may expose him or her to future harm.
Use of an automatic earth resistivity system for detection of abandoned mine workings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, W.R.; Burdick, R.
1982-04-01
Under the sponsorship of the US Bureau of Mines, a surface-operated automatic high resolution earth resistivity system and associated computer data processing techniques have been designed and constructed for use as a potential means of detecting abandoned coal mine workings. The hardware and software aspects of the new system are described together with applications of the method to the survey and mapping of abandoned mine workings.
Arc Fault Detection & Localization by Electromagnetic-Acoustic Remote Sensing
NASA Astrophysics Data System (ADS)
Vasile, C.; Ioana, C.
2017-05-01
Electrical arc faults that occur in photovoltaic systems represent a danger due to their economic impact on production and distribution. In this paper we propose a complete system, with focus on the methodology, that enables the detection and localization of the arc fault, by the use of an electromagnetic-acoustic sensing system. By exploiting the multiple emissions of the arc fault, in conjunction with a real-time detection signal processing method, we ensure accurate detection and localization. In its final form, this present work will present in greater detail the complete system, the methods employed, results and performance, alongside further works that will be carried on.
An immuno-biosensor system based on quartz crystal microbalance for avian influenza virus detection
NASA Astrophysics Data System (ADS)
Liu, Shengping; Chen, Guoming; Zhou, Qi; Wei, Yunlong
2007-12-01
For the quick detection of Avian Influenza Virus (AIV), a biosensor based on Quartz Crystal Microbalance (QCM) was fabricated according to the specific bonding principle between antibody and antigen. Staphylococcal Protein A (SPA) was extracted from Staphylococcus and purified. Then SPA was coated on the surface of QCM for immobilizing AIV monoclonal antibodies. The use of AIV monoclonal antibody could enhance the specificity of the immuno-biosensor. A multi-channel piezoelectricity detection system for the immuno-biosensor was developed. The system can work for the quick detection of AIV antigen in the case of the entirely aqueous status owe to one special oscillating circuit designed in this work. The optimum conditions of SPA coating and AIV monoclonal antibody immobilization were investigated utilizing the multi-channel detection system. The preliminary application of the immuno-biosensor system for detection of AIV was evaluated. Results indicate that the immuno-biosensor system can detect the AIV antigens with a linear range of 3-200ng/ml. The system can accomplish the detection of AIV antigens around 40 minutes.
A study on obstacle detection method of the frontal view using a camera on highway
NASA Astrophysics Data System (ADS)
Nguyen, Van-Quang; Park, Jeonghyeon; Seo, Changjun; Kim, Heungseob; Boo, Kwangsuck
2018-03-01
In this work, we introduce an approach to detect vehicles for driver assistance, or warning system. For driver assistance system, it must detect both lanes (left and right side lane), and discover vehicles ahead of the test vehicle. Therefore, in this study, we use a camera, it is installed on the windscreen of the test vehicle. Images from the camera are used to detect three lanes, and detect multiple vehicles. In lane detection, line detection and vanishing point estimation are used. For the vehicle detection, we combine the horizontal and vertical edge detection, the horizontal edge is used to detect the vehicle candidates, and then the vertical edge detection is used to verify the vehicle candidates. The proposed algorithm works with of 480 × 640 image frame resolution. The system was tested on the highway in Korea.
NASA Astrophysics Data System (ADS)
Lin, Y. H.; Bai, R.; Qian, Z. H.
2018-03-01
Vehicle detection systems are applied to obtain real-time information of vehicles, realize traffic control and reduce traffic pressure. This paper reviews geomagnetic sensors as well as the research status of the vehicle detection system. Presented in the paper are also our work on the vehicle detection system, including detection algorithms and experimental results. It is found that the GMR based vehicle detection system has a detection accuracy up to 98% with a high potential for application in the road traffic control area.
The Use of Electronic Book Theft Detection Systems in Libraries.
ERIC Educational Resources Information Center
Witt, Thomas B.
1996-01-01
Although electronic book theft detection systems can be a deterrent to library material theft, no electronic system is foolproof, and a total security program is necessary to ensure collection security. Describes how book theft detection systems work, their effectiveness, and the problems inherent in technology. A total security program considers…
Study of gamma detection capabilities of the REWARD mobile spectroscopic system
NASA Astrophysics Data System (ADS)
Balbuena, J. P.; Baptista, M.; Barros, S.; Dambacher, M.; Disch, C.; Fiederle, M.; Kuehn, S.; Parzefall, U.
2017-07-01
REWARD is a novel mobile spectroscopic radiation detector system for Homeland Security applications. The system integrates gamma and neutron detection equipped with wireless communication. A comprehensive simulation study on its gamma detection capabilities in different radioactive scenarios is presented in this work. The gamma detection unit consists of a precise energy resolution system based on two stacked (Cd,Zn)Te sensors working in coincidence sum mode. The volume of each of these CZT sensors is 1 cm3. The investigated energy windows used to determine the detection capabilities of the detector correspond to the gamma emissions from 137Cs and 60Co radioactive sources (662 keV and 1173/1333 keV respectively). Monte Carlo and Technology Computer-Aided Design (TCAD) simulations are combined to determine its sensing capabilities for different radiation sources and estimate the limits of detection of the sensing unit as a function of source activity for several shielding materials.
Management system of occupational diseases in Korea: statistics, report and monitoring system.
Rhee, Kyung Yong; Choe, Seong Weon
2010-12-01
The management system of occupational diseases in Korea can be assessed from the perspective of a surveillance system. Workers' compensation insurance reports are used to produce official statistics on occupational diseases in Korea. National working conditions surveys are used to monitor the magnitude of work-related symptoms and signs in the labor force. A health examination program was introduced to detect occupational diseases through both selective and mass screening programs. The Working Environment Measurement Institution assesses workers' exposure to hazards in the workplace. Government regulates that the employer should do health examinations and working conditions measurement through contracted private agencies and following the Occupational Safety and Health Act. It is hoped that these institutions may be able to effectively detect and monitor occupational diseases and hazards in the workplace. In view of this, the occupational management system in Korea is well designed, except for the national survey system. In the future, national surveys for detection of hazards and ill-health outcomes in workers should be developed. The existing surveillance system for occupational disease can be improved by providing more refined information through statistical analysis of surveillance data.
An automatically tuning intrusion detection system.
Yu, Zhenwei; Tsai, Jeffrey J P; Weigert, Thomas
2007-04-01
An intrusion detection system (IDS) is a security layer used to detect ongoing intrusive activities in information systems. Traditionally, intrusion detection relies on extensive knowledge of security experts, in particular, on their familiarity with the computer system to be protected. To reduce this dependence, various data-mining and machine learning techniques have been deployed for intrusion detection. An IDS is usually working in a dynamically changing environment, which forces continuous tuning of the intrusion detection model, in order to maintain sufficient performance. The manual tuning process required by current systems depends on the system operators in working out the tuning solution and in integrating it into the detection model. In this paper, an automatically tuning IDS (ATIDS) is presented. The proposed system will automatically tune the detection model on-the-fly according to the feedback provided by the system operator when false predictions are encountered. The system is evaluated using the KDDCup'99 intrusion detection dataset. Experimental results show that the system achieves up to 35% improvement in terms of misclassification cost when compared with a system lacking the tuning feature. If only 10% false predictions are used to tune the model, the system still achieves about 30% improvement. Moreover, when tuning is not delayed too long, the system can achieve about 20% improvement, with only 1.3% of the false predictions used to tune the model. The results of the experiments show that a practical system can be built based on ATIDS: system operators can focus on verification of predictions with low confidence, as only those predictions determined to be false will be used to tune the detection model.
Application of Probability of Crack Detection to Aircraft Systems Reliability.
DOT National Transportation Integrated Search
1993-08-31
This report describes three tasks related to probability of crack detection (POD) and aircraft systems reliablity. All three consider previous work in which crack growth simulations and crack detection data in the Service Difficulty Report (SDR) data...
Real-Time Event Detection for Monitoring Natural and Source ...
The use of event detection systems in finished drinking water systems is increasing in order to monitor water quality in both operational and security contexts. Recent incidents involving harmful algal blooms and chemical spills into watersheds have increased interest in monitoring source water quality prior to treatment. This work highlights the use of the CANARY event detection software in detecting suspected illicit events in an actively monitored watershed in South Carolina. CANARY is an open source event detection software that was developed by USEPA and Sandia National Laboratories. The software works with any type of sensor, utilizes multiple detection algorithms and approaches, and can incorporate operational information as needed. Monitoring has been underway for several years to detect events related to intentional or unintentional dumping of materials into the monitored watershed. This work evaluates the feasibility of using CANARY to enhance the detection of events in this watershed. This presentation will describe the real-time monitoring approach used in this watershed, the selection of CANARY configuration parameters that optimize detection for this watershed and monitoring application, and the performance of CANARY during the time frame analyzed. Further, this work will highlight how rainfall events impacted analysis, and the innovative application of CANARY taken in order to effectively detect the suspected illicit events. This presentation d
Generalized Detectability for Discrete Event Systems
Shu, Shaolong; Lin, Feng
2011-01-01
In our previous work, we investigated detectability of discrete event systems, which is defined as the ability to determine the current and subsequent states of a system based on observation. For different applications, we defined four types of detectabilities: (weak) detectability, strong detectability, (weak) periodic detectability, and strong periodic detectability. In this paper, we extend our results in three aspects. (1) We extend detectability from deterministic systems to nondeterministic systems. Such a generalization is necessary because there are many systems that need to be modeled as nondeterministic discrete event systems. (2) We develop polynomial algorithms to check strong detectability. The previous algorithms are based on observer whose construction is of exponential complexity, while the new algorithms are based on a new automaton called detector. (3) We extend detectability to D-detectability. While detectability requires determining the exact state of a system, D-detectability relaxes this requirement by asking only to distinguish certain pairs of states. With these extensions, the theory on detectability of discrete event systems becomes more applicable in solving many practical problems. PMID:21691432
Exploiting semantics for sensor re-calibration in event detection systems
NASA Astrophysics Data System (ADS)
Vaisenberg, Ronen; Ji, Shengyue; Hore, Bijit; Mehrotra, Sharad; Venkatasubramanian, Nalini
2008-01-01
Event detection from a video stream is becoming an important and challenging task in surveillance and sentient systems. While computer vision has been extensively studied to solve different kinds of detection problems over time, it is still a hard problem and even in a controlled environment only simple events can be detected with a high degree of accuracy. Instead of struggling to improve event detection using image processing only, we bring in semantics to direct traditional image processing. Semantics are the underlying facts that hide beneath video frames, which can not be "seen" directly by image processing. In this work we demonstrate that time sequence semantics can be exploited to guide unsupervised re-calibration of the event detection system. We present an instantiation of our ideas by using an appliance as an example--Coffee Pot level detection based on video data--to show that semantics can guide the re-calibration of the detection model. This work exploits time sequence semantics to detect when re-calibration is required to automatically relearn a new detection model for the newly evolved system state and to resume monitoring with a higher rate of accuracy.
Management System of Occupational Diseases in Korea: Statistics, Report and Monitoring System
Choe, Seong Weon
2010-01-01
The management system of occupational diseases in Korea can be assessed from the perspective of a surveillance system. Workers' compensation insurance reports are used to produce official statistics on occupational diseases in Korea. National working conditions surveys are used to monitor the magnitude of work-related symptoms and signs in the labor force. A health examination program was introduced to detect occupational diseases through both selective and mass screening programs. The Working Environment Measurement Institution assesses workers' exposure to hazards in the workplace. Government regulates that the employer should do health examinations and working conditions measurement through contracted private agencies and following the Occupational Safety and Health Act. It is hoped that these institutions may be able to effectively detect and monitor occupational diseases and hazards in the workplace. In view of this, the occupational management system in Korea is well designed, except for the national survey system. In the future, national surveys for detection of hazards and ill-health outcomes in workers should be developed. The existing surveillance system for occupational disease can be improved by providing more refined information through statistical analysis of surveillance data. PMID:21258584
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, W.R.; Campbell, T.M.; Sturdivant, V.R.
1980-09-26
Shallow underground voids resulting from early coal mining and other resource recovery activities over the past several decades are now being recognized as a significant cause of ground subsidence problems in developing urban areas. Uncertain knowledge of abandoned coal mines also imposes potential hazards in coal excavation operations since water inundation or the release of methane gas is a principal hazard when mine excavation operations break into an abandoned mine. US Army requirements for an effective method for detecting and mapping subversive abandoned tunnels have resulted in a surface-operated automatic earth resistivity survey system with a digital computer data processingmore » system. Field tests aimed at demonstrating the system performance resulted in successful detection of tunnels having depth-to-diameter ratios up to 15 to 1. Under the sponsorship of the Bureau of Mines, a similar system was designed and constructed for use in the detection of coal mine workings. This report discusses the hardware and software aspects of the system and the application of the high-resolution earth resistivity method to the survey and mapping of abandoned coal mine workings. In the field tests reported, the targets of interest were both air- and water-filled workings.« less
Capturing and Displaying Uncertainty in the Common Tactical/Environmental Picture
2003-09-30
multistatic active detection, and incorporated this characterization into a Bayesian track - before - detect system called, the Likelihood Ratio Tracker (LRT...prediction uncertainty in a track before detect system for multistatic active sonar. The approach has worked well on limited simulation data. IMPACT
Challenges, issues and trends in fall detection systems
2013-01-01
Since falls are a major public health problem among older people, the number of systems aimed at detecting them has increased dramatically over recent years. This work presents an extensive literature review of fall detection systems, including comparisons among various kinds of studies. It aims to serve as a reference for both clinicians and biomedical engineers planning or conducting field investigations. Challenges, issues and trends in fall detection have been identified after the reviewing work. The number of studies using context-aware techniques is still increasing but there is a new trend towards the integration of fall detection into smartphones as well as the use of machine learning methods in the detection algorithm. We have also identified challenges regarding performance under real-life conditions, usability, and user acceptance as well as issues related to power consumption, real-time operations, sensing limitations, privacy and record of real-life falls. PMID:23829390
Woodman, Geoffrey F.; Vogel, Edward K.; Luck, Steven J.
2012-01-01
Many recent studies of visual working memory have used change-detection tasks in which subjects view sequential displays and are asked to report whether they are identical or if one object has changed. A key question is whether the memory system used to perform this task is sufficiently flexible to detect changes in object identity independent of spatial transformations, but previous research has yielded contradictory results. To address this issue, the present study compared standard change-detection tasks with tasks in which the objects varied in size or position between successive arrays. Performance was nearly identical across the standard and transformed tasks unless the task implicitly encouraged spatial encoding. These results resolve the discrepancies in prior studies and demonstrate that the visual working memory system can detect changes in object identity across spatial transformations. PMID:22287933
Research on IPv6 intrusion detection system Snort-based
NASA Astrophysics Data System (ADS)
Shen, Zihao; Wang, Hui
2010-07-01
This paper introduces the common intrusion detection technologies, discusses the work flow of Snort intrusion detection system, and analyzes IPv6 data packet encapsulation and protocol decoding technology. We propose the expanding Snort architecture to support IPv6 intrusion detection in accordance with CIDF standard combined with protocol analysis technology and pattern matching technology, and present its composition. The research indicates that the expanding Snort system can effectively detect various intrusion attacks; it is high in detection efficiency and detection accuracy and reduces false alarm and omission report, which effectively solves the problem of IPv6 intrusion detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan Hruska
Currently, small Unmanned Aerial Vehicles (UAVs) are primarily used for capturing and down-linking real-time video. To date, their role as a low-cost airborne platform for capturing high-resolution, georeferenced still imagery has not been fully utilized. On-going work within the Unmanned Vehicle Systems Program at the Idaho National Laboratory (INL) is attempting to exploit this small UAV-acquired, still imagery potential. Initially, a UAV-based still imagery work flow model was developed that includes initial UAV mission planning, sensor selection, UAV/sensor integration, and imagery collection, processing, and analysis. Components to support each stage of the work flow are also being developed. Critical tomore » use of acquired still imagery is the ability to detect changes between images of the same area over time. To enhance the analysts’ change detection ability, a UAV-specific, GIS-based change detection system called SADI or System for Analyzing Differences in Imagery is under development. This paper will discuss the associated challenges and approaches to collecting still imagery with small UAVs. Additionally, specific components of the developed work flow system will be described and graphically illustrated using varied examples of small UAV-acquired still imagery.« less
NASA Technical Reports Server (NTRS)
Davis, Robert N.; Polites, Michael E.; Trevino, Luis C.
2004-01-01
This paper details a novel scheme for autonomous component health management (ACHM) with failed actuator detection and failed sensor detection, identification, and avoidance. This new scheme has features that far exceed the performance of systems with triple-redundant sensing and voting, yet requires fewer sensors and could be applied to any system with redundant sensing. Relevant background to the ACHM scheme is provided, and the simulation results for the application of that scheme to a single-axis spacecraft attitude control system with a 3rd order plant and dual-redundant measurement of system states are presented. ACHM fulfills key functions needed by an integrated vehicle health monitoring (IVHM) system. It is: autonomous; adaptive; works in realtime; provides optimal state estimation; identifies failed components; avoids failed components; reconfigures for multiple failures; reconfigures for intermittent failures; works for hard-over, soft, and zero-output failures; and works for both open- and closed-loop systems. The ACHM scheme combines a prefilter that generates preliminary state estimates, detects and identifies failed sensors and actuators, and avoids the use of failed sensors in state estimation with a fixed-gain Kalman filter that generates optimal state estimates and provides model-based state estimates that comprise an integral part of the failure detection logic. The results show that ACHM successfully isolates multiple persistent and intermittent hard-over, soft, and zero-output failures. It is now ready to be tested on a computer model of an actual system.
Deep Learning-Based Data Forgery Detection in Automatic Generation Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fengli; Li, Qinghua
Automatic Generation Control (AGC) is a key control system in the power grid. It is used to calculate the Area Control Error (ACE) based on frequency and tie-line power flow between balancing areas, and then adjust power generation to maintain the power system frequency in an acceptable range. However, attackers might inject malicious frequency or tie-line power flow measurements to mislead AGC to do false generation correction which will harm the power grid operation. Such attacks are hard to be detected since they do not violate physical power system models. In this work, we propose algorithms based on Neural Networkmore » and Fourier Transform to detect data forgery attacks in AGC. Different from the few previous work that rely on accurate load prediction to detect data forgery, our solution only uses the ACE data already available in existing AGC systems. In particular, our solution learns the normal patterns of ACE time series and detects abnormal patterns caused by artificial attacks. Evaluations on the real ACE dataset show that our methods have high detection accuracy.« less
NASA Astrophysics Data System (ADS)
Hou, Ligang; Luo, Rengui; Wu, Wuchen
2006-11-01
This paper forwards a low power grating detection chip (EYAS) on length and angle precision measurement. Traditional grating detection method, such as resister chain divide or phase locked divide circuit are difficult to design and tune. The need of an additional CPU for control and display makes these methods' implementation more complex and costly. Traditional methods also suffer low sampling speed for the complex divide circuit scheme and CPU software compensation. EYAS is an application specific integrated circuit (ASIC). It integrates micro controller unit (MCU), power management unit (PMU), LCD controller, Keyboard interface, grating detection unit and other peripherals. Working at 10MHz, EYAS can afford 5MHz internal sampling rate and can handle 1.25MHz orthogonal signal from grating sensor. With a simple control interface by keyboard, sensor parameter, data processing and system working mode can be configured. Two LCD controllers can adapt to dot array LCD or segment bit LCD, which comprised output interface. PMU alters system between working and standby mode by clock gating technique to save power. EYAS in test mode (system action are more frequently than real world use) consumes 0.9mw, while 0.2mw in real world use. EYAS achieved the whole grating detection system function, high-speed orthogonal signal handling in a single chip with very low power consumption.
Intrusion Detection in Control Systems using Sequence Characteristics
NASA Astrophysics Data System (ADS)
Kiuchi, Mai; Onoda, Takashi
Intrusion detection is considered effective in control systems. Sequences of the control application behavior observed in the communication, such as the order of the control device to be controlled, are important in control systems. However, most intrusion detection systems do not effectively reflect sequences in the application layer into the detection rules. In our previous work, we considered utilizing sequences for intrusion detection in control systems, and demonstrated the usefulness of sequences for intrusion detection. However, manually writing the detection rules for a large system can be difficult, so using machine learning methods becomes feasible. Also, in the case of control systems, there have been very few observed cyber attacks, so we have very little knowledge of the attack data that should be used to train the intrusion detection system. In this paper, we use an approach that combines CRF (Conditional Random Field) considering the sequence of the system, thus able to reflect the characteristics of control system sequences into the intrusion detection system, and also does not need the knowledge of attack data to construct the detection rules.
NASA Astrophysics Data System (ADS)
Scholles, M.; Kroker, L.; Vogel, U.; Krüger, J.; Walczak, R.; Ruano-Lopez, J.
2010-02-01
This contribution describes first results concerning the overall and especially optical system design of microfluidic skin patches for drug detection based on fluorescence analysis of sweat samples. This work has been carried out within the European project LABONFOIL which aims to develop low-cost lab-on-chip systems for four different applications, one of them for the detection of cocaine abuse by professional drivers. To date work has focused on the integrated design of the skin patch itself including methods for sweat collection as well as studies concerning the feasibility of OLEDs for optical excitation of the fluorescence signal.
2017-01-01
Singular Perturbations represent an advantageous theory to deal with systems characterized by a two-time scale separation, such as the longitudinal dynamics of aircraft which are called phugoid and short period. In this work, the combination of the NonLinear Geometric Approach and the Singular Perturbations leads to an innovative Fault Detection and Isolation system dedicated to the isolation of faults affecting the air data system of a general aviation aircraft. The isolation capabilities, obtained by means of the approach proposed in this work, allow for the solution of a fault isolation problem otherwise not solvable by means of standard geometric techniques. Extensive Monte-Carlo simulations, exploiting a high fidelity aircraft simulator, show the effectiveness of the proposed Fault Detection and Isolation system. PMID:28946673
On-board fault management for autonomous spacecraft
NASA Technical Reports Server (NTRS)
Fesq, Lorraine M.; Stephan, Amy; Doyle, Susan C.; Martin, Eric; Sellers, Suzanne
1991-01-01
The dynamic nature of the Cargo Transfer Vehicle's (CTV) mission and the high level of autonomy required mandate a complete fault management system capable of operating under uncertain conditions. Such a fault management system must take into account the current mission phase and the environment (including the target vehicle), as well as the CTV's state of health. This level of capability is beyond the scope of current on-board fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems that can meet the needs of spacecraft that have long-range autonomy requirements. We have implemented a model-based approach to fault detection and isolation that does not require explicit characterization of failures prior to launch. It is thus able to detect failures that were not considered in the failure and effects analysis. We have applied this technique to several different subsystems and tested our approach against both simulations and an electrical power system hardware testbed. We present findings from simulation and hardware tests which demonstrate the ability of our model-based system to detect and isolate failures, and describe our work in porting the Ada version of this system to a flight-qualified processor. We also discuss current research aimed at expanding our system to monitor the entire spacecraft.
DOT National Transportation Integrated Search
2013-10-01
In this work, a previously-developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, a...
DOT National Transportation Integrated Search
2013-10-01
In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, D; Dyer, B; Kumaran Nair, C
Purpose: The Integral Quality Monitor (IQM), developed by iRT Systems GmbH (Koblenz, Germany) is a large-area, linac-mounted ion chamber used to monitor photon fluence during patient treatment. Our previous work evaluated the change of the ion chamber’s response to deviations from static 1×1 cm2 and 10×10 cm2 photon beams and other characteristics integral to use in external beam detection. The aim of this work is to simulate two external beam radiation delivery errors, quantify the detection of simulated errors and evaluate the reduction in patient harm resulting from detection. Methods: Two well documented radiation oncology delivery errors were selected formore » simulation. The first error was recreated by modifying a wedged whole breast treatment, removing the physical wedge and calculating the planned dose with Pinnacle TPS (Philips Radiation Oncology Systems, Fitchburg, WI). The second error was recreated by modifying a static-gantry IMRT pharyngeal tonsil plan to be delivered in 3 unmodulated fractions. A radiation oncologist evaluated the dose for simulated errors and predicted morbidity and mortality commiserate with the original reported toxicity, indicating that reported errors were approximately simulated. The ion chamber signal of unmodified treatments was compared to the simulated error signal and evaluated in Pinnacle TPS again with radiation oncologist prediction of simulated patient harm. Results: Previous work established that transmission detector system measurements are stable within 0.5% standard deviation (SD). Errors causing signal change greater than 20 SD (10%) were considered detected. The whole breast and pharyngeal tonsil IMRT simulated error increased signal by 215% and 969%, respectively, indicating error detection after the first fraction and IMRT segment, respectively. Conclusion: The transmission detector system demonstrated utility in detecting clinically significant errors and reducing patient toxicity/harm in simulated external beam delivery. Future work will evaluate detection of other smaller magnitude delivery errors.« less
Lin, Po-Han; Luck, Steven J.
2012-01-01
The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task – in which the to-be-remembered information consists of simple, briefly presented features – is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference. PMID:22403556
Lin, Po-Han; Luck, Steven J
2012-01-01
The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task - in which the to-be-remembered information consists of simple, briefly presented features - is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference.
Kumar Meher, Alok; Labhsetwar, Nitin; Bansiwal, Amit
2018-02-01
In the present work a fast, reliable and safe Ion Exchange Chromatography-Pulsed Amperometry Detection (IC-PAD) method for direct determination of free cyanide in drinking water has been reported. To the best of our knowledge for the first time we are reporting the application of Gold working electrode for detection of free cyanide in a chromatography system. The system shows a wide linear range up to 8000µg/L. The electrode was found to have improved sensitivity and selectivity in the presence of interfering ions. The detection limit of the system was calculated to be 2µg/L. Long term evaluation of the electrode was found to be stable. Reproducible results were obtained from analysis of drinking water samples with recoveries of 98.3-101.2% and Relative Standard Deviations (RSD) of <2%. This study proves the potential application of the newly developed method for the analysis of free cyanide in drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ruiz-Cárcel, C.; Jaramillo, V. H.; Mba, D.; Ottewill, J. R.; Cao, Y.
2016-01-01
The detection and diagnosis of faults in industrial processes is a very active field of research due to the reduction in maintenance costs achieved by the implementation of process monitoring algorithms such as Principal Component Analysis, Partial Least Squares or more recently Canonical Variate Analysis (CVA). Typically the condition of rotating machinery is monitored separately using vibration analysis or other specific techniques. Conventional vibration-based condition monitoring techniques are based on the tracking of key features observed in the measured signal. Typically steady-state loading conditions are required to ensure consistency between measurements. In this paper, a technique based on merging process and vibration data is proposed with the objective of improving the detection of mechanical faults in industrial systems working under variable operating conditions. The capabilities of CVA for detection and diagnosis of faults were tested using experimental data acquired from a compressor test rig where different process faults were introduced. Results suggest that the combination of process and vibration data can effectively improve the detectability of mechanical faults in systems working under variable operating conditions.
Multi-Level Modeling of Complex Socio-Technical Systems - Phase 1
2013-06-06
is to detect anomalous organizational outcomes, diagnose the causes of these anomalies , and decide upon appropriate compensation schemes. All of...monitor process outcomes. The purpose of this monitoring is to detect anomalous process outcomes, diagnose the causes of these anomalies , and decide upon...monitor work outcomes in terms of performance. The purpose of this monitoring is to detect anomalous work outcomes, diagnose the causes of these anomalies
A system for distributed intrusion detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snapp, S.R.; Brentano, J.; Dias, G.V.
1991-01-01
The study of providing security in computer networks is a rapidly growing area of interest because the network is the medium over which most attacks or intrusions on computer systems are launched. One approach to solving this problem is the intrusion-detection concept, whose basic premise is that not only abandoning the existing and huge infrastructure of possibly-insecure computer and network systems is impossible, but also replacing them by totally-secure systems may not be feasible or cost effective. Previous work on intrusion-detection systems were performed on stand-alone hosts and on a broadcast local area network (LAN) environment. The focus of ourmore » present research is to extend our network intrusion-detection concept from the LAN environment to arbitarily wider areas with the network topology being arbitrary as well. The generalized distributed environment is heterogeneous, i.e., the network nodes can be hosts or servers from different vendors, or some of them could be LAN managers, like our previous work, a network security monitor (NSM), as well. The proposed architecture for this distributed intrusion-detection system consists of the following components: a host manager in each host; a LAN manager for monitoring each LAN in the system; and a central manager which is placed at a single secure location and which receives reports from various host and LAN managers to process these reports, correlate them, and detect intrusions. 11 refs., 2 figs.« less
Real-time stereo vision-based lane detection system
NASA Astrophysics Data System (ADS)
Fan, Rui; Dahnoun, Naim
2018-07-01
The detection of multiple curved lane markings on a non-flat road surface is still a challenging task for vehicular systems. To make an improvement, depth information can be used to enhance the robustness of the lane detection systems. In this paper, a proposed lane detection system is developed from our previous work where the estimation of the dense vanishing point is further improved using the disparity information. However, the outliers in the least squares fitting severely affect the accuracy when estimating the vanishing point. Therefore, in this paper we use random sample consensus to update the parameters of the road model iteratively until the percentage of the inliers exceeds our pre-set threshold. This significantly helps the system to overcome some suddenly changing conditions. Furthermore, we propose a novel lane position validation approach which computes the energy of each possible solution and selects all satisfying lane positions for visualisation. The proposed system is implemented on a heterogeneous system which consists of an Intel Core i7-4720HQ CPU and an NVIDIA GTX 970M GPU. A processing speed of 143 fps has been achieved, which is over 38 times faster than our previous work. Moreover, in order to evaluate the detection precision, we tested 2495 frames including 5361 lanes. It is shown that the overall successful detection rate is increased from 98.7% to 99.5%.
Research on the attitude detection technology of the tetrahedron robot
NASA Astrophysics Data System (ADS)
Gong, Hao; Chen, Keshan; Ren, Wenqiang; Cai, Xin
2017-10-01
The traditional attitude detection technology can't tackle the problem of attitude detection of the polyhedral robot. Thus we propose a novel algorithm of multi-sensor data fusion which is based on Kalman filter. In the algorithm a tetrahedron robot is investigated. We devise an attitude detection system for the polyhedral robot and conduct the verification of data fusion algorithm. It turns out that the minimal attitude detection system we devise could capture attitudes of the tetrahedral robot in different working conditions. Thus the Kinematics model we establish for the tetrahedron robot is correct and the feasibility of the attitude detection system is proven.
A high-throughput method for GMO multi-detection using a microfluidic dynamic array.
Brod, Fábio Cristiano Angonesi; van Dijk, Jeroen P; Voorhuijzen, Marleen M; Dinon, Andréia Zilio; Guimarães, Luis Henrique S; Scholtens, Ingrid M J; Arisi, Ana Carolina Maisonnave; Kok, Esther J
2014-02-01
The ever-increasing production of genetically modified crops generates a demand for high-throughput DNA-based methods for the enforcement of genetically modified organisms (GMO) labelling requirements. The application of standard real-time PCR will become increasingly costly with the growth of the number of GMOs that is potentially present in an individual sample. The present work presents the results of an innovative approach in genetically modified crops analysis by DNA based methods, which is the use of a microfluidic dynamic array as a high throughput multi-detection system. In order to evaluate the system, six test samples with an increasing degree of complexity were prepared, preamplified and subsequently analysed in the Fluidigm system. Twenty-eight assays targeting different DNA elements, GM events and species-specific reference genes were used in the experiment. The large majority of the assays tested presented expected results. The power of low level detection was assessed and elements present at concentrations as low as 0.06 % were successfully detected. The approach proposed in this work presents the Fluidigm system as a suitable and promising platform for GMO multi-detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idris, Nasrullah, E-mail: nasrullah.idris@unsyiah.ac.id; Ramli, Muliadi; Hedwig, Rinda
This work is intended to asses the capability of LIBS for the detection of the tsunami sediment contamination in soil. LIBS apparatus used in this work consist of a laser system and an optical multichannel analyzer (OMA) system. The soil sample was collected from in Banda Aceh City, Aceh, Indonesia, the most affected region by the giant Indian Ocean tsunami 2004. The laser beam was focused onto surface of the soil pellet using a focusing lens to produce luminous plasma. The experiment was conducted under air as surrounding gas at 1 atmosphere. The emission spectral lines from the plasma weremore » detected by the OMA system. It was found that metal including heavy metals can surely be detected, thus implying the potent of LIBS technique as a fast screening tools of tsunami sediment contamination.« less
Sensor fault detection and isolation system for a condensation process.
Castro, M A López; Escobar, R F; Torres, L; Aguilar, J F Gómez; Hernández, J A; Olivares-Peregrino, V H
2016-11-01
This article presents the design of a sensor Fault Detection and Isolation (FDI) system for a condensation process based on a nonlinear model. The condenser is modeled by dynamic and thermodynamic equations. For this work, the dynamic equations are described by three pairs of differential equations which represent the energy balance between the fluids. The thermodynamic equations consist in algebraic heat transfer equations and empirical equations, that allow for the estimation of heat transfer coefficients. The FDI system consists of a bank of two nonlinear high-gain observers, in order to detect, estimate and to isolate the fault in any of both outlet temperature sensors. The main contributions of this work were the experimental validation of the condenser nonlinear model and the FDI system. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA UAS Integration into the NAS Project: Human Systems Integration
NASA Technical Reports Server (NTRS)
Shively, Jay
2016-01-01
This presentation provides an overview of the work the Human Systems Integration (HSI) sub-project has done on detect and avoid (DAA) displays while working on the UAS (Unmanned Aircraft System) Integration into the NAS project. The most recent simulation on DAA interoperability with Traffic Collision Avoidance System (TCAS) is discussed in the most detail. The relationship of the work to the larger UAS community and next steps are also detailed.
Non-intrusive methods of characterizing vehicles on the highway.
DOT National Transportation Integrated Search
2003-06-01
Over the past year we have worked on the development of a real-time laser-based non-intrusive field-deployable detection system for delineation of moving vehicles. The primary goal of the project is to develop a roadway detection system that can be u...
Eddy current testing for blade edge micro cracks of aircraft engine
NASA Astrophysics Data System (ADS)
Zhang, Wei-min; Xu, Min-dong; Gao, Xuan-yi; Jin, Xin; Qin, Feng
2017-10-01
Based on the problems of low detection efficiency in the micro cracks detection of aircraft engine blades, a differential excitation eddy current testing system was designed and developed. The function and the working principle of the system were described, the problems which contained the manufacture method of simulated cracks, signal generating, signal processing and the signal display method were described. The detection test was carried out by taking a certain model aircraft engine blade with simulated cracks as a tested specimen. The test data was processed by digital low-pass filter in the computer and the crack signals of time domain display and Lissajous figure display were acquired. By comparing the test results, it is verified that Lissajous figure display shows better performance compared to time domain display when the crack angle is small. The test results show that the eddy current testing system designed in this paper is feasible to detect the micro cracks on the aeroengine blade and can effectively improve the detection efficiency of micro cracks in the practical detection work.
Two-wavelength backscattering lidar for stand off detection of aerosols
NASA Astrophysics Data System (ADS)
Mierczyk, Zygmunt; Zygmunt, Marek; Gawlikowski, Andrzej; Gietka, Andrzej; Kaszczuk, Miroslawa; Knysak, Piotr; Mlodzianko, Andrzej; Muzal, Michal; Piotrowski, Wiesław; Wojtanowski, Jacek
2008-10-01
Following article presents LIDAR for stand off detection of aerosols which was constructed in Institute of Optoelectronics in Military University of Technology. LIDAR is a DISC type system (DIfferential SCattering) and is based on analysis of backscattering signal for two wavelengths (λ1 = 1064 nm and λ2 = 532 nm) - the first and the second harmonic of Nd:YAG laser. Optical receiving system is consisted of aspherical mirror lens, two additional mirrors and a system of interference filters. In detection system of LIDAR a silicon avalanche photodiode and two different amplifiers were used. Whole system is mounted on a specialized platform designed for possibility of LIDAR scanning movements. LIDAR is computer controlled. The compiled software enables regulation of the scanning platform work, gain control, and control of data processing and acquisition system. In the article main functional elements of LIDAR are shown and typical parameters of system work and construction are presented. One presented also first results of research with use of LIDAR. The aim of research was to detect and characterize scattering aerosol, both natural and anthropogenic one. For analyses of natural aerosols, cumulus cloud was used. For analyses of anthropogenic aerosols one used three various pyrotechnic mixtures (DM11, M2, M16) which generate smoke of different parameters. All scattering centers were firstly well described and theoretical analyses were conducted. Results of LIDAR research were compared with theoretical analyses and general conclusions concerning correctness of LIDAR work and its application were drawn.
Heartbeat detection system using piezoelectric transducer
NASA Astrophysics Data System (ADS)
Hamonangan, Yosua; Purnamaningsih, Wigajatri
2017-02-01
This paper presents a simple piezoelectric based heartbeat detection system. The signal produced by the piezoelectric will undergo signal conditioning and then converted into digital data by Arduino Nano. Using serial communication, the data will be sent to a computer for display and further analysis. The detection of heartbeat is carried out on three locations; wrist, chest, and diaphragm. From the measurement results, it is shown that the system work best when the piezoelectric is placed on wrist.
Building Intrusion Detection with a Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Wälchli, Markus; Braun, Torsten
This paper addresses the detection and reporting of abnormal building access with a wireless sensor network. A common office room, offering space for two working persons, has been monitored with ten sensor nodes and a base station. The task of the system is to report suspicious office occupation such as office searching by thieves. On the other hand, normal office occupation should not throw alarms. In order to save energy for communication, the system provides all nodes with some adaptive short-term memory. Thus, a set of sensor activation patterns can be temporarily learned. The local memory is implemented as an Adaptive Resonance Theory (ART) neural network. Unknown event patterns detected on sensor node level are reported to the base station, where the system-wide anomaly detection is performed. The anomaly detector is lightweight and completely self-learning. The system can be run autonomously or it could be used as a triggering system to turn on an additional high-resolution system on demand. Our building monitoring system has proven to work reliably in different evaluated scenarios. Communication costs of up to 90% could be saved compared to a threshold-based approach without local memory.
Optimized Vibration Chamber for Landslide Sensory and Alarm System
NASA Astrophysics Data System (ADS)
Ismail, Eliza Sabira Binti; Hadi Habaebi, Mohamed; Daoud, Jamal I.; Rafiqul Islam, Md
2017-11-01
Landslide is one of natural hazard that is not unfamiliar disaster in Malaysia. Malaysia has experienced this disaster many times since 1969. This natural hazard has become a major research concern for Malaysian government when many people were injured badly and even had been killed. Many previous research works published in the open literature aimed at designing a system that could detect landslide in early stage before the landslide becomes catastrophic. This paper presents the early works on a major work-in-progress landslide early warning system for Malaysian environment. The aim of this system is to develop the most efficiently reliable cost-effective system in which slight earth movements are monitored continuously. The challenge this work aims at is to work with a low budget system that produces efficient performance. Hence, the material used is off-the-shelf. Early design optimization results of the vibration sensor used is quite promising detecting the slightest faint tremors, which are amplified using the best vibration chamber available. It is shown that the choice of proper pipe length and diameter dimensions in combination to a gravel to exaggerate the produced higher sensitivity level noise of 5 dB.
Cooperative multisensor system for real-time face detection and tracking in uncontrolled conditions
NASA Astrophysics Data System (ADS)
Marchesotti, Luca; Piva, Stefano; Turolla, Andrea; Minetti, Deborah; Regazzoni, Carlo S.
2005-03-01
The presented work describes an innovative architecture for multi-sensor distributed video surveillance applications. The aim of the system is to track moving objects in outdoor environments with a cooperative strategy exploiting two video cameras. The system also exhibits the capacity of focusing its attention on the faces of detected pedestrians collecting snapshot frames of face images, by segmenting and tracking them over time at different resolution. The system is designed to employ two video cameras in a cooperative client/server structure: the first camera monitors the entire area of interest and detects the moving objects using change detection techniques. The detected objects are tracked over time and their position is indicated on a map representing the monitored area. The objects" coordinates are sent to the server sensor in order to point its zooming optics towards the moving object. The second camera tracks the objects at high resolution. As well as the client camera, this sensor is calibrated and the position of the object detected on the image plane reference system is translated in its coordinates referred to the same area map. In the map common reference system, data fusion techniques are applied to achieve a more precise and robust estimation of the objects" track and to perform face detection and tracking. The work novelties and strength reside in the cooperative multi-sensor approach, in the high resolution long distance tracking and in the automatic collection of biometric data such as a person face clip for recognition purposes.
Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines
Liu, Liansheng; Liu, Datong; Zhang, Yujie; Peng, Yu
2016-01-01
In a complex system, condition monitoring (CM) can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor) to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR). The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA) Ames Research Center and have been used as Prognostics and Health Management (PHM) challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved. PMID:27136561
Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines.
Liu, Liansheng; Liu, Datong; Zhang, Yujie; Peng, Yu
2016-04-29
In a complex system, condition monitoring (CM) can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor) to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR). The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA) Ames Research Center and have been used as Prognostics and Health Management (PHM) challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved.
Position detectors, methods of detecting position, and methods of providing positional detectors
Weinberg, David M.; Harding, L. Dean; Larsen, Eric D.
2002-01-01
Position detectors, welding system position detectors, methods of detecting various positions, and methods of providing position detectors are described. In one embodiment, a welding system positional detector includes a base that is configured to engage and be moved along a curved surface of a welding work piece. At least one position detection apparatus is provided and is connected with the base and configured to measure angular position of the detector relative to a reference vector. In another embodiment, a welding system positional detector includes a weld head and at least one inclinometer mounted on the weld head. The one inclinometer is configured to develop positional data relative to a reference vector and the position of the weld head on a non-planar weldable work piece.
NQR detection of explosive simulants using RF atomic magnetometers
NASA Astrophysics Data System (ADS)
Monti, Mark C.; Alexson, Dimitri A.; Okamitsu, Jeffrey K.
2016-05-01
Nuclear Quadrupole Resonance (NQR) is a highly selective spectroscopic method that can be used to detect and identify a number of chemicals of interest to the defense, national security, and law enforcement community. In the past, there have been several documented attempts to utilize NQR to detect nitrogen bearing explosives using induction sensors to detect the NQR RF signatures. We present here our work on the NQR detection of explosive simulants using optically pumped RF atomic magnetometers. RF atomic magnetometers can provide an order of magnitude (or more) improvement in sensitivity versus induction sensors and can enable mitigation of RF interference, which has classically has been a problem for conventional NQR using induction sensors. We present the theory of operation of optically pumped RF atomic magnetometers along with the result of laboratory work on the detection of explosive simulant material. An outline of ongoing work will also be presented along with a path for a fieldable detection system.
Modeling and research of a space-based spacecraft infrared detection system.
Li, Wenhao; Liu, Zhaohui; Mu, You; Yang, Rui; Zhang, Xing
2017-03-20
When a spacecraft is in orbit, it is almost impossible to check its working condition. Almost all payload would generate waste heat when working, which is usually ejected by a radiator. By observing the radiator, we can catch a glimpse of a spacecraft's inner information. A thorough model of a space-based infrared detection system is analyzed, taking the radiator into account, which, to the best of our knowledge, has seldom been considered. The calculation result shows that infrared radiation reflected by spacecraft is weak compared with the spacecraft's self-radiation in 8-12 μm, and the contrast ratio between the radiator and surrounding area could be the criterion for judging the working condition of a spacecraft. The limit of detection distance is also increased due the higher temperature of the radiator.
Buehler, James W; Hopkins, Richard S; Overhage, J Marc; Sosin, Daniel M; Tong, Van
2004-05-07
The threat of terrorism and high-profile disease outbreaks has drawn attention to public health surveillance systems for early detection of outbreaks. State and local health departments are enhancing existing surveillance systems and developing new systems to better detect outbreaks through public health surveillance. However, information is limited about the usefulness of surveillance systems for outbreak detection or the best ways to support this function. This report supplements previous guidelines for evaluating public health surveillance systems. Use of this framework is intended to improve decision-making regarding the implementation of surveillance for outbreak detection. Use of a standardized evaluation methodology, including description of system design and operation, also will enhance the exchange of information regarding methods to improve early detection of outbreaks. The framework directs particular attention to the measurement of timeliness and validity for outbreak detection. The evaluation framework is designed to support assessment and description of all surveillance approaches to early detection, whether through traditional disease reporting, specialized analytic routines for aberration detection, or surveillance using early indicators of disease outbreaks, such as syndromic surveillance.
Detection and Tracking of Moving Objects with Real-Time Onboard Vision System
NASA Astrophysics Data System (ADS)
Erokhin, D. Y.; Feldman, A. B.; Korepanov, S. E.
2017-05-01
Detection of moving objects in video sequence received from moving video sensor is a one of the most important problem in computer vision. The main purpose of this work is developing set of algorithms, which can detect and track moving objects in real time computer vision system. This set includes three main parts: the algorithm for estimation and compensation of geometric transformations of images, an algorithm for detection of moving objects, an algorithm to tracking of the detected objects and prediction their position. The results can be claimed to create onboard vision systems of aircraft, including those relating to small and unmanned aircraft.
An intelligent detecting system for permeability prediction of MBR.
Han, Honggui; Zhang, Shuo; Qiao, Junfei; Wang, Xiaoshuang
2018-01-01
The membrane bioreactor (MBR) has been widely used to purify wastewater in wastewater treatment plants. However, a critical difficulty of the MBR is membrane fouling. To reduce membrane fouling, in this work, an intelligent detecting system is developed to evaluate the performance of MBR by predicting the membrane permeability. This intelligent detecting system consists of two main parts. First, a soft computing method, based on the partial least squares method and the recurrent fuzzy neural network, is designed to find the nonlinear relations between the membrane permeability and the other variables. Second, a complete new platform connecting the sensors and the software is built, in order to enable the intelligent detecting system to handle complex algorithms. Finally, the simulation and experimental results demonstrate the reliability and effectiveness of the proposed intelligent detecting system, underlying the potential of this system for the online membrane permeability for detecting membrane fouling of MBR.
Capillary Electrophoresis - Optical Detection Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sepaniak, M. J.
2001-08-06
Molecular recognition systems are developed via molecular modeling and synthesis to enhance separation performance in capillary electrophoresis and optical detection methods for capillary electrophoresis. The underpinning theme of our work is the rational design and development of molecular recognition systems in chemical separations and analysis. There have been, however, some subtle and exciting shifts in our research paradigm during this period. Specifically, we have moved from mostly separations research to a good balance between separations and spectroscopic detection for separations. This shift is based on our perception that the pressing research challenges and needs in capillary electrophoresis and electrokinetic chromatographymore » relate to the persistent detection and flow rate reproducibility limitations of these techniques (see page 1 of the accompanying Renewal Application for further discussion). In most of our work molecular recognition reagents are employed to provide selectivity and enhance performance. Also, an emerging trend is the use of these reagents with specially-prepared nano-scale materials. Although not part of our DOE BES-supported work, the modeling and synthesis of new receptors has indirectly supported the development of novel microcantilevers-based MEMS for the sensing of vapor and liquid phase analytes. This fortuitous overlap is briefly covered in this report. Several of the more significant publications that have resulted from our work are appended. To facilitate brevity we refer to these publications liberally in this progress report. Reference is also made to very recent work in the Background and Preliminary Studies Section of the Renewal Application.« less
Chemical-Sensing Cables Detect Potential Threats
NASA Technical Reports Server (NTRS)
2007-01-01
Intelligent Optical Systems Inc. (IOS) completed Phase I and II Small Business Innovation Research (SBIR) contracts with NASA's Langley Research Center to develop moisture- and pH-sensitive sensors to detect corrosion or pre-corrosive conditions, warning of potentially dangerous conditions before significant structural damage occurs. This new type of sensor uses a specially manufactured optical fiber whose entire length is chemically sensitive, changing color in response to contact with its target, and demonstrated to detect potentially corrosive moisture incursions to within 2 cm. After completing the work with NASA, the company received a Defense Advanced Research Projects Agency (DARPA) Phase III SBIR to develop the sensors further for detecting chemical warfare agents, for which they proved just as successful. The company then worked with the U.S. Department of Defense (DoD) to fine tune the sensors for detecting potential threats, such as toxic industrial compounds and nerve agents. In addition to the work with government agencies, Intelligent Optical Systems has sold the chemically sensitive fiber optic cables to major automotive and aerospace companies, who are finding a variety of uses for the devices. Marketed under the brand name Distributed Intrinsic Chemical Agent Sensing and Transmission (DICAST), these unique continuous-cable fiber optic chemical sensors can serve in a variety of applications: Corrosive-condition monitoring, aiding experimentation with nontraditional power sources, as an economical means of detecting chemical release in large facilities, as an inexpensive "alarm" systems to alert the user to a change in the chemical environment anywhere along the cable, or in distance-resolved optical time domain reflectometry systems to provide detailed profiles of chemical concentration versus length.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, Timothy C.; Zigan, James A.
2017-06-20
The disclosure describes a non-condensable gas collection, detection, and removal system for a WHR system that helps to maintain cycle efficiency of the WHR system across the life of an engine system associated with the WHR system. A storage volume is configured to collect non-condensable gas received from the working fluid circuit, and a release valve is configured to selectively release non-condensable gas contained within the storage volume.
NASA Astrophysics Data System (ADS)
Longmore, S. N.; Collins, R. P.; Pfeifer, S.; Fox, S. E.; Mulero-Pazmany, M.; Bezombes, F.; Goodwind, A.; de Juan Ovelar, M.; Knapen, J. H.; Wich, S. A.
2017-02-01
In this paper we describe an unmanned aerial system equipped with a thermal-infrared camera and software pipeline that we have developed to monitor animal populations for conservation purposes. Taking a multi-disciplinary approach to tackle this problem, we use freely available astronomical source detection software and the associated expertise of astronomers, to efficiently and reliably detect humans and animals in aerial thermal-infrared footage. Combining this astronomical detection software with existing machine learning algorithms into a single, automated, end-to-end pipeline, we test the software using aerial video footage taken in a controlled, field-like environment. We demonstrate that the pipeline works reliably and describe how it can be used to estimate the completeness of different observational datasets to objects of a given type as a function of height, observing conditions etc. - a crucial step in converting video footage to scientifically useful information such as the spatial distribution and density of different animal species. Finally, having demonstrated the potential utility of the system, we describe the steps we are taking to adapt the system for work in the field, in particular systematic monitoring of endangered species at National Parks around the world.
Ma, Haoyan; Li, Peng; Song, Gangbing; Wu, Jianxin
2017-01-01
Structural health monitoring (SHM) systems can improve the safety and reliability of structures, reduce maintenance costs, and extend service life. Research on concrete SHMs using piezoelectric-based smart aggregates have reached great achievements. However, the newly developed techniques have not been widely applied in practical engineering, largely due to the wiring problems associated with large-scale structural health monitoring. The cumbersome wiring requires much material and labor work, and more importantly, the associated maintenance work is also very heavy. Targeting a practical large scale concrete crack detection (CCD) application, a smart aggregates-based wireless sensor network system is proposed for the CCD application. The developed CCD system uses Zigbee 802.15.4 protocols, and is able to perform dynamic stress monitoring, structural impact capturing, and internal crack detection. The system has been experimentally validated, and the experimental results demonstrated the effectiveness of the proposed system. This work provides important support for practical CCD applications using wireless smart aggregates. PMID:28714927
Yan, Shi; Ma, Haoyan; Li, Peng; Song, Gangbing; Wu, Jianxin
2017-07-17
Structural health monitoring (SHM) systems can improve the safety and reliability of structures, reduce maintenance costs, and extend service life. Research on concrete SHMs using piezoelectric-based smart aggregates have reached great achievements. However, the newly developed techniques have not been widely applied in practical engineering, largely due to the wiring problems associated with large-scale structural health monitoring. The cumbersome wiring requires much material and labor work, and more importantly, the associated maintenance work is also very heavy. Targeting a practical large scale concrete crack detection (CCD) application, a smart aggregates-based wireless sensor network system is proposed for the CCD application. The developed CCD system uses Zigbee 802.15.4 protocols, and is able to perform dynamic stress monitoring, structural impact capturing, and internal crack detection. The system has been experimentally validated, and the experimental results demonstrated the effectiveness of the proposed system. This work provides important support for practical CCD applications using wireless smart aggregates.
UAS Integration in the NAS: Detect and Avoid
NASA Technical Reports Server (NTRS)
Shively, Jay
2018-01-01
This presentation will cover the structure of the unmanned aircraft systems (UAS) integration into the national airspace system (NAS) project (UAS-NAS Project). The talk also details the motivation of the project to help develop standards for a detect-and-avoid (DAA) system, which is required in order to comply with requirements in manned aviation to see-and-avoid other traffic so as to maintain well clear. The presentation covers accomplishments reached by the project in Phase 1 of the research, and touches on the work to be done in Phase 2. The discussion ends with examples of the display work developed as a result of the Phase 1 research.
Traffic monitoring with distributed smart cameras
NASA Astrophysics Data System (ADS)
Sidla, Oliver; Rosner, Marcin; Ulm, Michael; Schwingshackl, Gert
2012-01-01
The observation and monitoring of traffic with smart visions systems for the purpose of improving traffic safety has a big potential. Today the automated analysis of traffic situations is still in its infancy--the patterns of vehicle motion and pedestrian flow in an urban environment are too complex to be fully captured and interpreted by a vision system. 3In this work we present steps towards a visual monitoring system which is designed to detect potentially dangerous traffic situations around a pedestrian crossing at a street intersection. The camera system is specifically designed to detect incidents in which the interaction of pedestrians and vehicles might develop into safety critical encounters. The proposed system has been field-tested at a real pedestrian crossing in the City of Vienna for the duration of one year. It consists of a cluster of 3 smart cameras, each of which is built from a very compact PC hardware system in a weatherproof housing. Two cameras run vehicle detection and tracking software, one camera runs a pedestrian detection and tracking module based on the HOG dectection principle. All 3 cameras use sparse optical flow computation in a low-resolution video stream in order to estimate the motion path and speed of objects. Geometric calibration of the cameras allows us to estimate the real-world co-ordinates of detected objects and to link the cameras together into one common reference system. This work describes the foundation for all the different object detection modalities (pedestrians, vehicles), and explains the system setup, tis design, and evaluation results which we have achieved so far.
Automatic identification of alpine mass movements based on seismic and infrasound signals
NASA Astrophysics Data System (ADS)
Schimmel, Andreas; Hübl, Johannes
2017-04-01
The automatic detection and identification of alpine mass movements like debris flows, debris floods or landslides gets increasing importance for mitigation measures in the densely populated and intensively used alpine regions. Since this mass movement processes emits characteristically seismic and acoustic waves in the low frequency range this events can be detected and identified based on this signals. So already several approaches for detection and warning systems based on seismic or infrasound signals has been developed. But a combination of both methods, which can increase detection probability and reduce false alarms is currently used very rarely and can serve as a promising method for developing an automatic detection and identification system. So this work presents an approach for a detection and identification system based on a combination of seismic and infrasound sensors, which can detect sediment related mass movements from a remote location unaffected by the process. The system is based on one infrasound sensor and one geophone which are placed co-located and a microcontroller where a specially designed detection algorithm is executed which can detect mass movements in real time directly at the sensor site. Further this work tries to get out more information from the seismic and infrasound spectrum produced by different sediment related mass movements to identify the process type and estimate the magnitude of the event. The system is currently installed and tested on five test sites in Austria, two in Italy and one in Switzerland as well as one in Germany. This high number of test sites is used to get a large database of very different events which will be the basis for a new identification method for alpine mass movements. These tests shows promising results and so this system provides an easy to install and inexpensive approach for a detection and warning system.
Pothole Detection System Using a Black-box Camera.
Jo, Youngtae; Ryu, Seungki
2015-11-19
Aging roads and poor road-maintenance systems result a large number of potholes, whose numbers increase over time. Potholes jeopardize road safety and transportation efficiency. Moreover, they are often a contributing factor to car accidents. To address the problems associated with potholes, the locations and size of potholes must be determined quickly. Sophisticated road-maintenance strategies can be developed using a pothole database, which requires a specific pothole-detection system that can collect pothole information at low cost and over a wide area. However, pothole repair has long relied on manual detection efforts. Recent automatic detection systems, such as those based on vibrations or laser scanning, are insufficient to detect potholes correctly and inexpensively owing to the unstable detection of vibration-based methods and high costs of laser scanning-based methods. Thus, in this paper, we introduce a new pothole-detection system using a commercial black-box camera. The proposed system detects potholes over a wide area and at low cost. We have developed a novel pothole-detection algorithm specifically designed to work with the embedded computing environments of black-box cameras. Experimental results are presented with our proposed system, showing that potholes can be detected accurately in real-time.
Detection of buried magnetic objects by a SQUID gradiometer system
NASA Astrophysics Data System (ADS)
Meyer, Hans-Georg; Hartung, Konrad; Linzen, Sven; Schneider, Michael; Stolz, Ronny; Fried, Wolfgang; Hauspurg, Sebastian
2009-05-01
We present a magnetic detection system based on superconducting gradiometric sensors (SQUID gradiometers). The system provides a unique fast mapping of large areas with a high resolution of the magnetic field gradient as well as the local position. A main part of this work is the localization and classification of magnetic objects in the ground by automatic interpretation of geomagnetic field gradients, measured by the SQUID system. In accordance with specific features the field is decomposed into segments, which allow inferences to possible objects in the ground. The global consideration of object describing properties and their optimization using error minimization methods allows the reconstruction of superimposed features and detection of buried objects. The analysis system of measured geomagnetic fields works fully automatically. By a given surface of area-measured gradients the algorithm determines within numerical limits the absolute position of objects including depth with sub-pixel accuracy and allows an arbitrary position and attitude of sources. Several SQUID gradiometer data sets were used to show the applicability of the analysis algorithm.
System for Anomaly and Failure Detection (SAFD) system development
NASA Technical Reports Server (NTRS)
Oreilly, D.
1992-01-01
This task specified developing the hardware and software necessary to implement the System for Anomaly and Failure Detection (SAFD) algorithm, developed under Technology Test Bed (TTB) Task 21, on the TTB engine stand. This effort involved building two units; one unit to be installed in the Block II Space Shuttle Main Engine (SSME) Hardware Simulation Lab (HSL) at Marshall Space Flight Center (MSFC), and one unit to be installed at the TTB engine stand. Rocketdyne personnel from the HSL performed the task. The SAFD algorithm was developed as an improvement over the current redline system used in the Space Shuttle Main Engine Controller (SSMEC). Simulation tests and execution against previous hot fire tests demonstrated that the SAFD algorithm can detect engine failure as much as tens of seconds before the redline system recognized the failure. Although the current algorithm only operates during steady state conditions (engine not throttling), work is underway to expand the algorithm to work during transient condition.
Securing the User's Work Environment
NASA Technical Reports Server (NTRS)
Cardo, Nicholas P.
2004-01-01
High performance computing at the Numerical Aerospace Simulation Facility at NASA Ames Research Center includes C90's, J90's and Origin 2000's. Not only is it necessary to protect these systems from outside attacks, but also to provide a safe working environment on the systems. With the right tools, security anomalies in the user s work environment can be deleted and corrected. Validating proper ownership of files against user s permissions, will reduce the risk of inadvertent data compromise. The detection of extraneous directories and files hidden amongst user home directories is important for identifying potential compromises. The first runs of these utilities detected over 350,000 files with problems. With periodic scans, automated correction of problems takes only minutes. Tools for detecting these types of problems as well as their development techniques will be discussed with emphasis on consistency, portability and efficiency for both UNICOS and IRIX.
Demonstration of Uncued Optical Surveillance of LEO
NASA Astrophysics Data System (ADS)
Zimmer, P.; Ackermann, M.; McGraw, J.
2014-09-01
J.T. McGraw and Associates, LLC, in collaboration with the University of New Mexico (UNM), has built and is operating two proof-of-concept wide-field imaging systems to test novel techniques for uncued surveillance of LEO. The imaging systems are built from off-the-shelf optics and detectors resulting in a 350mm aperture and a 6 square degree field of view. For streak detection, field of view is of critical importance because the maximum exposure time on the object is limited by its crossing time and measurements of apparent angular motion are better constrained with longer streaks. The current match of the detector to the optical system is optimized for detection of objects at altitudes above 450km, which for a circular orbit, corresponds to apparent motions of approximately 1 deg./sec. Using our GPU-accelerated detection scheme, the proof-of-concept systems have detected objects fainter than V=12.3, which approximately corresponds to a 24 cm object at 1000 km altitude at better than 6 sigma significance, from sites near and within Albuquerque, NM. This work demonstrates scalable optical systems designed for near real time detection of fast moving objects, which can be then handed off to other instruments capable of tracking and characterizing them. The two proof-of-concept systems, separated by ~30km, work together by taking simultaneous images of the same orbital volume to constrain the orbits of detected objects using parallax measurements. These detections are followed-up by photometric observations taken at UNM to independently assess the objects and the quality of the derived orbits. We believe this demonstrates the potential of small telescope arrays for detecting and cataloguing heretofore unknown LEO objects.
