Sample records for detection task results

  1. Flexibility in Visual Working Memory: Accurate Change Detection in the Face of Irrelevant Variations in Position

    PubMed Central

    Woodman, Geoffrey F.; Vogel, Edward K.; Luck, Steven J.

    2012-01-01

    Many recent studies of visual working memory have used change-detection tasks in which subjects view sequential displays and are asked to report whether they are identical or if one object has changed. A key question is whether the memory system used to perform this task is sufficiently flexible to detect changes in object identity independent of spatial transformations, but previous research has yielded contradictory results. To address this issue, the present study compared standard change-detection tasks with tasks in which the objects varied in size or position between successive arrays. Performance was nearly identical across the standard and transformed tasks unless the task implicitly encouraged spatial encoding. These results resolve the discrepancies in prior studies and demonstrate that the visual working memory system can detect changes in object identity across spatial transformations. PMID:22287933

  2. Multi-Tasking and Choice of Training Data Influencing Parietal ERP Expression and Single-Trial Detection-Relevance for Neuroscience and Clinical Applications.

    PubMed

    Kirchner, Elsa A; Kim, Su Kyoung

    2018-01-01

    Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent ( targets ), motor-task irrelevant infrequent ( deviants ), and motor-task irrelevant frequent ( standards ) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention.

  3. Is Neural Activity Detected by ERP-Based Brain-Computer Interfaces Task Specific?

    PubMed

    Wenzel, Markus A; Almeida, Inês; Blankertz, Benjamin

    2016-01-01

    Brain-computer interfaces (BCIs) that are based on event-related potentials (ERPs) can estimate to which stimulus a user pays particular attention. In typical BCIs, the user silently counts the selected stimulus (which is repeatedly presented among other stimuli) in order to focus the attention. The stimulus of interest is then inferred from the electroencephalogram (EEG). Detecting attention allocation implicitly could be also beneficial for human-computer interaction (HCI), because it would allow software to adapt to the user's interest. However, a counting task would be inappropriate for the envisaged implicit application in HCI. Therefore, the question was addressed if the detectable neural activity is specific for silent counting, or if it can be evoked also by other tasks that direct the attention to certain stimuli. Thirteen people performed a silent counting, an arithmetic and a memory task. The tasks required the subjects to pay particular attention to target stimuli of a random color. The stimulus presentation was the same in all three tasks, which allowed a direct comparison of the experimental conditions. Classifiers that were trained to detect the targets in one task, according to patterns present in the EEG signal, could detect targets in all other tasks (irrespective of some task-related differences in the EEG). The neural activity detected by the classifiers is not strictly task specific but can be generalized over tasks and is presumably a result of the attention allocation or of the augmented workload. The results may hold promise for the transfer of classification algorithms from BCI research to implicit relevance detection in HCI.

  4. Multi-Tasking and Choice of Training Data Influencing Parietal ERP Expression and Single-Trial Detection—Relevance for Neuroscience and Clinical Applications

    PubMed Central

    Kirchner, Elsa A.; Kim, Su Kyoung

    2018-01-01

    Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent (targets), motor-task irrelevant infrequent (deviants), and motor-task irrelevant frequent (standards) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention. PMID:29636660

  5. Feature integration theory revisited: dissociating feature detection and attentional guidance in visual search.

    PubMed

    Chan, Louis K H; Hayward, William G

    2009-02-01

    In feature integration theory (FIT; A. Treisman & S. Sato, 1990), feature detection is driven by independent dimensional modules, and other searches are driven by a master map of locations that integrates dimensional information into salience signals. Although recent theoretical models have largely abandoned this distinction, some observed results are difficult to explain in its absence. The present study measured dimension-specific performance during detection and localization, tasks that require operation of dimensional modules and the master map, respectively. Results showed a dissociation between tasks in terms of both dimension-switching costs and cross-dimension attentional capture, reflecting a dimension-specific nature for detection tasks and a dimension-general nature for localization tasks. In a feature-discrimination task, results precluded an explanation based on response mode. These results are interpreted to support FIT's postulation that different mechanisms are involved in parallel and focal attention searches. This indicates that the FIT architecture should be adopted to explain the current results and that a variety of visual attention findings can be addressed within this framework. Copyright 2009 APA, all rights reserved.

  6. How do we watch images? A case of change detection and quality estimation

    NASA Astrophysics Data System (ADS)

    Radun, Jenni; Leisti, Tuomas; Virtanen, Toni; Nyman, Göte

    2012-01-01

    The most common tasks in subjective image estimation are change detection (a detection task) and image quality estimation (a preference task). We examined how the task influences the gaze behavior when comparing detection and preference tasks. The eye movements of 16 naïve observers were recorded with 8 observers in both tasks. The setting was a flicker paradigm, where the observers see a non-manipulated image, a manipulated version of the image and again the non-manipulated image and estimate the difference they perceived in them. The material was photographic material with different image distortions and contents. To examine the spatial distribution of fixations, we defined the regions of interest using a memory task and calculated information entropy to estimate how concentrated the fixations were on the image plane. The quality task was faster and needed fewer fixations and the first eight fixations were more concentrated on certain image areas than the change detection task. The bottom-up influences of the image also caused more variation to the gaze behavior in the quality estimation task than in the change detection task The results show that the quality estimation is faster and the regions of interest are emphasized more on certain images compared with the change detection task that is a scan task where the whole image is always thoroughly examined. In conclusion, in subjective image estimation studies it is important to think about the task.

  7. Limits of Spatial Attention in Three-Dimensional Space and Dual-task Driving Performance

    PubMed Central

    Andersen, George J.; Ni, Rui; Bian, Zheng; Kang, Julie

    2010-01-01

    The present study examined the limits of spatial attention while performing two driving relevant tasks that varied in depth. The first task was to maintain a fixed headway distance behind a lead vehicle that varied speed. The second task was to detect a light-change target in an array of lights located above the roadway. In Experiment 1 the light detection task required drivers to encode color and location. The results indicated that reaction time to detect a light-change target increased and accuracy decreased as a function of the horizontal location of the light-change target and as a function of the distance from the driver. In a second experiment the light change task was changed to a singleton search (detect the onset of a yellow light) and the workload of the car following task was systematically varied. The results of Experiment 2 indicated that RT increased as a function of task workload, the 2D position of the light-change target and the distance of the light-change target. A multiple regression analysis indicated that the effect of distance on light detection performance was not due to changes in the projected size of the light target. In Experiment 3 we found that the distance effect in detecting a light change could not be explained by the location of eye fixations. The results demonstrate that when drivers attend to a roadway scene attention is limited in three-dimensional space. These results have important implications for developing tests for assessing crash risk among drivers as well as the design of in vehicle technologies such as head-up displays. PMID:21094336

  8. What you fear will appear: detection of schematic spiders in spider fear.

    PubMed

    Peira, Nathalie; Golkar, Armita; Larsson, Maria; Wiens, Stefan

    2010-01-01

    Various experimental tasks suggest that fear guides attention. However, because these tasks often lack ecological validity, it is unclear to what extent results from these tasks can be generalized to real-life situations. In change detection tasks, a brief interruption of the visual input (i.e., a blank interval or a scene cut) often results in undetected changes in the scene. This setup resembles real-life viewing behavior and is used here to increase ecological validity of the attentional task without compromising control over the stimuli presented. Spider-fearful and nonfearful women detected schematic spiders and flowers that were added to one of two identical background pictures that alternated with a brief blank in between them (i.e., flicker paradigm). Results showed that spider-fearful women detected spiders (but not flowers) faster than did nonfearful women. Because spiders and flowers had similar low-level features, these findings suggest that fear guides attention on the basis of object features rather than simple low-level features.

  9. Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network.

    PubMed

    Li, Yuexiang; Shen, Linlin

    2018-02-11

    Skin lesions are a severe disease globally. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons: low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is very useful to increase the accuracy and efficiency of pathologists. In this paper, we proposed two deep learning methods to address three main tasks emerging in the area of skin lesion image processing, i.e., lesion segmentation (task 1), lesion dermoscopic feature extraction (task 2) and lesion classification (task 3). A deep learning framework consisting of two fully convolutional residual networks (FCRN) is proposed to simultaneously produce the segmentation result and the coarse classification result. A lesion index calculation unit (LICU) is developed to refine the coarse classification results by calculating the distance heat-map. A straight-forward CNN is proposed for the dermoscopic feature extraction task. The proposed deep learning frameworks were evaluated on the ISIC 2017 dataset. Experimental results show the promising accuracies of our frameworks, i.e., 0.753 for task 1, 0.848 for task 2 and 0.912 for task 3 were achieved.

  10. Image patch-based method for automated classification and detection of focal liver lesions on CT

    NASA Astrophysics Data System (ADS)

    Safdari, Mustafa; Pasari, Raghav; Rubin, Daniel; Greenspan, Hayit

    2013-03-01

    We developed a method for automated classification and detection of liver lesions in CT images based on image patch representation and bag-of-visual-words (BoVW). BoVW analysis has been extensively used in the computer vision domain to analyze scenery images. In the current work we discuss how it can be used for liver lesion classification and detection. The methodology includes building a dictionary for a training set using local descriptors and representing a region in the image using a visual word histogram. Two tasks are described: a classification task, for lesion characterization, and a detection task in which a scan window moves across the image and is determined to be normal liver tissue or a lesion. Data: In the classification task 73 CT images of liver lesions were used, 25 images having cysts, 24 having metastasis and 24 having hemangiomas. A radiologist circumscribed the lesions, creating a region of interest (ROI), in each of the images. He then provided the diagnosis, which was established either by biopsy or clinical follow-up. Thus our data set comprises 73 images and 73 ROIs. In the detection task, a radiologist drew ROIs around each liver lesion and two regions of normal liver, for a total of 159 liver lesion ROIs and 146 normal liver ROIs. The radiologist also demarcated the liver boundary. Results: Classification results of more than 95% were obtained. In the detection task, F1 results obtained is 0.76. Recall is 84%, with precision of 73%. Results show the ability to detect lesions, regardless of shape.

  11. Dependency of human target detection performance on clutter and quality of supporting image analysis algorithms in a video surveillance task

    NASA Astrophysics Data System (ADS)

    Huber, Samuel; Dunau, Patrick; Wellig, Peter; Stein, Karin

    2017-10-01

    Background: In target detection, the success rates depend strongly on human observer performances. Two prior studies tested the contributions of target detection algorithms and prior training sessions. The aim of this Swiss-German cooperation study was to evaluate the dependency of human observer performance on the quality of supporting image analysis algorithms. Methods: The participants were presented 15 different video sequences. Their task was to detect all targets in the shortest possible time. Each video sequence showed a heavily cluttered simulated public area from a different viewing angle. In each video sequence, the number of avatars in the area was altered to 100, 150 and 200 subjects. The number of targets appearing was kept at 10%. The number of marked targets varied from 0, 5, 10, 20 up to 40 marked subjects while keeping the positive predictive value of the detection algorithm at 20%. During the task, workload level was assessed by applying an acoustic secondary task. Detection rates and detection times for the targets were analyzed using inferential statistics. Results: The study found Target Detection Time to increase and Target Detection Rates to decrease with increasing numbers of avatars. The same is true for the Secondary Task Reaction Time while there was no effect on Secondary Task Hit Rate. Furthermore, we found a trend for a u-shaped correlation between the numbers of markings and RTST indicating increased workload. Conclusion: The trial results may indicate useful criteria for the design of training and support of observers in observational tasks.

  12. Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network

    PubMed Central

    2018-01-01

    Skin lesions are a severe disease globally. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons: low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is very useful to increase the accuracy and efficiency of pathologists. In this paper, we proposed two deep learning methods to address three main tasks emerging in the area of skin lesion image processing, i.e., lesion segmentation (task 1), lesion dermoscopic feature extraction (task 2) and lesion classification (task 3). A deep learning framework consisting of two fully convolutional residual networks (FCRN) is proposed to simultaneously produce the segmentation result and the coarse classification result. A lesion index calculation unit (LICU) is developed to refine the coarse classification results by calculating the distance heat-map. A straight-forward CNN is proposed for the dermoscopic feature extraction task. The proposed deep learning frameworks were evaluated on the ISIC 2017 dataset. Experimental results show the promising accuracies of our frameworks, i.e., 0.753 for task 1, 0.848 for task 2 and 0.912 for task 3 were achieved. PMID:29439500

  13. Effects of platooning on signal-detection performance, workload, and stress: A driving simulator study.

    PubMed

    Heikoop, Daniël D; de Winter, Joost C F; van Arem, Bart; Stanton, Neville A

    2017-04-01

    Platooning, whereby automated vehicles travel closely together in a group, is attractive in terms of safety and efficiency. However, concerns exist about the psychological state of the platooning driver, who is exempted from direct control, yet remains responsible for monitoring the outside environment to detect potential threats. By means of a driving simulator experiment, we investigated the effects on recorded and self-reported measures of workload and stress for three task-instruction conditions: (1) No Task, in which participants had to monitor the road, (2) Voluntary Task, in which participants could do whatever they wanted, and (3) Detection Task, in which participants had to detect red cars. Twenty-two participants performed three 40-min runs in a constant-speed platoon, one condition per run in counterbalanced order. Contrary to some classic literature suggesting that humans are poor monitors, in the Detection Task condition participants attained a high mean detection rate (94.7%) and a low mean false alarm rate (0.8%). Results of the Dundee Stress State Questionnaire indicated that automated platooning was less distressing in the Voluntary Task than in the Detection Task and No Task conditions. In terms of heart rate variability, the Voluntary Task condition yielded a lower power in the low-frequency range relative to the high-frequency range (LF/HF ratio) than the Detection Task condition. Moreover, a strong time-on-task effect was found, whereby the mean heart rate dropped from the first to the third run. In conclusion, participants are able to remain attentive for a prolonged platooning drive, and the type of monitoring task has effects on the driver's psychological state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The Attentional Boost Effect: Transient increases in attention to one task enhance performance in a second task.

    PubMed

    Swallow, Khena M; Jiang, Yuhong V

    2010-04-01

    Recent work on event perception suggests that perceptual processing increases when events change. An important question is how such changes influence the way other information is processed, particularly during dual-task performance. In this study, participants monitored a long series of distractor items for an occasional target as they simultaneously encoded unrelated background scenes. The appearance of an occasional target could have two opposite effects on the secondary task: It could draw attention away from the second task, or, as a change in the ongoing event, it could improve secondary task performance. Results were consistent with the second possibility. Memory for scenes presented simultaneously with the targets was better than memory for scenes that preceded or followed the targets. This effect was observed when the primary detection task involved visual feature oddball detection, auditory oddball detection, and visual color-shape conjunction detection. It was eliminated when the detection task was omitted, and when it required an arbitrary response mapping. The appearance of occasional, task-relevant events appears to trigger a temporal orienting response that facilitates processing of concurrently attended information (Attentional Boost Effect). Copyright 2009 Elsevier B.V. All rights reserved.

  15. The Attentional Boost Effect: Transient Increases in Attention to One Task Enhance Performance in a Second Task

    PubMed Central

    Swallow, Khena M.; Jiang, Yuhong V.

    2009-01-01

    Recent work on event perception suggests that perceptual processing increases when events change. An important question is how such changes influence the way other information is processed, particularly during dual-task performance. In this study, participants monitored a long series of distractor items for an occasional target as they simultaneously encoded unrelated background scenes. The appearance of an occasional target could have two opposite effects on the secondary task: It could draw attention away from the second task, or, as a change in the ongoing event, it could improve secondary task performance. Results were consistent with the second possibility. Memory for scenes presented simultaneously with the targets was better than memory for scenes that preceded or followed the targets. This effect was observed when the primary detection task involved visual feature oddball detection, auditory oddball detection, and visual color-shape conjunction detection. It was eliminated when the detection task was omitted, and when it required an arbitrary response mapping. The appearance of occasional, task-relevant events appears to trigger a temporal orienting response that facilitates processing of concurrently attended information (Attentional Boost Effect). PMID:20080232

  16. Efficiency of the human observer detecting random signals in random backgrounds

    PubMed Central

    Park, Subok; Clarkson, Eric; Kupinski, Matthew A.; Barrett, Harrison H.

    2008-01-01

    The efficiencies of the human observer and the channelized-Hotelling observer relative to the ideal observer for signal-detection tasks are discussed. Both signal-known-exactly (SKE) tasks and signal-known-statistically (SKS) tasks are considered. Signal location is uncertain for the SKS tasks, and lumpy backgrounds are used for background uncertainty in both cases. Markov chain Monte Carlo methods are employed to determine ideal-observer performance on the detection tasks. Psychophysical studies are conducted to compute human-observer performance on the same tasks. Efficiency is computed as the squared ratio of the detectabilities of the observer of interest to the ideal observer. Human efficiencies are approximately 2.1% and 24%, respectively, for the SKE and SKS tasks. The results imply that human observers are not affected as much as the ideal observer by signal-location uncertainty even though the ideal observer outperforms the human observer for both tasks. Three different simplified pinhole imaging systems are simulated, and the humans and the model observers rank the systems in the same order for both the SKE and the SKS tasks. PMID:15669610

  17. Driver Vigilance in Automated Vehicles: Hazard Detection Failures Are a Matter of Time.

    PubMed

    Greenlee, Eric T; DeLucia, Patricia R; Newton, David C

    2018-06-01

    The primary aim of the current study was to determine whether monitoring the roadway for hazards during automated driving results in a vigilance decrement. Although automated vehicles are relatively novel, the nature of human-automation interaction within them has the classic hallmarks of a vigilance task. Drivers must maintain attention for prolonged periods of time to detect and respond to rare and unpredictable events, for example, roadway hazards that automation may be ill equipped to detect. Given the similarity with traditional vigilance tasks, we predicted that drivers of a simulated automated vehicle would demonstrate a vigilance decrement in hazard detection performance. Participants "drove" a simulated automated vehicle for 40 minutes. During that time, their task was to monitor the roadway for roadway hazards. As predicted, hazard detection rate declined precipitously, and reaction times slowed as the drive progressed. Further, subjective ratings of workload and task-related stress indicated that sustained monitoring is demanding and distressing and it is a challenge to maintain task engagement. Monitoring the roadway for potential hazards during automated driving results in workload, stress, and performance decrements similar to those observed in traditional vigilance tasks. To the degree that vigilance is required of automated vehicle drivers, performance errors and associated safety risks are likely to occur as a function of time on task. Vigilance should be a focal safety concern in the development of vehicle automation.

  18. Psychophysical Models for Signal Detection with Time Varying Uncertainty. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gai, E.

    1975-01-01

    Psychophysical models for the behavior of the human operator in detection tasks which include change in detectability, correlation between observations and deferred decisions are developed. Classical Signal Detection Theory (SDT) is discussed and its emphasis on the sensory processes is contrasted to decision strategies. The analysis of decision strategies utilizes detection tasks with time varying signal strength. The classical theory is modified to include such tasks and several optimal decision strategies are explored. Two methods of classifying strategies are suggested. The first method is similar to the analysis of ROC curves, while the second is based on the relation between the criterion level (CL) and the detectability. Experiments to verify the analysis of tasks with changes of signal strength are designed. The results show that subjects are aware of changes in detectability and tend to use strategies that involve changes in the CL's.

  19. Impact of three task demand factors on simulated unmanned system intelligence, surveillance, and reconnaissance operations.

    PubMed

    Abich, Julian; Reinerman-Jones, Lauren; Matthews, Gerald

    2017-06-01

    The present study investigated how three task demand factors influenced performance, subjective workload and stress of novice intelligence, surveillance, and reconnaissance operators within a simulation of an unmanned ground vehicle. Manipulations were task type, dual-tasking and event rate. Participants were required to discriminate human targets within a street scene from a direct video feed (threat detection [TD] task) and detect changes in symbols presented in a map display (change detection [CD] task). Dual-tasking elevated workload and distress, and impaired performance for both tasks. However, with increasing event rate, CD task deteriorated, but TD improved. Thus, standard workload models provide a better guide to evaluating the demands of abstract symbols than to processing realistic human characters. Assessment of stress and workload may be especially important in the design and evaluation of systems in which human character critical signals must be detected in video images. Practitioner Summary: This experiment assessed subjective workload and stress during threat and CD tasks performed alone and in combination. Results indicated an increase in event rate led to significant improvements in performance during TD, but decrements during CD, yet both had associated increases in workload and engagement.

  20. Perseveration effects in detection tasks with correlated decision intervals. [applied to pilot collision avoidance

    NASA Technical Reports Server (NTRS)

    Gai, E. G.; Curry, R. E.

    1978-01-01

    An investigation of the behavior of the human decisionmaker is described for a task related to the problem of a pilot using a traffic situation display to avoid collisions. This sequential signal detection task is characterized by highly correlated signals with time varying strength. Experimental results are presented and the behavior of the observers is analyzed using the theory of Markov processes and classical signal detection theory. Mathematical models are developed which describe the main result of the experiment: that correlation in sequential signals induced perseveration in the observer response and a strong tendency to repeat their previous decision, even when they were wrong.

  1. Searching for emotion or race: task-irrelevant facial cues have asymmetrical effects.

    PubMed

    Lipp, Ottmar V; Craig, Belinda M; Frost, Mareka J; Terry, Deborah J; Smith, Joanne R

    2014-01-01

    Facial cues of threat such as anger and other race membership are detected preferentially in visual search tasks. However, it remains unclear whether these facial cues interact in visual search. If both cues equally facilitate search, a symmetrical interaction would be predicted; anger cues should facilitate detection of other race faces and cues of other race membership should facilitate detection of anger. Past research investigating this race by emotional expression interaction in categorisation tasks revealed an asymmetrical interaction. This suggests that cues of other race membership may facilitate the detection of angry faces but not vice versa. Utilising the same stimuli and procedures across two search tasks, participants were asked to search for targets defined by either race or emotional expression. Contrary to the results revealed in the categorisation paradigm, cues of anger facilitated detection of other race faces whereas differences in race did not differentially influence detection of emotion targets.

  2. Drivers' and non-drivers' performance in a change detection task with static driving scenes: is there a benefit of experience?

    PubMed

    Zhao, Nan; Chen, Wenfeng; Xuan, Yuming; Mehler, Bruce; Reimer, Bryan; Fu, Xiaolan

    2014-01-01

    The 'looked-but-failed-to-see' phenomenon is crucial to driving safety. Previous research utilising change detection tasks related to driving has reported inconsistent effects of driver experience on the ability to detect changes in static driving scenes. Reviewing these conflicting results, we suggest that drivers' increased ability to detect changes will only appear when the task requires a pattern of visual attention distribution typical of actual driving. By adding a distant fixation point on the road image, we developed a modified change blindness paradigm and measured detection performance of drivers and non-drivers. Drivers performed better than non-drivers only in scenes with a fixation point. Furthermore, experience effect interacted with the location of the change and the relevance of the change to driving. These results suggest that learning associated with driving experience reflects increased skill in the efficient distribution of visual attention across both the central focus area and peripheral objects. This article provides an explanation for the previously conflicting reports of driving experience effects in change detection tasks. We observed a measurable benefit of experience in static driving scenes, using a modified change blindness paradigm. These results have translational opportunities for picture-based training and testing tools to improve driver skill.

  3. Signal detection theory applied to three visual search tasks--identification, yes/no detection and localization.

    PubMed

    Cameron, E Leslie; Tai, Joanna C; Eckstein, Miguel P; Carrasco, Marisa

    2004-01-01

    Adding distracters to a display impairs performance on visual tasks (i.e. the set-size effect). While keeping the display characteristics constant, we investigated this effect in three tasks: 2 target identification, yes-no detection with 2 targets, and 8-alternative localization. A Signal Detection Theory (SDT) model, tailored for each task, accounts for the set-size effects observed in identification and localization tasks, and slightly under-predicts the set-size effect in a detection task. Given that sensitivity varies as a function of spatial frequency (SF), we measured performance in each of these three tasks in neutral and peripheral precue conditions for each of six spatial frequencies (0.5-12 cpd). For all spatial frequencies tested, performance on the three tasks decreased as set size increased in the neutral precue condition, and the peripheral precue reduced the effect. Larger set-size effects were observed at low SFs in the identification and localization tasks. This effect can be described using the SDT model, but was not predicted by it. For each of these tasks we also established the extent to which covert attention modulates performance across a range of set sizes. A peripheral precue substantially diminished the set-size effect and improved performance, even at set size 1. These results provide support for distracter exclusion, and suggest that signal enhancement may also be a mechanism by which covert attention can impose its effect.

  4. Neuroimaging Evidence for 2 Types of Plasticity in Association with Visual Perceptual Learning.

    PubMed

    Shibata, Kazuhisa; Sasaki, Yuka; Kawato, Mitsuo; Watanabe, Takeo

    2016-09-01

    Visual perceptual learning (VPL) is long-term performance improvement as a result of perceptual experience. It is unclear whether VPL is associated with refinement in representations of the trained feature (feature-based plasticity), improvement in processing of the trained task (task-based plasticity), or both. Here, we provide empirical evidence that VPL of motion detection is associated with both types of plasticity which occur predominantly in different brain areas. Before and after training on a motion detection task, subjects' neural responses to the trained motion stimuli were measured using functional magnetic resonance imaging. In V3A, significant response changes after training were observed specifically to the trained motion stimulus but independently of whether subjects performed the trained task. This suggests that the response changes in V3A represent feature-based plasticity in VPL of motion detection. In V1 and the intraparietal sulcus, significant response changes were found only when subjects performed the trained task on the trained motion stimulus. This suggests that the response changes in these areas reflect task-based plasticity. These results collectively suggest that VPL of motion detection is associated with the 2 types of plasticity, which occur in different areas and therefore have separate mechanisms at least to some degree. © The Author 2016. Published by Oxford University Press.

  5. Sustained attention ability in schizophrenia: Investigation of conflict monitoring mechanisms.

    PubMed

    Hoonakker, Marc; Doignon-Camus, Nadège; Marques-Carneiro, José Eduardo; Bonnefond, Anne

    2017-09-01

    The main goal of the current study was to assess, with a time-on-task approach, sustained attention ability in schizophrenia, and to investigate conflict monitoring underlying this ability. Behavioral and event-related potentials data (N2 and P3a amplitudes) were recorded in a long-lasting sustained attention Go/NoGo task (sustained attention to response task, SART), over a period of 30min, in 29 patients with schizophrenia and 29 pair-matched healthy subjects. Our results revealed spared sustained attention ability in patients throughout the task. Impairment of conflict detection (N2) in patients was particularly significant at the end of the task. Furthermore, both schizophrenia and healthy subjects exhibited a decline in conflict detection from the beginning to the middle of the task. Whereas controls' conflict detection recovered in the last part of the task, patients' did not, suggesting a deficit in recovery processes reflecting a lack of additional resources sustained attention Go/NoGo task. Conflict resolution (P3a) was preserved throughout the task in both groups. Conflict monitoring processes are increasingly impaired in schizophrenia during a long-lasting sustained attention Go/NoGo task. This impairment at the end of the task may rely on deficit in recovery processes, rather than a deficit in conflict detection per se in schizophrenia. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  6. Blur Detection is Unaffected by Cognitive Load.

    PubMed

    Loschky, Lester C; Ringer, Ryan V; Johnson, Aaron P; Larson, Adam M; Neider, Mark; Kramer, Arthur F

    2014-03-01

    Blur detection is affected by retinal eccentricity, but is it also affected by attentional resources? Research showing effects of selective attention on acuity and contrast sensitivity suggests that allocating attention should increase blur detection. However, research showing that blur affects selection of saccade targets suggests that blur detection may be pre-attentive. To investigate this question, we carried out experiments in which viewers detected blur in real-world scenes under varying levels of cognitive load manipulated by the N -back task. We used adaptive threshold estimation to measure blur detection thresholds at 0°, 3°, 6°, and 9° eccentricity. Participants carried out blur detection as a single task, a single task with to-be-ignored letters, or an N-back task with four levels of cognitive load (0, 1, 2, or 3-back). In Experiment 1, blur was presented gaze-contingently for occasional single eye fixations while participants viewed scenes in preparation for an easy picture recognition memory task, and the N -back stimuli were presented auditorily. The results for three participants showed a large effect of retinal eccentricity on blur thresholds, significant effects of N -back level on N -back performance, scene recognition memory, and gaze dispersion, but no effect of N -back level on blur thresholds. In Experiment 2, we replicated Experiment 1 but presented the images tachistoscopically for 200 ms (half with, half without blur), to determine whether gaze-contingent blur presentation in Experiment 1 had produced attentional capture by blur onset during a fixation, thus eliminating any effect of cognitive load on blur detection. The results with three new participants replicated those of Experiment 1, indicating that the use of gaze-contingent blur presentation could not explain the lack of effect of cognitive load on blur detection. Thus, apparently blur detection in real-world scene images is unaffected by attentional resources, as manipulated by the cognitive load produced by the N -back task.

  7. Hippocampus duality: Memory and novelty detection are subserved by distinct mechanisms.

    PubMed

    Barbeau, Emmanuel J; Chauvel, Patrick; Moulin, Christopher J A; Regis, Jean; Liégeois-Chauvel, Catherine

    2017-04-01

    The hippocampus plays a pivotal role both in novelty detection and in long-term memory. The physiological mechanisms underlying these behaviors have yet to be understood in humans. We recorded intracerebral evoked potentials within the hippocampus of epileptic patients (n = 10) during both memory and novelty detection tasks (targets in oddball tasks). We found that memory and detection tasks elicited late local field potentials in the hippocampus during the same period, but of opposite polarity (negative during novelty detection tasks, positive during memory tasks, ∼260-600 ms poststimulus onset, P < 0.05). Critically, these potentials had maximal amplitude on the same contact in the hippocampus for each patient. This pattern did not depend on the task as different types of memory and novelty detection tasks were used. It did not depend on the novelty of the stimulus or the difficulty of the task either. Two different hypotheses are discussed to account for this result: it is either due to the activation of CA1 pyramidal neurons by two different pathways such as the monosynaptic and trisynaptic entorhinal-hippocampus pathways, or to the activation of different neuronal populations, that is, differing either functionally (e.g., novelty/familiarity neurons) or located in different regions of the hippocampus (e.g., CA1/subiculum). In either case, these activities may integrate the activity of two distinct large-scale networks implementing externally or internally oriented, mutually exclusive, brain states. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Individual differences in event-based prospective memory: Evidence for multiple processes supporting cue detection.

    PubMed

    Brewer, Gene A; Knight, Justin B; Marsh, Richard L; Unsworth, Nash

    2010-04-01

    The multiprocess view proposes that different processes can be used to detect event-based prospective memory cues, depending in part on the specificity of the cue. According to this theory, attentional processes are not necessary to detect focal cues, whereas detection of nonfocal cues requires some form of controlled attention. This notion was tested using a design in which we compared performance on a focal and on a nonfocal prospective memory task by participants with high or low working memory capacity. An interaction was found, such that participants with high and low working memory performed equally well on the focal task, whereas the participants with high working memory performed significantly better on the nonfocal task than did their counterparts with low working memory. Thus, controlled attention was only necessary for detecting event-based prospective memory cues in the nonfocal task. These results have implications for theories of prospective memory, the processes necessary for cue detection, and the successful fulfillment of intentions.

  9. Detecting Stress Patterns Is Related to Children's Performance on Reading Tasks

    ERIC Educational Resources Information Center

    Gutierrez-Palma, Nicolas; Raya-Garcia, Manuel; Palma-Reyes, Alfonso

    2009-01-01

    This paper investigates the relationship between the ability to detect changes in prosody and reading performance in Spanish. Participants were children aged 6-8 years who completed tasks involving reading words, reading pseudowords, stressing pseudowords, and reproducing pseudoword stress patterns. Results showed that the capacity to reproduce…

  10. Different Neuroplasticity for Task Targets and Distractors

    PubMed Central

    Spingath, Elsie Y.; Kang, Hyun Sug; Plummer, Thane; Blake, David T.

    2011-01-01

    Adult learning-induced sensory cortex plasticity results in enhanced action potential rates in neurons that have the most relevant information for the task, or those that respond strongly to one sensory stimulus but weakly to its comparison stimulus. Current theories suggest this plasticity is caused when target stimulus evoked activity is enhanced by reward signals from neuromodulatory nuclei. Prior work has found evidence suggestive of nonselective enhancement of neural responses, and suppression of responses to task distractors, but the differences in these effects between detection and discrimination have not been directly tested. Using cortical implants, we defined physiological responses in macaque somatosensory cortex during serial, matched, detection and discrimination tasks. Nonselective increases in neural responsiveness were observed during detection learning. Suppression of responses to task distractors was observed during discrimination learning, and this suppression was specific to cortical locations that sampled responses to the task distractor before learning. Changes in receptive field size were measured as the area of skin that had a significant response to a constant magnitude stimulus, and these areal changes paralleled changes in responsiveness. From before detection learning until after discrimination learning, the enduring changes were selective suppression of cortical locations responsive to task distractors, and nonselective enhancement of responsiveness at cortical locations selective for target and control skin sites. A comparison of observations in prior studies with the observed plasticity effects suggests that the non-selective response enhancement and selective suppression suffice to explain known plasticity phenomena in simple spatial tasks. This work suggests that differential responsiveness to task targets and distractors in primary sensory cortex for a simple spatial detection and discrimination task arise from nonselective increases in response over a broad cortical locus that includes the representation of the task target, and selective suppression of responses to the task distractor within this locus. PMID:21297962

  11. Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex.