A Systematic Review of Wearable Systems for Cancer Detection: Current State and Challenges.
Ray, Partha Pratim; Dash, Dinesh; De, Debashis
2017-10-02
Rapid growth of sensor and computing platforms have introduced the wearable systems. In recent years, wearable systems have led to new applications across all medical fields. The aim of this review is to present current state-of-the-art approach in the field of wearable system based cancer detection and identify key challenges that resist it from clinical adoption. A total of 472 records were screened and 11 were finally included in this study. Two types of records were studied in this context that includes 45% research articles and 55% manufactured products. The review was performed per PRISMA guidelines where considerations was given to records that were published or reported between 2009 and 2017. The identified records included 4 cancer detecting wearable systems such as breast cancer (36.3%), skin cancer (36.3%), prostate cancer (18.1%), and multi-type cancer (9%). Most works involved sensor based smart systems comprising of microcontroller, Bluetooth module, and smart phone. Few demonstrated Ultra-Wide Band (i.e. UWB) antenna based wearable systems. Skin cancer detecting wearable systems were most comprehensible ones. The current works are gradually progressing with seamless integration of sensory units along with smart networking. However, they lack in cloud computing and long-range communication paradigms. Artificial intelligence and machine learning are key ports that need to be attached with current wearable systems. Further, clinical inertia, lack of awareness, and high cost are altogether pulling back the actual growth of such system. It is well comprehended that upon sincere orientation of all identified challenges, wearable systems would emerge as vital alternative to futuristic cancer detection.
Toward detection of marine vehicles on horizon from buoy camera
NASA Astrophysics Data System (ADS)
Fefilatyev, Sergiy; Goldgof, Dmitry B.; Langebrake, Lawrence
2007-10-01
This paper presents a new technique for automatic detection of marine vehicles in open sea from a buoy camera system using computer vision approach. Users of such system include border guards, military, port safety and flow management, sanctuary protection personnel. The system is intended to work autonomously, taking images of the surrounding ocean surface and analyzing them on the subject of presence of marine vehicles. The goal of the system is to detect an approximate window around the ship and prepare the small image for transmission and human evaluation. The proposed computer vision-based algorithm combines horizon detection method with edge detection and post-processing. The dataset of 100 images is used to evaluate the performance of proposed technique. We discuss promising results of ship detection and suggest necessary improvements for achieving better performance.
The WorkPlace distributed processing environment
NASA Technical Reports Server (NTRS)
Ames, Troy; Henderson, Scott
1993-01-01
Real time control problems require robust, high performance solutions. Distributed computing can offer high performance through parallelism and robustness through redundancy. Unfortunately, implementing distributed systems with these characteristics places a significant burden on the applications programmers. Goddard Code 522 has developed WorkPlace to alleviate this burden. WorkPlace is a small, portable, embeddable network interface which automates message routing, failure detection, and re-configuration in response to failures in distributed systems. This paper describes the design and use of WorkPlace, and its application in the construction of a distributed blackboard system.
A fiber-optic ice detection system for large-scale wind turbine blades
NASA Astrophysics Data System (ADS)
Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho
2017-09-01
Icing causes substantial problems in the integrity of large-scale wind turbines. In this work, a fiber-optic sensor system for detection of icing with an arrayed waveguide grating is presented. The sensor system detects Fresnel reflections from the ends of the fibers. The transition in Fresnel reflection due to icing gives peculiar intensity variations, which categorizes the ice, the water, and the air medium on the wind turbine blades. From the experimental results, with the proposed sensor system, the formation of icing conditions and thickness of ice were identified successfully in real time.
A Real-Time System for Lane Detection Based on FPGA and DSP
NASA Astrophysics Data System (ADS)
Xiao, Jing; Li, Shutao; Sun, Bin
2016-12-01
This paper presents a real-time lane detection system including edge detection and improved Hough Transform based lane detection algorithm and its hardware implementation with field programmable gate array (FPGA) and digital signal processor (DSP). Firstly, gradient amplitude and direction information are combined to extract lane edge information. Then, the information is used to determine the region of interest. Finally, the lanes are extracted by using improved Hough Transform. The image processing module of the system consists of FPGA and DSP. Particularly, the algorithms implemented in FPGA are working in pipeline and processing in parallel so that the system can run in real-time. In addition, DSP realizes lane line extraction and display function with an improved Hough Transform. The experimental results show that the proposed system is able to detect lanes under different road situations efficiently and effectively.
NASA Technical Reports Server (NTRS)
1995-01-01
Earth Systems Science Office scientists worked with officials in St. Tammany Parish, La., to detect and battle pine beetle infestation in Fontainebleu State Park. The scientists used a new method of detecting plant stress by using special lenses and modified sensors to detect a change in light levels given off by the plant before the stress is visible to the naked eye.
Design Considerations for a Portable Raman Probe Spectrometer for Field Forensics
Kelly, James F.; Blake, Thomas A.; Bernacki, Bruce E.; ...
2012-01-01
Raman spectroscopy has been shown to be a viable method for explosives detection. Currently most forensic Raman systems are either large, powerful instruments for laboratory experiments or handheld instruments forin situpoint detection. We have chosen to examine the performance of certain benchtop Raman probe systems with the goal of developing an inexpensive, portable system that could be used to operate in a field forensics laboratory to examine explosives-related residues or samples. To this end, a rugged, low distortion line imaging dispersive Raman spectrograph was configured to work at 830 nm laser excitation and was used to determine whether the compositionmore » of thin films of plastic explosives or small (e.g., ≤10 μm) particles of RDX or other explosives or oxidizers can be detected, identified, and quantified in the field. With 300 mW excitation energy, concentrations of RDX and PETN can be detected and reconstructed in the case of thin Semtex smears, but further work is needed to push detection limits of areal dosages to the ~1μg/cm 2level. We describe the performance of several probe/spectrograph combinations and show preliminary data for particle detection, calibration and detection linearity for mixed compounds, and so forth.« less
Pre-impact fall detection system using dynamic threshold and 3D bounding box
NASA Astrophysics Data System (ADS)
Otanasap, Nuth; Boonbrahm, Poonpong
2017-02-01
Fall prevention and detection system have to subjugate many challenges in order to develop an efficient those system. Some of the difficult problems are obtrusion, occlusion and overlay in vision based system. Other associated issues are privacy, cost, noise, computation complexity and definition of threshold values. Estimating human motion using vision based usually involves with partial overlay, caused either by direction of view point between objects or body parts and camera, and these issues have to be taken into consideration. This paper proposes the use of dynamic threshold based and bounding box posture analysis method with multiple Kinect cameras setting for human posture analysis and fall detection. The proposed work only uses two Kinect cameras for acquiring distributed values and differentiating activities between normal and falls. If the peak value of head velocity is greater than the dynamic threshold value, bounding box posture analysis will be used to confirm fall occurrence. Furthermore, information captured by multiple Kinect placed in right angle will address the skeleton overlay problem due to single Kinect. This work contributes on the fusion of multiple Kinect based skeletons, based on dynamic threshold and bounding box posture analysis which is the only research work reported so far.
Butun, Ismail; Ra, In-Ho; Sankar, Ravi
2015-01-01
In this work, an intrusion detection system (IDS) framework based on multi-level clustering for hierarchical wireless sensor networks is proposed. The framework employs two types of intrusion detection approaches: (1) “downward-IDS (D-IDS)” to detect the abnormal behavior (intrusion) of the subordinate (member) nodes; and (2) “upward-IDS (U-IDS)” to detect the abnormal behavior of the cluster heads. By using analytical calculations, the optimum parameters for the D-IDS (number of maximum hops) and U-IDS (monitoring group size) of the framework are evaluated and presented. PMID:26593915
Optical fiber strain sensor for application in intelligent intruder detection systems
NASA Astrophysics Data System (ADS)
Stańczyk, Tomasz; Tenderenda, Tadeusz; Szostkiewicz, Lukasz; Bienkowska, Beata; Kunicki, Daniel; Murawski, Michal; Mergo, Pawel; Nasilowski, Tomasz
2017-10-01
Nowadays technology allows to create highly effective Intruder Detection Systems (IDS), that are able to detect the presence of an intruder within a defined area. In such systems the best performance can be achieved by combining different detection techniques in one system. One group of devices that can be applied in an IDS, are devices based on Fiber Optic Sensors (FOS). The FOS benefits from numerous advantages of optical fibers like: small size, light weight or high sensitivity. In this work we present a novel Microstructured Optical Fiber (MOF) characterized by increased strain sensitivity dedicated to distributed acoustic sensing for intelligent intruder detection systems. By designing the MOF with large air holes in close proximity to a fiber core, we increased the effective refractive index sensitivity to longitudinal strain. The presented fiber can be easily integrated in a floor system in order to detect any movement in the investigated area. We believe that sensors, based on the presented MOF, due to its numerous advantages, can find application in intelligent IDS.
NASA Technical Reports Server (NTRS)
Weiss, Jerold L.; Hsu, John Y.
1986-01-01
The use of a decentralized approach to failure detection and isolation for use in restructurable control systems is examined. This work has produced: (1) A method for evaluating fundamental limits to FDI performance; (2) Application using flight recorded data; (3) A working control element FDI system with maximal sensitivity to critical control element failures; (4) Extensive testing on realistic simulations; and (5) A detailed design methodology involving parameter optimization (with respect to model uncertainties) and sensitivity analyses. This project has concentrated on detection and isolation of generic control element failures since these failures frequently lead to emergency conditions and since knowledge of remaining control authority is essential for control system redesign. The failures are generic in the sense that no temporal failure signature information was assumed. Thus, various forms of functional failures are treated in a unified fashion. Such a treatment results in a robust FDI system (i.e., one that covers all failure modes) but sacrifices some performance when detailed failure signature information is known, useful, and employed properly. It was assumed throughout that all sensors are validated (i.e., contain only in-spec errors) and that only the first failure of a single control element needs to be detected and isolated. The FDI system which has been developed will handle a class of multiple failures.
NASA Astrophysics Data System (ADS)
Ciurapiński, Wieslaw; Dulski, Rafal; Kastek, Mariusz; Szustakowski, Mieczyslaw; Bieszczad, Grzegorz; Życzkowski, Marek; Trzaskawka, Piotr; Piszczek, Marek
2009-09-01
The paper presents the concept of multispectral protection system for perimeter protection for stationary and moving objects. The system consists of active ground radar, thermal and visible cameras. The radar allows the system to locate potential intruders and to control an observation area for system cameras. The multisensor construction of the system ensures significant improvement of detection probability of intruder and reduction of false alarms. A final decision from system is worked out using image data. The method of data fusion used in the system has been presented. The system is working under control of FLIR Nexus system. The Nexus offers complete technology and components to create network-based, high-end integrated systems for security and surveillance applications. Based on unique "plug and play" architecture, system provides unmatched flexibility and simplistic integration of sensors and devices in TCP/IP networks. Using a graphical user interface it is possible to control sensors and monitor streaming video and other data over the network, visualize the results of data fusion process and obtain detailed information about detected intruders over a digital map. System provides high-level applications and operator workload reduction with features such as sensor to sensor cueing from detection devices, automatic e-mail notification and alarm triggering.
Forward collision warning based on kernelized correlation filters
NASA Astrophysics Data System (ADS)
Pu, Jinchuan; Liu, Jun; Zhao, Yong
2017-07-01
A vehicle detection and tracking system is one of the indispensable methods to reduce the occurrence of traffic accidents. The nearest vehicle is the most likely to cause harm to us. So, this paper will do more research on about the nearest vehicle in the region of interest (ROI). For this system, high accuracy, real-time and intelligence are the basic requirement. In this paper, we set up a system that combines the advanced KCF tracking algorithm with the HaarAdaBoost detection algorithm. The KCF algorithm reduces computation time and increase the speed through the cyclic shift and diagonalization. This algorithm satisfies the real-time requirement. At the same time, Haar features also have the same advantage of simple operation and high speed for detection. The combination of this two algorithm contribute to an obvious improvement of the system running rate comparing with previous works. The detection result of the HaarAdaBoost classifier provides the initial value for the KCF algorithm. This fact optimizes KCF algorithm flaws that manual car marking in the initial phase, which is more scientific and more intelligent. Haar detection and KCF tracking with Histogram of Oriented Gradient (HOG) ensures the accuracy of the system. We evaluate the performance of framework on dataset that were self-collected. The experimental results demonstrate that the proposed method is robust and real-time. The algorithm can effectively adapt to illumination variation, even in the night it can meet the detection and tracking requirements, which is an improvement compared with the previous work.
Effects of Night Work, Sleep Loss and Time on Task on Simulated Threat Detection Performance
Basner, Mathias; Rubinstein, Joshua; Fomberstein, Kenneth M.; Coble, Matthew C.; Ecker, Adrian; Avinash, Deepa; Dinges, David F.
2008-01-01
Study Objectives: To investigate the effects of night work and sleep loss on a simulated luggage screening task (SLST) that mimicked the x-ray system used by airport luggage screeners. Design: We developed more than 5,800 unique simulated x-ray images of luggage organized into 31 stimulus sets of 200 bags each. 25% of each set contained either a gun or a knife with low or high target difficulty. The 200-bag stimuli sets were then run on software that simulates an x-ray screening system (SLST). Signal detection analysis was used to obtain measures of hit rate (HR), false alarm rate (FAR), threat detection accuracy (A′), and response bias (B″D). Setting: Experimental laboratory study Participants: 24 healthy nonprofessional volunteers (13 women, mean age ± SD = 29.9 ± 6.5 years). Interventions: Subjects performed the SLST every 2 h during a 5-day period that included a 35 h period of wakefulness that extended to night work and then another day work period after the night without sleep. Results: Threat detection accuracy A′ decreased significantly (P < 0.001) while FAR increased significantly (P < 0.001) during night work, while both A′ (P = 0.001) and HR decreased (P = 0.008) during day work following sleep loss. There were prominent time-on-task effects on response bias B″D (P = 0.002) and response latency (P = 0.004), but accuracy A′ was unaffected. Both HR and FAR increased significantly with increasing study duration (both P < 0.001), while response latency decreased significantly (P < 0.001). Conclusions: This study provides the first systematic evidence that night work and sleep loss adversely affect the accuracy of detecting complex real world objects among high levels of background clutter. If the results can be replicated in professional screeners and real work environments, fatigue in luggage screening personnel may pose a threat for air traffic safety unless countermeasures for fatigue are deployed. Citation: Basner M; Rubinstein J; Fomberstein KM; Coble MC; Avinash D; Dinges DF. Effects of Night Work, Sleep Loss and Time on Task on Simulated Threat Detection Performance. SLEEP 2008;31(9):1251-1259. PMID:18788650
Real-Time Optical Surveillance of LEO/MEO with Small Telescopes
NASA Astrophysics Data System (ADS)
Zimmer, P.; McGraw, J.; Ackermann, M.
J.T. McGraw and Associates, LLC operates two proof-of-concept wide-field imaging systems to test novel techniques for uncued surveillance of LEO/MEO/GEO and, in collaboration with the University of New Mexico (UNM), uses a third small telescope for rapidly queued same-orbit follow-up observations. Using our GPU-accelerated detection scheme, the proof-of-concept systems operating at sites near and within Albuquerque, NM, have detected objects fainter than V=13 at greater than 6 sigma significance. This detection approximately corresponds to a 16 cm object with albedo of 0.12 at 1000 km altitude. Dozens of objects are measured during each operational twilight period, many of which have no corresponding catalog object. The two proof-of-concept systems, separated by ~30km, work together by taking simultaneous images of the same orbital volume to constrain the orbits of detected objects using parallax measurements. These detections are followed-up by imaging photometric observations taken at UNM to confirm and further constrain the initial orbit determination and independently assess the objects and verify the quality of the derived orbits. This work continues to demonstrate that scalable optical systems designed for real-time detection of fast moving objects, which can be then handed off to other instruments capable of tracking and characterizing them, can provide valuable real-time surveillance data at LEO and beyond, which substantively informs the SSA process.
Field-effect amperometric immuno-detection of protein biomarker.
Wang, Jiapeng; Yau, Siu-Tung
2011-11-15
The field-effect enzymatic detection technique has been applied to the amperometric immunoassay of the cancer biomarker, carcinoma antigen 125 (CA 125). The detection adopted a reagentless approach, in which the analyte, CA 125, was immobilized on the detecting electrode, which was modified using carbon nanotubes, and the detection signal was obtained by measuring the reduction peak current of the enzyme that was used to label the antibody. A gating voltage was applied to the detecting electrode, inducing increase in the signal current and therefore providing amplification of the detection signal. The voltage-controlled signal amplification of the detection system has increased the sensitivity and lowered the detection limit of the system. A detection limit of 0.9U/ml was obtained in the work. Copyright © 2011 Elsevier B.V. All rights reserved.
Fabrication and testing of a standoff trace explosives detection system
NASA Astrophysics Data System (ADS)
Waterbury, Robert; Rose, Jeremy; Vunck, Darius; Blank, Thomas; Pohl, Ken; Ford, Alan; McVay, Troy; Dottery, Ed
2011-05-01
In order to stop the transportation of materials used for IED manufacture, a standoff checkpoint explosives detection system (CPEDS) has recently been fabricated. The system incorporates multi-wavelength Raman spectroscopy and laser induced breakdown spectroscopy (LIBS) modalities with a LIBS enhancement technique called TEPS to be added later into a single unit for trace detection of explosives at military checkpoints. Newly developed spectrometers and other required sensors all integrated with a custom graphical user interface for producing simplified, real-time detection results are also included in the system. All equipment is housed in a military ruggedized shelter for potential deployment intheater for signature collection. Laboratory and performance data, as well as the construction of the CPEDS system and its potential deployment capabilities, will be presented in the current work.
The simulation study on optical target laser active detection performance
NASA Astrophysics Data System (ADS)
Li, Ying-chun; Hou, Zhao-fei; Fan, Youchen
2014-12-01
According to the working principle of laser active detection system, the paper establishes the optical target laser active detection simulation system, carry out the simulation study on the detection process and detection performance of the system. For instance, the performance model such as the laser emitting, the laser propagation in the atmosphere, the reflection of optical target, the receiver detection system, the signal processing and recognition. We focus on the analysis and modeling the relationship between the laser emitting angle and defocus amount and "cat eye" effect echo laser in the reflection of optical target. Further, in the paper some performance index such as operating range, SNR and the probability of the system have been simulated. The parameters including laser emitting parameters, the reflection of the optical target and the laser propagation in the atmosphere which make a great influence on the performance of the optical target laser active detection system. Finally, using the object-oriented software design methods, the laser active detection system with the opening type, complete function and operating platform, realizes the process simulation that the detection system detect and recognize the optical target, complete the performance simulation of each subsystem, and generate the data report and the graph. It can make the laser active detection system performance models more intuitive because of the visible simulation process. The simulation data obtained from the system provide a reference to adjust the structure of the system parameters. And it provides theoretical and technical support for the top level design of the optical target laser active detection system and performance index optimization.
Rodríguez-Canosa, Gonzalo; Giner, Jaime del Cerro; Barrientos, Antonio
2014-01-01
The detection and tracking of mobile objects (DATMO) is progressively gaining importance for security and surveillance applications. This article proposes a set of new algorithms and procedures for detecting and tracking mobile objects by robots that work collaboratively as part of a multirobot system. These surveillance algorithms are conceived of to work with data provided by long distance range sensors and are intended for highly reliable object detection in wide outdoor environments. Contrary to most common approaches, in which detection and tracking are done by an integrated procedure, the approach proposed here relies on a modular structure, in which detection and tracking are carried out independently, and the latter might accept input data from different detection algorithms. Two movement detection algorithms have been developed for the detection of dynamic objects by using both static and/or mobile robots. The solution to the overall problem is based on the use of a Kalman filter to predict the next state of each tracked object. Additionally, new tracking algorithms capable of combining dynamic objects lists coming from either one or various sources complete the solution. The complementary performance of the separated modular structure for detection and identification is evaluated and, finally, a selection of test examples discussed. PMID:24526305
Detection of Landmines by Neutron Backscattering: Effects of Soil Moisture on the Detection System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baysoy, D. Y.; Subasi, M.
2010-01-21
Detection of buried land mines by using neutron backscattering technique (NBS) is a well established method. It depends on detecting a hydrogen anomaly in dry soil. Since a landmine and its plastic casing contain much more hydrogen atoms than the dry soil, this anomaly can be detected by observing a rise in the number of neutrons moderated to thermal or epithermal energy. But, the presence of moisture in the soil limits the effectiveness of the measurements. In this work, a landmine detection system using the NBS technique was designed. A series of Monte Carlo calculations was carried out to determinemore » the limits of the system due to the moisture content of the soil. In the simulations, an isotropic fast neutron source ({sup 252}Cf, 100 mug) and a neutron detection system which consists of five {sup 3}He detectors were used in a practicable geometry. In order to see the effects of soil moisture on the efficiency of the detection system, soils with different water contents were tested.« less
Audio gunshot detection and localization systems: History, basic design, and future possibilities
NASA Astrophysics Data System (ADS)
Graves, Jordan R.
For decades, law enforcement organizations have increasingly utilized audio detection and localization systems to identify potential gunshot incidents and to respond accordingly. These systems have grown from simple microphone configurations used to estimate location into complex arrays that seem to pinpoint gunfire to within mere feet of its actual occurrence. Such technology comes from a long and dynamic history of developing equipment dating back to the First World War. Additionally, though basic designs require little in terms of programming or engineering experience, the mere presence of this tool invokes a firestorm of debate amongst economists, law enforcement groups, and the general public, which leads to questions about future possibilities for its use. The following pages will retell the history of these systems from theoretical conception to current capabilities. This work will also dissect these systems to reveal fundamental elements of their inner workings, in order to build a basic demonstrative system. Finally, this work will discuss some legal and moral points of dissension, and will explore these systems’ roles in society now and in the future, in additional applications as well.
Detection of trace cobalt ions in in vivo plant cells using a voltammetric interlocking system.
Ly, Suw Young; Shin, Myoung Ho; Lee, Chang Hyun; Lee, Jin Hui; Kim, Mi Sook; Ji, Sang Woo; Park, Dong Won
2013-01-01
This experiment was conducted to establish a system for detecting trace cobalt ions in water and plant tissues using a voltammetric in vivo sensor. Cyclic and stripping voltammetry was devised from hand-made, macro-type implantable three-electrode systems. The results reached micro and nano working ranges at 100 sec accumulation time. The statistical detection limit (S/N) was attained at 6.0 ng L(-1). For the in vivo application, direct assay of cobalt ions was carried out in Eichhornia crassipes (EC) deep tissue in real time with a preconcentration time of 100 s. Interfaced techniques can be interlocked with other control systems.
Design and experiment of a neural signal detection using a FES driving system.
Zonghao, Huang; Zhigong, Wang; Xiaoying, Lu; Wenyuan, Li; Xiaoyan, Shen; Xintai, Zhao; Shushan, Xie; Haixian, Pan; Cunliang, Zhu
2010-01-01
The channel bridging, signal regenerating, and functional rebuilding of injured nerves is one of the most important issues in life science research. In recent years, some progresses in the research area have been made in repairing injured nerves with microelectronic neural bridge. Based on the previous work, this paper presents a neural signal detection and functional electrical stimulation (FES) driving system with using high performance operational amplifiers, which has been realized. The experimental results show that the designed system meets requirements. In animal experiments, sciatic nerve signal detection, regeneration and function rebuilding between two toads have been accomplished successfully by using the designed system.
Statistics and Machine Learning based Outlier Detection Techniques for Exoplanets
NASA Astrophysics Data System (ADS)
Goel, Amit; Montgomery, Michele
2015-08-01
Architectures of planetary systems are observable snapshots in time that can indicate formation and dynamic evolution of planets. The observable key parameters that we consider are planetary mass and orbital period. If planet masses are significantly less than their host star masses, then Keplerian Motion is defined as P^2 = a^3 where P is the orbital period in units of years and a is the orbital period in units of Astronomical Units (AU). Keplerian motion works on small scales such as the size of the Solar System but not on large scales such as the size of the Milky Way Galaxy. In this work, for confirmed exoplanets of known stellar mass, planetary mass, orbital period, and stellar age, we analyze Keplerian motion of systems based on stellar age to seek if Keplerian motion has an age dependency and to identify outliers. For detecting outliers, we apply several techniques based on statistical and machine learning methods such as probabilistic, linear, and proximity based models. In probabilistic and statistical models of outliers, the parameters of a closed form probability distributions are learned in order to detect the outliers. Linear models use regression analysis based techniques for detecting outliers. Proximity based models use distance based algorithms such as k-nearest neighbour, clustering algorithms such as k-means, or density based algorithms such as kernel density estimation. In this work, we will use unsupervised learning algorithms with only the proximity based models. In addition, we explore the relative strengths and weaknesses of the various techniques by validating the outliers. The validation criteria for the outliers is if the ratio of planetary mass to stellar mass is less than 0.001. In this work, we present our statistical analysis of the outliers thus detected.
Effects of night work, sleep loss and time on task on simulated threat detection performance.
Basner, Mathias; Rubinstein, Joshua; Fomberstein, Kenneth M; Coble, Matthew C; Ecker, Adrian; Avinash, Deepa; Dinges, David F
2008-09-01
To investigate the effects of night work and sleep loss on a simulated luggage screening task (SLST) that mimicked the x-ray system used by airport luggage screeners. We developed more than 5,800 unique simulated x-ray images of luggage organized into 31 stimulus sets of 200 bags each. 25% of each set contained either a gun or a knife with low or high target difficulty. The 200-bag stimuli sets were then run on software that simulates an x-ray screening system (SLST). Signal detection analysis was used to obtain measures of hit rate (HR), false alarm rate (FAR), threat detection accuracy (A'), and response bias (B"(D)). Experimental laboratory study 24 healthy nonprofessional volunteers (13 women, mean age +/- SD = 29.9 +/- 6.5 years). Subjects performed the SLST every 2 h during a 5-day period that included a 35 h period of wakefulness that extended to night work and then another day work period after the night without sleep. Threat detection accuracy A' decreased significantly (P < 0.001) while FAR increased significantly (P < 0.001) during night work, while both A' (P = 0.001) and HR decreased (P = 0.008) during day work following sleep loss. There were prominent time-on-task effects on response bias B"(D) (P= 0.002) and response latency (P = 0.004), but accuracy A' was unaffected. Both HR and FAR increased significantly with increasing study duration (both P < 0.001), while response latency decreased significantly (P <0.001). This study provides the first systematic evidence that night work and sleep loss adversely affect the accuracy of detecting complex real world objects among high levels of background clutter. If the results can be replicated in professional screeners and real work environments, fatigue in luggage screening personnel may pose a threat for air traffic safety unless countermeasures for fatigue are deployed.
Wang, Tiantian; Kim, Sanghyo; An, Jeong Ho
2017-02-01
Loop-mediated isothermal amplification (LAMP) is considered as one of the alternatives to the conventional PCR and it is an inexpensive portable diagnostic system with minimal power consumption. The present work describes the application of LAMP in real-time photon detection and quantitative analysis of nucleic acids integrated with a disposable complementary-metal-oxide semiconductor (CMOS) image sensor. This novel system works as an amplification-coupled detection platform, relying on a CMOS image sensor, with the aid of a computerized circuitry controller for the temperature and light sources. The CMOS image sensor captures the light which is passing through the sensor surface and converts into digital units using an analog-to-digital converter (ADC). This new system monitors the real-time photon variation, caused by the color changes during amplification. Escherichia coli O157 was used as a proof-of-concept target for quantitative analysis, and compared with the results for Staphylococcus aureus and Salmonella enterica to confirm the efficiency of the system. The system detected various DNA concentrations of E. coli O157 in a short time (45min), with a detection limit of 10fg/μL. The low-cost, simple, and compact design, with low power consumption, represents a significant advance in the development of a portable, sensitive, user-friendly, real-time, and quantitative analytic tools for point-of-care diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Laser-Ultrasonic Testing and its Applications to Nuclear Reactor Internals
NASA Astrophysics Data System (ADS)
Ochiai, M.; Miura, T.; Yamamoto, S.
2008-02-01
A new nondestructive testing technique for surface-breaking microcracks in nuclear reactor components based on laser-ultrasonics is developed. Surface acoustic wave generated by Q-switched Nd:YAG laser and detected by frequency-stabilized long pulse laser coupled with confocal Fabry-Perot interferometer is used to detect and size the cracks. A frequency-domain signal processing is developed to realize accurate sizing capability. The laser-ultrasonic testing allows the detection of surface-breaking microcrack having a depth of less than 0.1 mm, and the measurement of their depth with an accuracy of 0.2 mm when the depth exceeds 0.5 mm including stress corrosion cracking. The laser-ultrasonic testing system combined with laser peening system, which is another laser-based maintenance technology to improve surface stress, for inner surface of small diameter tube is developed. The generation laser in the laser-ultrasonic testing system can be identical to the laser source of the laser peening. As an example operation of the system, the system firstly works as the laser-ultrasonic testing mode and tests the inner surface of the tube. If no cracks are detected, the system then changes its work mode to the laser peening and improves surface stress to prevent crack initiation. The first nuclear industrial application of the laser-ultrasonic testing system combined with the laser peening was completed in Japanese nuclear power plant in December 2004.
A device for the color measurement and detection of spots on the skin.
Pladellorens, Josep; Pintó, Agustí; Segura, Jordi; Cadevall, Cristina; Antó, Joan; Pujol, Jaume; Vilaseca, Meritxell; Coll, Joaquín
2008-02-01
In this work, we present a new and fast easy-to-use device that allows the measurement of color and the detection of spots on the human skin. The developed device is highly practical for relatively untrained operators and uses inexpensive consumer equipment, such as a CCD color camera, a light source composed of LEDs and a laptop. The knowledge of the color of the skin and the detection of spots can be useful in several areas such as in dermatology applications, the cosmetics industry, the biometrics field, health care, etc. In order to perform these measurements the system takes a picture of the skin. After that, the operator selects the region of the skin to be analyzed on the displayed image and the system provides the CIELAB color coordinates, the chroma and the ITA parameter (Individual Tipology Angle), allowing the comparison with other reference images by means of CIELAB color differences. The system also detects spots, such as freckles, age spots, sunspots, pimples, black heads, etc., in a determined region, allowing the objective measurement of their size and area. The colorimetric information provided by a conventional spectrophotometer for the tested samples and the computed values obtained with the new developed system are quite similar, meaning that the developed system can be used to perform color measurements with relatively high accuracy. On the other hand, the feasibility of the system in order to detect and measure spots on the human skin has also been checked over a great amount of images, obtaining results with high precision. In this work, we present a new system that may be very useful in order to measure the color and to detect spots of the skin. Its portability and easy applicability will be very useful in dermatologic and cosmetic studies.
Motion Planning in a Society of Intelligent Mobile Agents
NASA Technical Reports Server (NTRS)
Esterline, Albert C.; Shafto, Michael (Technical Monitor)
2002-01-01
The majority of the work on this grant involved formal modeling of human-computer integration. We conceptualize computer resources as a multiagent system so that these resources and human collaborators may be modeled uniformly. In previous work we had used modal for this uniform modeling, and we had developed a process-algebraic agent abstraction. In this work, we applied this abstraction (using CSP) in uniformly modeling agents and users, which allowed us to use tools for investigating CSP models. This work revealed the power of, process-algebraic handshakes in modeling face-to-face conversation. We also investigated specifications of human-computer systems in the style of algebraic specification. This involved specifying the common knowledge required for coordination and process-algebraic patterns of communication actions intended to establish the common knowledge. We investigated the conditions for agents endowed with perception to gain common knowledge and implemented a prototype neural-network system that allows agents to detect when such conditions hold. The literature on multiagent systems conceptualizes communication actions as speech acts. We implemented a prototype system that infers the deontic effects (obligations, permissions, prohibitions) of speech acts and detects violations of these effects. A prototype distributed system was developed that allows users to collaborate in moving proxy agents; it was designed to exploit handshakes and common knowledge Finally. in work carried over from a previous NASA ARC grant, about fifteen undergraduates developed and presented projects on multiagent motion planning.
Code of Federal Regulations, 2010 CFR
2010-07-01
... percent opacity. (c) Baghouses. For each baghouse subject to the operating limit for the bag leak... that the bag leak detection system alarm does not sound for more than 5 percent of the operating time... malfunction of the bag leak detection system are not included in the calculation. (ii) Alarms that occur...
Code of Federal Regulations, 2010 CFR
2010-07-01
... or DLS/FF i. If you use a bag leak detection system, initiating corrective action within 1 hour of a bag leak detection system alarm and completing corrective actions in accordance with your OM&M plan... established during the performance test; and iv. If chemicals are added to the scrubber water, collecting the...
Teixidó, Mercè; Font, Davinia; Pallejà, Tomàs; Tresanchez, Marcel; Nogués, Miquel; Palacín, Jordi
2012-10-22
This work proposes the development of an embedded real-time fruit detection system for future automatic fruit harvesting. The proposed embedded system is based on an ARM Cortex-M4 (STM32F407VGT6) processor and an Omnivision OV7670 color camera. The future goal of this embedded vision system will be to control a robotized arm to automatically select and pick some fruit directly from the tree. The complete embedded system has been designed to be placed directly in the gripper tool of the future robotized harvesting arm. The embedded system will be able to perform real-time fruit detection and tracking by using a three-dimensional look-up-table (LUT) defined in the RGB color space and optimized for fruit picking. Additionally, two different methodologies for creating optimized 3D LUTs based on existing linear color models and fruit histograms were implemented in this work and compared for the case of red peaches. The resulting system is able to acquire general and zoomed orchard images and to update the relative tracking information of a red peach in the tree ten times per second.
Teixidó, Mercè; Font, Davinia; Pallejà, Tomàs; Tresanchez, Marcel; Nogués, Miquel; Palacín, Jordi
2012-01-01
This work proposes the development of an embedded real-time fruit detection system for future automatic fruit harvesting. The proposed embedded system is based on an ARM Cortex-M4 (STM32F407VGT6) processor and an Omnivision OV7670 color camera. The future goal of this embedded vision system will be to control a robotized arm to automatically select and pick some fruit directly from the tree. The complete embedded system has been designed to be placed directly in the gripper tool of the future robotized harvesting arm. The embedded system will be able to perform real-time fruit detection and tracking by using a three-dimensional look-up-table (LUT) defined in the RGB color space and optimized for fruit picking. Additionally, two different methodologies for creating optimized 3D LUTs based on existing linear color models and fruit histograms were implemented in this work and compared for the case of red peaches. The resulting system is able to acquire general and zoomed orchard images and to update the relative tracking information of a red peach in the tree ten times per second. PMID:23202040
Serologic test systems development. Progress report, July 1, 1976--September 30, 1977
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, G.C.; Clinard, E.H.; Bartlett, M.L.
1978-01-01
Work has continued on the development and application of the Enzyme-Labeled Antibody (ELA) test to the USDA needs. Results on trichinosis, brucellosis, and staphylococcal enterotoxin A detection are very encouraging. A field test for trichinosis detection is being worked out in cooperation with Food Safety and Quality Service personnel. Work is in progress with the Technicon Instrument Corporation to develop a modification of their equipment to automatically process samples by the ELA procedure. An automated ELA readout instrument for 96-well trays has been completed and is being checked out.
Robust Road Condition Detection System Using In-Vehicle Standard Sensors.
Castillo Aguilar, Juan Jesús; Cabrera Carrillo, Juan Antonio; Guerra Fernández, Antonio Jesús; Carabias Acosta, Enrique
2015-12-19
The appearance of active safety systems, such as Anti-lock Braking System, Traction Control System, Stability Control System, etc., represents a major evolution in road safety. In the automotive sector, the term vehicle active safety systems refers to those whose goal is to help avoid a crash or to reduce the risk of having an accident. These systems safeguard us, being in continuous evolution and incorporating new capabilities continuously. In order for these systems and vehicles to work adequately, they need to know some fundamental information: the road condition on which the vehicle is circulating. This early road detection is intended to allow vehicle control systems to act faster and more suitably, thus obtaining a substantial advantage. In this work, we try to detect the road condition the vehicle is being driven on, using the standard sensors installed in commercial vehicles. Vehicle models were programmed in on-board systems to perform real-time estimations of the forces of contact between the wheel and road and the speed of the vehicle. Subsequently, a fuzzy logic block is used to obtain an index representing the road condition. Finally, an artificial neural network was used to provide the optimal slip for each surface. Simulations and experiments verified the proposed method.
Robust Road Condition Detection System Using In-Vehicle Standard Sensors
Castillo Aguilar, Juan Jesús; Cabrera Carrillo, Juan Antonio; Guerra Fernández, Antonio Jesús; Carabias Acosta, Enrique
2015-01-01
The appearance of active safety systems, such as Anti-lock Braking System, Traction Control System, Stability Control System, etc., represents a major evolution in road safety. In the automotive sector, the term vehicle active safety systems refers to those whose goal is to help avoid a crash or to reduce the risk of having an accident. These systems safeguard us, being in continuous evolution and incorporating new capabilities continuously. In order for these systems and vehicles to work adequately, they need to know some fundamental information: the road condition on which the vehicle is circulating. This early road detection is intended to allow vehicle control systems to act faster and more suitably, thus obtaining a substantial advantage. In this work, we try to detect the road condition the vehicle is being driven on, using the standard sensors installed in commercial vehicles. Vehicle models were programmed in on-board systems to perform real-time estimations of the forces of contact between the wheel and road and the speed of the vehicle. Subsequently, a fuzzy logic block is used to obtain an index representing the road condition. Finally, an artificial neural network was used to provide the optimal slip for each surface. Simulations and experiments verified the proposed method. PMID:26703605
The feasibility test of state-of-the-art face detection algorithms for vehicle occupant detection
NASA Astrophysics Data System (ADS)
Makrushin, Andrey; Dittmann, Jana; Vielhauer, Claus; Langnickel, Mirko; Kraetzer, Christian
2010-01-01
Vehicle seat occupancy detection systems are designed to prevent the deployment of airbags at unoccupied seats, thus avoiding the considerable cost imposed by the replacement of airbags. Occupancy detection can also improve passenger comfort, e.g. by activating air-conditioning systems. The most promising development perspectives are seen in optical sensing systems which have become cheaper and smaller in recent years. The most plausible way to check the seat occupancy by occupants is the detection of presence and location of heads, or more precisely, faces. This paper compares the detection performances of the three most commonly used and widely available face detection algorithms: Viola- Jones, Kienzle et al. and Nilsson et al. The main objective of this work is to identify whether one of these systems is suitable for use in a vehicle environment with variable and mostly non-uniform illumination conditions, and whether any one face detection system can be sufficient for seat occupancy detection. The evaluation of detection performance is based on a large database comprising 53,928 video frames containing proprietary data collected from 39 persons of both sexes and different ages and body height as well as different objects such as bags and rearward/forward facing child restraint systems.
NASA Astrophysics Data System (ADS)
Standvoss, K.; Crijns, T.; Goerke, L.; Janssen, D.; Kern, S.; van Niedek, T.; van Vugt, J.; Alfonso Burgos, N.; Gerritse, E. J.; Mol, J.; van de Vooren, D.; Ghafoorian, M.; van den Heuvel, T. L. A.; Manniesing, R.
2018-02-01
The number and location of cerebral microbleeds (CMBs) in patients with traumatic brain injury (TBI) is important to determine the severity of trauma and may hold prognostic value for patient outcome. However, manual assessment is subjective and time-consuming due to the resemblance of CMBs to blood vessels, the possible presence of imaging artifacts, and the typical heterogeneity of trauma imaging data. In this work, we present a computer aided detection system based on 3D convolutional neural networks for detecting CMBs in 3D susceptibility weighted images. Network architectures with varying depth were evaluated. Data augmentation techniques were employed to improve the networks' generalization ability and selective sampling was implemented to handle class imbalance. The predictions of the models were clustered using a connected component analysis. The system was trained on ten annotated scans and evaluated on an independent test set of eight scans. Despite this limited data set, the system reached a sensitivity of 0.87 at 16.75 false positives per scan (2.5 false positives per CMB), outperforming related work on CMB detection in TBI patients.
Fire Detection Tradeoffs as a Function of Vehicle Parameters
NASA Technical Reports Server (NTRS)
Urban, David L.; Dietrich, Daniel L.; Brooker, John E.; Meyer, Marit E.; Ruff, Gary A.
2016-01-01
Fire survivability depends on the detection of and response to a fire before it has produced an unacceptable environment in the vehicle. This detection time is the result of interplay between the fire burning and growth rates; the vehicle size; the detection system design; the transport time to the detector (controlled by the level of mixing in the vehicle); and the rate at which the life support system filters the atmosphere, potentially removing the detected species or particles. Given the large differences in critical vehicle parameters (volume, mixing rate and filtration rate) the detection approach that works for a large vehicle (e.g. the ISS) may not be the best choice for a smaller crew capsule. This paper examines the impact of vehicle size and environmental control and life support system parameters on the detectability of fires in comparison to the hazard they present. A lumped element model was developed that considers smoke, heat, and toxic product release rates in comparison to mixing and filtration rates in the vehicle. Recent work has quantified the production rate of smoke and several hazardous species from overheated spacecraft polymers. These results are used as the input data set in the lumped element model in combination with the transport behavior of major toxic products released by overheating spacecraft materials to evaluate the necessary alarm thresholds to enable appropriate response to the fire hazard.
Object Detection Applied to Indoor Environments for Mobile Robot Navigation.
Hernández, Alejandra Carolina; Gómez, Clara; Crespo, Jonathan; Barber, Ramón
2016-07-28
To move around the environment, human beings depend on sight more than their other senses, because it provides information about the size, shape, color and position of an object. The increasing interest in building autonomous mobile systems makes the detection and recognition of objects in indoor environments a very important and challenging task. In this work, a vision system to detect objects considering usual human environments, able to work on a real mobile robot, is developed. In the proposed system, the classification method used is Support Vector Machine (SVM) and as input to this system, RGB and depth images are used. Different segmentation techniques have been applied to each kind of object. Similarly, two alternatives to extract features of the objects are explored, based on geometric shape descriptors and bag of words. The experimental results have demonstrated the usefulness of the system for the detection and location of the objects in indoor environments. Furthermore, through the comparison of two proposed methods for extracting features, it has been determined which alternative offers better performance. The final results have been obtained taking into account the proposed problem and that the environment has not been changed, that is to say, the environment has not been altered to perform the tests.
Object Detection Applied to Indoor Environments for Mobile Robot Navigation
Hernández, Alejandra Carolina; Gómez, Clara; Crespo, Jonathan; Barber, Ramón
2016-01-01
To move around the environment, human beings depend on sight more than their other senses, because it provides information about the size, shape, color and position of an object. The increasing interest in building autonomous mobile systems makes the detection and recognition of objects in indoor environments a very important and challenging task. In this work, a vision system to detect objects considering usual human environments, able to work on a real mobile robot, is developed. In the proposed system, the classification method used is Support Vector Machine (SVM) and as input to this system, RGB and depth images are used. Different segmentation techniques have been applied to each kind of object. Similarly, two alternatives to extract features of the objects are explored, based on geometric shape descriptors and bag of words. The experimental results have demonstrated the usefulness of the system for the detection and location of the objects in indoor environments. Furthermore, through the comparison of two proposed methods for extracting features, it has been determined which alternative offers better performance. The final results have been obtained taking into account the proposed problem and that the environment has not been changed, that is to say, the environment has not been altered to perform the tests. PMID:27483264
Event Detection Challenges, Methods, and Applications in Natural and Artificial Systems
2009-03-01
using the composite event detection method [Kerman, Jiang, Blumberg , and Buttrey, 2009]. Although the techniques and utility of the...aforementioned method have been clearly demonstrated, there is still much work and research to be conducted within the realm of event detection. This...detection methods . The paragraphs that follow summarize the discoveries of and lessons learned by multiple researchers and authors over many
NASA Astrophysics Data System (ADS)
Moutou, C.; Vigan, A.; Mesa, D.; Desidera, S.; Thébault, P.; Zurlo, A.; Salter, G.
2017-06-01
We explore the multiplicity of exoplanet host stars with high-resolution images obtained with VLT/SPHERE. Two different samples of systems were observed: one containing low-eccentricity outer planets, and the other containing high-eccentricity outer planets. We find that 10 out of 34 stars in the high-eccentricity systems are members of a binary, while the proportion is 3 out of 27 for circular systems. Eccentric-exoplanet hosts are, therefore, significantly more likely to have a stellar companion than circular-exoplanet hosts. The median magnitude contrast over the 68 data sets is 11.26 and 9.25, in H and K, respectively, at 0.30 arcsec. The derived detection limits reveal that binaries with separations of less than 50 au are rarer for exoplanet hosts than for field stars. Our results also imply that the majority of high-eccentricity planets are not embedded in multiple stellar systems (24 out of 34), since our detection limits exclude the presence of a stellar companion. We detect the low-mass stellar companions of HD 7449 and HD 211847, both members of our high-eccentricity sample. HD 7449B was already detected and our independent observation is in agreement with this earlier work. HD 211847's substellar companion, previously detected by the radial velocity method, is actually a low-mass star seen face-on. The role of stellar multiplicity in shaping planetary systems is confirmed by this work, although it does not appear as the only source of dynamical excitation. Based on observations collected with SPHERE on the Very Large Telescope (ESO, Chile).
A differential detection scheme of spectral shifts in long-period fiber gratings
NASA Astrophysics Data System (ADS)
Zhelyazkova, Katerina; Eftimov, Tinko; Smietana, Mateusz; Bock, Wojtek
2010-10-01
In this work we present an analysis of the response of a compact, simple and inexpensive optoelectronic sensor system intended to detect spectral shifts of a long-period fiber grating (LPG). The system makes use of a diffraction grating and a couple of receiving optical fibers that pick up signals at two different wavelengths. This differential detection system provides the same useful information from an LPG-based sensor as with a conventional laboratory system using optical spectrum analyzers for monitoring the minimum offset of LPG. The design of the fiber detection pair as a function of the parameters of the dispersion grating, the pick-up fiber and the LPG parameters, is presented in detail. Simulation of the detection system responses is presented using real from spectral shifts in nano-coated LPGs caused by the evaporation of various liquids such as water, ethanol and acetone, which are examples of corrosive, flammable and hazardous substances. Fiber optic sensors with similar detection can find applications in structural health monitoring for moisture detection, monitoring the spillage of toxic and flammable substances in industry etc.
Ken Dror, Shifra; Pavlotzky, Elsa; Barak, Mira
2016-01-01
Infectious gastroenteritis is a global health problem associated with high morbidity and mortality rates. Rapid and accurate diagnosis is crucial to allow appropriate and timely treatment. Current laboratory stool testing has a long turnaround time (TAT) and demands highly qualified personnel and multiple techniques. The need for high throughput and the number of possible enteric pathogens compels the implementation of a molecular approach which uses multiplex technology, without compromising performance requirements. In this work we evaluated the feasibility of the NanoCHIP® Gastrointestinal Panel (GIP) (Savyon Diagnostics, Ashdod, IL), a molecular microarray-based screening test, to be used in the routine workflow of our laboratory, a big outpatient microbiology laboratory. The NanoCHIP® GIP test provides simultaneous detection of nine major enteric bacteria and parasites: Campylobacter spp., Salmonella spp., Shigella spp., Giardia sp., Cryptosporidium spp., Entamoeba histolytica, Entamoeba dispar, Dientamoeba fragilis, and Blastocystis spp. The required high-throughput was obtained by the NanoCHIP® detection system together with the MagNA Pure 96 DNA purification system (Roche Diagnostics Ltd., Switzerland). This combined system has demonstrated a higher sensitivity and detection yield compared to the conventional methods in both, retrospective and prospective samples. The identification of multiple parasites and bacteria in a single test also enabled increased efficiency of detecting mixed infections, as well as reduced hands-on time and work load. In conclusion, the combination of these two automated systems is a proper response to the laboratory needs in terms of improving laboratory workflow, turn-around-time, minimizing human errors and can be efficiently integrated in the routine work of the laboratory. PMID:27447173
Muzzle flash localization for the dismounted soldier
NASA Astrophysics Data System (ADS)
Kennedy Scott, Will
2015-05-01
The ability to accurately and rapidly know the precise location of enemy fire would be a substantial capability enhancement to the dismounted soldier. Acoustic gun-shot detections systems can provide an approximate bearing but it is desired to precisely know the location (direction and range) of enemy fire; for example to know from `which window' the fire is coming from. Funded by the UK MOD (via Roke Manor Research) QinetiQ is developing an imaging solution built around an InGaAs camera. This paper presents work that QinetiQ has undertaken on the Muzzle Flash Locator system. Key technical challenges that have been overcome are explained and discussed in this paper. They include; the design of the optical sensor and processing hardware to meet low size, weight and power requirements; the algorithm approach required to maintain sensitivity whilst rejecting false alarms from sources such as close passing insects and sun glint from scene objects; and operation on the move. This work shows that such a sensor can provide sufficient sensitivity to detect muzzle flash events to militarily significant ranges and that such a system can be combined with an acoustic gunshot detection system to minimize the false alarm rate. The muzzle flash sensor developed in this work operates in real-time and has a field of view of approximately 29° (horizontal) by 12° (vertical) with a pixel resolution of 0.13°. The work has demonstrated that extension to a sensor with realistic angular rotation rate is feasible.
Acoustic signal detection of manatee calls
NASA Astrophysics Data System (ADS)
Niezrecki, Christopher; Phillips, Richard; Meyer, Michael; Beusse, Diedrich O.
2003-04-01
The West Indian manatee (trichechus manatus latirostris) has become endangered partly because of a growing number of collisions with boats. A system to warn boaters of the presence of manatees, that can signal to boaters that manatees are present in the immediate vicinity, could potentially reduce these boat collisions. In order to identify the presence of manatees, acoustic methods are employed. Within this paper, three different detection algorithms are used to detect the calls of the West Indian manatee. The detection systems are tested in the laboratory using simulated manatee vocalizations from an audio compact disc. The detection method that provides the best overall performance is able to correctly identify ~=96% of the manatee vocalizations. However the system also results in a false positive rate of ~=16%. The results of this work may ultimately lead to the development of a manatee warning system that can warn boaters of the presence of manatees.
Acoustic detection of manatee vocalizations
NASA Astrophysics Data System (ADS)
Niezrecki, Christopher; Phillips, Richard; Meyer, Michael; Beusse, Diedrich O.
2003-09-01
The West Indian manatee (trichechus manatus latirostris) has become endangered partly because of a growing number of collisions with boats. A system to warn boaters of the presence of manatees, that can signal to boaters that manatees are present in the immediate vicinity, could potentially reduce these boat collisions. In order to identify the presence of manatees, acoustic methods are employed. Within this paper, three different detection algorithms are used to detect the calls of the West Indian manatee. The detection systems are tested in the laboratory using simulated manatee vocalizations from an audio compact disk. The detection method that provides the best overall performance is able to correctly identify ~96% of the manatee vocalizations. However, the system also results in a false alarm rate of ~16%. The results of this work may ultimately lead to the development of a manatee warning system that can warn boaters of the presence of manatees.
A computational imaging target specific detectivity metric
NASA Astrophysics Data System (ADS)
Preece, Bradley L.; Nehmetallah, George
2017-05-01
Due to the large quantity of low-cost, high-speed computational processing available today, computational imaging (CI) systems are expected to have a major role for next generation multifunctional cameras. The purpose of this work is to quantify the performance of theses CI systems in a standardized manner. Due to the diversity of CI system designs that are available today or proposed in the near future, significant challenges in modeling and calculating a standardized detection signal-to-noise ratio (SNR) to measure the performance of these systems. In this paper, we developed a path forward for a standardized detectivity metric for CI systems. The detectivity metric is designed to evaluate the performance of a CI system searching for a specific known target or signal of interest, and is defined as the optimal linear matched filter SNR, similar to the Hotelling SNR, calculated in computational space with special considerations for standardization. Therefore, the detectivity metric is designed to be flexible, in order to handle various types of CI systems and specific targets, while keeping the complexity and assumptions of the systems to a minimum.
Pelvic artery calcification detection on CT scans using convolutional neural networks
NASA Astrophysics Data System (ADS)
Liu, Jiamin; Lu, Le; Yao, Jianhua; Bagheri, Mohammadhadi; Summers, Ronald M.
2017-03-01
Artery calcification is observed commonly in elderly patients, especially in patients with chronic kidney disease, and may affect coronary, carotid and peripheral arteries. Vascular calcification has been associated with many clinical outcomes. Manual identification of calcification in CT scans requires substantial expert interaction, which makes it time-consuming and infeasible for large-scale studies. Many works have been proposed for coronary artery calcification detection in cardiac CT scans. In these works, coronary artery extraction is commonly required for calcification detection. However, there are few works about abdominal or pelvic artery calcification detection. In this work, we present a method for automatic pelvic artery calcification detection on CT scan. This method uses the recent advanced faster region-based convolutional neural network (R-CNN) to directly identify artery calcification without a need for artery extraction since pelvic artery extraction itself is challenging. Our method first generates category-independent region proposals for each slice of the input CT scan using region proposal networks (RPN). Then, each region proposal is jointly classified and refined by softmax classifier and bounding box regressor. We applied the detection method to 500 images from 20 CT scans of patients for evaluation. The detection system achieved a 77.4% average precision and a 85% sensitivity at 1 false positive per image.
Over height impact avoidance and incident detection system : research project capsule.
DOT National Transportation Integrated Search
2016-07-01
During the construction and repair of bridges, work platforms or construction-related : containment may result in restricted vertical clearances at a work : location. Some tractor-trailer combinations are prone to over-height collisions : at these lo...
A computer system for the collection and analysis of information for cataract
NASA Astrophysics Data System (ADS)
Kirillovykh, K. D.; Nikitaev, V. G.; Ulin, S. E.; Polyakov, E. V.; Trubilin, V. N.; Orlova, O. M.
2017-01-01
Automation system for ophthalmologist proposed. The system allows to collect anamnesis(pre-history) using a questionnaire. Its use contributes to the early detection of cataracts. This system will allow the doctor to choose the possible types of intraocular lenses for phacoemulsification. Results of system work are shown.
Automated high-grade prostate cancer detection and ranking on whole slide images
NASA Astrophysics Data System (ADS)
Huang, Chao-Hui; Racoceanu, Daniel
2017-03-01
Recently, digital pathology (DP) has been largely improved due to the development of computer vision and machine learning. Automated detection of high-grade prostate carcinoma (HG-PCa) is an impactful medical use-case showing the paradigm of collaboration between DP and computer science: given a field of view (FOV) from a whole slide image (WSI), the computer-aided system is able to determine the grade by classifying the FOV. Various approaches have been reported based on this approach. However, there are two reasons supporting us to conduct this work: first, there is still room for improvement in terms of detection accuracy of HG-PCa; second, a clinical practice is more complex than the operation of simple image classification. FOV ranking is also an essential step. E.g., in clinical practice, a pathologist usually evaluates a case based on a few FOVs from the given WSI. Then, makes decision based on the most severe FOV. This important ranking scenario is not yet being well discussed. In this work, we introduce an automated detection and ranking system for PCa based on Gleason pattern discrimination. Our experiments suggested that the proposed system is able to perform high-accuracy detection ( 95:57% +/- 2:1%) and excellent performance of ranking. Hence, the proposed system has a great potential to support the daily tasks in the medical routine of clinical pathology.
Mobile Robot Lab Project to Introduce Engineering Students to Fault Diagnosis in Mechatronic Systems
ERIC Educational Resources Information Center
Gómez-de-Gabriel, Jesús Manuel; Mandow, Anthony; Fernández-Lozano, Jesús; García-Cerezo, Alfonso
2015-01-01
This paper proposes lab work for learning fault detection and diagnosis (FDD) in mechatronic systems. These skills are important for engineering education because FDD is a key capability of competitive processes and products. The intended outcome of the lab work is that students become aware of the importance of faulty conditions and learn to…
Pedestrian detection in video surveillance using fully convolutional YOLO neural network
NASA Astrophysics Data System (ADS)
Molchanov, V. V.; Vishnyakov, B. V.; Vizilter, Y. V.; Vishnyakova, O. V.; Knyaz, V. A.
2017-06-01
More than 80% of video surveillance systems are used for monitoring people. Old human detection algorithms, based on background and foreground modelling, could not even deal with a group of people, to say nothing of a crowd. Recent robust and highly effective pedestrian detection algorithms are a new milestone of video surveillance systems. Based on modern approaches in deep learning, these algorithms produce very discriminative features that can be used for getting robust inference in real visual scenes. They deal with such tasks as distinguishing different persons in a group, overcome problem with sufficient enclosures of human bodies by the foreground, detect various poses of people. In our work we use a new approach which enables to combine detection and classification tasks into one challenge using convolution neural networks. As a start point we choose YOLO CNN, whose authors propose a very efficient way of combining mentioned above tasks by learning a single neural network. This approach showed competitive results with state-of-the-art models such as FAST R-CNN, significantly overcoming them in speed, which allows us to apply it in real time video surveillance and other video monitoring systems. Despite all advantages it suffers from some known drawbacks, related to the fully-connected layers that obstruct applying the CNN to images with different resolution. Also it limits the ability to distinguish small close human figures in groups which is crucial for our tasks since we work with rather low quality images which often include dense small groups of people. In this work we gradually change network architecture to overcome mentioned above problems, train it on a complex pedestrian dataset and finally get the CNN detecting small pedestrians in real scenes.
Nonadiabatic tapered optical fiber sensor for measuring interaction nicotine with DNA
NASA Astrophysics Data System (ADS)
Zibaii, M. I.; Latifi, H.; Pourbeyram, H.; Gholami, M.; Taghipour, Z.; Saeedian, Z.; Hosseini, S. M.
2011-05-01
A nonadiabatic tapered optical fiber sensor was utilized for studying of bimolecular interactions including DNA-DNA and DNA-Drug interaction. This work presents a simple evanescent wave sensing system based on an interferometric approach, suitable to meet the requirements of lable-free sensor systems for detecting biomolecular interactions. We have demonstrated the measuring refractive index and the real time detection of interactions between biomolecules. Furthermore basic experiments were carried out, for detecting the hybridization of 25-mer DNA with an immobilized counterpart on the surface. The overall shift after the successful DNA hybridization was 9.5 nm. In this work, a new approach for studying DNA-drug interactions was successfully tested. Nicotine as a carcinogenic compound in cigarette smoke plays an important role in interaction with DNA. Different concentrations of nicotine were applied to observe the Longmuir interaction with DNA.
Ren, Kangning; Liang, Qionglin; Mu, Xuan; Luo, Guoan; Wang, Yiming
2009-03-07
A novel miniaturized, portable fluorescence detection system for capillary array electrophoresis (CAE) on a microfluidic chip was developed, consisting of a scanning light-emitting diode (LED) light source and a single point photoelectric sensor. Without charge coupled detector (CCD), lens, fibers and moving parts, the system was extremely simplified. Pulsed driving of the LED significantly increased the sensitivity, and greatly reduced the power consumption and photobleaching effect. The highly integrated system was robust and easy to use. All the advantages realized the concept of a portable micro-total analysis system (micro-TAS), which could work on a single universal serial bus (USB) port. Compared with traditional CAE detecting systems, the current system could scan the radial capillary array with high scanning rate. An 8-channel CAE of fluorescein isothiocyanate (FITC) labeled arginine (Arg) on chip was demonstrated with this system, resulting in a limit of detection (LOD) of 640 amol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, David R.; Wagstaff, Kiri L.; Majid, Walid A.