    PubMed

    Fritz, Jonathan; Elhilali, Mounya; Shamma, Shihab

    2005-08-01

    Listening is an active process in which attentive focus on salient acoustic features in auditory tasks can influence receptive field properties of cortical neurons. Recent studies showing rapid task-related changes in neuronal spectrotemporal receptive fields (STRFs) in primary auditory cortex of the behaving ferret are reviewed in the context of current research on cortical plasticity. Ferrets were trained on spectral tasks, including tone detection and two-tone discrimination, and on temporal tasks, including gap detection and click-rate discrimination. STRF changes could be measured on-line during task performance and occurred within minutes of task onset. During spectral tasks, there were specific spectral changes (enhanced response to tonal target frequency in tone detection and discrimination, suppressed response to tonal reference frequency in tone discrimination). However, only in the temporal tasks, the STRF was changed along the temporal dimension by sharpening temporal dynamics. In ferrets trained on multiple tasks, distinctive and task-specific STRF changes could be observed in the same cortical neurons in successive behavioral sessions. These results suggest that rapid task-related plasticity is an ongoing process that occurs at a network and single unit level as the animal switches between different tasks and dynamically adapts cortical STRFs in response to changing acoustic demands.

  12. Attending to unrelated targets boosts short-term memory for color arrays.

    PubMed

    Makovski, Tal; Swallow, Khena M; Jiang, Yuhong V

    2011-05-01

    Detecting a target typically impairs performance in a second, unrelated task. It has been recently reported however, that detecting a target in a stream of distractors can enhance long-term memory of faces and scenes that were presented concurrently with the target (the attentional boost effect). In this study we ask whether target detection also enhances performance in a visual short-term memory task, where capacity limits are severe. Participants performed two tasks at once: a one shot, color change detection task and a letter-detection task. In Experiment 1, a central letter appeared at the same time as 3 or 5 color patches (memory display). Participants encoded the colors and pressed the spacebar if the letter was a T (target). After a short retention interval, a probe display of color patches appeared. Performance on the change detection task was enhanced when a target, rather than a distractor, appeared with the memory display. This effect was not modulated by memory load or the frequency of trials in which a target appeared. However, there was no enhancement when the target appeared at the same time as the probe display (Experiment 2a) or during the memory retention interval (Experiment 2b). Together these results suggest that detecting a target facilitates the encoding of unrelated information into visual short-term memory. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Visual Distractors Disrupt Audiovisual Integration Regardless of Stimulus Complexity

    PubMed Central

    Gibney, Kyla D.; Aligbe, Enimielen; Eggleston, Brady A.; Nunes, Sarah R.; Kerkhoff, Willa G.; Dean, Cassandra L.; Kwakye, Leslie D.

    2017-01-01

    The intricate relationship between multisensory integration and attention has been extensively researched in the multisensory field; however, the necessity of attention for the binding of multisensory stimuli remains contested. In the current study, we investigated whether diverting attention from well-known multisensory tasks would disrupt integration and whether the complexity of the stimulus and task modulated this interaction. A secondary objective of this study was to investigate individual differences in the interaction of attention and multisensory integration. Participants completed a simple audiovisual speeded detection task and McGurk task under various perceptual load conditions: no load (multisensory task while visual distractors present), low load (multisensory task while detecting the presence of a yellow letter in the visual distractors), and high load (multisensory task while detecting the presence of a number in the visual distractors). Consistent with prior studies, we found that increased perceptual load led to decreased reports of the McGurk illusion, thus confirming the necessity of attention for the integration of speech stimuli. Although increased perceptual load led to longer response times for all stimuli in the speeded detection task, participants responded faster on multisensory trials than unisensory trials. However, the increase in multisensory response times violated the race model for no and low perceptual load conditions only. Additionally, a geometric measure of Miller’s inequality showed a decrease in multisensory integration for the speeded detection task with increasing perceptual load. Surprisingly, we found diverging changes in multisensory integration with increasing load for participants who did not show integration for the no load condition: no changes in integration for the McGurk task with increasing load but increases in integration for the detection task. The results of this study indicate that attention plays a crucial role in multisensory integration for both highly complex and simple multisensory tasks and that attention may interact differently with multisensory processing in individuals who do not strongly integrate multisensory information. PMID:28163675

  14. Visual Distractors Disrupt Audiovisual Integration Regardless of Stimulus Complexity.

    PubMed

    Gibney, Kyla D; Aligbe, Enimielen; Eggleston, Brady A; Nunes, Sarah R; Kerkhoff, Willa G; Dean, Cassandra L; Kwakye, Leslie D

    2017-01-01

    The intricate relationship between multisensory integration and attention has been extensively researched in the multisensory field; however, the necessity of attention for the binding of multisensory stimuli remains contested. In the current study, we investigated whether diverting attention from well-known multisensory tasks would disrupt integration and whether the complexity of the stimulus and task modulated this interaction. A secondary objective of this study was to investigate individual differences in the interaction of attention and multisensory integration. Participants completed a simple audiovisual speeded detection task and McGurk task under various perceptual load conditions: no load (multisensory task while visual distractors present), low load (multisensory task while detecting the presence of a yellow letter in the visual distractors), and high load (multisensory task while detecting the presence of a number in the visual distractors). Consistent with prior studies, we found that increased perceptual load led to decreased reports of the McGurk illusion, thus confirming the necessity of attention for the integration of speech stimuli. Although increased perceptual load led to longer response times for all stimuli in the speeded detection task, participants responded faster on multisensory trials than unisensory trials. However, the increase in multisensory response times violated the race model for no and low perceptual load conditions only. Additionally, a geometric measure of Miller's inequality showed a decrease in multisensory integration for the speeded detection task with increasing perceptual load. Surprisingly, we found diverging changes in multisensory integration with increasing load for participants who did not show integration for the no load condition: no changes in integration for the McGurk task with increasing load but increases in integration for the detection task. The results of this study indicate that attention plays a crucial role in multisensory integration for both highly complex and simple multisensory tasks and that attention may interact differently with multisensory processing in individuals who do not strongly integrate multisensory information.

  15. Task-driven imaging in cone-beam computed tomography.

    PubMed

    Gang, G J; Stayman, J W; Ouadah, S; Ehtiati, T; Siewerdsen, J H

    Conventional workflow in interventional imaging often ignores a wealth of prior information of the patient anatomy and the imaging task. This work introduces a task-driven imaging framework that utilizes such information to prospectively design acquisition and reconstruction techniques for cone-beam CT (CBCT) in a manner that maximizes task-based performance in subsequent imaging procedures. The framework is employed in jointly optimizing tube current modulation, orbital tilt, and reconstruction parameters in filtered backprojection reconstruction for interventional imaging. Theoretical predictors of noise and resolution relates acquisition and reconstruction parameters to task-based detectability. Given a patient-specific prior image and specification of the imaging task, an optimization algorithm prospectively identifies the combination of imaging parameters that maximizes task-based detectability. Initial investigations were performed for a variety of imaging tasks in an elliptical phantom and an anthropomorphic head phantom. Optimization of tube current modulation and view-dependent reconstruction kernel was shown to have greatest benefits for a directional task (e.g., identification of device or tissue orientation). The task-driven approach yielded techniques in which the dose and sharp kernels were concentrated in views contributing the most to the signal power associated with the imaging task. For example, detectability of a line pair detection task was improved by at least three fold compared to conventional approaches. For radially symmetric tasks, the task-driven strategy yielded results similar to a minimum variance strategy in the absence of kernel modulation. Optimization of the orbital tilt successfully avoided highly attenuating structures that can confound the imaging task by introducing noise correlations masquerading at spatial frequencies of interest. This work demonstrated the potential of a task-driven imaging framework to improve image quality and reduce dose beyond that achievable with conventional imaging approaches.

  16. Boosting pitch encoding with audiovisual interactions in congenital amusia.

    PubMed

    Albouy, Philippe; Lévêque, Yohana; Hyde, Krista L; Bouchet, Patrick; Tillmann, Barbara; Caclin, Anne

    2015-01-01

    The combination of information across senses can enhance perception, as revealed for example by decreased reaction times or improved stimulus detection. Interestingly, these facilitatory effects have been shown to be maximal when responses to unisensory modalities are weak. The present study investigated whether audiovisual facilitation can be observed in congenital amusia, a music-specific disorder primarily ascribed to impairments of pitch processing. Amusic individuals and their matched controls performed two tasks. In Task 1, they were required to detect auditory, visual, or audiovisual stimuli as rapidly as possible. In Task 2, they were required to detect as accurately and as rapidly as possible a pitch change within an otherwise monotonic 5-tone sequence that was presented either only auditorily (A condition), or simultaneously with a temporally congruent, but otherwise uninformative visual stimulus (AV condition). Results of Task 1 showed that amusics exhibit typical auditory and visual detection, and typical audiovisual integration capacities: both amusics and controls exhibited shorter response times for audiovisual stimuli than for either auditory stimuli or visual stimuli. Results of Task 2 revealed that both groups benefited from simultaneous uninformative visual stimuli to detect pitch changes: accuracy was higher and response times shorter in the AV condition than in the A condition. The audiovisual improvements of response times were observed for different pitch interval sizes depending on the group. These results suggest that both typical listeners and amusic individuals can benefit from multisensory integration to improve their pitch processing abilities and that this benefit varies as a function of task difficulty. These findings constitute the first step towards the perspective to exploit multisensory paradigms to reduce pitch-related deficits in congenital amusia, notably by suggesting that audiovisual paradigms are effective in an appropriate range of unimodal performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Supporting dynamic change detection: using the right tool for the task.

    PubMed

    Vallières, Benoît R; Hodgetts, Helen M; Vachon, François; Tremblay, Sébastien

    2016-01-01

    Detecting task-relevant changes in a visual scene is necessary for successfully monitoring and managing dynamic command and control situations. Change blindness-the failure to notice visual changes-is an important source of human error. Change History EXplicit (CHEX) is a tool developed to aid change detection and maintain situation awareness; and in the current study we test the generality of its ability to facilitate the detection of changes when this subtask is embedded within a broader dynamic decision-making task. A multitasking air-warfare simulation required participants to perform radar-based subtasks, for which change detection was a necessary aspect of the higher-order goal of protecting one's own ship. In this task, however, CHEX rendered the operator even more vulnerable to attentional failures in change detection and increased perceived workload. Such support was only effective when participants performed a change detection task without concurrent subtasks. Results are interpreted in terms of the NSEEV model of attention behavior (Steelman, McCarley, & Wickens, Hum. Factors 53:142-153, 2011; J. Exp. Psychol. Appl. 19:403-419, 2013), and suggest that decision aids for use in multitasking contexts must be designed to fit within the available workload capacity of the user so that they may truly augment cognition.

  18. Crack Damage Detection Method via Multiple Visual Features and Efficient Multi-Task Learning Model.

    PubMed

    Wang, Baoxian; Zhao, Weigang; Gao, Po; Zhang, Yufeng; Wang, Zhe

    2018-06-02

    This paper proposes an effective and efficient model for concrete crack detection. The presented work consists of two modules: multi-view image feature extraction and multi-task crack region detection. Specifically, multiple visual features (such as texture, edge, etc.) of image regions are calculated, which can suppress various background noises (such as illumination, pockmark, stripe, blurring, etc.). With the computed multiple visual features, a novel crack region detector is advocated using a multi-task learning framework, which involves restraining the variability for different crack region features and emphasizing the separability between crack region features and complex background ones. Furthermore, the extreme learning machine is utilized to construct this multi-task learning model, thereby leading to high computing efficiency and good generalization. Experimental results of the practical concrete images demonstrate that the developed algorithm can achieve favorable crack detection performance compared with traditional crack detectors.

  19. Identification of Swallowing Tasks From a Modified Barium Swallow Study That Optimize the Detection of Physiological Impairment

    PubMed Central

    Armeson, Kent E.; Hill, Elizabeth G.; Bonilha, Heather Shaw; Martin-Harris, Bonnie

    2017-01-01

    Purpose The purpose of this study was to identify which swallowing task(s) yielded the worst performance during a standardized modified barium swallow study (MBSS) in order to optimize the detection of swallowing impairment. Method This secondary data analysis of adult MBSSs estimated the probability of each swallowing task yielding the derived Modified Barium Swallow Impairment Profile (MBSImP™©; Martin-Harris et al., 2008) Overall Impression (OI; worst) scores using generalized estimating equations. The range of probabilities across swallowing tasks was calculated to discern which swallowing task(s) yielded the worst performance. Results Large-volume, thin-liquid swallowing tasks had the highest probabilities of yielding the OI scores for oral containment and airway protection. The cookie swallowing task was most likely to yield OI scores for oral clearance. Several swallowing tasks had nearly equal probabilities (≤ .20) of yielding the OI score. Conclusions The MBSS must represent impairment while requiring boluses that challenge the swallowing system. No single swallowing task had a sufficiently high probability to yield the identification of the worst score for each physiological component. Omission of swallowing tasks will likely fail to capture the most severe impairment for physiological components critical for safe and efficient swallowing. Results provide further support for standardized, well-tested protocols during MBSS. PMID:28614846

  20. Virtual reality-based navigation task to reveal obstacle avoidance performance in individuals with visuospatial neglect.

    PubMed

    Aravind, Gayatri; Darekar, Anuja; Fung, Joyce; Lamontagne, Anouk

    2015-03-01

    Persons with post-stroke visuospatial neglect (VSN) often collide with moving obstacles while walking. It is not well understood whether the collisions occur as a result of attentional-perceptual deficits caused by VSN or due to post-stroke locomotor deficits. We assessed individuals with VSN on a seated, joystick-driven obstacle avoidance task, thus eliminating the influence of locomotion. Twelve participants with VSN were tested on obstacle detection and obstacle avoidance tasks in a virtual environment that included three obstacles approaching head-on or 30 (°) contralesionally/ipsilesionally. Our results indicate that in the detection task, the contralesional and head-on obstacles were detected at closer proximities compared to the ipsilesional obstacle. For the avoidance task collisions were observed only for the contralesional and head-on obstacle approaches. For the contralesional obstacle approach, participants initiated their avoidance strategies at smaller distances from the obstacle and maintained smaller minimum distances from the obstacles. The distance at detection showed a negative association with the distance at the onset of avoidance strategy for all three obstacle approaches. We conclusion the observation of collisions with contralesional and head-on obstacles, in the absence of locomotor burden, provides evidence that attentional-perceptual deficits due to VSN, independent of post-stroke locomotor deficits, alter obstacle avoidance abilities.

  1. Searching for differences in race: is there evidence for preferential detection of other-race faces?

    PubMed

    Lipp, Ottmar V; Terry, Deborah J; Smith, Joanne R; Tellegen, Cassandra L; Kuebbeler, Jennifer; Newey, Mareka

    2009-06-01

    Previous research has suggested that like animal and social fear-relevant stimuli, other-race faces (African American) are detected preferentially in visual search. Three experiments using Chinese or Indonesian faces as other-race faces yielded the opposite pattern of results: faster detection of same-race faces among other-race faces. This apparently inconsistent pattern of results was resolved by showing that Asian and African American faces are detected preferentially in tasks that have small stimulus sets and employ fixed target searches. Asian and African American other-race faces are found slower among Caucasian face backgrounds if larger stimulus sets are used in tasks with a variable mapping of stimulus to background or target. Thus, preferential detection of other-race faces was not found under task conditions in which preferential detection of animal and social fear-relevant stimuli is evident. Although consistent with the view that same-race faces are processed in more detail than other-race faces, the current findings suggest that other-race faces do not draw attention preferentially.

  2. A Quantitative Relationship between Signal Detection in Attention and Approach/Avoidance Behavior

    PubMed Central

    Viswanathan, Vijay; Sheppard, John P.; Kim, Byoung W.; Plantz, Christopher L.; Ying, Hao; Lee, Myung J.; Raman, Kalyan; Mulhern, Frank J.; Block, Martin P.; Calder, Bobby; Lee, Sang; Mortensen, Dale T.; Blood, Anne J.; Breiter, Hans C.

    2017-01-01

    This study examines how the domains of reward and attention, which are often studied as independent processes, in fact interact at a systems level. We operationalize divided attention with a continuous performance task and variables from signal detection theory (SDT), and reward/aversion with a keypress task measuring approach/avoidance in the framework of relative preference theory (RPT). Independent experiments with the same subjects showed a significant association between one SDT and two RPT variables, visualized as a three-dimensional structure. Holding one of these three variables constant, further showed a significant relationship between a loss aversion-like metric from the approach/avoidance task, and the response bias observed during the divided attention task. These results indicate that a more liberal response bias under signal detection (i.e., a higher tolerance for noise, resulting in a greater proportion of false alarms) is associated with higher “loss aversion.” Furthermore, our functional model suggests a mechanism for processing constraints with divided attention and reward/aversion. Together, our results argue for a systematic relationship between divided attention and reward/aversion processing in humans. PMID:28270776

  3. A Quantitative Relationship between Signal Detection in Attention and Approach/Avoidance Behavior.

    PubMed

    Viswanathan, Vijay; Sheppard, John P; Kim, Byoung W; Plantz, Christopher L; Ying, Hao; Lee, Myung J; Raman, Kalyan; Mulhern, Frank J; Block, Martin P; Calder, Bobby; Lee, Sang; Mortensen, Dale T; Blood, Anne J; Breiter, Hans C

    2017-01-01

    This study examines how the domains of reward and attention, which are often studied as independent processes, in fact interact at a systems level. We operationalize divided attention with a continuous performance task and variables from signal detection theory (SDT), and reward/aversion with a keypress task measuring approach/avoidance in the framework of relative preference theory (RPT). Independent experiments with the same subjects showed a significant association between one SDT and two RPT variables, visualized as a three-dimensional structure. Holding one of these three variables constant, further showed a significant relationship between a loss aversion-like metric from the approach/avoidance task, and the response bias observed during the divided attention task. These results indicate that a more liberal response bias under signal detection (i.e., a higher tolerance for noise, resulting in a greater proportion of false alarms) is associated with higher "loss aversion." Furthermore, our functional model suggests a mechanism for processing constraints with divided attention and reward/aversion. Together, our results argue for a systematic relationship between divided attention and reward/aversion processing in humans.

  4. No psychological effect of color context in a low level vision task

    PubMed Central

    Pedley, Adam; Wade, Alex R

    2013-01-01

    Background: A remarkable series of recent papers have shown that colour can influence performance in cognitive tasks. In particular, they suggest that viewing a participant number printed in red ink or other red ancillary stimulus elements improves performance in tasks requiring local processing and impedes performance in tasks requiring global processing whilst the reverse is true for the colour blue. The tasks in these experiments require high level cognitive processing such as analogy solving or remote association tests and the chromatic effect on local vs. global processing is presumed to involve widespread activation of the autonomic nervous system. If this is the case, we might expect to see similar effects on all local vs. global task comparisons. To test this hypothesis, we asked whether chromatic cues also influence performance in tasks involving low level visual feature integration. Methods: Subjects performed either local (contrast detection) or global (form detection) tasks on achromatic dynamic Glass pattern stimuli. Coloured instructions, target frames and fixation points were used to attempt to bias performance to different task types. Based on previous literature, we hypothesised that red cues would improve performance in the (local) contrast detection task but would impede performance in the (global) form detection task.  Results: A two-way, repeated measures, analysis of covariance (2×2 ANCOVA) with gender as a covariate, revealed no influence of colour on either task, F(1,29) = 0.289, p = 0.595, partial η 2 = 0.002. Additional analysis revealed no significant differences in only the first attempts of the tasks or in the improvement in performance between trials. Discussion: We conclude that motivational processes elicited by colour perception do not influence neuronal signal processing in the early visual system, in stark contrast to their putative effects on processing in higher areas. PMID:25075280

  5. Personality and attention: Levels of neuroticism and extraversion can predict attentional performance during a change detection task.

    PubMed

    Hahn, Sowon; Buttaccio, Daniel R; Hahn, Jungwon; Lee, Taehun

    2015-01-01

    The present study demonstrates that levels of extraversion and neuroticism can predict attentional performance during a change detection task. After completing a change detection task built on the flicker paradigm, participants were assessed for personality traits using the Revised Eysenck Personality Questionnaire (EPQ-R). Multiple regression analyses revealed that higher levels of extraversion predict increased change detection accuracies, while higher levels of neuroticism predict decreased change detection accuracies. In addition, neurotic individuals exhibited decreased sensitivity A' and increased fixation dwell times. Hierarchical regression analyses further revealed that eye movement measures mediate the relationship between neuroticism and change detection accuracies. Based on the current results, we propose that neuroticism is associated with decreased attentional control over the visual field, presumably due to decreased attentional disengagement. Extraversion can predict increased attentional performance, but the effect is smaller than the relationship between neuroticism and attention.

  6. Distinguishing bias from sensitivity effects in multialternative detection tasks.

    PubMed

    Sridharan, Devarajan; Steinmetz, Nicholas A; Moore, Tirin; Knudsen, Eric I

    2014-08-21

    Studies investigating the neural bases of cognitive phenomena increasingly employ multialternative detection tasks that seek to measure the ability to detect a target stimulus or changes in some target feature (e.g., orientation or direction of motion) that could occur at one of many locations. In such tasks, it is essential to distinguish the behavioral and neural correlates of enhanced perceptual sensitivity from those of increased bias for a particular location or choice (choice bias). However, making such a distinction is not possible with established approaches. We present a new signal detection model that decouples the behavioral effects of choice bias from those of perceptual sensitivity in multialternative (change) detection tasks. By formulating the perceptual decision in a multidimensional decision space, our model quantifies the respective contributions of bias and sensitivity to multialternative behavioral choices. With a combination of analytical and numerical approaches, we demonstrate an optimal, one-to-one mapping between model parameters and choice probabilities even for tasks involving arbitrarily large numbers of alternatives. We validated the model with published data from two ternary choice experiments: a target-detection experiment and a length-discrimination experiment. The results of this validation provided novel insights into perceptual processes (sensory noise and competitive interactions) that can accurately and parsimoniously account for observers' behavior in each task. The model will find important application in identifying and interpreting the effects of behavioral manipulations (e.g., cueing attention) or neural perturbations (e.g., stimulation or inactivation) in a variety of multialternative tasks of perception, attention, and decision-making. © 2014 ARVO.

  7. Distinguishing bias from sensitivity effects in multialternative detection tasks

    PubMed Central

    Sridharan, Devarajan; Steinmetz, Nicholas A.; Moore, Tirin; Knudsen, Eric I.

    2014-01-01

    Studies investigating the neural bases of cognitive phenomena increasingly employ multialternative detection tasks that seek to measure the ability to detect a target stimulus or changes in some target feature (e.g., orientation or direction of motion) that could occur at one of many locations. In such tasks, it is essential to distinguish the behavioral and neural correlates of enhanced perceptual sensitivity from those of increased bias for a particular location or choice (choice bias). However, making such a distinction is not possible with established approaches. We present a new signal detection model that decouples the behavioral effects of choice bias from those of perceptual sensitivity in multialternative (change) detection tasks. By formulating the perceptual decision in a multidimensional decision space, our model quantifies the respective contributions of bias and sensitivity to multialternative behavioral choices. With a combination of analytical and numerical approaches, we demonstrate an optimal, one-to-one mapping between model parameters and choice probabilities even for tasks involving arbitrarily large numbers of alternatives. We validated the model with published data from two ternary choice experiments: a target-detection experiment and a length-discrimination experiment. The results of this validation provided novel insights into perceptual processes (sensory noise and competitive interactions) that can accurately and parsimoniously account for observers' behavior in each task. The model will find important application in identifying and interpreting the effects of behavioral manipulations (e.g., cueing attention) or neural perturbations (e.g., stimulation or inactivation) in a variety of multialternative tasks of perception, attention, and decision-making. PMID:25146574

  8. Detection of driver engagement in secondary tasks from observed naturalistic driving behavior.

    PubMed

    Ye, Mengqiu; Osman, Osama A; Ishak, Sherif; Hashemi, Bita

    2017-09-01

    Distracted driving has long been acknowledged as one of the leading causes of death or injury in roadway crashes. The focus of past research has been mainly on the impact of different causes of distraction on driving behavior. However, only a few studies attempted to address how some driving behavior attributes could be linked to the cause of distraction. In essence, this study takes advantage of the rich SHRP 2 Naturalistic Driving Study (NDS) database to develop a model for detecting the likelihood of a driver's involvement in secondary tasks from distinctive attributes of driving behavior. Five performance attributes, namely speed, longitudinal acceleration, lateral acceleration, yaw rate, and throttle position were used to describe the driving behavior. A model was developed for each of three selected secondary tasks: calling, texting, and passenger interaction. The models were developed using a supervised feed-forward Artificial Neural Network (ANN) architecture to account for the effect of inherent nonlinearity in the relationships between driving behavior and secondary tasks. The results show that the developed ANN models were able to detect the drivers' involvement in calling, texting, and passenger interaction with an overall accuracy of 99.5%, 98.1%, and 99.8%, respectively. These results show that the selected driving performance attributes were effective in detecting the associated secondary tasks with driving behavior. The results are very promising and the developed models could potentially be applied in crash investigations to resolve legal disputes in traffic accidents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. DQE and system optimization for indirect-detection flat-panel imagers in diagnostic radiology

    NASA Astrophysics Data System (ADS)

    Siewerdsen, Jeffrey H.; Antonuk, Larry E.

    1998-07-01

    The performance of indirect-detection flat-panel imagers incorporating CsI:Tl x-ray converters is examined through calculation of the detective quantum efficiency (DQE) under conditions of chest radiography, fluoroscopy, and mammography. Calculations are based upon a cascaded systems model which has demonstrated excellent agreement with empirical signal, noise- power spectra, and DQE results. For each application, the DQE is calculated as a function of spatial-frequency and CsI:Tl thickness. A preliminary investigation into the optimization of flat-panel imaging systems is described, wherein the x-ray converter thickness which provides optimal DQE for a given imaging task is estimated. For each application, a number of example tasks involving detection of an object of variable size and contrast against a noisy background are considered. The method described is fairly general and can be extended to account for a variety of imaging tasks. For the specific examples considered, the preliminary results estimate optimal CsI:Tl thicknesses of approximately 450 micrometer (approximately 200 mg/cm2), approximately 320 micrometer (approximately 140 mg/cm2), and approximately 200 micrometer (approximately 90 mg/cm2) for chest radiography, fluoroscopy, and mammography, respectively. These results are expected to depend upon the imaging task as well as upon the quality of available CsI:Tl, and future improvements in scintillator fabrication could result in increased optimal thickness and DQE.

  10. Effect of attention on the detection and identification of masked spatial patterns.

    PubMed

    Põder, Endel

    2005-01-01

    The effect of attention on the detection and identification of vertically and horizontally oriented Gabor patterns in the condition of simultaneous masking with obliquely oriented Gabors was studied. Attention was manipulated by varying the set size in a visual-search experiment. In the first experiment, small target Gabors were presented on the background of larger masking Gabors. In the detection task, the effect of set size was as predicted by unlimited-capacity signal detection theory. In the orientation identification task, increasing the set size from 1 to 8 resulted in a much larger decline in performance. The results of the additional experiments suggest that attention can reduce the crowding effect of maskers.

  11. Quantifying Phishing Susceptibility for Detection and Behavior Decisions.

    PubMed

    Canfield, Casey Inez; Fischhoff, Baruch; Davis, Alex

    2016-12-01

    We use signal detection theory to measure vulnerability to phishing attacks, including variation in performance across task conditions. Phishing attacks are difficult to prevent with technology alone, as long as technology is operated by people. Those responsible for managing security risks must understand user decision making in order to create and evaluate potential solutions. Using a scenario-based online task, we performed two experiments comparing performance on two tasks: detection, deciding whether an e-mail is phishing, and behavior, deciding what to do with an e-mail. In Experiment 1, we manipulated the order of the tasks and notification of the phishing base rate. In Experiment 2, we varied which task participants performed. In both experiments, despite exhibiting cautious behavior, participants' limited detection ability left them vulnerable to phishing attacks. Greater sensitivity was positively correlated with confidence. Greater willingness to treat e-mails as legitimate was negatively correlated with perceived consequences from their actions and positively correlated with confidence. These patterns were robust across experimental conditions. Phishing-related decisions are sensitive to individuals' detection ability, response bias, confidence, and perception of consequences. Performance differs when people evaluate messages or respond to them but not when their task varies in other ways. Based on these results, potential interventions include providing users with feedback on their abilities and information about the consequences of phishing, perhaps targeting those with the worst performance. Signal detection methods offer system operators quantitative assessments of the impacts of interventions and their residual vulnerability. © 2016, Human Factors and Ergonomics Society.

  12. A comparison of signal detection theory to the objective threshold/strategic model of unconscious perception.

    PubMed

    Haase, Steven J; Fisk, Gary D

    2011-08-01

    A key problem in unconscious perception research is ruling out the possibility that weak conscious awareness of stimuli might explain the results. In the present study, signal detection theory was compared with the objective threshold/strategic model as explanations of results for detection and identification sensitivity in a commonly used unconscious perception task. In the task, 64 undergraduate participants detected and identified one of four briefly displayed, visually masked letters. Identification was significantly above baseline (i.e., proportion correct > .25) at the highest detection confidence rating. This result is most consistent with signal detection theory's continuum of sensory states and serves as a possible index of conscious perception. However, there was limited support for the other model in the form of a predicted "looker's inhibition" effect, which produced identification performance that was significantly below baseline. One additional result, an interaction between the target stimulus and type of mask, raised concerns for the generality of unconscious perception effects.

  13. Assessing segmentation processes by click detection: online measure of statistical learning, or simple interference?

    PubMed

    Franco, Ana; Gaillard, Vinciane; Cleeremans, Axel; Destrebecqz, Arnaud

    2015-12-01

    Statistical learning can be used to extract the words from continuous speech. Gómez, Bion, and Mehler (Language and Cognitive Processes, 26, 212-223, 2011) proposed an online measure of statistical learning: They superimposed auditory clicks on a continuous artificial speech stream made up of a random succession of trisyllabic nonwords. Participants were instructed to detect these clicks, which could be located either within or between words. The results showed that, over the length of exposure, reaction times (RTs) increased more for within-word than for between-word clicks. This result has been accounted for by means of statistical learning of the between-word boundaries. However, even though statistical learning occurs without an intention to learn, it nevertheless requires attentional resources. Therefore, this process could be affected by a concurrent task such as click detection. In the present study, we evaluated the extent to which the click detection task indeed reflects successful statistical learning. Our results suggest that the emergence of RT differences between within- and between-word click detection is neither systematic nor related to the successful segmentation of the artificial language. Therefore, instead of being an online measure of learning, the click detection task seems to interfere with the extraction of statistical regularities.

  14. An evidence accumulation model for conflict detection performance in a simulated air traffic control task.

    PubMed

    Neal, Andrew; Kwantes, Peter J

    2009-04-01

    The aim of this article is to develop a formal model of conflict detection performance. Our model assumes that participants iteratively sample evidence regarding the state of the world and accumulate it over time. A decision is made when the evidence reaches a threshold that changes over time in response to the increasing urgency of the task. Two experiments were conducted to examine the effects of conflict geometry and timing on response proportions and response time. The model is able to predict the observed pattern of response times, including a nonmonotonic relationship between distance at point of closest approach and response time, as well as effects of angle of approach and relative velocity. The results demonstrate that evidence accumulation models provide a good account of performance on a conflict detection task. Evidence accumulation models are a form of dynamic signal detection theory, allowing for the analysis of response times as well as response proportions, and can be used for simulating human performance on dynamic decision tasks.

  15. Direction discrimination learning in normal and visually deprived cats and the effects of lateral suprasylvian lesions.

    PubMed

    Burnat, K; Zernicki, B

    1997-01-01

    We used 5 binocularly deprived cats (BD cats), 4 control cats reared also in the laboratory (C cats) and 4 cats reared in a normal environment (N cats). The cats were trained to discriminate an upward or downward-moving light spot versus a stationary spot (detection task) and then an upward versus a downward spot (direction task). The N and C cats learned slowly. The learning was slower than in previously studied discriminations of stationary stimuli. However, all N and C cats mastered the detection task and except one C cat the direction task. In contrast, 4 BD cats failed in the detection task and all in the direction task. This result is consistent with single-cell recording data showing impairment of direction analysis in the visual system in BD cats. After completing the training the upper part of the middle suprasylvian sulcus was removed unilaterally in 7 cats and bilaterally in 6 cats. Surprisingly, the unilateral lesions were more effective: the clear-cut retention deficits were found in 5 cats lesioned unilaterally, whereas only in one cat lesioned bilaterally.

  16. Temporal Characteristics of Radiologists' and Novices' Lesion Detection in Viewing Medical Images Presented Rapidly and Sequentially.

    PubMed

    Nakashima, Ryoichi; Komori, Yuya; Maeda, Eriko; Yoshikawa, Takeharu; Yokosawa, Kazuhiko

    2016-01-01

    Although viewing multiple stacks of medical images presented on a display is a relatively new but useful medical task, little is known about this task. Particularly, it is unclear how radiologists search for lesions in this type of image reading. When viewing cluttered and dynamic displays, continuous motion itself does not capture attention. Thus, it is effective for the target detection that observers' attention is captured by the onset signal of a suddenly appearing target among the continuously moving distractors (i.e., a passive viewing strategy). This can be applied to stack viewing tasks, because lesions often show up as transient signals in medical images which are sequentially presented simulating a dynamic and smoothly transforming image progression of organs. However, it is unclear whether observers can detect a target when the target appears at the beginning of a sequential presentation where the global apparent motion onset signal (i.e., signal of the initiation of the apparent motion by sequential presentation) occurs. We investigated the ability of radiologists to detect lesions during such tasks by comparing the performances of radiologists and novices. Results show that overall performance of radiologists is better than novices. Furthermore, the temporal locations of lesions in CT image sequences, i.e., when a lesion appears in an image sequence, does not affect the performance of radiologists, whereas it does affect the performance of novices. Results indicate that novices have greater difficulty in detecting a lesion appearing early than late in the image sequence. We suggest that radiologists have other mechanisms to detect lesions in medical images with little attention which novices do not have. This ability is critically important when viewing rapid sequential presentations of multiple CT images, such as stack viewing tasks.

  17. Temporal Characteristics of Radiologists' and Novices' Lesion Detection in Viewing Medical Images Presented Rapidly and Sequentially

    PubMed Central

    Nakashima, Ryoichi; Komori, Yuya; Maeda, Eriko; Yoshikawa, Takeharu; Yokosawa, Kazuhiko

    2016-01-01

    Although viewing multiple stacks of medical images presented on a display is a relatively new but useful medical task, little is known about this task. Particularly, it is unclear how radiologists search for lesions in this type of image reading. When viewing cluttered and dynamic displays, continuous motion itself does not capture attention. Thus, it is effective for the target detection that observers' attention is captured by the onset signal of a suddenly appearing target among the continuously moving distractors (i.e., a passive viewing strategy). This can be applied to stack viewing tasks, because lesions often show up as transient signals in medical images which are sequentially presented simulating a dynamic and smoothly transforming image progression of organs. However, it is unclear whether observers can detect a target when the target appears at the beginning of a sequential presentation where the global apparent motion onset signal (i.e., signal of the initiation of the apparent motion by sequential presentation) occurs. We investigated the ability of radiologists to detect lesions during such tasks by comparing the performances of radiologists and novices. Results show that overall performance of radiologists is better than novices. Furthermore, the temporal locations of lesions in CT image sequences, i.e., when a lesion appears in an image sequence, does not affect the performance of radiologists, whereas it does affect the performance of novices. Results indicate that novices have greater difficulty in detecting a lesion appearing early than late in the image sequence. We suggest that radiologists have other mechanisms to detect lesions in medical images with little attention which novices do not have. This ability is critically important when viewing rapid sequential presentations of multiple CT images, such as stack viewing tasks. PMID:27774080

  18. Effects of Response Bias and Judgment Framing on Operator Use of an Automated Aid in a Target Detection Task

    ERIC Educational Resources Information Center

    Rice, Stephen; McCarley, Jason S.

    2011-01-01

    Automated diagnostic aids prone to false alarms often produce poorer human performance in signal detection tasks than equally reliable miss-prone aids. However, it is not yet clear whether this is attributable to differences in the perceptual salience of the automated aids' misses and false alarms or is the result of inherent differences in…

  19. Effects of spatial cues on color-change detection in humans

    PubMed Central

    Herman, James P.; Bogadhi, Amarender R.; Krauzlis, Richard J.

    2015-01-01

    Studies of covert spatial attention have largely used motion, orientation, and contrast stimuli as these features are fundamental components of vision. The feature dimension of color is also fundamental to visual perception, particularly for catarrhine primates, and yet very little is known about the effects of spatial attention on color perception. Here we present results using novel dynamic color stimuli in both discrimination and color-change detection tasks. We find that our stimuli yield comparable discrimination thresholds to those obtained with static stimuli. Further, we find that an informative spatial cue improves performance and speeds response time in a color-change detection task compared with an uncued condition, similar to what has been demonstrated for motion, orientation, and contrast stimuli. Our results demonstrate the use of dynamic color stimuli for an established psychophysical task and show that color stimuli are well suited to the study of spatial attention. PMID:26047359

  20. The reliability and internal consistency of one-shot and flicker change detection for measuring individual differences in visual working memory capacity.

    PubMed

    Pailian, Hrag; Halberda, Justin

    2015-04-01

    We investigated the psychometric properties of the one-shot change detection task for estimating visual working memory (VWM) storage capacity-and also introduced and tested an alternative flicker change detection task for estimating these limits. In three experiments, we found that the one-shot whole-display task returns estimates of VWM storage capacity (K) that are unreliable across set sizes-suggesting that the whole-display task is measuring different things at different set sizes. In two additional experiments, we found that the one-shot single-probe variant shows improvements in the reliability and consistency of K estimates. In another additional experiment, we found that a one-shot whole-display-with-click task (requiring target localization) also showed improvements in reliability and consistency. The latter results suggest that the one-shot task can return reliable and consistent estimates of VWM storage capacity (K), and they highlight the possibility that the requirement to localize the changed target is what engenders this enhancement. Through a final series of four experiments, we introduced and tested an alternative flicker change detection method that also requires the observer to localize the changing target and that generates, from response times, an estimate of VWM storage capacity (K). We found that estimates of K from the flicker task correlated with estimates from the traditional one-shot task and also had high reliability and consistency. We highlight the flicker method's ability to estimate executive functions as well as VWM storage capacity, and discuss the potential for measuring multiple abilities with the one-shot and flicker tasks.

  1. Orthographic Consistency and Word-Frequency Effects in Auditory Word Recognition: New Evidence from Lexical Decision and Rime Detection

    PubMed Central

    Petrova, Ana; Gaskell, M. Gareth; Ferrand, Ludovic

    2011-01-01

    Many studies have repeatedly shown an orthographic consistency effect in the auditory lexical decision task. Words with phonological rimes that could be spelled in multiple ways (i.e., inconsistent words) typically produce longer auditory lexical decision latencies and more errors than do words with rimes that could be spelled in only one way (i.e., consistent words). These results have been extended to different languages and tasks, suggesting that the effect is quite general and robust. Despite this growing body of evidence, some psycholinguists believe that orthographic effects on spoken language are exclusively strategic, post-lexical, or restricted to peculiar (low-frequency) words. In the present study, we manipulated consistency and word-frequency orthogonally in order to explore whether the orthographic consistency effect extends to high-frequency words. Two different tasks were used: lexical decision and rime detection. Both tasks produced reliable consistency effects for both low- and high-frequency words. Furthermore, in Experiment 1 (lexical decision), an interaction revealed a stronger consistency effect for low-frequency words than for high-frequency words, as initially predicted by Ziegler and Ferrand (1998), whereas no interaction was found in Experiment 2 (rime detection). Our results extend previous findings by showing that the orthographic consistency effect is obtained not only for low-frequency words but also for high-frequency words. Furthermore, these effects were also obtained in a rime detection task, which does not require the explicit processing of orthographic structure. Globally, our results suggest that literacy changes the way people process spoken words, even for frequent words. PMID:22025916

  2. Task-based statistical image reconstruction for high-quality cone-beam CT

    NASA Astrophysics Data System (ADS)

    Dang, Hao; Webster Stayman, J.; Xu, Jennifer; Zbijewski, Wojciech; Sisniega, Alejandro; Mow, Michael; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassilis E.; Siewerdsen, Jeffrey H.

    2017-11-01

    Task-based analysis of medical imaging performance underlies many ongoing efforts in the development of new imaging systems. In statistical image reconstruction, regularization is often formulated in terms to encourage smoothness and/or sharpness (e.g. a linear, quadratic, or Huber penalty) but without explicit formulation of the task. We propose an alternative regularization approach in which a spatially varying penalty is determined that maximizes task-based imaging performance at every location in a 3D image. We apply the method to model-based image reconstruction (MBIR—viz., penalized weighted least-squares, PWLS) in cone-beam CT (CBCT) of the head, focusing on the task of detecting a small, low-contrast intracranial hemorrhage (ICH), and we test the performance of the algorithm in the context of a recently developed CBCT prototype for point-of-care imaging of brain injury. Theoretical predictions of local spatial resolution and noise are computed via an optimization by which regularization (specifically, the quadratic penalty strength) is allowed to vary throughout the image to maximize local task-based detectability index ({{d}\\prime} ). Simulation studies and test-bench experiments were performed using an anthropomorphic head phantom. Three PWLS implementations were tested: conventional (constant) penalty; a certainty-based penalty derived to enforce constant point-spread function, PSF; and the task-based penalty derived to maximize local detectability at each location. Conventional (constant) regularization exhibited a fairly strong degree of spatial variation in {{d}\\prime} , and the certainty-based method achieved uniform PSF, but each exhibited a reduction in detectability compared to the task-based method, which improved detectability up to ~15%. The improvement was strongest in areas of high attenuation (skull base), where the conventional and certainty-based methods tended to over-smooth the data. The task-driven reconstruction method presents a promising regularization method in MBIR by explicitly incorporating task-based imaging performance as the objective. The results demonstrate improved ICH conspicuity and support the development of high-quality CBCT systems.

  3. Attention to baseline: does orienting visuospatial attention really facilitate target detection?

    PubMed

    Albares, Marion; Criaud, Marion; Wardak, Claire; Nguyen, Song Chi Trung; Ben Hamed, Suliann; Boulinguez, Philippe

    2011-08-01

    Standard protocols testing the orientation of visuospatial attention usually present spatial cues before targets and compare valid-cue trials with invalid-cue trials. The valid/invalid contrast results in a relative behavioral or physiological difference that is generally interpreted as a benefit of attention orientation. However, growing evidence suggests that inhibitory control of response is closely involved in this kind of protocol that requires the subjects to withhold automatic responses to cues, probably biasing behavioral and physiological baselines. Here, we used two experiments to disentangle the inhibitory control of automatic responses from orienting of visuospatial attention in a saccadic reaction time task in humans, a variant of the classical cue-target detection task and a sustained visuospatial attentional task. Surprisingly, when referring to a simple target detection task in which there is no need to refrain from reacting to avoid inappropriate responses, we found no consistent evidence of facilitation of target detection at the attended location. Instead, we observed a cost at the unattended location. Departing from the classical view, our results suggest that reaction time measures of visuospatial attention probably relie on the attenuation of elementary processes involved in visual target detection and saccade initiation away from the attended location rather than on facilitation at the attended location. This highlights the need to use proper control conditions in experimental designs to disambiguate relative from absolute cueing benefits on target detection reaction times, both in psychophysical and neurophysiological studies.

  4. Interactive Tools for Measuring Visual Scanning Performance and Reaction Time

    PubMed Central

    Seeanner, Julia; Hennessy, Sarah; Manganelli, Joseph; Crisler, Matthew; Rosopa, Patrick; Jenkins, Casey; Anderson, Michael; Drouin, Nathalie; Belle, Leah; Truesdail, Constance; Tanner, Stephanie

    2017-01-01

    Occupational therapists are constantly searching for engaging, high-technology interactive tasks that provide immediate feedback to evaluate and train clients with visual scanning deficits. This study examined the relationship between two tools: the VISION COACH™ interactive light board and the Functional Object Detection© (FOD) Advanced driving simulator scenario. Fifty-four healthy drivers, ages 21–66 yr, were divided into three age groups. Participants performed braking response and visual target (E) detection tasks of the FOD Advanced driving scenario, followed by two sets of three trials using the VISION COACH Full Field 60 task. Results showed no significant effect of age on FOD Advanced performance but a significant effect of age on VISION COACH performance. Correlations showed that participants’ performance on both braking and E detection tasks were significantly positively correlated with performance on the VISION COACH (.37 < r < .40, p < .01). These tools provide new options for therapists. PMID:28218598

  5. Individual differences in working memory capacity and workload capacity.

    PubMed

    Yu, Ju-Chi; Chang, Ting-Yun; Yang, Cheng-Ta

    2014-01-01

    We investigated the relationship between working memory capacity (WMC) and workload capacity (WLC). Each participant performed an operation span (OSPAN) task to measure his/her WMC and three redundant-target detection tasks to measure his/her WLC. WLC was computed non-parametrically (Experiments 1 and 2) and parametrically (Experiment 2). Both levels of analyses showed that participants high in WMC had larger WLC than those low in WMC only when redundant information came from visual and auditory modalities, suggesting that high-WMC participants had superior processing capacity in dealing with redundant visual and auditory information. This difference was eliminated when multiple processes required processing for only a single working memory subsystem in a color-shape detection task and a double-dot detection task. These results highlighted the role of executive control in integrating and binding information from the two working memory subsystems for perceptual decision making.

  6. Are Letter Detection and Proofreading Tasks Equivalent?

    ERIC Educational Resources Information Center

    Saint-Aubin, Jean; Losier, Marie-Claire; Roy, Macha; Lawrence, Mike

    2015-01-01

    When readers search for misspellings in a proofreading task or for a letter in a letter detection task, they are more likely to omit function words than content words. However, with misspelled words, previous findings for the letter detection task were mixed. In two experiments, the authors tested the functional equivalence of both tasks. Results…

  7. Classification of change detection and change blindness from near-infrared spectroscopy signals

    NASA Astrophysics Data System (ADS)

    Tanaka, Hirokazu; Katura, Takusige

    2011-08-01

    Using a machine-learning classification algorithm applied to near-infrared spectroscopy (NIRS) signals, we classify a success (change detection) or a failure (change blindness) in detecting visual changes for a change-detection task. Five subjects perform a change-detection task, and their brain activities are continuously monitored. A support-vector-machine algorithm is applied to classify the change-detection and change-blindness trials, and correct classification probability of 70-90% is obtained for four subjects. Two types of temporal shapes in classification probabilities are found: one exhibiting a maximum value after the task is completed (postdictive type), and another exhibiting a maximum value during the task (predictive type). As for the postdictive type, the classification probability begins to increase immediately after the task completion and reaches its maximum in about the time scale of neuronal hemodynamic response, reflecting a subjective report of change detection. As for the predictive type, the classification probability shows an increase at the task initiation and is maximal while subjects are performing the task, predicting the task performance in detecting a change. We conclude that decoding change detection and change blindness from NIRS signal is possible and argue some future applications toward brain-machine interfaces.

  8. Driven to distraction: dual-Task studies of simulated driving and conversing on a cellular telephone.

    PubMed

    Strayer, D L; Johnston, W A

    2001-11-01

    Dual-task studies assessed the effects of cellular-phone conversations on performance of a simulated driving task. Performance was not disrupted by listening to radio broadcasts or listening to a book on tape. Nor was it disrupted by a continuous shadowing task using a handheld phone, ruling out, in this case, dual-task interpretations associated with holding the phone, listening, or speaking, However significant interference was observed in a word-generation variant of the shadowing task, and this deficit increased with the difficulty of driving. Moreover unconstrained conversations using either a handheld or a hands-free cell phone resulted in a twofold increase in the failure to detect simulated traffic signals and slower reactions to those signals that were detected. We suggest that cellular-phone use disrupts performance by diverting attention to an engaging cognitive context other than the one immediately associated with driving.

  9. The Impact of Suggestive Maneuver Guidance on UAS Pilots Performing the Detect and Avoid Function

    NASA Technical Reports Server (NTRS)

    Rorie, Conrad; Fern, Lisa; Shively, Jay

    2016-01-01

    This presentation discusses the results of a recent UAS Integration into the NAS human-in-the-loop simulation. In the study, 16 active UAS pilots flew a UAS through civil airspace and were tasked with maintaining well clear from other aircraft in the area. Pilots performed the task with four different detect and avoid (DAA) traffic displays, each of which varied in the form of guidance it provided to pilots The present findings focus on how the different displays impacted pilots' measured response to scripted conflicts with their aircraft. Measured response is made up of several components, each of which help inform our understanding of the pilots' role in the overall detect and avoid task.

  10. Change Detection: Training and Transfer

    PubMed Central

    Gaspar, John G.; Neider, Mark B.; Simons, Daniel J.; McCarley, Jason S.; Kramer, Arthur F.

    2013-01-01

    Observers often fail to notice even dramatic changes to their environment, a phenomenon known as change blindness. If training could enhance change detection performance in general, then it might help to remedy some real-world consequences of change blindness (e.g. failing to detect hazards while driving). We examined whether adaptive training on a simple change detection task could improve the ability to detect changes in untrained tasks for young and older adults. Consistent with an effective training procedure, both young and older adults were better able to detect changes to trained objects following training. However, neither group showed differential improvement on untrained change detection tasks when compared to active control groups. Change detection training led to improvements on the trained task but did not generalize to other change detection tasks. PMID:23840775

  11. Beauty hinders attention switch in change detection: the role of facial attractiveness and distinctiveness.

    PubMed

    Chen, Wenfeng; Liu, Chang Hong; Nakabayashi, Kazuyo

    2012-01-01

    Recent research has shown that the presence of a task-irrelevant attractive face can induce a transient diversion of attention from a perceptual task that requires covert deployment of attention to one of the two locations. However, it is not known whether this spontaneous appraisal for facial beauty also modulates attention in change detection among multiple locations, where a slower, and more controlled search process is simultaneously affected by the magnitude of a change and the facial distinctiveness. Using the flicker paradigm, this study examines how spontaneous appraisal for facial beauty affects the detection of identity change among multiple faces. Participants viewed a display consisting of two alternating frames of four faces separated by a blank frame. In half of the trials, one of the faces (target face) changed to a different person. The task of the participant was to indicate whether a change of face identity had occurred. The results showed that (1) observers were less efficient at detecting identity change among multiple attractive faces relative to unattractive faces when the target and distractor faces were not highly distinctive from one another; and (2) it is difficult to detect a change if the new face is similar to the old. The findings suggest that attractive faces may interfere with the attention-switch process in change detection. The results also show that attention in change detection was strongly modulated by physical similarity between the alternating faces. Although facial beauty is a powerful stimulus that has well-demonstrated priority, its influence on change detection is easily superseded by low-level image similarity. The visual system appears to take a different approach to facial beauty when a task requires resource-demanding feature comparisons.

  12. Cross-modal cueing effects of visuospatial attention on conscious somatosensory perception.

    PubMed

    Doruk, Deniz; Chanes, Lorena; Malavera, Alejandra; Merabet, Lotfi B; Valero-Cabré, Antoni; Fregni, Felipe

    2018-04-01

    The impact of visuospatial attention on perception with supraliminal stimuli and stimuli at the threshold of conscious perception has been previously investigated. In this study, we assess the cross-modal effects of visuospatial attention on conscious perception for near-threshold somatosensory stimuli applied to the face. Fifteen healthy participants completed two sessions of a near-threshold cross-modality cue-target discrimination/conscious detection paradigm. Each trial began with an endogenous visuospatial cue that predicted the location of a weak near-threshold electrical pulse delivered to the right or left cheek with high probability (∼75%). Participants then completed two tasks: first, a forced-choice somatosensory discrimination task (felt once or twice?) and then, a somatosensory conscious detection task (did you feel the stimulus and, if yes, where (left/right)?). Somatosensory discrimination was evaluated with the response reaction times of correctly detected targets, whereas the somatosensory conscious detection was quantified using perceptual sensitivity (d') and response bias (beta). A 2 × 2 repeated measures ANOVA was used for statistical analysis. In the somatosensory discrimination task (1 st task), participants were significantly faster in responding to correctly detected targets (p < 0.001). In the somatosensory conscious detection task (2 nd task), a significant effect of visuospatial attention on response bias (p = 0.008) was observed, suggesting that participants had a less strict criterion for stimuli preceded by spatially valid than invalid visuospatial cues. We showed that spatial attention has the potential to modulate the discrimination and the conscious detection of near-threshold somatosensory stimuli as measured, respectively, by a reduction of reaction times and a shift in response bias toward less conservative responses when the cue predicted stimulus location. A shift in response bias indicates possible effects of spatial attention on internal decision processes. The lack of significant results in perceptual sensitivity (d') could be due to weaker effects of endogenous attention on perception.

  13. Task 1: Correlation of satellite and ground data in air pollution studies. Task 2: Investigation to relate the chlorophyll and suspended sediment content in the waters of the lower Chesapeake Bay to ERTS-1 imagery. Task 3: The use of ERTS-1 to more fully utilize and apply marine station data to the study of productivity along the Eastern Shelf expanded waters of the United States

    NASA Technical Reports Server (NTRS)

    Copeland, G. E. (Principal Investigator); Bandy, A. R.; Fleischer, P.; Ludwick, J. C. (Principal Investigator); Hanna, W. J.; Gosink, T. A.; Bowker, D. W.; Marshall, H. G. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Analysis of U-2 imagery of CARETS site indicates smoke plumes can be easily detected. First look at selected ERTS-1 color composites demonstrates plumes from forest fires can be detected.

  14. Age-related differences in gap detection: effects of task difficulty and cognitive ability.

    PubMed

    Harris, Kelly C; Eckert, Mark A; Ahlstrom, Jayne B; Dubno, Judy R

    2010-06-01

    Differences in gap detection for younger and older adults have been shown to vary with the complexity of the task or stimuli, but the factors that contribute to these differences remain unknown. To address this question, we examined the extent to which age-related differences in processing speed and workload predicted age-related differences in gap detection. Gap detection thresholds were measured for 10 younger and 11 older adults in two conditions that varied in task complexity but used identical stimuli: (1) gap location fixed at the beginning, middle, or end of a noise burst and (2) gap location varied randomly from trial to trial from the beginning, middle, or end of the noise. We hypothesized that gap location uncertainty would place increased demands on cognitive and attentional resources and result in significantly higher gap detection thresholds for older but not younger adults. Overall, gap detection thresholds were lower for the middle location as compared to beginning and end locations and were lower for the fixed than the random condition. In general, larger age-related differences in gap detection were observed for more challenging conditions. That is, gap detection thresholds for older adults were significantly larger for the random condition than for the fixed condition when the gap was at the beginning and end locations but not the middle. In contrast, gap detection thresholds for younger adults were not significantly different for the random and fixed condition at any location. Subjective ratings of workload indicated that older adults found the gap detection task more mentally demanding than younger adults. Consistent with these findings, results of the Purdue Pegboard and Connections tests revealed age-related slowing of processing speed. Moreover, age group differences in workload and processing speed predicted gap detection in younger and older adults when gap location varied from trial to trial; these associations were not observed when gap location remained constant across trials. Taken together, these results suggest that age-related differences in complex measures of auditory temporal processing may be explained, in part, by age-related deficits in processing speed and attention. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Age-related differences in gap detection: Effects of task difficulty and cognitive ability

    PubMed Central

    Harris, Kelly C.; Eckert, Mark A.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2009-01-01

    Differences in gap detection for younger and older adults have been shown to vary with the complexity of the task or stimuli, but the factors that contribute to these differences remain unknown. To address this question, we examined the extent to which age-related differences in processing speed and workload predicted age-related differences in gap detection. Gap detection thresholds were measured for 10 younger and 11 older adults in two conditions that varied in task complexity but used identical stimuli: (1) gap location fixed at the beginning, middle, or end of a noise burst and (2) gap location varied randomly from trial to trial from the beginning, middle, or end of the noise. We hypothesized that gap location uncertainty would place increased demands on cognitive and attentional resources and result in significantly higher gap detection thresholds for older but not younger adults. Overall, gap detection thresholds were lower for the middle location as compared to beginning and end locations and were lower for the fixed than the random condition. In general, larger age-related differences in gap detection were observed for more challenging conditions. That is, gap detection thresholds for older adults were significantly larger for the random condition than for the fixed condition when the gap was at the beginning and end locations but not the middle. In contrast, gap detection thresholds for younger adults were not significantly different for the random and fixed condition at any location. Subjective ratings of workload indicated that older adults found the gap-detection task more mentally demanding than younger adults. Consistent with these findings, results of the Purdue Pegboard and Connections tests revealed age-related slowing of processing speed. Moreover, age group differences in workload and processing speed predicted gap detection in younger and older adults when gap location varied from trial to trial; these associations were not observed when gap location remained constant across trials. Taken together, these results suggest that age-related differences in complex measures of auditory temporal processing may be explained, in part, by age-related deficits in processing speed and attention. PMID:19800958

  16. Influence of dual-tasking with different levels of attention diversion on characteristics of the movement-related cortical potential.

    PubMed

    Aliakbaryhosseinabadi, Susan; Kamavuako, Ernest Nlandu; Jiang, Ning; Farina, Dario; Mrachacz-Kersting, Natalie

    2017-11-01

    Dual tasking is defined as performing two tasks concurrently and has been shown to have a significant effect on attention directed to the performance of the main task. In this study, an attention diversion task with two different levels was administered while participants had to complete a cue-based motor task consisting of foot dorsiflexion. An auditory oddball task with two levels of complexity was implemented to divert the user's attention. Electroencephalographic (EEG) recordings were made from nine single channels. Event-related potentials (ERPs) confirmed that the oddball task of counting a sequence of two tones decreased the auditory P300 amplitude more than the oddball task of counting one target tone among three different tones. Pre-movement features quantified from the movement-related cortical potential (MRCP) were changed significantly between single and dual-task conditions in motor and fronto-central channels. There was a significant delay in movement detection for the case of single tone counting in two motor channels only (237.1-247.4ms). For the task of sequence counting, motor cortex and frontal channels showed a significant delay in MRCP detection (232.1-250.5ms). This study investigated the effect of attention diversion in dual-task conditions by analysing both ERPs and MRCPs in single channels. The higher attention diversion lead to a significant reduction in specific MRCP features of the motor task. These results suggest that attention division in dual-tasking situations plays an important role in movement execution and detection. This has important implications in designing real-time brain-computer interface systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Enhanced change detection performance reveals improved strategy use in avid action video game players.

    PubMed

    Clark, Kait; Fleck, Mathias S; Mitroff, Stephen R

    2011-01-01

    Recent research has shown that avid action video game players (VGPs) outperform non-video game players (NVGPs) on a variety of attentional and perceptual tasks. However, it remains unknown exactly why and how such differences arise; while some prior research has demonstrated that VGPs' improvements stem from enhanced basic perceptual processes, other work indicates that they can stem from enhanced attentional control. The current experiment used a change-detection task to explore whether top-down strategies can contribute to VGPs' improved abilities. Participants viewed alternating presentations of an image and a modified version of the image and were tasked with detecting and localizing the changed element. Consistent with prior claims of enhanced perceptual abilities, VGPs were able to detect the changes while requiring less exposure to the change than NVGPs. Further analyses revealed this improved change detection performance may result from altered strategy use; VGPs employed broader search patterns when scanning scenes for potential changes. These results complement prior demonstrations of VGPs' enhanced bottom-up perceptual benefits by providing new evidence of VGPs' potentially enhanced top-down strategic benefits. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Detection of vehicle parts based on Faster R-CNN and relative position information

    NASA Astrophysics Data System (ADS)

    Zhang, Mingwen; Sang, Nong; Chen, Youbin; Gao, Changxin; Wang, Yongzhong

    2018-03-01

    Detection and recognition of vehicles are two essential tasks in intelligent transportation system (ITS). Currently, a prevalent method is to detect vehicle body, logo or license plate at first, and then recognize them. So the detection task is the most basic, but also the most important work. Besides the logo and license plate, some other parts, such as vehicle face, lamp, windshield and rearview mirror, are also key parts which can reflect the characteristics of vehicle and be used to improve the accuracy of recognition task. In this paper, the detection of vehicle parts is studied, and the work is novel. We choose Faster R-CNN as the basic algorithm, and take the local area of an image where vehicle body locates as input, then can get multiple bounding boxes with their own scores. If the box with maximum score is chosen as final result directly, it is often not the best one, especially for small objects. This paper presents a method which corrects original score with relative position information between two parts. Then we choose the box with maximum comprehensive score as the final result. Compared with original output strategy, the proposed method performs better.

  19. Detecting gradual visual changes in colour and brightness agnosia: a double dissociation.

    PubMed

    Nijboer, Tanja C W; te Pas, Susan F; van der Smagt, Maarten J

    2011-03-09

    Two patients, one with colour agnosia and one with brightness agnosia, performed a task that required the detection of gradual temporal changes in colour and brightness. The results for these patients, who showed anaverage or an above-average performance on several tasks designed to test low-level colour and luminance (contrast) perception in the spatial domain, yielded a double dissociation; the brightness agnosic patient was within the normal range for the coloured stimuli, but much slower to detect brightness differences, whereas the colour agnosic patient was within the normal range for the achromatic stimuli, but much slower for the coloured stimuli. These results suggest that a modality-specific impairment in the detection of gradual temporal changes might be related to, if not underlie, the phenomenon of visual agnosia.

  20. Separating Decision and Encoding Noise in Signal Detection Tasks

    PubMed Central

    Cabrera, Carlos Alexander; Lu, Zhong-Lin; Dosher, Barbara Anne

    2015-01-01

    In this paper we develop an extension to the Signal Detection Theory (SDT) framework to separately estimate internal noise arising from representational and decision processes. Our approach constrains SDT models with decision noise by combining a multi-pass external noise paradigm with confidence rating responses. In a simulation study we present evidence that representation and decision noise can be separately estimated over a range of representative underlying representational and decision noise level configurations. These results also hold across a number of decision rules and show resilience to rule miss-specification. The new theoretical framework is applied to a visual detection confidence-rating task with three and five response categories. This study compliments and extends the recent efforts of researchers (Benjamin, Diaz, & Wee, 2009; Mueller & Weidemann, 2008; Rosner & Kochanski, 2009, Kellen, Klauer, & Singmann, 2012) to separate and quantify underlying sources of response variability in signal detection tasks. PMID:26120907

  1. Task-oriented quality assessment and adaptation in real-time mission critical video streaming applications

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Wang, Qi; Grecos, Christos

    2015-02-01

    In recent years video traffic has become the dominant application on the Internet with global year-on-year increases in video-oriented consumer services. Driven by improved bandwidth in both mobile and fixed networks, steadily reducing hardware costs and the development of new technologies, many existing and new classes of commercial and industrial video applications are now being upgraded or emerging. Some of the use cases for these applications include areas such as public and private security monitoring for loss prevention or intruder detection, industrial process monitoring and critical infrastructure monitoring. The use of video is becoming commonplace in defence, security, commercial, industrial, educational and health contexts. Towards optimal performances, the design or optimisation in each of these applications should be context aware and task oriented with the characteristics of the video stream (frame rate, spatial resolution, bandwidth etc.) chosen to match the use case requirements. For example, in the security domain, a task-oriented consideration may be that higher resolution video would be required to identify an intruder than to simply detect his presence. Whilst in the same case, contextual factors such as the requirement to transmit over a resource-limited wireless link, may impose constraints on the selection of optimum task-oriented parameters. This paper presents a novel, conceptually simple and easily implemented method of assessing video quality relative to its suitability for a particular task and dynamically adapting videos streams during transmission to ensure that the task can be successfully completed. Firstly we defined two principle classes of tasks: recognition tasks and event detection tasks. These task classes are further subdivided into a set of task-related profiles, each of which is associated with a set of taskoriented attributes (minimum spatial resolution, minimum frame rate etc.). For example, in the detection class, profiles for intruder detection will require different temporal characteristics (frame rate) from those used for detection of high motion objects such as vehicles or aircrafts. We also define a set of contextual attributes that are associated with each instance of a running application that include resource constraints imposed by the transmission system employed and the hardware platforms used as source and destination of the video stream. Empirical results are presented and analysed to demonstrate the advantages of the proposed schemes.

  2. Measures and Interpretations of Vigilance Performance: Evidence Against the Detection Criterion

    NASA Technical Reports Server (NTRS)

    Balakrishnan, J. D.

    1998-01-01

    Operators' performance in a vigilance task is often assumed to depend on their choice of a detection criterion. When the signal rate is low this criterion is set high, causing the hit and false alarm rates to be low. With increasing time on task the criterion presumably tends to increase even further, thereby further decreasing the hit and false alarm rates. Virtually all of the empirical evidence for this simple interpretation is based on estimates of the bias measure Beta from signal detection theory. In this article, I describe a new approach to studying decision making that does not require the technical assumptions of signal detection theory. The results of this new analysis suggest that the detection criterion is never biased toward either response, even when the signal rate is low and the time on task is long. Two modifications of the signal detection theory framework are considered to account for this seemingly paradoxical result. The first assumes that the signal rate affects the relative sizes of the variances of the information distributions; the second assumes that the signal rate affects the logic of the operator's stopping rule. Actual or potential applications of this research include the improved training and performance assessment of operators in areas such as product quality control, air traffic control, and medical and clinical diagnosis.