2011-07-10
Recent investigations reveal an important new class of transient radio phenomena that occur on submillisecond timescales. Often, transient surveys' data volumes are too large to archive exhaustively. Instead, an online automatic system must excise impulsive interference and detect candidate events in real time. This work presents a case study using data from multiple geographically distributed stations to perform simultaneous interference excision and transient detection. We present several algorithms that incorporate dedispersed data from multiple sites, and report experiments with a commensal real-time transient detection system on the Very Long Baseline Array. We test the system using observations of pulsar B0329+54.more » The multiple-station algorithms enhanced sensitivity for detection of individual pulses. These strategies could improve detection performance for a future generation of geographically distributed arrays such as the Australian Square Kilometre Array Pathfinder and the Square Kilometre Array.« less
Fast uncooled module 32×32 array of polycrystalline PbSe used for muzzle flash detection
NASA Astrophysics Data System (ADS)
Kastek, Mariusz; Dulski, Rafał; Trzaskawka, Piotr; Bieszczad, Grzegorz
2011-06-01
The paper presents some aspects of muzzle flash detection using low resolution polycrystalline PbSe uncooled 32×32 detectors array. This system for muzzle flash detection works in MWIR (3 - 5 microns) region and it is based on VPD (Vapor Phase Deposition) technology. The low density uncooled 32×32 array is suitable for being used in low cost IR imagers sensitive in the MWIR band with frame rates exceeding 1.000 Hz. The FPA detector, read-out electronics and processing electronics (allowing the implementation of some algorithms for muzzle flash detection) has been presented. The system has been tested at field test ground. Results of detection range measurement with two types of optical systems (wide and narrow field of view) have been shown. The initial results of testing of some algorithms for muzzle flash detection have been also presented.
NASA Technical Reports Server (NTRS)
Ruff, Gary A.
2011-01-01
The Fire Prevention, Detection, and Suppression (FPDS) project is a technology development effort within the Exploration Technology Development Program of the Exploration System Missions Directorate (ESMD) that addresses all aspects of fire safety aboard manned exploration systems. The overarching goal for work in the FPDS area is to develop technologies that will ensure crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the crew, mission, or system. This is accomplished by addressing the areas of (1) fire prevention and material flammability, (2) fire signatures and detection, and (3) fire suppression and response. This report describes the outcomes of this project from the formation of the Exploration Technology Development Program (ETDP) in October 2005 to September 31, 2010 when the Exploration Technology Development Program was replaced by the Enabling Technology Development and Demonstration Program. NASA s fire safety work will continue under this new program and will build upon the accomplishments described herein.
Last name analysis of mobility, gender imbalance, and nepotism across academic systems
2017-01-01
In biology, last names have been used as proxy for genetic relatedness in pioneering studies of neutral theory and human migrations. More recently, analyzing the last name distribution of Italian academics has raised the suspicion of nepotism, with faculty hiring their relatives for academic posts. Here, we analyze three large datasets containing the last names of all academics in Italy, researchers from France, and those working at top public institutions in the United States. Through simple randomizations, we show that the US academic system is geographically well-mixed, whereas Italian academics tend to work in their native region. By contrasting maiden and married names, we can detect academic couples in France. Finally, we detect the signature of nepotism in the Italian system, with a declining trend. The claim that our tests detect nepotism as opposed to other effects is supported by the fact that we obtain different results for the researchers hired after 2010, when an antinepotism law was in effect. PMID:28673985
Last name analysis of mobility, gender imbalance, and nepotism across academic systems.
Grilli, Jacopo; Allesina, Stefano
2017-07-18
In biology, last names have been used as proxy for genetic relatedness in pioneering studies of neutral theory and human migrations. More recently, analyzing the last name distribution of Italian academics has raised the suspicion of nepotism, with faculty hiring their relatives for academic posts. Here, we analyze three large datasets containing the last names of all academics in Italy, researchers from France, and those working at top public institutions in the United States. Through simple randomizations, we show that the US academic system is geographically well-mixed, whereas Italian academics tend to work in their native region. By contrasting maiden and married names, we can detect academic couples in France. Finally, we detect the signature of nepotism in the Italian system, with a declining trend. The claim that our tests detect nepotism as opposed to other effects is supported by the fact that we obtain different results for the researchers hired after 2010, when an antinepotism law was in effect.
NASA Astrophysics Data System (ADS)
Malof, Jordan M.; Collins, Leslie M.
2016-05-01
Many remote sensing modalities have been developed for buried target detection (BTD), each one offering relative advantages over the others. There has been interest in combining several modalities into a single BTD system that benefits from the advantages of each constituent sensor. Recently an approach was developed, called multi-state management (MSM), that aims to achieve this goal by separating BTD system operation into discrete states, each with different sensor activity and system velocity. Additionally, a modeling approach, called Q-MSM, was developed to quickly analyze multi-modality BTD systems operating with MSM. This work extends previous work by demonstrating how Q-MSM modeling can be used to design BTD systems operating with MSM, and to guide research to yield the most performance benefits. In this work an MSM system is considered that combines a forward-looking infrared (FLIR) camera and a ground penetrating radar (GPR). Experiments are conducted using a dataset of real, field-collected, data which demonstrates how the Q-MSM model can be used to evaluate performance benefits of altering, or improving via research investment, various characteristics of the GPR and FLIR systems. Q-MSM permits fast analysis that can determine where system improvements will have the greatest impact, and can therefore help guide BTD research.
NASA Technical Reports Server (NTRS)
Wu, Gilbert; Santiago, Confesor
2017-01-01
RTCA Special Committee (SC) 228 has initiated a second phase for the development of minimum operational performance standards (MOPS) for UAS detect and avoid (DAA) systems. Technologies to enable UAS with less available Size, Weight, and Power (SWaP) will be considered. RTCA SC-228 has established sub-working groups and one of the sub-working groups is focused on aligning modeling and simulations activities across all participating committee members. This briefing will describe NASAs modeling and simulation plans for the development of performance standards for low cost, size, weight, and power (C-SWaP) surveillance systems that detect and track non-cooperative aircraft. The briefing will also describe the simulation platform NASA intends to use to support end-to-end verification and validation for these DAA systems. Lastly, the briefing will highlight the experiment plan for our first simulation study, and provide a high-level description of our future flight test plans. This briefing does not contain any results or data.
NASA Astrophysics Data System (ADS)
Salimi, S.; Haseli, S.; Khorashad, A. S.; Adabi, F.
2016-09-01
The interaction between system and environment is a fundamental concept in the theory of open quantum systems. As a result of the interaction, an amount of correlation (both classical and quantum) emerges between the system and the environment. In this work, we recall the quantity that will be very useful to describe the emergence of the correlation between the system and the environment, namely, the total entropy production. Appearance of total entropy production is due to the entanglement production between the system and the environment. In this work, we discuss about the role of the total entropy production for detecting the non-Markovianity. By utilizing the relation between the total entropy production and total correlation between subsystems, one can see a temporary decrease of total entropy production is a signature of non-Markovianity. We apply our criterion for the special case, where the composite system has initial correlation with environment.
Parallel detection experiment of fluorescence confocal microscopy using DMD.
Wang, Qingqing; Zheng, Jihong; Wang, Kangni; Gui, Kun; Guo, Hanming; Zhuang, Songlin
2016-05-01
Parallel detection of fluorescence confocal microscopy (PDFCM) system based on Digital Micromirror Device (DMD) is reported in this paper in order to realize simultaneous multi-channel imaging and improve detection speed. DMD is added into PDFCM system, working to take replace of the single traditional pinhole in the confocal system, which divides the laser source into multiple excitation beams. The PDFCM imaging system based on DMD is experimentally set up. The multi-channel image of fluorescence signal of potato cells sample is detected by parallel lateral scanning in order to verify the feasibility of introducing the DMD into fluorescence confocal microscope. In addition, for the purpose of characterizing the microscope, the depth response curve is also acquired. The experimental result shows that in contrast to conventional microscopy, the DMD-based PDFCM system has higher axial resolution and faster detection speed, which may bring some potential benefits in the biology and medicine analysis. SCANNING 38:234-239, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Study on on-machine defects measuring system on high power laser optical elements
NASA Astrophysics Data System (ADS)
Luo, Chi; Shi, Feng; Lin, Zhifan; Zhang, Tong; Wang, Guilin
2017-10-01
The influence of surface defects on high power laser optical elements will cause some harm to the performances of imaging system, including the energy consumption and the damage of film layer. To further increase surface defects on high power laser optical element, on-machine defects measuring system was investigated. Firstly, the selection and design are completed by the working condition analysis of the on-machine defects detection system. By designing on processing algorithms to realize the classification recognition and evaluation of surface defects. The calibration experiment of the scratch was done by using the self-made standard alignment plate. Finally, the detection and evaluation of surface defects of large diameter semi-cylindrical silicon mirror are realized. The calibration results show that the size deviation is less than 4% that meet the precision requirement of the detection of the defects. Through the detection of images the on-machine defects detection system can realize the accurate identification of surface defects.
NASA Technical Reports Server (NTRS)
Fern, Lisa; Rorie, Conrad; Shively, Jay
2015-01-01
This presentation provides an overview of the work the Human Systems Integration (HSI) sub-project has done on detect and avoid (DAA) displays while working on the UAS Integration into the NAS project. Much of the work has been used to support the ongoing development of minimum operational performance standards (MOPS) for UAS by RTCA Special Committee 228. The design and results of three different human-in-the-loop simulations are discussed, with particular emphasis on the role of the UAS pilot in the Self Separation Timeline.
Optical fluorescence biosensor for plant water stress detection
NASA Astrophysics Data System (ADS)
Chong, Jenny P. C.; Liew, O. W.; Li, B. Q.; Asundi, A. K.
2007-05-01
Precision farming in arable agriculture and horticulture allows conservative use of resources that are applied according to plant needs. The growing concern for sustainability in crop production has accentuated the significance of our work to develop a rapid, sensitive and non-destructive spectroscopic method for real-time monitoring of plant water stress. Elucidation of crop water status before the onset of irreversible cellular damage is critical for effective water management to ensure maximum crop yield and profit margin. A two-component bio-sensing system comprising transgenic 'Indicator Plants' and a spectrometer-linked stereoscopic microscope was developed to detect early signs of water stress before the permanent wilting point is reached. The 'Indicator Plants' are transgenic Petunia hybrida genetically engineered with a drought-responsive promoter-linked enhanced green fluorescent protein marker gene (EGFP). No EGFP fluorescence was detected prior to induction of dehydration stress. Fluorescence emission intensity increased with dehydration period and was found mainly in the stems, leaf veins and leaf tips. While fluorescence emission above endogenous background was detectable after 2 hours of water stress treatment, the plants reached permanent wilting point after 6 hours, showing that our system was able to detect water stress prior to plant entry into the stage of irreversible damage. Future work will be geared towards overcoming biological and instrument-related difficulties encountered in our initial detection system.
Lopez-Martin, Manuel; Carro, Belen; Sanchez-Esguevillas, Antonio; Lloret, Jaime
2017-08-26
The purpose of a Network Intrusion Detection System is to detect intrusive, malicious activities or policy violations in a host or host's network. In current networks, such systems are becoming more important as the number and variety of attacks increase along with the volume and sensitiveness of the information exchanged. This is of particular interest to Internet of Things networks, where an intrusion detection system will be critical as its economic importance continues to grow, making it the focus of future intrusion attacks. In this work, we propose a new network intrusion detection method that is appropriate for an Internet of Things network. The proposed method is based on a conditional variational autoencoder with a specific architecture that integrates the intrusion labels inside the decoder layers. The proposed method is less complex than other unsupervised methods based on a variational autoencoder and it provides better classification results than other familiar classifiers. More important, the method can perform feature reconstruction, that is, it is able to recover missing features from incomplete training datasets. We demonstrate that the reconstruction accuracy is very high, even for categorical features with a high number of distinct values. This work is unique in the network intrusion detection field, presenting the first application of a conditional variational autoencoder and providing the first algorithm to perform feature recovery.
Carro, Belen; Sanchez-Esguevillas, Antonio
2017-01-01
The purpose of a Network Intrusion Detection System is to detect intrusive, malicious activities or policy violations in a host or host’s network. In current networks, such systems are becoming more important as the number and variety of attacks increase along with the volume and sensitiveness of the information exchanged. This is of particular interest to Internet of Things networks, where an intrusion detection system will be critical as its economic importance continues to grow, making it the focus of future intrusion attacks. In this work, we propose a new network intrusion detection method that is appropriate for an Internet of Things network. The proposed method is based on a conditional variational autoencoder with a specific architecture that integrates the intrusion labels inside the decoder layers. The proposed method is less complex than other unsupervised methods based on a variational autoencoder and it provides better classification results than other familiar classifiers. More important, the method can perform feature reconstruction, that is, it is able to recover missing features from incomplete training datasets. We demonstrate that the reconstruction accuracy is very high, even for categorical features with a high number of distinct values. This work is unique in the network intrusion detection field, presenting the first application of a conditional variational autoencoder and providing the first algorithm to perform feature recovery. PMID:28846608
NASA Technical Reports Server (NTRS)
Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.
1992-01-01
In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the space shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the space shuttle main engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.
Development of gas chromatographic methods for the analyses of organic carbonate-based electrolytes
NASA Astrophysics Data System (ADS)
Terborg, Lydia; Weber, Sascha; Passerini, Stefano; Winter, Martin; Karst, Uwe; Nowak, Sascha
2014-01-01
In this work, novel methods based on gas chromatography (GC) for the investigation of common organic carbonate-based electrolyte systems are presented, which are used in lithium ion batteries. The methods were developed for flame ionization detection (FID), mass spectrometric detection (MS). Further, headspace (HS) sampling for the investigation of solid samples like electrodes is reported. Limits of detection are reported for FID. Finally, the developed methods were applied to the electrolyte system of commercially available lithium ion batteries as well as on in-house assembled cells.
Yao, Yongchao; Ju, Xiaodong; Lu, Junqiang; Men, Baiyong
2017-06-10
A logging-while-drilling (LWD) caliper is a tool used for the real-time measurement of a borehole diameter in oil drilling engineering. This study introduces the mechanical structure and working principle of a new LWD caliper based on ultrasonic distance measurement (UDM). The detection range is a major performance index of a UDM system. This index is determined by the blind zone length and remote reflecting interface detection capability of the system. To reduce the blind zone length and detect near the reflecting interface, a full bridge acoustic emission technique based on bootstrap gate driver (BGD) and metal-oxide-semiconductor field effect transistor (MOSFET) is designed by analyzing the working principle and impedance characteristics of a given piezoelectric transducer. To detect the remote reflecting interface and reduce the dynamic range of the received echo signals, the relationships between the echo amplitude and propagation distance of ultrasonic waves are determined. A signal compensation technique based on time-varying amplification theory, which can automatically change the gain according to the echo arrival time is designed. Lastly, the aforementioned techniques and corresponding circuits are experimentally verified. Results show that the blind zone length in the UDM system of the LWD caliper is significantly reduced and the capability to detect the remote reflecting interface is considerably improved.
Yao, Yongchao; Ju, Xiaodong; Lu, Junqiang; Men, Baiyong
2017-01-01
A logging-while-drilling (LWD) caliper is a tool used for the real-time measurement of a borehole diameter in oil drilling engineering. This study introduces the mechanical structure and working principle of a new LWD caliper based on ultrasonic distance measurement (UDM). The detection range is a major performance index of a UDM system. This index is determined by the blind zone length and remote reflecting interface detection capability of the system. To reduce the blind zone length and detect near the reflecting interface, a full bridge acoustic emission technique based on bootstrap gate driver (BGD) and metal-oxide-semiconductor field effect transistor (MOSFET) is designed by analyzing the working principle and impedance characteristics of a given piezoelectric transducer. To detect the remote reflecting interface and reduce the dynamic range of the received echo signals, the relationships between the echo amplitude and propagation distance of ultrasonic waves are determined. A signal compensation technique based on time-varying amplification theory, which can automatically change the gain according to the echo arrival time is designed. Lastly, the aforementioned techniques and corresponding circuits are experimentally verified. Results show that the blind zone length in the UDM system of the LWD caliper is significantly reduced and the capability to detect the remote reflecting interface is considerably improved. PMID:28604603
NASA Astrophysics Data System (ADS)
Abdi, Abdi M.; Szu, Harold H.
2003-04-01
With the growing rate of interconnection among computer systems, network security is becoming a real challenge. Intrusion Detection System (IDS) is designed to protect the availability, confidentiality and integrity of critical network information systems. Today"s approach to network intrusion detection involves the use of rule-based expert systems to identify an indication of known attack or anomalies. However, these techniques are less successful in identifying today"s attacks. Hackers are perpetually inventing new and previously unanticipated techniques to compromise information infrastructure. This paper proposes a dynamic way of detecting network intruders on time serious data. The proposed approach consists of a two-step process. Firstly, obtaining an efficient multi-user detection method, employing the recently introduced complexity minimization approach as a generalization of a standard ICA. Secondly, we identified unsupervised learning neural network architecture based on Kohonen"s Self-Organizing Map for potential functional clustering. These two steps working together adaptively will provide a pseudo-real time novelty detection attribute to supplement the current intrusion detection statistical methodology.
Utilization of optical emission endpoint in photomask dry etch processing
NASA Astrophysics Data System (ADS)
Faure, Thomas B.; Huynh, Cuc; Lercel, Michael J.; Smith, Adam; Wagner, Thomas
2002-03-01
Use of accurate and repeatable endpoint detection during dry etch processing of photomask is very important for obtaining good mask mean-to-target and CD uniformity performance. It was found that the typical laser reflectivity endpoint detecting system used on photomask dry etch systems had several key limitations that caused unnecessary scrap and non-optimum image size performance. Consequently, work to develop and implement use of a more robust optical emission endpoint detection system for chrome dry etch processing of photomask was performed. Initial feasibility studies showed that the emission technique was sensitive enough to monitor pattern loadings on contact and via level masks down to 3 percent pattern coverage. Additional work was performed to further improve this to 1 percent pattern coverage by optimizing the endpoint detection parameters. Comparison studies of mask mean-to-target performance and CD uniformity were performed with the use of optical emission endpoint versus laser endpoint for masks built using TOK IP3600 and ZEP 7000 resist systems. It was found that an improvement in mean-to-target performance and CD uniformity was realized on several types of production masks. In addition, part-to-part endpoint time repeatability was found to be significantly improved with the use of optical emission endpoint.
ERIC Educational Resources Information Center
Economou, A.; Papargyris, D.; Stratis, J.
2004-01-01
The development of an FI analyzer for chemiluminescence detection using a low-cost photoiodide is presented. The experiment clearly demonstrates in a single interdisciplinary project the way in which different aspects in chemical instrumentation fit together to produce a working analytical system.
Exploring image-based classification to detect vehicle make and model.
DOT National Transportation Integrated Search
2013-11-01
The goal of this work is to improve the understanding of the impact of carbon emissions caused by vehicular traffic on : highway systems. In order to achieve this goal, this work obtains a novel pipeline for vehicle segmentation, tracking : and class...
An Approach to Detect and Mitigate Ice Particle Accretion in Aircraft Engine Compression Systems
NASA Technical Reports Server (NTRS)
May, Ryan D.; Guo, Ten-Huei; Simon, Donald L.
2013-01-01
The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation sector. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. This work focuses on developing an accurate and reliable algorithm for detecting the accretion of ice in the low pressure compressor of a generic 40,000 lbf thrust class engine. The algorithm uses only the two shaft speed sensors and works regardless of engine age, operating condition, and power level. In a 10,000-case Monte Carlo simulation, the detection approach was found to have excellent capability at determining ice accretion from sensor noise with detection occurring when ice blocks an average of 6.8 percent of the low pressure compressor area. Finally, an initial study highlights a potential mitigation strategy that uses the existing engine actuators to raise the temperature in the low pressure compressor in an effort to reduce the rate at which ice accretes.
An Approach to Detect and Mitigate Ice Particle Accretion in Aircraft Engine Compression Systems
NASA Technical Reports Server (NTRS)
May, Ryan D.; Guo, Ten-Huei; Simon, Donald L.
2013-01-01
The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation sector. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. This work focuses on developing an accurate and reliable algorithm for detecting the accretion of ice in the low pressure compressor of a generic 40,000 lbf thrust class engine. The algorithm uses only the two shaft speed sensors and works regardless of engine age, operating condition, and power level. In a 10,000-case Monte Carlo simulation, the detection approach was found to have excellent capability at determining ice accretion from sensor noise with detection occurring when ice blocks an average of 6.8% of the low pressure compressor area. Finally, an initial study highlights a potential mitigation strategy that uses the existing engine actuators to raise the temperature in the low pressure compressor in an effort to reduce the rate at which ice accretes.
Design of tracking and detecting lens system by diffractive optical method
NASA Astrophysics Data System (ADS)
Yang, Jiang; Qi, Bo; Ren, Ge; Zhou, Jianwei
2016-10-01
Many target-tracking applications require an optical system to acquire the target for tracking and identification. This paper describes a new detecting optical system that can provide automatic flying object detecting, tracking and measuring in visible band. The main feature of the detecting lens system is the combination of diffractive optics with traditional lens design by a technique was invented by Schupmann. Diffractive lens has great potential for developing the larger aperture and lightweight lens. First, the optical system scheme was described. Then the Schupmann achromatic principle with diffractive lens and corrective optics is introduced. According to the technical features and requirements of the optical imaging system for detecting and tracking, we designed a lens system with flat surface Fresnel lens and cancels the optical system chromatic aberration by another flat surface Fresnel lens with effective focal length of 1980mm, an F-Number of F/9.9 and a field of view of 2ωω = 14.2', spatial resolution of 46 lp/mm and a working wavelength range of 0.6 0.85um. At last, the system is compact and easy to fabricate and assembly, the diffuse spot size and MTF function and other analysis provide good performance.
Lodeiro, Carlos; Capelo, José Luis; Mejuto, Juan Carlos; Oliveira, Elisabete; Santos, Hugo M; Pedras, Bruno; Nuñez, Cristina
2010-08-01
This critical review describes some developments on the chemistry of fluorescent and colorimetric molecular probes or chemosensors, based on polyamines and associated compounds having oxygen and/or sulfur as donor atoms. The reported systems are essentially based on some selected published work in this field in the last five years, and in the work developed by the authors from 2000 onwards. Some interesting properties beyond sensing molecules, ions or/and cations by fluorescence, colorimetry as well as by MALDI-TOF MS spectrometry can arise from these systems. A short brief on different examples activated by PET (photoinduced electron transfer), ICT (internal charge transfer) and EET (electronic energy transfer) phenomena will be provided. Finally the introduction of bio-inspired compounds derived from emissive amino acid or short peptide systems and nanoparticle devices to detect metal ions will be reviewed (202 references).
Combined hostile fire and optics detection
NASA Astrophysics Data System (ADS)
Brännlund, Carl; Tidström, Jonas; Henriksson, Markus; Sjöqvist, Lars
2013-10-01
Snipers and other optically guided weapon systems are serious threats in military operations. We have studied a SWIR (Short Wave Infrared) camera-based system with capability to detect and locate snipers both before and after shot over a large field-of-view. The high frame rate SWIR-camera allows resolution of the temporal profile of muzzle flashes which is the infrared signature associated with the ejection of the bullet from the rifle. The capability to detect and discriminate sniper muzzle flashes with this system has been verified by FOI in earlier studies. In this work we have extended the system by adding a laser channel for optics detection. A laser diode with slit-shaped beam profile is scanned over the camera field-of-view to detect retro reflection from optical sights. The optics detection system has been tested at various distances up to 1.15 km showing the feasibility to detect rifle scopes in full daylight. The high speed camera gives the possibility to discriminate false alarms by analyzing the temporal data. The intensity variation, caused by atmospheric turbulence, enables discrimination of small sights from larger reflectors due to aperture averaging, although the targets only cover a single pixel. It is shown that optics detection can be integrated in combination with muzzle flash detection by adding a scanning rectangular laser slit. The overall optics detection capability by continuous surveillance of a relatively large field-of-view looks promising. This type of multifunctional system may become an important tool to detect snipers before and after shot.
Guo, Xiaoling; Wang, Qian; Li, Jinlian; Cui, Jiwen; Zhou, Shi; Hao, Sue; Wu, Dongmei
2015-02-15
Developing a reliable and cost-effective miniaturized electroanalysis tool is of vital importance for cell electrochemical analysis. In this work, a novel mini-electrochemical system has been constructed for trace detection of cell samples. The mini-electrochemical system was constructed by integrating a pencil graphite modified by threonine (PT/PGE) as working electrode, an Ag/AgCl (Sat'd) as reference electrode, platinum wire as counter electrode and a micropipet tip as electrochemical cell. The mini-electrochemical system not only saved dramatically usage of samples from 500 μL in traditional electrochemical system to 10 μL, but also possessed an adjustable active surface area by changing the length of PT/PGE immersed into the cell suspension from 3mm to 15 mm, and the linear equation was ipa = 2.25 l-2.64 (R(2) = 0.990). The system was successfully used in detection of MCF-7 cells, and a nonlinear exponent relationship between peak current and the cell number range from 3.0 × l0(3) to 7.0 × l0(6) cells mL(-1) was established firstly with the index equation ipa = 59.557 e (-C/1.709)-71.486 (R(2) = 0.954). Finally, the system was used for evaluating the sensitivity of cyclophosphamide on MCF-7 cell, and the result was corresponded well with that of MTT assay. The proposed system is sufficiently simple, cheap and easy operated, and could be applied in electrochemical detection of other biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.
A harmonic pulse testing method for leakage detection in deep subsurface storage formations
NASA Astrophysics Data System (ADS)
Sun, Alexander Y.; Lu, Jiemin; Hovorka, Susan
2015-06-01
Detection of leakage in deep geologic storage formations (e.g., carbon sequestration sites) is a challenging problem. This study investigates an easy-to-implement frequency domain leakage detection technology based on harmonic pulse testing (HPT). Unlike conventional constant-rate pressure interference tests, HPT stimulates a reservoir using periodic injection rates. The fundamental principle underlying HPT-based leakage detection is that leakage modifies a storage system's frequency response function, thus providing clues of system malfunction. During operations, routine HPTs can be conducted at multiple pulsing frequencies to obtain experimental frequency response functions, using which the possible time-lapse changes are examined. In this work, a set of analytical frequency response solutions is derived for predicting system responses with and without leaks for single-phase flow systems. Sensitivity studies show that HPT can effectively reveal the presence of leaks. A search procedure is then prescribed for locating the actual leaks using amplitude and phase information obtained from HPT, and the resulting optimization problem is solved using the genetic algorithm. For multiphase flows, the applicability of HPT-based leakage detection procedure is exemplified numerically using a carbon sequestration problem. Results show that the detection procedure is applicable if the average reservoir conditions in the testing zone stay relatively constant during the tests, which is a working assumption under many other interpretation methods for pressure interference tests. HPT is a cost-effective tool that only requires periodic modification of the nominal injection rate. Thus it can be incorporated into existing monitoring plans with little additional investment.
NASA Technical Reports Server (NTRS)
Kim, Sungwan
1994-01-01
System parameters should be tracked on-line to build a reconfigurable control system even though there exists an abrupt change. For this purpose, a new performance index that we are studying is the speed of adaptation- how quickly does the system determine that a change has occurred? In this paper, a new, robust algorithm that is optimized to minimize the time delay in detecting a change for fixed false alarm probability is proposed. Simulation results for the aircraft lateral motion with a known or unknown change in control gain matrices, in the presence of doublet input, indicate that the algorithm works fairly well. One of its distinguishing properties is that detection delay of this algorithm is superior to that of Whiteness Test.
NASA Astrophysics Data System (ADS)
Ryzhikov, Volodymir D.; Opolonin, Oleksandr D.; Galkin, Serhiy M.; Voronkin, Yevheniy F.; Lysetska, Olena K.; Kostyukevych, Serhiy A.
2009-08-01
Detection of X-ray radiation by digital radiographic systems (DRS) is realized using multi-element detector arrays of scintillator-photodiode (S-PD) type. Accounting for our experience in development of X-ray introscopy systems, possibilities can be found for improvement of DRS detection efficiency. Namely, a more efficient use of the dynamic range of the analog-to-digit converter by means of instrumental compensation of scatter of detector characteristics and smaller apertures of individual detection channels. However, smaller apertures lead to lower levels of useful signals, and a problem emerges of signal interference over neighboring channels, which is related to optical separation of the scintillation elements. Also, more compact arrangement of electronic components of preamplifiers is achieved. The latter problem is solved by using multi-channel (from 32 to 1024 channels) photoreceiving devices (PRD). PRD has a set of photosensitive elements formed on one crystal, as well as shift registers ensuring preliminary amplification of signals and series connection to one outlet. The work envisages creation of receiving-detecting circuit (RDC) with improved spatial resolution (ISR) with the aim of producing advanced DRS with improved characteristics: density resolution better than 0.9%, and detecting ability allowing detection of θ 0.5 mm steel wire behind 6 mm steel. The work will result in the development of RDC with ISR (800-200 microns). In combination with various ionizing radiation sources and scanning mechanisms this will allow creation of DRS for many tasks of non-destructive testing (NDT) and technical diagnostics (TD), in particular, for check-up of pipelines, objects of oil and gas industries, etc. This work was supported by the Ministry of Education and Science of Ukraine, the U.S. Civilian Research and Development Foundation (CRDF), and by the NATO Science for Peace and Security Program (Project SfP-982823).
NASA Technical Reports Server (NTRS)
Smith, Alphonso C.
1998-01-01
Fabry-Perot Interferometer (FPI) sensor detection system was continued and refined modifications were made in the data acquisition and evaluation process during the last year. The ultrasonic and FPI detection system was improved from one to multiple sensor detectors. Physical models were developed to understand the physical phenomenon of this work. Multilayered flawed samples were fabricated for inspection by a prototype ultrasonic and FPI detection. Experimental data was verified with simulated results. Undergraduate students that were associated with this research gained valuable knowledge from this experience. This was a learning process helping students to understand the importance of research and its application to solve important technological problems. As a result of our students exposure to this research two and planning to continue this type of research work in graduate school. A prototype instrument package was laboratory tested an actual airframe structure for documentation purposes.
Incorporation of operator knowledge for improved HMDS GPR classification
NASA Astrophysics Data System (ADS)
Kennedy, Levi; McClelland, Jessee R.; Walters, Joshua R.
2012-06-01
The Husky Mine Detection System (HMDS) detects and alerts operators to potential threats observed in groundpenetrating RADAR (GPR) data. In the current system architecture, the classifiers have been trained using available data from multiple training sites. Changes in target types, clutter types, and operational conditions may result in statistical differences between the training data and the testing data for the underlying features used by the classifier, potentially resulting in an increased false alarm rate or a lower probability of detection for the system. In the current mode of operation, the automated detection system alerts the human operator when a target-like object is detected. The operator then uses data visualization software, contextual information, and human intuition to decide whether the alarm presented is an actual target or a false alarm. When the statistics of the training data and the testing data are mismatched, the automated detection system can overwhelm the analyst with an excessive number of false alarms. This is evident in the performance of and the data collected from deployed systems. This work demonstrates that analyst feedback can be successfully used to re-train a classifier to account for variable testing data statistics not originally captured in the initial training data.
Zhang, Xiaoliang; Li, Jiali; Liu, Yugang; Zhang, Zutao; Wang, Zhuojun; Luo, Dianyuan; Zhou, Xiang; Zhu, Miankuan; Salman, Waleed; Hu, Guangdi; Wang, Chunbai
2017-03-01
The vigilance of the driver is important for railway safety, despite not being included in the safety management system (SMS) for high-speed train safety. In this paper, a novel fatigue detection system for high-speed train safety based on monitoring train driver vigilance using a wireless wearable electroencephalograph (EEG) is presented. This system is designed to detect whether the driver is drowsiness. The proposed system consists of three main parts: (1) a wireless wearable EEG collection; (2) train driver vigilance detection; and (3) early warning device for train driver. In the first part, an 8-channel wireless wearable brain-computer interface (BCI) device acquires the locomotive driver's brain EEG signal comfortably under high-speed train-driving conditions. The recorded data are transmitted to a personal computer (PC) via Bluetooth. In the second step, a support vector machine (SVM) classification algorithm is implemented to determine the vigilance level using the Fast Fourier transform (FFT) to extract the EEG power spectrum density (PSD). In addition, an early warning device begins to work if fatigue is detected. The simulation and test results demonstrate the feasibility of the proposed fatigue detection system for high-speed train safety.
Processing bronchial sonograms to detect respiratory cycle fragments
NASA Astrophysics Data System (ADS)
Bureev, A. Sh; Zhdanov, D. S.; Zemlyakov, I. Yu; Svetlik, M. V.
2014-10-01
This article describes the authors' results of work on the development of a method for the automated assessment of the state of the human bronchopulmonary system based on acoustic data. In particular, the article covers the method of detecting breath sounds on bronchial sonograms obtained during the auscultation process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinohara, K., E-mail: shinohara.koji@jaea.go.jp; Ochiai, K.; Sukegawa, A.
In order to increase the count rate capability of a neutron detection system as a whole, we propose a multi-stage neutron detection system. Experiments to test the effectiveness of this concept were carried out on Fusion Neutronics Source. Comparing four configurations of alignment, it was found that the influence of an anterior stage on a posterior stage was negligible for the pulse height distribution. The two-stage system using 25 mm thickness scintillator was about 1.65 times the count rate capability of a single detector system for d-D neutrons and was about 1.8 times the count rate capability for d-T neutrons.more » The results suggested that the concept of a multi-stage detection system will work in practice.« less
NASA Astrophysics Data System (ADS)
Goodman, J.; McKay, J.; Evans, W.; Gadsden, S. Andrew
2016-05-01
This paper is based on a proposed unmanned aerial system platform that is to be outfitted with high-resolution sensors. The proposed system is to be tethered to a moveable ground station, which may be a research vessel or some form of ground vehicle (e.g., car, truck, or rover). The sensors include, at a minimum: camera, infrared sensor, thermal, normalized difference vegetation index (NDVI) camera, global positioning system (GPS), and a light-based radar (LIDAR). The purpose of this paper is to provide an overview of existing methods for pollution detection of failing septic systems, and to introduce the proposed system. Future work will look at the high-resolution data from the sensors and integrating the data through a process called information fusion. Typically, this process is done using the popular and well-published Kalman filter (or its nonlinear formulations, such as the extended Kalman filter). However, future work will look at using a new type of strategy based on variable structure estimation for the information fusion portion of the data processing. It is hypothesized that fusing data from the thermal and NDVI sensors will be more accurate and reliable for a multitude of applications, including the detection of pollution entering the Chesapeake Bay area.
NASA Astrophysics Data System (ADS)
Ding, Hong-sheng; Tong, Li-ge; Chen, Geng-hua
2001-08-01
A new confocal Fabry-Pérot interferometer (CFPI) has been constructed. By using both of the conjugate rays, the sensitivity of the system was doubled. Moreover, the negative feedback control loop of a single-chip microcomputer (MCS-51) was applied to stabilize the working point at an optimum position. The system has been used in detecting the piezoelectric ultrasonic vibration on the surface of an aluminium sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terracciano, Anthony; Thurmond, Kyle; Villar, Michael
As space travel matures and extended duration voyages become increasingly common, it will be necessary to include arrays of early fire detection systems aboard spacefaring vessels, space habitats, and in spacesuits. As gasses that are relevant to combustion and pyrolysis have absorption features in the midinfrared range, it is possible to utilize absorption spectroscopy as a means of detecting and quantifying the concentration of these hazardous compounds. Within this work, a sensor for detecting carbon dioxide has been designed and tested autonomously on a high-altitude balloon flight. The sensor utilizes a 4.2-mm lightemitting diode source, amplitude modulation to characterize speciesmore » concentrations, and frequency modulation to characterize ambient temperature. Future work will include expanding the sensor design to detect other gases, and demonstrating suborbital flight capability.« less
Terracciano, Anthony; Thurmond, Kyle; Villar, Michael; ...
2018-03-12
As space travel matures and extended duration voyages become increasingly common, it will be necessary to include arrays of early fire detection systems aboard spacefaring vessels, space habitats, and in spacesuits. As gasses that are relevant to combustion and pyrolysis have absorption features in the midinfrared range, it is possible to utilize absorption spectroscopy as a means of detecting and quantifying the concentration of these hazardous compounds. Within this work, a sensor for detecting carbon dioxide has been designed and tested autonomously on a high-altitude balloon flight. The sensor utilizes a 4.2-mm lightemitting diode source, amplitude modulation to characterize speciesmore » concentrations, and frequency modulation to characterize ambient temperature. Future work will include expanding the sensor design to detect other gases, and demonstrating suborbital flight capability.« less
Online detecting system of roller wear based on laser-linear array CCD technology
NASA Astrophysics Data System (ADS)
Guo, Yuan
2010-10-01
Roller is an important metallurgy tool in the rolling mill. And the surface of a roller affects the quantity of the rolling product directly. After using a period of time, roller must be repaired or replaced. Examining the profile of a working roller between the intervals of rolling is called online detecting for roller wear. The study of online detecting roller wear is very important for selecting the grinding time in reason, reducing the exchanging times of rollers, improving the quality of the product and realizing online grinding rollers. By applying the laser-linear array CCD detective technology, a method for online non-touch detecting roller wear was brought forward. The principle, composition and the operation process of the linear array CCD detecting system were expatiated. And an error compensation algorithm is exactly calculated to offset the shift of the roller axis in this measurement system. So the stability and the accuracy were improved remarkably. The experiment proves that the accuracy of the detecting system reaches to the demand of practical production process. It can provide a new method of high speed and high accuracy online detecting for roller wear.
Faverjon, C; Vial, F; Andersson, M G; Lecollinet, S; Leblond, A
2017-04-01
West Nile virus (WNV) is a growing public health concern in Europe and there is a need to develop more efficient early detection systems. Nervous signs in horses are considered to be an early indicator of WNV and, using them in a syndromic surveillance system, might be relevant. In our study, we assessed whether or not data collected by the passive French surveillance system for the surveillance of equine diseases can be used routinely for the detection of WNV. We tested several pre-processing methods and detection algorithms based on regression. We evaluated system performances using simulated and authentic data and compared them to those of the surveillance system currently in place. Our results show that the current detection algorithm provided similar performances to those tested using simulated and real data. However, regression models can be easily and better adapted to surveillance objectives. The detection performances obtained were compatible with the early detection of WNV outbreaks in France (i.e. sensitivity 98%, specificity >94%, timeliness 2·5 weeks and around four false alarms per year) but further work is needed to determine the most suitable alarm threshold for WNV surveillance in France using cost-efficiency analysis.
Fault detection of Tennessee Eastman process based on topological features and SVM
NASA Astrophysics Data System (ADS)
Zhao, Huiyang; Hu, Yanzhu; Ai, Xinbo; Hu, Yu; Meng, Zhen
2018-03-01
Fault detection in industrial process is a popular research topic. Although the distributed control system(DCS) has been introduced to monitor the state of industrial process, it still cannot satisfy all the requirements for fault detection of all the industrial systems. In this paper, we proposed a novel method based on topological features and support vector machine(SVM), for fault detection of industrial process. The proposed method takes global information of measured variables into account by complex network model and predicts whether a system has generated some faults or not by SVM. The proposed method can be divided into four steps, i.e. network construction, network analysis, model training and model testing respectively. Finally, we apply the model to Tennessee Eastman process(TEP). The results show that this method works well and can be a useful supplement for fault detection of industrial process.
Wang, Guohua; Liu, Qiong
2015-01-01
Far-infrared pedestrian detection approaches for advanced driver-assistance systems based on high-dimensional features fail to simultaneously achieve robust and real-time detection. We propose a robust and real-time pedestrian detection system characterized by novel candidate filters, novel pedestrian features and multi-frame approval matching in a coarse-to-fine fashion. Firstly, we design two filters based on the pedestrians’ head and the road to select the candidates after applying a pedestrian segmentation algorithm to reduce false alarms. Secondly, we propose a novel feature encapsulating both the relationship of oriented gradient distribution and the code of oriented gradient to deal with the enormous variance in pedestrians’ size and appearance. Thirdly, we introduce a multi-frame approval matching approach utilizing the spatiotemporal continuity of pedestrians to increase the detection rate. Large-scale experiments indicate that the system works in real time and the accuracy has improved about 9% compared with approaches based on high-dimensional features only. PMID:26703611
Wang, Guohua; Liu, Qiong
2015-12-21
Far-infrared pedestrian detection approaches for advanced driver-assistance systems based on high-dimensional features fail to simultaneously achieve robust and real-time detection. We propose a robust and real-time pedestrian detection system characterized by novel candidate filters, novel pedestrian features and multi-frame approval matching in a coarse-to-fine fashion. Firstly, we design two filters based on the pedestrians' head and the road to select the candidates after applying a pedestrian segmentation algorithm to reduce false alarms. Secondly, we propose a novel feature encapsulating both the relationship of oriented gradient distribution and the code of oriented gradient to deal with the enormous variance in pedestrians' size and appearance. Thirdly, we introduce a multi-frame approval matching approach utilizing the spatiotemporal continuity of pedestrians to increase the detection rate. Large-scale experiments indicate that the system works in real time and the accuracy has improved about 9% compared with approaches based on high-dimensional features only.
Intelligent transient transitions detection of LRE test bed
NASA Astrophysics Data System (ADS)
Zhu, Fengyu; Shen, Zhengguang; Wang, Qi
2013-01-01
Health Monitoring Systems is an implementation of monitoring strategies for complex systems whereby avoiding catastrophic failure, extending life and leading to improved asset management. A Health Monitoring Systems generally encompasses intelligence at many levels and sub-systems including sensors, actuators, devices, etc. In this paper, a smart sensor is studied, which is use to detect transient transitions of liquid-propellant rocket engines test bed. In consideration of dramatic changes of variable condition, wavelet decomposition is used to work real time in areas. Contrast to traditional Fourier transform method, the major advantage of adding wavelet analysis is the ability to detect transient transitions as well as obtaining the frequency content using a much smaller data set. Historically, transient transitions were only detected by offline analysis of the data. The methods proposed in this paper provide an opportunity to detect transient transitions automatically as well as many additional data anomalies, and provide improved data-correction and sensor health diagnostic abilities. The developed algorithms have been tested on actual rocket test data.
Computer aided detection system for lung cancer using computer tomography scans
NASA Astrophysics Data System (ADS)
Mahesh, Shanthi; Rakesh, Spoorthi; Patil, Vidya C.
2018-04-01
Lung Cancer is a disease can be defined as uncontrolled cell growth in tissues of the lung. If we detect the Lung Cancer in its early stage, then that could be the key of its cure. In this work the non-invasive methods are studied for assisting in nodule detection. It supplies a Computer Aided Diagnosis System (CAD) for early detection of lung cancer nodules from the Computer Tomography (CT) images. CAD system is the one which helps to improve the diagnostic performance of radiologists in their image interpretations. The main aim of this technique is to develop a CAD system for finding the lung cancer using the lung CT images and classify the nodule as Benign or Malignant. For classifying cancer cells, SVM classifier is used. Here, image processing techniques have been used to de-noise, to enhance, for segmentation and edge detection of an image is used to extract the area, perimeter and shape of nodule. The core factors of this research are Image quality and accuracy.
[A review of mixed gas detection system based on infrared spectroscopic technique].
Dang, Jing-Min; Fu, Li; Yan, Zi-Hui; Zheng, Chuan-Tao; Chang, Yu-Chun; Chen, Chen; Wang, Yi-Din
2014-10-01
In order to provide the experiences and references to the researchers who are working on infrared (IR) mixed gas detection field. The proposed manuscript reviews two sections of the aforementioned field, including optical multiplexing structure and detection method. At present, the coherent light sources whose representative are quantum cascade laser (QCL) and inter-band cascade laser(ICL) become the mainstream light source in IR mixed gas detection, which replace the traditional non-coherent light source, such as IR radiation source and IR light emitting diode. In addition, the photon detector which has a super high detectivity and very short response time is gradually beyond thermal infrared detector, dominant in the field of infrared detector. The optical multiplexing structure is the key factor of IR mixed gas detection system, which consists of single light source multi-plexing detection structure and multi light source multiplexing detection structure. Particularly, single light source multiplexing detection structure is advantages of small volume and high integration, which make it a plausible candidate for the portable mixed gas detection system; Meanwhile, multi light source multiplexing detection structure is embodiment of time division multiplex, frequency division multiplexing and wavelength division multiplexing, and become the leading structure of the mixed gas detection system because of its wider spectral range, higher spectral resolution, etc. The detection method applied to IR mixed gas detection includes non-dispersive infrared (NDIR) spectroscopy, wavelength and frequency-modulation spectroscopy, cavity-enhanced spectroscopy and photoacoustic spectroscopy, etc. The IR mixed gas detection system designed by researchers after recognizing the whole sections of the proposed system, which play a significant role in industrial and agricultural production, environmental monitoring, and life science, etc.
Building a robust vehicle detection and classification module
NASA Astrophysics Data System (ADS)
Grigoryev, Anton; Khanipov, Timur; Koptelov, Ivan; Bocharov, Dmitry; Postnikov, Vassily; Nikolaev, Dmitry
2015-12-01
The growing adoption of intelligent transportation systems (ITS) and autonomous driving requires robust real-time solutions for various event and object detection problems. Most of real-world systems still cannot rely on computer vision algorithms and employ a wide range of costly additional hardware like LIDARs. In this paper we explore engineering challenges encountered in building a highly robust visual vehicle detection and classification module that works under broad range of environmental and road conditions. The resulting technology is competitive to traditional non-visual means of traffic monitoring. The main focus of the paper is on software and hardware architecture, algorithm selection and domain-specific heuristics that help the computer vision system avoid implausible answers.
A Method of Synchrophasor Technology for Detecting and Analyzing Cyber-Attacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCann, Roy; Al-Sarray, Muthanna
Studying cybersecurity events and analyzing their impacts encourage planners and operators to develop innovative approaches for preventing attacks in order to avoid outages and other disruptions. This work considers two parts in security studies; detecting an integrity attack and examining its effects on power system generators. The detection was conducted through employing synchrophasor technology to provide authentication of ACG commands based on observed system operating characteristics. The examination of an attack is completed via a detailed simulation of a modified IEEE 68-bus benchmark model to show the associated power system dynamic response. The results of the simulation are discussed formore » assessing the impacts of cyber threats.« less
Design and implementation for integrated UAV multi-spectral inspection system
NASA Astrophysics Data System (ADS)
Zhu, X.; Li, X.; Yan, F.
2018-04-01
In order to improve the working efficiency of the transmission line inspection and reduce the labour intensity of the inspectors, this paper presents an Unmanned Aerial Vehicle (UAV) inspection system architecture for the transmission line inspection. In this document, the light-duty design for different inspection equipment and processing terminals is completed. It presents the reference design for the information-processing terminal, supporting the inspection and interactive equipment accessing, and obtains all performance indicators of the inspection information processing through the tests. Practical application shows that the UAV inspection system supports access and management of different types of mainstream fault detection equipment, and can implement the independent diagnosis of the detected information to generate inspection reports in line with industry norms, which can meet the fast, timely, and efficient requirements for the power line inspection work.
Wang, Wei-Hsung; McGlothlin, James D; Smith, Deborah J; Matthews, Kenneth L
2006-02-01
This project incorporates radiation survey training into a real-time video radiation detection system, thus providing a practical perspective for the radiation worker on efficient performance of radiation surveys. Regular surveys to evaluate radiation levels are necessary not only to recognize potential radiological hazards but also to keep the radiation exposure as low as reasonably achievable. By developing and implementing an instructional learning system using a real-time radiation survey training video showing specific categorization of work elements, radiation workers trained with this system demonstrated better radiation survey practice.
A Practical Millimeter-Wave Holographic Imaging System with Tunable IF Attenuator
NASA Astrophysics Data System (ADS)
Zhu, Yu-Kun; Yang, Ming-Hui; Wu, Liang; Sun, Yun; Sun, Xiao-Wei
2017-10-01
A practical millimeter-wave (mmw) holographic imaging system with tunable intermediate frequency (IF) attenuator has been developed. It can be used for the detection of concealed weapons at security checkpoints, especially the airport. The system is utilized to scan the passenger and detect the weapons hidden in the clothes. To reconstruct the three dimensions (3-D) image, a holographic mmw imaging algorithm based on aperture synthesis and back scattering is presented. The system is active and works at 28-33 GHz. Tunable IF attenuator is applied to compensate the intensity and phase differences between multi-channels and multi-frequencies.
Performance comparison of single and dual-excitation-wavelength resonance-Raman explosives detectors
NASA Astrophysics Data System (ADS)
Yellampalle, Balakishore; Martin, Robert; Witt, Kenneth; McCormick, William; Wu, Hai-Shan; Sluch, Mikhail; Ice, Robert; Lemoff, Brian
2017-05-01
Deep-ultraviolet Raman spectroscopy is a very useful approach for standoff detection of explosive traces. Using two simultaneous excitation wavelengths improves the specificity and sensitivity to standoff explosive detection. The High Technology Foundation developed a highly compact prototype of resonance Raman explosives detector. In this work, we discuss the relative performance of a dual-excitation sensor compared to a single-excitation sensor. We present trade space analysis comparing three representative Raman systems with similar size, weight, and power. The analysis takes into account, cost, spectral resolution, detection/identification time and the overall system benefit.
Oriented regions grouping based candidate proposal for infrared pedestrian detection
NASA Astrophysics Data System (ADS)
Wang, Jiangtao; Zhang, Jingai; Li, Huaijiang
2018-04-01
Effectively and accurately locating the positions of pedestrian candidates in image is a key task for the infrared pedestrian detection system. In this work, a novel similarity measuring metric is designed. Based on the selective search scheme, the developed similarity measuring metric is utilized to yield the possible locations for pedestrian candidate. Besides this, corresponding diversification strategies are also provided according to the characteristics of the infrared thermal imaging system. Experimental results indicate that the presented scheme can achieve more efficient outputs than the traditional selective search methodology for the infrared pedestrian detection task.
Homeland Security and Contraband Detection
NASA Astrophysics Data System (ADS)
Lanza, R. C.
Detection of contraband and illicit materials has become increasingly important, especially since the terrorist attacks in the United States on September 11, 2001. The nature of the detection problem embodies both physics issues and a set of operational constraints that limit the practical application of neutrons. The issue under consideration is detection of materials that are considered serious threats; these may include explosives; radioactive materials, fissile materials, and other materials associated with nuclear weapons, often referred to as special nuclear material (SNM). The overriding constraint is in the physics: systems must be based on clean physics; but unlike physics experiments, detection systems work under the limitation that materials must be identified nonintrusively, without interrupting the normal flow of commerce and with a high probability of detection and a low probability of false alarms. A great deal of work has been reported in the literature on neutron-based techniques for detecting explosives and drugs. The largest impetus by far for detecting explosives comes from aviation industry requirements for inspecting luggage and, to a lesser extent, cargo. The major alternative techniques are either X-ray-based or chemical trace detection methods that look for small traces of explosive residues. The limitations of the X-ray and trace methods in detecting explosives are well known, but currently (2008) it is safe to say that no neutron- or nuclear-based technique is being used routinely for security inspection, despite extensive development of these methods. Smuggling of nuclear materials has become a concern, and neutron techniques are particularly attractive for detecting them. Given the limitations of X-ray techniques and the need for SNM detection, it is now useful to reexamine neutron methodologies, particularly imaging. A significant number of neutron-based techniques have been proposed and are under development for security applications, especially SNM detection, but describing how they work is beyond the scope of the chapter. Instead, one particular approach to neutron imaging, neutron resonance radiography (NRR), is discussed in detail as it illustrates many of the issues connected with imaging and detection.
ON THE RADIO DETECTION OF MULTIPLE-EXOMOON SYSTEMS DUE TO PLASMA TORUS SHARING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noyola, J. P.; Satyal, S.; Musielak, Z. E., E-mail: jpnoyola@uta.edu, E-mail: ssatyal@uta.edu, E-mail: zmusielak@uta.edu
2016-04-20
The idea of single exomoon detection due to the radio emissions caused by its interaction with the host exoplanet is extended to multiple-exomoon systems. The characteristic radio emissions are made possible in part by plasma from the exomoon’s own ionosphere. In this work, it is demonstrated that neighboring exomoons and the exoplanetary magnetosphere could also provide enough plasma to generate a detectable signal. In particular, the plasma-torus-sharing phenomenon is found to be particularly well suited to facilitate the radio detection of plasma-deficient exomoons. The efficiency of this process is evaluated, and the predicted power and frequency of the resulting radiomore » signals are presented.« less
Fibre optic portable rail vehicle detector
NASA Astrophysics Data System (ADS)
Kepak, Stanislav; Cubik, Jakub; Zavodny, Petr; Hejduk, Stanislav; Nedoma, Jan; Davidson, Alan; Vasinek, Vladimir
2016-12-01
During track maintenance operations, the early detection of oncoming rail vehicles is critical for the safety of maintenance personnel. In addition, the detection system should be simple to install at the trackside by minimally qualified personnel. Fibre optic based sensor systems have the inherent advantages of being passive, unaffected by radio frequency interference (RFI) and suffering very low signal attenuation. Such a system therefore represents a good alternative to conventional approaches such as ultrasonic based sensor systems. The proposed system consists of one or more passive fibre trackside sensors and an x86 processing unit located at the work site. The solid fibre connection between sensors and processing unit eliminates the risk of RFI. In addition, the detection system sensors are easy to install with no requirement for electrical power at the sensor site. The system was tested on a tram line in Ostrava with the results obtained indicating the successful detection of all the trams in the monitoring windows using a single sensor. However, the platform allows flexibility in configuring multiple sensors where required by system users.
Improving Cyber-Security of Smart Grid Systems via Anomaly Detection and Linguistic Domain Knowledge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ondrej Linda; Todd Vollmer; Milos Manic
The planned large scale deployment of smart grid network devices will generate a large amount of information exchanged over various types of communication networks. The implementation of these critical systems will require appropriate cyber-security measures. A network anomaly detection solution is considered in this work. In common network architectures multiple communications streams are simultaneously present, making it difficult to build an anomaly detection solution for the entire system. In addition, common anomaly detection algorithms require specification of a sensitivity threshold, which inevitably leads to a tradeoff between false positives and false negatives rates. In order to alleviate these issues, thismore » paper proposes a novel anomaly detection architecture. The designed system applies the previously developed network security cyber-sensor method to individual selected communication streams allowing for learning accurate normal network behavior models. Furthermore, the developed system dynamically adjusts the sensitivity threshold of each anomaly detection algorithm based on domain knowledge about the specific network system. It is proposed to model this domain knowledge using Interval Type-2 Fuzzy Logic rules, which linguistically describe the relationship between various features of the network communication and the possibility of a cyber attack. The proposed method was tested on experimental smart grid system demonstrating enhanced cyber-security.« less
Systems Analysis of Alternative Architectures for Riverine Warfare in 2010
2006-12-01
propose system of systems improvements for the RF in 2010. With the RF currently working to establish a command structure, train and equip its forces...opposing force. Measures of performance such as time to first enemy detection and loss exchange ratio were collected from MANA. A detailed statistical
Direct measurement of mammographic X-ray spectra with a digital CdTe detection system.
Abbene, Leonardo; Gerardi, Gaetano; Principato, Fabio; Del Sordo, Stefano; Raso, Giuseppe
2012-01-01
In this work we present a detection system, based on a CdTe detector and an innovative digital pulse processing (DPP) system, for high-rate X-ray spectroscopy in mammography (1-30 keV). The DPP system performs a height and shape analysis of the detector pulses, sampled and digitized by a 14-bit, 100 MHz ADC. We show the results of the characterization of the detection system both at low and high photon counting rates by using monoenergetic X-ray sources and a nonclinical X-ray tube. The detection system exhibits excellent performance up to 830 kcps with an energy resolution of 4.5% FWHM at 22.1 keV. Direct measurements of clinical molybdenum X-ray spectra were carried out by using a pinhole collimator and a custom alignment device. A comparison with the attenuation curves and the half value layer values, obtained from the measured and simulated spectra, from an ionization chamber and from a solid state dosimeter, also shows the accuracy of the measurements. These results make the proposed detection system a very attractive tool for both laboratory research, calibration of dosimeters and advanced quality controls in mammography.
Diagnosing and ranking retinopathy disease level using diabetic fundus image recuperation approach.
Somasundaram, K; Rajendran, P Alli
2015-01-01
Retinal fundus images are widely used in diagnosing different types of eye diseases. The existing methods such as Feature Based Macular Edema Detection (FMED) and Optimally Adjusted Morphological Operator (OAMO) effectively detected the presence of exudation in fundus images and identified the true positive ratio of exudates detection, respectively. These mechanically detected exudates did not include more detailed feature selection technique to the system for detection of diabetic retinopathy. To categorize the exudates, Diabetic Fundus Image Recuperation (DFIR) method based on sliding window approach is developed in this work to select the features of optic cup in digital retinal fundus images. The DFIR feature selection uses collection of sliding windows with varying range to obtain the features based on the histogram value using Group Sparsity Nonoverlapping Function. Using support vector model in the second phase, the DFIR method based on Spiral Basis Function effectively ranks the diabetic retinopathy disease level. The ranking of disease level on each candidate set provides a much promising result for developing practically automated and assisted diabetic retinopathy diagnosis system. Experimental work on digital fundus images using the DFIR method performs research on the factors such as sensitivity, ranking efficiency, and feature selection time.
Diagnosing and Ranking Retinopathy Disease Level Using Diabetic Fundus Image Recuperation Approach
Somasundaram, K.; Alli Rajendran, P.
2015-01-01
Retinal fundus images are widely used in diagnosing different types of eye diseases. The existing methods such as Feature Based Macular Edema Detection (FMED) and Optimally Adjusted Morphological Operator (OAMO) effectively detected the presence of exudation in fundus images and identified the true positive ratio of exudates detection, respectively. These mechanically detected exudates did not include more detailed feature selection technique to the system for detection of diabetic retinopathy. To categorize the exudates, Diabetic Fundus Image Recuperation (DFIR) method based on sliding window approach is developed in this work to select the features of optic cup in digital retinal fundus images. The DFIR feature selection uses collection of sliding windows with varying range to obtain the features based on the histogram value using Group Sparsity Nonoverlapping Function. Using support vector model in the second phase, the DFIR method based on Spiral Basis Function effectively ranks the diabetic retinopathy disease level. The ranking of disease level on each candidate set provides a much promising result for developing practically automated and assisted diabetic retinopathy diagnosis system. Experimental work on digital fundus images using the DFIR method performs research on the factors such as sensitivity, ranking efficiency, and feature selection time. PMID:25945362
Avalappampatty Sivasamy, Aneetha; Sundan, Bose
2015-01-01
The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T2 method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T2 statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better. PMID:26357668
Sivasamy, Aneetha Avalappampatty; Sundan, Bose
2015-01-01
The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T(2) method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T(2) statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better.
Real-time vehicle noise cancellation techniques for gunshot acoustics
NASA Astrophysics Data System (ADS)
Ramos, Antonio L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald
2012-06-01
Acoustical sniper positioning systems rely on the detection and direction-of-arrival (DOA) estimation of the shockwave and the muzzle blast in order to provide an estimate of a potential snipers location. Field tests have shown that detecting and estimating the DOA of the muzzle blast is a rather difficult task in the presence of background noise sources, e.g., vehicle noise, especially in long range detection and absorbing terrains. In our previous work presented in the 2011 edition of this conference we highlight the importance of improving the SNR of the gunshot signals prior to the detection and recognition stages, aiming at lowering the false alarm and miss-detection rates and, thereby, increasing the reliability of the system. This paper reports on real-time noise cancellation techniques, like Spectral Subtraction and Adaptive Filtering, applied to gunshot signals. Our model assumes the background noise as being short-time stationary and uncorrelated to the impulsive gunshot signals. In practice, relatively long periods without signal occur and can be used to estimate the noise spectrum and its first and second order statistics as required in the spectral subtraction and adaptive filtering techniques, respectively. The results presented in this work are supported with extensive simulations based on real data.
Cosmic non-TEM radiation and synthetic feed array sensor system in ASIC mixed signal technology
NASA Astrophysics Data System (ADS)
Centureli, F.; Scotti, G.; Tommasino, P.; Trifiletti, A.; Romano, F.; Cimmino, R.; Saitto, A.