  3. Raised visual detection thresholds depend on the level of complexity of cognitive foveal loading.

    PubMed

    Plainis, S; Murray, I J; Chauhan, K

    2001-01-01

    The objective of the study was to measure the interactions between visual thresholds for a simple light (the secondary task) presented peripherally and a simultaneously performed cognitive task (the primary task) presented foveally The primary task was highly visible but varied according to its cognitive complexity. Interactions between the tasks were determined by measuring detection thresholds for the peripheral task and accuracy of performance of the foveal task. Effects were measured for 5, 10, 20, and 30 deg eccentricity of the peripherally presented light and for three levels of cognitive complexity. Mesopic conditions (0.5 lx) were used. As expected, the concurrent presentation of the foveal cognitive task reduced peripheral sensitivity. Moreover, performance of the foveal task was adversely affected when conducting the peripheral task. Performance on both tasks was reduced as the level of complexity of the cognitive task increased. There were qualitative differences in task interactions between the central 10 deg and at greater eccentricities. Within 10 deg there was a disproportionate effect of eccentricity, previously interpreted as the 'tunnel-vision' model of visual field narrowing. Interactions outside 10 deg were less affected by eccentricity. These results are discussed in terms of the known neurophysiological characteristics of the primary visual pathway.

  4. Cue combination in a combined feature contrast detection and figure identification task.

    PubMed

    Meinhardt, Günter; Persike, Malte; Mesenholl, Björn; Hagemann, Cordula

    2006-11-01

    Target figures defined by feature contrast in spatial frequency, orientation or both cues had to be detected in Gabor random fields and their shape had to be identified in a dual task paradigm. Performance improved with increasing feature contrast and was strongly correlated among both tasks. Subjects performed significantly better with combined cues than with single cues. The improvement due to cue summation was stronger than predicted by the assumption of independent feature specific mechanisms, and increased with the performance level achieved with single cues until it was limited by ceiling effects. Further, cue summation was also strongly correlated among tasks: when there was benefit due to the additional cue in feature contrast detection, there was also benefit in figure identification. For the same performance level achieved with single cues, cue summation was generally larger in figure identification than in feature contrast detection, indicating more benefit when processes of shape and surface formation are involved. Our results suggest that cue combination improves spatial form completion and figure-ground segregation in noisy environments, and therefore leads to more stable object vision.

  5. Task-related enhancement in corticomotor excitability during haptic sensing with the contra- or ipsilateral hand in young and senior adults.

    PubMed

    Master, Sabah; Tremblay, François

    2012-03-14

    Haptic sensing with the fingers represents a unique class of manipulative actions, engaging motor, somatosensory and associative areas of the cortex while requiring only minimal forces and relatively simple movement patterns. Using transcranial magnetic stimulation (TMS), we investigated task-related changes in motor evoked potential (MEP) amplitude associated with unimanual haptic sensing in two related experiments. In Experiment I, we contrasted changes in the excitability of the hemisphere controlling the task hand in young and old adults under two trial conditions, i.e. when participants either touched a fine grating (smooth trials) or touched a coarse grating to detect its groove orientation (grating trials). In Experiment II, the same contrast between tasks was performed but with TMS applied over the hemisphere controlling the resting hand, while also addressing hemispheric (right vs. left) and age differences. In Experiment I, a main effect of trial type on MEP amplitude was detected (p = 0.001), MEPs in the task hand being ~50% larger during grating than smooth trials. No interaction with age was detected. Similar results were found for Experiment II, trial type having a large effect on MEP amplitude in the resting hand (p < 0.001) owing to selective increase in MEP size (~2.6 times greater) for grating trials. No interactions with age or side (right vs. left) were detected. Collectively, these results indicate that adding a haptic component to a simple unilateral finger action can elicit robust corticomotor facilitation not only in the working hemisphere but also in the opposite hemisphere. The fact that this facilitation seems well preserved with age, when task difficulty is adjusted, has some potential clinical implications.

  6. Cortical membrane potential signature of optimal states for sensory signal detection

    PubMed Central

    McGinley, Matthew J.; David, Stephen V.; McCormick, David A.

    2015-01-01

    The neural correlates of optimal states for signal detection task performance are largely unknown. One hypothesis holds that optimal states exhibit tonically depolarized cortical neurons with enhanced spiking activity, such as occur during movement. We recorded membrane potentials of auditory cortical neurons in mice trained on a challenging tone-in-noise detection task while assessing arousal with simultaneous pupillometry and hippocampal recordings. Arousal measures accurately predicted multiple modes of membrane potential activity, including: rhythmic slow oscillations at low arousal, stable hyperpolarization at intermediate arousal, and depolarization during phasic or tonic periods of hyper-arousal. Walking always occurred during hyper-arousal. Optimal signal detection behavior and sound-evoked responses, at both sub-threshold and spiking levels, occurred at intermediate arousal when pre-decision membrane potentials were stably hyperpolarized. These results reveal a cortical physiological signature of the classically-observed inverted-U relationship between task performance and arousal, and that optimal detection exhibits enhanced sensory-evoked responses and reduced background synaptic activity. PMID:26074005

  7. Estimated capacity of object files in visual short-term memory is not improved by retrieval cueing.

    PubMed

    Saiki, Jun; Miyatsuji, Hirofumi

    2009-03-23

    Visual short-term memory (VSTM) has been claimed to maintain three to five feature-bound object representations. Some results showing smaller capacity estimates for feature binding memory have been interpreted as the effects of interference in memory retrieval. However, change-detection tasks may not properly evaluate complex feature-bound representations such as triple conjunctions in VSTM. To understand the general type of feature-bound object representation, evaluation of triple conjunctions is critical. To test whether interference occurs in memory retrieval for complete object file representations in a VSTM task, we cued retrieval in novel paradigms that directly evaluate the memory for triple conjunctions, in comparison with a simple change-detection task. In our multiple object permanence tracking displays, observers monitored for a switch in feature combination between objects during an occlusion period, and we found that a retrieval cue provided no benefit with the triple conjunction tasks, but significant facilitation with the change-detection task, suggesting that low capacity estimates of object file memory in VSTM reflect a limit on maintenance, not retrieval.

  8. Simple real-time computerized tasks for detection of malingering among murderers with schizophrenia.

    PubMed

    Kertzman, Semion; Grinspan, Haim; Birger, Moshe; Shliapnikov, Nina; Alish, Yakov; Ben Nahum, Zeev; Mester, Roberto; Kotler, Moshe

    2006-01-01

    It is our contention that computer-based two-alternative forced choice techniques can be useful tools for the detection of patients with schizophrenia who feign acute psychotic symptoms and cognitive impairment as opposed to patients with schizophrenia with a true active psychosis. In our experiment, Visual Simple and Choice Reaction Time tasks were used. Reaction time in milliseconds was recorded and accuracy rate was obtained for all subjects' responses. Both types of task were administered to 27 patients with schizophrenia suspected of having committed murder. Patients with schizophrenia who were clinically assessed as malingerers achieved significantly fewer correct results, were significantly slower and less consistent in their reaction time. Congruence of performance between the Simple and Choice tasks was an additional parameter for the accurate diagnosis of malingering. The four parameters of both tests (accuracy of response, reaction time, standard deviation of reaction time and task congruency) are simple and constitute a user-friendly means for the detection of malingering in forensic practice. Another advantage of this procedure is that the software automatically measures and evaluates all the parameters.

  9. Feature binding in visual short-term memory is unaffected by task-irrelevant changes of location, shape, and color.

    PubMed

    Logie, Robert H; Brockmole, James R; Jaswal, Snehlata

    2011-01-01

    Three experiments used a change detection paradigm across a range of study-test intervals to address the respective contributions of location, shape, and color to the formation of bindings of features in sensory memory and visual short-term memory (VSTM). In Experiment 1, location was designated task irrelevant and was randomized between study and test displays. The task was to detect changes in the bindings between shape and color. In Experiments 2 and 3, shape and color, respectively, were task irrelevant and randomized, with bindings tested between location and color (Experiment 2) and location and shape (Experiment 3). At shorter study-test intervals, randomizing location was most disruptive, followed by shape and then color. At longer intervals, randomizing any task-irrelevant feature had no impact on change detection for bindings between features, and location had no special role. Results suggest that location is crucial for initial perceptual binding but loses that special status once representations are formed in VSTM, which operates according to different principles, than do visual attention and perception.

  10. Signal detectability in diffusive media using phased arrays in conjunction with detector arrays.

    PubMed

    Kang, Dongyel; Kupinski, Matthew A

    2011-06-20

    We investigate Hotelling observer performance (i.e., signal detectability) of a phased array system for tasks of detecting small inhomogeneities and distinguishing adjacent abnormalities in uniform diffusive media. Unlike conventional phased array systems where a single detector is located on the interface between two sources, we consider a detector array, such as a CCD, on a phantom exit surface for calculating the Hotelling observer detectability. The signal detectability for adjacent small abnormalities (2 mm displacement) for the CCD-based phased array is related to the resolution of reconstructed images. Simulations show that acquiring high-dimensional data from a detector array in a phased array system dramatically improves the detectability for both tasks when compared to conventional single detector measurements, especially at low modulation frequencies. It is also observed in all studied cases that there exists the modulation frequency optimizing CCD-based phased array systems, where detectability for both tasks is consistently high. These results imply that the CCD-based phased array has the potential to achieve high resolution and signal detectability in tomographic diffusive imaging while operating at a very low modulation frequency. The effect of other configuration parameters, such as a detector pixel size, on the observer performance is also discussed.

  11. Dissociable Roles of Different Types of Working Memory Load in Visual Detection

    PubMed Central

    Konstantinou, Nikos; Lavie, Nilli

    2013-01-01

    We contrasted the effects of different types of working memory (WM) load on detection. Considering the sensory-recruitment hypothesis of visual short-term memory (VSTM) within load theory (e.g., Lavie, 2010) led us to predict that VSTM load would reduce visual-representation capacity, thus leading to reduced detection sensitivity during maintenance, whereas load on WM cognitive control processes would reduce priority-based control, thus leading to enhanced detection sensitivity for a low-priority stimulus. During the retention interval of a WM task, participants performed a visual-search task while also asked to detect a masked stimulus in the periphery. Loading WM cognitive control processes (with the demand to maintain a random digit order [vs. fixed in conditions of low load]) led to enhanced detection sensitivity. In contrast, loading VSTM (with the demand to maintain the color and positions of six squares [vs. one in conditions of low load]) reduced detection sensitivity, an effect comparable with that found for manipulating perceptual load in the search task. The results confirmed our predictions and established a new functional dissociation between the roles of different types of WM load in the fundamental visual perception process of detection. PMID:23713796

  12. When and Why Threats Go Undetected: Impacts of Event Rate and Shift Length on Threat Detection Accuracy During Airport Baggage Screening.

    PubMed

    Meuter, Renata F I; Lacherez, Philippe F

    2016-03-01

    We aimed to assess the impact of task demands and individual characteristics on threat detection in baggage screeners. Airport security staff work under time constraints to ensure optimal threat detection. Understanding the impact of individual characteristics and task demands on performance is vital to ensure accurate threat detection. We examined threat detection in baggage screeners as a function of event rate (i.e., number of bags per minute) and time on task across 4 months. We measured performance in terms of the accuracy of detection of Fictitious Threat Items (FTIs) randomly superimposed on X-ray images of real passenger bags. Analyses of the percentage of correct FTI identifications (hits) show that longer shifts with high baggage throughput result in worse threat detection. Importantly, these significant performance decrements emerge within the first 10 min of these busy screening shifts only. Longer shift lengths, especially when combined with high baggage throughput, increase the likelihood that threats go undetected. Shorter shift rotations, although perhaps difficult to implement during busy screening periods, would ensure more consistently high vigilance in baggage screeners and, therefore, optimal threat detection and passenger safety. © 2015, Human Factors and Ergonomics Society.

  13. Identification of Swallowing Tasks From a Modified Barium Swallow Study That Optimize the Detection of Physiological Impairment.

    PubMed

    Hazelwood, R Jordan; Armeson, Kent E; Hill, Elizabeth G; Bonilha, Heather Shaw; Martin-Harris, Bonnie

    2017-07-12

    The purpose of this study was to identify which swallowing task(s) yielded the worst performance during a standardized modified barium swallow study (MBSS) in order to optimize the detection of swallowing impairment. This secondary data analysis of adult MBSSs estimated the probability of each swallowing task yielding the derived Modified Barium Swallow Impairment Profile (MBSImP™©; Martin-Harris et al., 2008) Overall Impression (OI; worst) scores using generalized estimating equations. The range of probabilities across swallowing tasks was calculated to discern which swallowing task(s) yielded the worst performance. Large-volume, thin-liquid swallowing tasks had the highest probabilities of yielding the OI scores for oral containment and airway protection. The cookie swallowing task was most likely to yield OI scores for oral clearance. Several swallowing tasks had nearly equal probabilities (≤ .20) of yielding the OI score. The MBSS must represent impairment while requiring boluses that challenge the swallowing system. No single swallowing task had a sufficiently high probability to yield the identification of the worst score for each physiological component. Omission of swallowing tasks will likely fail to capture the most severe impairment for physiological components critical for safe and efficient swallowing. Results provide further support for standardized, well-tested protocols during MBSS.

  14. The role of looming and attention capture in drivers' braking responses.

    PubMed

    Terry, Hugh R; Charlton, Samuel G; Perrone, John A

    2008-07-01

    This study assessed the ability of drivers to detect the deceleration of a preceding vehicle in a simulated vehicle-following task. The size of the preceding vehicles (car, van, or truck) and following speeds (50, 70, or 100 km/h) were systematically varied. Participants selected a preferred following distance by engaging their vehicle's cruise control and when the preceding vehicle began decelerating (no brake lights were illuminated), the participant's braking latency and distances to the lead vehicle were recorded. The experiment also employed a secondary task condition to examine how the attention-capturing properties of a looming vehicle were affected by driver distraction. The results indicated that a looming stimulus is capable of redirecting a driver's attention in a vehicle following task and, as with detection of brake lights, a driver's detection of a looming vehicle is compromised in the presence of a distracting task. Interestingly, increases in vehicle size had the effect of decreasing drivers' braking latencies and drivers engaged in the secondary task were significantly closer to the lead vehicle when they began braking, regardless of the size of the leading vehicle. Performance decrements resulting from the secondary task were reflected in a time-to-collision measure but not in optic expansion rate, lending support to earlier arguments that time-to-collision estimates require explicit cognitive judgements while perception of optic expansion may function in a more automatic fashion to redirect a driver's attention when cognitive resources are low or collision is imminent.

  15. Dynamic modulation of the perceptual load on microsaccades during a selective spatial attention task.

    PubMed

    Xue, Linyan; Huang, Dan; Wang, Tong; Hu, Qiyi; Chai, Xinyu; Li, Liming; Chen, Yao

    2017-11-28

    Selective spatial attention enhances task performance at restricted regions within the visual field. The magnitude of this effect depends on the level of attentional load, which determines the efficiency of distractor rejection. Mechanisms of attentional load include perceptual selection and/or cognitive control involving working memory. Recent studies have provided evidence that microsaccades are influenced by spatial attention. Therefore, microsaccade activities may be exploited to help understand the dynamic control of selective attention under different load levels. However, previous reports in humans on the effect of attentional load on microsaccades are inconsistent, and it is not clear to what extent these results and the dynamic changes of microsaccade activities are similar in monkeys. We trained monkeys to perform a color detection task in which the perceptual load was manipulated by task difficulty with limited involvement of working memory. Our results indicate that during the task with high perceptual load, the rate and amplitude of microsaccades immediately before the target color change were significantly suppressed. We also found that the occurrence of microsaccades before the monkeys' detection response deteriorated their performance, especially in the hard task. We propose that the activity of microsaccades might be an efficacious indicator of the perceptual load.

  16. Human visual system-based smoking event detection

    NASA Astrophysics Data System (ADS)

    Odetallah, Amjad D.; Agaian, Sos S.

    2012-06-01

    Human action (e.g. smoking, eating, and phoning) analysis is an important task in various application domains like video surveillance, video retrieval, human-computer interaction systems, and so on. Smoke detection is a crucial task in many video surveillance applications and could have a great impact to raise the level of safety of urban areas, public parks, airplanes, hospitals, schools and others. The detection task is challenging since there is no prior knowledge about the object's shape, texture and color. In addition, its visual features will change under different lighting and weather conditions. This paper presents a new scheme of a system for detecting human smoking events, or small smoke, in a sequence of images. In developed system, motion detection and background subtraction are combined with motion-region-saving, skin-based image segmentation, and smoke-based image segmentation to capture potential smoke regions which are further analyzed to decide on the occurrence of smoking events. Experimental results show the effectiveness of the proposed approach. As well, the developed method is capable of detecting the small smoking events of uncertain actions with various cigarette sizes, colors, and shapes.

  17. The Protein-Protein Interaction tasks of BioCreative III: classification/ranking of articles and linking bio-ontology concepts to full text

    PubMed Central

    2011-01-01

    Background Determining usefulness of biomedical text mining systems requires realistic task definition and data selection criteria without artificial constraints, measuring performance aspects that go beyond traditional metrics. The BioCreative III Protein-Protein Interaction (PPI) tasks were motivated by such considerations, trying to address aspects including how the end user would oversee the generated output, for instance by providing ranked results, textual evidence for human interpretation or measuring time savings by using automated systems. Detecting articles describing complex biological events like PPIs was addressed in the Article Classification Task (ACT), where participants were asked to implement tools for detecting PPI-describing abstracts. Therefore the BCIII-ACT corpus was provided, which includes a training, development and test set of over 12,000 PPI relevant and non-relevant PubMed abstracts labeled manually by domain experts and recording also the human classification times. The Interaction Method Task (IMT) went beyond abstracts and required mining for associations between more than 3,500 full text articles and interaction detection method ontology concepts that had been applied to detect the PPIs reported in them. Results A total of 11 teams participated in at least one of the two PPI tasks (10 in ACT and 8 in the IMT) and a total of 62 persons were involved either as participants or in preparing data sets/evaluating these tasks. Per task, each team was allowed to submit five runs offline and another five online via the BioCreative Meta-Server. From the 52 runs submitted for the ACT, the highest Matthew's Correlation Coefficient (MCC) score measured was 0.55 at an accuracy of 89% and the best AUC iP/R was 68%. Most ACT teams explored machine learning methods, some of them also used lexical resources like MeSH terms, PSI-MI concepts or particular lists of verbs and nouns, some integrated NER approaches. For the IMT, a total of 42 runs were evaluated by comparing systems against manually generated annotations done by curators from the BioGRID and MINT databases. The highest AUC iP/R achieved by any run was 53%, the best MCC score 0.55. In case of competitive systems with an acceptable recall (above 35%) the macro-averaged precision ranged between 50% and 80%, with a maximum F-Score of 55%. Conclusions The results of the ACT task of BioCreative III indicate that classification of large unbalanced article collections reflecting the real class imbalance is still challenging. Nevertheless, text-mining tools that report ranked lists of relevant articles for manual selection can potentially reduce the time needed to identify half of the relevant articles to less than 1/4 of the time when compared to unranked results. Detecting associations between full text articles and interaction detection method PSI-MI terms (IMT) is more difficult than might be anticipated. This is due to the variability of method term mentions, errors resulting from pre-processing of articles provided as PDF files, and the heterogeneity and different granularity of method term concepts encountered in the ontology. However, combining the sophisticated techniques developed by the participants with supporting evidence strings derived from the articles for human interpretation could result in practical modules for biological annotation workflows. PMID:22151929

  18. The Face-to-Face Light Detection Paradigm: A New Methodology for Investigating Visuospatial Attention Across Different Face Regions in Live Face-to-Face Communication Settings.

    PubMed

    Thompson, Laura A; Malloy, Daniel M; Cone, John M; Hendrickson, David L

    2010-01-01

    We introduce a novel paradigm for studying the cognitive processes used by listeners within interactive settings. This paradigm places the talker and the listener in the same physical space, creating opportunities for investigations of attention and comprehension processes taking place during interactive discourse situations. An experiment was conducted to compare results from previous research using videotaped stimuli to those obtained within the live face-to-face task paradigm. A headworn apparatus is used to briefly display LEDs on the talker's face in four locations as the talker communicates with the participant. In addition to the primary task of comprehending speeches, participants make a secondary task light detection response. In the present experiment, the talker gave non-emotionally-expressive speeches that were used in past research with videotaped stimuli. Signal detection analysis was employed to determine which areas of the face received the greatest focus of attention. Results replicate previous findings using videotaped methods.

  19. The Face-to-Face Light Detection Paradigm: A New Methodology for Investigating Visuospatial Attention Across Different Face Regions in Live Face-to-Face Communication Settings

    PubMed Central

    Thompson, Laura A.; Malloy, Daniel M.; Cone, John M.; Hendrickson, David L.

    2009-01-01

    We introduce a novel paradigm for studying the cognitive processes used by listeners within interactive settings. This paradigm places the talker and the listener in the same physical space, creating opportunities for investigations of attention and comprehension processes taking place during interactive discourse situations. An experiment was conducted to compare results from previous research using videotaped stimuli to those obtained within the live face-to-face task paradigm. A headworn apparatus is used to briefly display LEDs on the talker’s face in four locations as the talker communicates with the participant. In addition to the primary task of comprehending speeches, participants make a secondary task light detection response. In the present experiment, the talker gave non-emotionally-expressive speeches that were used in past research with videotaped stimuli. Signal detection analysis was employed to determine which areas of the face received the greatest focus of attention. Results replicate previous findings using videotaped methods. PMID:21113354

  20. The role of extra-foveal processing in 3D imaging

    NASA Astrophysics Data System (ADS)

    Eckstein, Miguel P.; Lago, Miguel A.; Abbey, Craig K.

    2017-03-01

    The field of medical image quality has relied on the assumption that metrics of image quality for simple visual detection tasks are a reliable proxy for the more clinically realistic visual search tasks. Rank order of signal detectability across conditions often generalizes from detection to search tasks. Here, we argue that search in 3D images represents a paradigm shift in medical imaging: radiologists typically cannot exhaustively scrutinize all regions of interest with the high acuity fovea requiring detection of signals with extra-foveal areas (visual periphery) of the human retina. We hypothesize that extra-foveal processing can alter the detectability of certain types of signals in medical images with important implications for search in 3D medical images. We compare visual search of two different types of signals in 2D vs. 3D images. We show that a small microcalcification-like signal is more highly detectable than a larger mass-like signal in 2D search, but its detectability largely decreases (relative to the larger signal) in the 3D search task. Utilizing measurements of observer detectability as a function retinal eccentricity and observer eye fixations we can predict the pattern of results in the 2D and 3D search studies. Our findings: 1) suggest that observer performance findings with 2D search might not always generalize to 3D search; 2) motivate the development of a new family of model observers that take into account the inhomogeneous visual processing across the retina (foveated model observers).

  1. Personality and physiological correlates of performance decrement on a monotonous task requiring sustained attention.

    DOT National Transportation Integrated Search

    1973-12-01

    The reductions in task load resulting from the increasing automation of air traffic control may actually increase the requirement for controllers to maintain high levels of sustained attention in order to detect infrequent system malfunctions. A prev...

  2. Detection of Operator Performance Breakdown as an Automation Triggering Mechanism

    NASA Technical Reports Server (NTRS)

    Yoo, Hyo-Sang; Lee, Paul U.; Landry, Steven J.

    2015-01-01

    Performance breakdown (PB) has been anecdotally described as a state where the human operator "loses control of context" and "cannot maintain required task performance." Preventing such a decline in performance is critical to assure the safety and reliability of human-integrated systems, and therefore PB could be useful as a point at which automation can be applied to support human performance. However, PB has never been scientifically defined or empirically demonstrated. Moreover, there is no validated objective way of detecting such a state or the transition to that state. The purpose of this work is: 1) to empirically demonstrate a PB state, and 2) to develop an objective way of detecting such a state. This paper defines PB and proposes an objective method for its detection. A human-in-the-loop study was conducted: 1) to demonstrate PB by increasing workload until the subject reported being in a state of PB, and 2) to identify possible parameters of a detection method for objectively identifying the subjectively-reported PB point, and 3) to determine if the parameters are idiosyncratic to an individual/context or are more generally applicable. In the experiment, fifteen participants were asked to manage three concurrent tasks (one primary and two secondary) for 18 minutes. The difficulty of the primary task was manipulated over time to induce PB while the difficulty of the secondary tasks remained static. The participants' task performance data was collected. Three hypotheses were constructed: 1) increasing workload will induce subjectively-identified PB, 2) there exists criteria that identifies the threshold parameters that best matches the subjectively-identified PB point, and 3) the criteria for choosing the threshold parameters is consistent across individuals. The results show that increasing workload can induce subjectively-identified PB, although it might not be generalizable-only 12 out of 15 participants declared PB. The PB detection method based on signal detection analysis was applied to the performance data and the results showed that PB can be identified using the method, particularly when the values of the parameters for the detection method were calibrated individually.

  3. Flexible statistical modelling detects clinical functional magnetic resonance imaging activation in partially compliant subjects.

    PubMed

    Waites, Anthony B; Mannfolk, Peter; Shaw, Marnie E; Olsrud, Johan; Jackson, Graeme D

    2007-02-01

    Clinical functional magnetic resonance imaging (fMRI) occasionally fails to detect significant activation, often due to variability in task performance. The present study seeks to test whether a more flexible statistical analysis can better detect activation, by accounting for variance associated with variable compliance to the task over time. Experimental results and simulated data both confirm that even at 80% compliance to the task, such a flexible model outperforms standard statistical analysis when assessed using the extent of activation (experimental data), goodness of fit (experimental data), and area under the operator characteristic curve (simulated data). Furthermore, retrospective examination of 14 clinical fMRI examinations reveals that in patients where the standard statistical approach yields activation, there is a measurable gain in model performance in adopting the flexible statistical model, with little or no penalty in lost sensitivity. This indicates that a flexible model should be considered, particularly for clinical patients who may have difficulty complying fully with the study task.

  4. Interactive Tools for Measuring Visual Scanning Performance and Reaction Time.

    PubMed

    Brooks, Johnell; Seeanner, Julia; Hennessy, Sarah; Manganelli, Joseph; Crisler, Matthew; Rosopa, Patrick; Jenkins, Casey; Anderson, Michael; Drouin, Nathalie; Belle, Leah; Truesdail, Constance; Tanner, Stephanie

    Occupational therapists are constantly searching for engaging, high-technology interactive tasks that provide immediate feedback to evaluate and train clients with visual scanning deficits. This study examined the relationship between two tools: the VISION COACH™ interactive light board and the Functional Object Detection © (FOD) Advanced driving simulator scenario. Fifty-four healthy drivers, ages 21-66 yr, were divided into three age groups. Participants performed braking response and visual target (E) detection tasks of the FOD Advanced driving scenario, followed by two sets of three trials using the VISION COACH Full Field 60 task. Results showed no significant effect of age on FOD Advanced performance but a significant effect of age on VISION COACH performance. Correlations showed that participants' performance on both braking and E detection tasks were significantly positively correlated with performance on the VISION COACH (.37 < r < .40, p < .01). These tools provide new options for therapists. Copyright © 2017 by the American Occupational Therapy Association, Inc.

  5. Oriented regions grouping based candidate proposal for infrared pedestrian detection

    NASA Astrophysics Data System (ADS)

    Wang, Jiangtao; Zhang, Jingai; Li, Huaijiang

    2018-04-01

    Effectively and accurately locating the positions of pedestrian candidates in image is a key task for the infrared pedestrian detection system. In this work, a novel similarity measuring metric is designed. Based on the selective search scheme, the developed similarity measuring metric is utilized to yield the possible locations for pedestrian candidate. Besides this, corresponding diversification strategies are also provided according to the characteristics of the infrared thermal imaging system. Experimental results indicate that the presented scheme can achieve more efficient outputs than the traditional selective search methodology for the infrared pedestrian detection task.

  6. Event-related cerebral hemodynamics reveal target-specific resource allocation for both "go" and "no-go" response-based vigilance tasks.

    PubMed

    Shaw, Tyler H; Funke, Matthew E; Dillard, Michael; Funke, Gregory J; Warm, Joel S; Parasuraman, Raja

    2013-08-01

    Transcranial Doppler sonography was used to measure cerebral blood flow velocity (CBFV) in the right and left cerebral hemispheres during the performance of a 50-min visual vigilance session. Observers monitored a simulated flight of unmanned aerial vehicles for cases in which one of the vehicles was flying in an inappropriate direction relative to its cohorts. Two types of vigilance tasks were employed: a traditional task in which observers made button press ("go") responses to critical signals, and a modification of the traditional task called the Sustained Attention to Response Task (SART) in which "go" responses acknowledged nonsignal events and response withholding ("no-go") signified signal detection. Signal detections and global CBFV scores declined over time. In addition, fine-grained event-related analyses revealed that the detection of signals was accompanied by an elevation of CBFV that was not present with missed signals. As was the case with the global scores, the magnitude of the transient CBFV increments associated with signal detection also declined over time, and these findings were independent of task type. The results support the view of CBFV as an index of the cognitive evaluation of stimulus significance, and a resource model of vigilance in which the need for continuous attention produces a depletion of information-processing assets that are not replenished as the task progresses. Further, temporal declines in the magnitude of event-related CBFV in response to critical signals only is evidence that the decrement function in vigilance is due to attentional processing and not specific task elements such as the required response format. Copyright © 2013. Published by Elsevier Inc.

  7. Parallel processing considerations for image recognition tasks

    NASA Astrophysics Data System (ADS)

    Simske, Steven J.

    2011-01-01

    Many image recognition tasks are well-suited to parallel processing. The most obvious example is that many imaging tasks require the analysis of multiple images. From this standpoint, then, parallel processing need be no more complicated than assigning individual images to individual processors. However, there are three less trivial categories of parallel processing that will be considered in this paper: parallel processing (1) by task; (2) by image region; and (3) by meta-algorithm. Parallel processing by task allows the assignment of multiple workflows-as diverse as optical character recognition [OCR], document classification and barcode reading-to parallel pipelines. This can substantially decrease time to completion for the document tasks. For this approach, each parallel pipeline is generally performing a different task. Parallel processing by image region allows a larger imaging task to be sub-divided into a set of parallel pipelines, each performing the same task but on a different data set. This type of image analysis is readily addressed by a map-reduce approach. Examples include document skew detection and multiple face detection and tracking. Finally, parallel processing by meta-algorithm allows different algorithms to be deployed on the same image simultaneously. This approach may result in improved accuracy.

  8. Behavioral Measures of Auditory Streaming in Ferrets (Mustela putorius)

    PubMed Central

    Ma, Ling; Yin, Pingbo; Micheyl, Christophe; Oxenham, Andrew J.; Shamma, Shihab A.

    2015-01-01

    An important aspect of the analysis of auditory “scenes” relates to the perceptual organization of sound sequences into auditory “streams.” In this study, we adapted two auditory perception tasks, used in recent human psychophysical studies, to obtain behavioral measures of auditory streaming in ferrets (Mustela putorius). One task involved the detection of shifts in the frequency of tones within an alternating tone sequence. The other task involved the detection of a stream of regularly repeating target tones embedded within a randomly varying multitone background. In both tasks, performance was measured as a function of various stimulus parameters, which previous psychophysical studies in humans have shown to influence auditory streaming. Ferret performance in the two tasks was found to vary as a function of these parameters in a way that is qualitatively consistent with the human data. These results suggest that auditory streaming occurs in ferrets, and that the two tasks described here may provide a valuable tool in future behavioral and neurophysiological studies of the phenomenon. PMID:20695663

  9. Do distinct mind wandering differently disrupt drivers? Interpretation of physiological and behavioral pattern with a data triangulation method.

    PubMed

    Pepin, Guillaume; Malin, Séverine; Jallais, Christophe; Moreau, Fabien; Fort, Alexandra; Navarro, Jordan; Ndiaye, Daniel; Gabaude, Catherine

    2018-07-01

    MW is damaging for tasks requiring sustained and divided attention, for example driving. Recent findings seem to be indicating that off-task thoughts differently disrupt drivers. The present paper delved into characteristics of off-task thoughts to assess their respective detrimental impact on driving. Twenty volunteers had to declare their MW thoughts and get intentionally involved in Problem-Solving Thoughts (PST) according to instructions. Heart rate and oculometric behavior were collected during the two sessions. Results showed that MW and PST led to a fixed gaze. MW might also led to a cognitive effort necessary to switch from task-unrelated to task-related focus. Similarities and differences between intentional and unintentional off-task thoughts were discussed in greater detail. By designing a detection algorithm, it could be possible to detect disruptive MW during risky situations while permitting the mind to wander when the driving demand is low. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Perceptual learning improves contrast sensitivity, visual acuity, and foveal crowding in amblyopia.

    PubMed

    Barollo, Michele; Contemori, Giulio; Battaglini, Luca; Pavan, Andrea; Casco, Clara

    2017-01-01

    Amblyopic observers present abnormal spatial interactions between a low-contrast sinusoidal target and high-contrast collinear flankers. It has been demonstrated that perceptual learning (PL) can modulate these low-level lateral interactions, resulting in improved visual acuity and contrast sensitivity. We measured the extent and duration of generalization effects to various spatial tasks (i.e., visual acuity, Vernier acuity, and foveal crowding) through PL on the target's contrast detection. Amblyopic observers were trained on a contrast-detection task for a central target (i.e., a Gabor patch) flanked above and below by two high-contrast Gabor patches. The pre- and post-learning tasks included lateral interactions at different target-to-flankers separations (i.e., 2, 3, 4, 8λ) and included a range of spatial frequencies and stimulus durations as well as visual acuity, Vernier acuity, contrast-sensitivity function, and foveal crowding. The results showed that perceptual training reduced the target's contrast-detection thresholds more for the longest target-to-flanker separation (i.e., 8λ). We also found generalization of PL to different stimuli and tasks: contrast sensitivity for both trained and untrained spatial frequencies, visual acuity for Sloan letters, and foveal crowding, and partially for Vernier acuity. Follow-ups after 5-7 months showed not only complete maintenance of PL effects on visual acuity and contrast sensitivity function but also further improvement in these tasks. These results suggest that PL improves facilitatory lateral interactions in amblyopic observers, which usually extend over larger separations than in typical foveal vision. The improvement in these basic visual spatial operations leads to a more efficient capability of performing spatial tasks involving high levels of visual processing, possibly due to the refinement of bottom-up and top-down networks of visual areas.

  11. Automatic Authorship Detection Using Textual Patterns Extracted from Integrated Syntactic Graphs

    PubMed Central

    Gómez-Adorno, Helena; Sidorov, Grigori; Pinto, David; Vilariño, Darnes; Gelbukh, Alexander

    2016-01-01

    We apply the integrated syntactic graph feature extraction methodology to the task of automatic authorship detection. This graph-based representation allows integrating different levels of language description into a single structure. We extract textual patterns based on features obtained from shortest path walks over integrated syntactic graphs and apply them to determine the authors of documents. On average, our method outperforms the state of the art approaches and gives consistently high results across different corpora, unlike existing methods. Our results show that our textual patterns are useful for the task of authorship attribution. PMID:27589740

  12. An Intelligent Man-Machine Interface—Multi-Robot Control Adapted for Task Engagement Based on Single-Trial Detectability of P300

    PubMed Central

    Kirchner, Elsa A.; Kim, Su K.; Tabie, Marc; Wöhrle, Hendrik; Maurus, Michael; Kirchner, Frank

    2016-01-01

    Advanced man-machine interfaces (MMIs) are being developed for teleoperating robots at remote and hardly accessible places. Such MMIs make use of a virtual environment and can therefore make the operator immerse him-/herself into the environment of the robot. In this paper, we present our developed MMI for multi-robot control. Our MMI can adapt to changes in task load and task engagement online. Applying our approach of embedded Brain Reading we improve user support and efficiency of interaction. The level of task engagement was inferred from the single-trial detectability of P300-related brain activity that was naturally evoked during interaction. With our approach no secondary task is needed to measure task load. It is based on research results on the single-stimulus paradigm, distribution of brain resources and its effect on the P300 event-related component. It further considers effects of the modulation caused by a delayed reaction time on the P300 component evoked by complex responses to task-relevant messages. We prove our concept using single-trial based machine learning analysis, analysis of averaged event-related potentials and behavioral analysis. As main results we show (1) a significant improvement of runtime needed to perform the interaction tasks compared to a setting in which all subjects could easily perform the tasks. We show that (2) the single-trial detectability of the event-related potential P300 can be used to measure the changes in task load and task engagement during complex interaction while also being sensitive to the level of experience of the operator and (3) can be used to adapt the MMI individually to the different needs of users without increasing total workload. Our online adaptation of the proposed MMI is based on a continuous supervision of the operator's cognitive resources by means of embedded Brain Reading. Operators with different qualifications or capabilities receive only as many tasks as they can perform to avoid mental overload as well as mental underload. PMID:27445742

  13. Investigating the visual span in comparative search: the effects of task difficulty and divided attention.

    PubMed

    Pomplun, M; Reingold, E M; Shen, J

    2001-09-01

    In three experiments, participants' visual span was measured in a comparative visual search task in which they had to detect a local match or mismatch between two displays presented side by side. Experiment 1 manipulated the difficulty of the comparative visual search task by contrasting a mismatch detection task with a substantially more difficult match detection task. In Experiment 2, participants were tested in a single-task condition involving only the visual task and a dual-task condition in which they concurrently performed an auditory task. Finally, in Experiment 3, participants performed two dual-task conditions, which differed in the difficulty of the concurrent auditory task. Both the comparative search task difficulty (Experiment 1) and the divided attention manipulation (Experiments 2 and 3) produced strong effects on visual span size.

  14. Choice of Grating Orientation for Evaluation of Peripheral Vision

    PubMed Central

    Venkataraman, Abinaya Priya; Winter, Simon; Rosén, Robert; Lundström, Linda

    2016-01-01

    ABSTRACT Purpose Peripheral resolution acuity depends on the orientation of the stimuli. However, it is uncertain if such a meridional effect also exists for peripheral detection tasks because they are affected by optical errors. Knowledge of the quantitative differences in acuity for different grating orientations is crucial for choosing the appropriate stimuli for evaluations of peripheral resolution and detection tasks. We assessed resolution and detection thresholds for different grating orientations in the peripheral visual field. Methods Resolution and detection thresholds were evaluated for gratings of four different orientations in eight different visual field meridians in the 20-deg visual field in white light. Detection measurements in monochromatic light (543 nm; bandwidth, 10 nm) were also performed to evaluate the effects of chromatic aberration on the meridional effect. A combination of trial lenses and adaptive optics system was used to correct the monochromatic lower- and higher-order aberrations. Results For both resolution and detection tasks, gratings parallel to the visual field meridian had better threshold compared with the perpendicular gratings, whereas the two oblique gratings had similar thresholds. The parallel and perpendicular grating acuity differences for resolution and detection tasks were 0.16 logMAR and 0.11 logMAD, respectively. Elimination of chromatic errors did not affect the meridional preference in detection acuity. Conclusions Similar to peripheral resolution, detection also shows a meridional effect that appears to have a neural origin. The threshold difference seen for parallel and perpendicular gratings suggests the use of two oblique gratings as stimuli in alternative forced-choice procedures for peripheral vision evaluation to reduce measurement variation. PMID:26889822

  15. Algorithm for automatic analysis of electro-oculographic data

    PubMed Central

    2013-01-01

    Background Large amounts of electro-oculographic (EOG) data, recorded during electroencephalographic (EEG) measurements, go underutilized. We present an automatic, auto-calibrating algorithm that allows efficient analysis of such data sets. Methods The auto-calibration is based on automatic threshold value estimation. Amplitude threshold values for saccades and blinks are determined based on features in the recorded signal. The performance of the developed algorithm was tested by analyzing 4854 saccades and 213 blinks recorded in two different conditions: a task where the eye movements were controlled (saccade task) and a task with free viewing (multitask). The results were compared with results from a video-oculography (VOG) device and manually scored blinks. Results The algorithm achieved 93% detection sensitivity for blinks with 4% false positive rate. The detection sensitivity for horizontal saccades was between 98% and 100%, and for oblique saccades between 95% and 100%. The classification sensitivity for horizontal and large oblique saccades (10 deg) was larger than 89%, and for vertical saccades larger than 82%. The duration and peak velocities of the detected horizontal saccades were similar to those in the literature. In the multitask measurement the detection sensitivity for saccades was 97% with a 6% false positive rate. Conclusion The developed algorithm enables reliable analysis of EOG data recorded both during EEG and as a separate metrics. PMID:24160372

  16. After-effects of TFT-LCD display polarity and display colour on the detection of low-contrast objects.

    PubMed

    Mayr, Susanne; Buchner, Axel

    2010-07-01

    Participants performed a word-non-word discrimination task within a car control display emulated on a thin film transistor liquid-crystal display (TFT-LCD). The task simulated an information read-out from a TFT-LCD-based instrument panel. Subsequently, participants performed a low-contrast object detection task that simulated the detection of objects during night-time driving. In experiment 1, words/non-words were presented black-on-white (positive polarity) or white-on-black (negative polarity). In experiments 2 and 3, display colour was additionally manipulated. A positive polarity advantage in the discrimination task was consistently observed. In contrast, positive displays interfered more than negative displays with subsequent detection. The detrimental after-effect of positive polarity displays was strong with white and blue, reduced with amber and absent with red displays. Subjective measures showed a preference for blue over red, but a slight advantage for amber over blue. Implications for TFT-LCD design are derived from the results. STATEMENT OF RELEVANCE: When using TFT-LCDs as car instrument panels, positive polarity red TFT-LCDs are very likely to lead to good instrument readability while at the same time minimising - relative to other colours - the negative effects of an illuminated display on low-contrast object detection during night-time driving.

  17. Human interaction with an intelligent computer in multi-task situations

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.

    1975-01-01

    A general formulation of human decision making in multiple task situations is presented. It includes a description of the state, event, and action space in which the multiple task supervisor operates. A specific application to a failure detection and correction situation is discussed and results of a simulation experiment presented. Issues considered include static vs. dynamic allocation of responsibility and competitive vs. cooperative intelligence.

  18. Musical space synesthesia: automatic, explicit and conceptual connections between musical stimuli and space.

    PubMed

    Akiva-Kabiri, Lilach; Linkovski, Omer; Gertner, Limor; Henik, Avishai

    2014-08-01

    In musical-space synesthesia, musical pitches are perceived as having a spatially defined array. Previous studies showed that symbolic inducers (e.g., numbers, months) can modulate response according to the inducer's relative position on the synesthetic spatial form. In the current study we tested two musical-space synesthetes and a group of matched controls on three different tasks: musical-space mapping, spatial cue detection and a spatial Stroop-like task. In the free mapping task, both synesthetes exhibited a diagonal organization of musical pitch tones rising from bottom left to the top right. This organization was found to be consistent over time. In the subsequent tasks, synesthetes were asked to ignore an auditory or visually presented musical pitch (irrelevant information) and respond to a visual target (i.e., an asterisk) on the screen (relevant information). Compatibility between musical pitch and the target's spatial location was manipulated to be compatible or incompatible with the synesthetes' spatial representations. In the spatial cue detection task participants had to press the space key immediately upon detecting the target. In the Stroop-like task, they had to reach the target by using a mouse cursor. In both tasks, synesthetes' performance was modulated by the compatibility between irrelevant and relevant spatial information. Specifically, the target's spatial location conflicted with the spatial information triggered by the irrelevant musical stimulus. These results reveal that for musical-space synesthetes, musical information automatically orients attention according to their specific spatial musical-forms. The present study demonstrates the genuineness of musical-space synesthesia by revealing its two hallmarks-automaticity and consistency. In addition, our results challenge previous findings regarding an implicit vertical representation for pitch tones in non-synesthete musicians. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Chromatic Perceptual Learning but No Category Effects without Linguistic Input.

    PubMed

    Grandison, Alexandra; Sowden, Paul T; Drivonikou, Vicky G; Notman, Leslie A; Alexander, Iona; Davies, Ian R L

    2016-01-01

    Perceptual learning involves an improvement in perceptual judgment with practice, which is often specific to stimulus or task factors. Perceptual learning has been shown on a range of visual tasks but very little research has explored chromatic perceptual learning. Here, we use two low level perceptual threshold tasks and a supra-threshold target detection task to assess chromatic perceptual learning and category effects. Experiment 1 investigates whether chromatic thresholds reduce as a result of training and at what level of analysis learning effects occur. Experiment 2 explores the effect of category training on chromatic thresholds, whether training of this nature is category specific and whether it can induce categorical responding. Experiment 3 investigates the effect of category training on a higher level, lateralized target detection task, previously found to be sensitive to category effects. The findings indicate that performance on a perceptual threshold task improves following training but improvements do not transfer across retinal location or hue. Therefore, chromatic perceptual learning is category specific and can occur at relatively early stages of visual analysis. Additionally, category training does not induce category effects on a low level perceptual threshold task, as indicated by comparable discrimination thresholds at the newly learned hue boundary and adjacent test points. However, category training does induce emerging category effects on a supra-threshold target detection task. Whilst chromatic perceptual learning is possible, learnt category effects appear to be a product of left hemisphere processing, and may require the input of higher level linguistic coding processes in order to manifest.

  20. Subconscious detection of threat as reflected by an enhanced response bias.

    PubMed

    Windmann, S; Krüger, T

    1998-12-01

    Neurobiological and cognitive models of unconscious information processing suggest that subconscious threat detection can lead to cognitive misinterpretations and false alarms, while conscious processing is assumed to be perceptually and conceptually accurate and unambiguous. Furthermore, clinical theories suggest that pathological anxiety results from a crude preattentive warning system predominating over more sophisticated and controlled modes of processing. We investigated the hypothesis that subconscious detection of threat in a cognitive task is reflected by enhanced "false signal" detection rather than by selectively enhanced discrimination of threat items in 30 patients with panic disorder and 30 healthy controls. We presented a tachistoscopic word-nonword discrimination task and a subsequent recognition task and analyzed the data by means of process-dissociation procedures. In line with our expectations, subjects of both groups showed more false signal detection to threat than to neutral stimuli as indicated by an enhanced response bias, whereas indices of discriminative sensitivity did not show this effect. In addition, patients with panic disorder showed a generally enhanced response bias in comparison to healthy controls. They also seemed to have processed the stimuli less elaborately and less differentially. Results are consistent with the assumption that subconscious threat detection can lead to misrepresentations of stimulus significance and that pathological anxiety is characterized by a hyperactive preattentive alarm system that is insufficiently controlled by higher cognitive processes. Copyright 1998 Academic Press.

  1. Shape detection of Gaborized outline versions of everyday objects

    PubMed Central

    Sassi, Michaël; Machilsen, Bart; Wagemans, Johan

    2012-01-01

    We previously tested the identifiability of six versions of Gaborized outlines of everyday objects, differing in the orientations assigned to elements inside and outside the outline. We found significant differences in identifiability between the versions, and related a number of stimulus metrics to identifiability [Sassi, M., Vancleef, K., Machilsen, B., Panis, S., & Wagemans, J. (2010). Identification of everyday objects on the basis of Gaborized outline versions. i-Perception, 1(3), 121–142]. In this study, after retesting the identifiability of new variants of three of the stimulus versions, we tested their robustness to local orientation jitter in a detection experiment. In general, our results replicated the key findings from the previous study, and allowed us to substantiate our earlier interpretations of the effects of our stimulus metrics and of the performance differences between the different stimulus versions. The results of the detection task revealed a different ranking order of stimulus versions than the identification task. By examining the parallels and differences between the effects of our stimulus metrics in the two tasks, we found evidence for a trade-off between shape detectability and identifiability. The generally simple and smooth shapes that yield the strongest contour integration and most robust detectability tend to lack the distinguishing features necessary for clear-cut identification. Conversely, contours that do contain such identifying features tend to be inherently more complex and, therefore, yield weaker integration and less robust detectability. PMID:23483752

  2. The Protein-Protein Interaction tasks of BioCreative III: classification/ranking of articles and linking bio-ontology concepts to full text.

    PubMed

    Krallinger, Martin; Vazquez, Miguel; Leitner, Florian; Salgado, David; Chatr-Aryamontri, Andrew; Winter, Andrew; Perfetto, Livia; Briganti, Leonardo; Licata, Luana; Iannuccelli, Marta; Castagnoli, Luisa; Cesareni, Gianni; Tyers, Mike; Schneider, Gerold; Rinaldi, Fabio; Leaman, Robert; Gonzalez, Graciela; Matos, Sergio; Kim, Sun; Wilbur, W John; Rocha, Luis; Shatkay, Hagit; Tendulkar, Ashish V; Agarwal, Shashank; Liu, Feifan; Wang, Xinglong; Rak, Rafal; Noto, Keith; Elkan, Charles; Lu, Zhiyong; Dogan, Rezarta Islamaj; Fontaine, Jean-Fred; Andrade-Navarro, Miguel A; Valencia, Alfonso

    2011-10-03

    Determining usefulness of biomedical text mining systems requires realistic task definition and data selection criteria without artificial constraints, measuring performance aspects that go beyond traditional metrics. The BioCreative III Protein-Protein Interaction (PPI) tasks were motivated by such considerations, trying to address aspects including how the end user would oversee the generated output, for instance by providing ranked results, textual evidence for human interpretation or measuring time savings by using automated systems. Detecting articles describing complex biological events like PPIs was addressed in the Article Classification Task (ACT), where participants were asked to implement tools for detecting PPI-describing abstracts. Therefore the BCIII-ACT corpus was provided, which includes a training, development and test set of over 12,000 PPI relevant and non-relevant PubMed abstracts labeled manually by domain experts and recording also the human classification times. The Interaction Method Task (IMT) went beyond abstracts and required mining for associations between more than 3,500 full text articles and interaction detection method ontology concepts that had been applied to detect the PPIs reported in them. A total of 11 teams participated in at least one of the two PPI tasks (10 in ACT and 8 in the IMT) and a total of 62 persons were involved either as participants or in preparing data sets/evaluating these tasks. Per task, each team was allowed to submit five runs offline and another five online via the BioCreative Meta-Server. From the 52 runs submitted for the ACT, the highest Matthew's Correlation Coefficient (MCC) score measured was 0.55 at an accuracy of 89% and the best AUC iP/R was 68%. Most ACT teams explored machine learning methods, some of them also used lexical resources like MeSH terms, PSI-MI concepts or particular lists of verbs and nouns, some integrated NER approaches. For the IMT, a total of 42 runs were evaluated by comparing systems against manually generated annotations done by curators from the BioGRID and MINT databases. The highest AUC iP/R achieved by any run was 53%, the best MCC score 0.55. In case of competitive systems with an acceptable recall (above 35%) the macro-averaged precision ranged between 50% and 80%, with a maximum F-Score of 55%. The results of the ACT task of BioCreative III indicate that classification of large unbalanced article collections reflecting the real class imbalance is still challenging. Nevertheless, text-mining tools that report ranked lists of relevant articles for manual selection can potentially reduce the time needed to identify half of the relevant articles to less than 1/4 of the time when compared to unranked results. Detecting associations between full text articles and interaction detection method PSI-MI terms (IMT) is more difficult than might be anticipated. This is due to the variability of method term mentions, errors resulting from pre-processing of articles provided as PDF files, and the heterogeneity and different granularity of method term concepts encountered in the ontology. However, combining the sophisticated techniques developed by the participants with supporting evidence strings derived from the articles for human interpretation could result in practical modules for biological annotation workflows.

  3. Inattentional blindness in older adults: Effects of attentional set and to-be-ignored distractors.

    PubMed

    Horwood, Sally; Beanland, Vanessa

    2016-04-01

    Inattentional blindness (IB) involves failing to detect an unexpected visual stimulus while undertaking another task. Previous research has predominantly investigated IB using young adult samples, with few studies exploring whether or how an observer's age affects their detection of unexpected events. To help address this gap, we compared younger adults (18-25 years of age) and older adults (60-80 years of age) on two IB tasks: one dynamic, one static. In the static task, older age was associated with substantially increased IB rates: 89 % for older adults versus 5 % for younger adults. In the dynamic task, we systematically manipulated the presence of to-be-ignored distractors and whether the unexpected stimulus color matched the observers' attentional set. We found a main effect of age on IB: As in the static task, older age was associated with increased IB rates (38 % for older adults vs. 8 % for younger adults). The presence of to-be-ignored distractors and attentional set mismatch interacted to substantially increase IB rates, but age did not interact with either factor. Overall, the results indicate that older age is associated with large increases in IB rates across a range of tasks. The pattern of results is consistent with attentional capacity models of cognitive aging, suggesting that older adults' reduced cognitive resources result in failure to consciously process stimuli that are inconsistent with their attentional set.

  4. Feedback training induces a bias for detecting happiness or fear in facial expressions that generalises to a novel task.

    PubMed

    Griffiths, Sarah; Jarrold, Chris; Penton-Voak, Ian S; Munafò, Marcus R

    2015-12-30

    Many psychological disorders are characterised by insensitivities or biases in the processing of subtle facial expressions of emotion. Training using expression morph sequences which vary the intensity of expressions may be able to address such deficits. In the current study participants were shown expressions from either happy or fearful intensity morph sequences, and trained to detect the target emotion (e.g., happy in the happy sequence) as being present in low intensity expressions. Training transfer was tested using a six alternative forced choice emotion labelling task with varying intensity expressions, which participants completed before and after training. Training increased false alarms for the target emotion in the transfer task. Hit rate for the target emotion did not increase once adjustment was made for the increase in false alarms. This suggests that training causes a bias for detecting the target emotion which generalises outside of the training task. However it does not increase accuracy for detecting the target emotion. The results are discussed in terms of the training's utility in addressing different types of emotion processing deficits in psychological disorders. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  5. Testing visual short-term memory of pigeons (Columba livia) and a rhesus monkey (Macaca mulatta) with a location change detection task.

    PubMed

    Leising, Kenneth J; Elmore, L Caitlin; Rivera, Jacquelyne J; Magnotti, John F; Katz, Jeffrey S; Wright, Anthony A

    2013-09-01

    Change detection is commonly used to assess capacity (number of objects) of human visual short-term memory (VSTM). Comparisons with the performance of non-human animals completing similar tasks have shown similarities and differences in object-based VSTM, which is only one aspect ("what") of memory. Another important aspect of memory, which has received less attention, is spatial short-term memory for "where" an object is in space. In this article, we show for the first time that a monkey and pigeons can be accurately trained to identify location changes, much as humans do, in change detection tasks similar to those used to test object capacity of VSTM. The subject's task was to identify (touch/peck) an item that changed location across a brief delay. Both the monkey and pigeons showed transfer to delays longer than the training delay, to greater and smaller distance changes than in training, and to novel colors. These results are the first to demonstrate location-change detection in any non-human species and encourage comparative investigations into the nature of spatial and visual short-term memory.

  6. Towards a hemodynamic BCI using transcranial Doppler without user-specific training data

    NASA Astrophysics Data System (ADS)

    Aleem, Idris; Chau, Tom

    2013-02-01

    Transcranial Doppler (TCD) was recently introduced as a new brain-computer interface (BCI) modality for detecting task-induced hemispheric lateralization. To date, single-trial discrimination between a lateralized mental activity and a rest state has been demonstrated with long (45 s) activation time periods. However, the possibility of detecting successive activations in a user-independent framework (i.e. without training data from the user) remains an open question. Objective. The objective of this research was to assess TCD-based detection of lateralized mental activity with a user-independent classifier. In so doing, we also investigated the accuracy of detecting successive lateralizations. Approach. TCD data from 18 participants were collected during verbal fluency, mental rotation tasks and baseline counting tasks. Linear discriminant analysis and a set of four time-domain features were used to classify successive left and right brain activations. Main results. In a user-independent framework, accuracies up to 74.6 ± 12.6% were achieved using training data from a single participant, and lateralization task durations of 18 s. Significance. Subject-independent, algorithmic classification of TCD signals corresponding to successive brain lateralization may be a feasible paradigm for TCD-BCI design.

  7. Spatial gradient for unique-feature detection in patients with unilateral neglect: evidence from auditory and visual search.

    PubMed

    Eramudugolla, Ranmalee; Mattingley, Jason B

    2008-01-01

    Patients with unilateral spatial neglect following right hemisphere damage are impaired in detecting contralesional targets in both visual and haptic search tasks, and often show a graded improvement in detection performance for more ipsilesional spatial locations. In audition, multiple simultaneous sounds are most effectively perceived if they are distributed along the frequency dimension. Thus, attention to spectro-temporal features alone can allow detection of a target sound amongst multiple simultaneous distracter sounds, regardless of whether these sounds are spatially separated. Spatial bias in attention associated with neglect should not affect auditory search based on spectro-temporal features of a sound target. We report that a right brain damaged patient with neglect demonstrated a significant gradient favouring the ipsilesional side on a visual search task as well as an auditory search task in which the target was a frequency modulated tone amongst steady distractor tones. No such asymmetry was apparent in the auditory search performance of a control patient with a right hemisphere lesion but no neglect. The results suggest that the spatial bias in attention exhibited by neglect patients affects stimulus processing even when spatial information is irrelevant to the task.

  8. Mind wandering in text comprehension under dual-task conditions.

    PubMed

    Dixon, Peter; Li, Henry

    2013-01-01

    In two experiments, subjects responded to on-task probes while reading under dual-task conditions. The secondary task was to monitor the text for occurrences of the letter e. In Experiment 1, reading comprehension was assessed with a multiple-choice recognition test; in Experiment 2, subjects recalled the text. In both experiments, the secondary task replicated the well-known "missing-letter effect" in which detection of e's was less effective for function words and the word "the." Letter detection was also more effective when subjects were on task, but this effect did not interact with the missing-letter effect. Comprehension was assessed in both the dual-task conditions and in control single-task conditions. In the single-task conditions, both recognition (Experiment 1) and recall (Experiment 2) was better when subjects were on task, replicating previous research on mind wandering. Surprisingly, though, comprehension under dual-task conditions only showed an effect of being on task when measured with recall; there was no effect on recognition performance. Our interpretation of this pattern of results is that subjects generate responses to on-task probes on the basis of a retrospective assessment of the contents of working memory. Further, we argue that under dual-task conditions, the contents of working memory is not closely related to the reading processes required for accurate recognition performance. These conclusions have implications for models of text comprehension and for the interpretation of on-task probe responses.

  9. Mind wandering in text comprehension under dual-task conditions

    PubMed Central

    Dixon, Peter; Li, Henry

    2013-01-01

    In two experiments, subjects responded to on-task probes while reading under dual-task conditions. The secondary task was to monitor the text for occurrences of the letter e. In Experiment 1, reading comprehension was assessed with a multiple-choice recognition test; in Experiment 2, subjects recalled the text. In both experiments, the secondary task replicated the well-known “missing-letter effect” in which detection of e's was less effective for function words and the word “the.” Letter detection was also more effective when subjects were on task, but this effect did not interact with the missing-letter effect. Comprehension was assessed in both the dual-task conditions and in control single-task conditions. In the single-task conditions, both recognition (Experiment 1) and recall (Experiment 2) was better when subjects were on task, replicating previous research on mind wandering. Surprisingly, though, comprehension under dual-task conditions only showed an effect of being on task when measured with recall; there was no effect on recognition performance. Our interpretation of this pattern of results is that subjects generate responses to on-task probes on the basis of a retrospective assessment of the contents of working memory. Further, we argue that under dual-task conditions, the contents of working memory is not closely related to the reading processes required for accurate recognition performance. These conclusions have implications for models of text comprehension and for the interpretation of on-task probe responses. PMID:24101909

  10. Analysis of Space Shuttle Ground Support System Fault Detection, Isolation, and Recovery Processes and Resources

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Gerald-Yamasaki, Michael; Trent, Robert P.

    2009-01-01

    As part of the FDIR (Fault Detection, Isolation, and Recovery) Project for the Constellation Program, a task was designed within the context of the Constellation Program FDIR project called the Legacy Benchmarking Task to document as accurately as possible the FDIR processes and resources that were used by the Space Shuttle ground support equipment (GSE) during the Shuttle flight program. These results served as a comparison with results obtained from the new FDIR capability. The task team assessed Shuttle and EELV (Evolved Expendable Launch Vehicle) historical data for GSE-related launch delays to identify expected benefits and impact. This analysis included a study of complex fault isolation situations that required a lengthy troubleshooting process. Specifically, four elements of that system were considered: LH2 (liquid hydrogen), LO2 (liquid oxygen), hydraulic test, and ground special power.

  11. Task difficulty modulates brain activation in the emotional oddball task.

    PubMed

    Siciliano, Rachel E; Madden, David J; Tallman, Catherine W; Boylan, Maria A; Kirste, Imke; Monge, Zachary A; Packard, Lauren E; Potter, Guy G; Wang, Lihong

    2017-06-01

    Previous functional magnetic resonance imaging (fMRI) studies have reported that task-irrelevant, emotionally salient events can disrupt target discrimination, particularly when attentional demands are low, while others demonstrate alterations in the distracting effects of emotion in behavior and neural activation in the context of attention-demanding tasks. We used fMRI, in conjunction with an emotional oddball task, at different levels of target discrimination difficulty, to investigate the effects of emotional distractors on the detection of subsequent targets. In addition, we distinguished different behavioral components of target detection representing decisional, nondecisional, and response criterion processes. Results indicated that increasing target discrimination difficulty led to increased time required for both the decisional and nondecisional components of the detection response, as well as to increased target-related neural activation in frontoparietal regions. The emotional distractors were associated with activation in ventral occipital and frontal regions and dorsal frontal regions, but this activation was attenuated with increased difficulty. Emotional distraction did not alter the behavioral measures of target detection, but did lead to increased target-related frontoparietal activation for targets following emotional images as compared to those following neutral images. This latter effect varied with target discrimination difficulty, with an increased influence of the emotional distractors on subsequent target-related frontoparietal activation in the more difficult discrimination condition. This influence of emotional distraction was in addition associated specifically with the decisional component of target detection. These findings indicate that emotion-cognition interactions, in the emotional oddball task, vary depending on the difficulty of the target discrimination and the associated limitations on processing resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Pitch discrimination by ferrets for simple and complex sounds.

    PubMed

    Walker, Kerry M M; Schnupp, Jan W H; Hart-Schnupp, Sheelah M B; King, Andrew J; Bizley, Jennifer K

    2009-09-01

    Although many studies have examined the performance of animals in detecting a frequency change in a sequence of tones, few have measured animals' discrimination of the fundamental frequency (F0) of complex, naturalistic stimuli. Additionally, it is not yet clear if animals perceive the pitch of complex sounds along a continuous, low-to-high scale. Here, four ferrets (Mustela putorius) were trained on a two-alternative forced choice task to discriminate sounds that were higher or lower in F0 than a reference sound using pure tones and artificial vowels as stimuli. Average Weber fractions for ferrets on this task varied from approximately 20% to 80% across references (200-1200 Hz), and these fractions were similar for pure tones and vowels. These thresholds are approximately ten times higher than those typically reported for other mammals on frequency change detection tasks that use go/no-go designs. Naive human listeners outperformed ferrets on the present task, but they showed similar effects of stimulus type and reference F0. These results suggest that while non-human animals can be trained to label complex sounds as high or low in pitch, this task may be much more difficult for animals than simply detecting a frequency change.

  13. Exploring supervised and unsupervised methods to detect topics in biomedical text

    PubMed Central

    Lee, Minsuk; Wang, Weiqing; Yu, Hong

    2006-01-01

    Background Topic detection is a task that automatically identifies topics (e.g., "biochemistry" and "protein structure") in scientific articles based on information content. Topic detection will benefit many other natural language processing tasks including information retrieval, text summarization and question answering; and is a necessary step towards the building of an information system that provides an efficient way for biologists to seek information from an ocean of literature. Results We have explored the methods of Topic Spotting, a task of text categorization that applies the supervised machine-learning technique naïve Bayes to assign automatically a document into one or more predefined topics; and Topic Clustering, which apply unsupervised hierarchical clustering algorithms to aggregate documents into clusters such that each cluster represents a topic. We have applied our methods to detect topics of more than fifteen thousand of articles that represent over sixteen thousand entries in the Online Mendelian Inheritance in Man (OMIM) database. We have explored bag of words as the features. Additionally, we have explored semantic features; namely, the Medical Subject Headings (MeSH) that are assigned to the MEDLINE records, and the Unified Medical Language System (UMLS) semantic types that correspond to the MeSH terms, in addition to bag of words, to facilitate the tasks of topic detection. Our results indicate that incorporating the MeSH terms and the UMLS semantic types as additional features enhances the performance of topic detection and the naïve Bayes has the highest accuracy, 66.4%, for predicting the topic of an OMIM article as one of the total twenty-five topics. Conclusion Our results indicate that the supervised topic spotting methods outperformed the unsupervised topic clustering; on the other hand, the unsupervised topic clustering methods have the advantages of being robust and applicable in real world settings. PMID:16539745

  14. Exploring the Cosmic Frontier, Task A - Direct Detection of Dark Matter, Task B - Experimental Particle Astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, John A.J.; Gold, Michael S.

    This report summarizes the work of Task A and B for the period 2013-2016. For Task A the work is for direct detection of dark matter with the single-phase liquid argon experiment Mini-CLEAN. For Task B the work is for the search for new physics in the analysis of fluorescence events with the Auger experiment and for the search for the indirect detection of dark matter with the HAWC experiment.

  15. Drogue detection for vision-based autonomous aerial refueling via low rank and sparse decomposition with multiple features

    NASA Astrophysics Data System (ADS)

    Gao, Shibo; Cheng, Yongmei; Song, Chunhua

    2013-09-01

    The technology of vision-based probe-and-drogue autonomous aerial refueling is an amazing task in modern aviation for both manned and unmanned aircraft. A key issue is to determine the relative orientation and position of the drogue and the probe accurately for relative navigation system during the approach phase, which requires locating the drogue precisely. Drogue detection is a challenging task due to disorderly motion of drogue caused by both the tanker wake vortex and atmospheric turbulence. In this paper, the problem of drogue detection is considered as a problem of moving object detection. A drogue detection algorithm based on low rank and sparse decomposition with local multiple features is proposed. The global and local information of drogue is introduced into the detection model in a unified way. The experimental results on real autonomous aerial refueling videos show that the proposed drogue detection algorithm is effective.

  16. The cooking task: making a meal of executive functions

    PubMed Central

    Doherty, T. A.; Barker, L. A.; Denniss, R.; Jalil, A.; Beer, M. D.