2014-08-01
The paper deals with the opportunity to introduce "Not strictly TEM waves" Synthetic detection Method (NTSM), consisting in a Three Axis Digital Beam Processing (3ADBP), to enhance the performances of radio telescope and sensor systems. Current Radio Telescopes generally use the classic 3D "TEM waves" approximation Detection Method, which consists in a linear tomography process (Single or Dual axis beam forming processing) neglecting the small z component. The Synthetic FEED ARRAY three axis Sensor SYSTEM is an innovative technique using a synthetic detection of the generic "NOT strictly TEM Waves radiation coming from the Cosmo, which processes longitudinal component of Angular Momentum too. Than the simultaneous extraction from radiation of both the linear and quadratic information component, may reduce the complexity to reconstruct the Early Universe in the different requested scales. This next order approximation detection of the observed cosmologic processes, may improve the efficacy of the statistical numerical model used to elaborate the same information acquired. The present work focuses on detection of such waves at carrier frequencies in the bands ranging from LF to MMW. The work shows in further detail the new generation of on line programmable and reconfigurable Mixed Signal ASIC technology that made possible the innovative Synthetic Sensor. Furthermore the paper shows the ability of such technique to increase the Radio Telescope Array Antenna performances.
Application of a four-channel vibrometer system for detection of arterial stiffness
NASA Astrophysics Data System (ADS)
Campo, Adriaan; Waz, Adam; Dudzik, Grzegorz; Dirckx, Joris; Abramski, Krzysztof
2016-06-01
Cardiovascular diseases (CD) are the most important cause of death in the world and their prevalence is only rising. A significant aspect in the etiology of CD is the stiffening of the large arteries (arteriosclerosis) and plaque formation (atherosclerosis) in the common carotid artery (CCA) in the neck. As shown by increasing evidence, both conditions can be detected by assessing pulse wave velocity (PWV) in the CCA, and several approaches allow local detection of PWV, including ultrasound (US) and magnetic resonance imaging (MRI). In previous studies, laser Doppler vibrometry (LDV) was introduced as an approach to assess arterial stiffness. In the present work, a new, compact four-channel LDV system is used for PWV detection in four phantom arteries mimicking real life CCA conditions. The high sensitivity of the LDV system allowed PWV to be assessed, and even local changes in phantom architecture could be detected. This method has potential for cardiovascular screening, as it allows arteriosclerosis assessment and plaque detection.
Colorimetric detection of glucose based on ficin with peroxidase-like activity
NASA Astrophysics Data System (ADS)
Pang, Yanjiao; Huang, Zili; Yang, Yufang; Long, Yijuan; Zheng, Huzhi
2018-01-01
In this work, we developed a colorimetric biosensing system for glucose detection by coupling the peroxidase-like of ficin and the glucose oxidase (GOx). GOx can catalyze the oxidation of glucose to produce H2O2, then, ficin catalyzes the oxidation of peroxidase substrate 3,3‧,5,5‧-tetramethylbenzidine (TMB) by H2O2 to produce a blue color reaction. The present sensing system showed a linear response toward glucose detection over range of 2.0-100 μM with a detection limit of 0.5 μM. This system is simple, low cost, highly sensitive and selective for glucose detection, and was also applied to measuring glucose in human serum. Furthermore, in order to expand the application of ficin in biological sensing, we immobilized ficin onto the SiO2@Fe3O4 NPs, which exhibited the merits of recycling as well as allowing the repeated detection of glucose. Thus it may provide great potential applications in biomedicine, biotechnology and environmental chemistry.
Fast neutron counting in a mobile, trailer-based search platform
NASA Astrophysics Data System (ADS)
Hayward, Jason P.; Sparger, John; Fabris, Lorenzo; Newby, Robert J.
2017-12-01
Trailer-based search platforms for detection of radiological and nuclear threats are often based upon coded aperture gamma-ray imaging, because this method can be rendered insensitive to local variations in gamma background while still localizing the source well. Since gamma source emissions are rather easily shielded, in this work we consider the addition of fast neutron counting to a mobile platform for detection of sources containing Pu. A proof-of-concept system capable of combined gamma and neutron coded-aperture imaging was built inside of a trailer and used to detect a 252Cf source while driving along a roadway. Neutron detector types employed included EJ-309 in a detector plane and EJ-299-33 in a front mask plane. While the 252Cf gamma emissions were not readily detectable while driving by at 16.9 m standoff, the neutron emissions can be detected while moving. Mobile detection performance for this system and a scaled-up system design are presented, along with implications for threat sensing.
Driver fatigue alarm based on eye detection and gaze estimation
NASA Astrophysics Data System (ADS)
Sun, Xinghua; Xu, Lu; Yang, Jingyu
2007-11-01
The driver assistant system has attracted much attention as an essential component of intelligent transportation systems. One task of driver assistant system is to prevent the drivers from fatigue. For the fatigue detection it is natural that the information about eyes should be utilized. The driver fatigue can be divided into two types, one is the sleep with eyes close and another is the sleep with eyes open. Considering that the fatigue detection is related with the prior knowledge and probabilistic statistics, the dynamic Bayesian network is used as the analysis tool to perform the reasoning of fatigue. Two kinds of experiments are performed to verify the system effectiveness, one is based on the video got from the laboratory and another is based on the video got from the real driving situation. Ten persons participate in the test and the experimental result is that, in the laboratory all the fatigue events can be detected, and in the practical vehicle the detection ratio is about 85%. Experiments show that in most of situations the proposed system works and the corresponding performance is satisfying.
DOT National Transportation Integrated Search
2013-10-01
In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation : system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types,...
Towards a global flood detection system using social media
NASA Astrophysics Data System (ADS)
de Bruijn, Jens; de Moel, Hans; Jongman, Brenden; Aerts, Jeroen
2017-04-01
It is widely recognized that an early warning is critical in improving international disaster response. Analysis of social media in real-time can provide valuable information about an event or help to detect unexpected events. For successful and reliable detection systems that work globally, it is important that sufficient data is available and that the algorithm works both in data-rich and data-poor environments. In this study, both a new geotagging system and multi-level event detection system for flood hazards was developed using Twitter data. Geotagging algorithms that regard one tweet as a single document are well-studied. However, no algorithms exist that combine several sequential tweets mentioning keywords regarding a specific event type. Within the time frame of an event, multiple users use event related keywords that refer to the same place name. This notion allows us to treat several sequential tweets posted in the last 24 hours as one document. For all these tweets, we collect a series of spatial indicators given in the tweet metadata and extract additional topological indicators from the text. Using these indicators, we can reduce ambiguity and thus better estimate what locations are tweeted about. Using these localized tweets, Bayesian change-point analysis is used to find significant increases of tweets mentioning countries, provinces or towns. In data-poor environments detection of events on a country level is possible, while in other, data-rich, environments detection on a city level is achieved. Additionally, on a city-level we analyse the spatial dependence of mentioned places. If multiple places within a limited spatial extent are mentioned, detection confidence increases. We run the algorithm using 2 years of Twitter data with flood related keywords in 13 major languages and validate against a flood event database. We find that the geotagging algorithm yields significantly more data than previously developed algorithms and successfully deals with ambiguous place names. In addition, we show that our detection system can both quickly and reliably detect floods, even in countries where data is scarce, while achieving high detail in countries where more data is available.
Spectral anomaly methods for aerial detection using KUT nuisance rejection
NASA Astrophysics Data System (ADS)
Detwiler, R. S.; Pfund, D. M.; Myjak, M. J.; Kulisek, J. A.; Seifert, C. E.
2015-06-01
This work discusses the application and optimization of a spectral anomaly method for the real-time detection of gamma radiation sources from an aerial helicopter platform. Aerial detection presents several key challenges over ground-based detection. For one, larger and more rapid background fluctuations are typical due to higher speeds, larger field of view, and geographically induced background changes. As well, the possible large altitude or stand-off distance variations cause significant steps in background count rate as well as spectral changes due to increased gamma-ray scatter with detection at higher altitudes. The work here details the adaptation and optimization of the PNNL-developed algorithm Nuisance-Rejecting Spectral Comparison Ratios for Anomaly Detection (NSCRAD), a spectral anomaly method previously developed for ground-based applications, for an aerial platform. The algorithm has been optimized for two multi-detector systems; a NaI(Tl)-detector-based system and a CsI detector array. The optimization here details the adaptation of the spectral windows for a particular set of target sources to aerial detection and the tailoring for the specific detectors. As well, the methodology and results for background rejection methods optimized for the aerial gamma-ray detection using Potassium, Uranium and Thorium (KUT) nuisance rejection are shown. Results indicate that use of a realistic KUT nuisance rejection may eliminate metric rises due to background magnitude and spectral steps encountered in aerial detection due to altitude changes and geographically induced steps such as at land-water interfaces.
2016-04-05
applications in wireless networks such as military battlefields, emergency response, mobile commerce , online gaming, and collaborative work are based on the...www.elsevier.com/locate/peva Performance analysis of hierarchical group key management integrated with adaptive intrusion detection in mobile ad hoc...Accepted 19 September 2010 Available online 26 September 2010 Keywords: Mobile ad hoc networks Intrusion detection Group communication systems Group
Aircraft Flight Envelope Determination using Upset Detection and Physical Modeling Methods
NASA Technical Reports Server (NTRS)
Keller, Jeffrey D.; McKillip, Robert M. Jr.; Kim, Singwan
2009-01-01
The development of flight control systems to enhance aircraft safety during periods of vehicle impairment or degraded operations has been the focus of extensive work in recent years. Conditions adversely affecting aircraft flight operations and safety may result from a number of causes, including environmental disturbances, degraded flight operations, and aerodynamic upsets. To enhance the effectiveness of adaptive and envelope limiting controls systems, it is desirable to examine methods for identifying the occurrence of anomalous conditions and for assessing the impact of these conditions on the aircraft operational limits. This paper describes initial work performed toward this end, examining the use of fault detection methods applied to the aircraft for aerodynamic performance degradation identification and model-based methods for envelope prediction. Results are presented in which a model-based fault detection filter is applied to the identification of aircraft control surface and stall departure failures/upsets. This application is supported by a distributed loading aerodynamics formulation for the flight dynamics system reference model. Extensions for estimating the flight envelope due to generalized aerodynamic performance degradation are also described.
AAO-CNTs electrode on microfluidic flow injection system for rapid iodide sensing.
Phokharatkul, Ditsayut; Karuwan, Chanpen; Lomas, Tanom; Nacapricha, Duangjai; Wisitsoraat, Anurat; Tuantranont, Adisorn
2011-06-15
In this work, carbon nanotubes (CNTs) nanoarrays in anodized aluminum oxide (AAO-CNTs) nanopore is integrated on a microfluidic flow injection system for in-channel electrochemical detection of iodide. The device was fabricated from PDMS (polydimethylsiloxane) microchannel bonded on glass substrates that contains three-electrode electrochemical system, including AAO-CNTs as a working electrode, silver as a reference electrode and platinum as an auxiliary electrode. Aluminum, stainless steel catalyst, silver and platinum layers were sputtered on the glass substrate through shadow masks. Aluminum layer was then anodized by two-step anodization process to form nanopore template. CNTs were then grown in AAO template by thermal chemical vapor deposition. The amperometric detection of iodide was performed in 500-μm-wide and 100-μm-deep microchannels on the microfluidic chip. The influences of flow rate, injection volume and detection potential on the current response were optimized. From experimental results, AAO-CNTs electrode on chip offers higher sensitivity and wider dynamic range than CNTs electrode with no AAO template. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DaSilva, L.; Marion, J.; Chase, C.
BioLuminate, Inc. planned to develop, produce and market a revolutionary diagnostic device for early breast cancer diagnosis. The device was originally invented by NASA; and exclusively licensed to BioLuminate for commercialization. At the time of the CRADA, eighty-five percent (85%) of all biopsies in the United States were found negative each year. The number of biopsies cost the health care system $23 billio n annually. A multi-sensor probe would allow surgeons to improve breast cancer scre ening and significantly reduce the number of biopsies. BioLuminate was developing an in-vivo system for the detection of cancer using a multi-sensor needle/probe. Themore » first system would be developed for the detection of breast cancer. LLNL, in collaboration with BioLuminate worked toward a detailed concept specification for the prototype multi-sensor needle/probe suitable for breast cancer analysis. BioLuminate in collaboration with LLNL, worked to develop a new version of the needle probe that would be the same size as needles commonly used to draw blood.« less
Near-IR Polarized Scattered Light Imagery of the DoAr 28 Transitional Disk
NASA Technical Reports Server (NTRS)
Rich, Evan A.; Wisiniewski, John P.; Mayama, Satoshi; Brandt, Timothy D.; Hashimoto, Jun; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Espaillat, Catherine; Serabyn, Eugene; Grady, Carol A.;
2015-01-01
We present the first spatially resolved polarized scattered light H-band detection of the DoAr 28 transitional disk. Our two epochs of imagery detect the scattered light disk from our effective inner working angle of 0 double prime.10 (13 AU) out to 0double prime.50 (65 AU). This inner working angle is interior to the location of the system's gap inferred by previous studies using spectral energy distribution modeling (15 AU). We detected a candidate point source companion 1 double prime.08 northwest of the system; however, our second epoch of imagery strongly suggests that this object is a background star. We constructed a grid of Monte Carlo Radiative Transfer models of the system, and our best fit models utilize a modestly inclined (50 degrees), 0.01 solar mass disk that has a partially depleted inner gap from the dust sublimation radius out to approximately 8 AU. Subtracting this best fit, axi-symmetric model from our polarized intensity data reveals evidence for two small asymmetries in the disk, which could be attributable to a variety of mechanisms.
Local Leak Detection and Health Monitoring of Pressurized Tanks
NASA Technical Reports Server (NTRS)
Polzin, Kurt; Witherow, William; Korman, Valentin; Sinko, John; Hendrickson, Adam
2011-01-01
An optical gas-detection sensor safely monitors pressurized systems (such as cryogenic tanks) and distribution systems for leaks. This sensor system is a fiber-coupled, solid optical body interferometer that allows for the miniaturized sensing element of the device to be placed in the smallest of recesses, and measures a wide range of gas species and densities (leaks). The deflection of the fringe pattern is detected and recorded to yield the time-varying gas density in the gap. This technology can be used by manufacturers or storage facilities with toxic, hazardous, or explosive gases. The approach is to monitor the change in the index of refraction associated with low-level gas leaks into a vacuum environment. The completion of this work will provide NASA with an enabling capability to detect gas system leaks in space, and to verify that pressurized systems are in a safe (i.e. non-leaking) condition during manned docking and transit operations. By recording the output of the sensor, a time-history of the leak can be constructed to indicate its severity. Project risk is mitigated by having several interferometric geometries and detection techniques available, each potentially leveraging hardware and lessons learned to enhance detectability.
Design of optical axis jitter control system for multi beam lasers based on FPGA
NASA Astrophysics Data System (ADS)
Ou, Long; Li, Guohui; Xie, Chuanlin; Zhou, Zhiqiang
2018-02-01
A design of optical axis closed-loop control system for multi beam lasers coherent combining based on FPGA was introduced. The system uses piezoelectric ceramics Fast Steering Mirrors (FSM) as actuator, the Fairfield spot detection of multi beam lasers by the high speed CMOS camera for optical detecting, a control system based on FPGA for real-time optical axis jitter suppression. The algorithm for optical axis centroid detecting and PID of anti-Integral saturation were realized by FPGA. Optimize the structure of logic circuit by reuse resource and pipeline, as a result of reducing logic resource but reduced the delay time, and the closed-loop bandwidth increases to 100Hz. The jitter of laser less than 40Hz was reduced 40dB. The cost of the system is low but it works stably.
On the use of feature selection to improve the detection of sea oil spills in SAR images
NASA Astrophysics Data System (ADS)
Mera, David; Bolon-Canedo, Veronica; Cotos, J. M.; Alonso-Betanzos, Amparo
2017-03-01
Fast and effective oil spill detection systems are crucial to ensure a proper response to environmental emergencies caused by hydrocarbon pollution on the ocean's surface. Typically, these systems uncover not only oil spills, but also a high number of look-alikes. The feature extraction is a critical and computationally intensive phase where each detected dark spot is independently examined. Traditionally, detection systems use an arbitrary set of features to discriminate between oil spills and look-alikes phenomena. However, Feature Selection (FS) methods based on Machine Learning (ML) have proved to be very useful in real domains for enhancing the generalization capabilities of the classifiers, while discarding the existing irrelevant features. In this work, we present a generic and systematic approach, based on FS methods, for choosing a concise and relevant set of features to improve the oil spill detection systems. We have compared five FS methods: Correlation-based feature selection (CFS), Consistency-based filter, Information Gain, ReliefF and Recursive Feature Elimination for Support Vector Machine (SVM-RFE). They were applied on a 141-input vector composed of features from a collection of outstanding studies. Selected features were validated via a Support Vector Machine (SVM) classifier and the results were compared with previous works. Test experiments revealed that the classifier trained with the 6-input feature vector proposed by SVM-RFE achieved the best accuracy and Cohen's kappa coefficient (87.1% and 74.06% respectively). This is a smaller feature combination with similar or even better classification accuracy than previous works. The presented finding allows to speed up the feature extraction phase without reducing the classifier accuracy. Experiments also confirmed the significance of the geometrical features since 75.0% of the different features selected by the applied FS methods as well as 66.67% of the proposed 6-input feature vector belong to this category.
Performances of the New Real Time Tsunami Detection Algorithm applied to tide gauges data
NASA Astrophysics Data System (ADS)
Chierici, F.; Embriaco, D.; Morucci, S.
2017-12-01
Real-time tsunami detection algorithms play a key role in any Tsunami Early Warning System. We have developed a new algorithm for tsunami detection (TDA) based on the real-time tide removal and real-time band-pass filtering of seabed pressure time series acquired by Bottom Pressure Recorders. The TDA algorithm greatly increases the tsunami detection probability, shortens the detection delay and enhances detection reliability with respect to the most widely used tsunami detection algorithm, while containing the computational cost. The algorithm is designed to be used also in autonomous early warning systems with a set of input parameters and procedures which can be reconfigured in real time. We have also developed a methodology based on Monte Carlo simulations to test the tsunami detection algorithms. The algorithm performance is estimated by defining and evaluating statistical parameters, namely the detection probability, the detection delay, which are functions of the tsunami amplitude and wavelength, and the occurring rate of false alarms. In this work we present the performance of the TDA algorithm applied to tide gauge data. We have adapted the new tsunami detection algorithm and the Monte Carlo test methodology to tide gauges. Sea level data acquired by coastal tide gauges in different locations and environmental conditions have been used in order to consider real working scenarios in the test. We also present an application of the algorithm to the tsunami event generated by Tohoku earthquake on March 11th 2011, using data recorded by several tide gauges scattered all over the Pacific area.
Li, Gang; He, Bin; Huang, Hongwei; Tang, Limin
2016-01-01
The spatial–temporal correlation is an important feature of sensor data in wireless sensor networks (WSNs). Most of the existing works based on the spatial–temporal correlation can be divided into two parts: redundancy reduction and anomaly detection. These two parts are pursued separately in existing works. In this work, the combination of temporal data-driven sleep scheduling (TDSS) and spatial data-driven anomaly detection is proposed, where TDSS can reduce data redundancy. The TDSS model is inspired by transmission control protocol (TCP) congestion control. Based on long and linear cluster structure in the tunnel monitoring system, cooperative TDSS and spatial data-driven anomaly detection are then proposed. To realize synchronous acquisition in the same ring for analyzing the situation of every ring, TDSS is implemented in a cooperative way in the cluster. To keep the precision of sensor data, spatial data-driven anomaly detection based on the spatial correlation and Kriging method is realized to generate an anomaly indicator. The experiment results show that cooperative TDSS can realize non-uniform sensing effectively to reduce the energy consumption. In addition, spatial data-driven anomaly detection is quite significant for maintaining and improving the precision of sensor data. PMID:27690035
NREL Adds Eyes, Brains to Occupancy Detection | News | NREL
communicates this information with building automation systems via standard protocols. Credit: Dennis Schroeder microprocessor and the camera. Credit: Dennis Schroeder IPOS can detect with almost 100% accuracy the number of : Dennis Schroeder Brackney and Gentile Polese said they started working on the idea for IPOS because
Modeling Shock Train Leading Edge Detection in Dual-Mode Scramjets
NASA Astrophysics Data System (ADS)
Ladeinde, Foluso; Lou, Zhipeng; Li, Wenhai
2016-11-01
The objective of this study is to accurately model the detection of shock train leading edge (STLE) in dual-mode scramjet (DMSJ) engines intended for hypersonic flight in air-breathing propulsion systems. The associated vehicles have applications in military warfare and intelligence, and there is commercial interest as well. Shock trains are of interest because they play a significant role in the inability of a DMSJ engine to develop the required propulsive force. The experimental approach to STLE detection has received some attention; as have numerical calculations. However, virtually all of the numerical work focus on mechanically- (i.e., pressure-) generated shock trains, which are much easier to model relative to the phenomenon in the real system where the shock trains are generated by combustion. A focus on combustion, as in the present studies, enables the investigation of the effects of equivalence ratio, which, together with the Mach number, constitutes an important parameter determining mode transition. The various numerical approaches implemented in our work will be reported, with result comparisons to experimental data. The development of an STLE detection procedure in an a priori manner will also be discussed.
Hickling, Susannah; Leger, Pierre; El Naqa, Issam
2016-02-11
Irradiating an object with a megavoltage photon beam generated by a clinical radiotherapy linear accelerator (linac) induces acoustic waves through the photoacoustic effect. The detection and characterization of such acoustic waves has potential applications in radiation therapy dosimetry. The purpose of this work was to gain insight into the properties of such acoustic waves by simulating and experimentally detecting them in a well-defined system consisting of a metal block suspended in a water tank. A novel simulation workflow was developed by combining radiotherapy Monte Carlo and acoustic wave transport simulation techniques. Different set-up parameters such as photon beam energy, metal block depth, metal block width, and metal block material were varied, and the simulated and experimental acoustic waveforms showed the same relative amplitude trends and frequency variations for such setup changes. The simulation platform developed in this work can easily be extended to other irradiation situations, and will be an invaluable tool for developing a radiotherapy dosimetry system based on the detection of the acoustic waves induced following linear accelerator irradiation.
He, Yanlong; Tian, Jianniao; Hu, Kun; Zhang, Juanni; Chen, Sheng; Jiang, Yixuan; Zhao, Yanchun; Zhao, Shulin
2013-11-13
In this work, an ultrasensitive fluorescent polarization immunoassay (FPIA) method based on the quantum dot/aptamer/antibody/gold nanoparticles ensemble has been developed for the detection of adenosine triphosphate (ATP). DNA hybridization is formed when ATP is present in the PBS solution containing the DNA-conjugated quantum dots (QDs) and antibody-AuNPs. The substantial sensitivity improvement of the antibody-AuNPs-enhanced method is mainly attributed to the slower rotation of fluorescent unit when QDs-labeled oligonucleotides hybridize with antibody modified the gold nanoparticle. As a result, the fluorescent polarization (FP) values of the system increase significantly. Under the optimal conditions, a linear response with ATP concentration is ranged from 8×10(-12) M to 2.40×10(-4) M. The detection limit reached as low as 1.8 pM. The developed work provides a sensitive and selective immunoassay protocol for ATP detection, which could be applied in more bioanalytical systems. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Laser development for optimal helicopter obstacle warning system LADAR performance
NASA Astrophysics Data System (ADS)
Yaniv, A.; Krupkin, V.; Abitbol, A.; Stern, J.; Lurie, E.; German, A.; Solomonovich, S.; Lubashitz, B.; Harel, Y.; Engart, S.; Shimoni, Y.; Hezy, S.; Biltz, S.; Kaminetsky, E.; Goldberg, A.; Chocron, J.; Zuntz, N.; Zajdman, A.
2005-04-01
Low lying obstacles present immediate danger to both military and civilian helicopters performing low-altitude flight missions. A LADAR obstacle detection system is the natural solution for enhancing helicopter safety and improving the pilot situation awareness. Elop is currently developing an advanced Surveillance and Warning Obstacle Ranging and Display (SWORD) system for the Israeli Air Force. Several key factors and new concepts have contributed to system optimization. These include an adaptive FOV, data memorization, autonomous obstacle detection and warning algorithms and the use of an agile laser transmitter. In the present work we describe the laser design and performance and discuss some of the experimental results. Our eye-safe laser is characterized by its pulse energy, repetition rate and pulse length agility. By dynamically controlling these parameters, we are able to locally optimize the system"s obstacle detection range and scan density in accordance with the helicopter instantaneous maneuver.
Tu, Yiheng; Huang, Gan; Hung, Yeung Sam; Hu, Li; Hu, Yong; Zhang, Zhiguo
2013-01-01
Event-related potentials (ERPs) are widely used in brain-computer interface (BCI) systems as input signals conveying a subject's intention. A fast and reliable single-trial ERP detection method can be used to develop a BCI system with both high speed and high accuracy. However, most of single-trial ERP detection methods are developed for offline EEG analysis and thus have a high computational complexity and need manual operations. Therefore, they are not applicable to practical BCI systems, which require a low-complexity and automatic ERP detection method. This work presents a joint spatial-time-frequency filter that combines common spatial patterns (CSP) and wavelet filtering (WF) for improving the signal-to-noise (SNR) of visual evoked potentials (VEP), which can lead to a single-trial ERP-based BCI.
Fire detection system using random forest classification for image sequences of complex background
NASA Astrophysics Data System (ADS)
Kim, Onecue; Kang, Dong-Joong
2013-06-01
We present a fire alarm system based on image processing that detects fire accidents in various environments. To reduce false alarms that frequently appeared in earlier systems, we combined image features including color, motion, and blinking information. We specifically define the color conditions of fires in hue, saturation and value, and RGB color space. Fire features are represented as intensity variation, color mean and variance, motion, and image differences. Moreover, blinking fire features are modeled by using crossing patches. We propose an algorithm that classifies patches into fire or nonfire areas by using random forest supervised learning. We design an embedded surveillance device made with acrylonitrile butadiene styrene housing for stable fire detection in outdoor environments. The experimental results show that our algorithm works robustly in complex environments and is able to detect fires in real time.
Surface-enhanced Raman detection of CW agents in water using gold sol gel substrates
NASA Astrophysics Data System (ADS)
Premasiri, W. Ranjith; Clarke, Richard H.; Womble, M. Edward
2002-02-01
The development of a water analysis system capable of detecting both inanimate trace chemical contaminants and viable microbial contaminants has long been a project of interest to our group. The capability of detecting both chemical and biological agent sources in a single device configuration would clearly add to the value of such a product. In the present work, we describe results with chemical warfare agents from our efforts to produce a Raman system for the detection of both chemical and biological warfare agents in water. We utilize laser Raman light scattering and employ Surface Enhanced Raman Spectroscopy (SERS)on solid state gold sol-gel detectors combined with fiber optic collection of the enhanced light signal in the sampling system to augment the normally low intensity Raman Scattering signal from trace materials.
Automated Micro-Object Detection for Mobile Diagnostics Using Lens-Free Imaging Technology
Roy, Mohendra; Seo, Dongmin; Oh, Sangwoo; Chae, Yeonghun; Nam, Myung-Hyun; Seo, Sungkyu
2016-01-01
Lens-free imaging technology has been extensively used recently for microparticle and biological cell analysis because of its high throughput, low cost, and simple and compact arrangement. However, this technology still lacks a dedicated and automated detection system. In this paper, we describe a custom-developed automated micro-object detection method for a lens-free imaging system. In our previous work (Roy et al.), we developed a lens-free imaging system using low-cost components. This system was used to generate and capture the diffraction patterns of micro-objects and a global threshold was used to locate the diffraction patterns. In this work we used the same setup to develop an improved automated detection and analysis algorithm based on adaptive threshold and clustering of signals. For this purpose images from the lens-free system were then used to understand the features and characteristics of the diffraction patterns of several types of samples. On the basis of this information, we custom-developed an automated algorithm for the lens-free imaging system. Next, all the lens-free images were processed using this custom-developed automated algorithm. The performance of this approach was evaluated by comparing the counting results with standard optical microscope results. We evaluated the counting results for polystyrene microbeads, red blood cells, HepG2, HeLa, and MCF7 cells lines. The comparison shows good agreement between the systems, with a correlation coefficient of 0.91 and linearity slope of 0.877. We also evaluated the automated size profiles of the microparticle samples. This Wi-Fi-enabled lens-free imaging system, along with the dedicated software, possesses great potential for telemedicine applications in resource-limited settings. PMID:27164146
A Review on Recent Developments for Detection of Diabetic Retinopathy.
Amin, Javeria; Sharif, Muhammad; Yasmin, Mussarat
2016-01-01
Diabetic retinopathy is caused by the retinal micro vasculature which may be formed as a result of diabetes mellitus. Blindness may appear as a result of unchecked and severe cases of diabetic retinopathy. Manual inspection of fundus images to check morphological changes in microaneurysms, exudates, blood vessels, hemorrhages, and macula is a very time-consuming and tedious work. It can be made easily with the help of computer-aided system and intervariability for the observer. In this paper, several techniques for detecting microaneurysms, hemorrhages, and exudates are discussed for ultimate detection of nonproliferative diabetic retinopathy. Blood vessels detection techniques are also discussed for the diagnosis of proliferative diabetic retinopathy. Furthermore, the paper elaborates a discussion on the experiments accessed by authors for the detection of diabetic retinopathy. This work will be helpful for the researchers and technical persons who want to utilize the ongoing research in this area.
A Review on Recent Developments for Detection of Diabetic Retinopathy
2016-01-01
Diabetic retinopathy is caused by the retinal micro vasculature which may be formed as a result of diabetes mellitus. Blindness may appear as a result of unchecked and severe cases of diabetic retinopathy. Manual inspection of fundus images to check morphological changes in microaneurysms, exudates, blood vessels, hemorrhages, and macula is a very time-consuming and tedious work. It can be made easily with the help of computer-aided system and intervariability for the observer. In this paper, several techniques for detecting microaneurysms, hemorrhages, and exudates are discussed for ultimate detection of nonproliferative diabetic retinopathy. Blood vessels detection techniques are also discussed for the diagnosis of proliferative diabetic retinopathy. Furthermore, the paper elaborates a discussion on the experiments accessed by authors for the detection of diabetic retinopathy. This work will be helpful for the researchers and technical persons who want to utilize the ongoing research in this area. PMID:27777811
Response of the REWARD detection system to the presence of a Radiological Dispersal Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luis, R.; Baptista, M.; Barros, S.
2015-07-01
In recent years an increased international concern has emerged about the radiological and nuclear (RN) threats associated with the illicit trafficking of nuclear and radioactive materials that could be potentially used for terrorist attacks. The objective of the REWARD (Real Time Wide Area Radiation Surveillance System) project, co-funded by the European Union 7. Framework Programme Security, consisted in building a mobile system for real time, wide area radiation surveillance, using a CdZnTe detector for gamma radiation and a neutron detector based on novel silicon technologies. The sensing unit includes a GPS system and a wireless communication interface to send themore » data remotely to a monitoring base station, where it will be analyzed in real time and correlated with historical data from the tag location, in order to generate an alarm when an abnormal situation is detected. Due to its portability and accuracy, the system will be extremely useful in many different scenarios such as nuclear terrorism, lost radioactive sources, radioactive contamination or nuclear accidents. This paper shortly introduces the REWARD detection system, depicts some terrorist threat scenarios involving radioactive sources and special nuclear materials and summarizes the simulation work undertaken during the past three years in the framework of the REWARD project. The main objective consisted in making predictions regarding the behavior of the REWARD system in the presence of a Radiological Dispersion Device (RDD), one of the reference scenarios foreseen for REWARD, using the Monte Carlo simulation program MCNP6. The reference scenario is characterized in detail, from the i) radiological protection, ii) radiation detection requirements and iii) communications points of view. Experimental tests were performed at the Fire Brigades Facilities in Rome and at the Naples Fire Brigades, and the results, which validate the simulation work, are presented and analyzed. The response of the REWARD detection system to the presence of an RDD is predicted and discussed. (authors)« less
Electromagnetic Signal Feedback Control for Proximity Detection Systems
NASA Astrophysics Data System (ADS)
Smith, Adam K.
Coal is the most abundant fossil fuel in the United States and remains an essential source of energy. While more than half of coal production comes from surface mining, nearly twice as many workers are employed by underground operations. One of the key pieces of equipment used in underground coal mining is the continuous mining machine. These large and powerful machines are operated in confined spaces by remote control. Since 1984, 40 mine workers in the U. S. have been killed when struck or pinned by a continuous mining machine. It is estimated that a majority of these accidents could have been prevented with the application of proximity detection systems. While proximity detection systems can significantly increase safety around a continuous mining machine, there are some system limitations. Commercially available proximity warning systems for continuous mining machines use magnetic field generators to detect workers and establish safe work areas around the machines. Several environmental factors, however, can influence and distort the magnetic fields. To minimize these effects, a control system has been developed using electromagnetic field strength and generator current to stabilize and control field drift induced by internal and external environmental factors. A laboratory test set-up was built using a ferrite-core magnetic field generator to produce a stable magnetic field. Previous work based on a field-invariant magnetic flux density model, which generically describes the electromagnetic field, is expanded upon. The analytically established transferable shell-based flux density distribution model is used to experimentally validate the control system. By controlling the current input to the ferrite-core generator, a more reliable and consistent magnetic field is produced. Implementation of this technology will improve accuracy and performance of existing commercial proximity detection systems. These research results will help reduce the risk of traumatic injuries and improve overall safety in the mining workplace.
Preliminary study of the use of radiotracers for leak detection in industrial applications
NASA Astrophysics Data System (ADS)
Wetchagarun, S.; Petchrak, A.; Tippayakul, C.
2015-05-01
One of the most widespread uses of radiotracers in the industrial applications is the leak detection of the systems. This technique can be applied, for example, to detect leak in heat exchangers or along buried industrial pipelines. The ability to perform online investigation is one of the most important advantages of the radiotracer technique over other non-radioactive leak detection methods. In this paper, a preliminary study of the leak detection using radiotracer in the laboratory scale was presented. Br-82 was selected for this work due to its chemical property, its suitable half-life and its on-site availability. The NH4Br in the form of aqueous solution was injected into the experimental system as the radiotracer. Three NaI detectors were placed along the pipelines to measure system flow rate and to detect the leakage from the piping system. The results obtained from the radiotracer technique were compared to those measured by other methods. It is found that the flow rate obtained from the radiotracer technique agreed well with the one obtained from the flow meter. The leak rate result, however, showed discrepancy between results obtained from two different measuring methods indicating further study on leak detection was required before applying this technique in the industrial system.
NASA Astrophysics Data System (ADS)
Ye, Xiang; Gao, Weihua; Yan, Yanjun; Osadciw, Lisa A.
2010-04-01
Wind is an important renewable energy source. The energy and economic return from building wind farms justify the expensive investments in doing so. However, without an effective monitoring system, underperforming or faulty turbines will cause a huge loss in revenue. Early detection of such failures help prevent these undesired working conditions. We develop three tests on power curve, rotor speed curve, pitch angle curve of individual turbine. In each test, multiple states are defined to distinguish different working conditions, including complete shut-downs, under-performing states, abnormally frequent default states, as well as normal working states. These three tests are combined to reach a final conclusion, which is more effective than any single test. Through extensive data mining of historical data and verification from farm operators, some state combinations are discovered to be strong indicators of spindle failures, lightning strikes, anemometer faults, etc, for fault detection. In each individual test, and in the score fusion of these tests, we apply multidimensional scaling (MDS) to reduce the high dimensional feature space into a 3-dimensional visualization, from which it is easier to discover turbine working information. This approach gains a qualitative understanding of turbine performance status to detect faults, and also provides explanations on what has happened for detailed diagnostics. The state-of-the-art SCADA (Supervisory Control And Data Acquisition) system in industry can only answer the question whether there are abnormal working states, and our evaluation of multiple states in multiple tests is also promising for diagnostics. In the future, these tests can be readily incorporated in a Bayesian network for intelligent analysis and decision support.
Kashiha, Mohammad Amin; Green, Angela R; Sales, Tatiana Glogerley; Bahr, Claudia; Berckmans, Daniel; Gates, Richard S
2014-10-01
Image processing systems have been widely used in monitoring livestock for many applications, including identification, tracking, behavior analysis, occupancy rates, and activity calculations. The primary goal of this work was to quantify image processing performance when monitoring laying hens by comparing length of stay in each compartment as detected by the image processing system with the actual occurrences registered by human observations. In this work, an image processing system was implemented and evaluated for use in an environmental animal preference chamber to detect hen navigation between 4 compartments of the chamber. One camera was installed above each compartment to produce top-view images of the whole compartment. An ellipse-fitting model was applied to captured images to detect whether the hen was present in a compartment. During a choice-test study, mean ± SD success detection rates of 95.9 ± 2.6% were achieved when considering total duration of compartment occupancy. These results suggest that the image processing system is currently suitable for determining the response measures for assessing environmental choices. Moreover, the image processing system offered a comprehensive analysis of occupancy while substantially reducing data processing time compared with the time-intensive alternative of manual video analysis. The above technique was used to monitor ammonia aversion in the chamber. As a preliminary pilot study, different levels of ammonia were applied to different compartments while hens were allowed to navigate between compartments. Using the automated monitor tool to assess occupancy, a negative trend of compartment occupancy with ammonia level was revealed, though further examination is needed. ©2014 Poultry Science Association Inc.
STATISTICS-BASED APPROACH TO WASTEWATER TREATMENT PLANT OPERATIONS
This paper describes work toward development of a convenient decision support system to improve everyday operation and control of the wastewater treatment process. The goal is to help the operator detect problems in the process and select appropriate control actions. The system...
Low power multi-camera system and algorithms for automated threat detection
NASA Astrophysics Data System (ADS)
Huber, David J.; Khosla, Deepak; Chen, Yang; Van Buer, Darrel J.; Martin, Kevin
2013-05-01
A key to any robust automated surveillance system is continuous, wide field-of-view sensor coverage and high accuracy target detection algorithms. Newer systems typically employ an array of multiple fixed cameras that provide individual data streams, each of which is managed by its own processor. This array can continuously capture the entire field of view, but collecting all the data and back-end detection algorithm consumes additional power and increases the size, weight, and power (SWaP) of the package. This is often unacceptable, as many potential surveillance applications have strict system SWaP requirements. This paper describes a wide field-of-view video system that employs multiple fixed cameras and exhibits low SWaP without compromising the target detection rate. We cycle through the sensors, fetch a fixed number of frames, and process them through a modified target detection algorithm. During this time, the other sensors remain powered-down, which reduces the required hardware and power consumption of the system. We show that the resulting gaps in coverage and irregular frame rate do not affect the detection accuracy of the underlying algorithms. This reduces the power of an N-camera system by up to approximately N-fold compared to the baseline normal operation. This work was applied to Phase 2 of DARPA Cognitive Technology Threat Warning System (CT2WS) program and used during field testing.
NASA Astrophysics Data System (ADS)
Schoonmaker, Jon; Reed, Scott; Podobna, Yuliya; Vazquez, Jose; Boucher, Cynthia
2010-04-01
Due to increased security concerns, the commitment to monitor and maintain security in the maritime environment is increasingly a priority. A country's coast is the most vulnerable area for the incursion of illegal immigrants, terrorists and contraband. This work illustrates the ability of a low-cost, light-weight, multi-spectral, multi-channel imaging system to handle the environment and see under difficult marine conditions. The system and its implemented detecting and tracking technologies should be organic to the maritime homeland security community for search and rescue, fisheries, defense, and law enforcement. It is tailored for airborne and ship based platforms to detect, track and monitor suspected objects (such as semi-submerged targets like marine mammals, vessels in distress, and drug smugglers). In this system, automated detection and tracking technology is used to detect, classify and localize potential threats or objects of interest within the imagery provided by the multi-spectral system. These algorithms process the sensor data in real time, thereby providing immediate feedback when features of interest have been detected. A supervised detection system based on Haar features and Cascade Classifiers is presented and results are provided on real data. The system is shown to be extendable and reusable for a variety of different applications.
Automatic Emboli Detection System for the Artificial Heart
NASA Astrophysics Data System (ADS)
Steifer, T.; Lewandowski, M.; Karwat, P.; Gawlikowski, M.
In spite of the progress in material engineering and ventricular assist devices construction, thromboembolism remains the most crucial problem in mechanical heart supporting systems. Therefore, the ability to monitor the patient's blood for clot formation should be considered an important factor in development of heart supporting systems. The well-known methods for automatic embolus detection are based on the monitoring of the ultrasound Doppler signal. A working system utilizing ultrasound Doppler is being developed for the purpose of flow estimation and emboli detection in the clinical artificial heart ReligaHeart EXT. Thesystem will be based on the existing dual channel multi-gate Doppler device with RF digital processing. A specially developed clamp-on cannula probe, equipped with 2 - 4 MHz piezoceramic transducers, enables easy system setup. We present the issuesrelated to the development of automatic emboli detection via Doppler measurements. We consider several algorithms for the flow estimation and emboli detection. We discuss their efficiency and confront them with the requirements of our experimental setup. Theoretical considerations are then met with preliminary experimental findings from a) flow studies with blood mimicking fluid and b) in-vitro flow studies with animal blood. Finally, we discuss some more methodological issues - we consider several possible approaches to the problem of verification of the accuracy of the detection system.
Zhang, Xiaoliang; Li, Jiali; Liu, Yugang; Zhang, Zutao; Wang, Zhuojun; Luo, Dianyuan; Zhou, Xiang; Zhu, Miankuan; Salman, Waleed; Hu, Guangdi; Wang, Chunbai
2017-01-01
The vigilance of the driver is important for railway safety, despite not being included in the safety management system (SMS) for high-speed train safety. In this paper, a novel fatigue detection system for high-speed train safety based on monitoring train driver vigilance using a wireless wearable electroencephalograph (EEG) is presented. This system is designed to detect whether the driver is drowsiness. The proposed system consists of three main parts: (1) a wireless wearable EEG collection; (2) train driver vigilance detection; and (3) early warning device for train driver. In the first part, an 8-channel wireless wearable brain-computer interface (BCI) device acquires the locomotive driver’s brain EEG signal comfortably under high-speed train-driving conditions. The recorded data are transmitted to a personal computer (PC) via Bluetooth. In the second step, a support vector machine (SVM) classification algorithm is implemented to determine the vigilance level using the Fast Fourier transform (FFT) to extract the EEG power spectrum density (PSD). In addition, an early warning device begins to work if fatigue is detected. The simulation and test results demonstrate the feasibility of the proposed fatigue detection system for high-speed train safety. PMID:28257073
Tiscornia, Adriana; Cairoli, Ernesto; Marquez, Maria; Denicola, Ana; Pritsch, Otto; Cayota, Alfonso
2009-03-15
Nitric oxide ((*)NO) has been implicated in multiple physiological and pathological immune processes. Different methods have been developed to detect and quantify (*)NO, where one of the principal difficulties are the accurately detection in cellular system with low levels of (*)NO production. The choice of the (*)NO detection method to be used depends on the characteristics of the experimental system and the levels of (*)NO production which depend on either the organism source of samples or the experimental conditions. Recently, high sensitive methods to detect and image (*)NO have been reported using 4,5-diaminofluorescein-based fluorescent probes (DAF) and its derivate 4,5-diaminofluorescein diacetate (DAF-2 DA). This work was aimed to adapt and optimize the use of DAF probes to detect and quantify the (*)NO production in systems of high, moderate and low out-put production, especially in human PBMC and their subpopulations. Here, we report an original experimental design which is useful to detect and estimate (*)NO fluxes in human PBMC and their subpopulations with high specificity and sensitivity.
Online Detection of Driver Fatigue Using Steering Wheel Angles for Real Driving Conditions.
Li, Zuojin; Li, Shengbo Eben; Li, Renjie; Cheng, Bo; Shi, Jinliang
2017-03-02
This paper presents a drowsiness on-line detection system for monitoring driver fatigue level under real driving conditions, based on the data of steering wheel angles (SWA) collected from sensors mounted on the steering lever. The proposed system firstly extracts approximate entropy (ApEn)featuresfromfixedslidingwindowsonreal-timesteeringwheelanglestimeseries. Afterthat, this system linearizes the ApEn features series through an adaptive piecewise linear fitting using a given deviation. Then, the detection system calculates the warping distance between the linear features series of the sample data. Finally, this system uses the warping distance to determine the drowsiness state of the driver according to a designed binary decision classifier. The experimental data were collected from 14.68 h driving under real road conditions, including two fatigue levels: "wake" and "drowsy". The results show that the proposed system is capable of working online with an average 78.01% accuracy, 29.35% false detections of the "awake" state, and 15.15% false detections of the "drowsy" state. The results also confirm that the proposed method based on SWA signal is valuable for applications in preventing traffic accidents caused by driver fatigue.
Online Detection of Driver Fatigue Using Steering Wheel Angles for Real Driving Conditions
Li, Zuojin; Li, Shengbo Eben; Li, Renjie; Cheng, Bo; Shi, Jinliang
2017-01-01
This paper presents a drowsiness on-line detection system for monitoring driver fatigue level under real driving conditions, based on the data of steering wheel angles (SWA) collected from sensors mounted on the steering lever. The proposed system firstly extracts approximate entropy (ApEn) features from fixed sliding windows on real-time steering wheel angles time series. After that, this system linearizes the ApEn features series through an adaptive piecewise linear fitting using a given deviation. Then, the detection system calculates the warping distance between the linear features series of the sample data. Finally, this system uses the warping distance to determine the drowsiness state of the driver according to a designed binary decision classifier. The experimental data were collected from 14.68 h driving under real road conditions, including two fatigue levels: “wake” and “drowsy”. The results show that the proposed system is capable of working online with an average 78.01% accuracy, 29.35% false detections of the “awake” state, and 15.15% false detections of the “drowsy” state. The results also confirm that the proposed method based on SWA signal is valuable for applications in preventing traffic accidents caused by driver fatigue. PMID:28257094
A keyword spotting model using perceptually significant energy features
NASA Astrophysics Data System (ADS)
Umakanthan, Padmalochini
The task of a keyword recognition system is to detect the presence of certain words in a conversation based on the linguistic information present in human speech. Such keyword spotting systems have applications in homeland security, telephone surveillance and human-computer interfacing. General procedure of a keyword spotting system involves feature generation and matching. In this work, new set of features that are based on the psycho-acoustic masking nature of human speech are proposed. After developing these features a time aligned pattern matching process was implemented to locate the words in a set of unknown words. A word boundary detection technique based on frame classification using the nonlinear characteristics of speech is also addressed in this work. Validation of this keyword spotting model was done using widely acclaimed Cepstral features. The experimental results indicate the viability of using these perceptually significant features as an augmented feature set in keyword spotting.
Farquhar, J; Hill, N J
2013-04-01
Detecting event related potentials (ERPs) from single trials is critical to the operation of many stimulus-driven brain computer interface (BCI) systems. The low strength of the ERP signal compared to the noise (due to artifacts and BCI irrelevant brain processes) makes this a challenging signal detection problem. Previous work has tended to focus on how best to detect a single ERP type (such as the visual oddball response). However, the underlying ERP detection problem is essentially the same regardless of stimulus modality (e.g., visual or tactile), ERP component (e.g., P300 oddball response, or the error-potential), measurement system or electrode layout. To investigate whether a single ERP detection method might work for a wider range of ERP BCIs we compare detection performance over a large corpus of more than 50 ERP BCI datasets whilst systematically varying the electrode montage, spectral filter, spatial filter and classifier training methods. We identify an interesting interaction between spatial whitening and regularised classification which made detection performance independent of the choice of spectral filter low-pass frequency. Our results show that pipeline consisting of spectral filtering, spatial whitening, and regularised classification gives near maximal performance in all cases. Importantly, this pipeline is simple to implement and completely automatic with no expert feature selection or parameter tuning required. Thus, we recommend this combination as a "best-practice" method for ERP detection problems.
A traffic situation analysis system
NASA Astrophysics Data System (ADS)
Sidla, Oliver; Rosner, Marcin
2011-01-01
The observation and monitoring of traffic with smart visions systems for the purpose of improving traffic safety has a big potential. For example embedded vision systems built into vehicles can be used as early warning systems, or stationary camera systems can modify the switching frequency of signals at intersections. Today the automated analysis of traffic situations is still in its infancy - the patterns of vehicle motion and pedestrian flow in an urban environment are too complex to be fully understood by a vision system. We present steps towards such a traffic monitoring system which is designed to detect potentially dangerous traffic situations, especially incidents in which the interaction of pedestrians and vehicles might develop into safety critical encounters. The proposed system is field-tested at a real pedestrian crossing in the City of Vienna for the duration of one year. It consists of a cluster of 3 smart cameras, each of which is built from a very compact PC hardware system in an outdoor capable housing. Two cameras run vehicle detection software including license plate detection and recognition, one camera runs a complex pedestrian detection and tracking module based on the HOG detection principle. As a supplement, all 3 cameras use additional optical flow computation in a low-resolution video stream in order to estimate the motion path and speed of objects. This work describes the foundation for all 3 different object detection modalities (pedestrians, vehi1cles, license plates), and explains the system setup and its design.
NASA Astrophysics Data System (ADS)
Valls, Ana; Garcia, Francisco; Ramirez, Manuel; Benlloch, Javier
2015-04-01
Ground penetrating radar is usually employed for non-destructive detection of cavities in karst areas and road maintenance. This paper describes the inspection for cavity detection in a street located in Torrente (Valencia, Spain) where a new sewerage project was planned. Torrente population growth (more than 80,000 inhabitants last year) has caused urban development southwards from its downtown. According to municipality geologic configuration, new urbanized areas are located in mountains composed of limestone with presence of karst systems. During excavation work for a sewerage system installation, a 4 x 2 x 1.5 m shallow cave was found in one planned street. For this reason, digging activities were stopped and a GPR survey was carried out on the street. A 1x1 m grid was collected using a GSSI SIR-3000 equipment. A 400 MHz frequency antenna was used for reaching 2.5 m approx. depth, attending the characteristics of the discovered cave and the excavation project depth. GPR records were calibrated in situ, thanks to the unearthed cavity. The 3D GPR-data interpretation mapped several caves only on one side of the street. The detected cavities coincided with the sewerage system layout. These underground spaces were isolated from each other, as small individual karst caves. The outcomes of this study allowed the modification of the sewerage project. Therefore, the sewerage system layout was moved to the other side of the street where no cavities were detected with the GPR survey. GPR is proved to be an efficient tool to be taken into consideration by civil engineers and architects for designing new infrastructures (e.g. sewerage systems) in urban planning areas. We conclude GPR helps minimising cost, time and inconveniences to neighbourhood during excavation works, especially in cities.
An experimental flow-through assessment of acidic Fe/Mg smectite formation on early Mars
NASA Astrophysics Data System (ADS)
Sutter, B.; Peretyazhko, T.; Garcia, A. H.; Ming, D. W.
2017-12-01
Orbital observations have detected the phyllosilicate smectite in layered material hundreds of meters thick, intracrater depositional fans, and plains sediments on Mars; however, the detection of carbonate deposits is limited. Instead of neutral/alkaline conditions during the Noachian, early Mars may have experienced mildly acidic conditions derived from volcanic acid-sulfate solutions that allowed Fe/Mg smectite formation but prevented widespread carbonate formation. The detection of acid sulfates (e.g., jarosite) associated with smectite in Mawrth Vallis supports this hypothesis. Previous work demonstrated smectite (saponite) formation in closed hydrologic systems (batch reactor) from basaltic glass at pH 4 and 200°C (Peretyazhko et al., 2016 GCA). This work presents results from alteration of basaltic glass from alkaline to acidic conditions in open hydrologic systems (flow-through reactor). Preliminary experiments exposed basaltic glass to deionized water at 190°C at 0.25 ml/min where solution pH equilibrated to 9.5. These initial high pH experiments were conducted to evaluate the flow-through reactor system before working with lower pHs. Smectite at this pH was not produced and instead X-ray diffraction results consistent with serpentine was detected. Experiments are in progress exposing basaltic glass from pH 8 down to pH 3 to determine what range of pHs could allow for smectite formation in this experimental open-system. The production of smectite under an experimental open-system at low pHs if successful, would support a significant paradigm shift regarding the geochemical evolution of early Mars: Early Mars geochemical solutions were mildly acidic, not neutral/alkaline. This could have profound implications regarding early martain microbiology where acid conditions instead of neutral/alkaline conditions will require further research in terrestrial analogs to address the potential for biosignature preservation on Mars (Johnson et al., 2016, LPSC).
Autonomous software: Myth or magic?
NASA Astrophysics Data System (ADS)
Allan, A.; Naylor, T.; Saunders, E. S.
2008-03-01
We discuss work by the eSTAR project which demonstrates a fully closed loop autonomous system for the follow up of possible micro-lensing anomalies. Not only are the initial micro-lensing detections followed up in real time, but ongoing events are prioritised and continually monitored, with the returned data being analysed automatically. If the ``smart software'' running the observing campaign detects a planet-like anomaly, further follow-up will be scheduled autonomously and other telescopes and telescope networks alerted to the possible planetary detection. We further discuss the implications of this, and how such projects can be used to build more general autonomous observing and control systems.
Inspection applications with higher electron beam energies
NASA Astrophysics Data System (ADS)
Norman, D. R.; Jones, J. L.; Yoon, W. Y.; Haskell, K. J.; Sterbentz, J. W.; Zabriskie, J. M.; Hunt, A. W.; Harmon, F.; Kinlaw, M. T.
2005-12-01
The Idaho National Laboratory has developed prototype shielded nuclear material detection systems based on pulsed photonuclear assessment (PPA) techniques for the inspection of cargo containers. During this work, increased nuclear material detection capabilities have been demonstrated at higher electron beam energies than those allowed by federal regulations for cargo inspection. This paper gives a general overview of a nuclear material detection system, the PPA technique and discusses the benefits of using these higher energies. This paper also includes a summary of the numerical and test results from LINAC operations up to 24 MeV and discusses some of the federal energy limitations associated with cargo inspection.
Health impairment of system engineers working on projects with heavy workload.
Shimizui, Hayato; Ooshima, Kirika; Miki, Akiko; Matsushita, Yoshie; Hattori, Youji; Sugita, Minoru
2011-03-01
It has been reported that many system engineers must work hard to produce computer systems, and some of them suffer from health impairment due to their hard work. The purpose of the present cross-sectional study was to investigate the situation of impaired health status of system engineers in projects with high job strain. Countermeasures against health impairment of the subjects in the projects with high job strain in practices of occupational health fields are discussed. The study subjects were five superiors and their 35 subordinates working on computer system projects with high job strain at a large computer systems corporation in the Tokyo area. The control group was comprised of three superiors and their 18 subordinates in the same corporation. From July to November, 2006, the above were interviewed by six occupational health nurses, who evaluated their health and recorded their health evaluation scores. The problems involved in producing the computer systems were sometimes very difficult to solve, even if they spent long hours working on them. The present study detected a tendency showing that healthy superiors' subordinates were unhealthy and unhealthy superiors' subordinates were healthy in the overload projects with high job strain, while this was not detected in the control groups. A few employees whose health deteriorated were faced with very hard jobs in the overload projects. This means that heavy workloads were unevenly distributed in the overload projects among superiors, and their subordinates, and the health of a few members with heavy workloads deteriorated due to the heavy workload. In order to improve such a situation, it may be important not only to commit the necessary number of employees whose working ability is high to the section but also to even the workload in the overload project by informing all members of the project the health impairment of a few members due to heavy workload, from the viewpoint of the practice of occupational health and risk management.
Portable Analytical Systems for On-Site Diagnosis of Exposure to Pesticides and Nerve Agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yuehe; Wang, Jun; Liu, Guodong
In this chapter, we summarize recent work in our laboratory on the development of sensitive portable analytical systems for use in on-site detection of exposure to organophosphate (OP) pesticides and chemical nerve agents. These systems are based on various nanomaterials functioning as transducers; recognition agents or labels and various elelectrochemical/immunoassay techniques. The studied nanomaterials included functionalized carbon nanotubes (CNT), zirconia nanoparticles (NPs) and quantum dots (QDs). Three biomarkers e.g. the free OPs, metabolites of OPs and protein-OP adducts in biological matrices have been employed for biomonitoring of OP exposure with our developed system. It has been found that the nanomaterial-basedmore » portable analytical systems have high sensitivity for the detection of the biomarkers, which suggest that these technologies offer great promise for the rapid and on-site detection and evaluation of OP exposure.« less
Infrared thermography for detection of laminar-turbulent transition in low-speed wind tunnel testing
NASA Astrophysics Data System (ADS)
Joseph, Liselle A.; Borgoltz, Aurelien; Devenport, William
2016-05-01
This work presents the details of a system for experimentally identifying laminar-to-turbulent transition using infrared thermography applied to large, metal models in low-speed wind tunnel tests. Key elements of the transition detection system include infrared cameras with sensitivity in the 7.5- to 14.0-µm spectral range and a thin, insulating coat for the model. The fidelity of the system was validated through experiments on two wind-turbine blade airfoil sections tested at Reynolds numbers between Re = 1.5 × 106 and 3 × 106. Results compare well with measurements from surface pressure distributions and stethoscope observations. However, the infrared-based system provides data over a much broader range of conditions and locations on the model. This paper chronicles the design, implementation and validation of the infrared transition detection system, a subject which has not been widely detailed in the literature to date.
Propulsion Health Monitoring for Enhanced Safety
NASA Technical Reports Server (NTRS)
Butz, Mark G.; Rodriguez, Hector M.
2003-01-01
This report presents the results of the NASA contract Propulsion System Health Management for Enhanced Safety performed by General Electric Aircraft Engines (GE AE), General Electric Global Research (GE GR), and Pennsylvania State University Applied Research Laboratory (PSU ARL) under the NASA Aviation Safety Program. This activity supports the overall goal of enhanced civil aviation safety through a reduction in the occurrence of safety-significant propulsion system malfunctions. Specific objectives are to develop and demonstrate vibration diagnostics techniques for the on-line detection of turbine rotor disk cracks, and model-based fault tolerant control techniques for the prevention and mitigation of in-flight engine shutdown, surge/stall, and flameout events. The disk crack detection work was performed by GE GR which focused on a radial-mode vibration monitoring technique, and PSU ARL which focused on a torsional-mode vibration monitoring technique. GE AE performed the Model-Based Fault Tolerant Control work which focused on the development of analytical techniques for detecting, isolating, and accommodating gas-path faults.
Shallow Water Imaging Sonar System for Environmental Surveying Final Report CRADA No. TC-1130-95
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, L. C.; Rosenbaum, H.
The scope of this research is to develop a shallow water sonar system designed to detect and map the location of objects such as hazardous wastes or discarded ordnance in coastal waters. The system will use high frequency wide-bandwidth imaging sonar, mounted on a moving platform towed behind a boat, to detect and identify objects on the sea bottom. Resolved images can be obtained even if the targets are buried in an overlayer of silt. Reference 1 ( also attached) summarized the statement of work and the scope of collaboration.
Highly Portable, Sensor-Based System for Human Fall Monitoring.
Mao, Aihua; Ma, Xuedong; He, Yinan; Luo, Jie
2017-09-13
Falls are a very dangerous situation especially among elderly people, because they may lead to fractures, concussion, and other injuries. Without timely rescue, falls may even endanger their lives. The existing optical sensor-based fall monitoring systems have some disadvantages, such as limited monitoring range and inconvenience to carry for users. Furthermore, the fall detection system based only on an accelerometer often mistakenly determines some activities of daily living (ADL) as falls, leading to low accuracy in fall detection. We propose a human fall monitoring system consisting of a highly portable sensor unit including a triaxis accelerometer, a triaxis gyroscope, and a triaxis magnetometer, and a mobile phone. With the data from these sensors, we obtain the acceleration and Euler angle (yaw, pitch, and roll), which represents the orientation of the user's body. Then, a proposed fall detection algorithm was used to detect falls based on the acceleration and Euler angle. With this monitoring system, we design a series of simulated falls and ADL and conduct the experiment by placing the sensors on the shoulder, waist, and foot of the subjects. Through the experiment, we re-identify the threshold of acceleration for accurate fall detection and verify the best body location to place the sensors by comparing the detection performance on different body segments. We also compared this monitoring system with other similar works and found that better fall detection accuracy and portability can be achieved by our system.