    2015-01-01

    Current standardized neuropsychological tests may fail to accurately capture real-world executive deficits. We developed a computer-based Cooking Task (CT) assessment of executive functions and trialed the measure with a normative group before use with a head-injured population. Forty-six participants completed the computerized CT and subtests from standardized neuropsychological tasks, including the Tower and Sorting Tests of executive function from the Delis-Kaplan Executive Function System (D-KEFS) and the Cambridge prospective memory test (CAMPROMPT), in order to examine whether standardized executive function tasks, predicted performance on measurement indices from the CT. Findings showed that verbal comprehension, rule detection and prospective memory contributed to measures of prospective planning accuracy and strategy implementation of the CT. Results also showed that functions necessary for cooking efficacy differ as an effect of task demands (difficulty levels). Performance on rule detection, strategy implementation and flexible thinking executive function measures contributed to accuracy on the CT. These findings raise questions about the functions captured by present standardized tasks particularly at varying levels of difficulty and during dual-task performance. Our preliminary findings also indicate that CT measures can effectively distinguish between executive function and Full Scale IQ abilities. Results of the present study indicate that the CT shows promise as an ecologically valid measure of executive function for future use with a head-injured population and indexes selective executive function’s captured by standardized tests. PMID:25717294

  17. The cooking task: making a meal of executive functions.

    PubMed

    Doherty, T A; Barker, L A; Denniss, R; Jalil, A; Beer, M D

    2015-01-01

    Current standardized neuropsychological tests may fail to accurately capture real-world executive deficits. We developed a computer-based Cooking Task (CT) assessment of executive functions and trialed the measure with a normative group before use with a head-injured population. Forty-six participants completed the computerized CT and subtests from standardized neuropsychological tasks, including the Tower and Sorting Tests of executive function from the Delis-Kaplan Executive Function System (D-KEFS) and the Cambridge prospective memory test (CAMPROMPT), in order to examine whether standardized executive function tasks, predicted performance on measurement indices from the CT. Findings showed that verbal comprehension, rule detection and prospective memory contributed to measures of prospective planning accuracy and strategy implementation of the CT. Results also showed that functions necessary for cooking efficacy differ as an effect of task demands (difficulty levels). Performance on rule detection, strategy implementation and flexible thinking executive function measures contributed to accuracy on the CT. These findings raise questions about the functions captured by present standardized tasks particularly at varying levels of difficulty and during dual-task performance. Our preliminary findings also indicate that CT measures can effectively distinguish between executive function and Full Scale IQ abilities. Results of the present study indicate that the CT shows promise as an ecologically valid measure of executive function for future use with a head-injured population and indexes selective executive function's captured by standardized tests.

  18. Time response for sensor sensed to actuator response for mobile robotic system

    NASA Astrophysics Data System (ADS)

    Amir, N. S.; Shafie, A. A.

    2017-11-01

    Time and performance of a mobile robot are very important in completing the tasks given to achieve its ultimate goal. Tasks may need to be done within a time constraint to ensure smooth operation of a mobile robot and can result in better performance. The main purpose of this research was to improve the performance of a mobile robot so that it can complete the tasks given within time constraint. The problem that is needed to be solved is to minimize the time interval between sensor detection and actuator response. The research objective is to analyse the real time operating system performance of sensors and actuators on one microcontroller and on two microcontroller for a mobile robot. The task for a mobile robot for this research is line following with an obstacle avoidance. Three runs will be carried out for the task and the time between the sensors senses to the actuator responses were recorded. Overall, the results show that two microcontroller system have better response time compared to the one microcontroller system. For this research, the average difference of response time is very important to improve the internal performance between the occurrence of a task, sensors detection, decision making and actuator response of a mobile robot. This research helped to develop a mobile robot with a better performance and can complete task within the time constraint.

  19. Collimator optimization in myocardial perfusion SPECT using the ideal observer and realistic background variability for lesion detection and joint detection and localization tasks

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Du, Yong; Links, Jonathan M.; Frey, Eric C.

    2016-03-01

    In SPECT imaging, collimators are a major factor limiting image quality and largely determine the noise and resolution of SPECT images. In this paper, we seek the collimator with the optimal tradeoff between image noise and resolution with respect to performance on two tasks related to myocardial perfusion SPECT: perfusion defect detection and joint detection and localization. We used the Ideal Observer (IO) operating on realistic background-known-statistically (BKS) and signal-known-exactly (SKE) data. The areas under the receiver operating characteristic (ROC) and localization ROC (LROC) curves (AUCd, AUCd+l), respectively, were used as the figures of merit for both tasks. We used a previously developed population of 54 phantoms based on the eXtended Cardiac Torso Phantom (XCAT) that included variations in gender, body size, heart size and subcutaneous adipose tissue level. For each phantom, organ uptakes were varied randomly based on distributions observed in patient data. We simulated perfusion defects at six different locations with extents and severities of 10% and 25%, respectively, which represented challenging but clinically relevant defects. The extent and severity are, respectively, the perfusion defect’s fraction of the myocardial volume and reduction of uptake relative to the normal myocardium. Projection data were generated using an analytical projector that modeled attenuation, scatter, and collimator-detector response effects, a 9% energy resolution at 140 keV, and a 4 mm full-width at half maximum (FWHM) intrinsic spatial resolution. We investigated a family of eight parallel-hole collimators that spanned a large range of sensitivity-resolution tradeoffs. For each collimator and defect location, the IO test statistics were computed using a Markov Chain Monte Carlo (MCMC) method for an ensemble of 540 pairs of defect-present and -absent images that included the aforementioned anatomical and uptake variability. Sets of test statistics were computed for both tasks and analyzed using ROC and LROC analysis methodologies. The results of this study suggest that collimators with somewhat poorer resolution and higher sensitivity than those of a typical low-energy high-resolution (LEHR) collimator were optimal for both defect detection and joint detection and localization tasks in myocardial perfusion SPECT for the range of defect sizes investigated. This study also indicates that optimizing instrumentation for a detection task may provide near-optimal performance on the more challenging detection-localization task.

  20. Preliminary evidence that different mechanisms underlie the anger superiority effect in children with and without Autism Spectrum Disorders

    PubMed Central

    Isomura, Tomoko; Ogawa, Shino; Yamada, Satoko; Shibasaki, Masahiro; Masataka, Nobuo

    2014-01-01

    Previous studies have demonstrated that angry faces capture humans' attention more rapidly than emotionally positive faces. This phenomenon is referred to as the anger superiority effect (ASE). Despite atypical emotional processing, adults and children with Autism Spectrum Disorders (ASD) have been reported to show ASE as well as typically developed (TD) individuals. So far, however, few studies have clarified whether or not the mechanisms underlying ASE are the same for both TD and ASD individuals. Here, we tested how TD and ASD children process schematic emotional faces during detection by employing a recognition task in combination with a face-in-the-crowd task. Results of the face-in-the-crowd task revealed the prevalence of ASE both in TD and ASD children. However, the results of the recognition task revealed group differences: In TD children, detection of angry faces required more configural face processing and disrupted the processing of local features. In ASD children, on the other hand, it required more feature-based processing rather than configural processing. Despite the small sample sizes, these findings provide preliminary evidence that children with ASD, in contrast to TD children, show quick detection of angry faces by extracting local features in faces. PMID:24904477

  1. Walking Stroop carpet: an innovative dual-task concept for detecting cognitive impairment

    PubMed Central

    Perrochon, A; Kemoun, G; Watelain, E; Berthoz, A

    2013-01-01

    Background Several studies have reported the potential value of the dual-task concept during locomotion in clinical evaluation because cognitive decline is strongly associated with gait abnormalities. However, current dual-task tests appear to be insufficient for early diagnosis of cognitive impairment. Methods Forty-nine subjects (young, old, with or without mild cognitive impairment) underwent cognitive evaluation (Mini-Mental State Examination, Frontal Assessment Battery, five-word test, Stroop, clock-drawing) and single-task locomotor evaluation on an electronic walkway. They were then dual-task-tested on the Walking Stroop carpet, which is an adaptation of the Stroop color–word task for locomotion. A cluster analysis, followed by an analysis of variance, was performed to assess gait parameters. Results Cluster analysis of gait parameters on the Walking Stroop carpet revealed an interaction between cognitive and functional abilities because it made it possible to distinguish dysexecutive cognitive fragility or decline with a sensitivity of 89% and a specificity of 94%. Locomotor abilities differed according to the group and dual-task conditions. Healthy subjects performed less well on dual-tasking under reading conditions than when they were asked to distinguish colors, whereas dysexecutive subjects had worse motor performances when they were required to dual task. Conclusion The Walking Stroop carpet is a dual-task test that enables early detection of cognitive fragility that has not been revealed by traditional neuropsychological tests or single-task walking analysis. PMID:23682211

  2. Evaluation of 2 cognitive abilities tests in a dual-task environment

    NASA Technical Reports Server (NTRS)

    Vidulich, M. A.; Tsang, P. S.

    1986-01-01

    Most real world operators are required to perform multiple tasks simultaneously. In some cases, such as flying a high performance aircraft or trouble shooting a failing nuclear power plant, the operator's ability to time share or process in parallel" can be driven to extremes. This has created interest in selection tests of cognitive abilities. Two tests that have been suggested are the Dichotic Listening Task and the Cognitive Failures Questionnaire. Correlations between these test results and time sharing performance were obtained and the validity of these tests were examined. The primary task was a tracking task with dynamically varying bandwidth. This was performed either alone or concurrently with either another tracking task or a spatial transformation task. The results were: (1) An unexpected negative correlation was detected between the two tests; (2) The lack of correlation between either test and task performance made the predictive utility of the tests scores appear questionable; (3) Pilots made more errors on the Dichotic Listening Task than college students.

  3. A contrast-sensitive channelized-Hotelling observer to predict human performance in a detection task using lumpy backgrounds and Gaussian signals

    NASA Astrophysics Data System (ADS)

    Park, Subok; Badano, Aldo; Gallas, Brandon D.; Myers, Kyle J.

    2007-03-01

    Previously, a non-prewhitening matched filter (NPWMF) incorporating a model for the contrast sensitivity of the human visual system was introduced for modeling human performance in detection tasks with different viewing angles and white-noise backgrounds by Badano et al. But NPWMF observers do not perform well detection tasks involving complex backgrounds since they do not account for random backgrounds. A channelized-Hotelling observer (CHO) using difference-of-Gaussians (DOG) channels has been shown to track human performance well in detection tasks using lumpy backgrounds. In this work, a CHO with DOG channels, incorporating the model of the human contrast sensitivity, was developed similarly. We call this new observer a contrast-sensitive CHO (CS-CHO). The Barten model was the basis of our human contrast sensitivity model. A scalar was multiplied to the Barten model and varied to control the thresholding effect of the contrast sensitivity on luminance-valued images and hence the performance-prediction ability of the CS-CHO. The performance of the CS-CHO was compared to the average human performance from the psychophysical study by Park et al., where the task was to detect a known Gaussian signal in non-Gaussian distributed lumpy backgrounds. Six different signal-intensity values were used in this study. We chose the free parameter of our model to match the mean human performance in the detection experiment at the strongest signal intensity. Then we compared the model to the human at five different signal-intensity values in order to see if the performance of the CS-CHO matched human performance. Our results indicate that the CS-CHO with the chosen scalar for the contrast sensitivity predicts human performance closely as a function of signal intensity.

  4. Masking release for words in amplitude-modulated noise as a function of modulation rate and task

    PubMed Central

    Buss, Emily; Whittle, Lisa N.; Grose, John H.; Hall, Joseph W.

    2009-01-01

    For normal-hearing listeners, masked speech recognition can improve with the introduction of masker amplitude modulation. The present experiments tested the hypothesis that this masking release is due in part to an interaction between the temporal distribution of cues necessary to perform the task and the probability of those cues temporally coinciding with masker modulation minima. Stimuli were monosyllabic words masked by speech-shaped noise, and masker modulation was introduced via multiplication with a raised sinusoid of 2.5–40 Hz. Tasks included detection, three-alternative forced-choice identification, and open-set identification. Overall, there was more masking release associated with the closed than the open-set tasks. The best rate of modulation also differed as a function of task; whereas low modulation rates were associated with best performance for the detection and three-alternative identification tasks, performance improved with modulation rate in the open-set task. This task-by-rate interaction was also observed when amplitude-modulated speech was presented in a steady masker, and for low- and high-pass filtered speech presented in modulated noise. These results were interpreted as showing that the optimal rate of amplitude modulation depends on the temporal distribution of speech cues and the information required to perform a particular task. PMID:19603883

  5. Divided attention reduces resistance to distraction at encoding but not retrieval.

    PubMed

    Weeks, Jennifer C; Hasher, Lynn

    2017-08-01

    Older adults show implicit memory for previously seen distraction, an effect attributed to poor attentional control. It is unclear whether this effect results from lack of control over encoding during the distraction task, lack of retrieval constraint during the test task, or both. In the present study, we simulated poor distraction control in young adults using divided attention at encoding, at retrieval, at both times, or not at all. The encoding task was a 1-back task on pictures with distracting superimposed letter strings, some of which were words. The retrieval task was a word fragment completion task testing implicit memory for the distracting words. Attention was divided using an auditory odd digit detection task. Dividing attention at encoding, but not at retrieval, resulted in significant priming for distraction, which suggests that control over encoding processes is a primary determinant of distraction transfer in populations with low inhibitory control (e.g. older adults).

  6. FRaC: a feature-modeling approach for semi-supervised and unsupervised anomaly detection.

    PubMed

    Noto, Keith; Brodley, Carla; Slonim, Donna

    2012-01-01

    Anomaly detection involves identifying rare data instances (anomalies) that come from a different class or distribution than the majority (which are simply called "normal" instances). Given a training set of only normal data, the semi-supervised anomaly detection task is to identify anomalies in the future. Good solutions to this task have applications in fraud and intrusion detection. The unsupervised anomaly detection task is different: Given unlabeled, mostly-normal data, identify the anomalies among them. Many real-world machine learning tasks, including many fraud and intrusion detection tasks, are unsupervised because it is impractical (or impossible) to verify all of the training data. We recently presented FRaC, a new approach for semi-supervised anomaly detection. FRaC is based on using normal instances to build an ensemble of feature models, and then identifying instances that disagree with those models as anomalous. In this paper, we investigate the behavior of FRaC experimentally and explain why FRaC is so successful. We also show that FRaC is a superior approach for the unsupervised as well as the semi-supervised anomaly detection task, compared to well-known state-of-the-art anomaly detection methods, LOF and one-class support vector machines, and to an existing feature-modeling approach.

  7. FRaC: a feature-modeling approach for semi-supervised and unsupervised anomaly detection

    PubMed Central

    Brodley, Carla; Slonim, Donna

    2011-01-01

    Anomaly detection involves identifying rare data instances (anomalies) that come from a different class or distribution than the majority (which are simply called “normal” instances). Given a training set of only normal data, the semi-supervised anomaly detection task is to identify anomalies in the future. Good solutions to this task have applications in fraud and intrusion detection. The unsupervised anomaly detection task is different: Given unlabeled, mostly-normal data, identify the anomalies among them. Many real-world machine learning tasks, including many fraud and intrusion detection tasks, are unsupervised because it is impractical (or impossible) to verify all of the training data. We recently presented FRaC, a new approach for semi-supervised anomaly detection. FRaC is based on using normal instances to build an ensemble of feature models, and then identifying instances that disagree with those models as anomalous. In this paper, we investigate the behavior of FRaC experimentally and explain why FRaC is so successful. We also show that FRaC is a superior approach for the unsupervised as well as the semi-supervised anomaly detection task, compared to well-known state-of-the-art anomaly detection methods, LOF and one-class support vector machines, and to an existing feature-modeling approach. PMID:22639542

  8. Different effects of executive and visuospatial working memory on visual consciousness.

    PubMed

    De Loof, Esther; Poppe, Louise; Cleeremans, Axel; Gevers, Wim; Van Opstal, Filip

    2015-11-01

    Consciousness and working memory are two widely studied cognitive phenomena. Although they have been closely tied on a theoretical and neural level, empirical work that investigates their relation is largely lacking. In this study, the relationship between visual consciousness and different working memory components is investigated by using a dual-task paradigm. More specifically, while participants were performing a visual detection task to measure their visual awareness threshold, they had to concurrently perform either an executive or visuospatial working memory task. We hypothesized that visual consciousness would be hindered depending on the type and the size of the load in working memory. Results showed that maintaining visuospatial content in working memory hinders visual awareness, irrespective of the amount of information maintained. By contrast, the detection threshold was progressively affected under increasing executive load. Interestingly, increasing executive load had a generic effect on detection speed, calling into question whether its obstructing effect is specific to the visual awareness threshold. Together, these results indicate that visual consciousness depends differently on executive and visuospatial working memory.

  9. Effect of shaping sensor data on pilot response

    NASA Technical Reports Server (NTRS)

    Bailey, Roger M.

    1990-01-01

    The pilot of a modern jet aircraft is subjected to varying workloads while being responsible for multiple, ongoing tasks. The ability to associate the pilot's responses with the task/situation, by modifying the way information is presented relative to the task, could provide a means of reducing workload. To examine the feasibility of this concept, a real time simulation study was undertaken to determine whether preprocessing of sensor data would affect pilot response. Results indicated that preprocessing could be an effective way to tailor the pilot's response to displayed data. The effects of three transformations or shaping functions were evaluated with respect to the pilot's ability to predict and detect out-of-tolerance conditions while monitoring an electronic engine display. Two nonlinear transformations, on being the inverse of the other, were compared to a linear transformation. Results indicate that a nonlinear transformation that increases the rate-or-change of output relative to input tends to advance the prediction response and improve the detection response, while a nonlinear transformation that decreases the rate-of-change of output relative to input tends to lengthen the prediction response and make detection more difficult.

  10. Detecting and Quantifying Mind Wandering during Simulated Driving.

    PubMed

    Baldwin, Carryl L; Roberts, Daniel M; Barragan, Daniela; Lee, John D; Lerner, Neil; Higgins, James S

    2017-01-01

    Mind wandering is a pervasive threat to transportation safety, potentially accounting for a substantial number of crashes and fatalities. In the current study, mind wandering was induced through completion of the same task for 5 days, consisting of a 20-min monotonous freeway-driving scenario, a cognitive depletion task, and a repetition of the 20-min driving scenario driven in the reverse direction. Participants were periodically probed with auditory tones to self-report whether they were mind wandering or focused on the driving task. Self-reported mind wandering frequency was high, and did not statistically change over days of participation. For measures of driving performance, participant labeled periods of mind wandering were associated with reduced speed and reduced lane variability, in comparison to periods of on task performance. For measures of electrophysiology, periods of mind wandering were associated with increased power in the alpha band of the electroencephalogram (EEG), as well as a reduction in the magnitude of the P3a component of the event related potential (ERP) in response to the auditory probe. Results support that mind wandering has an impact on driving performance and the associated change in driver's attentional state is detectable in underlying brain physiology. Further, results suggest that detecting the internal cognitive state of humans is possible in a continuous task such as automobile driving. Identifying periods of likely mind wandering could serve as a useful research tool for assessment of driver attention, and could potentially lead to future in-vehicle safety countermeasures.

  11. Detecting and Quantifying Mind Wandering during Simulated Driving

    PubMed Central

    Baldwin, Carryl L.; Roberts, Daniel M.; Barragan, Daniela; Lee, John D.; Lerner, Neil; Higgins, James S.

    2017-01-01

    Mind wandering is a pervasive threat to transportation safety, potentially accounting for a substantial number of crashes and fatalities. In the current study, mind wandering was induced through completion of the same task for 5 days, consisting of a 20-min monotonous freeway-driving scenario, a cognitive depletion task, and a repetition of the 20-min driving scenario driven in the reverse direction. Participants were periodically probed with auditory tones to self-report whether they were mind wandering or focused on the driving task. Self-reported mind wandering frequency was high, and did not statistically change over days of participation. For measures of driving performance, participant labeled periods of mind wandering were associated with reduced speed and reduced lane variability, in comparison to periods of on task performance. For measures of electrophysiology, periods of mind wandering were associated with increased power in the alpha band of the electroencephalogram (EEG), as well as a reduction in the magnitude of the P3a component of the event related potential (ERP) in response to the auditory probe. Results support that mind wandering has an impact on driving performance and the associated change in driver’s attentional state is detectable in underlying brain physiology. Further, results suggest that detecting the internal cognitive state of humans is possible in a continuous task such as automobile driving. Identifying periods of likely mind wandering could serve as a useful research tool for assessment of driver attention, and could potentially lead to future in-vehicle safety countermeasures. PMID:28848414

  12. Temporal Audiovisual Motion Prediction in 2D- vs. 3D-Environments

    PubMed Central

    Dittrich, Sandra; Noesselt, Tömme

    2018-01-01

    Predicting motion is essential for many everyday life activities, e.g., in road traffic. Previous studies on motion prediction failed to find consistent results, which might be due to the use of very different stimulus material and behavioural tasks. Here, we directly tested the influence of task (detection, extrapolation) and stimulus features (visual vs. audiovisual and three-dimensional vs. non-three-dimensional) on temporal motion prediction in two psychophysical experiments. In both experiments a ball followed a trajectory toward the observer and temporarily disappeared behind an occluder. In audiovisual conditions a moving white noise (congruent or non-congruent to visual motion direction) was presented concurrently. In experiment 1 the ball reappeared on a predictable or a non-predictable trajectory and participants detected when the ball reappeared. In experiment 2 the ball did not reappear after occlusion and participants judged when the ball would reach a specified position at two possible distances from the occluder (extrapolation task). Both experiments were conducted in three-dimensional space (using stereoscopic screen and polarised glasses) and also without stereoscopic presentation. Participants benefitted from visually predictable trajectories and concurrent sounds during detection. Additionally, visual facilitation was more pronounced for non-3D stimulation during detection task. In contrast, for a more complex extrapolation task group mean results indicated that auditory information impaired motion prediction. However, a post hoc cross-validation procedure (split-half) revealed that participants varied in their ability to use sounds during motion extrapolation. Most participants selectively profited from either near or far extrapolation distances but were impaired for the other one. We propose that interindividual differences in extrapolation efficiency might be the mechanism governing this effect. Together, our results indicate that both a realistic experimental environment and subject-specific differences modulate the ability of audiovisual motion prediction and need to be considered in future research. PMID:29618999

  13. Temporal Audiovisual Motion Prediction in 2D- vs. 3D-Environments.

    PubMed

    Dittrich, Sandra; Noesselt, Tömme

    2018-01-01

    Predicting motion is essential for many everyday life activities, e.g., in road traffic. Previous studies on motion prediction failed to find consistent results, which might be due to the use of very different stimulus material and behavioural tasks. Here, we directly tested the influence of task (detection, extrapolation) and stimulus features (visual vs. audiovisual and three-dimensional vs. non-three-dimensional) on temporal motion prediction in two psychophysical experiments. In both experiments a ball followed a trajectory toward the observer and temporarily disappeared behind an occluder. In audiovisual conditions a moving white noise (congruent or non-congruent to visual motion direction) was presented concurrently. In experiment 1 the ball reappeared on a predictable or a non-predictable trajectory and participants detected when the ball reappeared. In experiment 2 the ball did not reappear after occlusion and participants judged when the ball would reach a specified position at two possible distances from the occluder (extrapolation task). Both experiments were conducted in three-dimensional space (using stereoscopic screen and polarised glasses) and also without stereoscopic presentation. Participants benefitted from visually predictable trajectories and concurrent sounds during detection. Additionally, visual facilitation was more pronounced for non-3D stimulation during detection task. In contrast, for a more complex extrapolation task group mean results indicated that auditory information impaired motion prediction. However, a post hoc cross-validation procedure (split-half) revealed that participants varied in their ability to use sounds during motion extrapolation. Most participants selectively profited from either near or far extrapolation distances but were impaired for the other one. We propose that interindividual differences in extrapolation efficiency might be the mechanism governing this effect. Together, our results indicate that both a realistic experimental environment and subject-specific differences modulate the ability of audiovisual motion prediction and need to be considered in future research.

  14. The effect of auditory verbal imagery on signal detection in hallucination-prone individuals

    PubMed Central

    Moseley, Peter; Smailes, David; Ellison, Amanda; Fernyhough, Charles

    2016-01-01

    Cognitive models have suggested that auditory hallucinations occur when internal mental events, such as inner speech or auditory verbal imagery (AVI), are misattributed to an external source. This has been supported by numerous studies indicating that individuals who experience hallucinations tend to perform in a biased manner on tasks that require them to distinguish self-generated from non-self-generated perceptions. However, these tasks have typically been of limited relevance to inner speech models of hallucinations, because they have not manipulated the AVI that participants used during the task. Here, a new paradigm was employed to investigate the interaction between imagery and perception, in which a healthy, non-clinical sample of participants were instructed to use AVI whilst completing an auditory signal detection task. It was hypothesized that AVI-usage would cause participants to perform in a biased manner, therefore falsely detecting more voices in bursts of noise. In Experiment 1, when cued to generate AVI, highly hallucination-prone participants showed a lower response bias than when performing a standard signal detection task, being more willing to report the presence of a voice in the noise. Participants not prone to hallucinations performed no differently between the two conditions. In Experiment 2, participants were not specifically instructed to use AVI, but retrospectively reported how often they engaged in AVI during the task. Highly hallucination-prone participants who retrospectively reported using imagery showed a lower response bias than did participants with lower proneness who also reported using AVI. Results are discussed in relation to prominent inner speech models of hallucinations. PMID:26435050

  15. Acquisition of a visual discrimination and reversal learning task by Labrador retrievers.

    PubMed

    Lazarowski, Lucia; Foster, Melanie L; Gruen, Margaret E; Sherman, Barbara L; Case, Beth C; Fish, Richard E; Milgram, Norton W; Dorman, David C

    2014-05-01

    Optimal cognitive ability is likely important for military working dogs (MWD) trained to detect explosives. An assessment of a dog's ability to rapidly learn discriminations might be useful in the MWD selection process. In this study, visual discrimination and reversal tasks were used to assess cognitive performance in Labrador retrievers selected for an explosives detection program using a modified version of the Toronto General Testing Apparatus (TGTA), a system developed for assessing performance in a battery of neuropsychological tests in canines. The results of the current study revealed that, as previously found with beagles tested using the TGTA, Labrador retrievers (N = 16) readily acquired both tasks and learned the discrimination task significantly faster than the reversal task. The present study confirmed that the modified TGTA system is suitable for cognitive evaluations in Labrador retriever MWDs and can be used to further explore effects of sex, phenotype, age, and other factors in relation to canine cognition and learning, and may provide an additional screening tool for MWD selection.

  16. Piéron’s Law and Optimal Behavior in Perceptual Decision-Making

    PubMed Central

    van Maanen, Leendert; Grasman, Raoul P. P. P.; Forstmann, Birte U.; Wagenmakers, Eric-Jan

    2012-01-01

    Piéron’s Law is a psychophysical regularity in signal detection tasks that states that mean response times decrease as a power function of stimulus intensity. In this article, we extend Piéron’s Law to perceptual two-choice decision-making tasks, and demonstrate that the law holds as the discriminability between two competing choices is manipulated, even though the stimulus intensity remains constant. This result is consistent with predictions from a Bayesian ideal observer model. The model assumes that in order to respond optimally in a two-choice decision-making task, participants continually update the posterior probability of each response alternative, until the probability of one alternative crosses a criterion value. In addition to predictions for two-choice decision-making tasks, we extend the ideal observer model to predict Piéron’s Law in signal detection tasks. We conclude that Piéron’s Law is a general phenomenon that may be caused by optimality constraints. PMID:22232572

  17. Lax decision criteria lead to negativity bias: evidence from the emotional stroop task.

    PubMed

    Liu, Guofang; Xin, Ziqiang; Lin, Chongde

    2014-06-01

    Negativity bias means that negative information is usually given more emphasis than comparable positive information. Under signal detection theory, recent research found that people more frequently and incorrectly identify negative task-related words as having been presented originally than positive words, even when they were not presented. That is, people have lax decision criteria for negative words. However, the response biases for task-unrelated negative words and for emotionally important words are still unclear. This study investigated response bias for these two kinds of words. Study 1 examined the response bias for task-unrelated negative words using an emotional Stroop task. Proportions of correct recognition to negative and positive words were assessed by non-parametric signal detection analysis. Participants have lower (i.e., more lax) decision criteria for task-unrelated negative words than for positive words. Study 2 supported and expanded this result by investigating participants' response bias for highly emotional words. Participants have lower decision criteria for highly emotional words than for less emotional words. Finally, possible evolutionary sources of the response bias were discussed.

  18. Prospective memory mediated by interoceptive accuracy: a psychophysiological approach.

    PubMed

    Umeda, Satoshi; Tochizawa, Saiko; Shibata, Midori; Terasawa, Yuri

    2016-11-19

    Previous studies on prospective memory (PM), defined as memory for future intentions, suggest that psychological stress enhances successful PM retrieval. However, the mechanisms underlying this notion remain poorly understood. We hypothesized that PM retrieval is achieved through interaction with autonomic nervous activity, which is mediated by the individual accuracy of interoceptive awareness, as measured by the heartbeat detection task. In this study, the relationship between cardiac reactivity and retrieval of delayed intentions was evaluated using the event-based PM task. Participants were required to detect PM target letters while engaged in an ongoing 2-back working memory task. The results demonstrated that individuals with higher PM task performance had a greater increase in heart rate on PM target presentation. Also, higher interoceptive perceivers showed better PM task performance. This pattern was not observed for working memory task performance. These findings suggest that cardiac afferent signals enhance PM retrieval, which is mediated by individual levels of interoceptive accuracy.This article is part of the themed issue 'Interoception beyond homeostasis: affect, cognition and mental health'. © 2016 The Authors.

  19. Developing Bayesian adaptive methods for estimating sensitivity thresholds (d′) in Yes-No and forced-choice tasks

    PubMed Central

    Lesmes, Luis A.; Lu, Zhong-Lin; Baek, Jongsoo; Tran, Nina; Dosher, Barbara A.; Albright, Thomas D.

    2015-01-01

    Motivated by Signal Detection Theory (SDT), we developed a family of novel adaptive methods that estimate the sensitivity threshold—the signal intensity corresponding to a pre-defined sensitivity level (d′ = 1)—in Yes-No (YN) and Forced-Choice (FC) detection tasks. Rather than focus stimulus sampling to estimate a single level of %Yes or %Correct, the current methods sample psychometric functions more broadly, to concurrently estimate sensitivity and decision factors, and thereby estimate thresholds that are independent of decision confounds. Developed for four tasks—(1) simple YN detection, (2) cued YN detection, which cues the observer's response state before each trial, (3) rated YN detection, which incorporates a Not Sure response, and (4) FC detection—the qYN and qFC methods yield sensitivity thresholds that are independent of the task's decision structure (YN or FC) and/or the observer's subjective response state. Results from simulation and psychophysics suggest that 25 trials (and sometimes less) are sufficient to estimate YN thresholds with reasonable precision (s.d. = 0.10–0.15 decimal log units), but more trials are needed for FC thresholds. When the same subjects were tested across tasks of simple, cued, rated, and FC detection, adaptive threshold estimates exhibited excellent agreement with the method of constant stimuli (MCS), and with each other. These YN adaptive methods deliver criterion-free thresholds that have previously been exclusive to FC methods. PMID:26300798

  20. Detection and categorization of bacteria habitats using shallow linguistic analysis

    PubMed Central

    2015-01-01

    Background Information regarding bacteria biotopes is important for several research areas including health sciences, microbiology, and food processing and preservation. One of the challenges for scientists in these domains is the huge amount of information buried in the text of electronic resources. Developing methods to automatically extract bacteria habitat relations from the text of these electronic resources is crucial for facilitating research in these areas. Methods We introduce a linguistically motivated rule-based approach for recognizing and normalizing names of bacteria habitats in biomedical text by using an ontology. Our approach is based on the shallow syntactic analysis of the text that include sentence segmentation, part-of-speech (POS) tagging, partial parsing, and lemmatization. In addition, we propose two methods for identifying bacteria habitat localization relations. The underlying assumption for the first method is that discourse changes with a new paragraph. Therefore, it operates on a paragraph-basis. The second method performs a more fine-grained analysis of the text and operates on a sentence-basis. We also develop a novel anaphora resolution method for bacteria coreferences and incorporate it with the sentence-based relation extraction approach. Results We participated in the Bacteria Biotope (BB) Task of the BioNLP Shared Task 2013. Our system (Boun) achieved the second best performance with 68% Slot Error Rate (SER) in Sub-task 1 (Entity Detection and Categorization), and ranked third with an F-score of 27% in Sub-task 2 (Localization Event Extraction). This paper reports the system that is implemented for the shared task, including the novel methods developed and the improvements obtained after the official evaluation. The extensions include the expansion of the OntoBiotope ontology using the training set for Sub-task 1, and the novel sentence-based relation extraction method incorporated with anaphora resolution for Sub-task 2. These extensions resulted in promising results for Sub-task 1 with a SER of 68%, and state-of-the-art performance for Sub-task 2 with an F-score of 53%. Conclusions Our results show that a linguistically-oriented approach based on the shallow syntactic analysis of the text is as effective as machine learning approaches for the detection and ontology-based normalization of habitat entities. Furthermore, the newly developed sentence-based relation extraction system with the anaphora resolution module significantly outperforms the paragraph-based one, as well as the other systems that participated in the BB Shared Task 2013. PMID:26201262

  1. Chromatic Perceptual Learning but No Category Effects without Linguistic Input

    PubMed Central

    Grandison, Alexandra; Sowden, Paul T.; Drivonikou, Vicky G.; Notman, Leslie A.; Alexander, Iona; Davies, Ian R. L.

    2016-01-01

    Perceptual learning involves an improvement in perceptual judgment with practice, which is often specific to stimulus or task factors. Perceptual learning has been shown on a range of visual tasks but very little research has explored chromatic perceptual learning. Here, we use two low level perceptual threshold tasks and a supra-threshold target detection task to assess chromatic perceptual learning and category effects. Experiment 1 investigates whether chromatic thresholds reduce as a result of training and at what level of analysis learning effects occur. Experiment 2 explores the effect of category training on chromatic thresholds, whether training of this nature is category specific and whether it can induce categorical responding. Experiment 3 investigates the effect of category training on a higher level, lateralized target detection task, previously found to be sensitive to category effects. The findings indicate that performance on a perceptual threshold task improves following training but improvements do not transfer across retinal location or hue. Therefore, chromatic perceptual learning is category specific and can occur at relatively early stages of visual analysis. Additionally, category training does not induce category effects on a low level perceptual threshold task, as indicated by comparable discrimination thresholds at the newly learned hue boundary and adjacent test points. However, category training does induce emerging category effects on a supra-threshold target detection task. Whilst chromatic perceptual learning is possible, learnt category effects appear to be a product of left hemisphere processing, and may require the input of higher level linguistic coding processes in order to manifest. PMID:27252669

  2. Electrophysiological measures of conflict detection and resolution in the Stroop task.

    PubMed

    Coderre, Emily; Conklin, Kathy; van Heuven, Walter J B

    2011-09-21

    Conflict detection and resolution is crucial in a cognitive task like the Stroop task. Previous studies have identified an early negativity component (N(inc)) as a prominent marker of Stroop conflict in event-related potentials (ERPs). However, to what extent this ERP component reflects conflict detection and/or resolution is still unclear. Here, we report a Stroop task in which the stimulus onset asynchrony (SOA) of color and word stimuli presentation was manipulated in order to disentangle the roles of conflict detection and conflict resolution in generating Stroop-related ERP components. Separating the word from the color information gives us precise control over the timing of conflict. If the N(inc) is related with conflict resolution it should be absent when the word appears during response preparation, as in a long-latency positive SOA. Our data shows that the N(inc) occurs in all SOAs, even after a response has been made, supporting its role in the detection of stimulus conflict rather than conflict resolution. The use of SOA manipulation therefore allows for the examination of a wider temporal spectrum of interference in order to specify the functions of this conflict-related component. These results provide insight into the neural signatures of conflict processes, and have implications for models of cognitive control mechanisms in the brain. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Visual long-term memory and change blindness: Different effects of pre- and post-change information on one-shot change detection using meaningless geometric objects.

    PubMed

    Nishiyama, Megumi; Kawaguchi, Jun

    2014-11-01

    To clarify the relationship between visual long-term memory (VLTM) and online visual processing, we investigated whether and how VLTM involuntarily affects the performance of a one-shot change detection task using images consisting of six meaningless geometric objects. In the study phase, participants observed pre-change (Experiment 1), post-change (Experiment 2), or both pre- and post-change (Experiment 3) images appearing in the subsequent change detection phase. In the change detection phase, one object always changed between pre- and post-change images and participants reported which object was changed. Results showed that VLTM of pre-change images enhanced the performance of change detection, while that of post-change images decreased accuracy. Prior exposure to both pre- and post-change images did not influence performance. These results indicate that pre-change information plays an important role in change detection, and that information in VLTM related to the current task does not always have a positive effect on performance. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Does working memory load facilitate target detection?

    PubMed

    Fruchtman-Steinbok, Tom; Kessler, Yoav

    2016-02-01

    Previous studies demonstrated that increasing working memory (WM) load delays performance of a concurrent task, by distracting attention and thus interfering with encoding and maintenance processes. The present study used a version of the change detection task with a target detection requirement during the retention interval. In contrast to the above prediction, target detection was faster following a larger set-size, specifically when presented shortly after the memory array (up to 400 ms). The effect of set-size on target detection was also evident when no memory retention was required. The set-size effect was also found using different modalities. Moreover, it was only observed when the memory array was presented simultaneously, but not sequentially. These results were explained by increased phasic alertness exerted by the larger visual display. The present study offers new evidence of ongoing attentional processes in the commonly-used change detection paradigm. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Dedicated memory structure holding data for detecting available worker thread(s) and informing available worker thread(s) of task(s) to execute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, George L.; Eichenberger, Alexandre E.; O'Brien, John K. P.

    The present disclosure relates generally to a dedicated memory structure (that is, hardware device) holding data for detecting available worker thread(s) and informing available worker thread(s) of task(s) to execute.

  6. The aftermath of memory retrieval for recycling visual working memory representations.

    PubMed

    Park, Hyung-Bum; Zhang, Weiwei; Hyun, Joo-Seok

    2017-07-01

    We examined the aftermath of accessing and retrieving a subset of information stored in visual working memory (VWM)-namely, whether detection of a mismatch between memory and perception can impair the original memory of an item while triggering recognition-induced forgetting for the remaining, untested items. For this purpose, we devised a consecutive-change detection task wherein two successive testing probes were displayed after a single set of memory items. Across two experiments utilizing different memory-testing methods (whole vs. single probe), we observed a reliable pattern of poor performance in change detection for the second test when the first test had exhibited a color change. The impairment after a color change was evident even when the same memory item was repeatedly probed; this suggests that an attention-driven, salient visual change made it difficult to reinstate the previously remembered item. The second change detection, for memory items untested during the first change detection, was also found to be inaccurate, indicating that recognition-induced forgetting had occurred for the unprobed items in VWM. In a third experiment, we conducted a task that involved change detection plus continuous recall, wherein a memory recall task was presented after the change detection task. The analyses of the distributions of recall errors with a probabilistic mixture model revealed that the memory impairments from both visual changes and recognition-induced forgetting are explained better by the stochastic loss of memory items than by their degraded resolution. These results indicate that attention-driven visual change and recognition-induced forgetting jointly influence the "recycling" of VWM representations.

  7. “Global” visual training and extent of transfer in amblyopic macaque monkeys

    PubMed Central

    Kiorpes, Lynne; Mangal, Paul

    2015-01-01

    Perceptual learning is gaining acceptance as a potential treatment for amblyopia in adults and children beyond the critical period. Many perceptual learning paradigms result in very specific improvement that does not generalize beyond the training stimulus, closely related stimuli, or visual field location. To be of use in amblyopia, a less specific effect is needed. To address this problem, we designed a more general training paradigm intended to effect improvement in visual sensitivity across tasks and domains. We used a “global” visual stimulus, random dot motion direction discrimination with 6 training conditions, and tested for posttraining improvement on a motion detection task and 3 spatial domain tasks (contrast sensitivity, Vernier acuity, Glass pattern detection). Four amblyopic macaques practiced the motion discrimination with their amblyopic eye for at least 20,000 trials. All showed improvement, defined as a change of at least a factor of 2, on the trained task. In addition, all animals showed improvements in sensitivity on at least some of the transfer test conditions, mainly the motion detection task; transfer to the spatial domain was inconsistent but best at fine spatial scales. However, the improvement on the transfer tasks was largely not retained at long-term follow-up. Our generalized training approach is promising for amblyopia treatment, but sustaining improved performance may require additional intervention. PMID:26505868

  8. “No level up!”: no effects of video game specialization and expertise on cognitive performance

    PubMed Central

    Gobet, Fernand; Johnston, Stephen J.; Ferrufino, Gabriella; Johnston, Matthew; Jones, Michael B.; Molyneux, Antonia; Terzis, Argyrios; Weeden, Luke

    2014-01-01

    Previous research into the effects of action video gaming on cognition has suggested that long term exposure to this type of game might lead to an enhancement of cognitive skills that transfer to non-gaming cognitive tasks. However, these results have been controversial. The aim of the current study was to test the presence of positive cognitive transfer from action video games to two cognitive tasks. More specifically, this study investigated the effects that participants' expertise and genre specialization have on cognitive improvements in one task unrelated to video gaming (a flanker task) and one related task (change detection task with both control and genre-specific images). This study was unique in three ways. Firstly, it analyzed a continuum of expertise levels, which has yet to be investigated in research into the cognitive benefits of video gaming. Secondly, it explored genre-specific skill developments on these tasks by comparing Action and Strategy video game players (VGPs). Thirdly, it used a very tight experiment design, including the experimenter being blind to expertise level and genre specialization of the participant. Ninety-two university students aged between 18 and 30 (M = 21.25) were recruited through opportunistic sampling and were grouped by video game specialization and expertise level. While the results of the flanker task were consistent with previous research (i.e., effect of congruence), there was no effect of expertise, and the action gamers failed to outperform the strategy gamers. Additionally, contrary to expectation, there was no interaction between genre specialization and image type in the change detection task, again demonstrating no expertise effect. The lack of effects for game specialization and expertise goes against previous research on the positive effects of action video gaming on other cognitive tasks. PMID:25506330

  9. "No level up!": no effects of video game specialization and expertise on cognitive performance.

    PubMed

    Gobet, Fernand; Johnston, Stephen J; Ferrufino, Gabriella; Johnston, Matthew; Jones, Michael B; Molyneux, Antonia; Terzis, Argyrios; Weeden, Luke

    2014-01-01

    Previous research into the effects of action video gaming on cognition has suggested that long term exposure to this type of game might lead to an enhancement of cognitive skills that transfer to non-gaming cognitive tasks. However, these results have been controversial. The aim of the current study was to test the presence of positive cognitive transfer from action video games to two cognitive tasks. More specifically, this study investigated the effects that participants' expertise and genre specialization have on cognitive improvements in one task unrelated to video gaming (a flanker task) and one related task (change detection task with both control and genre-specific images). This study was unique in three ways. Firstly, it analyzed a continuum of expertise levels, which has yet to be investigated in research into the cognitive benefits of video gaming. Secondly, it explored genre-specific skill developments on these tasks by comparing Action and Strategy video game players (VGPs). Thirdly, it used a very tight experiment design, including the experimenter being blind to expertise level and genre specialization of the participant. Ninety-two university students aged between 18 and 30 (M = 21.25) were recruited through opportunistic sampling and were grouped by video game specialization and expertise level. While the results of the flanker task were consistent with previous research (i.e., effect of congruence), there was no effect of expertise, and the action gamers failed to outperform the strategy gamers. Additionally, contrary to expectation, there was no interaction between genre specialization and image type in the change detection task, again demonstrating no expertise effect. The lack of effects for game specialization and expertise goes against previous research on the positive effects of action video gaming on other cognitive tasks.

  10. Selective tuning of the right inferior frontal gyrus during target detection

    PubMed Central

    Hampshire, Adam; Thompson, Russell; Duncan, John; Owen, Adrian M.

    2010-01-01

    In the human brain, a network of frontal and parietal regions is commonly recruited during tasks that demand the deliberate, focused control of thought and action. Previously, using a simple target detection task, we reported striking differences in the selectivity of the BOLD response in anatomically distinct subregions of this network. In particular, it was observed that the right inferior frontal gyrus (IFG) followed a tightly tuned function, selectively responding only to the current target object. Here, we examine this functional specialization further, using adapted versions of our original task. Our results demonstrate that the response of the right IFG to targets is a strong and replicable phenomenon. It occurs under increased attentional load, when targets and distractors are equally frequent, and when controlling for inhibitory processes. These findings support the hypothesis that the right IFG responds selectively to those items that are of the most relevance to the currently intended task schema. PMID:19246331

  11. Benefits of Stimulus Exposure: Developmental Learning Independent of Task Performance

    PubMed Central

    Green, David B.; Ohlemacher, Jocelyn; Rosen, Merri J.

    2016-01-01

    Perceptual learning (training-induced performance improvement) can be elicited by task-irrelevant stimulus exposure in humans. In contrast, task-irrelevant stimulus exposure in animals typically disrupts perception in juveniles while causing little to no effect in adults. This may be due to the extent of exposure, which is brief in humans while chronic in animals. Here we assessed the effects of short bouts of passive stimulus exposure on learning during development in gerbils, compared with non-passive stimulus exposure (i.e., during testing). We used prepulse inhibition of the acoustic startle response, a method that can be applied at any age, to measure gap detection thresholds across four age groups, spanning development. First, we showed that both gap detection thresholds and gap detection learning across sessions displayed a long developmental trajectory, improving throughout the juvenile period. Additionally, we demonstrated larger within- and across-animal performance variability in younger animals. These results are generally consistent with results in humans, where there are extended developmental trajectories for both the perception of temporally-varying signals, and the effects of perceptual training, as well as increased variability and poorer performance consistency in children. We then chose an age (mid-juveniles) that displayed clear learning over sessions in order to assess effects of brief passive stimulus exposure on this learning. We compared learning in mid-juveniles exposed to either gap detection testing (gaps paired with startles) or equivalent gap exposure without testing (gaps alone) for three sessions. Learning was equivalent in both these groups and better than both naïve age-matched animals and controls receiving no gap exposure but only startle testing. Thus, short bouts of exposure to gaps independent of task performance is sufficient to induce learning at this age, and is as effective as gap detection testing. PMID:27378837

  12. The Development of Visual Working Memory Capacity during Early Childhood

    ERIC Educational Resources Information Center

    Simmering, Vanessa R.

    2012-01-01

    The change detection task has been used in dozens of studies with adults to measure visual working memory capacity. Two studies have recently tested children in this task, suggesting a gradual increase in capacity from 5 years to adulthood. These results contrast with findings from an infant looking paradigm suggesting that capacity reaches…

  13. Auto detection and segmentation of physical activities during a Timed-Up-and-Go (TUG) task in healthy older adults using multiple inertial sensors.

    PubMed

    Nguyen, Hung P; Ayachi, Fouaz; Lavigne-Pelletier, Catherine; Blamoutier, Margaux; Rahimi, Fariborz; Boissy, Patrick; Jog, Mandar; Duval, Christian

    2015-04-11

    Recently, much attention has been given to the use of inertial sensors for remote monitoring of individuals with limited mobility. However, the focus has been mostly on the detection of symptoms, not specific activities. The objective of the present study was to develop an automated recognition and segmentation algorithm based on inertial sensor data to identify common gross motor patterns during activity of daily living. A modified Time-Up-And-Go (TUG) task was used since it is comprised of four common daily living activities; Standing, Walking, Turning, and Sitting, all performed in a continuous fashion resulting in six different segments during the task. Sixteen healthy older adults performed two trials of a 5 and 10 meter TUG task. They were outfitted with 17 inertial motion sensors covering each body segment. Data from the 10 meter TUG were used to identify pertinent sensors on the trunk, head, hip, knee, and thigh that provided suitable data for detecting and segmenting activities associated with the TUG. Raw data from sensors were detrended to remove sensor drift, normalized, and band pass filtered with optimal frequencies to reveal kinematic peaks that corresponded to different activities. Segmentation was accomplished by identifying the time stamps of the first minimum or maximum to the right and the left of these peaks. Segmentation time stamps were compared to results from two examiners visually segmenting the activities of the TUG. We were able to detect these activities in a TUG with 100% sensitivity and specificity (n = 192) during the 10 meter TUG. The rate of success was subsequently confirmed in the 5 meter TUG (n = 192) without altering the parameters of the algorithm. When applying the segmentation algorithms to the 10 meter TUG, we were able to parse 100% of the transition points (n = 224) between different segments that were as reliable and less variable than visual segmentation performed by two independent examiners. The present study lays the foundation for the development of a comprehensive algorithm to detect and segment naturalistic activities using inertial sensors, in hope of evaluating automatically motor performance within the detected tasks.

  14. Motivation alters response bias and neural activation patterns in a perceptual decision-making task.

    PubMed

    Reckless, G E; Bolstad, I; Nakstad, P H; Andreassen, O A; Jensen, J

    2013-05-15

    Motivation has been demonstrated to affect individuals' response strategies in economic decision-making, however, little is known about how motivation influences perceptual decision-making behavior or its related neural activity. Given the important role motivation plays in shaping our behavior, a better understanding of this relationship is needed. A block-design, continuous performance, perceptual decision-making task where participants were asked to detect a picture of an animal among distractors was used during functional magnetic resonance imaging (fMRI). The effect of positive and negative motivation on sustained activity within regions of the brain thought to underlie decision-making was examined by altering the monetary contingency associated with the task. In addition, signal detection theory was used to investigate the effect of motivation on detection sensitivity, response bias and response time. While both positive and negative motivation resulted in increased sustained activation in the ventral striatum, fusiform gyrus, left dorsolateral prefrontal cortex (DLPFC) and ventromedial prefrontal cortex, only negative motivation resulted in the adoption of a more liberal, closer to optimal response bias. This shift toward a liberal response bias correlated with increased activation in the left DLPFC, but did not result in improved task performance. The present findings suggest that motivation alters aspects of the way perceptual decisions are made. Further, this altered response behavior is reflected in a change in left DLPFC activation, a region involved in the computation of perceptual decisions. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Algorithm for automatic analysis of electro-oculographic data.

    PubMed

    Pettersson, Kati; Jagadeesan, Sharman; Lukander, Kristian; Henelius, Andreas; Haeggström, Edward; Müller, Kiti

    2013-10-25

    Large amounts of electro-oculographic (EOG) data, recorded during electroencephalographic (EEG) measurements, go underutilized. We present an automatic, auto-calibrating algorithm that allows efficient analysis of such data sets. The auto-calibration is based on automatic threshold value estimation. Amplitude threshold values for saccades and blinks are determined based on features in the recorded signal. The performance of the developed algorithm was tested by analyzing 4854 saccades and 213 blinks recorded in two different conditions: a task where the eye movements were controlled (saccade task) and a task with free viewing (multitask). The results were compared with results from a video-oculography (VOG) device and manually scored blinks. The algorithm achieved 93% detection sensitivity for blinks with 4% false positive rate. The detection sensitivity for horizontal saccades was between 98% and 100%, and for oblique saccades between 95% and 100%. The classification sensitivity for horizontal and large oblique saccades (10 deg) was larger than 89%, and for vertical saccades larger than 82%. The duration and peak velocities of the detected horizontal saccades were similar to those in the literature. In the multitask measurement the detection sensitivity for saccades was 97% with a 6% false positive rate. The developed algorithm enables reliable analysis of EOG data recorded both during EEG and as a separate metrics.

  16. Close to real-time robust pedestrian detection and tracking

    NASA Astrophysics Data System (ADS)

    Lipetski, Y.; Loibner, G.; Sidla, O.

    2015-03-01

    Fully automated video based pedestrian detection and tracking is a challenging task with many practical and important applications. We present our work aimed to allow robust and simultaneously close to real-time tracking of pedestrians. The presented approach is stable to occlusions, lighting conditions and is generalized to be applied on arbitrary video data. The core tracking approach is built upon tracking-by-detections principle. We describe our cascaded HOG detector with successive CNN verification in detail. For the tracking and re-identification task, we did an extensive analysis of appearance based features as well as their combinations. The tracker was tested on many hours of video data for different scenarios; the results are presented and discussed.

  17. Changing behavior and accuracy with time on task in mammography screening

    NASA Astrophysics Data System (ADS)

    Taylor-Phillips, Sian; Jenkinson, David; Stinton, Chris; Wallis, Matthew G.; Clarke, Aileen

    2017-03-01

    Background: The vigilance decrement and prevalence effect both describe changes to speed and accuracy with time on task. Whilst there is much laboratory based research on these effects, little is known about whether they occur in real world mammography practice. Methods: The Changing Case Order to Optimise Patterns of Performance in Screening (CO-OPS) trial randomised 37,724 batches containing 1.2 million women attending breast screening to intervention or control (222,208 from the Midlands of England). In the control arm the batch was examined in the same order by both readers, in the intervention arm it was examined in a different order by both readers. Time taken, recall decision by both readers, and cancers detected were recorded for each case, and used to examine patterns of performance with time on task. Results: 49,575 women were recalled and 10,484 had cancer detected. Median time taken to examine each case was 35 seconds (out of cases where time taken was 10 minutes or less). The intervention did not affect overall cancer detection rates or recall rates. A more detailed analysis of the Midlands data indicates cancer detection rate did not change when reading up to 60 cases in a batch, but recall rate reduced. Time taken per case reduced with time on task, from a median 41 seconds when examining the second case in the batch to 28.5 seconds examining the 60th case. Conclusion: Reader behavior and performance systematically changes with time on task in breast screening.

  18. Is Sensitivity to Rhyme a Developmental Precursor to Sensitivity to Phoneme?: Evidence from Individuals with Down Syndrome.

    ERIC Educational Resources Information Center

    Cardoso-Martins, Claudia; Michalick, Mirelle Franca; Pollo, Tatiana Cury

    2002-01-01

    Investigates sensitivity to rhyme and phoneme among readers and nonreaders with Down Syndrome (DS) and normally developing children. Evaluates a rhyme detection task and initial and middle phoneme detection tasks. Concludes the rhyme detection task was the easiest for nonreaders without DS and most difficult for readers with DS. (PM)

  19. Diagnosis of multiple sclerosis from EEG signals using nonlinear methods.

    PubMed

    Torabi, Ali; Daliri, Mohammad Reza; Sabzposhan, Seyyed Hojjat

    2017-12-01

    EEG signals have essential and important information about the brain and neural diseases. The main purpose of this study is classifying two groups of healthy volunteers and Multiple Sclerosis (MS) patients using nonlinear features of EEG signals while performing cognitive tasks. EEG signals were recorded when users were doing two different attentional tasks. One of the tasks was based on detecting a desired change in color luminance and the other task was based on detecting a desired change in direction of motion. EEG signals were analyzed in two ways: EEG signals analysis without rhythms decomposition and EEG sub-bands analysis. After recording and preprocessing, time delay embedding method was used for state space reconstruction; embedding parameters were determined for original signals and their sub-bands. Afterwards nonlinear methods were used in feature extraction phase. To reduce the feature dimension, scalar feature selections were done by using T-test and Bhattacharyya criteria. Then, the data were classified using linear support vector machines (SVM) and k-nearest neighbor (KNN) method. The best combination of the criteria and classifiers was determined for each task by comparing performances. For both tasks, the best results were achieved by using T-test criterion and SVM classifier. For the direction-based and the color-luminance-based tasks, maximum classification performances were 93.08 and 79.79% respectively which were reached by using optimal set of features. Our results show that the nonlinear dynamic features of EEG signals seem to be useful and effective in MS diseases diagnosis.

  20. Effects of signal salience and noise on performance and stress in an abbreviated vigil

    NASA Astrophysics Data System (ADS)

    Helton, William Stokely

    Vigilance or sustained attention tasks traditionally require observers to detect predetermined signals that occur unpredictably over periods of 30 min to several hours (Warm, 1984). These tasks are taxing and have been useful in revealing the effects of stress agents, such as infectious disease and drugs, on human performance (Alluisi, 1969; Damos & Parker, 1994; Warm, 1993). However, their long duration has been an inconvenience. Recently, Temple and his associates (Temple et al., 2000) developed an abbreviated 12-min vigilance task that duplicates many of the findings with longer duration vigils. The present study was designed to explore further the similarity of the abbreviated task to long-duration vigils by investigating the effects of signal salience and jet-aircraft engine noise on performance, operator stress, and coping strategies. Forty-eight observers (24 males and 24 females) were assigned at random to each of four conditions resulting from the factorial combination of signal salience (high and low contrast signals) and background noise (quiet and jet-aircraft noise). As is the case with long-duration vigils (Warm, 1993), signal detection in the abbreviated task was poorer for low salience than for high salience signals. In addition, stress scores, as indexed by the Dundee Stress State Questionnaire (Matthews, Joiner, Gilliland, Campbell, & Falconer, 1999), were elevated in the low as compared to the high salience condition. Unlike longer vigils, however, (Becker, Warm, Dember, & Hancock, 1996), signal detection in the abbreviated task was superior in the presence of aircraft noise than in quiet. Noise also attenuated the stress of the vigil, a result that is counter to previous findings regarding the effects of noise in a variety of other scenarios (Clark, 1984). Examination of observers' coping responses, as assessed by the Coping Inventory for Task Situations (Matthews & Campbell, 1998), indicated that problem-focused coping was the overwhelming coping strategy adopted by observers in the study and that the level of this coping strategy increased in noise. The beneficial effects of jet-aircraft noise for the abbreviated task differentiates it from longer vigilance tasks and suggests that noise may have short-term positive value in vigilance.

  1. Adaptive Response Criteria in Road Hazard Detection Among Older Drivers

    PubMed Central

    Feng, Jing; Choi, HeeSun; Craik, Fergus I. M.; Levine, Brian; Moreno, Sylvain; Naglie, Gary; Zhu, Motao

    2018-01-01

    OBJECTIVES The majority of existing investigations on attention, aging, and driving have focused on the negative impacts of age-related declines in attention on hazard detection and driver performance. However, driving skills and behavioral compensation may accommodate the negative effects that age-related attentional decline places on driving performance. In this study, we examined an important question that had been largely neglected in the literature linking attention, aging, and driving: can top-down factors such as behavioral compensation, specifically adaptive response criteria, accommodate the negative impacts from age-related attention declines on hazard detection during driving? METHODS In the experiment, we used the Drive Aware Task, a task combining the driving context with well-controlled laboratory procedures measuring attention. We compared younger (n = 16, age 21 – 30) and older drivers (n = 21, age 65 – 79) on their attentional processing of hazards in driving scenes, indexed by percentage of correct and reaction time of hazard detection, as well as sensitivity and response criterion using the signal detection analysis. RESULTS Older drivers, in general, were less accurate and slower on the task than younger drivers. However, results from this experiment also revealed that older, but not younger, drivers adapted their response criteria when the traffic condition changed in the driving scenes. When there was more traffic in the driving scene, older drivers became more liberal in their responses, meaning that they were more likely to report that a driving hazard was detected. CONCLUSIONS Older drivers adopt compensatory strategies on hazard detection during driving . Our findings showed that, in the driving context, even at an old age our attentional functions are still adaptive according to environmental conditions. This leads to considerations on potential training methods to promote adaptive strategies which may help older drivers maintaining performance in road hazard detection. PMID:28898116

  2. Adult age differences in the storage of information in working memory.

    PubMed

    Foos, P W; Wright, L

    1992-01-01

    The performance of 97 young and 91 old persons were compared to determine if a deficiency in working memory resources for processing, storage, or allocation could be detected. Persons simultaneously performed a storage and one of two processing tasks while instructed to allocate resources to processing, storage, or both tasks. The storage task involved remembering the names of one, three, or five persons. Processing tasks involved solving addition problems presented on flashcards or answering common knowledge questions. Results showed increased age differences on the storage task as demands for resources increased but no differences on processing tasks. Individuals seemed unable to allocate resources as instructed. A comparison of young-old and old-old groups showed the same results as those obtained comparing young and old groups and support the hypothesis of a deficiency of storage, but not processing, resources in working memory for old, especially old-old, adults.

  3. Imaging Tasks Scheduling for High-Altitude Airship in Emergency Condition Based on Energy-Aware Strategy

    PubMed Central

    Zhimeng, Li; Chuan, He; Dishan, Qiu; Jin, Liu; Manhao, Ma

    2013-01-01

    Aiming to the imaging tasks scheduling problem on high-altitude airship in emergency condition, the programming models are constructed by analyzing the main constraints, which take the maximum task benefit and the minimum energy consumption as two optimization objectives. Firstly, the hierarchy architecture is adopted to convert this scheduling problem into three subproblems, that is, the task ranking, value task detecting, and energy conservation optimization. Then, the algorithms are designed for the sub-problems, and the solving results are corresponding to feasible solution, efficient solution, and optimization solution of original problem, respectively. This paper makes detailed introduction to the energy-aware optimization strategy, which can rationally adjust airship's cruising speed based on the distribution of task's deadline, so as to decrease the total energy consumption caused by cruising activities. Finally, the application results and comparison analysis show that the proposed strategy and algorithm are effective and feasible. PMID:23864822

  4. Auditory false perception in schizophrenia: Development and validation of auditory signal detection task.

    PubMed

    Chhabra, Harleen; Sowmya, Selvaraj; Sreeraj, Vanteemar S; Kalmady, Sunil V; Shivakumar, Venkataram; Amaresha, Anekal C; Narayanaswamy, Janardhanan C; Venkatasubramanian, Ganesan

    2016-12-01

    Auditory hallucinations constitute an important symptom component in 70-80% of schizophrenia patients. These hallucinations are proposed to occur due to an imbalance between perceptual expectation and external input, resulting in attachment of meaning to abstract noises; signal detection theory has been proposed to explain these phenomena. In this study, we describe the development of an auditory signal detection task using a carefully chosen set of English words that could be tested successfully in schizophrenia patients coming from varying linguistic, cultural and social backgrounds. Schizophrenia patients with significant auditory hallucinations (N=15) and healthy controls (N=15) performed the auditory signal detection task wherein they were instructed to differentiate between a 5-s burst of plain white noise and voiced-noise. The analysis showed that false alarms (p=0.02), discriminability index (p=0.001) and decision bias (p=0.004) were significantly different between the two groups. There was a significant negative correlation between false alarm rate and decision bias. These findings extend further support for impaired perceptual expectation system in schizophrenia patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Discriminating languages in bilingual contexts: the impact of orthographic markedness

    PubMed Central

    Casaponsa, Aina; Carreiras, Manuel; Duñabeitia, Jon A.

    2014-01-01

    Does language-specific orthography help language detection and lexical access in naturalistic bilingual contexts? This study investigates how L2 orthotactic properties influence bilingual language detection in bilingual societies and the extent to which it modulates lexical access and single word processing. Language specificity of naturalistically learnt L2 words was manipulated by including bigram combinations that could be either L2 language-specific or common in the two languages known by bilinguals. A group of balanced bilinguals and a group of highly proficient but unbalanced bilinguals who grew up in a bilingual society were tested, together with a group of monolinguals (for control purposes). All the participants completed a speeded language detection task and a progressive demasking task. Results showed that the use of the information of orthotactic rules across languages depends on the task demands at hand, and on participants' proficiency in the second language. The influence of language orthotactic rules during language detection, lexical access and word identification are discussed according to the most prominent models of bilingual word recognition. PMID:24860536

  6. Nonparametric EROC analysis for observer performance evaluation on joint detection and estimation tasks

    NASA Astrophysics Data System (ADS)

    Wunderlich, Adam; Goossens, Bart

    2014-03-01

    The majority of the literature on task-based image quality assessment has focused on lesion detection tasks, using the receiver operating characteristic (ROC) curve, or related variants, to measure performance. However, since many clinical image evaluation tasks involve both detection and estimation (e.g., estimation of kidney stone composition, estimation of tumor size), there is a growing interest in performance evaluation for joint detection and estimation tasks. To evaluate observer performance on such tasks, Clarkson introduced the estimation ROC (EROC) curve, and the area under the EROC curve as a summary figure of merit. In the present work, we propose nonparametric estimators for practical EROC analysis from experimental data, including estimators for the area under the EROC curve and its variance. The estimators are illustrated with a practical example comparing MRI images reconstructed from different k-space sampling trajectories.

  7. I. WORKING MEMORY CAPACITY IN CONTEXT: MODELING DYNAMIC PROCESSES OF BEHAVIOR, MEMORY, AND DEVELOPMENT.

    PubMed

    Simmering, Vanessa R

    2016-09-01

    Working memory is a vital cognitive skill that underlies a broad range of behaviors. Higher cognitive functions are reliably predicted by working memory measures from two domains: children's performance on complex span tasks, and infants' performance in looking paradigms. Despite the similar predictive power across these research areas, theories of working memory development have not connected these different task types and developmental periods. The current project takes a first step toward bridging this gap by presenting a process-oriented theory, focusing on two tasks designed to assess visual working memory capacity in infants (the change-preference task) versus children and adults (the change detection task). Previous studies have shown inconsistent results, with capacity estimates increasing from one to four items during infancy, but only two to three items during early childhood. A probable source of this discrepancy is the different task structures used with each age group, but prior theories were not sufficiently specific to explain how performance relates across tasks. The current theory focuses on cognitive dynamics, that is, how memory representations are formed, maintained, and used within specific task contexts over development. This theory was formalized in a computational model to generate three predictions: 1) capacity estimates in the change-preference task should continue to increase beyond infancy; 2) capacity estimates should be higher in the change-preference versus change detection task when tested within individuals; and 3) performance should correlate across tasks because both rely on the same underlying memory system. I also tested a fourth prediction, that development across tasks could be explained through increasing real-time stability, realized computationally as strengthening connectivity within the model. Results confirmed these predictions, supporting the cognitive dynamics account of performance and developmental changes in real-time stability. The monograph concludes with implications for understanding memory, behavior, and development in a broader range of cognitive development. © 2016 The Society for Research in Child Development, Inc.