Highly Portable, Sensor-Based System for Human Fall Monitoring
Mao, Aihua; Ma, Xuedong; He, Yinan; Luo, Jie
2017-01-01
Falls are a very dangerous situation especially among elderly people, because they may lead to fractures, concussion, and other injuries. Without timely rescue, falls may even endanger their lives. The existing optical sensor-based fall monitoring systems have some disadvantages, such as limited monitoring range and inconvenience to carry for users. Furthermore, the fall detection system based only on an accelerometer often mistakenly determines some activities of daily living (ADL) as falls, leading to low accuracy in fall detection. We propose a human fall monitoring system consisting of a highly portable sensor unit including a triaxis accelerometer, a triaxis gyroscope, and a triaxis magnetometer, and a mobile phone. With the data from these sensors, we obtain the acceleration and Euler angle (yaw, pitch, and roll), which represents the orientation of the user’s body. Then, a proposed fall detection algorithm was used to detect falls based on the acceleration and Euler angle. With this monitoring system, we design a series of simulated falls and ADL and conduct the experiment by placing the sensors on the shoulder, waist, and foot of the subjects. Through the experiment, we re-identify the threshold of acceleration for accurate fall detection and verify the best body location to place the sensors by comparing the detection performance on different body segments. We also compared this monitoring system with other similar works and found that better fall detection accuracy and portability can be achieved by our system. PMID:28902149
Integrating Security in Real-Time Embedded Systems
2017-04-26
b) detect any intrusions/a ttacks once tl1ey occur and (c) keep the overall system safe in the event of an attack. 4. Analysis and evaluation of...beyond), we expanded our work in both security integration and attack mechanisms, and worked on demonstrations and evaluations in hardware. Year I...scheduling for each busy interval w ith the calculated arrival time w indow. Step 1 focuses on the problem of finding the quanti ty of each task
Equipment
The Grafton and Boston Tufts laboratories are impressively equipped to perform this work. They were able to work with the company Haemonetics to make a new automated centrifuge, with remote control and offline capabilities. Sadly, while...
Al-Nawashi, Malek; Al-Hazaimeh, Obaida M; Saraee, Mohamad
2017-01-01
Abnormal activity detection plays a crucial role in surveillance applications, and a surveillance system that can perform robustly in an academic environment has become an urgent need. In this paper, we propose a novel framework for an automatic real-time video-based surveillance system which can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment. To develop our system, we have divided the work into three phases: preprocessing phase, abnormal human activity detection phase, and content-based image retrieval phase. For motion object detection, we used the temporal-differencing algorithm and then located the motions region using the Gaussian function. Furthermore, the shape model based on OMEGA equation was used as a filter for the detected objects (i.e., human and non-human). For object activities analysis, we evaluated and analyzed the human activities of the detected objects. We classified the human activities into two groups: normal activities and abnormal activities based on the support vector machine. The machine then provides an automatic warning in case of abnormal human activities. It also embeds a method to retrieve the detected object from the database for object recognition and identification using content-based image retrieval. Finally, a software-based simulation using MATLAB was performed and the results of the conducted experiments showed an excellent surveillance system that can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment with no human intervention.
Security Applications Of Computer Motion Detection
NASA Astrophysics Data System (ADS)
Bernat, Andrew P.; Nelan, Joseph; Riter, Stephen; Frankel, Harry
1987-05-01
An important area of application of computer vision is the detection of human motion in security systems. This paper describes the development of a computer vision system which can detect and track human movement across the international border between the United States and Mexico. Because of the wide range of environmental conditions, this application represents a stringent test of computer vision algorithms for motion detection and object identification. The desired output of this vision system is accurate, real-time locations for individual aliens and accurate statistical data as to the frequency of illegal border crossings. Because most detection and tracking routines assume rigid body motion, which is not characteristic of humans, new algorithms capable of reliable operation in our application are required. Furthermore, most current detection and tracking algorithms assume a uniform background against which motion is viewed - the urban environment along the US-Mexican border is anything but uniform. The system works in three stages: motion detection, object tracking and object identi-fication. We have implemented motion detection using simple frame differencing, maximum likelihood estimation, mean and median tests and are evaluating them for accuracy and computational efficiency. Due to the complex nature of the urban environment (background and foreground objects consisting of buildings, vegetation, vehicles, wind-blown debris, animals, etc.), motion detection alone is not sufficiently accurate. Object tracking and identification are handled by an expert system which takes shape, location and trajectory information as input and determines if the moving object is indeed representative of an illegal border crossing.
Prado-Velasco, Manuel; del Rio-Cidoncha, Maria Gloria; Ortiz-Marin, Rafael
2008-01-01
Despite the intense research in the last decade with the aim of developing a reliable solution for fall detection in the elderly and other risk populations, it can be asserted that the diffusion of fall detectors in the geriatric practice is near null. This scenario is similar to the very scarce use of telemedicine in healthcare. The present work begins analyzing why fall detectors have not achieved to permeate the industry. That road is used to know the drawbacks of current devices and systems, besides to allow studying several important concepts underlying the principles of fall detection. A novel smart detection system based on that survey is finally briefly presented. The design of this device is founded on the experience and results obtained by an earlier device that was designed in the framework of the thesis of one of the authors.
Hu, Min-Chun; Cheng, Ming-Hsun; Lan, Kun-Chan
2016-01-01
An automatic tongue diagnosis framework is proposed to analyze tongue images taken by smartphones. Different from conventional tongue diagnosis systems, our input tongue images are usually in low resolution and taken under unknown lighting conditions. Consequently, existing tongue diagnosis methods cannot be directly applied to give accurate results. We use the SVM (support vector machine) to predict the lighting condition and the corresponding color correction matrix according to the color difference of images taken with and without flash. We also modify the state-of-the-art work of fur and fissure detection for tongue images by taking hue information into consideration and adding a denoising step. Our method is able to correct the color of tongue images under different lighting conditions (e.g. fluorescent, incandescent, and halogen illuminant) and provide a better accuracy in tongue features detection with less processing complexity than the prior work. In this work, we proposed an automatic tongue diagnosis framework which can be applied to smartphones. Unlike the prior work which can only work in a controlled environment, our system can adapt to different lighting conditions by employing a novel color correction parameter estimation scheme.
Feng, Jianyuan; Turksoy, Kamuran; Samadi, Sediqeh; Hajizadeh, Iman; Littlejohn, Elizabeth; Cinar, Ali
2017-12-01
Supervision and control systems rely on signals from sensors to receive information to monitor the operation of a system and adjust manipulated variables to achieve the control objective. However, sensor performance is often limited by their working conditions and sensors may also be subjected to interference by other devices. Many different types of sensor errors such as outliers, missing values, drifts and corruption with noise may occur during process operation. A hybrid online sensor error detection and functional redundancy system is developed to detect errors in online signals, and replace erroneous or missing values detected with model-based estimates. The proposed hybrid system relies on two techniques, an outlier-robust Kalman filter (ORKF) and a locally-weighted partial least squares (LW-PLS) regression model, which leverage the advantages of automatic measurement error elimination with ORKF and data-driven prediction with LW-PLS. The system includes a nominal angle analysis (NAA) method to distinguish between signal faults and large changes in sensor values caused by real dynamic changes in process operation. The performance of the system is illustrated with clinical data continuous glucose monitoring (CGM) sensors from people with type 1 diabetes. More than 50,000 CGM sensor errors were added to original CGM signals from 25 clinical experiments, then the performance of error detection and functional redundancy algorithms were analyzed. The results indicate that the proposed system can successfully detect most of the erroneous signals and substitute them with reasonable estimated values computed by functional redundancy system.
Automatic Detection and Classification of Audio Events for Road Surveillance Applications.
Almaadeed, Noor; Asim, Muhammad; Al-Maadeed, Somaya; Bouridane, Ahmed; Beghdadi, Azeddine
2018-06-06
This work investigates the problem of detecting hazardous events on roads by designing an audio surveillance system that automatically detects perilous situations such as car crashes and tire skidding. In recent years, research has shown several visual surveillance systems that have been proposed for road monitoring to detect accidents with an aim to improve safety procedures in emergency cases. However, the visual information alone cannot detect certain events such as car crashes and tire skidding, especially under adverse and visually cluttered weather conditions such as snowfall, rain, and fog. Consequently, the incorporation of microphones and audio event detectors based on audio processing can significantly enhance the detection accuracy of such surveillance systems. This paper proposes to combine time-domain, frequency-domain, and joint time-frequency features extracted from a class of quadratic time-frequency distributions (QTFDs) to detect events on roads through audio analysis and processing. Experiments were carried out using a publicly available dataset. The experimental results conform the effectiveness of the proposed approach for detecting hazardous events on roads as demonstrated by 7% improvement of accuracy rate when compared against methods that use individual temporal and spectral features.
A Novel Displacement and Tilt Detection Method Using Passive UHF RFID Technology.
Lai, Xiaozheng; Cai, Zhirong; Xie, Zeming; Zhu, Hailong
2018-05-21
The displacement and tilt angle of an object are useful information for wireless monitoring applications. In this paper, a low-cost detection method based on passive radio frequency identification (RFID) technology is proposed. This method uses a standard ultrahigh-frequency (UHF) RFID reader to measure the phase variation of the tag response and detect the displacement and tilt angle of RFID tags attached to the targeted object. An accurate displacement result can be detected by the RFID system with a linearly polarized (LP) reader antenna. Based on the displacement results, an accurate tilt angle can also be detected by the RFID system with a circularly polarized (CP) reader antenna, which has been proved to have a linear relationship with the phase parameter of the tag’s backscattered wave. As far as accuracy is concerned, the mean absolute error (MAE) of displacement is less than 2 mm and the MAE of the tilt angle is less than 2.5° for an RFID system with 500 mm working range.
A new method for text detection and recognition in indoor scene for assisting blind people
NASA Astrophysics Data System (ADS)
Jabnoun, Hanen; Benzarti, Faouzi; Amiri, Hamid
2017-03-01
Developing assisting system of handicapped persons become a challenging ask in research projects. Recently, a variety of tools are designed to help visually impaired or blind people object as a visual substitution system. The majority of these tools are based on the conversion of input information into auditory or tactile sensory information. Furthermore, object recognition and text retrieval are exploited in the visual substitution systems. Text detection and recognition provides the description of the surrounding environments, so that the blind person can readily recognize the scene. In this work, we aim to introduce a method for detecting and recognizing text in indoor scene. The process consists on the detection of the regions of interest that should contain the text using the connected component. Then, the text detection is provided by employing the images correlation. This component of an assistive blind person should be simple, so that the users are able to obtain the most informative feedback within the shortest time.
Aerial vehicles collision avoidance using monocular vision
NASA Astrophysics Data System (ADS)
Balashov, Oleg; Muraviev, Vadim; Strotov, Valery
2016-10-01
In this paper image-based collision avoidance algorithm that provides detection of nearby aircraft and distance estimation is presented. The approach requires a vision system with a single moving camera and additional information about carrier's speed and orientation from onboard sensors. The main idea is to create a multi-step approach based on a preliminary detection, regions of interest (ROI) selection, contour segmentation, object matching and localization. The proposed algorithm is able to detect small targets but unlike many other approaches is designed to work with large-scale objects as well. To localize aerial vehicle position the system of equations relating object coordinates in space and observed image is solved. The system solution gives the current position and speed of the detected object in space. Using this information distance and time to collision can be estimated. Experimental research on real video sequences and modeled data is performed. Video database contained different types of aerial vehicles: aircrafts, helicopters, and UAVs. The presented algorithm is able to detect aerial vehicles from several kilometers under regular daylight conditions.
Upwelling regime off the Cabo Frio region in Brazil and impact on acoustic propagation.
Calado, Leandro; Camargo Rodríguez, Orlando; Codato, Gabriel; Contrera Xavier, Fabio
2018-03-01
This work introduces a description of the complex upwelling regime off the Cabo Frio region in Brazil and shows that ocean modeling, based on the feature-oriented regional modeling system (FORMS) technique, can produce reliable predictions of sound speed fields for the corresponding shallow water environment. This work also shows, through the development of simulations, that the upwelling regime can be responsible for the creation of shadow coastal zones, in which the detection probability is too low for an acoustic source to be detected. The development of the FORMS technique and its validation with real data, for the particular region of coastal upwelling off Cabo Frio, reveals the possibility of a sustainable and reliable forecast system for the corresponding (variable in space and time) underwater acoustic environment.
Automatic Pedestrian Crossing Detection and Impairment Analysis Based on Mobile Mapping System
NASA Astrophysics Data System (ADS)
Liu, X.; Zhang, Y.; Li, Q.
2017-09-01
Pedestrian crossing, as an important part of transportation infrastructures, serves to secure pedestrians' lives and possessions and keep traffic flow in order. As a prominent feature in the street scene, detection of pedestrian crossing contributes to 3D road marking reconstruction and diminishing the adverse impact of outliers in 3D street scene reconstruction. Since pedestrian crossing is subject to wearing and tearing from heavy traffic flow, it is of great imperative to monitor its status quo. On this account, an approach of automatic pedestrian crossing detection using images from vehicle-based Mobile Mapping System is put forward and its defilement and impairment are analyzed in this paper. Firstly, pedestrian crossing classifier is trained with low recall rate. Then initial detections are refined by utilizing projection filtering, contour information analysis, and monocular vision. Finally, a pedestrian crossing detection and analysis system with high recall rate, precision and robustness will be achieved. This system works for pedestrian crossing detection under different situations and light conditions. It can recognize defiled and impaired crossings automatically in the meanwhile, which facilitates monitoring and maintenance of traffic facilities, so as to reduce potential traffic safety problems and secure lives and property.
Monocular precrash vehicle detection: features and classifiers.
Sun, Zehang; Bebis, George; Miller, Ronald
2006-07-01
Robust and reliable vehicle detection from images acquired by a moving vehicle (i.e., on-road vehicle detection) is an important problem with applications to driver assistance systems and autonomous, self-guided vehicles. The focus of this work is on the issues of feature extraction and classification for rear-view vehicle detection. Specifically, by treating the problem of vehicle detection as a two-class classification problem, we have investigated several different feature extraction methods such as principal component analysis, wavelets, and Gabor filters. To evaluate the extracted features, we have experimented with two popular classifiers, neural networks and support vector machines (SVMs). Based on our evaluation results, we have developed an on-board real-time monocular vehicle detection system that is capable of acquiring grey-scale images, using Ford's proprietary low-light camera, achieving an average detection rate of 10 Hz. Our vehicle detection algorithm consists of two main steps: a multiscale driven hypothesis generation step and an appearance-based hypothesis verification step. During the hypothesis generation step, image locations where vehicles might be present are extracted. This step uses multiscale techniques not only to speed up detection, but also to improve system robustness. The appearance-based hypothesis verification step verifies the hypotheses using Gabor features and SVMs. The system has been tested in Ford's concept vehicle under different traffic conditions (e.g., structured highway, complex urban streets, and varying weather conditions), illustrating good performance.
Monitoring of Thermal Protection Systems Using Robust Self-Organizing Optical Fiber Sensing Networks
NASA Technical Reports Server (NTRS)
Richards, Lance
2013-01-01
The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, and an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during re-entry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry
Detection of Banned and Restricted Ozone-Depleting Chemicals in Printed Circuit Boards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Richard N.; Wright, Bob W.
2008-12-01
A study directed toward the detection of halogenated solvents in the matrix of circuit boards has recently been completed. This work was undertaken to demonstrate the potential for reliable detection of solvents used during the fabrication of printed circuit boards (PCB). Since many of these solvents are now, or soon will be, restricted under the terms of legislation enacted in response to the Montreal Protocol and other international agreements, the work described here, conducted over a period of more that 4 years, has provided guidance for the development of chromatographic system and analytical protocol to assure compliance with regulations introducedmore » to control, or ban, industrial solvents associated with adverse environmental impact.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Erin A.; Caggiano, Joseph A.; Runkle, Robert C.
As a complement to passive detection systems, radiographic inspection of cargo is an increasingly important tool for homeland security because it has the potential to detect highly attenuating objects associated with special nuclear material or surrounding shielding. Detecting such objects relies on high image contrast between regions of different density and atomic number (Z). Threat detection is affected by scatter of the interrogating beam, both in the cargo and surrounding objects, which degrades image contrast. Here, we work to determine the extent to which scatter plays a role in radiographic imaging of cargo containers.
Collection of Infrasonic Sound From Sources of Military Importance
NASA Technical Reports Server (NTRS)
Masterman, Michael; Shams, Qamar A.; Burkett, Cecil G.; Zuckerwar, Allan J.; Stihler, Craig; Wallace, Jack
2008-01-01
Extreme Endeavors is collaborating with NASA Langley Research Center (LaRC) in the development, testing and analysis of infrasonic detection system under a Space Act Agreement. Acoustic studies of atmospheric events like convective storms, shear-induced turbulence, acoustic gravity waves, microbursts, hurricanes, and clear air turbulence (CAT) over the past thirty years have established that these events are strong emitters of infrasound. Recently NASA Langley Research Center has designed and developed a portable infrasonic detection system which can be used to make useful infrasound measurements at locations where it was not possible previously, such as a mountain crag, inside a cave or on the battlefield. The system comprises an electret condenser microphone, having a 3-inch membrane diameter, and a small, compact windscreen. Extreme Endeavors will present the findings from field testing using this portable infrasonic detection system. Field testing of the infrasonic detection system was partly funded by Greer Industries and support provided by the West Virginia Division of Natural Resources. The findings from this work illustrate the ability to detect structure and other information about the contents inside the caves. The presentation will describe methodology for utilizing infrasonic to locate and portray underground facilities.
A real-time standard parts inspection based on deep learning
NASA Astrophysics Data System (ADS)
Xu, Kuan; Li, XuDong; Jiang, Hongzhi; Zhao, Huijie
2017-10-01
Since standard parts are necessary components in mechanical structure like bogie and connector. These mechanical structures will be shattered or loosen if standard parts are lost. So real-time standard parts inspection systems are essential to guarantee their safety. Researchers would like to take inspection systems based on deep learning because it works well in image with complex backgrounds which is common in standard parts inspection situation. A typical inspection detection system contains two basic components: feature extractors and object classifiers. For the object classifier, Region Proposal Network (RPN) is one of the most essential architectures in most state-of-art object detection systems. However, in the basic RPN architecture, the proposals of Region of Interest (ROI) have fixed sizes (9 anchors for each pixel), they are effective but they waste much computing resources and time. In standard parts detection situations, standard parts have given size, thus we can manually choose sizes of anchors based on the ground-truths through machine learning. The experiments prove that we could use 2 anchors to achieve almost the same accuracy and recall rate. Basically, our standard parts detection system could reach 15fps on NVIDIA GTX1080 (GPU), while achieving detection accuracy 90.01% mAP.
Smoothing of Gaussian quantum dynamics for force detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhishen; Sarovar, Mohan
Building on recent work by Gammelmark et al. we develop a formalism for prediction and retrodiction of Gaussian quantum systems undergoing continuous measurements. We apply the resulting formalism to study the advantage of incorporating a full measurement record and retrodiction for impulselike force detection and accelerometry. Here, we find that using retrodiction can only increase accuracy in a limited parameter regime, but that the reduction in estimation noise that it yields results in better detection of impulselike forces.
Smoothing of Gaussian quantum dynamics for force detection
Huang, Zhishen; Sarovar, Mohan
2018-04-10
Building on recent work by Gammelmark et al. we develop a formalism for prediction and retrodiction of Gaussian quantum systems undergoing continuous measurements. We apply the resulting formalism to study the advantage of incorporating a full measurement record and retrodiction for impulselike force detection and accelerometry. Here, we find that using retrodiction can only increase accuracy in a limited parameter regime, but that the reduction in estimation noise that it yields results in better detection of impulselike forces.
HMM Sequential Hypothesis Tests for Intrusion Detection in MANETs Extended Abstract
2003-01-01
securing the routing protocols of mobile ad hoc wireless net- works has been done in prevention. Intrusion detection systems play a complimentary...TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 10 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified...hops of A would be unable to communicate with B and vice versa [1]. 1.2 The role of intrusion detection in security In order to provide reliable
DeepFruits: A Fruit Detection System Using Deep Neural Networks
Sa, Inkyu; Ge, Zongyuan; Dayoub, Feras; Upcroft, Ben; Perez, Tristan; McCool, Chris
2016-01-01
This paper presents a novel approach to fruit detection using deep convolutional neural networks. The aim is to build an accurate, fast and reliable fruit detection system, which is a vital element of an autonomous agricultural robotic platform; it is a key element for fruit yield estimation and automated harvesting. Recent work in deep neural networks has led to the development of a state-of-the-art object detector termed Faster Region-based CNN (Faster R-CNN). We adapt this model, through transfer learning, for the task of fruit detection using imagery obtained from two modalities: colour (RGB) and Near-Infrared (NIR). Early and late fusion methods are explored for combining the multi-modal (RGB and NIR) information. This leads to a novel multi-modal Faster R-CNN model, which achieves state-of-the-art results compared to prior work with the F1 score, which takes into account both precision and recall performances improving from 0.807 to 0.838 for the detection of sweet pepper. In addition to improved accuracy, this approach is also much quicker to deploy for new fruits, as it requires bounding box annotation rather than pixel-level annotation (annotating bounding boxes is approximately an order of magnitude quicker to perform). The model is retrained to perform the detection of seven fruits, with the entire process taking four hours to annotate and train the new model per fruit. PMID:27527168
DeepFruits: A Fruit Detection System Using Deep Neural Networks.
Sa, Inkyu; Ge, Zongyuan; Dayoub, Feras; Upcroft, Ben; Perez, Tristan; McCool, Chris
2016-08-03
This paper presents a novel approach to fruit detection using deep convolutional neural networks. The aim is to build an accurate, fast and reliable fruit detection system, which is a vital element of an autonomous agricultural robotic platform; it is a key element for fruit yield estimation and automated harvesting. Recent work in deep neural networks has led to the development of a state-of-the-art object detector termed Faster Region-based CNN (Faster R-CNN). We adapt this model, through transfer learning, for the task of fruit detection using imagery obtained from two modalities: colour (RGB) and Near-Infrared (NIR). Early and late fusion methods are explored for combining the multi-modal (RGB and NIR) information. This leads to a novel multi-modal Faster R-CNN model, which achieves state-of-the-art results compared to prior work with the F1 score, which takes into account both precision and recall performances improving from 0 . 807 to 0 . 838 for the detection of sweet pepper. In addition to improved accuracy, this approach is also much quicker to deploy for new fruits, as it requires bounding box annotation rather than pixel-level annotation (annotating bounding boxes is approximately an order of magnitude quicker to perform). The model is retrained to perform the detection of seven fruits, with the entire process taking four hours to annotate and train the new model per fruit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heberlein, L.T.; Dias, G.V.; Levitt, K.N.
1989-11-01
The study of security in computer networks is a rapidly growing area of interest because of the proliferation of networks and the paucity of security measures in most current networks. Since most networks consist of a collection of inter-connected local area networks (LANs), this paper concentrates on the security-related issues in a single broadcast LAN such as Ethernet. Specifically, we formalize various possible network attacks and outline methods of detecting them. Our basic strategy is to develop profiles of usage of network resources and then compare current usage patterns with the historical profile to determine possible security violations. Thus, ourmore » work is similar to the host-based intrusion-detection systems such as SRI's IDES. Different from such systems, however, is our use of a hierarchical model to refine the focus of the intrusion-detection mechanism. We also report on the development of our experimental LAN monitor currently under implementation. Several network attacks have been simulated and results on how the monitor has been able to detect these attacks are also analyzed. Initial results demonstrate that many network attacks are detectable with our monitor, although it can surely be defeated. Current work is focusing on the integration of network monitoring with host-based techniques. 20 refs., 2 figs.« less
Characterization of Geiger mode avalanche photodiodes for fluorescence decay measurements
NASA Astrophysics Data System (ADS)
Jackson, John C.; Phelan, Don; Morrison, Alan P.; Redfern, R. Michael; Mathewson, Alan
2002-05-01
Geiger mode avalanche photodiodes (APD) can be biased above the breakdown voltage to allow detection of single photons. Because of the increase in quantum efficiency, magnetic field immunity, robustness, longer operating lifetime and reduction in costs, solid-state detectors capable of operating at non-cryogenic temperatures and providing single photon detection capabilities provide attractive alternatives to the photomultiplier tube (PMT). Shallow junction Geiger mode APD detectors provide the ability to manufacture photon detectors and detector arrays with CMOS compatible processing steps and allows the use of novel Silicon-on-Insulator(SoI) technology to provide future integrated sensing solutions. Previous work on Geiger mode APD detectors has focused on increasing the active area of the detector to make it more PMT like, easing the integration of discrete reaction, detection and signal processing into laboratory experimental systems. This discrete model for single photon detection works well for laboratory sized test and measurement equipment, however the move towards microfluidics and systems on a chip requires integrated sensing solutions. As we move towards providing integrated functionality of increasingly nanoscopic sized emissions, small area detectors and detector arrays that can be easily integrated into marketable systems, with sensitive small area single photon counting detectors will be needed. This paper will demonstrate the 2-dimensional and 3-dimensional simulation of optical coupling that occurs in Geiger mode APDs. Fabricated Geiger mode APD detectors optimized for fluorescence decay measurements were characterized and preliminary results show excellent results for their integration into fluorescence decay measurement systems.
Analysis of Technology for Compact Coherent Lidar
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin
1997-01-01
In view of the recent advances in the area of solid state and semiconductor lasers has created new possibilities for the development of compact and reliable coherent lidars for a wide range of applications. These applications include: Automated Rendezvous and Capture, wind shear and clear air turbulence detection, aircraft wake vortex detection, and automobile collision avoidance. The work performed by the UAH personnel under this Delivery Order, concentrated on design and analyses of a compact coherent lidar system capable of measuring range and velocity of hard targets, and providing air mass velocity data. The following is the scope of this work. a. Investigate various laser sources and optical signal detection configurations in support of a compact and lightweight coherent laser radar to be developed for precision range and velocity measurements of hard and fuzzy targets. Through interaction with MSFC engineers, the most suitable laser source and signal detection technique that can provide a reliable compact and lightweight laser radar design will be selected. b. Analyze and specify the coherent laser radar system configuration and assist with its optical and electronic design efforts. Develop a system design including its optical layout design. Specify all optical components and provide the general requirements of the electronic subsystems including laser beam modulator and demodulator drivers, detector electronic interface, and the signal processor. c. Perform a thorough performance analysis to predict the system measurement range and accuracy. This analysis will utilize various coherent laser radar sensitivity formulations and different target models.
Pyxis handheld polarimetric imager
NASA Astrophysics Data System (ADS)
Chenault, David B.; Pezzaniti, J. Larry; Vaden, Justin P.
2016-05-01
The instrumentation for measuring infrared polarization signatures has seen significant advancement over the last decade. Previous work has shown the value of polarimetric imagery for a variety of target detection scenarios including detection of manmade targets in clutter and detection of ground and maritime targets while recent work has shown improvements in contrast for aircraft detection and biometric markers. These data collection activities have generally used laboratory or prototype systems with limitations on the allowable amount of target motion or the sensor platform and usually require an attached computer for data acquisition and processing. Still, performance and sensitivity have been steadily getting better while size, weight, and power requirements have been getting smaller enabling polarimetric imaging for a greater or real world applications. In this paper, we describe Pyxis®, a microbolometer based imaging polarimeter that produces live polarimetric video of conventional, polarimetric, and fused image products. A polarization microgrid array integrated in the optical system captures all polarization states simultaneously and makes the system immune to motion artifacts of either the sensor or the scene. The system is battery operated, rugged, and weighs about a quarter pound, and can be helmet mounted or handheld. On board processing of polarization and fused image products enable the operator to see polarimetric signatures in real time. Both analog and digital outputs are possible with sensor control available through a tablet interface. A top level description of Pyxis® is given followed by performance characteristics and representative data.
Catheter-based time-gated near-infrared fluorescence/OCT imaging system
NASA Astrophysics Data System (ADS)
Lu, Yuankang; Abran, Maxime; Cloutier, Guy; Lesage, Frédéric
2018-02-01
We developed a new dual-modality intravascular imaging system based on fast time-gated fluorescence intensity imaging and spectral domain optical coherence tomography (SD-OCT) for the purpose of interventional detection of atherosclerosis. A pulsed supercontinuum laser was used for fluorescence and OCT imaging. A double-clad fiber (DCF)- based side-firing catheter was designed and fabricated to have a 23 μm spot size at a 2.2 mm working distance for OCT imaging. Its single-mode core is used for OCT, while its inner cladding transports fluorescence excitation light and collects fluorescent photons. The combination of OCT and fluorescence imaging was achieved by using a DCF coupler. For fluorescence detection, we used a time-gated technique with a novel single-photon avalanche diode (SPAD) working in an ultra-fast gating mode. A custom-made delay chip was integrated in the system to adjust the delay between the excitation laser pulse and the SPAD gate-ON window. This technique allowed to detect fluorescent photons of interest while rejecting most of the background photons, thus leading to a significantly improved signal to noise ratio (SNR). Experiments were carried out in turbid media mimicking tissue with an indocyanine green (ICG) inclusion (1 mM and 100 μM) to compare the time-gated technique and the conventional continuous detection technique. The gating technique increased twofold depth sensitivity, and tenfold SNR at large distances. The dual-modality imaging capacity of our system was also validated with a silicone-based tissue-mimicking phantom.
Oliveira, Bruna Paloma de; Câmara, Andréa Cruz; Duarte, Daniel Amancio; Heck, Richard John; Antonino, Antonio Celso Dantas; Aguiar, Carlos Menezes
2017-01-01
The objective of this study was to evaluate the effect of root canal preparation with single-file reciprocating systems at different working lengths on the development of apical microcracks using micro-computed tomographic (micro-CT) imaging. Forty extracted human mandibular incisors were randomly assigned to 4 groups (n=10) according to the systems and working length used to prepare the root canals: Group A - WaveOne Gold at apical foramen (AF), Group B - WaveOne Gold 1 mm short of the AF (AF-1 mm), Group C - Unicone (AF) and Group D - Unicone (AF-1 mm). Micro-CT scanning was performed before and after root canal preparation at an isotropic resolution of 14 µm. Then, three examiners assessed the cross-sectional images generated to detect microcracks in the apical portion of the roots. Apical microcracks were visualized in 3, 1, 1, and 3 specimens in groups A, B, C, and D, respectively. All these microcracks observed after root canal preparation already existed prior to instrumentation, and no new apical microcrack was detected. For all groups, the number of slices presenting microcracks after root canal preparation was the same as before canal preparation. Root canal preparation with WaveOne Gold and Unicone, regardless of the working length, was not associated with apical microcrack formation.
ERIC Educational Resources Information Center
Mintrop, Heinrich; Trujillo, Tina
2007-01-01
In search for the practical relevance of accountability systems for school improvement, we ask whether practitioners traveling between the worlds of system-designated high and low-performing schools would detect tangible differences by observing concrete behaviors, looking at student work, or inquiring about teacher, administrator, or student…
Ljungblad, Jonas; Hök, Bertil; Allalou, Amin; Pettersson, Håkan
2017-05-29
The research objective of the present investigation is to demonstrate the present status of passive in-vehicle driver breath alcohol detection and highlight the necessary conditions for large-scale implementation of such a system. Completely passive detection has remained a challenge mainly because of the requirements on signal resolution combined with the constraints of vehicle integration. The work is part of the Driver Alcohol Detection System for Safety (DADSS) program aiming at massive deployment of alcohol sensing systems that could potentially save thousands of American lives annually. The work reported here builds on earlier investigations, in which it has been shown that detection of alcohol vapor in the proximity of a human subject may be traced to that subject by means of simultaneous recording of carbon dioxide (CO 2 ) at the same location. Sensors based on infrared spectroscopy were developed to detect and quantify low concentrations of alcohol and CO 2 . In the present investigation, alcohol and CO 2 were recorded at various locations in a vehicle cabin while human subjects were performing normal in-step procedures and driving preparations. A video camera directed to the driver position was recording images of the driver's upper body parts, including the face, and the images were analyzed with respect to features of significance to the breathing behavior and breath detection, such as mouth opening and head direction. Improvement of the sensor system with respect to signal resolution including algorithm and software development, and fusion of the sensor and camera signals was successfully implemented and tested before starting the human study. In addition, experimental tests and simulations were performed with the purpose of connecting human subject data with repeatable experimental conditions. The results include occurrence statistics of detected breaths by signal peaks of CO 2 and alcohol. From the statistical data, the accuracy of breath alcohol estimation and timing related to initial driver routines (door opening, taking a seat, door closure, buckling up, etc.) can be estimated. The investigation confirmed the feasibility of passive driver breath alcohol detection using our present system. Trade-offs between timing and sensor signal resolution requirements will become critical. Further improvement of sensor resolution and system ruggedness is required before the results can be industrialized. It is concluded that a further important step toward completely passive detection of driver breath alcohol has been taken. If required, the sniffer function with alcohol detection capability can be combined with a subsequent highly accurate breath test to confirm the driver's legal status using the same sensor device. The study is relevant to crash avoidance, in particular driver monitoring systems and driver-vehicle interface design.
Colorimetric detection of melamine in milk by using gold nanoparticles-based LSPR via optical fibers
Chang, Keke; Wang, Shun; Zhang, Hao; Guo, Qingqian; Hu, Xinran; Lin, Zhili; Sun, Haifeng; Jiang, Min
2017-01-01
A biosensing system with optical fibers is proposed for the colorimetric detection of melamine in liquid milk samples by using the localized surface plasmon resonance (LSPR) of unmodified gold nanoparticles (AuNPs). The biosensing system consists of a broadband light source that covers the spectral range from 200 nm to 1700 nm, an optical attenuator, three types of 600 μm premium optical fibers with SMA905 connectors and a miniature spectrometer with a linear charge coupled device (CCD) array. The biosensing system with optical fibers is low-cost, simple and is well-proven for the detection of melamine. Its working principle is based on the color changes of AuNPs solution from wine-red to blue due to the inter-particle coupling effect that causes the shifts of wavelength and absorbance in LSPR band after the to-be-measured melamine samples were added. Under the optimized conditions, the detection response of the LSPR biosensing system was found to be linear in melamine detection in the concentration range from 0μM to 0.9 μM with a correlation coefficient (R2) 0.99 and a detection limit 33 nM. The experimental results obtained from the established LSPR biosensing system in the actual detection of melamine concentration in liquid milk samples show that this technique is highly specific and sensitive and would have a huge application prospects. PMID:28475597
Pérez, D; Martínez-Flores, J A; Serrano, M; Lora, D; Paz-Artal, E; Morales, J M; Serrano, A
2016-10-01
In recent years, we have been witnessing increased clinical interest in the determination of IgA anti-beta 2-glycoprotein I (aB2GPI) antibodies as well as increased demand for this test. Some ELISA-based diagnostic systems for IgA aB2GPI antibodies detection are suboptimal to detect it. The aim of our study was to determine whether the diagnostic yield of modern detection systems based on automatic platforms to measure IgA aB2GPI is equivalent to that of the well-optimized ELISA-based assays. In total, 130 patients were analyzed for IgA aB2GPI by three fully automated immunoassays using an ELISA-based assay as reference. The three systems were also analyzed for IgG aB2GPI with 58 patients. System 1 was able to detect IgA aB2GPI with good sensitivity and kappa index (99% and 0.72, respectively). The other two systems had also poor sensitivity (20% and 15%) and kappa index (0.10 and 0.07), respectively. On the other hand, kappa index for IgG aB2GPI was >0.89 in the three systems. Some analytical methods to detect IgA aB2GPI are suboptimal as well as some ELISA-based diagnostic systems. It is important that the scientific community work to standardize analytical methods to determine IgA aB2GPI antibodies. © 2016 John Wiley & Sons Ltd.
Al-Masni, Mohammed A; Al-Antari, Mugahed A; Park, Jeong-Min; Gi, Geon; Kim, Tae-Yeon; Rivera, Patricio; Valarezo, Edwin; Choi, Mun-Taek; Han, Seung-Moo; Kim, Tae-Seong
2018-04-01
Automatic detection and classification of the masses in mammograms are still a big challenge and play a crucial role to assist radiologists for accurate diagnosis. In this paper, we propose a novel Computer-Aided Diagnosis (CAD) system based on one of the regional deep learning techniques, a ROI-based Convolutional Neural Network (CNN) which is called You Only Look Once (YOLO). Although most previous studies only deal with classification of masses, our proposed YOLO-based CAD system can handle detection and classification simultaneously in one framework. The proposed CAD system contains four main stages: preprocessing of mammograms, feature extraction utilizing deep convolutional networks, mass detection with confidence, and finally mass classification using Fully Connected Neural Networks (FC-NNs). In this study, we utilized original 600 mammograms from Digital Database for Screening Mammography (DDSM) and their augmented mammograms of 2,400 with the information of the masses and their types in training and testing our CAD. The trained YOLO-based CAD system detects the masses and then classifies their types into benign or malignant. Our results with five-fold cross validation tests show that the proposed CAD system detects the mass location with an overall accuracy of 99.7%. The system also distinguishes between benign and malignant lesions with an overall accuracy of 97%. Our proposed system even works on some challenging breast cancer cases where the masses exist over the pectoral muscles or dense regions. Copyright © 2018 Elsevier B.V. All rights reserved.
Radionuclide data analysis in connection of DPRK event in May 2009
NASA Astrophysics Data System (ADS)
Nikkinen, Mika; Becker, Andreas; Zähringer, Matthias; Polphong, Pornsri; Pires, Carla; Assef, Thierry; Han, Dongmei
2010-05-01
The seismic event detected in DPRK on 25.5.2009 was triggering a series of actions within CTBTO/PTS to ensure its preparedness to detect any radionuclide emissions possibly linked with the event. Despite meticulous work to detect and verify, traces linked to the DPRK event were not found. After three weeks of high alert the PTS resumed back to normal operational routine. This case illuminates the importance of objectivity and procedural approach in the data evaluation. All the data coming from particulate and noble gas stations were evaluated daily, some of the samples even outside of office hours and during the weekends. Standard procedures were used to determine the network detection thresholds of the key (CTBT relevant) radionuclides achieved across the DPRK event area and for the assessment of radionuclides typically occurring at IMS stations (background history). Noble gas system has sometimes detections that are typical for the sites due to legitimate non-nuclear test related activities. Therefore, set of hypothesis were used to see if the detection is consistent with event time and location through atmospheric transport modelling. Also the consistency of event timing and isotopic ratios was used in the evaluation work. As a result it was concluded that if even 1/1000 of noble gasses from a nuclear detonation would had leaked, the IMS system would not had problems to detect it. This case also showed the importance of on-site inspections to verify the nuclear traces of possible tests.
PBF Reactor Building (PER620) basement. Workers wearing protective gear work ...
PBF Reactor Building (PER-620) basement. Workers wearing protective gear work inside cubicle 13 on the fission product detection system. Man on left is atop shielded box shown in previous photo. Posture of second man illustrates waist-high height of shielding box. His hand rests on the access panel, which has been filled with lead bricks and which has been slid shut to enclose detection instruments within box. Photographer: John Capek. Date: January 24, 1983. INEEL negative no. 83-41-3-5 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
In Vitro Electrochemistry of Biological Systems
Adams, Kelly L.; Puchades, Maja; Ewing, Andrew G.
2009-01-01
This article reviews recent work involving electrochemical methods for in vitro analysis of biomolecules, with an emphasis on detection and manipulation at and of single cells and cultures of cells. The techniques discussed include constant potential amperometry, chronoamperometry, cellular electroporation, scanning electrochemical microscopy, and microfluidic platforms integrated with electrochemical detection. The principles of these methods are briefly described, followed in most cases with a short description of an analytical or biological application and its significance. The use of electrochemical methods to examine specific mechanistic issues in exocytosis is highlighted, as a great deal of recent work has been devoted to this application. PMID:20151038
The AMIDAS Website: An Online Tool for Direct Dark Matter Detection Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Chung-Lin
2010-02-10
Following our long-erm work on development of model-independent data analysis methods for reconstructing the one-dimensional velocity distribution function of halo WIMPs as well as for determining their mass and couplings on nucleons by using data from direct Dark Matter detection experiments directly, we combined the simulation programs to a compact system: AMIDAS (A Model-Independent Data Analysis System). For users' convenience an online system has also been established at the same time. AMIDAS has the ability to do full Monte Carlo simulations, faster theoretical estimations, as well as to analyze (real) data sets recorded in direct detection experiments without modifying themore » source code. In this article, I give an overview of functions of the AMIDAS code based on the use of its website.« less
NASA Technical Reports Server (NTRS)
May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei
2014-01-01
The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation community. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. Here a detection algorithm is developed which has the capability to detect the impact of ice accretion in the Low Pressure Compressor of an aircraft engine during steady flight as well as during changes in altitude. Unfortunately, the algorithm as implemented was not able to distinguish throttle changes from ice accretion and thus more work remains to be done.
Detection of tunnel excavation using fiber optic reflectometry: experimental validation
NASA Astrophysics Data System (ADS)
Linker, Raphael; Klar, Assaf
2013-06-01
Cross-border smuggling tunnels enable unmonitored movement of people and goods, and pose a severe threat to homeland security. In recent years, we have been working on the development of a system based on fiber- optic Brillouin time domain reflectometry (BOTDR) for detecting tunnel excavation. In two previous SPIE publications we have reported the initial development of the system as well as its validation using small-scale experiments. This paper reports, for the first time, results of full-scale experiments and discusses the system performance. The results confirm that distributed measurement of strain profiles in fiber cables buried at shallow depth enable detection of tunnel excavation, and by proper data processing, these measurements enable precise localization of the tunnel, as well as reasonable estimation of its depth.
A Systems-Level Perspective on Engine Ice Accretion
NASA Technical Reports Server (NTRS)
May, Ryan D.; Guo, Ten-Huei; Simon, Donald L.
2013-01-01
The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation sector. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. This work focuses on developing an accurate and reliable algorithm for detecting the accretion of ice in the low pressure compressor of a generic 40,000 lbf thrust class engine. The algorithm uses only the two shaft speed sensors and works regardless of engine age, operating condition, and power level. In a 10,000-case Monte Carlo simulation, the detection approach was found to have excellent capability at determining ice accretion from sensor noise with detection occurring when ice blocks an average of 6.8% of the low pressure compressor area. Finally, an initial study highlights a potential mitigation strategy that uses the existing engine actuators to raise the temperature in the low pressure compressor in an effort to reduce the rate at which ice accretes.
Characterizing and Improving Distributed Intrusion Detection Systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurd, Steven A; Proebstel, Elliot P.
2007-11-01
Due to ever-increasing quantities of information traversing networks, network administrators are developing greater reliance upon statistically sampled packet information as the source for their intrusion detection systems (IDS). Our research is aimed at understanding IDS performance when statistical packet sampling is used. Using the Snort IDS and a variety of data sets, we compared IDS results when an entire data set is used to the results when a statistically sampled subset of the data set is used. Generally speaking, IDS performance with statistically sampled information was shown to drop considerably even under fairly high sampling rates (such as 1:5). Characterizingmore » and Improving Distributed Intrusion Detection Systems4AcknowledgementsThe authors wish to extend our gratitude to Matt Bishop and Chen-Nee Chuah of UC Davis for their guidance and support on this work. Our thanks are also extended to Jianning Mai of UC Davis and Tao Ye of Sprint Advanced Technology Labs for their generous assistance.We would also like to acknowledge our dataset sources, CRAWDAD and CAIDA, without which this work would not have been possible. Support for OC48 data collection is provided by DARPA, NSF, DHS, Cisco and CAIDA members.« less
NASA Technical Reports Server (NTRS)
Bailin, Sydney; Paterra, Frank; Henderson, Scott; Truszkowski, Walt
1993-01-01
This paper presents a discussion of current work in the area of graphical modeling and model-based reasoning being undertaken by the Automation Technology Section, Code 522.3, at Goddard. The work was initially motivated by the growing realization that the knowledge acquisition process was a major bottleneck in the generation of fault detection, isolation, and repair (FDIR) systems for application in automated Mission Operations. As with most research activities this work started out with a simple objective: to develop a proof-of-concept system demonstrating that a draft rule-base for a FDIR system could be automatically realized by reasoning from a graphical representation of the system to be monitored. This work was called Knowledge From Pictures (KFP) (Truszkowski et. al. 1992). As the work has successfully progressed the KFP tool has become an environment populated by a set of tools that support a more comprehensive approach to model-based reasoning. This paper continues by giving an overview of the graphical modeling objectives of the work, describing the three tools that now populate the KFP environment, briefly presenting a discussion of related work in the field, and by indicating future directions for the KFP environment.
Convolutional Neural Network-Based Shadow Detection in Images Using Visible Light Camera Sensor.
Kim, Dong Seop; Arsalan, Muhammad; Park, Kang Ryoung
2018-03-23
Recent developments in intelligence surveillance camera systems have enabled more research on the detection, tracking, and recognition of humans. Such systems typically use visible light cameras and images, in which shadows make it difficult to detect and recognize the exact human area. Near-infrared (NIR) light cameras and thermal cameras are used to mitigate this problem. However, such instruments require a separate NIR illuminator, or are prohibitively expensive. Existing research on shadow detection in images captured by visible light cameras have utilized object and shadow color features for detection. Unfortunately, various environmental factors such as illumination change and brightness of background cause detection to be a difficult task. To overcome this problem, we propose a convolutional neural network-based shadow detection method. Experimental results with a database built from various outdoor surveillance camera environments, and from the context-aware vision using image-based active recognition (CAVIAR) open database, show that our method outperforms previous works.
Convolutional Neural Network-Based Shadow Detection in Images Using Visible Light Camera Sensor
Kim, Dong Seop; Arsalan, Muhammad; Park, Kang Ryoung
2018-01-01
Recent developments in intelligence surveillance camera systems have enabled more research on the detection, tracking, and recognition of humans. Such systems typically use visible light cameras and images, in which shadows make it difficult to detect and recognize the exact human area. Near-infrared (NIR) light cameras and thermal cameras are used to mitigate this problem. However, such instruments require a separate NIR illuminator, or are prohibitively expensive. Existing research on shadow detection in images captured by visible light cameras have utilized object and shadow color features for detection. Unfortunately, various environmental factors such as illumination change and brightness of background cause detection to be a difficult task. To overcome this problem, we propose a convolutional neural network-based shadow detection method. Experimental results with a database built from various outdoor surveillance camera environments, and from the context-aware vision using image-based active recognition (CAVIAR) open database, show that our method outperforms previous works. PMID:29570690
Effect of overtime work on 24-hour ambulatory blood pressure.
Hayashi, T; Kobayashi, Y; Yamaoka, K; Yano, E
1996-10-01
Recently, the adverse effects of long working hours on the cardiovascular systems of workers in Japan, including "Karoshi" (death from overwork), have been the focus of social concern. However, conventional methods of health checkups are often unable to detect the early signs of such adverse effects. To evaluate the influence of overtime work on the cardiovascular system, we compared 24-hour blood pressure measurements among several groups of male white-collar workers. As a result, for those with normal blood pressure and those with mild hypertension, the 24-hour average blood pressure of the overtime groups was higher than that of the control groups; for those who periodically did overtime work, the 24-hour average blood pressure and heart rate during the busy period increased. These results indicate that the burden on the cardiovascular system of white-collar workers increases with overtime work.
Human action quality evaluation based on fuzzy logic with application in underground coal mining.
Ionica, Andreea; Leba, Monica
2015-01-01
The work system is defined by its components, their roles and the relationships between them. Any work system gravitates around the human resource and the interdependencies between human factor and the other components of it. Researches in this field agreed that the human factor and its actions are difficult to quantify and predict. The objective of this paper is to apply a method of human actions evaluation in order to estimate possible risks and prevent possible system faults, both at human factor level and at equipment level. In order to point out the importance of the human factor influence on all the elements of the working systems we propose a fuzzy logic based methodology for quality evaluation of human actions. This methodology has a multidisciplinary character, as it gathers ideas and methods from: quality management, ergonomics, work safety and artificial intelligence. The results presented refer to a work system with a high degree of specificity, namely, underground coal mining and are valuable for human resources risk evaluation pattern. The fuzzy logic evaluation of the human actions leads to early detection of possible dangerous evolutions of the work system and alarm the persons in charge.
Song, Hajun; Hwang, Sejin; An, Hongsung; Song, Ho-Jin; Song, Jong-In
2017-08-21
We propose and demonstrate a continuous-wave vector THz imaging system utilizing a photonic generation of two-tone THz signals and self-mixing detection. The proposed system measures amplitude and phase information simultaneously without the local oscillator reference or phase rotation scheme that is required for heterodyne or homodyne detection. In addition, 2π phase ambiguity that occurs when the sample is thicker than the wavelength of THz radiation can be avoided. In this work, THz signal having two frequency components was generated with a uni-traveling-carrier photodiode and electro-optic modulator on the emitter side and detected with a Schottky barrier diode detector used as a self-mixer on the receiver side. The proposed THz vector imaging system exhibited a 50-dB signal to noise ratio and 0.012-rad phase fluctuation with 100-μs integration time at 325-GHz. With the system, we demonstrate two-dimensional THz phase contrast imaging. Considering the recent use of two-dimensional arrays of Schottky barrier diodes as a THz image sensor, the proposed system is greatly advantageous for realizing a real-time THz vector imaging system due to its simple receiver configuration.
NASA Astrophysics Data System (ADS)
Raptis, Ioannis; Misiakos, Konstantinos; Makarona, Eleni; Salapatas, Alexandros; Petrou, Panagiota; Kakabakos, Sotirios; Botsialas, Athanasios; Jobst, Gerhard; Haasnoot, Willem; Fernandez-Alba, Amadeo; Lees, Michelle; Valamontes, Evangelos
2016-03-01
Optical biosensors have emerged in the past decade as the most promising candidates for portable, highly-sensitive bioanalytical systems that can be employed for in-situ measurements. In this work, a miniaturized optoelectronic system for rapid, quantitative, label-free detection of harmful species in food is presented. The proposed system has four distinctive features that can render to a powerful tool for the next generation of Point-of-Need applications, namely it accommodates the light sources and ten interferometric biosensors on a single silicon chip of a less-than-40mm2 footprint, each sensor can be individually functionalized for a specific target analyte, the encapsulation can be performed at the wafer-scale, and finally it exploits a new operation principle, Broad-band Mach-Zehnder Interferometry to ameliorate its analytical capabilities. Multi-analyte evaluation schemes for the simultaneous detection of harmful contaminants, such as mycotoxins, allergens and pesticides, proved that the proposed system is capable of detecting within short time these substances at concentrations below the limits imposed by regulatory authorities, rendering it to a novel tool for the near-future food safety applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Hariri, Mohamad; Faddel, Samy; Mohammed, Osama
Decentralized and hierarchical microgrid control strategies have lain the groundwork for shaping the future smart grid. Such control approaches require the cooperation between microgrid operators in control centers, intelligent microcontrollers, and remote terminal units via secure and reliable communication networks. In order to enhance the security and complement the work of network intrusion detection systems, this paper presents an artificially intelligent physical model-checking that detects tampered-with circuit breaker switching control commands whether, due to a cyber-attack or human error. In this technique, distributed agents, which are monitoring sectionalized areas of a given microgrid, will be trained and continuously adapted tomore » verify that incoming control commands do not violate the physical system operational standards and do not put the microgrid in an insecure state. The potential of this approach has been tested by deploying agents that monitor circuit breakers status commands on a 14-bus IEEE benchmark system. The results showed the accuracy of the proposed framework in characterizing the power system and successfully detecting malicious and/or erroneous control commands.« less
NASA Astrophysics Data System (ADS)
Poluyan, A. Y.; Fugarov, D. D.; Purchina, O. A.; Nesterchuk, V. V.; Smirnova, O. V.; Petrenkova, S. B.
2018-05-01
To date, the problems associated with the detection of errors in digital equipment (DE) systems for the automation of explosive objects of the oil and gas complex are extremely actual. Especially this problem is actual for facilities where a violation of the accuracy of the DE will inevitably lead to man-made disasters and essential material damage, at such facilities, the diagnostics of the accuracy of the DE operation is one of the main elements of the industrial safety management system. In the work, the solution of the problem of selecting the optimal variant of the errors detection system of errors detection by a validation criterion. Known methods for solving these problems have an exponential valuation of labor intensity. Thus, with a view to reduce time for solving the problem, a validation criterion is compiled as an adaptive bionic algorithm. Bionic algorithms (BA) have proven effective in solving optimization problems. The advantages of bionic search include adaptability, learning ability, parallelism, the ability to build hybrid systems based on combining. [1].
A qualitative review for wireless health monitoring system
NASA Astrophysics Data System (ADS)
Arshad, Atika; Fadzil Ismail, Ahmad; Khan, Sheroz; Zahirul Alam, A. H. M.; Tasnim, Rumana; Samnan Haider, Syed; Shobaki, Mohammed M.; Shahid, Zeeshan
2013-12-01
A proliferating interest has been being observed over the past years in accurate wireless system development in order to monitor incessant human activities in health care centres. Furthermore because of the swelling number of elderly population and the inadequate number of competent staffs for nursing homes there is a big market petition for health care monitoring system. In order to detect human researchers developed different methods namely which include Field Identification technique, Visual Sensor Network, radar detection, e-mobile techniques and so on. An all-encompassing overview of the non-wired human detection application advancement is presented in this paper. Inductive links are used for human detection application while wiring an electronic system has become impractical in recent times. Keeping in mind the shortcomings, an Inductive Intelligent Sensor (IIS) has been proposed as a novel human monitoring system for future implementation. The proposed sensor works towards exploring the signature signals of human body movement and size. This proposed sensor is fundamentally based on inductive loop that senses the presence and a passing human resulting an inductive change.
Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project
NASA Technical Reports Server (NTRS)
Shively, Jay
2017-01-01
Over the past 5 years, the UAS integration into the NAS project has worked to reduce technical barriers to integration. A major focus of this work has been in support of RTCA SC-228. This committee has recently published the first UAS integration minimum performance standards (MOPS). This work has spanned detect and avoid (DAA) as well as command and control comm datalinks. I will discuss DAA efforts with focus on the human systems work. I will discuss how automation was discussed and addressed within this context. ICAO stood up a remotely piloted aircraft systems (RPAS) panel in 2014. They have developed an RPAS manual and are now working to revise existing annexes and standards and recommended practices. The Human In The System (HITS) has worked to infuse human factors guidelines into those documents. I will discuss that effort as well as how ICAO has defined and address autonomy. There is a great deal of interest in the control of multiple vehicles by a single operator. The UAS EXCOM Science and Research Panel (SARP) is holding a workshop on this topic in late June. I will discuss research performed on this topic when I worked for the Army and on-going work within the division and a NATO working group on Human-Autonomy Teaming.
Search and detection modeling of military imaging systems
NASA Astrophysics Data System (ADS)
Maurer, Tana; Wilson, David L.; Driggers, Ronald G.
2013-04-01
For more than 50 years, the U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) has been studying the science behind the human processes of searching and detecting, and using that knowledge to develop and refine its models for military imaging systems. Modeling how human observers perform military tasks while using imaging systems in the field and linking that model with the physics of the systems has resulted in the comprehensive sensor models we have today. These models are used by the government, military, industry, and academia for sensor development, sensor system acquisition, military tactics development, and war-gaming. From the original hypothesis put forth by John Johnson in 1958, to modeling time-limited search, to modeling the impact of motion on target detection, to modeling target acquisition performance in different spectral bands, the concept of search has a wide-ranging history. Our purpose is to present a snapshot of that history; as such, it will begin with a description of the search-modeling task, followed by a summary of highlights from the early years, and concluding with a discussion of search and detection modeling today and the changing battlefield. Some of the topics to be discussed will be classic search, clutter, computational vision models and the ACQUIRE model with its variants. We do not claim to present a complete history here, but rather a look at some of the work that has been done, and this is meant to be an introduction to an extensive amount of work on a complex topic. That said, it is hoped that this overview of the history of search and detection modeling of military imaging systems pursued by NVESD directly, or in association with other government agencies or contractors, will provide both the novice and experienced search modeler with a useful historical summary and an introduction to current issues and future challenges.
NASA Astrophysics Data System (ADS)
Karagiannis, Georgios
2017-03-01
This work led to a new method named 3D spectracoustic tomographic mapping imaging. The current and the future work is related to the fabrication of a combined acoustic microscopy transducer and infrared illumination probe permitting the simultaneous acquisition of the spectroscopic and the tomographic information. This probe provides with the capability of high fidelity and precision registered information from the combined modalities named spectracoustic information.
Detection of Adverse Drug Reactions using Medical Named Entities on Twitter.
MacKinlay, Andrew; Aamer, Hafsah; Yepes, Antonio Jimeno
2017-01-01
Adverse Drug Reactions (ADRs) are unintentional reactions caused by a drug or combination of drugs taken by a patient. The current ADR reporting systems inevitably have delays in reporting such events. The broad scope of social media conversations on sites such as Twitter means that inevitably health-related topics will be covered. This means that these sites could then be used to detect potentially novel ADRs with less latency for subsequent further investigation. In this work, we investigate ADR surveillance using a large corpus of Twitter data, containing around 50 billion tweets spanning 3 years (2012-2014), and evaluate against over 3000 drugs reported in the FAERS database. This is both a larger corpus and broader selection of drugs than previous work in the domain. We compare the ADRs identified using our method to the FDA Adverse Event Reporting System (FAERS) database of ADRs reported using more traditional techniques, and find that Twitter is a useful resource for ADR detection up to 72% micro-averaged precision. Micro-averaged recall of 6% is achievable using only 10% of Twitter, indicating that with a higher-volume or targeted feed it would be possible to detect a large percentage of ADRs.
Sensor fusion approaches for EMI and GPR-based subsurface threat identification
NASA Astrophysics Data System (ADS)
Torrione, Peter; Morton, Kenneth, Jr.; Besaw, Lance E.
2011-06-01
Despite advances in both electromagnetic induction (EMI) and ground penetrating radar (GPR) sensing and related signal processing, neither sensor alone provides a perfect tool for detecting the myriad of possible buried objects that threaten the lives of Soldiers and civilians. However, while neither GPR nor EMI sensing alone can provide optimal detection across all target types, the two approaches are highly complementary. As a result, many landmine systems seek to make use of both sensing modalities simultaneously and fuse the results from both sensors to improve detection performance for targets with widely varying metal content and GPR responses. Despite this, little work has focused on large-scale comparisons of different approaches to sensor fusion and machine learning for combining data from these highly orthogonal phenomenologies. In this work we explore a wide array of pattern recognition techniques for algorithm development and sensor fusion. Results with the ARA Nemesis landmine detection system suggest that nonlinear and non-parametric classification algorithms provide significant performance benefits for single-sensor algorithm development, and that fusion of multiple algorithms can be performed satisfactorily using basic parametric approaches, such as logistic discriminant classification, for the targets under consideration in our data sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrie, G.M.; Perry, E.M.; Kirkham, R.R.
1997-09-01
This report describes the work performed at the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy`s Office of Nonproliferation and National Security, Office of Research and Development (NN-20). The work supports the NN-20 Broad Area Search and Analysis, a program initiated by NN-20 to improve the detection and classification of undeclared weapons facilities. Ongoing PNNL research activities are described in three main components: image collection, information processing, and change analysis. The Multispectral Airborne Imaging System, which was developed to collect georeferenced imagery in the visible through infrared regions of the spectrum, and flown on a light aircraftmore » platform, will supply current land use conditions. The image information extraction software (dynamic clustering and end-member extraction) uses imagery, like the multispectral data collected by the PNNL multispectral system, to efficiently generate landcover information. The advanced change detection uses a priori (benchmark) information, current landcover conditions, and user-supplied rules to rank suspect areas by probable risk of undeclared facilities or proliferation activities. These components, both separately and combined, provide important tools for improving the detection of undeclared facilities.« less
Exploiting evanescent-wave amplification for subwavelength low-contrast particle detection
NASA Astrophysics Data System (ADS)
Roy, S.; Pereira, S. F.; Urbach, H. P.; Wei, Xukang; El Gawhary, O.
2017-07-01
The classical problem of subwavelength particle detection on a flat surface is especially challenging when the refractive index of the particle is close to that of the substrate. We demonstrate a method to improve the detection ability several times for such a situation, by enhancing the "forbidden" evanescent waves in the substrate using the principle of super-resolution with evanescent waves amplification. The working mechanism of the system and experimental validation from a design with a thin single dielectric layer is presented. The resulting system is a simple but complete example of evanescent-wave generation, amplification, and the consequent modulation of the far field. This principle can have far reaching impact in the field of particle detection in several applications ranging from contamination control to interferometric scattering microscopy for biological samples.
Motorcycle detection and counting using stereo camera, IR camera, and microphone array
NASA Astrophysics Data System (ADS)
Ling, Bo; Gibson, David R. P.; Middleton, Dan
2013-03-01
Detection, classification, and characterization are the key to enhancing motorcycle safety, motorcycle operations and motorcycle travel estimation. Average motorcycle fatalities per Vehicle Mile Traveled (VMT) are currently estimated at 30 times those of auto fatalities. Although it has been an active research area for many years, motorcycle detection still remains a challenging task. Working with FHWA, we have developed a hybrid motorcycle detection and counting system using a suite of sensors including stereo camera, thermal IR camera and unidirectional microphone array. The IR thermal camera can capture the unique thermal signatures associated with the motorcycle's exhaust pipes that often show bright elongated blobs in IR images. The stereo camera in the system is used to detect the motorcyclist who can be easily windowed out in the stereo disparity map. If the motorcyclist is detected through his or her 3D body recognition, motorcycle is detected. Microphones are used to detect motorcycles that often produce low frequency acoustic signals. All three microphones in the microphone array are placed in strategic locations on the sensor platform to minimize the interferences of background noises from sources such as rain and wind. Field test results show that this hybrid motorcycle detection and counting system has an excellent performance.
Nonlinear feedback model attitude control using CCD in magnetic suspension system
NASA Technical Reports Server (NTRS)
Lin, CHIN-E.; Hou, Ann-San
1994-01-01
A model attitude control system for a CCD camera magnetic suspension system is studied in this paper. In a recent work, a position and attitude sensing method was proposed. From this result, model position and attitude of a magnetic suspension system can be detected by generating digital outputs. Based on this achievement, a control system design using nonlinear feedback techniques for magnetic suspended model attitude control is proposed.
Correlation Research of Medical Security Management System Network Platform in Medical Practice
NASA Astrophysics Data System (ADS)
Jie, Wang; Fan, Zhang; Jian, Hao; Li-nong, Yu; Jun, Fei; Ping, Hao; Ya-wei, Shen; Yue-jin, Chang
Objective-The related research of medical security management system network in medical practice. Methods-Establishing network platform of medical safety management system, medical security network host station, medical security management system(C/S), medical security management system of departments and sections, comprehensive query, medical security disposal and examination system. Results-In medical safety management, medical security management system can reflect the hospital medical security problem, and can achieve real-time detection and improve the medical security incident detection rate. Conclusion-The application of the research in the hospital management implementation, can find hospital medical security hidden danger and the problems of medical disputes, and can help in resolving medical disputes in time and achieve good work efficiency, which is worth applying in the hospital practice.
Kao, E-Fong; Liu, Gin-Chung; Lee, Lo-Yeh; Tsai, Huei-Yi; Jaw, Twei-Shiun
2015-06-01
The ability to give high priority to examinations with pathological findings could be very useful to radiologists with large work lists who wish to first evaluate the most critical studies. A computer-aided detection (CAD) system for identifying chest examinations with abnormalities has therefore been developed. To evaluate the effectiveness of a CAD system on report turnaround times of chest examinations with abnormalities. The CAD system was designed to automatically mark chest examinations with possible abnormalities in the work list of radiologists interpreting chest examinations. The system evaluation was performed in two phases: two radiologists interpreted the chest examinations without CAD in phase 1 and with CAD in phase 2. The time information recorded by the radiology information system was then used to calculate the turnaround times. All chest examinations were reviewed by two other radiologists and were divided into normal and abnormal groups. The turnaround times for the examinations with pathological findings with and without the CAD system assistance were compared. The sensitivity and specificity of the CAD for chest abnormalities were 0.790 and 0.697, respectively, and use of the CAD system decreased the turnaround time for chest examinations with abnormalities by 44%. The turnaround times required for radiologists to identify chest examinations with abnormalities could be reduced by using the CAD system. This system could be useful for radiologists with large work lists who wish to first evaluate the most critical studies. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Cephalometric landmark detection in dental x-ray images using convolutional neural networks
NASA Astrophysics Data System (ADS)
Lee, Hansang; Park, Minseok; Kim, Junmo
2017-03-01
In dental X-ray images, an accurate detection of cephalometric landmarks plays an important role in clinical diagnosis, treatment and surgical decisions for dental problems. In this work, we propose an end-to-end deep learning system for cephalometric landmark detection in dental X-ray images, using convolutional neural networks (CNN). For detecting 19 cephalometric landmarks in dental X-ray images, we develop a detection system using CNN-based coordinate-wise regression systems. By viewing x- and y-coordinates of all landmarks as 38 independent variables, multiple CNN-based regression systems are constructed to predict the coordinate variables from input X-ray images. First, each coordinate variable is normalized by the length of either height or width of an image. For each normalized coordinate variable, a CNN-based regression system is trained on training images and corresponding coordinate variable, which is a variable to be regressed. We train 38 regression systems with the same CNN structure on coordinate variables, respectively. Finally, we compute 38 coordinate variables with these trained systems from unseen images and extract 19 landmarks by pairing the regressed coordinates. In experiments, the public database from the Grand Challenges in Dental X-ray Image Analysis in ISBI 2015 was used and the proposed system showed promising performance by successfully locating the cephalometric landmarks within considerable margins from the ground truths.
STS-93 Pilot Ashby works with the STL-B experiment on the middeck
2013-11-18
STS093-319-029 (23-27 July 1999) --- Astronaut Jeffrey S. Ashby, pilot, works with the Space Tissue Loss-B experiment on Columbia's middeck. The experiment is set up to observe cells in culture with a video microscope imaging system to record near-real-time interactions of detecting and inducing cellular responses (macromorphological changes).
Williams works with LOCAD-PTS in Destiny lab
2007-04-01
ISS014-E-18822 (31 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
Williams works with LOCAD-PTS in Destiny lab
2007-04-01
ISS014-E-18818 (31 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
Williams works with LOCAD-PTS in Destiny lab
2007-04-01
ISS014-E-18811 (31 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
A Framework of Simple Event Detection in Surveillance Video
NASA Astrophysics Data System (ADS)
Xu, Weiguang; Zhang, Yafei; Lu, Jianjiang; Tian, Yulong; Wang, Jiabao
Video surveillance is playing more and more important role in people's social life. Real-time alerting of threaten events and searching interesting content in stored large scale video footage needs human operator to pay full attention on monitor for long time. The labor intensive mode has limit the effectiveness and efficiency of the system. A framework of simple event detection is presented advance the automation of video surveillance. An improved inner key point matching approach is used to compensate motion of background in real-time; frame difference are used to detect foreground; HOG based classifiers are used to classify foreground object into people and car; mean-shift is used to tracking the recognized objects. Events are detected based on predefined rules. The maturity of the algorithms guarantee the robustness of the framework, and the improved approach and the easily checked rules enable the framework to work in real-time. Future works to be done are also discussed.
Murray-Moraleda, Jessica R.; Lohman, Rowena
2010-01-01
The Southern California Earthquake Center (SCEC) is a community of researchers at institutions worldwide working to improve understanding of earthquakes and mitigate earthquake risk. One of SCEC's priority objectives is to “develop a geodetic network processing system that will detect anomalous strain transients.” Given the growing number of continuously recording geodetic networks consisting of hundreds of stations, an automated means for systematically searching data for transient signals, especially in near real time, is critical for network operations, hazard monitoring, and event response. The SCEC Transient Detection Test Exercise began in 2008 to foster an active community of researchers working on this problem, explore promising methods, and combine effective approaches in novel ways. A workshop was held in California to assess what has been learned thus far and discuss areas of focus as the project moves forward.
James, Matthew T; Hobson, Charles E; Darmon, Michael; Mohan, Sumit; Hudson, Darren; Goldstein, Stuart L; Ronco, Claudio; Kellum, John A; Bagshaw, Sean M
2016-01-01
Electronic medical records and clinical information systems are increasingly used in hospitals and can be leveraged to improve recognition and care for acute kidney injury. This Acute Dialysis Quality Initiative (ADQI) workgroup was convened to develop consensus around principles for the design of automated AKI detection systems to produce real-time AKI alerts using electronic systems. AKI alerts were recognized by the workgroup as an opportunity to prompt earlier clinical evaluation, further testing and ultimately intervention, rather than as a diagnostic label. Workgroup members agreed with designing AKI alert systems to align with the existing KDIGO classification system, but recommended future work to further refine the appropriateness of AKI alerts and to link these alerts to actionable recommendations for AKI care. The consensus statements developed in this review can be used as a roadmap for development of future electronic applications for automated detection and reporting of AKI.
Distributed Impact Detector System (DIDS) Health Monitoring System Evaluation
NASA Technical Reports Server (NTRS)
Prosser, William H.; Madaras, Eric I.
2010-01-01
Damage due to impacts from micrometeoroids and orbital debris is one of the most significant on-orbit hazards for spacecraft. Impacts to thermal protection systems must be detected and the damage evaluated to determine if repairs are needed to allow safe re-entry. To address this issue for the International Space Station Program, Langley Research Center and Johnson Space Center technologists have been working to develop and implement advanced methods for detecting impacts and resultant leaks. LaRC funded a Small Business Innovative Research contract to Invocon, Inc. to develop special wireless sensor systems that are compact, light weight, and have long battery lifetimes to enable applications to long duration space structures. These sensor systems are known as distributed impact detection systems (DIDS). In an assessment, the NASA Engineering and Safety Center procured two prototype DIDS sensor units to evaluate their capabilities in laboratory testing and field testing in an ISS Node 1 structural test article. This document contains the findings of the assessment.
NASA Astrophysics Data System (ADS)
Zhao, Yinan; Ge, Jian; Yuan, Xiaoyong; Li, Xiaolin; Zhao, Tiffany; Wang, Cindy
2018-01-01
Metal absorption line systems in the distant quasar spectra have been used as one of the most powerful tools to probe gas content in the early Universe. The MgII λλ 2796, 2803 doublet is one of the most popular metal absorption lines and has been used to trace gas and global star formation at redshifts between ~0.5 to 2.5. In the past, machine learning algorithms have been used to detect absorption lines systems in the large sky survey, such as Principle Component Analysis, Gaussian Process and decision tree, but the overall detection process is not only complicated, but also time consuming. It usually takes a few months to go through the entire quasar spectral dataset from each of the Sloan Digital Sky Survey (SDSS) data release. In this work, we applied the deep neural network, or “ deep learning” algorithms, in the most recently SDSS DR14 quasar spectra and were able to randomly search 20000 quasar spectra and detect 2887 strong Mg II absorption features in just 9 seconds. Our detection algorithms were verified with previously released DR12 and DR7 data and published Mg II catalog and the detection accuracy is 90%. This is the first time that deep neural network has demonstrated its promising power in both speed and accuracy in replacing tedious, repetitive human work in searching for narrow absorption patterns in a big dataset. We will present our detection algorithms and also statistical results of the newly detected Mg II absorption lines.
Real-time biochemical sensor based on Raman scattering with CMOS contact imaging.
Muyun Cao; Yuhua Li; Yadid-Pecht, Orly
2015-08-01
This work presents a biochemical sensor based on Raman scattering with Complementary metal-oxide-semiconductor (CMOS) contact imaging. This biochemical optical sensor is designed for detecting the concentration of solutions. The system is built with a laser diode, an optical filter, a sample holder and a commercial CMOS sensor. The output of the system is analyzed by an image processing program. The system provides instant measurements with a resolution of 0.2 to 0.4 Mol. This low cost and easy-operated small scale system is useful in chemical, biomedical and environmental labs for quantitative bio-chemical concentration detection with results reported comparable to a highly cost commercial spectrometer.
Analysis of Android Device-Based Solutions for Fall Detection
Casilari, Eduardo; Luque, Rafael; Morón, María-José
2015-01-01
Falls are a major cause of health and psychological problems as well as hospitalization costs among older adults. Thus, the investigation on automatic Fall Detection Systems (FDSs) has received special attention from the research community during the last decade. In this area, the widespread popularity, decreasing price, computing capabilities, built-in sensors and multiplicity of wireless interfaces of Android-based devices (especially smartphones) have fostered the adoption of this technology to deploy wearable and inexpensive architectures for fall detection. This paper presents a critical and thorough analysis of those existing fall detection systems that are based on Android devices. The review systematically classifies and compares the proposals of the literature taking into account different criteria such as the system architecture, the employed sensors, the detection algorithm or the response in case of a fall alarms. The study emphasizes the analysis of the evaluation methods that are employed to assess the effectiveness of the detection process. The review reveals the complete lack of a reference framework to validate and compare the proposals. In addition, the study also shows that most research works do not evaluate the actual applicability of the Android devices (with limited battery and computing resources) to fall detection solutions. PMID:26213928
Analysis of Android Device-Based Solutions for Fall Detection.
Casilari, Eduardo; Luque, Rafael; Morón, María-José
2015-07-23
Falls are a major cause of health and psychological problems as well as hospitalization costs among older adults. Thus, the investigation on automatic Fall Detection Systems (FDSs) has received special attention from the research community during the last decade. In this area, the widespread popularity, decreasing price, computing capabilities, built-in sensors and multiplicity of wireless interfaces of Android-based devices (especially smartphones) have fostered the adoption of this technology to deploy wearable and inexpensive architectures for fall detection. This paper presents a critical and thorough analysis of those existing fall detection systems that are based on Android devices. The review systematically classifies and compares the proposals of the literature taking into account different criteria such as the system architecture, the employed sensors, the detection algorithm or the response in case of a fall alarms. The study emphasizes the analysis of the evaluation methods that are employed to assess the effectiveness of the detection process. The review reveals the complete lack of a reference framework to validate and compare the proposals. In addition, the study also shows that most research works do not evaluate the actual applicability of the Android devices (with limited battery and computing resources) to fall detection solutions.
Quaternion-valued single-phase model for three-phase power system
NASA Astrophysics Data System (ADS)
Gou, Xiaoming; Liu, Zhiwen; Liu, Wei; Xu, Yougen; Wang, Jiabin
2018-03-01
In this work, a quaternion-valued model is proposed in lieu of the Clarke's α, β transformation to convert three-phase quantities to a hypercomplex single-phase signal. The concatenated signal can be used for harmonic distortion detection in three-phase power systems. In particular, the proposed model maps all the harmonic frequencies into frequencies in the quaternion domain, while the Clarke's transformation-based methods will fail to detect the zero sequence voltages. Based on the quaternion-valued model, the Fourier transform, the minimum variance distortionless response (MVDR) algorithm and the multiple signal classification (MUSIC) algorithm are presented as examples to detect harmonic distortion. Simulations are provided to demonstrate the potentials of this new modeling method.
Phase synchronization based on a Dual-Tree Complex Wavelet Transform
NASA Astrophysics Data System (ADS)
Ferreira, Maria Teodora; Domingues, Margarete Oliveira; Macau, Elbert E. N.
2016-11-01
In this work, we show the applicability of our Discrete Complex Wavelet Approach (DCWA) to verify the phenomenon of phase synchronization transition in two coupled chaotic Lorenz systems. DCWA is based on the phase assignment from complex wavelet coefficients obtained by using a Dual-Tree Complex Wavelet Transform (DT-CWT). We analyzed two coupled chaotic Lorenz systems, aiming to detect the transition from non-phase synchronization to phase synchronization. In addition, we check how good is the method in detecting periods of 2π phase-slips. In all experiments, DCWA is compared with classical phase detection methods such as the ones based on arctangent and Hilbert transform showing a much better performance.
Forest fire autonomous decision system based on fuzzy logic
NASA Astrophysics Data System (ADS)
Lei, Z.; Lu, Jianhua
2010-11-01
The proposed system integrates GPS / pseudolite / IMU and thermal camera in order to autonomously process the graphs by identification, extraction, tracking of forest fire or hot spots. The airborne detection platform, the graph-based algorithms and the signal processing frame are analyzed detailed; especially the rules of the decision function are expressed in terms of fuzzy logic, which is an appropriate method to express imprecise knowledge. The membership function and weights of the rules are fixed through a supervised learning process. The perception system in this paper is based on a network of sensorial stations and central stations. The sensorial stations collect data including infrared and visual images and meteorological information. The central stations exchange data to perform distributed analysis. The experiment results show that working procedure of detection system is reasonable and can accurately output the detection alarm and the computation of infrared oscillations.
Qu, Xiangmeng; Li, Min; Zhang, Hongbo; Lin, Chenglie; Wang, Fei; Xiao, Mingshu; Zhou, Yi; Shi, Jiye; Aldalbahi, Ali; Pei, Hao; Chen, Hong; Li, Li
2017-09-20
The development of a real-time continuous analytical platform for the pathogen detection is of great scientific importance for achieving better disease control and prevention. In this work, we report a rapid and recyclable microfluidic bioassay system constructed from oligonucleotide arrays for selective and sensitive continuous identification of DNA targets of fungal pathogens. We employ the thermal denaturation method to effectively regenerate the oligonucleotide arrays for multiple sample detection, which could considerably reduce the screening effort and costs. The combination of thermal denaturation and laser-induced fluorescence detection technique enables real-time continuous identification of multiple samples (<10 min per sample). As a proof of concept, we have demonstrated that two DNA targets of fungal pathogens (Botrytis cinerea and Didymella bryoniae) can be sequentially analyzed using our rapid microfluidic bioassay system, which provides a new paradigm in the design of microfluidic bioassay system and will be valuable for chemical and biomedical analysis.
Discontinuity Detection in the Shield Metal Arc Welding Process.
Cocota, José Alberto Naves; Garcia, Gabriel Carvalho; da Costa, Adilson Rodrigues; de Lima, Milton Sérgio Fernandes; Rocha, Filipe Augusto Santos; Freitas, Gustavo Medeiros
2017-05-10
This work proposes a new methodology for the detection of discontinuities in the weld bead applied in Shielded Metal Arc Welding (SMAW) processes. The detection system is based on two sensors-a microphone and piezoelectric-that acquire acoustic emissions generated during the welding. The feature vectors extracted from the sensor dataset are used to construct classifier models. The approaches based on Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers are able to identify with a high accuracy the three proposed weld bead classes: desirable weld bead, shrinkage cavity and burn through discontinuities. Experimental results illustrate the system's high accuracy, greater than 90% for each class. A novel Hierarchical Support Vector Machine (HSVM) structure is proposed to make feasible the use of this system in industrial environments. This approach presented 96.6% overall accuracy. Given the simplicity of the equipment involved, this system can be applied in the metal transformation industries.
Vision-based obstacle recognition system for automated lawn mower robot development
NASA Astrophysics Data System (ADS)
Mohd Zin, Zalhan; Ibrahim, Ratnawati
2011-06-01
Digital image processing techniques (DIP) have been widely used in various types of application recently. Classification and recognition of a specific object using vision system require some challenging tasks in the field of image processing and artificial intelligence. The ability and efficiency of vision system to capture and process the images is very important for any intelligent system such as autonomous robot. This paper gives attention to the development of a vision system that could contribute to the development of an automated vision based lawn mower robot. The works involve on the implementation of DIP techniques to detect and recognize three different types of obstacles that usually exist on a football field. The focus was given on the study on different types and sizes of obstacles, the development of vision based obstacle recognition system and the evaluation of the system's performance. Image processing techniques such as image filtering, segmentation, enhancement and edge detection have been applied in the system. The results have shown that the developed system is able to detect and recognize various types of obstacles on a football field with recognition rate of more 80%.
NASA Astrophysics Data System (ADS)
Ismail, Firas B.; Thiruchelvam, Vinesh
2013-06-01
Steam condenser is one of the most important equipment in steam power plants. If the steam condenser trips it may lead to whole unit shutdown, which is economically burdensome. Early condenser trips monitoring is crucial to maintain normal and safe operational conditions. In the present work, artificial intelligent monitoring systems specialized in condenser outages has been proposed and coded within the MATLAB environment. The training and validation of the system has been performed using real operational measurements captured from the control system of selected steam power plant. An integrated plant data preparation scheme for condenser outages with related operational variables has been proposed. Condenser outages under consideration have been detected by developed system before the plant control system"
Surveillance of ground vehicles for airport security
NASA Astrophysics Data System (ADS)
Blasch, Erik; Wang, Zhonghai; Shen, Dan; Ling, Haibin; Chen, Genshe
2014-06-01
Future surveillance systems will work in complex and cluttered environments which require systems engineering solutions for such applications such as airport ground surface management. In this paper, we highlight the use of a L1 video tracker for monitoring activities at an airport. We present methods of information fusion, entity detection, and activity analysis using airport videos for runway detection and airport terminal events. For coordinated airport security, automated ground surveillance enhances efficient and safe maneuvers for aircraft, unmanned air vehicles (UAVs) and unmanned ground vehicles (UGVs) operating within airport environments.
NASA Astrophysics Data System (ADS)
Uda, M. N. A.; Hasfalina, C. M.; Samsuzana, A. A.; Hashim, U.; Ariffin, Shahrul A. B.; Zamri, I.; Nur Sabrina, W.; B. Siti Noraini, B.; Faridah, S.; Mazidah, M.; Gopinath, Subash C. B.
2017-03-01
Rice tungro disease (RTD) causes major losses to rice crop plantation. Hence, a highly sensitive tools need to be developed for the detection of RTD which can be employed in both laboratory and field. An electrochemical immunosensor system for the detection of RTD, based on immobilized specific antibodies conjugated with gold nanoparticle was developed for this purpose. However, this paper focus for RTBV interaction using the conjugated antibodies which is added with polymer and deposited on carbon screen printed working electrodes.
Schwartz, Frank L; Vernier, Stanley J; Shubrook, Jay H; Marling, Cynthia R
2010-11-01
We have developed a prototypical case-based reasoning system to enhance management of patients with type 1 diabetes mellitus (T1DM). The system is capable of automatically analyzing large volumes of life events, self-monitoring of blood glucose readings, continuous glucose monitoring system results, and insulin pump data to detect clinical problems. In a preliminary study, manual entry of large volumes of life-event and other data was too burdensome for patients. In this study, life-event and pump data collection were automated, and then the system was reevaluated. Twenty-three adult T1DM patients on insulin pumps completed the five-week study. A usual daily schedule was entered into the database, and patients were only required to upload their insulin pump data to Medtronic's CareLink® Web site weekly. Situation assessment routines were run weekly for each participant to detect possible problems, and once the trial was completed, the case-retrieval module was tested. Using the situation assessment routines previously developed, the system found 295 possible problems. The enhanced system detected only 2.6 problems per patient per week compared to 4.9 problems per patient per week in the preliminary study (p=.017). Problems detected by the system were correctly identified in 97.9% of the cases, and 96.1% of these were clinically useful. With less life-event data, the system is unable to detect certain clinical problems and detects fewer problems overall. Additional work is needed to provide device/software interfaces that allow patients to provide this data quickly and conveniently. © 2010 Diabetes Technology Society.
da Silva, Dayse L P; Rüttinger, Hans H; Mrestani, Yahia; Baum, Walter F; Neubert, Reinhard H H
2006-06-01
CE methods have been developed for the determination of taurine in pharmaceutical formulation (microemulsion) and in biological media such as sweat. The CE system with end-column pulsed amperometric detection has been found to be an interesting method in comparison with UV and fluorescence detection for its simplicity and rapidity. A gold-disk electrode of 100 mm diameter was used as the working electrode. The effects of a field decoupler at the end of the capillary, separation voltage, injection and pressure times were investigated. A detection limit of 4 x 10(-5) mol/L was reached using integrated pulsed amperometric detection, a method successfully applied to taurine analysis of the biological samples such as sweat. For taurine analysis of oil-in-water microemulsion, fluorescence detector was the favored method, the detection limit of which was 4 x 10(-11) mol/L.
Intelligent Chemical Sensor Systems for In-space Safety Applications
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Xu, J. C.; Neudeck, P. G.; Makel, D. B.; Ward, B.; Liu, C. C.
2006-01-01
Future in-space and lunar operations will require significantly improved monitoring and Integrated System Health Management (ISHM) throughout the mission. In particular, the monitoring of chemical species is an important component of an overall monitoring system for space vehicles and operations. For example, in leak monitoring of propulsion systems during launch, inspace, and on lunar surfaces, detection of low concentrations of hydrogen and other fuels is important to avoid explosive conditions that could harm personnel and damage the vehicle. Dependable vehicle operation also depends on the timely and accurate measurement of these leaks. Thus, the development of a sensor array to determine the concentration of fuels such as hydrogen, hydrocarbons, or hydrazine as well as oxygen is necessary. Work has been on-going to develop an integrated smart leak detection system based on miniaturized sensors to detect hydrogen, hydrocarbons, or hydrazine, and oxygen. The approach is to implement Microelectromechanical Systems (MEMS) based sensors incorporated with signal conditioning electronics, power, data storage, and telemetry enabling intelligent systems. The final sensor system will be self-contained with a surface area comparable to a postage stamp. This paper discusses the development of this "Lick and Stick" leak detection system and it s application to In-Space Transportation and other Exploration applications.
Small Arrays for Seismic Intruder Detections: A Simulation Based Experiment
NASA Astrophysics Data System (ADS)
Pitarka, A.
2014-12-01
Seismic sensors such as geophones and fiber optic have been increasingly recognized as promising technologies for intelligence surveillance, including intruder detection and perimeter defense systems. Geophone arrays have the capability to provide cost effective intruder detection in protecting assets with large perimeters. A seismic intruder detection system uses one or multiple arrays of geophones design to record seismic signals from footsteps and ground vehicles. Using a series of real-time signal processing algorithms the system detects, classify and monitors the intruder's movement. We have carried out numerical experiments to demonstrate the capability of a seismic array to detect moving targets that generate seismic signals. The seismic source is modeled as a vertical force acting on the ground that generates continuous impulsive seismic signals with different predominant frequencies. Frequency-wave number analysis of the synthetic array data was used to demonstrate the array's capability at accurately determining intruder's movement direction. The performance of the array was also analyzed in detecting two or more objects moving at the same time. One of the drawbacks of using a single array system is its inefficiency at detecting seismic signals deflected by large underground objects. We will show simulation results of the effect of an underground concrete block at shielding the seismic signal coming from an intruder. Based on simulations we found that multiple small arrays can greatly improve the system's detection capability in the presence of underground structures. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
Pure sources and efficient detectors for optical quantum information processing
NASA Astrophysics Data System (ADS)
Zielnicki, Kevin
Over the last sixty years, classical information theory has revolutionized the understanding of the nature of information, and how it can be quantified and manipulated. Quantum information processing extends these lessons to quantum systems, where the properties of intrinsic uncertainty and entanglement fundamentally defy classical explanation. This growing field has many potential applications, including computing, cryptography, communication, and metrology. As inherently mobile quantum particles, photons are likely to play an important role in any mature large-scale quantum information processing system. However, the available methods for producing and detecting complex multi-photon states place practical limits on the feasibility of sophisticated optical quantum information processing experiments. In a typical quantum information protocol, a source first produces an interesting or useful quantum state (or set of states), perhaps involving superposition or entanglement. Then, some manipulations are performed on this state, perhaps involving quantum logic gates which further manipulate or entangle the intial state. Finally, the state must be detected, obtaining some desired measurement result, e.g., for secure communication or computationally efficient factoring. The work presented here concerns the first and last stages of this process as they relate to photons: sources and detectors. Our work on sources is based on the need for optimized non-classical states of light delivered at high rates, particularly of single photons in a pure quantum state. We seek to better understand the properties of spontaneous parameteric downconversion (SPDC) sources of photon pairs, and in doing so, produce such an optimized source. We report an SPDC source which produces pure heralded single photons with little or no spectral filtering, allowing a significant rate enhancement. Our work on detectors is based on the need to reliably measure single-photon states. We have focused on optimizing the detection efficiency of visible light photon counters (VLPCs), a single-photon detection technology that is also capable of resolving photon number states. We report a record-breaking quantum efficiency of 91 +/- 3% observed with our detection system. Both sources and detectors are independently interesting physical systems worthy of study, but together they promise to enable entire new classes and applications of information based on quantum mechanics.
A visual surveillance system for person re-identification
NASA Astrophysics Data System (ADS)
El-Alfy, Hazem; Muramatsu, Daigo; Teranishi, Yuuichi; Nishinaga, Nozomu; Makihara, Yasushi; Yagi, Yasushi
2017-03-01
We attempt the problem of autonomous surveillance for person re-identification. This is an active research area, where most recent work focuses on the open challenges of re-identification, independently of prerequisites of detection and tracking. In this paper, we are interested in designing a complete surveillance system, joining all the pieces of the puzzle together. We start by collecting our own dataset from multiple cameras. Then, we automate the process of detection and tracking of human subjects in the scenes, followed by performing the re-identification task. We evaluate the recognition performance of our system, report its strengths, discuss open challenges and suggest ways to address them.
Yunta, Jorge; Garcia-Pozuelo, Daniel; Diaz, Vicente; Olatunbosun, Oluremi
2018-02-06
Tires are a key sub-system of vehicles that have a big responsibility for comfort, fuel consumption and traffic safety. However, current tires are just passive rubber elements which do not contribute actively to improve the driving experience or vehicle safety. The lack of information from the tire during driving gives cause for developing an intelligent tire. Therefore, the aim of the intelligent tire is to monitor tire working conditions in real-time, providing useful information to other systems and becoming an active system. In this paper, tire tread deformation is measured to provide a strong experimental base with different experiments and test results by means of a tire fitted with sensors. Tests under different working conditions such as vertical load or slip angle have been carried out with an indoor tire test rig. The experimental data analysis shows the strong relation that exists between lateral force and the maximum tensile and compressive strain peaks when the tire is not working at the limit of grip. In the last section, an estimation system from experimental data has been developed and implemented in Simulink to show the potential of strain sensors for developing intelligent tire systems, obtaining as major results a signal to detect tire's loss of grip and estimations of the lateral friction coefficient.
Enzymatic reactivity of glucose oxidase confined in nanochannels.
Yu, Jiachao; Zhang, Yuanjian; Liu, Songqin
2014-05-15
The construction of nanodevices coupled with an integrated real-time detection system for evaluation of the function of biomolecules in biological processes, and enzymatic reaction kinetics occurring at the confined space or interface is a significant challenge. In this work, a nanochannel-enzyme system in which the enzymatic reaction could be investigated with an electrochemical method was constructed. The model system was established by covalently linking glucose oxidase (GOD) onto the inner wall of the nanochannels of the porous anodic alumina (PAA) membrane. An Au disc was attached at the end of the nanochannels of the PAA membrane as the working electrode for detection of H2O2 product of enzymatic reaction. The effects of ionic strength, amount of immobilized enzyme and pore diameter of the nanochannels on the enzymatic reaction kinetics were illustrated. The GOD confined in nanochannels showed high stability and reactivity. Upon addition of glucose to the nanochannel-enzyme system, the current response had a calibration range span from 0.005 to 2 mM of glucose concentration. The apparent Michaelis-Menten constant (K(m)(app)) of GOD confined in nanochannel was 0.4 mM. The presented work provided a platform for real-time monitoring of the enzyme reaction kinetics confined in nanospaces. Such a nanochannel-enzyme system could also help design future biosensors and enzyme reactors with high sensitivity and efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.
Garcia-Pozuelo, Daniel; Diaz, Vicente; Olatunbosun, Oluremi
2018-01-01
Tires are a key sub-system of vehicles that have a big responsibility for comfort, fuel consumption and traffic safety. However, current tires are just passive rubber elements which do not contribute actively to improve the driving experience or vehicle safety. The lack of information from the tire during driving gives cause for developing an intelligent tire. Therefore, the aim of the intelligent tire is to monitor tire working conditions in real-time, providing useful information to other systems and becoming an active system. In this paper, tire tread deformation is measured to provide a strong experimental base with different experiments and test results by means of a tire fitted with sensors. Tests under different working conditions such as vertical load or slip angle have been carried out with an indoor tire test rig. The experimental data analysis shows the strong relation that exists between lateral force and the maximum tensile and compressive strain peaks when the tire is not working at the limit of grip. In the last section, an estimation system from experimental data has been developed and implemented in Simulink to show the potential of strain sensors for developing intelligent tire systems, obtaining as major results a signal to detect tire’s loss of grip and estimations of the lateral friction coefficient. PMID:29415513
NASA Astrophysics Data System (ADS)
Molina-Jimenez, Teresa; Caballero-Aroca, Jose; Simón-Martín, Santiago; Hervás-Juan, Juan; García-Martínez, Jose-David; Pérez-Picazo, Emilio; Dolz-García, Ramón; Pons-Vila, Alejandro; Quintana-Rumbau, Salvador; Valiente Pardo, Jose Antonio; Estrela, Maria José; Pastor-Guzmán, Francisco
2005-09-01
We present results of a R&D project aimed to produce an environmental surveillance system that, working in wild areas, allows for a real-time observation and control of some ambient factors that could produce a natural disaster. The main objective of the project is the development of an open platform capable to work with several kinds of sensors, in order to adapt itself to the needs of each situation. The detection of environmental risks and management of this data to give a real-time response is the overall objective of the project. The main parts of the system are: 1.- Detection system: capable to perform real-time data and image communication, fully autonomous and designed to consider the environmental conditions. 2.- Alarm management headquaters: reception on real-time of data from the detector network. All the data is analysed to enable a decision about whether there is or not an alarm situation. 3.- Mobile alarm-reception system: portable system for reception of the alarm signal from the headquaters. The project was financed by the Science and Technology Ministry, National Research and Development Programme (TIC2000-0366-P4, 2001-2004).
Technologies for autonomous integrated lab-on-chip systems for space missions
NASA Astrophysics Data System (ADS)
Nascetti, A.; Caputo, D.; Scipinotti, R.; de Cesare, G.
2016-11-01
Lab-on-chip devices are ideal candidates for use in space missions where experiment automation, system compactness, limited weight and low sample and reagent consumption are required. Currently, however, most microfluidic systems require external desktop instrumentation to operate and interrogate the chip, thus strongly limiting their use as stand-alone systems. In order to overcome the above-mentioned limitations our research group is currently working on the design and fabrication of "true" lab-on-chip systems that integrate in a single device all the analytical steps from the sample preparation to the detection without the need for bulky external components such as pumps, syringes, radiation sources or optical detection systems. Three critical points can be identified to achieve 'true' lab-on-chip devices: sample handling, analytical detection and signal transduction. For each critical point, feasible solutions are presented and evaluated. Proposed microfluidic actuation and control is based on electrowetting on dielectrics, autonomous capillary networks and active valves. Analytical detection based on highly specific chemiluminescent reactions is used to avoid external radiation sources. Finally, the integration on the same chip of thin film sensors based on hydrogenated amorphous silicon is discussed showing practical results achieved in different sensing tasks.
Detecting crop population growth using chlorophyll fluorescence imaging.
Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu
2017-12-10
For both field and greenhouse crops, it is challenging to evaluate their growth information on a large area over a long time. In this work, we developed a chlorophyll fluorescence imaging-based system for crop population growth information detection. Modular design was used to make the system provide high-intensity uniform illumination. This system can perform modulated chlorophyll fluorescence induction kinetics measurement and chlorophyll fluorescence parameter imaging over a large area of up to 45 cm×34 cm. The system can provide different lighting intensity by modulating the duty cycle of its control signal. Results of continuous monitoring of cucumbers in nitrogen deficiency show the system can reduce the judge error of crop physiological status and improve monitoring efficiency. Meanwhile, the system is promising in high throughput application scenarios.
Statistical process control based chart for information systems security
NASA Astrophysics Data System (ADS)
Khan, Mansoor S.; Cui, Lirong
2015-07-01
Intrusion detection systems have a highly significant role in securing computer networks and information systems. To assure the reliability and quality of computer networks and information systems, it is highly desirable to develop techniques that detect intrusions into information systems. We put forward the concept of statistical process control (SPC) in computer networks and information systems intrusions. In this article we propose exponentially weighted moving average (EWMA) type quality monitoring scheme. Our proposed scheme has only one parameter which differentiates it from the past versions. We construct the control limits for the proposed scheme and investigate their effectiveness. We provide an industrial example for the sake of clarity for practitioner. We give comparison of the proposed scheme with EWMA schemes and p chart; finally we provide some recommendations for the future work.
Monitoring system of multiple fire fighting based on computer vision
NASA Astrophysics Data System (ADS)
Li, Jinlong; Wang, Li; Gao, Xiaorong; Wang, Zeyong; Zhao, Quanke
2010-10-01
With the high demand of fire control in spacious buildings, computer vision is playing a more and more important role. This paper presents a new monitoring system of multiple fire fighting based on computer vision and color detection. This system can adjust to the fire position and then extinguish the fire by itself. In this paper, the system structure, working principle, fire orientation, hydrant's angle adjusting and system calibration are described in detail; also the design of relevant hardware and software is introduced. At the same time, the principle and process of color detection and image processing are given as well. The system runs well in the test, and it has high reliability, low cost, and easy nodeexpanding, which has a bright prospect of application and popularization.
Thermal infrared panoramic imaging sensor
NASA Astrophysics Data System (ADS)
Gutin, Mikhail; Tsui, Eddy K.; Gutin, Olga; Wang, Xu-Ming; Gutin, Alexey
2006-05-01
Panoramic cameras offer true real-time, 360-degree coverage of the surrounding area, valuable for a variety of defense and security applications, including force protection, asset protection, asset control, security including port security, perimeter security, video surveillance, border control, airport security, coastguard operations, search and rescue, intrusion detection, and many others. Automatic detection, location, and tracking of targets outside protected area ensures maximum protection and at the same time reduces the workload on personnel, increases reliability and confidence of target detection, and enables both man-in-the-loop and fully automated system operation. Thermal imaging provides the benefits of all-weather, 24-hour day/night operation with no downtime. In addition, thermal signatures of different target types facilitate better classification, beyond the limits set by camera's spatial resolution. The useful range of catadioptric panoramic cameras is affected by their limited resolution. In many existing systems the resolution is optics-limited. Reflectors customarily used in catadioptric imagers introduce aberrations that may become significant at large camera apertures, such as required in low-light and thermal imaging. Advantages of panoramic imagers with high image resolution include increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) combines the strengths of improved, high-resolution panoramic optics with thermal imaging in the 8 - 14 micron spectral range, leveraged by intelligent video processing for automated detection, location, and tracking of moving targets. The work in progress supports the Future Combat Systems (FCS) and the Intelligent Munitions Systems (IMS). The APTIS is anticipated to operate as an intelligent node in a wireless network of multifunctional nodes that work together to serve in a wide range of applications of homeland security, as well as serve the Army in tasks of improved situational awareness (SA) in defense and offensive operations, and as a sensor node in tactical Intelligence Surveillance Reconnaissance (ISR). The novel ViperView TM high-resolution panoramic thermal imager is the heart of the APTIS system. It features an aberration-corrected omnidirectional imager with small optics designed to match the resolution of a 640x480 pixels IR camera with improved image quality for longer range target detection, classification, and tracking. The same approach is applicable to panoramic cameras working in the visible spectral range. Other components of the ATPIS system include network communications, advanced power management, and wakeup capability. Recent developments include image processing, optical design being expanded into the visible spectral range, and wireless communications design. This paper describes the development status of the APTIS system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Searfass, Clifford T.; Malinowski, Owen M.; Van Velsor, Jason K.
2015-03-22
The stated goal of this work was to develop a versatile system which could accurately measure vessel and valve internal vibrations and cavitation formation under in-service conditions in nuclear power plants, ultrasonically. The developed technology will benefit the nuclear power generation industry by allowing plant operators to monitor valve and vessel internals during operation. This will help reduce planned outages and plant component failures. During the course of this work, Structural Integrity Associates, Inc. gathered information from industry experts that target vibration amplitudes to be detected should be in the range of 0.001-in to 0.005-in (0.025-mm to 0.127-mm) and targetmore » vibration frequency ranges which should be detected were found to be between 0-Hz and 300-Hz. During the performed work, an ultrasonic measuring system was developed which utilized ultrasonic pulse-echo time-of-flight measurements to measure vibration frequency and amplitude. The developed system has been shown to be able to measure vibration amplitudes as low as 0.0008-in (0.020-mm) with vibration frequencies in the range of 17-Hz to 1000-Hz. Therefore, the developed system was able to meet the industry needs for vibration measurement. The developed ultrasonic system was also to be able to measure cavitation formation by monitoring the received ultrasonic time- and frequency-domain signals. This work also demonstrated the survivability of commercially available probes at temperatures up to 300-F for several weeks.« less
OUTCOMES AND DURATION OF TIDAL EVOLUTION IN A STAR-PLANET-MOON SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasaki, Takashi; Barnes, Jason W.; O'Brien, David P., E-mail: tsasaki@vandals.uidaho.edu, E-mail: jwbarnes@uidaho.edu, E-mail: obrien@psi.edu
2012-07-20
We formulated tidal decay lifetimes for hypothetical moons orbiting extrasolar planets with both lunar and stellar tides. Previous works neglected the effect of lunar tides on planet rotation, and are therefore applicable only to systems in which the moon's mass is much less than that of the planet. This work, in contrast, can be applied to the relatively large moons that might be detected around newly discovered Neptune-mass and super-Earth planets. We conclude that moons are more stable when the planet/moon systems are further from the parent star, the planets are heavier, or the parent stars are lighter. Inclusion ofmore » lunar tides allows for significantly longer lifetimes for a massive moon relative to prior formulations. We expect that the semimajor axis of the planet hosting the first detected exomoon around a G-type star is 0.4-0.6 AU and is 0.2-0.4 AU for an M-type star.« less
Advanced optical systems for ultra high energy cosmic rays detection
NASA Astrophysics Data System (ADS)
Gambicorti, L.; Pace, E.; Mazzinghi, P.
2017-11-01
A new advanced optical system is proposed and analysed in this work with the purpose to improve the photons collection efficiency of Multi-AnodePhotoMultipliers (MAPMT) detectors, which will be used to cover large focal surface of instruments dedicated to the Ultra High Energy Cosmic Rays (UHECRs, above 1019eV) and Ultra High Energy Neutrino (UHEN) detection. The employment of the advanced optical system allows to focus all photons inside the sensitive area of detectors and to improve the signal-to-noise ratios in the wavelength range of interest (300-400nm), thus coupling imaging and filtering capability. Filter is realised with a multilayer coating to reach high transparency in UV range and with a sharp cut-off outside. In this work the applications on different series of PMTs have been studied and results of simulations are shown. First prototypes have been realised. Finally, this paper proposes another class of adapters to be optically coupled on each pixel of MAPMT detector selected, consisting of non-imaging concentrators as Winston cones.
Ben Oujji, Najwa; Bakas, Idriss; Istamboulié, Georges; Ait-Ichou, Ihya; Ait-Addi, Elhabib; Rouillon, Régis; Noguer, Thierry
2012-01-01
This work presents the development of bioassays and biosensors for the detection of insecticides widely used in the treatment of olive trees. The systems are based on the covalent immobilisation of acetylcholinesterase on magnetic microbeads using either colorimetry or amperometry as detection technique. The magnetic beads were immobilised on screen-printed electrodes or microtitration plates and tested using standard solutions and real samples. The developed devices showed good analytical performances with limits of detection much lower than the maximum residue limit tolerated by international regulations, as well as a good reproducibility and stability. PMID:22969377
Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt; Philip A. Araman
2005-01-01
This paper describes recent progress in the analysis of computed tomography (CT) images of hardwood logs. The long-term goal of the work is to develop a system that is capable of autonomous (or semiautonomous) detection of internal defects, so that log breakdown decisions can be optimized based on defect locations. The problem is difficult because wood exhibits large...
Windshear detection radar signal processing studies
NASA Technical Reports Server (NTRS)
Baxa, Ernest G., Jr.
1993-01-01
This final report briefly summarizes research work at Clemson in the Radar Systems Laboratory under the NASA Langley Research Grant NAG-1-928 in support of the Antenna and Microwave Branch, Guidance and Control Division, program to develop airborne sensor technology for the detection of low altitude windshear. A bibliography of all publications generated by Clemson personnel is included. An appendix provides abstracts of all publications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietrich, Richard E.
2016-07-01
This document serves as the System-Level Acceptance Test (SLAT) Plan for Site Name, City, Country. This test plan is to provide independent testing of the Radiation Detection System (RDS) installed at Site Name to verify that Customs has been delivered a fully-functioning system as required by all contractual commitments. The system includes all installed hardware and software components. The SLAT plan will verify that separate components are working individually and collectively from a system perspective.
Soft Stethoscope for Detecting Asthma Wheeze in Young Children
Yu, Chun; Tsai, Tzu-Hsiu; Huang, Shi-Ing; Lin, Chii-Wann
2013-01-01
Asthma is a chronic disease that is commonly suffered by children. Asthmatic children have a lower quality of life than other children. Physicians and pediatricians recommend that parents record the frequency of attacks and their symptoms to help manage their children's asthma. However, the lack of a convenient device for monitoring the asthmatic condition leads to the difficulties in managing it, especially when it is suffered by young children. This work develops a wheeze detection system for use at home. A small and soft stethoscope was used to collect the respiratory sound. The wheeze detection algorithm was the Adaptive Respiratory Spectrum Correlation Coefficient (RSACC) algorithm, which has the advantages of high sensitivity/specificity and a low computational requirement. Fifty-nine sound files from eight young children (one to seven years old) were collected in the emergency room and analyzed. The results revealed that the system provided 88% sensitivity and 94% specificity in wheeze detection. In conclusion, this small soft stethoscope can be easily used on young children. A noisy environment does not affect the effectiveness of the system in detecting wheeze. Hence, the system can be used at home by parents who wish to evaluate and manage the asthmatic condition of their children. PMID:23744030
Soft stethoscope for detecting asthma wheeze in young children.
Yu, Chun; Tsai, Tzu-Hsiu; Huang, Shi-Ing; Lin, Chii-Wann
2013-06-06
Asthma is a chronic disease that is commonly suffered by children. Asthmatic children have a lower quality of life than other children. Physicians and pediatricians recommend that parents record the frequency of attacks and their symptoms to help manage their children's asthma. However, the lack of a convenient device for monitoring the asthmatic condition leads to the difficulties in managing it, especially when it is suffered by young children. This work develops a wheeze detection system for use at home. A small and soft stethoscope was used to collect the respiratory sound. The wheeze detection algorithm was the Adaptive Respiratory Spectrum Correlation Coefficient (RSACC) algorithm, which has the advantages of high sensitivity/specificity and a low computational requirement. Fifty-nine sound files from eight young children (one to seven years old) were collected in the emergency room and analyzed. The results revealed that the system provided 88% sensitivity and 94% specificity in wheeze detection. In conclusion, this small soft stethoscope can be easily used on young children. A noisy environment does not affect the effectiveness of the system in detecting wheeze. Hence, the system can be used at home by parents who wish to evaluate and manage the asthmatic condition of their children.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C.S.; af Ekenstam, G.; Sallstrom, M.
1995-07-01
The Swedish Nuclear Power Inspectorate (SKI) and the US Department of Energy (DOE) sponsored work on a Remote Monitoring System (RMS) that was installed in August 1994 at the Barseback Works north of Malmo, Sweden. The RMS was designed to test the front end detection concept that would be used for unattended remote monitoring activities. Front end detection reduces the number of video images recorded and provides additional sensor verification of facility operations. The function of any safeguards Containment and Surveillance (C/S) system is to collect information which primarily is images that verify the operations at a nuclear facility. Barsebackmore » is ideal to test the concept of front end detection since most activities of safeguards interest is movement of spent fuel which occurs once a year. The RMS at Barseback uses a network of nodes to collect data from microwave motion detectors placed to detect the entrance and exit of spent fuel casks through a hatch. A video system using digital compression collects digital images and stores them on a hard drive and a digital optical disk. Data and images from the storage area are remotely monitored via telephone from Stockholm, Sweden and Albuquerque, NM, USA. These remote monitoring stations operated by SKI and SNL respectively, can retrieve data and images from the RMS computer at the Barseback Facility. The data and images are encrypted before transmission. This paper presents details of the RMS and test results of this approach to front end detection of safeguard activities.« less
Development of a Calibration Strip for Immunochromatographic Assay Detection Systems.
Gao, Yue-Ming; Wei, Jian-Chong; Mak, Peng-Un; Vai, Mang-I; Du, Min; Pun, Sio-Hang
2016-06-29
With many benefits and applications, immunochromatographic (ICG) assay detection systems have been reported on a great deal. However, the existing research mainly focuses on increasing the dynamic detection range or application fields. Calibration of the detection system, which has a great influence on the detection accuracy, has not been addressed properly. In this context, this work develops a calibration strip for ICG assay photoelectric detection systems. An image of the test strip is captured by an image acquisition device, followed by performing a fuzzy c-means (FCM) clustering algorithm and maximin-distance algorithm for image segmentation. Additionally, experiments are conducted to find the best characteristic quantity. By analyzing the linear coefficient, an average value of hue (H) at 14 min is chosen as the characteristic quantity and the empirical formula between H and optical density (OD) value is established. Therefore, H, saturation (S), and value (V) are calculated by a number of selected OD values. Then, H, S, and V values are transferred to the RGB color space and a high-resolution printer is used to print the strip images on cellulose nitrate membranes. Finally, verification of the printed calibration strips is conducted by analyzing the linear correlation between OD and the spectral reflectance, which shows a good linear correlation (R² = 98.78%).
Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs).
Cruz, Henry; Eckert, Martina; Meneses, Juan; Martínez, José-Fernán
2016-06-16
This article proposes a novel method for detecting forest fires, through the use of a new color index, called the Forest Fire Detection Index (FFDI), developed by the authors. The index is based on methods for vegetation classification and has been adapted to detect the tonalities of flames and smoke; the latter could be included adaptively into the Regions of Interest (RoIs) with the help of a variable factor. Multiple tests have been performed upon database imagery and present promising results: a detection precision of 96.82% has been achieved for image sizes of 960 × 540 pixels at a processing time of 0.0447 seconds. This achievement would lead to a performance of 22 f/s, for smaller images, while up to 54 f/s could be reached by maintaining a similar detection precision. Additional tests have been performed on fires in their early stages, achieving a precision rate of p = 96.62%. The method could be used in real-time in Unmanned Aerial Systems (UASs), with the aim of monitoring a wider area than through fixed surveillance systems. Thus, it would result in more cost-effective outcomes than conventional systems implemented in helicopters or satellites. UASs could also reach inaccessible locations without jeopardizing people's safety. On-going work includes implementation into a commercially available drone.
NASA Astrophysics Data System (ADS)
Kuang, K. S. C.
2014-03-01
A novel application of chemiluminescence resulting from the chemical reaction in a glow-stick as sensors for structural health monitoring is demonstrated here. By detecting the presence of light emitting from these glow-sticks, it is possible to develop a low-cost sensing device with the potential to provide early warning of damage in a variety of engineering applications such as monitoring of cracks or damage in concrete shear walls, detecting of ground settlement, soil liquefaction, slope instability, liquefaction-related damage of underground structure and others. In addition, this paper demonstrates the ease of incorporating wireless capability to the sensor device and the possibility of making the sensor system self-sustaining by means of a renewable power source for the wireless module. A significant advantage of the system compared to previous work on the use of plastic optical fibre (POF) for damage detection is that here the system does not require an electrically-powered light source. Here, the sensing device, embedded in a cement host, is shown to be capable of detecting damage. A series of specimens with embedded glow-sticks have been investigated and an assessment of their damage detection capability will be reported. The specimens were loaded under flexure and the sensor responses were transmitted via a wireless connection.
[A novel serial port auto trigger system for MOSFET dose acquisition].
Luo, Guangwen; Qi, Zhenyu
2013-01-01
To synchronize the radiation of microSelectron-HDR (Nucletron afterloading machine) and measurement of MOSFET dose system, a trigger system based on interface circuit was designed and corresponding monitor and trigger program were developed on Qt platform. This interface and control system was tested and showed stable operate and reliable work. This adopted serial port detect technique may expand to trigger application of other medical devices.
Amperometric Immunosensors for screening of Polycyclic Aromatic Hydrocarbons in water
NASA Astrophysics Data System (ADS)
Ahmad, A.; Paschero, A.; Moore, E.
2011-08-01
An amperometric immunosensor with low limit detection was developed for the screening of polycyclic aromatic hydrocarbons (PAHs) in water. The system was based on detecting the specific substance using an immunological reaction by measuring the chemical responses to specific antibodies. An integrated biochip with a three electrode system was fabricated. Gold was used as the working electrode with platinum was used as the counter electrode. A modified Ag/AgCl reference electrode was employed to enhance the stability of the immunosensors. Indirect competition enzyme-linked immunosorbent assay (ELISA) was carried out within the electrode using alkaline phosphatase (AP) as the labelled-enzyme. The system shows acceptable reproducibility and good stability. The immunosensor exhibited a wide linear response to PAHs. A limit of detection for this sensor was in the range of 1 to 10 ng ml-1 in aqueous sample.
SYBR Green Real-Time PCR for the Detection of All Enterovirus-A71 Genogroups
Dubot-Pérès, Audrey; Tan, Charlene Y. Q.; de Chesse, Reine; Sibounheuang, Bountoy; Vongsouvath, Manivanh; Phommasone, Koukeo; Bessaud, Maël; Gazin, Céline; Thirion, Laurence; Phetsouvanh, Rattanaphone; Newton, Paul N.; de Lamballerie, Xavier
2014-01-01
Enterovirus A71 (EV-A71) has recently become an important public health threat, especially in South-East Asia, where it has caused massive outbreaks of Hand, Foot and Mouth disease every year, resulting in significant mortality. Rapid detection of EV-A71 early in outbreaks would facilitate implementation of prevention and control measures to limit spread. Real-time RT-PCR is the technique of choice for the rapid diagnosis of EV-A71 infection and several systems have been developed to detect circulating strains. Although eight genogroups have been described globally, none of these PCR techniques detect all eight. We describe, for the first time, a SYBR Green real-time RT-PCR system validated to detect all 8 EV-A71 genogroups. This tool could permit the early detection and shift in genogroup circulation and the standardization of HFMD virological diagnosis, facilitating networking of laboratories working on EV-A71 in different regions. PMID:24651608
Turksoy, Kamuran; Samadi, Sediqeh; Feng, Jianyuan; Littlejohn, Elizabeth; Quinn, Laurie; Cinar, Ali
2016-01-01
A novel meal-detection algorithm is developed based on continuous glucose measurements. Bergman's minimal model is modified and used in an unscented Kalman filter for state estimations. The estimated rate of appearance of glucose is used for meal detection. Data from nine subjects are used to assess the performance of the algorithm. The results indicate that the proposed algorithm works successfully with high accuracy. The average change in glucose levels between the meals and the detection points is 16(±9.42) [mg/dl] for 61 successfully detected meals and snacks. The algorithm is developed as a new module of an integrated multivariable adaptive artificial pancreas control system. Meal detection with the proposed method is used to administer insulin boluses and prevent most of postprandial hyperglycemia without any manual meal announcements. A novel meal bolus calculation method is proposed and tested with the UVA/Padova simulator. The results indicate significant reduction in hyperglycemia.
NASA Astrophysics Data System (ADS)
Krämer, Sebastian G. M.; Wiesent, Benjamin; Müller, Mathias S.; Puente León, Fernando; Méndez Hernández, Yarú
2008-04-01
Wind turbine blades are made of composite materials and reach a length of more than 42 meters. Developments for modern offshore turbines are working on about 60 meters long blades. Hence, with the increasing height of the turbines and the remote locations of the structures, health monitoring systems are becoming more and more important. Therefore, fiber-optic sensor systems are well-suited, as they are lightweight, immune against electromagnetic interference (EMI), and as they can be multiplexed. Based on two separately existing concepts for strain measurements and lightning detection on wind turbines, a fused system is presented. The strain measurement system is based on a reflective fiber-Bragg-grating (FBG) network embedded in the composite structure of the blade. For lightning detection, transmissive &fiber-optic magnetic field sensors based on the Faraday effect are used to register the lightning parameters and estimate the impact point. Hence, an existing lightning detection system will be augmented, due to the fusion, by the capability to measure strain, temperature and vibration. Load, strain, temperature and impact detection information can be incorporated into the turbine's monitoring or SCADA system and remote controlled by operators. Data analysis techniques allow dynamic maintenance scheduling to become a reality, what is of special interest for the cost-effective maintenance of large offshore or badly attainable onshore wind parks. To prove the feasibility of this sensor fusion on one optical fiber, interferences between both sensor systems are investigated and evaluated.
Unbalance detection in rotor systems with active bearings using self-sensing piezoelectric actuators
NASA Astrophysics Data System (ADS)
Ambur, Ramakrishnan; Rinderknecht, Stephan
2018-03-01
Machines which are developed today are highly automated due to increased use of mechatronic systems. To ensure their reliable operation, fault detection and isolation (FDI) is an important feature along with a better control. This research work aims to achieve and integrate both these functions with minimum number of components in a mechatronic system. This article investigates a rotating machine with active bearings equipped with piezoelectric actuators. There is an inherent coupling between their electrical and mechanical properties because of which they can also be used as sensors. Mechanical deflection can be reconstructed from these self-sensing actuators from measured voltage and current signals. These virtual sensor signals are utilised to detect unbalance in a rotor system. Parameters of unbalance such as its magnitude and phase are detected by parametric estimation method in frequency domain. Unbalance location has been identified using hypothesis of localization of faults. Robustness of the estimates against outliers in measurements is improved using weighted least squares method. Unbalances are detected in a real test bench apart from simulation using its model. Experiments are performed in stationary as well as in transient case. As a further step unbalances are estimated during simultaneous actuation of actuators in closed loop with an adaptive algorithm for vibration minimisation. This strategy could be used in systems which aim for both fault detection and control action.
76 FR 39095 - Compatibility of Underground Storage Tank Systems With Biofuel Blends
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-05
... drinking water for nearly half of all Americans, the U.S. Environmental Protection Agency (EPA) regulates... components of the UST system, such as leak detection devices, sealants, and containment sumps, may not be... demonstration of compatibility. Some commenters suggested that EPA allow the National Work Group on Leak...
78 FR 22802 - Airworthiness Directives; the Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-17
... indication system and wiring on each engine; and repetitive operational checks of that installation to detect... wiring. Installation of a second locking gearbox 754 work-hours x $85 per hour = $0 $64,090 system. $64... proposed AD would require replacing certain relays and relay sockets, and doing wiring changes. For certain...
Cartography and Information Systems for the Luna-Glob Landing Sites
NASA Astrophysics Data System (ADS)
Kokhanov, A.; Karachevtseva, I.; Oberst, J.; Zubarev, A.; Robinson, M. S.
2012-09-01
We provide cartography and information system support to the LUNA-GLOB mission and assess candidate landing sites [1] on the basis of different available remote sensing data sets. The main goal of our work is to identify science opportunities in the sub-polar areas and to detect possible hazards for any landing spacecraft.
Digital mammography: physical principles and future applications.
Gambaccini, Mauro; Baldelli, Paola
2003-01-01
Mammography is currently considered the best tool for the detection of breast cancer, pathology with a rate of incidence in constant increase. To produce the radiological picture a screen film combination is conventionally used. One of the inherent limitations of screen- film combination is the fact that the detection, display and storage processes are one and the same, making it impossible to separately optimize each stage. These limitations can be overcome with digital systems. In this work we evaluate the main characteristics of digital detectors available on the market and we compare the performance of digital and conventional systems. Digital mammography, due to the possibility to process images, offers many potential advantages, among these the possibility to introduce the dual-energy technique which employs the composition of two digital images obtained with two different energies to enhance the inherent contrast of pathologies by removing the uniform background. This technique was previously tested by using synchrotron monochromatic beam and a digital detector, and then the Senographe 2000D full-field digital system manufactured by GE Medical Systems. In this work we present preliminary results and the future applications of this technique.
Intensive care unit without walls: seeking patient safety by improving the efficiency of the system.
Gordo, F; Abella, A
2014-10-01
The term "ICU without walls" refers to innovative management in Intensive Care, based on two key elements: (1) collaboration of all medical and nursing staff involved in patient care during hospitalization and (2) technological support for severity early detection protocols by identifying patients at risk of deterioration throughout the hospital, based on the assessment of vital signs and/or laboratory test values, with the clear aim of improving critical patient safety in the hospitalization process. At present, it can be affirmed that there is important work to be done in the detection of severity and early intervention in patients at risk of organ dysfunction. Such work must be adapted to the circumstances of each center and should include training in the detection of severity, multidisciplinary work in the complete patient clinical process, and the use of technological systems allowing intervention on the basis of monitored laboratory and physiological parameters, with effective and efficient use of the information generated. Not only must information be generated, but also efficient management of such information must also be achieved. It is necessary to improve our activity through innovation in management procedures that facilitate the work of the intensivist, in collaboration with other specialists, throughout the hospital environment. Innovation is furthermore required in the efficient management of the information generated in hospitals, through intelligent and directed usage of the new available technology. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.
Portable Multispectral Colorimeter for Metallic Ion Detection and Classification
Jaimes, Ruth F. V. V.; Borysow, Walter; Gomes, Osmar F.; Salcedo, Walter J.
2017-01-01
This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView®). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution. PMID:28788082
Portable Multispectral Colorimeter for Metallic Ion Detection and Classification.
Braga, Mauro S; Jaimes, Ruth F V V; Borysow, Walter; Gomes, Osmar F; Salcedo, Walter J
2017-07-28
This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView ® ). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution.
Williams working on the LOCAD-PTS Experiment in the US Lab during Expedition 15
2007-04-30
ISS015-E-05649 (30 April 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
Williams works on the LOCAD-PTS Experiment in the US Lab during Expedition 15
2007-05-05
ISS015-E-06777 (5 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
Williams working on the LOCAD-PTS Experiment in the US Lab during Expedition 15
2007-04-30
ISS015-E-05640 (30 April 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
Elemental Scanning Devices Authenticate Works of Art
NASA Technical Reports Server (NTRS)
2013-01-01
To better detect aluminum compounds, Marshall Space Flight Center partnered with KeyMaster Inc. (later acquired by Madison, Wisconsin-based Bruker AXS Inc.) to develop a vacuum pump system that could be attached to X-ray fluorescence (XRF) scanners. The resulting technology greatly expanded XRF scanner capabilities, and hundreds of museums now use them to authenticate artifacts and works of art.
Detecting buried explosive hazards with handheld GPR and deep learning
NASA Astrophysics Data System (ADS)
Besaw, Lance E.
2016-05-01
Buried explosive hazards (BEHs), including traditional landmines and homemade improvised explosives, have proven difficult to detect and defeat during and after conflicts around the world. Despite their various sizes, shapes and construction material, ground penetrating radar (GPR) is an excellent phenomenology for detecting BEHs due to its ability to sense localized differences in electromagnetic properties. Handheld GPR detectors are common equipment for detecting BEHs because of their flexibility (in part due to the human operator) and effectiveness in cluttered environments. With modern digital electronics and positioning systems, handheld GPR sensors can sense and map variation in electromagnetic properties while searching for BEHs. Additionally, large-scale computers have demonstrated an insatiable appetite for ingesting massive datasets and extracting meaningful relationships. This is no more evident than the maturation of deep learning artificial neural networks (ANNs) for image and speech recognition now commonplace in industry and academia. This confluence of sensing, computing and pattern recognition technologies offers great potential to develop automatic target recognition techniques to assist GPR operators searching for BEHs. In this work deep learning ANNs are used to detect BEHs and discriminate them from harmless clutter. We apply these techniques to a multi-antennae, handheld GPR with centimeter-accurate positioning system that was used to collect data over prepared lanes containing a wide range of BEHs. This work demonstrates that deep learning ANNs can automatically extract meaningful information from complex GPR signatures, complementing existing GPR anomaly detection and classification techniques.
The parameterization of microchannel-plate-based detection systems
NASA Astrophysics Data System (ADS)
Gershman, Daniel J.; Gliese, Ulrik; Dorelli, John C.; Avanov, Levon A.; Barrie, Alexander C.; Chornay, Dennis J.; MacDonald, Elizabeth A.; Holland, Matthew P.; Giles, Barbara L.; Pollock, Craig J.
2016-10-01
The most common instrument for low-energy plasmas consists of a top-hat electrostatic analyzer (ESA) geometry coupled with a microchannel-plate-based (MCP-based) detection system. While the electrostatic optics for such sensors are readily simulated and parameterized during the laboratory calibration process, the detection system is often less well characterized. Here we develop a comprehensive mathematical description of particle detection systems. As a function of instrument azimuthal angle, we parameterize (1) particle scattering within the ESA and at the surface of the MCP, (2) the probability distribution of MCP gain for an incident particle, (3) electron charge cloud spreading between the MCP and anode board, and (4) capacitive coupling between adjacent discrete anodes. Using the Dual Electron Spectrometers on the Fast Plasma Investigation on NASA's Magnetospheric Multiscale mission as an example, we demonstrate a method for extracting these fundamental detection system parameters from laboratory calibration. We further show that parameters that will evolve in flight, namely, MCP gain, can be determined through application of this model to specifically tailored in-flight calibration activities. This methodology provides a robust characterization of sensor suite performance throughout mission lifetime. The model developed in this work is not only applicable to existing sensors but also can be used as an analytical design tool for future particle instrumentation.
Microsphere-Based Immunoassay for the Detection of Azaspiracids
Rodríguez, Laura P.; Vilariño, Natalia; Louzao, M. Carmen; Dickerson, Tobin J.; Nicolaou, K. C.; Frederick, Michael O.; Botana, Luis M.
2014-01-01
Azaspiracids (AZAs) are a group of lipophilic toxins discovered in mussels from Ireland in 1995 following a human poisoning incident. Nowadays the regulatory limit for AZAs in many countries is set at 160 Fg of azaspiracid equivalents per kg of shellfish meat. In this work a microsphere-based immunoassay has been developed for the detection of AZAs using a Luminex system. This method is based on the competition between AZA-2 immobilized onto the surface of microspheres and free AZAs for the interaction with a monoclonal anti-azaspiracid antibody (mAb 8F4). In this inhibition immunoassay the amount of mAb 8F4 bound to AZA-2-microspheres was quantified using a phycoerythrin-labeled anti-mouse antibody, and the fluorescence was measured with a Luminex analyzer. Simple acetate/methanol or methanol extractions yielded final extracts with no matrix interferences and adequate recovery rates of 86.5% and 75.8%, respectively. In summary, this work presents, a sensitive and easily performed screening method capable of detecting AZAs at concentrations below the range of the European regulatory limit using a microsphere/flow cytometry system. PMID:24215909
Detection of ocean waste in the New York Bight
NASA Technical Reports Server (NTRS)
Philpot, W.; Klemas, V.
1979-01-01
The application of remote sensing to detection and monitoring of ocean waste disposal in the New York Bight is discussed. Attention is focused on the two major pollutants in this area--sewage sludge and iron-acid waste--and on detecting and identifying these pollutants. The emphasis is on the use of LANDSAT multispectral data in identifying these pollutants and distinguishing them from other substances. The analysis technique applied to the LANDSAT data is the eigenvector. This approach proved to be quite successful in detecting iron-acid waste of the coast of Delaware and is applied here with relatively minor modifications. The results of the New York Bight work are compared to the Delaware results. Finally, other remote sensing systems (Nimbus G, aircraft photography and multispectral scanner systems) are discussed as possible complements of or replacements for the Landsat observations.
NASA Astrophysics Data System (ADS)
Conklin, John Albert
This dissertation presents the design of a modular, fiber-optic sensor and the results obtained from testing the modular sensor. The modular fiber-optic sensor is constructed in such manner that the sensor diaphragm can be replaced with different configurations to detect numerous physical phenomena. Additionally, different fiber-optic detection systems can be attached to the sensor. Initially, the modular sensor was developed to be used by university of students to investigate realistic optical sensors and detection systems to prepare for advance studies of micro-optical mechanical systems (MOMS). The design accomplishes this by doing two things. First, the design significantly lowers the costs associated with studying optical sensors by modularizing the sensor design. Second, the sensor broadens the number of physical phenomena that students can apply optical sensing techniques to in a fiber optics sensor course. The dissertation is divided into seven chapters covering the historical development of fiber-optic sensors, a theoretical overview of fiber-optic sensors, the design, fabrication, and the testing of the modular sensor developed in the course of this work. Chapter 1 discusses, in detail, how this dissertation is organized and states the purpose of the dissertation. Chapter 2 presents an historical overview of the development of optical fibers, optical pressure sensors, and fibers, optical pressure sensors, and optical microphones. Chapter 3 reviews the theory of multi-fiber optic detection systems, optical microphones, and pressure sensors. Chapter 4 presents the design details of the modular, optical sensor. Chapter 5 delves into how the modular sensor is fabricated and how the detection systems are constructed. Chapter 6 presents the data collected from the microphone and pressure sensor configurations of the modular sensor. Finally, Chapter 7 discusses the data collected and draws conclusions about the design based on the data collected. Chapter 7 also presents future work needed to expand the functionality and utility of the modular sensor.
Dórea, Fernanda C.; McEwen, Beverly J.; McNab, W. Bruce; Sanchez, Javier; Revie, Crawford W.
2013-01-01
Background Syndromic surveillance research has focused on two main themes: the search for data sources that can provide early disease detection; and the development of efficient algorithms that can detect potential outbreak signals. Methods This work combines three algorithms that have demonstrated solid performance in detecting simulated outbreak signals of varying shapes in time series of laboratory submissions counts. These are: the Shewhart control charts designed to detect sudden spikes in counts; the EWMA control charts developed to detect slow increasing outbreaks; and the Holt-Winters exponential smoothing, which can explicitly account for temporal effects in the data stream monitored. A scoring system to detect and report alarms using these algorithms in a complementary way is proposed. Results The use of multiple algorithms in parallel resulted in increased system sensitivity. Specificity was decreased in simulated data, but the number of false alarms per year when the approach was applied to real data was considered manageable (between 1 and 3 per year for each of ten syndromic groups monitored). The automated implementation of this approach, including a method for on-line filtering of potential outbreak signals is described. Conclusion The developed system provides high sensitivity for detection of potential outbreak signals while also providing robustness and flexibility in establishing what signals constitute an alarm. This flexibility allows an analyst to customize the system for different syndromes. PMID:24349216
NASA Astrophysics Data System (ADS)
Zang, Lixin; Zhao, Huimin; Zhang, Zhiguo; Cao, Wenwu
2017-02-01
Photodynamic therapy (PDT) is currently an advanced optical technology in medical applications. However, the application of PDT is limited by the detection of photosensitizers. This work focuses on the application of fluorescence spectroscopy and imaging in the detection of an effective photosenzitizer, hematoporphyrin monomethyl ether (HMME). Optical properties of HMME were measured and analyzed based on its absorption and fluorescence spectra. The production mechanism of its fluorescence emission was analyzed. The detection device for HMME based on fluorescence spectroscopy was designed. Ratiometric method was applied to eliminate the influence of intensity change of excitation sources, fluctuates of excitation sources and photo detectors, and background emissions. The detection limit of this device is 6 μg/L, and it was successfully applied to the diagnosis of the metabolism of HMME in the esophageal cancer cells. To overcome the limitation of the point measurement using fluorescence spectroscopy, a two-dimensional (2D) fluorescence imaging system was established. The algorithm of the 2D fluorescence imaging system is deduced according to the fluorescence ratiometric method using bandpass filters. The method of multiple pixel point addition (MPPA) was used to eliminate fluctuates of signals. Using the method of MPPA, SNR was improved by about 30 times. The detection limit of this imaging system is 1.9 μg/L. Our systems can be used in the detection of porphyrins to improve the PDT effect.
Dórea, Fernanda C; McEwen, Beverly J; McNab, W Bruce; Sanchez, Javier; Revie, Crawford W
2013-01-01
Syndromic surveillance research has focused on two main themes: the search for data sources that can provide early disease detection; and the development of efficient algorithms that can detect potential outbreak signals. This work combines three algorithms that have demonstrated solid performance in detecting simulated outbreak signals of varying shapes in time series of laboratory submissions counts. These are: the Shewhart control charts designed to detect sudden spikes in counts; the EWMA control charts developed to detect slow increasing outbreaks; and the Holt-Winters exponential smoothing, which can explicitly account for temporal effects in the data stream monitored. A scoring system to detect and report alarms using these algorithms in a complementary way is proposed. The use of multiple algorithms in parallel resulted in increased system sensitivity. Specificity was decreased in simulated data, but the number of false alarms per year when the approach was applied to real data was considered manageable (between 1 and 3 per year for each of ten syndromic groups monitored). The automated implementation of this approach, including a method for on-line filtering of potential outbreak signals is described. The developed system provides high sensitivity for detection of potential outbreak signals while also providing robustness and flexibility in establishing what signals constitute an alarm. This flexibility allows an analyst to customize the system for different syndromes.
NASA Astrophysics Data System (ADS)
Yim, Keun Soo
This dissertation summarizes experimental validation and co-design studies conducted to optimize the fault detection capabilities and overheads in hybrid computer systems (e.g., using CPUs and Graphics Processing Units, or GPUs), and consequently to improve the scalability of parallel computer systems using computational accelerators. The experimental validation studies were conducted to help us understand the failure characteristics of CPU-GPU hybrid computer systems under various types of hardware faults. The main characterization targets were faults that are difficult to detect and/or recover from, e.g., faults that cause long latency failures (Ch. 3), faults in dynamically allocated resources (Ch. 4), faults in GPUs (Ch. 5), faults in MPI programs (Ch. 6), and microarchitecture-level faults with specific timing features (Ch. 7). The co-design studies were based on the characterization results. One of the co-designed systems has a set of source-to-source translators that customize and strategically place error detectors in the source code of target GPU programs (Ch. 5). Another co-designed system uses an extension card to learn the normal behavioral and semantic execution patterns of message-passing processes executing on CPUs, and to detect abnormal behaviors of those parallel processes (Ch. 6). The third co-designed system is a co-processor that has a set of new instructions in order to support software-implemented fault detection techniques (Ch. 7). The work described in this dissertation gains more importance because heterogeneous processors have become an essential component of state-of-the-art supercomputers. GPUs were used in three of the five fastest supercomputers that were operating in 2011. Our work included comprehensive fault characterization studies in CPU-GPU hybrid computers. In CPUs, we monitored the target systems for a long period of time after injecting faults (a temporally comprehensive experiment), and injected faults into various types of program states that included dynamically allocated memory (to be spatially comprehensive). In GPUs, we used fault injection studies to demonstrate the importance of detecting silent data corruption (SDC) errors that are mainly due to the lack of fine-grained protections and the massive use of fault-insensitive data. This dissertation also presents transparent fault tolerance frameworks and techniques that are directly applicable to hybrid computers built using only commercial off-the-shelf hardware components. This dissertation shows that by developing understanding of the failure characteristics and error propagation paths of target programs, we were able to create fault tolerance frameworks and techniques that can quickly detect and recover from hardware faults with low performance and hardware overheads.
Assessing MODIS-based Products and Techniques for Detecting Gypsy Moth Defoliation
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Hargrove, William; Smoot, James C.; Prados, Don; McKellip, Rodney; Sader, Steven A.; Gasser, Jerry; May, George
2008-01-01
The project showed potential of MODIS and VIIRS time series data for contributing defoliation detection products to the USFS forest threat early warning system. This study yielded the first satellite-based wall-to-wall 2001 gypsy moth defoliation map for the study area. Initial results led to follow-on work to map 2007 gypsy moth defoliation over the eastern United States (in progress). MODIS-based defoliation maps offer promise for aiding aerial sketch maps either in planning surveys and/or adjusting acreage estimates of annual defoliation. More work still needs to be done to assess potential of technology for "now casts"of defoliation.
NASA Astrophysics Data System (ADS)
Zhang, H. Y.; Yang, L. Q.; Liu, W. M.
2011-12-01
The laser scanning confocal microscope (LSCM) offers several advantages over conventional optical microscopy, but most LSCM work is qualitative analysis and it is very hard to achieve quantitative detection directly with the changing of the fluorescent intensity. A new real time sensor system for the antibody-antigen interaction detection was built integrating with a LSCM and a wavelength-dependent surface plasmon resonance (SPR) sensor. The system was applied to detect the bonding process of human IgG and fluorescent-labeled affinity purified antibody in real time. The fluorescence images changing is well with that of SPR wavelengths in real time, and the trend of the resonance wavelength shift with the concentrations of antibody is similar to that of the fluorescent intensity changing. The results show that SPR makes up the short of quantificational analysis with LSCM with the high spatial resolution. The sensor system shows the merits of the of the LSCM and SPR synergetic application, which are of great importance for practical application in biosensor and life science for interesting local interaction.
NASA Technical Reports Server (NTRS)
Richards, Lance
2014-01-01
The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, such as those from Micrometeoroid Orbital Debris (MMOD). The approach uses an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during reentry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry.
Big Data Analysis of Manufacturing Processes
NASA Astrophysics Data System (ADS)
Windmann, Stefan; Maier, Alexander; Niggemann, Oliver; Frey, Christian; Bernardi, Ansgar; Gu, Ying; Pfrommer, Holger; Steckel, Thilo; Krüger, Michael; Kraus, Robert
2015-11-01
The high complexity of manufacturing processes and the continuously growing amount of data lead to excessive demands on the users with respect to process monitoring, data analysis and fault detection. For these reasons, problems and faults are often detected too late, maintenance intervals are chosen too short and optimization potential for higher output and increased energy efficiency is not sufficiently used. A possibility to cope with these challenges is the development of self-learning assistance systems, which identify relevant relationships by observation of complex manufacturing processes so that failures, anomalies and need for optimization are automatically detected. The assistance system developed in the present work accomplishes data acquisition, process monitoring and anomaly detection in industrial and agricultural processes. The assistance system is evaluated in three application cases: Large distillation columns, agricultural harvesting processes and large-scale sorting plants. In this paper, the developed infrastructures for data acquisition in these application cases are described as well as the developed algorithms and initial evaluation results.
Liu, Jun; Han, Jiuqiang; Lv, Hongqiang; Li, Bing
2015-04-16
With the continuing growth of highway construction and vehicle use expansion all over the world, highway vehicle traffic rule violation (TRV) detection has become more and more important so as to avoid traffic accidents and injuries in intelligent transportation systems (ITS) and vehicular ad hoc networks (VANETs). Since very few works have contributed to solve the TRV detection problem by moving vehicle measurements and surveillance devices, this paper develops a novel parallel ultrasonic sensor system that can be used to identify the TRV behavior of a host vehicle in real-time. Then a two-dimensional state method is proposed, utilizing the spacial state and time sequential states from the data of two parallel ultrasonic sensors to detect and count the highway vehicle violations. Finally, the theoretical TRV identification probability is analyzed, and actual experiments are conducted on different highway segments with various driving speeds, which indicates that the identification accuracy of the proposed method can reach about 90.97%.
Liu, Jun; Han, Jiuqiang; Lv, Hongqiang; Li, Bing
2015-01-01
With the continuing growth of highway construction and vehicle use expansion all over the world, highway vehicle traffic rule violation (TRV) detection has become more and more important so as to avoid traffic accidents and injuries in intelligent transportation systems (ITS) and vehicular ad hoc networks (VANETs). Since very few works have contributed to solve the TRV detection problem by moving vehicle measurements and surveillance devices, this paper develops a novel parallel ultrasonic sensor system that can be used to identify the TRV behavior of a host vehicle in real-time. Then a two-dimensional state method is proposed, utilizing the spacial state and time sequential states from the data of two parallel ultrasonic sensors to detect and count the highway vehicle violations. Finally, the theoretical TRV identification probability is analyzed, and actual experiments are conducted on different highway segments with various driving speeds, which indicates that the identification accuracy of the proposed method can reach about 90.97%. PMID:25894940
Swensen, James S.; Xiao, Yi; Ferguson, Brian S.; Lubin, Arica A.; Lai, Rebecca Y.; Heeger, Alan J.; Plaxco, Kevin W.; Soh, H. Tom.
2009-01-01
The development of a biosensor system capable of continuous, real-time measurement of small-molecule analytes directly in complex, unprocessed aqueous samples has been a significant challenge, and successful implementation has been achieved for only a limited number of targets. Towards a general solution to this problem, we report here the Microfluidic Electrochemical Aptamer-based Sensor (MECAS) chip wherein we integrate target-specific DNA aptamers that fold, and thus generate an electrochemical signal, in response to the analyte with a microfluidic detection system. As a model, we demonstrate the continuous, real-time (~1 minute time resolution) detection of the small molecule drug cocaine at near physiological, low micromolar concentrations directly in undiluted, otherwise unmodified blood serum. We believe our approach of integrating folding-based electrochemical sensors with miniaturized detection systems may lay the ground work for the real-time, point-of-care detection of a wide variety of molecular targets. PMID:19271708
Detection of Kaposi's Sarcoma Associated Herpesvirus Nucleic Acids Using a Smartphone Accessory
Mancuso, Matthew; Cesarman, Ethel; Erickson, David
2014-01-01
Kaposi's sarcoma (KS) is an infectious cancer occurring in immune-compromised patients, caused by Kaposi's sarcoma associated herpesvirus (KSHV). Our vision is to simplify the process of KS diagnosis through the creation of a smartphone based point-of-care system capable of yielding an actionable diagnostic readout starting from a raw biopsy sample. In this work we develop the sensing mechanism for the overall system, a smartphone accessory capable of detecting KSHV nucleic acids. The accessory reads out microfluidic chips filled with a colorimetric nanoparticle assay targeted at KSHV. We calculate that our final device can read out gold nanoparticle solutions with an accuracy of .05 OD, and we demonstrate that it can detect DNA sequences from KSHV down to 1 nM. We believe that through integration with our previously developed components, a smartphone based system like the one studied here can provide accurate detection information, as well as a simple platform for field based clinical diagnosis and research. PMID:25117534
On the SAR derived alert in the detection of oil spills according to the analysis of the EGEMP.
Ferraro, Guido; Baschek, Björn; de Montpellier, Geraldine; Njoten, Ove; Perkovic, Marko; Vespe, Michele
2010-01-01
Satellite services that deliver information about possible oil spills at sea currently use different labels of "confidence" to describe the detections based on radar image processing. A common approach is to use a classification differentiating between low, medium and high levels of confidence. There is an ongoing discussion on the suitability of the existing classification systems of possible oil spills detected by radar satellite images with regard to the relevant significance and correspondence to user requirements. This paper contains a basic analysis of user requirements, current technical possibilities of satellite services as well as proposals for a redesign of the classification system as an evolution towards a more structured alert system. This research work offers a first review of implemented methodologies for the categorisation of detected oil spills, together with the proposal of explorative ideas evaluated by the European Group of Experts on satellite Monitoring of sea-based oil Pollution (EGEMP). Copyright 2009 Elsevier Ltd. All rights reserved.
EEG potentials predict upcoming emergency brakings during simulated driving
NASA Astrophysics Data System (ADS)
Haufe, Stefan; Treder, Matthias S.; Gugler, Manfred F.; Sagebaum, Max; Curio, Gabriel; Blankertz, Benjamin
2011-10-01
Emergency braking assistance has the potential to prevent a large number of car crashes. State-of-the-art systems operate in two stages. Basic safety measures are adopted once external sensors indicate a potential upcoming crash. If further activity at the brake pedal is detected, the system automatically performs emergency braking. Here, we present the results of a driving simulator study indicating that the driver's intention to perform emergency braking can be detected based on muscle activation and cerebral activity prior to the behavioural response. Identical levels of predictive accuracy were attained using electroencephalography (EEG), which worked more quickly than electromyography (EMG), and using EMG, which worked more quickly than pedal dynamics. A simulated assistance system using EEG and EMG was found to detect emergency brakings 130 ms earlier than a system relying only on pedal responses. At 100 km h-1 driving speed, this amounts to reducing the braking distance by 3.66 m. This result motivates a neuroergonomic approach to driving assistance. Our EEG analysis yielded a characteristic event-related potential signature that comprised components related to the sensory registration of a critical traffic situation, mental evaluation of the sensory percept and motor preparation. While all these components should occur often during normal driving, we conjecture that it is their characteristic spatio-temporal superposition in emergency braking situations that leads to the considerable prediction performance we observed.
EEG potentials predict upcoming emergency brakings during simulated driving.
Haufe, Stefan; Treder, Matthias S; Gugler, Manfred F; Sagebaum, Max; Curio, Gabriel; Blankertz, Benjamin
2011-10-01
Emergency braking assistance has the potential to prevent a large number of car crashes. State-of-the-art systems operate in two stages. Basic safety measures are adopted once external sensors indicate a potential upcoming crash. If further activity at the brake pedal is detected, the system automatically performs emergency braking. Here, we present the results of a driving simulator study indicating that the driver's intention to perform emergency braking can be detected based on muscle activation and cerebral activity prior to the behavioural response. Identical levels of predictive accuracy were attained using electroencephalography (EEG), which worked more quickly than electromyography (EMG), and using EMG, which worked more quickly than pedal dynamics. A simulated assistance system using EEG and EMG was found to detect emergency brakings 130 ms earlier than a system relying only on pedal responses. At 100 km h(-1) driving speed, this amounts to reducing the braking distance by 3.66 m. This result motivates a neuroergonomic approach to driving assistance. Our EEG analysis yielded a characteristic event-related potential signature that comprised components related to the sensory registration of a critical traffic situation, mental evaluation of the sensory percept and motor preparation. While all these components should occur often during normal driving, we conjecture that it is their characteristic spatio-temporal superposition in emergency braking situations that leads to the considerable prediction performance we observed.
Raboshchuk, Ganna; Nadeu, Climent; Jancovic, Peter; Lilja, Alex Peiro; Kokuer, Munevver; Munoz Mahamud, Blanca; Riverola De Veciana, Ana
2018-01-01
A large number of alarm sounds triggered by biomedical equipment occur frequently in the noisy environment of a neonatal intensive care unit (NICU) and play a key role in providing healthcare. In this paper, our work on the development of an automatic system for detection of acoustic alarms in that difficult environment is presented. Such automatic detection system is needed for the investigation of how a preterm infant reacts to auditory stimuli of the NICU environment and for an improved real-time patient monitoring. The approach presented in this paper consists of using the available knowledge about each alarm class in the design of the detection system. The information about the frequency structure is used in the feature extraction stage, and the time structure knowledge is incorporated at the post-processing stage. Several alternative methods are compared for feature extraction, modeling, and post-processing. The detection performance is evaluated with real data recorded in the NICU of the hospital, and by using both frame-level and period-level metrics. The experimental results show that the inclusion of both spectral and temporal information allows to improve the baseline detection performance by more than 60%.
Nadeu, Climent; Jančovič, Peter; Lilja, Alex Peiró; Köküer, Münevver; Muñoz Mahamud, Blanca; Riverola De Veciana, Ana
2018-01-01
A large number of alarm sounds triggered by biomedical equipment occur frequently in the noisy environment of a neonatal intensive care unit (NICU) and play a key role in providing healthcare. In this paper, our work on the development of an automatic system for detection of acoustic alarms in that difficult environment is presented. Such automatic detection system is needed for the investigation of how a preterm infant reacts to auditory stimuli of the NICU environment and for an improved real-time patient monitoring. The approach presented in this paper consists of using the available knowledge about each alarm class in the design of the detection system. The information about the frequency structure is used in the feature extraction stage, and the time structure knowledge is incorporated at the post-processing stage. Several alternative methods are compared for feature extraction, modeling, and post-processing. The detection performance is evaluated with real data recorded in the NICU of the hospital, and by using both frame-level and period-level metrics. The experimental results show that the inclusion of both spectral and temporal information allows to improve the baseline detection performance by more than 60%. PMID:29404227
Quantum Jarzynski equality of measurement-based work extraction
NASA Astrophysics Data System (ADS)
Morikuni, Yohei; Tajima, Hiroyasu; Hatano, Naomichi
2017-03-01
Many studies of quantum-size heat engines assume that the dynamics of an internal system is unitary and that the extracted work is equal to the energy loss of the internal system. Both assumptions, however, should be under scrutiny. In the present paper, we analyze quantum-scale heat engines, employing the measurement-based formulation of the work extraction recently introduced by Hayashi and Tajima [M. Hayashi and H. Tajima, arXiv:1504.06150]. We first demonstrate the inappropriateness of the unitary time evolution of the internal system (namely, the first assumption above) using a simple two-level system; we show that the variance of the energy transferred to an external system diverges when the dynamics of the internal system is approximated to a unitary time evolution. Second, we derive the quantum Jarzynski equality based on the formulation of Hayashi and Tajima as a relation for the work measured by an external macroscopic apparatus. The right-hand side of the equality reduces to unity for "natural" cyclic processes but fluctuates wildly for noncyclic ones, exceeding unity often. This fluctuation should be detectable in experiments and provide evidence for the present formulation.
Quantum Jarzynski equality of measurement-based work extraction.
Morikuni, Yohei; Tajima, Hiroyasu; Hatano, Naomichi
2017-03-01
Many studies of quantum-size heat engines assume that the dynamics of an internal system is unitary and that the extracted work is equal to the energy loss of the internal system. Both assumptions, however, should be under scrutiny. In the present paper, we analyze quantum-scale heat engines, employing the measurement-based formulation of the work extraction recently introduced by Hayashi and Tajima [M. Hayashi and H. Tajima, arXiv:1504.06150]. We first demonstrate the inappropriateness of the unitary time evolution of the internal system (namely, the first assumption above) using a simple two-level system; we show that the variance of the energy transferred to an external system diverges when the dynamics of the internal system is approximated to a unitary time evolution. Second, we derive the quantum Jarzynski equality based on the formulation of Hayashi and Tajima as a relation for the work measured by an external macroscopic apparatus. The right-hand side of the equality reduces to unity for "natural" cyclic processes but fluctuates wildly for noncyclic ones, exceeding unity often. This fluctuation should be detectable in experiments and provide evidence for the present formulation.
Minimal hardware Bluetooth tracking for long-term at-home elder supervision.
Kelly, Damian; McLoone, Sean; Farrell, Ronan
2010-01-01
The ability to automatically detect the location of an elder within their own home is a significant enabler of remote elder supervision and interaction applications. This location information is typically generated via a myriad of sensors throughout the home environment. Even with high sensor redundancy, there are still situations where traditional elder monitoring systems are unable to resolve the location of the elder. This work develops a minimal infrastructure radio-frequency localisation system for long-term elder location tracking. An RFID room-labelling technique is employed and with it, the localisation system developed in this work is shown to exhibit superior performance to more traditional localisation systems in realistic long-term deployments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepanov, Vyacheslav; Potapov, Victor; Safronov, Alexey
2013-07-01
The underwater spectrometric system for survey the bottom of material science multi-loop reactor MR ponds was elaborated. This system uses CdZnTe (CZT) detectors that allow for spectrometric measurements in high radiation fields. The underwater system was used in the spectrometric survey of the bottom of the MR reactor pool, as well as in the survey located in the MR storage pool of highly radioactive containers and parts of the reactor construction. As a result of these works irradiated nuclear fuel was detected on the bottom of pools, and obtained estimates of the effective surface activity detected radionuclides and created bymore » them the dose rate. (authors)« less
Design of large zoom for visible and infrared optical system in hemisphere space
NASA Astrophysics Data System (ADS)
Xing, Yang-guang; Li, Lin; Zhang, Juan
2018-01-01
In the field of space optical, the application of advanced optical instruments for related target detection and identification has become an advanced technology in modern optics. In order to complete the task of search in wide field of view and detailed investigation in small field of view, it is inevitable to use the structure of the zoom system to achieve a better observation for important targets. The innovation of this paper lies in using the zoom optical system in space detection, which achieve firstly military needs of searched target in the large field of view and recognized target in the small field of view. At the same time, this paper also completes firstly the design of variable focus optical detection system in the range of hemisphere space, the zoom optical system is working in the range of visible and infrared wavelengths, the perspective angle reaches 360 ° and the zoom ratio of the visible system is up to 15. The visible system has a zoom range of 60-900 mm, a detection band of 0.48-0.70μm, and a F-number of 2.0 to 5.0. The infrared system has a zoom range of 150 900mm, a detection band of 8-12μm, and a F-number of 1.2 to 3.0. The MTF of the visible zoom system is above 0.4 at spatial frequency of 45 lp / mm, and the infrared zoom system is above 0.4 at spatial frequency of 11 lp / mm. The design results show that the system has a good image quality.
Results from field tests of the one-dimensional Time-Encoded Imaging System.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marleau, Peter; Brennan, James S.; Brubaker, Erik
2014-09-01
A series of field experiments were undertaken to evaluate the performance of the one dimensional time encoded imaging system. The significant detection of a Cf252 fission radiation source was demonstrated at a stand-off of 100 meters. Extrapolations to different quantities of plutonium equivalent at different distances are made. Hardware modifications to the system for follow on work are suggested.
[Development of a continuous blood pressure monitoring and recording system].
Zhang, Yang; Li, Yong; Gao, Shumei; Song, Yilin
2012-09-01
A small experimental system is constructed with working principle of continuous blood pressure monitoring based on the volume compensation method. The preliminary experimental results show that the system can collect blood pressure signals at the radial artery effectively. The digital PID algorithm can track the variation of blood pressure. And the accuracy of continuous blood pressure detecting achieve the level of same kind of product.
Aircraft Fault Detection and Classification Using Multi-Level Immune Learning Detection
NASA Technical Reports Server (NTRS)
Wong, Derek; Poll, Scott; KrishnaKumar, Kalmanje
2005-01-01
This work is an extension of a recently developed software tool called MILD (Multi-level Immune Learning Detection), which implements a negative selection algorithm for anomaly and fault detection that is inspired by the human immune system. The immunity-based approach can detect a broad spectrum of known and unforeseen faults. We extend MILD by applying a neural network classifier to identify the pattern of fault detectors that are activated during fault detection. Consequently, MILD now performs fault detection and identification of the system under investigation. This paper describes the application of MILD to detect and classify faults of a generic transport aircraft augmented with an intelligent flight controller. The intelligent control architecture is designed to accommodate faults without the need to explicitly identify them. Adding knowledge about the existence and type of a fault will improve the handling qualities of a degraded aircraft and impact tactical and strategic maneuvering decisions. In addition, providing fault information to the pilot is important for maintaining situational awareness so that he can avoid performing an action that might lead to unexpected behavior - e.g., an action that exceeds the remaining control authority of the damaged aircraft. We discuss the detection and classification results of simulated failures of the aircraft's control system and show that MILD is effective at determining the problem with low false alarm and misclassification rates.
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Williams, Phillip; Simpson, John
2007-01-01
The use of eddy current techniques for the detection of outer diameter damage in tubing and many complex aerospace structures often requires the use of an inner diameter probe due to a lack of access to the outside of the part. In small bore structures the probe size and orientation are constrained by the inner diameter of the part, complicating the optimization of the inspection technique. Detection of flaws through a significant remaining wall thickness becomes limited not only by the standard depth of penetration, but also geometrical aspects of the probe. Recently, an orthogonal eddy current probe was developed for detection of such flaws in Space Shuttle Primary Reaction Control System (PRCS) Thrusters. In this case, the detection of deeply buried stress corrosion cracking by an inner diameter eddy current probe was sought. Probe optimization was performed based upon the limiting spatial dimensions, flaw orientation, and required detection sensitivity. Analysis of the probe/flaw interaction was performed through the use of finite and boundary element modeling techniques. Experimental data for the flaw detection capabilities, including a probability of detection study, will be presented along with the simulation data. The results of this work have led to the successful deployment of an inspection system for the detection of stress corrosion cracking in Space Shuttle Primary Reaction Control System (PRCS) Thrusters.
NASA Astrophysics Data System (ADS)
Chalupka, Uwe; Rothe, Hendrik
2012-03-01
The progress on a laser- and stereo-camera-based trajectory measurement system that we already proposed and described in recent publications is given. The system design was extended from one to two more powerful, DSP-controllable LASER systems. Experimental results of the extended system using different projectile-/weapon combinations will be shown and discussed. Automatic processing of acquired images using common 3DIP techniques was realized. Processing steps to extract trajectory segments from images as representative for the current application will be presented. Used algorithms for backward-calculation of the projectile trajectory will be shown. Verification of produced results is done against simulated trajectories, once in terms of detection robustness and once in terms of detection accuracy. Fields of use for the current system are within the ballistic domain. The first purpose is for trajectory measurement of small and middle caliber projectiles on a shooting range. Extension to big caliber projectiles as well as an application for sniper detection is imaginable, but would require further work. Beside classical RADAR, acoustic and optical projectile detection methods, the current system represents a further projectile location method under the new class of electro-optical methods that have been evolved in recent decades and that uses 3D imaging acquisition and processing techniques.
Optical filtering in directly modulated/detected OOFDM systems.
Sánchez, C; Ortega, B; Wei, J L; Capmany, J
2013-12-16
This work presents a theoretical investigation on the performance of directly modulated/detected (DM/DD) optical orthogonal frequency division multiplexed (OOFDM) systems subject to optical filtering. The impact of both linear and nonlinear distortion effects are taken into account to calculate the effective signal-to-noise ratio of each subcarrier. These results are then employed to optimize the design parameters of two simple optical filtering structures: a Mach Zehnder interferometer and a uniform fiber Bragg grating, leading to a significant optical power budget improvement given by 3.3 and 3dB, respectively. These can be further increased to 5.5 and 4.2dB respectively when balanced detection configurations are employed. We find as well that this improvement is highly dependent on the clipping ratio.
Multi-sensor millimeter-wave system for hidden objects detection by non-collaborative screening
NASA Astrophysics Data System (ADS)
Zouaoui, Rhalem; Czarny, Romain; Diaz, Frédéric; Khy, Antoine; Lamarque, Thierry
2011-05-01
In this work, we present the development of a multi-sensor system for the detection of objects concealed under clothes using passive and active millimeter-wave (mmW) technologies. This study concerns both the optimization of a commercial passive mmW imager at 94 GHz using a phase mask and the development of an active mmW detector at 77 GHz based on synthetic aperture radar (SAR). A first wide-field inspection is done by the passive imager while the person is walking. If a suspicious area is detected, the active imager is switched-on and focused on this area in order to obtain more accurate data (shape of the object, nature of the material ...).
Collision Detection for Underwater ROV Manipulator Systems
Rossi, Matija; Dooly, Gerard; Toal, Daniel
2018-01-01
Work-class ROVs equipped with robotic manipulators are extensively used for subsea intervention operations. Manipulators are teleoperated by human pilots relying on visual feedback from the worksite. Operating in a remote environment, with limited pilot perception and poor visibility, manipulator collisions which may cause significant damage are likely to happen. This paper presents a real-time collision detection algorithm for marine robotic manipulation. The proposed collision detection mechanism is developed, integrated into a commercial ROV manipulator control system, and successfully evaluated in simulations and experimental setup using a real industry standard underwater manipulator. The presented collision sensing solution has a potential to be a useful pilot assisting tool that can reduce the task load, operational time, and costs of subsea inspection, repair, and maintenance operations. PMID:29642396
Collision Detection for Underwater ROV Manipulator Systems.
Sivčev, Satja; Rossi, Matija; Coleman, Joseph; Omerdić, Edin; Dooly, Gerard; Toal, Daniel
2018-04-06
Work-class ROVs equipped with robotic manipulators are extensively used for subsea intervention operations. Manipulators are teleoperated by human pilots relying on visual feedback from the worksite. Operating in a remote environment, with limited pilot perception and poor visibility, manipulator collisions which may cause significant damage are likely to happen. This paper presents a real-time collision detection algorithm for marine robotic manipulation. The proposed collision detection mechanism is developed, integrated into a commercial ROV manipulator control system, and successfully evaluated in simulations and experimental setup using a real industry standard underwater manipulator. The presented collision sensing solution has a potential to be a useful pilot assisting tool that can reduce the task load, operational time, and costs of subsea inspection, repair, and maintenance operations.
Al-Kaff, Abdulla; García, Fernando; Martín, David; De La Escalera, Arturo; Armingol, José María
2017-01-01
One of the most challenging problems in the domain of autonomous aerial vehicles is the designing of a robust real-time obstacle detection and avoidance system. This problem is complex, especially for the micro and small aerial vehicles, that is due to the Size, Weight and Power (SWaP) constraints. Therefore, using lightweight sensors (i.e., Digital camera) can be the best choice comparing with other sensors; such as laser or radar.For real-time applications, different works are based on stereo cameras in order to obtain a 3D model of the obstacles, or to estimate their depth. Instead, in this paper, a method that mimics the human behavior of detecting the collision state of the approaching obstacles using monocular camera is proposed. The key of the proposed algorithm is to analyze the size changes of the detected feature points, combined with the expansion ratios of the convex hull constructed around the detected feature points from consecutive frames. During the Aerial Vehicle (UAV) motion, the detection algorithm estimates the changes in the size of the area of the approaching obstacles. First, the method detects the feature points of the obstacles, then extracts the obstacles that have the probability of getting close toward the UAV. Secondly, by comparing the area ratio of the obstacle and the position of the UAV, the method decides if the detected obstacle may cause a collision. Finally, by estimating the obstacle 2D position in the image and combining with the tracked waypoints, the UAV performs the avoidance maneuver. The proposed algorithm was evaluated by performing real indoor and outdoor flights, and the obtained results show the accuracy of the proposed algorithm compared with other related works. PMID:28481277
Work-related fatalities among youth ages 11-17 in North Carolina, 1990-2008.
Rauscher, Kimberly J; Runyan, Carol W; Radisch, Deborah
2011-02-01
Local and national surveillance systems are in place that identify occupational deaths. However, due to certain restrictions, they are limited in their ability to accurately count these deaths among adolescent workers. In this population-based study, we relied on primary data from the North Carolina medical examiner system to identify and describe all work-related fatalities among North Carolina youth under age 18 between 1990 and 2008. We identified 31 work-related deaths among youth ages 11-17. The majority occurred between 1990 and 1999. Most occurred in construction and agriculture. Vehicles and guns were responsible for the majority of deaths. Although the prevalence of adolescent work-related fatalities has seen a decline in North Carolina, the 31 deaths we detected signal a failure of the systems in place to prevent young worker fatalities. More remains to be done to protect the lives of adolescent workers. Copyright © 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Sait, Abdulrahman S.
This dissertation presents a reliable technique for monitoring the condition of rotating machinery by applying instantaneous angular speed (IAS) analysis. A new analysis of the effects of changes in the orientation of the line of action and the pressure angle of the resultant force acting on gear tooth profile of spur gear under different levels of tooth damage is utilized. The analysis and experimental work discussed in this dissertation provide a clear understating of the effects of damage on the IAS by analyzing the digital signals output of rotary incremental optical encoder. A comprehensive literature review of state of the knowledge in condition monitoring and fault diagnostics of rotating machinery, including gearbox system is presented. Progress and new developments over the past 30 years in failure detection techniques of rotating machinery including engines, bearings and gearboxes are thoroughly reviewed. This work is limited to the analysis of a gear train system with gear tooth surface faults utilizing angular motion analysis technique. Angular motion data were acquired using an incremental optical encoder. Results are compared to a vibration-based technique. The vibration data were acquired using an accelerometer. The signals were obtained and analyzed in the phase domains using signal averaging to determine the existence and position of faults on the gear train system. Forces between the mating teeth surfaces are analyzed and simulated to validate the influence of the presence of damage on the pressure angle and the IAS. National Instruments hardware is used and NI LabVIEW software code is developed for real-time, online condition monitoring systems and fault detection techniques. The sensitivity of optical encoders to gear fault detection techniques is experimentally investigated by applying IAS analysis under different gear damage levels and different operating conditions. A reliable methodology is developed for selecting appropriate testing/operating conditions of a rotating system to generate an alarm system for damage detection.
Remote laser drilling and sampling system for the detection of concealed explosives
NASA Astrophysics Data System (ADS)
Wild, D.; Pschyklenk, L.; Theiß, C.; Holl, G.
2017-05-01
The detection of hazardous materials like explosives is a central issue in national security in the field of counterterrorism. One major task includes the development of new methods and sensor systems for the detection. Many existing remote or standoff methods like infrared or raman spectroscopy find their limits, if the hazardous material is concealed in an object. Imaging technologies using x-ray or terahertz radiation usually yield no information about the chemical content itself. However, the exact knowledge of the real threat potential of a suspicious object is crucial for disarming the device. A new approach deals with a laser drilling and sampling system for the use as verification detector for suspicious objects. Central part of the system is a miniaturised, diode pumped Nd:YAG laser oscillator-amplifier. The system allows drilling into most materials like metals, synthetics or textiles with bore hole diameters in the micron scale. During the drilling process, the hazardous material can be sampled for further investigation with suitable detection methods. In the reported work, laser induced breakdown spectroscopy (LIBS) is used to monitor the drilling process and to classify the drilled material. Also experiments were carried out to show the system's ability to not ignite even sensitive explosives like triacetone triperoxide (TATP). The detection of concealed hazardous material is shown for different explosives using liquid chromatography and ion mobility spectrometry.
Li, Hui; Liu, Liying; Lin, Zhili; Wang, Qiwei; Wang, Xiao; Feng, Lishuang
2018-01-22
A new double closed-loop control system with mean-square exponential stability is firstly proposed to optimize the detection accuracy and dynamic response characteristic of the integrated optical resonance gyroscope (IORG). The influence mechanism of optical nonlinear effects on system detection sensitivity is investigated to optimize the demodulation gain, the maximum sensitivity and the linear work region of a gyro system. Especially, we analyze the effect of optical parameter fluctuation on the parameter uncertainty of system, and investigate the influence principle of laser locking-frequency noise on the closed-loop detection accuracy of angular velocity. The stochastic disturbance model of double closed-loop IORG is established that takes the unfavorable factors such as optical effect nonlinearity, disturbed disturbance, optical parameter fluctuation and unavoidable system noise into consideration. A robust control algorithm is also designed to guarantee the mean-square exponential stability of system with a prescribed H ∞ performance in order to improve the detection accuracy and dynamic performance of IORG. The conducted experiment results demonstrate that the IORG has a dynamic response time less than 76us, a long-term bias stability 7.04°/h with an integration time of 10s over one-hour test, and the corresponding bias stability 1.841°/h based on Allan deviation, which validate the effectiveness and usefulness of the proposed detection scheme.
NASA Technical Reports Server (NTRS)
Quinn, Todd M.; Walters, Jerry L.
1991-01-01
Future space explorations will require long term human presence in space. Space environments that provide working and living quarters for manned missions are becoming increasingly larger and more sophisticated. Monitor and control of the space environment subsystems by expert system software, which emulate human reasoning processes, could maintain the health of the subsystems and help reduce the human workload. The autonomous power expert (APEX) system was developed to emulate a human expert's reasoning processes used to diagnose fault conditions in the domain of space power distribution. APEX is a fault detection, isolation, and recovery (FDIR) system, capable of autonomous monitoring and control of the power distribution system. APEX consists of a knowledge base, a data base, an inference engine, and various support and interface software. APEX provides the user with an easy-to-use interactive interface. When a fault is detected, APEX will inform the user of the detection. The user can direct APEX to isolate the probable cause of the fault. Once a fault has been isolated, the user can ask APEX to justify its fault isolation and to recommend actions to correct the fault. APEX implementation and capabilities are discussed.
Acceptance Criteria Framework for Autonomous Biological Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzenitis, J M
2006-12-12
The purpose of this study was to examine a set of user acceptance criteria for autonomous biological detection systems for application in high-traffic, public facilities. The test case for the acceptance criteria was the Autonomous Pathogen Detection System (APDS) operating in high-traffic facilities in New York City (NYC). However, the acceptance criteria were designed to be generally applicable to other biological detection systems in other locations. For such detection systems, ''users'' will include local authorities (e.g., facility operators, public health officials, and law enforcement personnel) and national authorities [including personnel from the Department of Homeland Security (DHS), the BioWatch Program,more » the Centers for Disease Control and Prevention (CDC), and the Federal Bureau of Investigation (FBI)]. The panel members brought expertise from a broad range of backgrounds to complete this picture. The goals of this document are: (1) To serve as informal guidance for users in considering the benefits and costs of these systems. (2) To serve as informal guidance for developers in understanding the needs of users. In follow-up work, this framework will be used to systematically document the APDS for appropriateness and readiness for use in NYC.« less
Non-Intrusive Magneto-Optic Detecting System for Investigations of Air Switching Arcs
NASA Astrophysics Data System (ADS)
Zhang, Pengfei; Zhang, Guogang; Dong, Jinlong; Liu, Wanying; Geng, Yingsan
2014-07-01
In current investigations of electric arc plasmas, experiments based on modern testing technology play an important role. To enrich the testing methods and contribute to the understanding and grasping of the inherent mechanism of air switching arcs, in this paper, a non-intrusive detecting system is described that combines the magneto-optic imaging (MOI) technique with the solution to inverse electromagnetic problems. The detecting system works in a sequence of main steps as follows: MOI of the variation of the arc flux density over a plane, magnetic field information extracted from the magneto-optic (MO) images, arc current density distribution and spatial pattern reconstruction by inverting the resulting field data. Correspondingly, in the system, an MOI set-up is designed based on the Faraday effect and the polarization properties of light, and an intelligent inversion algorithm is proposed that involves simulated annealing (SA). Experiments were carried out for high current (2 kA RMS) discharge cases in a typical low-voltage switchgear. The results show that the MO detection system possesses the advantages of visualization, high resolution and response, and electrical insulation, which provides a novel diagnostics tool for further studies of the arc.
Vail, K M; Chandler, J G
2017-06-01
Bed bug, Cimex lectularius L., management in low-income, high-rise housing for the elderly and disabled can be difficult. Early detection is key to slowing their spread, and reducing management cost and time needed for control. To determine the minimum number of passive monitors needed to detect low-level bed bug infestations in this environment, we evaluated three monitors placed one, two, or four per apartment in a 3 by 3 experimental design. One sticky monitor, The Bedbug Detection System, and the two pitfall monitors, ClimbUp Insect Interceptors BG and BlackOut BedBug Detectors, were evaluated. Bed bugs were trapped by the ClimbUp Insect Interceptors BG and the BlackOut BedBug Detector in 88% and 79% of apartments, respectively, but only in 39% of the apartments monitored with The Bedbug Detection System. The Bedbug Detection System required significantly longer time to detect bed bugs than either the ClimbUp Insect Interceptor BG or the BlackOut BedBug Detector. With the less effective Bedbug Detection System data removed from analyses, detection rates ranged from 80 to 90%, with no significant differences among one, two, or four monitors per apartment. Results indicate it is especially important to include a bed placement when only placing a few monitors. Future work should compare the combination of cursory visual inspections with various monitor numbers and placements per apartment to determine the most efficient, cost-effective system that will be accepted and implemented in low-income housing. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Electromagnetic Detection of Fatigue Cracks under Protruding Head Ferromagnetic Fasteners
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Namkung, Min
2004-01-01
The detection of fatigue cracks under installed fasteners has been a major goal of the aging aircraft NDE community. The Sliding Probe, Magneto-Optic Imager, Rotating Self-Nulling Probe, Low Frequency Eddy Current Array, and Eddyscan systems are among the instruments developed for this inspection. It has been verified that the detection of fatigue cracks under flush head aluminum and titanium fasteners can be accomplished with a high resolution by the above techniques. The detection of fatigue cracks under ferromagnetic and protruding head fasteners, however, has been found to be much more difficult. For the present work, the inspection for fatigue cracks under SAE 4340 Steel Hi-Lok fasteners is explored. Modifications to the Rotating Self-Nulling Eddy Current Probe System are presented which enable the detection of fatigue cracks hidden under the protruding head of the ferromagnetic fastener. Inspection results for samples with varying length EDM notches are shown, as well as a comparison between the signature from an EDM notch and an actual fatigue crack. Finite Element Modeling is used to investigate the effect of the ferromagnetic fastener on the induced eddy current distribution in order to help explain the detection characteristics of the system. This paper will also introduce a modification to the Rotating Probe System designed specifically for the detection of deeply buried flaws in multilayer conductors. The design change incorporates a giant magnetoresistive (GMR) sensor as the pickup device to improve the low frequency performance of the probe. The flaw detection capabilities of the GMR based Self- Nulling Probe are presented along with the status of the GMR based Rotating Probe System for detection of deeply buried flaws under installed fasteners.
Ferguson, Stephen A; Meyerhoff, Mark E
2017-10-27
The detection of four different polyquaterniums (PQs) using a fully reversible potentiometric polyion sensor in three different detection modes is described. The polyion sensing "pulstrodes" serve as the detector for direct dose-response experiments, beaker titrations, and in a flow-injection analysis (FIA) system. Direct polycation response toward PQ-2, PQ-6, PQ-10, and poly(2-methacryloxyethyltrimethylammonium) chloride (PMETAC) yields characteristic information about each PQ species (e.g., relative charge densities, etc.) via syringe pump addition of each PQ species to a background electrolyte solution. Quantitative titrations are performed using a syringe pump to deliver heparin as the polyanion titrant to quantify all four PQs at μg/mL levels. Both the direct and indirect methods incorporate the use of a three-electrode system including counter, double junction reference, and working electrodes. The working electrode possesses a plasticized poly(vinyl chloride) (PVC) membrane containing the neutral lipophilic salt of dinonylnaphthalenesulfonate (DNNS - ) tridodecylmethylammonium (TDMA + ). Further, the titration method is shown to be useful to quantify PQ-6 levels in recreational swimming pool water collected in Ann Arbor, MI. Finally, a FIA system equipped with a pulstrode detector is used to demonstrate the ability to potentially quantify PQ levels via a more streamlined and semiautomated testing platform.
Chemical Sensors Based on Metal Oxide Nanostructures
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun
2006-01-01
This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.
Lab-on-a-chip sensor for measuring Zn by stripping voltammetry
NASA Astrophysics Data System (ADS)
Pei, Xing; Kang, Wenjing; Yue, Wei; Bange, Adam; Wong, Hector R.; Heineman, William R.; Papautsky, Ian
2012-03-01
This work reports on continuing development of a lab-on-a-chip sensor for electrochemical detection of heavy metal zinc in blood serum. The sensor consists of a three electrode system, including an environmentally-friendly bismuth working electrode, a Ag/AgCl reference electrode, and a gold auxiliary electrode. By optimizing the electrodeposition of bismuth film, better control of fabrication steps and improving interface between the sensor and potentiostat, repeatability and sensitivity of the lab-on-a-chip sensor has been improved. Through optimization of electrolyte and stripping voltammetry parameters, limits of detection were greatly improved. The optimized sensor was able to measure zinc in in the physiological range of 65-95 μg/dL. Ultimately, with further development and integrated sample preparation sensor system will permit rapid (min) measurements of zinc from a sub-mL sample (a few drops of blood) for bedside monitoring.
A Review of Transmission Diagnostics Research at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Zakajsek, James J.
1994-01-01
This paper presents a summary of the transmission diagnostics research work conducted at NASA Lewis Research Center over the last four years. In 1990, the Transmission Health and Usage Monitoring Research Team at NASA Lewis conducted a survey to determine the critical needs of the diagnostics community. Survey results indicated that experimental verification of gear and bearing fault detection methods, improved fault detection in planetary systems, and damage magnitude assessment and prognostics research were all critical to a highly reliable health and usage monitoring system. In response to this, a variety of transmission fault detection methods were applied to experimentally obtained fatigue data. Failure modes of the fatigue data include a variety of gear pitting failures, tooth wear, tooth fracture, and bearing spalling failures. Overall results indicate that, of the gear fault detection techniques, no one method can successfully detect all possible failure modes. The more successful methods need to be integrated into a single more reliable detection technique. A recently developed method, NA4, in addition to being one of the more successful gear fault detection methods, was also found to exhibit damage magnitude estimation capabilities.
Accreditation experience of radioisotope metrology laboratory of Argentina.
Iglicki, A; Milá, M I; Furnari, J C; Arenillas, P; Cerutti, G; Carballido, M; Guillén, V; Araya, X; Bianchini, R
2006-01-01
This work presents the experience developed by the Radioisotope Metrology Laboratory (LMR), of the Argentine National Atomic Energy Commission (CNEA), as result of the accreditation process of the Quality System by ISO 17025 Standard. Considering the LMR as a calibration laboratory, services of secondary activity determinations and calibration of activimeters used in Nuclear Medicine were accredited. A peer review of the (alpha/beta)-gamma coincidence system was also carried out. This work shows in detail the structure of the quality system, the results of the accrediting audit and gives the number of non-conformities detected and of observations made which have all been resolved.
A two-level structure for advanced space power system automation
NASA Technical Reports Server (NTRS)
Loparo, Kenneth A.; Chankong, Vira
1990-01-01
The tasks to be carried out during the three-year project period are: (1) performing extensive simulation using existing mathematical models to build a specific knowledge base of the operating characteristics of space power systems; (2) carrying out the necessary basic research on hierarchical control structures, real-time quantitative algorithms, and decision-theoretic procedures; (3) developing a two-level automation scheme for fault detection and diagnosis, maintenance and restoration scheduling, and load management; and (4) testing and demonstration. The outlines of the proposed system structure that served as a master plan for this project, work accomplished, concluding remarks, and ideas for future work are also addressed.
NASA Astrophysics Data System (ADS)
Fachrurrozi, Muhammad; Saparudin; Erwin
2017-04-01
Real-time Monitoring and early detection system which measures the quality standard of waste in Musi River, Palembang, Indonesia is a system for determining air and water pollution level. This system was designed in order to create an integrated monitoring system and provide real time information that can be read. It is designed to measure acidity and water turbidity polluted by industrial waste, as well as to show and provide conditional data integrated in one system. This system consists of inputting and processing the data, and giving output based on processed data. Turbidity, substances, and pH sensor is used as a detector that produce analog electrical direct current voltage (DC). Early detection system works by determining the value of the ammonia threshold, acidity, and turbidity level of water in Musi River. The results is then presented based on the level group pollution by the Support Vector Machine classification method.
High-speed and high-fidelity system and method for collecting network traffic
Weigle, Eric H [Los Alamos, NM
2010-08-24
A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.
Detecting Dementia Through Interactive Computer Avatars
Adachi, Hiroyoshi; Ukita, Norimichi; Ikeda, Manabu; Kazui, Hiroaki; Kudo, Takashi; Nakamura, Satoshi
2017-01-01
This paper proposes a new approach to automatically detect dementia. Even though some works have detected dementia from speech and language attributes, most have applied detection using picture descriptions, narratives, and cognitive tasks. In this paper, we propose a new computer avatar with spoken dialog functionalities that produces spoken queries based on the mini-mental state examination, the Wechsler memory scale-revised, and other related neuropsychological questions. We recorded the interactive data of spoken dialogues from 29 participants (14 dementia and 15 healthy controls) and extracted various audiovisual features. We tried to predict dementia using audiovisual features and two machine learning algorithms (support vector machines and logistic regression). Here, we show that the support vector machines outperformed logistic regression, and by using the extracted features they classified the participants into two groups with 0.93 detection performance, as measured by the areas under the receiver operating characteristic curve. We also newly identified some contributing features, e.g., gap before speaking, the variations of fundamental frequency, voice quality, and the ratio of smiling. We concluded that our system has the potential to detect dementia through spoken dialog systems and that the system can assist health care workers. In addition, these findings could help medical personnel detect signs of dementia. PMID:29018636
Deformable mirror-based optical design of dynamic local athermal longwave infrared optical systems
NASA Astrophysics Data System (ADS)
Shen, Benlan; Chang, Jun; Niu, Yajun; Chen, Weilin; Ji, Zhongye
2018-07-01
This paper presents a dynamic local athermalisation method for longwave infrared (LWIR) optical systems; the proposed design uses a deformable mirror and is based on active optics theory. A local athermal LWIR optical system is designed as an example. The deformable mirror is tilted by 45° near the exit pupil of the system. The thermal aberrations are corrected by the deformable mirror for the local athermal field of view (FOV) that ranges from -40 °C to 80 °C. The types of thermal aberrations are analysed. Simulated results show that the local athermal LWIR optical system can effectively detect targets in the region of interest within a large FOV and correct thermal aberrations in actual working environments in real time. The system has numerous potential applications in infrared detection and tracking, surveillance and remote sensing.
Detecting Bioterrorism: Is Chemistry Enough?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omberg, Kristin M.
2014-03-13
This slide shows how most bioaerosol detection systems work. There is a lot of concern in the biothreat community, and in the federal government, about a large-scale aerosolized attack. Because of that, we’ve implemented environmental monitoring programs that use aerosol collectors to continuously monitor for the presence of threat agents in the air. Air samples are usually analyzed using PCR, which is one of the most effective analytical techniques we have for identifying DNA. Experiments and modeling have shown these systems are effective, and can warn public health of an impending crisis in time to mount an effective response.
Design of the flame detector based on pyroelectric infrared sensor
NASA Astrophysics Data System (ADS)
Liu, Yang; Yu, Benhua; Dong, Lei; Li, Kai
2017-10-01
As a fire detection device, flame detector has the advantages of short reaction time and long distance. Based on pyroelectric infrared sensor working principle, the passive pyroelectric infrared alarm system is designed, which is mainly used for safety of tunnel to detect whether fire occurred or not. Modelling and Simulation of the pyroelectric Detector Using Labview. An attempt was made to obtain a simple test platform of a pyroelectric detector which would make an excellent basis for the analysis of its dynamic behaviour. After many experiments, This system has sensitive response, high anti-interference ability and safe and reliable performance.
Ancho Canyon RF Collect, March 2, 2017: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junor, William; Layne, John Preston; Gamble, Thomas Kirk
2017-09-21
We report the results from the March 2, 2017, Ancho Canyon RF collection. While bright electromagnetic signals were seen nearby the firing point, there were no detections of signals from the explosively-fired fuse at a collection point about 570m distant on the East Mesa. However, "liveness" tests of the East Mesa data acquisition system and checks of the timing both suggest that the collection system was working correctly. We examine possible reasons for the lack of detection. Principal among these is that the impulsive signal may be small compared to the radio frequency background on the East Mesa.
NASA Hydrogen Research for Spaceport and Space Based Applications
NASA Technical Reports Server (NTRS)
Anderson, Tim
2006-01-01
The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as hydrogen production, distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results form 15 research projects, education, and outreach activities, system and trade studies, and project management. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics, and aerospace applications.
Towards Certification of a Space System Application of Fault Detection and Isolation
NASA Technical Reports Server (NTRS)
Feather, Martin S.; Markosian, Lawrence Z.
2008-01-01
Advanced fault detection, isolation and recovery (FDIR) software is being investigated at NASA as a means to the improve reliability and availability of its space systems. Certification is a critical step in the acceptance of such software. Its attainment hinges on performing the necessary verification and validation to show that the software will fulfill its requirements in the intended setting. Presented herein is our ongoing work to plan for the certification of a pilot application of advanced FDIR software in a NASA setting. We describe the application, and the key challenges and opportunities it offers for certification.
NASA Astrophysics Data System (ADS)
Rabe, Paul; Browne, Keith; Brink, Janus; Coetzee, Christiaan J.
2016-07-01
MonoEthylene glycol coolant is used extensively on the Southern African Large Telescope to cool components inside the telescope chamber. To prevent coolant leaks from causing serious damage to electronics and optics, a Glycol Leak Detection System was designed to automatically shut off valves in affected areas. After two years of research and development the use of leaf wetness sensors proved to work best and is currently operational. These sensors are placed at various critical points within the instrument payload that would trigger the leak detector controller, which closes the valves, and alerts the building management system. In this paper we describe the research of an initial concept and the final accepted implementation and the test results thereof.
Recent Advances in the Chemical Biology of Nitroxyl (HNO) Detection and Generation
Miao, Zhengrui; King, S. Bruce
2016-01-01
Nitroxyl or azanone (HNO) represents the redox-related (one electron reduced and protonated) relative of the well-known biological signaling molecule nitric oxide (NO). Despite the close structural similarity to NO, defined biological roles and endogenous formation of HNO remain unclear due to the high reactivity of HNO with itself, soft nucleophiles and transition metals. While significant work has been accomplished in terms of the physiology, biology and chemistry of HNO, important and clarifying work regarding HNO detection and formation has occurred within the last 10 years. This review summarizes advances in the areas of HNO detection and donation and their application to normal and pathological biology. Such chemical biological tools allow a deeper understanding of biological HNO formation and the role that HNO plays in a variety of physiological systems. PMID:27108951
Smoothing of Gaussian quantum dynamics for force detection
NASA Astrophysics Data System (ADS)
Huang, Zhishen; Sarovar, Mohan
2018-04-01
Building on recent work by Gammelmark et al. [Phys. Rev. Lett. 111, 160401 (2013), 10.1103/PhysRevLett.111.160401] we develop a formalism for prediction and retrodiction of Gaussian quantum systems undergoing continuous measurements. We apply the resulting formalism to study the advantage of incorporating a full measurement record and retrodiction for impulselike force detection and accelerometry. We find that using retrodiction can only increase accuracy in a limited parameter regime, but that the reduction in estimation noise that it yields results in better detection of impulselike forces.
Multimodal autofluorescence detection of cancer: from single cells to living organism
NASA Astrophysics Data System (ADS)
Horilova, J.; Cunderlikova, B.; Cagalinec, M.; Chorvat, D.; Marcek Chorvatova, A.
2018-02-01
Multimodal optical imaging of suspected tissues is showing to be a promising method for distinguishing suspected cancerous tissues from healthy ones. In particular, the combination of steady-state spectroscopic methods with timeresolved fluorescence provides more precise insight into native metabolism when focused on tissue autofluorescence. Cancer is linked to specific metabolic remodelation detectable spectroscopically. In this work, we evaluate possibilities and limitations of multimodal optical cancer detection in single cells, collagen-based 3D cell cultures and in living organisms (whole mice), as a representation of gradually increasing complexity of model systems.
de Oliveira, Bruna Paloma; Câmara, Andréa Cruz; Duarte, Daniel Amancio; Heck, Richard John; Antonino, Antonio Celso Dantas; Aguiar, Carlos Menezes
2017-07-01
This study aimed to compare apical microcrack formation after root canal shaping by hand, rotary, and reciprocating files at different working lengths using micro-computed tomographic analysis. Sixty mandibular incisors were randomly divided into 6 experimental groups (n = 10) according to the systems and working lengths used for the root canal preparation: ProTaper Universal for Hand Use (Dentsply Maillefer, Ballaigues, Switzerland), HyFlex CM (Coltene-Whaledent, Allstetten, Switzerland), and Reciproc (VDW, Munich, Germany) files working at the apical foramen (AF) and 1 mm short of the AF (AF - 1 mm). The teeth were imaged with micro-computed tomographic scanning at an isotropic resolution of 14 μm before and after root canal preparation, and the cross-sectional images generated were assessed to detect microcracks in the apical portion of the roots. Overall, 17 (28.3%) specimens presented microcracks before instrumentation. Apical microcracks were present in 1 (ProTaper Universal for Hand Use), 3 (Hyflex CM), and 2 (Reciproc) specimens when the instrumentation terminated at the AF. When instrumentation was terminated at AF - 1 mm, apical microcracks were detected in 3 (ProTaper Universal for Hand Use) and 4 (Hyflex CM and Reciproc) specimens. All these microcracks detected after root canal preparation were already present before instrumentation, and no new apical microcrack was visualized. For all groups, the number of slices presenting microcracks after root canal preparation was the same as before canal preparation. Root canal shaping with ProTaper Universal for Hand Use, HyFlex CM, and Reciproc systems, regardless of the working length, did not produce apical microcracks. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Sommer, D; Enderlein, D; Antakli, A; Schönenbrücher, H; Slaghuis, J; Redmann, T; Lierz, M
2012-01-01
The efficiency of two commercial PCR methods based on real-time technology, the foodproof® Salmonella detection system and the BAX® PCR Assay Salmonella system was compared to standardized culture methods (EN ISO 6579:2002 - Annex D) for the detection of Salmonella spp. in poultry samples. Four sample matrices (feed, dust, boot swabs, feces) obtained directly from poultry flocks, as well as artificially spiked samples of the same matrices, were used. All samples were tested for Salmonella spp. using culture methods first as the gold standard. In addition samples spiked with Salmonella Enteridis were tested to evaluate the sensitivity of both PCR methods. Furthermore all methods were evaluated in an annual ring-trial of the National Salmonella Reference Laboratory of Germany. Salmonella detection in the matrices feed, dust and boot swabs were comparable in both PCR systems whereas the results from feces differed markedly. The quality, especially the freshness, of the fecal samples had an influence on the sensitivity of the real-time PCR and the results of the culture methods. In fresh fecal samples an initial spiking level of 100cfu/25g Salmonella Enteritidis was detected. Two-days-dried fecal samples allowed the detection of 14cfu/25g. Both real- time PCR protocols appear to be suitable for the detection of Salmonella spp. in all four matrices. The foodproof® system detected eight samples more to be positive compared to the BAX® system, but had a potential false positive result in one case. In 7-days-dried samples none of the methods was able to detect Salmonella likely through letal cell damage. In general the advantage of PCR analyses over the culture method is the reduction of working time from 4-5 days to only 2 days. However, especially for the analysis of fecal samples official validation should be conducted according to the requirement of EN ISO6579:2002 - Annex D.
40 CFR Table 10 to Subpart Eeee of... - Continuous Compliance With Work Practice Standards
Code of Federal Regulations, 2010 CFR
2010-07-01
... liquids, operate a vapor balancing system. i. Monitoring each potential source of vapor leakage in the... requirements of 40 CFR part 63, subpart TT, UU, or H. i. Carrying out a leak detection and repair program in... relief devices, monitoring each potential source of vapor leakage in the system, including, but not...
Preliminary photovoltaic arc-fault prognostic tests using sacrificial fiber optic cabling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jay Dean; Blemel, Kenneth D.; Peter, Francis
2013-02-01
Through the New Mexico Small Business Assistance Program, Sandia National Laboratories worked with Sentient Business Systems, Inc. to develop and test a novel photovoltaic (PV) arc-fault detection system. The system operates by pairing translucent polymeric fiber optic sensors with electrical circuitry so that any external abrasion to the system or internal heating causes the fiber optic connection to fail or detectably degrade. A periodic pulse of light is sent through the optical path using a transmitter-receiver pair. If the receiver does not detect the pulse, an alarm is sounded and the PV system can be de-energized. This technology has themore » unique ability to prognostically determine impending failures to the electrical system in two ways: (a) the optical connection is severed prior to physical abrasion or cutting of PV DC electrical conductors, and (b) the polymeric fiber optic cable melts via Joule heating before an arc-fault is established through corrosion. Three arc-faults were created in different configurations found in PV systems with the integrated fiber optic system to determine the feasibility of the technology. In each case, the fiber optic cable was broken and the system annunciated the fault.« less
Takigawa, Tomoko; Horike, Tokushi; Ohashi, Yasuhiro; Kataoka, Hiroyuki; Wang, Da-Hong; Kira, Shohei
2004-08-01
This study demonstrated possible relationships between environmental, personal, and occupational factors and changes in the subjective health symptoms of 214 employees after the relocation of a hospital in a region of Japan. Eight indoor volatile organic compounds (VOCs) were detected in at least one of the 19 rooms investigated, and total VOC (TVOC) concentrations in 8 rooms exceeded the advisable value (400 microg/m(3)) established by the Ministry of Health, Labour and Welfare of Japan. Formaldehyde was detected in all the investigated rooms, but none of the results exceeded the guideline value (100 microg/m(3)). Multiple logistic regression analysis was applied to select variables significantly associated with the subjective symptoms that can be induced by sick building syndrome. The results showed that subjective symptoms of deterioration in the skin, eye, ear, throat, chest, central nervous system, autonomic system, musculoskeletal system, and digestive system among employees were associated mainly with gender difference and high TVOC concentrations (>1200 microg/m(3)). Long work hours (>50 h per week) in females and smoking in males were to be blamed for the deterioration of their symptoms. The present findings suggest that to protect employees from indoor environment-related adverse health effects, it is necessary to reduce the concentration of indoor chemicals in new buildings, to decrease work hours, and to forbid smoking. Copyright 2004 Wiley Periodicals, Inc.
Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants
NASA Technical Reports Server (NTRS)
Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.
1998-01-01
Control of air contaminants is a crucial factor in the safety considerations of crewed space flight. Indoor air quality needs to be closely monitored during long range missions such as a Mars mission, and also on large complex space structures such as the International Space Station. This work mainly pertains to the detection and simulation of air contaminants in the space station, though much of the work is easily extended to buildings, and issues of ventilation systems. Here we propose a method with which to track the presence of contaminants using an accurate physical model, and also develop a robust procedure that would raise alarms when certain tolerance levels are exceeded. A part of this research concerns the modeling of air flow inside a spacecraft, and the consequent dispersal pattern of contaminants. Our objective is to also monitor the contaminants on-line, so we develop a state estimation procedure that makes use of the measurements from a sensor system and determines an optimal estimate of the contamination in the system as a function of time and space. The real-time optimal estimates in turn are used to detect faults in the system and also offer diagnoses as to their sources. This work is concerned with the monitoring of air contaminants aboard future generation spacecraft and seeks to satisfy NASA's requirements as outlined in their Strategic Plan document (Technology Development Requirements, 1996).
Built-in active sensing diagnostic system for civil infrastructure systems
NASA Astrophysics Data System (ADS)
Wu, Fan; Chang, Fu-Kuo
2001-07-01
A reliable, robust monitoring system can improve the maintenance of and provide safety protection for civil structures and therefore prolong their service lives. A built-in, active sensing diagnostic technique for civil structures has been under investigation. In this technique, piezoelectric materials are used as sensors/actuators to receive and generate signals. The transducers are embedded in reinforced concrete (RC) beams and are designed to detect damage, particularly debonding damage between the reinforcing bars and concrete. This paper presents preliminary results from a feasibility study of the technology. Laboratory experiments performed on RC beams, with piezo-electric sensors and actuators mounted on reinforced steel bars, have clearly demonstrated that the proposed technique could detect debonding damage. Analytical work, using a special purpose finite-element software, PZFlex, was also conducted to interpret the relationship between the measured data and actual debonding damage. Effectiveness of the proposed technique for detecting debonding damage in civil structures has been demonstrated.
Evaluation of a Sensor System for Detecting Humans Trapped under Rubble: A Pilot Study
Kasai, Ritaro; Cosentino, Sarah; Giacomo, Cimarelli; Mochida, Yasuaki; Yamada, Hiroya; Guarnieri, Michele; Takanishi, Atsuo
2018-01-01
Rapid localization of injured survivors by rescue teams to prevent death is a major issue. In this paper, a sensor system for human rescue including three different types of sensors, a CO2 sensor, a thermal camera, and a microphone, is proposed. The performance of this system in detecting living victims under the rubble has been tested in a high-fidelity simulated disaster area. Results show that the CO2 sensor is useful to effectively reduce the possible concerned area, while the thermal camera can confirm the correct position of the victim. Moreover, it is believed that the use of microphones in connection with other sensors would be of great benefit for the detection of casualties. In this work, an algorithm to recognize voices or suspected human noise under rubble has also been developed and tested. PMID:29534055
Finding trap stiffness of optical tweezers using digital filters.
Almendarez-Rangel, Pedro; Morales-Cruzado, Beatriz; Sarmiento-Gómez, Erick; Pérez-Gutiérrez, Francisco G
2018-02-01
Obtaining trap stiffness and calibration of the position detection system is the basis of a force measurement using optical tweezers. Both calibration quantities can be calculated using several experimental methods available in the literature. In most cases, stiffness determination and detection system calibration are performed separately, often requiring procedures in very different conditions, and thus confidence of calibration methods is not assured due to possible changes in the environment. In this work, a new method to simultaneously obtain both the detection system calibration and trap stiffness is presented. The method is based on the calculation of the power spectral density of positions through digital filters to obtain the harmonic contributions of the position signal. This method has the advantage of calculating both trap stiffness and photodetector calibration factor from the same dataset in situ. It also provides a direct method to avoid unwanted frequencies that could greatly affect calibration procedure, such as electric noise, for example.
Chen, Yongyao; Liu, Haijun; Reilly, Michael; Bae, Hyungdae; Yu, Miao
2014-10-15
Acoustic sensors play an important role in many areas, such as homeland security, navigation, communication, health care and industry. However, the fundamental pressure detection limit hinders the performance of current acoustic sensing technologies. Here, through analytical, numerical and experimental studies, we show that anisotropic acoustic metamaterials can be designed to have strong wave compression effect that renders direct amplification of pressure fields in metamaterials. This enables a sensing mechanism that can help overcome the detection limit of conventional acoustic sensing systems. We further demonstrate a metamaterial-enhanced acoustic sensing system that achieves more than 20 dB signal-to-noise enhancement (over an order of magnitude enhancement in detection limit). With this system, weak acoustic pulse signals overwhelmed by the noise are successfully recovered. This work opens up new vistas for the development of metamaterial-based acoustic sensors with improved performance and functionalities that are highly desirable for many applications.
Discontinuity Detection in the Shield Metal Arc Welding Process
Cocota, José Alberto Naves; Garcia, Gabriel Carvalho; da Costa, Adilson Rodrigues; de Lima, Milton Sérgio Fernandes; Rocha, Filipe Augusto Santos; Freitas, Gustavo Medeiros
2017-01-01
This work proposes a new methodology for the detection of discontinuities in the weld bead applied in Shielded Metal Arc Welding (SMAW) processes. The detection system is based on two sensors—a microphone and piezoelectric—that acquire acoustic emissions generated during the welding. The feature vectors extracted from the sensor dataset are used to construct classifier models. The approaches based on Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers are able to identify with a high accuracy the three proposed weld bead classes: desirable weld bead, shrinkage cavity and burn through discontinuities. Experimental results illustrate the system’s high accuracy, greater than 90% for each class. A novel Hierarchical Support Vector Machine (HSVM) structure is proposed to make feasible the use of this system in industrial environments. This approach presented 96.6% overall accuracy. Given the simplicity of the equipment involved, this system can be applied in the metal transformation industries. PMID:28489045
Physical Watermarking for Securing Cyber-Physical Systems via Packet Drop Injections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozel, Omur; Weekrakkody, Sean; Sinopoli, Bruno
Physical watermarking is a well known solution for detecting integrity attacks on Cyber-Physical Systems (CPSs) such as the smart grid. Here, a random control input is injected into the system in order to authenticate physical dynamics and sensors which may have been corrupted by adversaries. Packet drops may naturally occur in a CPS due to network imperfections. To our knowledge, previous work has not considered the role of packet drops in detecting integrity attacks. In this paper, we investigate the merit of injecting Bernoulli packet drops into the control inputs sent to actuators as a new physical watermarking scheme. Withmore » the classical linear quadratic objective function and an independent and identically distributed packet drop injection sequence, we study the effect of packet drops on meeting security and control objectives. Our results indicate that the packet drops could act as a potential physical watermark for attack detection in CPSs.« less
NASA Astrophysics Data System (ADS)
Billingham, J.; Benford, James
We advocate international consultations on societal and technical issues to address the risk of Messaging to Extraterrestrial Intelligence (METI) transmissions, and a moratorium on future transmissions until such issues are resolved. Instead, we recommend continuing to conduct SETI by listening, with no innate risk, while using powerful new search systems to give a better total probability of detection of beacons and messages than METI for the same cost, and with no need for a long obligatory wait for a response. Realistically, beacons are costly. In light of recent work on the economics of contact by radio, we offer alternatives to the current standard methods of SETI searches. METI transmissions to date are faint and very unlikely to be detected, even by nearby stars. We show that historical leakage from Earth has been undetectable for Earth-scale receiver systems. Future space microwave and laser power systems will likely be more detectable.
From entanglement witness to generalized Catalan numbers.
Cohen, E; Hansen, T; Itzhaki, N
2016-07-27
Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a "sterile entanglement witness", which for large enough systems detects entanglement without affecting much the system's state. We discuss when our proposed entanglement witness can be regarded as a sterile one.
Effect of Radiologists’ Diagnostic Work-up Volume on Interpretive Performance
Anderson, Melissa L.; Smith, Robert A.; Carney, Patricia A.; Miglioretti, Diana L.; Monsees, Barbara S.; Sickles, Edward A.; Taplin, Stephen H.; Geller, Berta M.; Yankaskas, Bonnie C.; Onega, Tracy L.
2014-01-01
Purpose To examine radiologists’ screening performance in relation to the number of diagnostic work-ups performed after abnormal findings are discovered at screening mammography by the same radiologist or by different radiologists. Materials and Methods In an institutional review board–approved HIPAA-compliant study, the authors linked 651 671 screening mammograms interpreted from 2002 to 2006 by 96 radiologists in the Breast Cancer Surveillance Consortium to cancer registries (standard of reference) to evaluate the performance of screening mammography (sensitivity, false-positive rate [FPRfalse-positive rate], and cancer detection rate [CDRcancer detection rate]). Logistic regression was used to assess the association between the volume of recalled screening mammograms (“own” mammograms, where the radiologist who interpreted the diagnostic image was the same radiologist who had interpreted the screening image, and “any” mammograms, where the radiologist who interpreted the diagnostic image may or may not have been the radiologist who interpreted the screening image) and screening performance and whether the association between total annual volume and performance differed according to the volume of diagnostic work-up. Results Annually, 38% of radiologists performed the diagnostic work-up for 25 or fewer of their own recalled screening mammograms, 24% performed the work-up for 0–50, and 39% performed the work-up for more than 50. For the work-up of recalled screening mammograms from any radiologist, 24% of radiologists performed the work-up for 0–50 mammograms, 32% performed the work-up for 51–125, and 44% performed the work-up for more than 125. With increasing numbers of radiologist work-ups for their own recalled mammograms, the sensitivity (P = .039), FPRfalse-positive rate (P = .004), and CDRcancer detection rate (P < .001) of screening mammography increased, yielding a stepped increase in women recalled per cancer detected from 17.4 for 25 or fewer mammograms to 24.6 for more than 50 mammograms. Increases in work-ups for any radiologist yielded significant increases in FPRfalse-positive rate (P = .011) and CDRcancer detection rate (P = .001) and a nonsignificant increase in sensitivity (P = .15). Radiologists with a lower annual volume of any work-ups had consistently lower FPRfalse-positive rate, sensitivity, and CDRcancer detection rate at all annual interpretive volumes. Conclusion These findings support the hypothesis that radiologists may improve their screening performance by performing the diagnostic work-up for their own recalled screening mammograms and directly receiving feedback afforded by means of the outcomes associated with their initial decision to recall. Arranging for radiologists to work up a minimum number of their own recalled cases could improve screening performance but would need systems to facilitate this workflow. © RSNA, 2014 Online supplemental material is available for this article. PMID:24960110
Effect of radiologists' diagnostic work-up volume on interpretive performance.
Buist, Diana S M; Anderson, Melissa L; Smith, Robert A; Carney, Patricia A; Miglioretti, Diana L; Monsees, Barbara S; Sickles, Edward A; Taplin, Stephen H; Geller, Berta M; Yankaskas, Bonnie C; Onega, Tracy L
2014-11-01
To examine radiologists' screening performance in relation to the number of diagnostic work-ups performed after abnormal findings are discovered at screening mammography by the same radiologist or by different radiologists. In an institutional review board-approved HIPAA-compliant study, the authors linked 651 671 screening mammograms interpreted from 2002 to 2006 by 96 radiologists in the Breast Cancer Surveillance Consortium to cancer registries (standard of reference) to evaluate the performance of screening mammography (sensitivity, false-positive rate [ FPR false-positive rate ], and cancer detection rate [ CDR cancer detection rate ]). Logistic regression was used to assess the association between the volume of recalled screening mammograms ("own" mammograms, where the radiologist who interpreted the diagnostic image was the same radiologist who had interpreted the screening image, and "any" mammograms, where the radiologist who interpreted the diagnostic image may or may not have been the radiologist who interpreted the screening image) and screening performance and whether the association between total annual volume and performance differed according to the volume of diagnostic work-up. Annually, 38% of radiologists performed the diagnostic work-up for 25 or fewer of their own recalled screening mammograms, 24% performed the work-up for 0-50, and 39% performed the work-up for more than 50. For the work-up of recalled screening mammograms from any radiologist, 24% of radiologists performed the work-up for 0-50 mammograms, 32% performed the work-up for 51-125, and 44% performed the work-up for more than 125. With increasing numbers of radiologist work-ups for their own recalled mammograms, the sensitivity (P = .039), FPR false-positive rate (P = .004), and CDR cancer detection rate (P < .001) of screening mammography increased, yielding a stepped increase in women recalled per cancer detected from 17.4 for 25 or fewer mammograms to 24.6 for more than 50 mammograms. Increases in work-ups for any radiologist yielded significant increases in FPR false-positive rate (P = .011) and CDR cancer detection rate (P = .001) and a nonsignificant increase in sensitivity (P = .15). Radiologists with a lower annual volume of any work-ups had consistently lower FPR false-positive rate , sensitivity, and CDR cancer detection rate at all annual interpretive volumes. These findings support the hypothesis that radiologists may improve their screening performance by performing the diagnostic work-up for their own recalled screening mammograms and directly receiving feedback afforded by means of the outcomes associated with their initial decision to recall. Arranging for radiologists to work up a minimum number of their own recalled cases could improve screening performance but would need systems to facilitate this workflow.
Using advanced computer vision algorithms on small mobile robots
NASA Astrophysics Data System (ADS)
Kogut, G.; Birchmore, F.; Biagtan Pacis, E.; Everett, H. R.
2006-05-01
The Technology Transfer project employs a spiral development process to enhance the functionality and autonomy of mobile robot systems in the Joint Robotics Program (JRP) Robotic Systems Pool by converging existing component technologies onto a transition platform for optimization. An example of this approach is the implementation of advanced computer vision algorithms on small mobile robots. We demonstrate the implementation and testing of the following two algorithms useful on mobile robots: 1) object classification using a boosted Cascade of classifiers trained with the Adaboost training algorithm, and 2) human presence detection from a moving platform. Object classification is performed with an Adaboost training system developed at the University of California, San Diego (UCSD) Computer Vision Lab. This classification algorithm has been used to successfully detect the license plates of automobiles in motion in real-time. While working towards a solution to increase the robustness of this system to perform generic object recognition, this paper demonstrates an extension to this application by detecting soda cans in a cluttered indoor environment. The human presence detection from a moving platform system uses a data fusion algorithm which combines results from a scanning laser and a thermal imager. The system is able to detect the presence of humans while both the humans and the robot are moving simultaneously. In both systems, the two aforementioned algorithms were implemented on embedded hardware and optimized for use in real-time. Test results are shown for a variety of environments.
Ehrenworth, Amy M; Claiborne, Tauris; Peralta-Yahya, Pamela
2017-10-17
Chemical biosensors, for which chemical detection triggers a fluorescent signal, have the potential to accelerate the screening of noncolorimetric chemicals produced by microbes, enabling the high-throughput engineering of enzymes and metabolic pathways. Here, we engineer a G-protein-coupled receptor (GPCR)-based sensor to detect serotonin produced by a producer microbe in the producer microbe's supernatant. Detecting a chemical in the producer microbe's supernatant is nontrivial because of the number of other metabolites and proteins present that could interfere with sensor performance. We validate the two-cell screening system for medium-throughput applications, opening the door to the rapid engineering of microbes for the increased production of serotonin. We focus on serotonin detection as serotonin levels limit the microbial production of hydroxystrictosidine, a modified alkaloid that could accelerate the semisynthesis of camptothecin-derived anticancer pharmaceuticals. This work shows the ease of generating GPCR-based chemical sensors and their ability to detect specific chemicals in complex aqueous solutions, such as microbial spent medium. In addition, this work sets the stage for the rapid engineering of serotonin-producing microbes.
NASA Astrophysics Data System (ADS)
Felemban, Shifa; Vazquez, Patricia; Dehnert, Jan; Goridko, Vadim; Tijero, Maria; Moore, Eric
2017-06-01
The work described in this manuscript focuses on how the integration of immunoassay techniques in combination with electrochemical detection can provide a portable and very accurate solution for detection of water pollutants that are detrimental for human health. In particular, we focus our work on the quantification of polycyclic aromatic hydrocarbons (PAHs) in polluted water. Our integrative approach facilitates a real-time detection of this family of organic compounds, by reducing the time of analysis to less than one hour. Additionally, the use of a lab-on-a-chip platform delivers a portable solution that could be used in situ. Optimization of a displacement assay that investigates the presence and concentration of Benzo[a]pyrene in water, allows with the miniaturization of the standard ELISA format into a highly accurate system that provides fast results. The limits of detection obtained are comparable to those of available state-of-the art tools, and achieve the values set by European Drinking Water Directive, 0.10ng/l, as the limit for PAHs in drinking water.
Wisitsoraat, A; Sritongkham, P; Karuwan, C; Phokharatkul, D; Maturos, T; Tuantranont, A
2010-12-15
This work reports a new cholesterol detection scheme using functionalized carbon nanotube (CNT) electrode in a polydimethylsiloxane/glass based flow injection microfluidic chip. CNTs working, silver reference and platinum counter electrode layers were fabricated on the chip by sputtering and low temperature chemical vapor deposition methods. Cholesterol oxidase prepared in polyvinyl alcohol solution was immobilized on CNTs by in-channel flow technique. Cholesterol analysis based on flow injection chronoamperometric measurement was performed in 150-μm-wide and 150-μm-deep microchannels. Fast and sensitive real-time detection was achieved with high throughput of more than 60 samples per hour and small sample volume of 15 μl. The cholesterol sensor had a linear detection range between 50 and 400 mg/dl. In addition, low cross-sensitivities toward glucose, ascorbic acid, acetaminophen and uric acid were confirmed. The proposed system is promising for clinical diagnostics of cholesterol with high speed real-time detection capability, very low sample consumption, high sensitivity, low interference and good stability. Copyright © 2010 Elsevier B.V. All rights reserved.
Chemiresistive Graphene Sensors for Ammonia Detection.
Mackin, Charles; Schroeder, Vera; Zurutuza, Amaia; Su, Cong; Kong, Jing; Swager, Timothy M; Palacios, Tomás
2018-05-09
The primary objective of this work is to demonstrate a novel sensor system as a convenient vehicle for scaled-up repeatability and the kinetic analysis of a pixelated testbed. This work presents a sensor system capable of measuring hundreds of functionalized graphene sensors in a rapid and convenient fashion. The sensor system makes use of a novel array architecture requiring only one sensor per pixel and no selector transistor. The sensor system is employed specifically for the evaluation of Co(tpfpp)ClO 4 functionalization of graphene sensors for the detection of ammonia as an extension of previous work. Co(tpfpp)ClO 4 treated graphene sensors were found to provide 4-fold increased ammonia sensitivity over pristine graphene sensors. Sensors were also found to exhibit excellent selectivity over interfering compounds such as water and common organic solvents. The ability to monitor a large sensor array with 160 pixels provides insights into performance variations and reproducibility-critical factors in the development of practical sensor systems. All sensors exhibit the same linearly related responses with variations in response exhibiting Gaussian distributions, a key finding for variation modeling and quality engineering purposes. The mean correlation coefficient between sensor responses was found to be 0.999 indicating highly consistent sensor responses and excellent reproducibility of Co(tpfpp)ClO 4 functionalization. A detailed kinetic model is developed to describe sensor response profiles. The model consists of two adsorption mechanisms-one reversible and one irreversible-and is shown capable of fitting experimental data with a mean percent error of 0.01%.
Betacam: a commercial approach to β-autoradiography
NASA Astrophysics Data System (ADS)
Cabello, J.; Holland, A.; Holland, K.; Bailey, A.; Kitchen, I.; Wells, K.
2009-02-01
Autoradiography is a well established imaging modality in Biology and Medicine. This aims to measure the location and concentration of labelled molecules within thin tissue sections. The brain is the most anatomically complex organ and identification of neuroanatomical structures is still a challenge particularly when small animals are used for pre-clinical trials. High spatial resolution and high sensitivity are therefore necessary. This work shows the performance and ability of a prototype commercial system, based on a Charged-Couple Device (CCD), to accurately obtain detailed functional information in brain Autoradiography. The sample is placed in contact with the detector enabling direct detection of β- particles in silicon, and the system is run in a range of quasi-room temperatures (17-22 °C) under stable conditions by using a precision temperature controller. Direct detection of β- particles with low energy down to ~5 keV from 3[H] is possible using this room temperature approach. The CCD used in this work is an E2V CCD47-20 frame-transfer device which removes the image smear arising in conventional full-frame imaging devices. The temporal stability of the system has been analyzed by exposing a set of 14[C] calibrated microscales for different periods of time, and measuring the stability of the resultant sensitivity and background noise. The thermal performance of the system has also been analyzed in order to demonstrate its capability of working in other life science applications, where higher working temperatures are required. Once the performance of the system was studied, a set of experiments with biological samples, labelled with typical β- radioisotopes, such as 3[H], has been carried out to demonstrate its application in life sciences.
Novel Wearable Device for Blood Leakage Detection during Hemodialysis Using an Array Sensing Patch.
Du, Yi-Chun; Lim, Bee-Yen; Ciou, Wei-Siang; Wu, Ming-Jui
2016-06-09
Hemodialysis (HD) is a clinical treatment that requires the puncturing of the body surface. However, needle dislodgement can cause a high risk of blood leakage and can be fatal to patients. Previous studies proposed several devices for blood leakage detection using optical or electrical techniques. Nonetheless, these methods used single-point detection and the design was not suitable for multi-bed monitoring. This study proposed a novel wearable device for blood leakage monitoring during HD using an array sensing patch. The array sensing patch combined with a mapping circuit and a wireless module could measure and transmit risk levels. The different risk levels could improve the working process of healthcare workers, and enhance their work efficiency and reduce inconvenience due to false alarms. Experimental results showed that each point of the sensing array could detect up to 0.1 mL of blood leakage and the array sensing patch supports a risk level monitoring system up to 8 h to alert healthcare personnel of pertinent danger to the patients.
Recent approaches in sensitive enantioseparations by CE.
Sánchez-Hernández, Laura; Castro-Puyana, María; Marina, María Luisa; Crego, Antonio L
2012-01-01
The latest strategies and instrumental improvements for enhancing the detection sensitivity in chiral analysis by CE are reviewed in this work. Following the previous reviews by García-Ruiz et al. (Electrophoresis 2006, 27, 195-212) and Sánchez-Hernández et al. (Electrophoresis 2008, 29, 237-251; Electrophoresis 2010, 31, 28-43), this review includes those papers that were published during the period from June 2009 to May 2011. These works describe the use of offline and online sample treatment techniques, online sample preconcentration techniques based on electrophoretic principles, and alternative detection systems to UV-Vis to increase the detection sensitivity. The application of the above-mentioned strategies, either alone or combined, to improve the sensitivity in the enantiomeric analysis of a broad range of samples, such as pharmaceutical, biological, food and environmental samples, enables to decrease the limits of detection up to 10⁻¹² M. The use of microchips to achieve sensitive chiral separations is also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biochemical sensor tubing for point-of-care monitoring of intravenous drugs and metabolites.
Choi, Charles J; Wu, Hsin-Yu; George, Sherine; Weyhenmeyer, Jonathan; Cunningham, Brian T
2012-02-07
In medical facilities, there is strong motivation to develop detection systems that can provide continuous analysis of fluids in medical tubing used to either deliver or remove fluids from a patient's body. Possible applications include systems that increase the safety of intravenous (IV) drug injection and point-of-care health monitoring. In this work, we incorporated a surface-enhanced Raman scattering (SERS) sensor comprised of an array of closely spaced metal nanodomes into flexible tubing commonly used for IV drug delivery and urinary catheters. The nanodome sensor was fabricated by a low-cost, large-area process that enables single use disposable operation. As exemplary demonstrations, the sensor was used to kinetically detect promethazine (pain medication) and urea (urinary metabolite) within their clinically relevant concentration ranges. Distinct SERS peaks for each analyte were used to demonstrate separate detection and co-detection of the analytes.
Imitation-tumor targeting based on continuous-wave near-infrared tomography.
Liu, Dan; Liu, Xin; Zhang, Yan; Wang, Qisong; Lu, Jingyang; Sun, Jinwei
2017-12-01
Continuous-wave Near-Infrared (NIR) optical spectroscopy has shown great diagnostic capability in the early tumor detection with advantages of low-cost, portable, non-invasive, and non-radiative. In this paper, Modified Lambert-Beer Theory is deployed to address the low-resolution issues of the NIR technique and to design the tumor detecting and imaging system. Considering that tumor tissues have features such as high blood flow and hypoxia, the proposed technique can detect the location, size, and other information of the tumor tissues by comparing the absorbance between pathological and normal tissues. Finally, the tumor tissues can be imaged through tomographic method. The simulation experiments prove that the proposed technique and designed system can efficiently detect the tumor tissues, achieving imaging precision within 1 mm. The work of the paper has shown great potential in the diagnosis of tumor close to body surface.
Numerical study of the polarization effect of GPR systems on the detection of buried objects
NASA Astrophysics Data System (ADS)
Sagnard, Florence
2017-04-01
This work is in line with the studies carried out in our department over the last few years on object detection in civil engineering structures and soils. In parallel to building of the second version of the Sense-City test site where several pipeline networks will be buried [1], we are developing numerical models using the FIT and the FDTD approaches to study more precisely the contribution of the polarization diversity in the detection of conductive and dielectric buried objects using the GPR technique. The simulations developed are based on a ultra-wide band SFCW GPR system that have been designed and evaluated in our laboratory. A parametric study is proposed to evaluate the influence of the antenna configurations and the antenna geometry when considering the polarization diversity in the detection and characterization of canonical objects. [1] http://www.sense-city.univ-paris-est.fr/index.php
NASA Astrophysics Data System (ADS)
Atta Yaseen, Amer; Bayart, Mireille
2017-01-01
In this work, a new approach will be introduced as a development for the attack-tolerant scheme in the Networked Control System (NCS). The objective is to be able to detect an attack such as the Stuxnet case where the controller is reprogrammed and hijacked. Besides the ability to detect the stealthy controller hijacking attack, the advantage of this approach is that there is no need for a priori mathematical model of the controller. In order to implement the proposed scheme, a specific detector for the controller hijacking attack is designed. The performance of this scheme is evaluated be connected the detector to NCS with basic security elements such as Data Encryption Standard (DES), Message Digest (MD5), and timestamp. The detector is tested along with networked PI controller under stealthy hijacking attack. The test results of the proposed method show that the hijacked controller can be significantly detected and recovered.
Hopper, Kenneth D; Strollo, Diane C; Mauger, David T
2002-02-01
To determine the sensitivity and specificity of cardiac gated electron-beam computed tomography (CT) and ungated helical CT in detecting and quantifying coronary arterial calcification (CAC) by using a working heart phantom and artificial coronary arteries. A working heart phantom simulating normal cardiac motion and providing attenuation equal to that of an adult thorax was used. Thirty tubes with a 3-mm inner diameter were internally coated with pulverized human cortical bone mixed with epoxy glue to simulate minimal (n = 10), mild (n = 10), or severe (n = 10) calcified plaques. Ten additional tubes were not coated and served as normal controls. The tubes were attached to the same location on the phantom heart and scanned with electron-beam CT and helical CT in horizontal and vertical planes. Actual plaque calcium content was subsequently quantified with atopic spectroscopy. Two blinded experienced radiologic imaging teams, one for each CT system, separately measured calcium content in the model vessels by using a Hounsfield unit threshold of 130 or greater. The sensitivity and specificity of electron-beam CT in detecting CAC were 66.1% and 80.0%, respectively. The sensitivity and specificity of helical CT were 96.4% and 95.0%, respectively. Electron-beam CT was less reliable when vessels were oriented vertically (sensitivity and specificity, 71.4% and 70%; 95% CI: 39.0%, 75.0%) versus horizontally (sensitivity and specificity, 60.7% and 90.0%; 95% CI: 48.0%, 82.0%). When a correction factor was applied, the volume of calcified plaque was statistically better quantified with helical CT than with electron-beam CT (P =.004). Ungated helical CT depicts coronary arterial calcium better than does gated electron-beam CT. When appropriate correction factors are applied, helical CT is superior to electron-beam CT in quantifying coronary arterial calcium. Although further work must be done to optimize helical CT grading systems and scanning protocols, the data of this study demonstrated helical CT's inherent advantage over currently commercially available electron-beam CT systems in CAC detection and quantification.
Kanwar, Neena; Hassan, Ferdaus; Nguyen, Ashley; Selvarangan, Rangaraj
2015-04-01
Respiratory syncytial virus (RSV) is one of the most common causes of severe lower respiratory tract disease among infants and young children. BD Veritor™ System RSV (BD) and Quidel(®) Sofia(®) RSV FIA (QD) are the new generation lateral flow digital immunoassay (DIA) tests with an instrumented read for the qualitative detection of RSV viral antigens. To compare the diagnostic accuracies of BD and QD for RSV detection using fresh nasopharyngeal aspirates and nasopharyngeal swab specimens collected in universal transport media during 2013-2014 respiratory season. The two DIA tests were performed simultaneously on randomly selected specimens on a weekly basis during the RSV season until 200 fresh remnant specimens were enrolled. Real-time RT-PCR assay results were used to compare and evaluate the performance of both RSV DIA assays. Among 200 specimens tested, RSV real-time RT-PCR assay detected RSV in 104 samples, while QD detected 84 samples and BD detected 74 samples as positive. The overall sensitivity for detection of RSV in comparison to PCR was 71.15% (61.3-79.4) for BD and 80.77% (71.6-87.6) for QD system (P=0.36). The specificity was 100% (95.2-100) for both systems. The work flow analysis revealed that the overall specimen processing time was significantly lower for BD as compared with the QD assay. In comparison with the real-time PCR, the QD system showed a higher sensitivity than that of the BD system, but the difference did not reach statistical significance (P=0.36). Both BD and QD systems were found comparable in terms of specificity. Copyright © 2015 Elsevier B.V. All rights reserved.
Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Sensors and Systems. Part 2
NASA Technical Reports Server (NTRS)
Anderson, Tim; Balaban, Canan
2008-01-01
The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Sensor systems research was focused on hydrogen leak detection and smart sensors with adaptive feedback control for fuel cells. The goal was to integrate multifunction smart sensors, low-power high-efficiency wireless circuits, energy harvesting devices, and power management circuits in one module. Activities were focused on testing and demonstrating sensors in a realistic environment while also bringing them closer to production and commercial viability for eventual use in the actual operating environment.
Early melanoma diagnosis with mobile imaging.
Do, Thanh-Toan; Zhou, Yiren; Zheng, Haitian; Cheung, Ngai-Man; Koh, Dawn
2014-01-01
We research a mobile imaging system for early diagnosis of melanoma. Different from previous work, we focus on smartphone-captured images, and propose a detection system that runs entirely on the smartphone. Smartphone-captured images taken under loosely-controlled conditions introduce new challenges for melanoma detection, while processing performed on the smartphone is subject to computation and memory constraints. To address these challenges, we propose to localize the skin lesion by combining fast skin detection and fusion of two fast segmentation results. We propose new features to capture color variation and border irregularity which are useful for smartphone-captured images. We also propose a new feature selection criterion to select a small set of good features used in the final lightweight system. Our evaluation confirms the effectiveness of proposed algorithms and features. In addition, we present our system prototype which computes selected visual features from a user-captured skin lesion image, and analyzes them to estimate the likelihood of malignance, all on an off-the-shelf smartphone.
NASA Astrophysics Data System (ADS)
Yao, Dachun; Evmiridis, Nick P.; Zhou, Yikai; Xu, Shunqing; Zhou, Huarong
2001-09-01
A new method employing a combination of micro dialysis sampling and chemiluminescence reaction was developed to monitor nitric oxide (NO) in vivo. A special probe was designed with an interference-free membrane to achieve a very high selectivity for NO. High sensitivity was achieved by optimizing the working system and improving the NO sampling time. This system was used in vivo to monitor blood and brain tissue in rats and rabbits. We have established that this system is sensitive enough to detect variations in NO production in difference physiological state. The system can detect NO in the linear range of 5nM-1(mu) M, with a detection limit of 1nM, and real NO concentrations in our experimental animals were found to be in the range of 1-5 nM or even less. Finally, the effects of body temperature, NO donors, Viagra, NO activators, NO cofactors, NO interference were investigated carefully in different physiological situations.
NASA Astrophysics Data System (ADS)
Olson, Craig; Theisen, Michael; Pace, Teresa; Halford, Carl; Driggers, Ronald
2016-05-01
The mission of an Infrared Search and Track (IRST) system is to detect and locate (sometimes called find and fix) enemy aircraft at significant ranges. Two extreme opposite examples of IRST applications are 1) long range offensive aircraft detection when electronic warfare equipment is jammed, compromised, or intentionally turned off, and 2) distributed aperture systems where enemy aircraft may be in the proximity of the host aircraft. Past IRST systems have been primarily long range offensive systems that were based on the LWIR second generation thermal imager. The new IRST systems are primarily based on staring infrared focal planes and sensors. In the same manner that FLIR92 did not work well in the design of staring infrared cameras (NVTherm was developed to address staring infrared sensor performance), current modeling techniques do not adequately describe the performance of a staring IRST sensor. There are no standard military IRST models (per AFRL and NAVAIR), and each program appears to perform their own modeling. For this reason, L-3 has decided to develop a corporate model, working with AFRL and NAVAIR, for the analysis, design, and evaluation of IRST concepts, programs, and solutions. This paper provides some of the first analyses in the L-3 IRST model development program for the optimization of staring IRST sensors.
NASA Technical Reports Server (NTRS)
Kemmerer, Catherine C.; Jacoby, Joseph A.; Lomness, Janice K.; Hintze, Paul E.; Russell, Richard W.
2007-01-01
The detection of corrosion beneath Space Shuttle Orbiter thermal protective system is traditionally accomplished by removing the Reusable Surface Insulation tiles and performing a visual inspection of the aluminum substrate and corrosion protection system. This process is time consuming and has the potential to damage high cost tiles. To evaluate non-intrusive NDE methods, a Proof of Concept (PoC) experiment was designed and test panels were manufactured. The objective of the test plan was three-fold: establish the ability to detect corrosion hidden from view by tiles; determine the key factor affecting detectability; roughly quantify the detection threshold. The plan consisted of artificially inducing dimensionally controlled corrosion spots in two panels and rebonding tile over the spots to model the thermal protective system of the orbiter. The corrosion spot diameter ranged from 0.100" to 0.600" inches and the depth ranged from 0.003" to 0.020". One panel consisted of a complete factorial array of corrosion spots with and without tile coverage. The second panel consisted of randomized factorial points replicated and hidden by tile. Conventional methods such as ultrasonics, infrared, eddy current and microwave methods have shortcomings. Ultrasonics and IR cannot sufficiently penetrate the tiles, while eddy current and microwaves have inadequate resolution. As such, the panels were interrogated using Backscatter Radiography and Terahertz Imaging. The terahertz system successfully detected artificially induced corrosion spots under orbiter tile and functional testing is in-work in preparation for implementation.
Automatic detection of echolocation clicks based on a Gabor model of their waveform.
Madhusudhana, Shyam; Gavrilov, Alexander; Erbe, Christine
2015-06-01
Prior research has shown that echolocation clicks of several species of terrestrial and marine fauna can be modelled as Gabor-like functions. Here, a system is proposed for the automatic detection of a variety of such signals. By means of mathematical formulation, it is shown that the output of the Teager-Kaiser Energy Operator (TKEO) applied to Gabor-like signals can be approximated by a Gaussian function. Based on the inferences, a detection algorithm involving the post-processing of the TKEO outputs is presented. The ratio of the outputs of two moving-average filters, a Gaussian and a rectangular filter, is shown to be an effective detection parameter. Detector performance is assessed using synthetic and real (taken from MobySound database) recordings. The detection method is shown to work readily with a variety of echolocation clicks and in various recording scenarios. The system exhibits low computational complexity and operates several times faster than real-time. Performance comparisons are made to other publicly available detectors including pamguard.
NASA Astrophysics Data System (ADS)
Miley, H.; Forrester, J. B.; Greenwood, L. R.; Keillor, M. E.; Eslinger, P. W.; Regmi, R.; Biegalski, S.; Erikson, L. E.
2013-12-01
The aerosol samples taken from the CTBT International Monitoring Systems stations are measured in the field with a minimum detectable concentration (MDC) of ~30 microBq/m3 of Ba-140. This is sufficient to detect far less than 1 kt of aerosol fission products in the atmosphere when the station is in the plume from such an event. Recent thinking about minimizing the potential source region (PSR) from a detection has led to a desire for a multi-station or multi-time period detection. These would be connected through the concept of ';event formation', analogous to event formation in seismic event study. However, to form such events, samples from the nearest neighbors of the detection would require re-analysis with a more sensitive laboratory to gain a substantially lower MDC, and potentially find radionuclide concentrations undetected by the station. The authors will present recent laboratory work with air filters showing various cost effective means for enhancing laboratory sensitivity.
Bio-Aerosol Detection Using Mass Spectrometry: Public Health Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludvigson, Laura D.
2004-01-01
I recently spent a summer as an intern at the Lawrence Livermore National Laboratory. I worked on a project involving the real-time, reagentless, single cell detection of aerosolized pathogens using a novel mass spectrometry approach called Bio-Aerosol Mass Spectrometry (BAMS). Based upon preliminary results showing the differentiation capabilities of BAMS, I would like to explore the development and use of this novel detection system in the context of both environmental and clinical sample pathogen detection. I would also like to explore the broader public health applications that a system such as BAMS might have in terms of infectious disease preventionmore » and control. In order to appreciate the potential of this instrument, I will demonstrate the need for better pathogen detection methods, and outline the instrumentation, data analysis and preliminary results that lead me toward a desire to explore this technology further. I will also discuss potential experiments for the future along with possible problems that may be encountered along the way.« less
Gbaj, A; Bichenkova, Ev; Walsh, L; Savage, He; Sardarian, Ar; Etchells, Ll; Gulati, A; Hawisa, S; Douglas, Kt
2009-12-01
The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5'-bispyrene and 3'-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5'-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5'-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing.
Implementation of a General Real-Time Visual Anomaly Detection System Via Soft Computing
NASA Technical Reports Server (NTRS)
Dominguez, Jesus A.; Klinko, Steve; Ferrell, Bob; Steinrock, Todd (Technical Monitor)
2001-01-01
The intelligent visual system detects anomalies or defects in real time under normal lighting operating conditions. The application is basically a learning machine that integrates fuzzy logic (FL), artificial neural network (ANN), and generic algorithm (GA) schemes to process the image, run the learning process, and finally detect the anomalies or defects. The system acquires the image, performs segmentation to separate the object being tested from the background, preprocesses the image using fuzzy reasoning, performs the final segmentation using fuzzy reasoning techniques to retrieve regions with potential anomalies or defects, and finally retrieves them using a learning model built via ANN and GA techniques. FL provides a powerful framework for knowledge representation and overcomes uncertainty and vagueness typically found in image analysis. ANN provides learning capabilities, and GA leads to robust learning results. An application prototype currently runs on a regular PC under Windows NT, and preliminary work has been performed to build an embedded version with multiple image processors. The application prototype is being tested at the Kennedy Space Center (KSC), Florida, to visually detect anomalies along slide basket cables utilized by the astronauts to evacuate the NASA Shuttle launch pad in an emergency. The potential applications of this anomaly detection system in an open environment are quite wide. Another current, potentially viable application at NASA is in detecting anomalies of the NASA Space Shuttle Orbiter's radiator panels.
Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs)
Cruz, Henry; Eckert, Martina; Meneses, Juan; Martínez, José-Fernán
2016-01-01
This article proposes a novel method for detecting forest fires, through the use of a new color index, called the Forest Fire Detection Index (FFDI), developed by the authors. The index is based on methods for vegetation classification and has been adapted to detect the tonalities of flames and smoke; the latter could be included adaptively into the Regions of Interest (RoIs) with the help of a variable factor. Multiple tests have been performed upon database imagery and present promising results: a detection precision of 96.82% has been achieved for image sizes of 960 × 540 pixels at a processing time of 0.0447 seconds. This achievement would lead to a performance of 22 f/s, for smaller images, while up to 54 f/s could be reached by maintaining a similar detection precision. Additional tests have been performed on fires in their early stages, achieving a precision rate of p = 96.62%. The method could be used in real-time in Unmanned Aerial Systems (UASs), with the aim of monitoring a wider area than through fixed surveillance systems. Thus, it would result in more cost-effective outcomes than conventional systems implemented in helicopters or satellites. UASs could also reach inaccessible locations without jeopardizing people’s safety. On-going work includes implementation into a commercially available drone. PMID:27322264
Waste heat recovery system for recapturing energy after engine aftertreatment systems
Ernst, Timothy C.; Nelson, Christopher R.
2014-06-17
The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.
NASA Astrophysics Data System (ADS)
Radulescu, A.; Arend, N.; Drochner, M.; Ioffe, A.; Kemmerling, G.; Ossovyi, V.; Staringer, S.; Vehres, G.; McKinny, K.; Olechnowicz, B.; Yen, D.
2016-09-01
A new detection system based on an array of 3He tubes and innovative fast detection electronics was designed and produced by GE Reuter Stokes for the high-intensity small-angle neutron scattering diffractometer KWS-2, operated by the Jülich Centre for Neutron Science (JCNS) at the Heinz Meier-Leibnitz Zentrum (MLZ). The new detector consists of a panel array of 144 3He tubes and a new fast read-out electronics. The electronics is mounted in a closed case in the backside of the 3He tubes panel array and will operate at ambient atmosphere under cooling air stream. The new detection system is composed of eighteen 8-pack modules of 3He-tubes that work independently of one another (each unit has its own processor and electronics). Knowing beforehand the performance of one detector unit and of one single tube detector is prerequisite for tuning and maximizing the performance of the complete detection system. In this paper we present the results of the tests of the prototyped 8-pack of 3He-tubes and corresponding electronics, which have been carried out at the JCNS instruments KWS-2 (in high flux conditions) and TREFF.
Automatic detection of red lesions in digital color fundus photographs.
Niemeijer, Meindert; van Ginneken, Bram; Staal, Joes; Suttorp-Schulten, Maria S A; Abràmoff, Michael D
2005-05-01
The robust detection of red lesions in digital color fundus photographs is a critical step in the development of automated screening systems for diabetic retinopathy. In this paper, a novel red lesion detection method is presented based on a hybrid approach, combining prior works by Spencer et al. (1996) and Frame et al. (1998) with two important new contributions. The first contribution is a new red lesion candidate detection system based on pixel classification. Using this technique, vasculature and red lesions are separated from the background of the image. After removal of the connected vasculature the remaining objects are considered possible red lesions. Second, an extensive number of new features are added to those proposed by Spencer-Frame. The detected candidate objects are classified using all features and a k-nearest neighbor classifier. An extensive evaluation was performed on a test set composed of images representative of those normally found in a screening set. When determining whether an image contains red lesions the system achieves a sensitivity of 100% at a specificity of 87%. The method is compared with several different automatic systems and is shown to outperform them all. Performance is close to that of a human expert examining the images for the presence of red lesions.
Automatic measurement and representation of prosodic features
NASA Astrophysics Data System (ADS)
Ying, Goangshiuan Shawn
Effective measurement and representation of prosodic features of the acoustic signal for use in automatic speech recognition and understanding systems is the goal of this work. Prosodic features-stress, duration, and intonation-are variations of the acoustic signal whose domains are beyond the boundaries of each individual phonetic segment. Listeners perceive prosodic features through a complex combination of acoustic correlates such as intensity, duration, and fundamental frequency (F0). We have developed new tools to measure F0 and intensity features. We apply a probabilistic global error correction routine to an Average Magnitude Difference Function (AMDF) pitch detector. A new short-term frequency-domain Teager energy algorithm is used to measure the energy of a speech signal. We have conducted a series of experiments performing lexical stress detection on words in continuous English speech from two speech corpora. We have experimented with two different approaches, a segment-based approach and a rhythm unit-based approach, in lexical stress detection. The first approach uses pattern recognition with energy- and duration-based measurements as features to build Bayesian classifiers to detect the stress level of a vowel segment. In the second approach we define rhythm unit and use only the F0-based measurement and a scoring system to determine the stressed segment in the rhythm unit. A duration-based segmentation routine was developed to break polysyllabic words into rhythm units. The long-term goal of this work is to develop a system that can effectively detect the stress pattern for each word in continuous speech utterances. Stress information will be integrated as a constraint for pruning the word hypotheses in a word recognition system based on hidden Markov models.
Planetary Gearbox Fault Detection Using Vibration Separation Techniques
NASA Technical Reports Server (NTRS)
Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason
2011-01-01
Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.
Mortise terrorism on the main pipelines
NASA Astrophysics Data System (ADS)
Komarov, V. A.; Nigrey, N. N.; Bronnikov, D. A.; Nigrey, A. A.
2018-01-01
The research aim of the work is to analyze the effectiveness of the methods of physical protection of main pipelines proposed in the article from the "mortise terrorism" A mathematical model has been developed that made it possible to predict the dynamics of "mortise terrorism" in the short term. An analysis of the effectiveness of physical protection methods proposed in the article to prevent unauthorized impacts on the objects under investigation is given. A variant of a video analytics system has been developed that allows detecting violators with recognition of the types of work they perform at a distance of 150 meters in conditions of complex natural backgrounds and precipitation. Probability of detection is 0.959.
A Survey of Research in Supervisory Control and Data Acquisition (SCADA)
2014-09-01
distance learning .2 The data acquired may be operationally oriented and used to better run the system, or it could be strategic in nature and used to...Technically the SCADA system is composed of the information technology (IT) that provides the human- machine interface (HMI) and stores and analyzes the data...systems work by learning what normal or benign traffic is and reporting on any abnormal traffic. These systems have the potential to detect zero-day
Development of a Daily Life Support System for Elderly Persons with Dementia in the Care Facility.
Takahashi, Yoshiyuki; Kawai, Toshihiro; Komeda, Takashi
2015-01-01
Taking care for dementia persons with BPSD is burdening on caregivers. To reduce caregivers' burdens and improve dementia persons' quality of life, monitoring and communication intervention system has been proposed. A part of the system, wandering and falling down detection system has been developed. It is designed based on the requirement of the caregivers working in the care facility. Functional test was carried out and had positive impressions from the caregivers.
Real-time monitoring of drowsiness through wireless nanosensor systems
NASA Astrophysics Data System (ADS)
Ramasamy, Mouli; Varadan, Vijay K.
2016-04-01
Detection of sleepiness and drowsiness in human beings has been a daunting task for both engineering and medical technologies. Accuracy, precision and promptness of detection have always been an issue that has to be dealt by technologists. Generally, the bio potential signals - ECG, EOG, EEG and EMG are used to classify and discriminate sleep from being awake. However, the potential drawbacks may be high false detections, low precision, obtrusiveness, aftermath analysis, etc. To overcome the disadvantages, this paper reviews the design aspects of a wireless and a real time monitoring system to track sleep and detect fatigue. This concept involves the use of EOG and EEG to measure the blink rate and asses the person's condition. In this user friendly and intuitive approach, EOG and EEG signals are obtained by the textile based nanosensors mounted on the inner side of a flexible headband. The acquired signals are then electrically transmitted to the data processing and transmission unit, which transmits the processed data to the receiver/monitoring module through ZigBee communication. This system is equipped with a software program to process, feature extract, analyze, display and store the information. Thereby, immediate detection of a person falling asleep is made feasible and, tracking the sleep cycle continuously provides an insight about the fatigue level. This approach of using a wireless, real time, dry sensor on a flexible substrate mitigates obtrusiveness that is expected from a wearable system. We have previously presented the results of the aforementioned wearable systems. This paper aims to extend our work conceptually through a review of engineering and medical techniques involved in wearable systems to detect drowsiness.
Li, Yunji; Wu, QingE; Peng, Li
2018-01-23
In this paper, a synthesized design of fault-detection filter and fault estimator is considered for a class of discrete-time stochastic systems in the framework of event-triggered transmission scheme subject to unknown disturbances and deception attacks. A random variable obeying the Bernoulli distribution is employed to characterize the phenomena of the randomly occurring deception attacks. To achieve a fault-detection residual is only sensitive to faults while robust to disturbances, a coordinate transformation approach is exploited. This approach can transform the considered system into two subsystems and the unknown disturbances are removed from one of the subsystems. The gain of fault-detection filter is derived by minimizing an upper bound of filter error covariance. Meanwhile, system faults can be reconstructed by the remote fault estimator. An recursive approach is developed to obtain fault estimator gains as well as guarantee the fault estimator performance. Furthermore, the corresponding event-triggered sensor data transmission scheme is also presented for improving working-life of the wireless sensor node when measurement information are aperiodically transmitted. Finally, a scaled version of an industrial system consisting of local PC, remote estimator and wireless sensor node is used to experimentally evaluate the proposed theoretical results. In particular, a novel fault-alarming strategy is proposed so that the real-time capacity of fault-detection is guaranteed when the event condition is triggered.
NASA Technical Reports Server (NTRS)
Vanschalkwyk, Christiaan Mauritz
1991-01-01
Many applications require that a control system must be tolerant to the failure of its components. This is especially true for large space-based systems that must work unattended and with long periods between maintenance. Fault tolerance can be obtained by detecting the failure of the control system component, determining which component has failed, and reconfiguring the system so that the failed component is isolated from the controller. Component failure detection experiments that were conducted on an experimental space structure, the NASA Langley Mini-Mast are presented. Two methodologies for failure detection and isolation (FDI) exist that do not require the specification of failure modes and are applicable to both actuators and sensors. These methods are known as the Failure Detection Filter and the method of Generalized Parity Relations. The latter method was applied to three different sensor types on the Mini-Mast. Failures were simulated in input-output data that were recorded during operation of the Mini-Mast. Both single and double sensor parity relations were tested and the effect of several design parameters on the performance of these relations is discussed. The detection of actuator failures is also treated. It is shown that in all the cases it is possible to identify the parity relations directly from input-output data. Frequency domain analysis is used to explain the behavior of the parity relations.