  8. Understanding reliance on automation: effects of error type, error distribution, age and experience

    PubMed Central

    Sanchez, Julian; Rogers, Wendy A.; Fisk, Arthur D.; Rovira, Ericka

    2015-01-01

    An obstacle detection task supported by “imperfect” automation was used with the goal of understanding the effects of automation error types and age on automation reliance. Sixty younger and sixty older adults interacted with a multi-task simulation of an agricultural vehicle (i.e. a virtual harvesting combine). The simulator included an obstacle detection task and a fully manual tracking task. A micro-level analysis provided insight into the way reliance patterns change over time. The results indicated that there are distinct patterns of reliance that develop as a function of error type. A prevalence of automation false alarms led participants to under-rely on the automation during alarm states while over relying on it during non-alarms states. Conversely, a prevalence of automation misses led participants to over-rely on automated alarms and under-rely on the automation during non-alarm states. Older adults adjusted their behavior according to the characteristics of the automation similarly to younger adults, although it took them longer to do so. The results of this study suggest the relationship between automation reliability and reliance depends on the prevalence of specific errors and on the state of the system. Understanding the effects of automation detection criterion settings on human-automation interaction can help designers of automated systems make predictions about human behavior and system performance as a function of the characteristics of the automation. PMID:25642142

  9. Understanding reliance on automation: effects of error type, error distribution, age and experience.

    PubMed

    Sanchez, Julian; Rogers, Wendy A; Fisk, Arthur D; Rovira, Ericka

    2014-03-01

    An obstacle detection task supported by "imperfect" automation was used with the goal of understanding the effects of automation error types and age on automation reliance. Sixty younger and sixty older adults interacted with a multi-task simulation of an agricultural vehicle (i.e. a virtual harvesting combine). The simulator included an obstacle detection task and a fully manual tracking task. A micro-level analysis provided insight into the way reliance patterns change over time. The results indicated that there are distinct patterns of reliance that develop as a function of error type. A prevalence of automation false alarms led participants to under-rely on the automation during alarm states while over relying on it during non-alarms states. Conversely, a prevalence of automation misses led participants to over-rely on automated alarms and under-rely on the automation during non-alarm states. Older adults adjusted their behavior according to the characteristics of the automation similarly to younger adults, although it took them longer to do so. The results of this study suggest the relationship between automation reliability and reliance depends on the prevalence of specific errors and on the state of the system. Understanding the effects of automation detection criterion settings on human-automation interaction can help designers of automated systems make predictions about human behavior and system performance as a function of the characteristics of the automation.

  10. Person detection and tracking with a 360° lidar system

    NASA Astrophysics Data System (ADS)

    Hammer, Marcus; Hebel, Marcus; Arens, Michael

    2017-10-01

    Today it is easily possible to generate dense point clouds of the sensor environment using 360° LiDAR (Light Detection and Ranging) sensors which are available since a number of years. The interpretation of these data is much more challenging. For the automated data evaluation the detection and classification of objects is a fundamental task. Especially in urban scenarios moving objects like persons or vehicles are of particular interest, for instance in automatic collision avoidance, for mobile sensor platforms or surveillance tasks. In literature there are several approaches for automated person detection in point clouds. While most techniques show acceptable results in object detection, the computation time is often crucial. The runtime can be problematic, especially due to the amount of data in the panoramic 360° point clouds. On the other hand, for most applications an object detection and classification in real time is needed. The paper presents a proposal for a fast, real-time capable algorithm for person detection, classification and tracking in panoramic point clouds.

  11. Deficits in visual working-memory capacity and general cognition in African Americans with psychosis.

    PubMed

    Mathias, Samuel R; Knowles, Emma E M; Barrett, Jennifer; Beetham, Tamara; Leach, Olivia; Buccheri, Sebastiano; Aberizk, Katrina; Blangero, John; Poldrack, Russell A; Glahn, David C

    2018-03-01

    On average, patients with psychosis perform worse than controls on visual change-detection tasks, implying that psychosis is associated with reduced capacity of visual working memory (WM). In the present study, 79 patients diagnosed with various psychotic disorders and 166 controls, all African Americans, completed a change-detection task and several other neurocognitive measures. The aims of the study were to (1) determine whether we could observe a between-group difference in performance on the change-detection task in this sample; (2) establish whether such a difference could be specifically attributed to reduced WM capacity (k); and (3) estimate k in the context of the general cognitive deficit in psychosis. Consistent with previous studies, patients performed worse than controls on the change-detection task, on average. Bayesian hierarchical cognitive modeling of the data suggested that this between-group difference was driven by reduced k in patients, rather than differences in other psychologically meaningful model parameters (guessing behavior and lapse rate). Using the same modeling framework, we estimated the effect of psychosis on k while controlling for general intellectual ability (g, obtained from the other neurocognitive measures). The results suggested that reduced k in patients was stronger than predicted by the between-group difference in g. Moreover, a mediation analysis suggested that the relationship between psychosis and g (i.e., the general cognitive deficit) was mediated by k. The results were consistent with the idea that reduced k is a specific deficit in psychosis, which contributes to the general cognitive deficit. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Non-Invasive Pneumothorax Detector Final Report CRADA No. TC02110.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, J. T.; Purcell, R.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and ElectroSonics Medical Inc. (formerly known as BIOMEC, Inc.), to develop a non-invasive pneumothorax detector based upon the micropower impulse radar technology invented at LLNL. Under a Work for Others Subcontract (L-9248), LLNL and ElectroSonics successfully demonstrated the feasibility of a novel device for non-invasive detection of pneumothorax for emergency and long-term monitoring. The device is based on Micropower Impulse Radar (MIR) Ultra Wideband (UWB) technology. Phase I experimental results were promising, showing that a pneumothorax volume even asmore » small as 30 ml was clearly detectable from the MIR signals. Phase I results contributed to the award of a National Institute of Health (NIH) SBIR Phase II grant to support further research and development. The Phase II award led to the establishment of a LLNL/ElectroSonics CRADA related to Case No. TC02045.0. Under the subsequent CRADA, LLNL and ElectroSonics successfully demonstrated the feasibility of the pneumothorax detection in human subject research trials. Under this current CRADA TC02110.0, also referred to as Phase II Type II, the project scope consisted of seven tasks in Project Year 1; five tasks in Project Year 2; and four tasks in Project Year 3. Year 1 tasks were aimed toward the delivery of the pneumothorax detector design package for the pre-production of the miniaturized CompactFlash dockable version of the system. The tasks in Project Years 2 and 3 critically depended upon the accomplishments of Task 1. Since LLNL’s task was to provide subject matter expertise and performance verification, much of the timeline of engagement by the LLNL staff depended upon the overall project milestones as determined by the lead organization ElectroSonics. The scope of efforts were subsequently adjusted accordingly to commensurate with funding availability.« less

  13. The Watchdog Task: Concurrent error detection using assertions

    NASA Technical Reports Server (NTRS)

    Ersoz, A.; Andrews, D. M.; Mccluskey, E. J.

    1985-01-01

    The Watchdog Task, a software abstraction of the Watchdog-processor, is shown to be a powerful error detection tool with a great deal of flexibility and the advantages of watchdog techniques. A Watchdog Task system in Ada is presented; issues of recovery, latency, efficiency (communication) and preprocessing are discussed. Different applications, one of which is error detection on a single processor, are examined.

  14. Examining the effects of an eco-driving message on driver distraction.

    PubMed

    Rouzikhah, Hossein; King, Mark; Rakotonirainy, Andry

    2013-01-01

    This paper examines the effects of an eco-driving message on driver distraction. Two in-vehicle distracter tasks were compared with an eco-driving task and a baseline task in an advanced driving simulator. N=22 subjects were asked to perform an eco-driving, CD changing, and a navigation task while engaged in critical manoeuvres during which they were expected to respond to a peripheral detection task (PDT) with total duration of 3.5h. The study involved two sessions over two consecutive days. The results show that drivers' mental workloads are significantly higher during navigation and CD changing tasks in comparison to the two other scenarios. However, eco-driving mental workload is still marginally significant (p∼.05) across different manoeuvres. Similarly, event detection tasks show that drivers miss significantly more events in the navigation and CD changing scenarios in comparison to both the baseline and eco-driving scenario. Analysis of the practice effect shows that drivers' baseline scenario and navigation scenario exhibit significantly less demand on the second day. Drivers also can detect significantly more events on the second day for all scenarios. The authors conclude that even reading a simple message while driving could potentially lead to missing an important event, especially when executing critical manoeuvres. However, there is some evidence of a practice effect which suggests that future research should focus on performance with habitual rather than novel tasks. It is recommended that sending text as an eco-driving message analogous to the study circumstances should not be delivered to drivers on-line when vehicle is in motion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Reconciling change blindness with long-term memory for objects.

    PubMed

    Wood, Katherine; Simons, Daniel J

    2017-02-01

    How can we reconcile remarkably precise long-term memory for thousands of images with failures to detect changes to similar images? We explored whether people can use detailed, long-term memory to improve change detection performance. Subjects studied a set of images of objects and then performed recognition and change detection tasks with those images. Recognition memory performance exceeded change detection performance, even when a single familiar object in the postchange display consistently indicated the change location. In fact, participants were no better when a familiar object predicted the change location than when the displays consisted of unfamiliar objects. When given an explicit strategy to search for a familiar object as a way to improve performance on the change detection task, they performed no better than in a 6-alternative recognition memory task. Subjects only benefited from the presence of familiar objects in the change detection task when they had more time to view the prechange array before it switched. Once the cost to using the change detection information decreased, subjects made use of it in conjunction with memory to boost performance on the familiar-item change detection task. This suggests that even useful information will go unused if it is sufficiently difficult to extract.

  16. Cognitive Abilities, Monitoring Confidence, and Control Thresholds Explain Individual Differences in Heuristics and Biases

    PubMed Central

    Jackson, Simon A.; Kleitman, Sabina; Howie, Pauline; Stankov, Lazar

    2016-01-01

    In this paper, we investigate whether individual differences in performance on heuristic and biases tasks can be explained by cognitive abilities, monitoring confidence, and control thresholds. Current theories explain individual differences in these tasks by the ability to detect errors and override automatic but biased judgments, and deliberative cognitive abilities that help to construct the correct response. Here we retain cognitive abilities but disentangle error detection, proposing that lower monitoring confidence and higher control thresholds promote error checking. Participants (N = 250) completed tasks assessing their fluid reasoning abilities, stable monitoring confidence levels, and the control threshold they impose on their decisions. They also completed seven typical heuristic and biases tasks such as the cognitive reflection test and Resistance to Framing. Using structural equation modeling, we found that individuals with higher reasoning abilities, lower monitoring confidence, and higher control threshold performed significantly and, at times, substantially better on the heuristic and biases tasks. Individuals with higher control thresholds also showed lower preferences for risky alternatives in a gambling task. Furthermore, residual correlations among the heuristic and biases tasks were reduced to null, indicating that cognitive abilities, monitoring confidence, and control thresholds accounted for their shared variance. Implications include the proposal that the capacity to detect errors does not differ between individuals. Rather, individuals might adopt varied strategies that promote error checking to different degrees, regardless of whether they have made a mistake or not. The results support growing evidence that decision-making involves cognitive abilities that construct actions and monitoring and control processes that manage their initiation. PMID:27790170

  17. Cognitive Abilities, Monitoring Confidence, and Control Thresholds Explain Individual Differences in Heuristics and Biases.

    PubMed

    Jackson, Simon A; Kleitman, Sabina; Howie, Pauline; Stankov, Lazar

    2016-01-01

    In this paper, we investigate whether individual differences in performance on heuristic and biases tasks can be explained by cognitive abilities, monitoring confidence, and control thresholds. Current theories explain individual differences in these tasks by the ability to detect errors and override automatic but biased judgments, and deliberative cognitive abilities that help to construct the correct response. Here we retain cognitive abilities but disentangle error detection, proposing that lower monitoring confidence and higher control thresholds promote error checking. Participants ( N = 250) completed tasks assessing their fluid reasoning abilities, stable monitoring confidence levels, and the control threshold they impose on their decisions. They also completed seven typical heuristic and biases tasks such as the cognitive reflection test and Resistance to Framing. Using structural equation modeling, we found that individuals with higher reasoning abilities, lower monitoring confidence, and higher control threshold performed significantly and, at times, substantially better on the heuristic and biases tasks. Individuals with higher control thresholds also showed lower preferences for risky alternatives in a gambling task. Furthermore, residual correlations among the heuristic and biases tasks were reduced to null, indicating that cognitive abilities, monitoring confidence, and control thresholds accounted for their shared variance. Implications include the proposal that the capacity to detect errors does not differ between individuals. Rather, individuals might adopt varied strategies that promote error checking to different degrees, regardless of whether they have made a mistake or not. The results support growing evidence that decision-making involves cognitive abilities that construct actions and monitoring and control processes that manage their initiation.

  18. Improving resolution of dynamic communities in human brain networks through targeted node removal

    PubMed Central

    Turner, Benjamin O.; Miller, Michael B.; Carlson, Jean M.

    2017-01-01

    Current approaches to dynamic community detection in complex networks can fail to identify multi-scale community structure, or to resolve key features of community dynamics. We propose a targeted node removal technique to improve the resolution of community detection. Using synthetic oscillator networks with well-defined “ground truth” communities, we quantify the community detection performance of a common modularity maximization algorithm. We show that the performance of the algorithm on communities of a given size deteriorates when these communities are embedded in multi-scale networks with communities of different sizes, compared to the performance in a single-scale network. We demonstrate that targeted node removal during community detection improves performance on multi-scale networks, particularly when removing the most functionally cohesive nodes. Applying this approach to network neuroscience, we compare dynamic functional brain networks derived from fMRI data taken during both repetitive single-task and varied multi-task experiments. After the removal of regions in visual cortex, the most coherent functional brain area during the tasks, community detection is better able to resolve known functional brain systems into communities. In addition, node removal enables the algorithm to distinguish clear differences in brain network dynamics between these experiments, revealing task-switching behavior that was not identified with the visual regions present in the network. These results indicate that targeted node removal can improve spatial and temporal resolution in community detection, and they demonstrate a promising approach for comparison of network dynamics between neuroscientific data sets with different resolution parameters. PMID:29261662

  19. Assessment of implicit sexual associations in non-incarcerated pedophiles.

    PubMed

    van Leeuwen, Matthijs L; van Baaren, Rick B; Chakhssi, Farid; Loonen, Marijke G M; Lippman, Maarten; Dijksterhuis, Ap

    2013-11-01

    Offences committed by pedophiles are crimes that evoke serious public concern and outrage. Although recent research using implicit measures has shown promise in detecting deviant sexual associations, the discriminatory and predictive quality of implicit tasks has not yet surpassed traditional assessment methods such as questionnaires and phallometry. The current research extended previous findings by examining whether a combination of two implicit tasks, the Implicit Association Task (IAT) and the Picture Association Task (PAT), was capable of differentiating pedophiles from non-pedophiles, and whether the PAT, which allows separate analysis for male, female, boy and girl stimulus categories, was more sensitive to specific sexual associations in pedophiles than the IAT. A total of 20 male self-reported pedophiles (10 offender and 10 non-offenders) and 20 male self-reported heterosexual controls completed the two implicit measures. Results indicated that the combination of both tasks produced the strongest results to date in detecting implicit pedophilic preferences (AUC = .97). Additionally, the PAT showed promise in decomposing the sexual associations in pedophiles. Interestingly, as there was an equal distribution of offenders and non-offenders in the pedophile group, it was possible to test for implicit association differences between these groups. This comparison showed no clear link between having these implicit sexual associations and actual offending.

  20. Some Memories Are Odder than Others: Judgments of Episodic Oddity Violate Known Decision Rules

    ERIC Educational Resources Information Center

    O'Connor, Akira R.; Guhl, Emily N.; Cox, Justin C.; Dobbins, Ian G.

    2011-01-01

    Current decision models of recognition memory are based almost entirely on one paradigm, single item old/new judgments accompanied by confidence ratings. This task results in receiver operating characteristics (ROCs) that are well fit by both signal-detection and dual-process models. Here we examine an entirely new recognition task, the judgment…

  1. Examining the Impact of "Quiet" Vehicles on the Performance of Orientation and Mobility Tasks by Pedestrians Who Are Blind

    ERIC Educational Resources Information Center

    Emerson, Robert Wall; Kim, Dae Shik; Naghshineh, Koorosh; Pliskow, Jay; Myers, Kyle

    2011-01-01

    Participants who are blind discriminated vehicle paths and made crossing decisions for hybrid vehicles with and without artificial sounds added. Several artificial sounds matched the performance of tasks observed with vehicles with internal combustion engines. These data, with previous vehicle-detection results, indicate that selecting artificial…

  2. Nintendo Wii Balance Board is sensitive to effects of visual tasks on standing sway in healthy elderly adults.

    PubMed

    Koslucher, Frank; Wade, Michael G; Nelson, Brent; Lim, Kelvin; Chen, Fu-Chen; Stoffregen, Thomas A

    2012-07-01

    Research has shown that the Nintendo Wii Balance Board (WBB) can reliably detect the quantitative kinematics of the center of pressure in stance. Previous studies used relatively coarse manipulations (1- vs. 2-leg stance, and eyes open vs. closed). We sought to determine whether the WBB could reliably detect postural changes associated with subtle variations in visual tasks. Healthy elderly adults stood on a WBB while performing one of two visual tasks. In the Inspection task, they maintained their gaze within the boundaries of a featureless target. In the Search task, they counted the occurrence of designated target letters within a block of text. Consistent with previous studies using traditional force plates, the positional variability of the center of pressure was reduced during performance of the Search task, relative to movement during performance of the Inspection task. Using detrended fluctuation analysis, a measure of movement dynamics, we found that COP trajectories were more predictable during performance of the Search task than during performance of the Inspection task. The results indicate that the WBB is sensitive to subtle variations in both the magnitude and dynamics of body sway that are related to variations in visual tasks engaged in during stance. The WBB is an inexpensive, reliable technology that can be used to evaluate subtle characteristics of body sway in large or widely dispersed samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. The development of children's knowledge of attention and resource allocation in single and dual tasks.

    PubMed

    Dossett, D; Burns, B

    2000-06-01

    Developmental changes in kindergarten, 1st-, and 4th-grade children's knowledge about the variables that affect attention sharing and resource allocation were examined. Findings from the 2 experiments showed that kindergartners understood that person and strategy variables affect performance in attention-sharing tasks. However, knowledge of how task variables affect performance was not evident to them and was inconsistent for 1st and 4th graders. Children's knowledge about resource allocation revealed a different pattern and varied according to the dissimilarity of task demands in the attention-sharing task. In Experiment 1, in which the dual attention tasks were similar (i.e., visual detection), kindergarten and 1st-grade children did not differentiate performance in single and dual tasks. Fourth graders demonstrated knowledge that performance on a single task would be better than performance on the dual tasks for only 2 of the variables examined. In Experiment 2, in which the dual attention tasks were dissimilar (i.e., visual and auditory detection), kindergarten and 1st-grade children demonstrated knowledge that performance in the single task would be better than in the dual tasks for 1 of the task variables examined. However, 4th-grade children consistently gave higher ratings for performance on the single than on the dual attention tasks for all variables examined. These findings (a) underscore that children's meta-attention is not unitary and (b) demonstrate that children's knowledge about variables affecting attention sharing and resource allocation have different developmental pathways. Results show that knowledge about attention sharing and about the factors that influence the control of attention develops slowly and undergoes reorganization in middle childhood.

  4. Age slowing down in detection and visual discrimination under varying presentation times.

    PubMed

    Moret-Tatay, Carmen; Lemus-Zúñiga, Lenin-Guillermo; Tortosa, Diana Abad; Gamermann, Daniel; Vázquez-Martínez, Andrea; Navarro-Pardo, Esperanza; Conejero, J Alberto

    2017-08-01

    The reaction time has been described as a measure of perception, decision making, and other cognitive processes. The aim of this work is to examine age-related changes in executive functions in terms of demand load under varying presentation times. Two tasks were employed where a signal detection and a discrimination task were performed by young and older university students. Furthermore, a characterization of the response time distribution by an ex-Gaussian fit was carried out. The results indicated that the older participants were slower than the younger ones in signal detection and discrimination. Moreover, the differences between both processes for the older participants were higher, and they also showed a higher distribution average except for the lower and higher presentation time. The results suggest a general slowdown in both tasks for age under different presentation times, except for the cases where presentation times were lower and higher. Moreover, if these parameters are understood to be a reflection of executive functions, these findings are consistent with the common view that age-related cognitive deficits show a decline in this function. © 2017 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  5. [Medical computer-aided detection method based on deep learning].

    PubMed

    Tao, Pan; Fu, Zhongliang; Zhu, Kai; Wang, Lili

    2018-03-01

    This paper performs a comprehensive study on the computer-aided detection for the medical diagnosis with deep learning. Based on the region convolution neural network and the prior knowledge of target, this algorithm uses the region proposal network, the region of interest pooling strategy, introduces the multi-task loss function: classification loss, bounding box localization loss and object rotation loss, and optimizes it by end-to-end. For medical image it locates the target automatically, and provides the localization result for the next stage task of segmentation. For the detection of left ventricular in echocardiography, proposed additional landmarks such as mitral annulus, endocardial pad and apical position, were used to estimate the left ventricular posture effectively. In order to verify the robustness and effectiveness of the algorithm, the experimental data of ultrasonic and nuclear magnetic resonance images are selected. Experimental results show that the algorithm is fast, accurate and effective.

  6. Task-driven orbit design and implementation on a robotic C-arm system for cone-beam CT

    NASA Astrophysics Data System (ADS)

    Ouadah, S.; Jacobson, M.; Stayman, J. W.; Ehtiati, T.; Weiss, C.; Siewerdsen, J. H.

    2017-03-01

    Purpose: This work applies task-driven optimization to the design of non-circular orbits that maximize imaging performance for a particular imaging task. First implementation of task-driven imaging on a clinical robotic C-arm system is demonstrated, and a framework for orbit calculation is described and evaluated. Methods: We implemented a task-driven imaging framework to optimize orbit parameters that maximize detectability index d'. This framework utilizes a specified Fourier domain task function and an analytical model for system spatial resolution and noise. Two experiments were conducted to test the framework. First, a simple task was considered consisting of frequencies lying entirely on the fz-axis (e.g., discrimination of structures oriented parallel to the central axial plane), and a "circle + arc" orbit was incorporated into the framework as a means to improve sampling of these frequencies, and thereby increase task-based detectability. The orbit was implemented on a robotic C-arm (Artis Zeego, Siemens Healthcare). A second task considered visualization of a cochlear implant simulated within a head phantom, with spatial frequency response emphasizing high-frequency content in the (fy, fz) plane of the cochlea. An optimal orbit was computed using the task-driven framework, and the resulting image was compared to that for a circular orbit. Results: For the fz-axis task, the circle + arc orbit was shown to increase d' by a factor of 1.20, with an improvement of 0.71 mm in a 3D edge-spread measurement for edges located far from the central plane and a decrease in streak artifacts compared to a circular orbit. For the cochlear implant task, the resulting orbit favored complementary views of high tilt angles in a 360° orbit, and d' was increased by a factor of 1.83. Conclusions: This work shows that a prospective definition of imaging task can be used to optimize source-detector orbit and improve imaging performance. The method was implemented for execution of non-circular, task-driven orbits on a clinical robotic C-arm system. The framework is sufficiently general to include both acquisition parameters (e.g., orbit, kV, and mA selection) and reconstruction parameters (e.g., a spatially varying regularizer).

  7. From trees to forest: relational complexity network and workload of air traffic controllers.

    PubMed

    Zhang, Jingyu; Yang, Jiazhong; Wu, Changxu

    2015-01-01

    In this paper, we propose a relational complexity (RC) network framework based on RC metric and network theory to model controllers' workload in conflict detection and resolution. We suggest that, at the sector level, air traffic showing a centralised network pattern can provide cognitive benefits in visual search and resolution decision which will in turn result in lower workload. We found that the network centralisation index can account for more variance in predicting perceived workload and task completion time in both a static conflict detection task (Study 1) and a dynamic one (Study 2) in addition to other aircraft-level and pair-level factors. This finding suggests that linear combination of aircraft-level or dyad-level information may not be adequate and the global-pattern-based index is necessary. Theoretical and practical implications of using this framework to improve future workload modelling and management are discussed. We propose a RC network framework to model the workload of air traffic controllers. The effect of network centralisation was examined in both a static conflict detection task and a dynamic one. Network centralisation was predictive of perceived workload and task completion time over and above other control variables.

  8. Detection of small orientation changes and the precision of visual working memory.

    PubMed

    Salmela, Viljami R; Saarinen, Jussi

    2013-01-14

    We investigated the precision of orientation representations with two tasks, change detection and recall. Previously change detection has been measured only with relatively large orientation changes compared to psychophysical thresholds. In the first experiment, we measured the observers' ability (d') to detect small changes in orientation (5-30°) with 1-4 Gabor items. With one item even a 10° change was well detected (average d'=2.5). As the amount of change increased to 30°, the d' increased to 5.2. When the number of items was increased, the d's gradually decreased. In the second experiment, we used a recall task and the observers adjusted the orientation of a probe Gabor to match the orientation of a Gabor held in the memory. The standard deviation (s.d.) of errors was calculated from the Gaussian distribution fitted to the data. As the number of items increased from 1 to 6, the s.d. increased from 8.6° to 19.6°. Even with six items, the observers did not make any random adjustments. The results show a square root relation between the d'/s.d. and the number of items. The d' in change detection is directly proportional to the square root of (1/n) and the orientation change. The increase of the s.d. in recall task is inversely proportional to square root of (1/n). The results suggest that limited resources and precision of representations, without additional assumptions, determine the memory performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Resting-state brain activity in the motor cortex reflects task-induced activity: A multi-voxel pattern analysis.

    PubMed

    Kusano, Toshiki; Kurashige, Hiroki; Nambu, Isao; Moriguchi, Yoshiya; Hanakawa, Takashi; Wada, Yasuhiro; Osu, Rieko

    2015-08-01

    It has been suggested that resting-state brain activity reflects task-induced brain activity patterns. In this study, we examined whether neural representations of specific movements can be observed in the resting-state brain activity patterns of motor areas. First, we defined two regions of interest (ROIs) to examine brain activity associated with two different behavioral tasks. Using multi-voxel pattern analysis with regularized logistic regression, we designed a decoder to detect voxel-level neural representations corresponding to the tasks in each ROI. Next, we applied the decoder to resting-state brain activity. We found that the decoder discriminated resting-state neural activity with accuracy comparable to that associated with task-induced neural activity. The distribution of learned weighted parameters for each ROI was similar for resting-state and task-induced activities. Large weighted parameters were mainly located on conjunctive areas. Moreover, the accuracy of detection was higher than that for a decoder whose weights were randomly shuffled, indicating that the resting-state brain activity includes multi-voxel patterns similar to the neural representation for the tasks. Therefore, these results suggest that the neural representation of resting-state brain activity is more finely organized and more complex than conventionally considered.

  10. Automaticity of phonological and semantic processing during visual word recognition.

    PubMed

    Pattamadilok, Chotiga; Chanoine, Valérie; Pallier, Christophe; Anton, Jean-Luc; Nazarian, Bruno; Belin, Pascal; Ziegler, Johannes C

    2017-04-01

    Reading involves activation of phonological and semantic knowledge. Yet, the automaticity of the activation of these representations remains subject to debate. The present study addressed this issue by examining how different brain areas involved in language processing responded to a manipulation of bottom-up (level of visibility) and top-down information (task demands) applied to written words. The analyses showed that the same brain areas were activated in response to written words whether the task was symbol detection, rime detection, or semantic judgment. This network included posterior, temporal and prefrontal regions, which clearly suggests the involvement of orthographic, semantic and phonological/articulatory processing in all tasks. However, we also found interactions between task and stimulus visibility, which reflected the fact that the strength of the neural responses to written words in several high-level language areas varied across tasks. Together, our findings suggest that the involvement of phonological and semantic processing in reading is supported by two complementary mechanisms. First, an automatic mechanism that results from a task-independent spread of activation throughout a network in which orthography is linked to phonology and semantics. Second, a mechanism that further fine-tunes the sensitivity of high-level language areas to the sensory input in a task-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Task effects on BOLD signal correlates of implicit syntactic processing

    PubMed Central

    Caplan, David

    2010-01-01

    BOLD signal was measured in sixteen participants who made timed font change detection judgments in visually presented sentences that varied in syntactic structure and the order of animate and inanimate nouns. Behavioral data indicated that sentences were processed to the level of syntactic structure. BOLD signal increased in visual association areas bilaterally and left supramarginal gyrus in the contrast of sentences with object- and subject-extracted relative clauses without font changes in which the animacy order of the nouns biased against the syntactically determined meaning of the sentence. This result differs from the findings in a non-word detection task (Caplan et al, 2008a), in which the same contrast led to increased BOLD signal in the left inferior frontal gyrus. The difference in areas of activation indicates that the sentences were processed differently in the two tasks. These differences were further explored in an eye tracking study using the materials in the two tasks. Issues pertaining to how parsing and interpretive operations are affected by a task that is being performed, and how this might affect BOLD signal correlates of syntactic contrasts, are discussed. PMID:20671983

  12. Task effects on BOLD signal correlates of implicit syntactic processing.

    PubMed

    Caplan, David

    2010-07-01

    BOLD signal was measured in sixteen participants who made timed font change detection judgments in visually presented sentences that varied in syntactic structure and the order of animate and inanimate nouns. Behavioral data indicated that sentences were processed to the level of syntactic structure. BOLD signal increased in visual association areas bilaterally and left supramarginal gyrus in the contrast of sentences with object- and subject-extracted relative clauses without font changes in which the animacy order of the nouns biased against the syntactically determined meaning of the sentence. This result differs from the findings in a non-word detection task (Caplan et al, 2008a), in which the same contrast led to increased BOLD signal in the left inferior frontal gyrus. The difference in areas of activation indicates that the sentences were processed differently in the two tasks. These differences were further explored in an eye tracking study using the materials in the two tasks. Issues pertaining to how parsing and interpretive operations are affected by a task that is being performed, and how this might affect BOLD signal correlates of syntactic contrasts, are discussed.

  13. Response requirement and increases in accuracy produced by stimulant drugs in a 5-choice serial reaction-time task in rats.

    PubMed

    Koffarnus, Mikhail N; Katz, Jonathan L

    2011-02-01

    Increased signal-detection accuracy on the 5-choice serial reaction time (5-CSRT) task has been shown with drugs that are useful clinically in treating attention deficit hyperactivity disorder (ADHD), but these increases are often small and/or unreliable. By reducing the reinforcer frequency, it may be possible to increase the sensitivity of this task to pharmacologically induced improvements in accuracy. Rats were trained to respond on the 5-CSRT task on a fixed ratio (FR) 1, FR 3, or FR 10 schedule of reinforcement. Drugs that were and were not expected to enhance performance were then administered before experimental sessions. Significant increases in accuracy of signal detection were not typically obtained under the FR 1 schedule with any drug. However, d-amphetamine, methylphenidate, and nicotine typically increased accuracy under the FR 3 and FR 10 schedules. Increasing the FR requirement in the 5-CSRT task increases the likelihood of a positive result with clinically effective drugs, and may more closely resemble conditions in children with attention deficits.

  14. Detecting functional magnetic resonance imaging activation in white matter: Interhemispheric transfer across the corpus callosum

    PubMed Central

    Mazerolle, Erin L; D'Arcy, Ryan CN; Beyea, Steven D

    2008-01-01

    Background It is generally believed that activation in functional magnetic resonance imaging (fMRI) is restricted to gray matter. Despite this, a number of studies have reported white matter activation, particularly when the corpus callosum is targeted using interhemispheric transfer tasks. These findings suggest that fMRI signals may not be neatly confined to gray matter tissue. In the current experiment, 4 T fMRI was employed to evaluate whether it is possible to detect white matter activation. We used an interhemispheric transfer task modelled after neurological studies of callosal disconnection. It was hypothesized that white matter activation could be detected using fMRI. Results Both group and individual data were considered. At liberal statistical thresholds (p < 0.005, uncorrected), group level activation was detected in the isthmus of the corpus callosum. This region connects the superior parietal cortices, which have been implicated previously in interhemispheric transfer. At the individual level, five of the 24 subjects (21%) had activation clusters that were located primarily within the corpus callosum. Consistent with the group results, the clusters of all five subjects were located in posterior callosal regions. The signal time courses for these clusters were comparable to those observed for task related gray matter activation. Conclusion The findings support the idea that, despite the inherent challenges, fMRI activation can be detected in the corpus callosum at the individual level. Future work is needed to determine whether the detection of this activation can be improved by utilizing higher spatial resolution, optimizing acquisition parameters, and analyzing the data with tissue specific models of the hemodynamic response. The ability to detect white matter fMRI activation expands the scope of basic and clinical brain mapping research, and provides a new approach for understanding brain connectivity. PMID:18789154

  15. Identification of Swallowing Tasks from a Modified Barium Swallow Study That Optimize the Detection of Physiological Impairment

    ERIC Educational Resources Information Center

    Hazelwood, R. Jordan; Armeson, Kent E.; Hill, Elizabeth G.; Bonilha, Heather Shaw; Martin-Harris, Bonnie

    2017-01-01

    Purpose: The purpose of this study was to identify which swallowing task(s) yielded the worst performance during a standardized modified barium swallow study (MBSS) in order to optimize the detection of swallowing impairment. Method: This secondary data analysis of adult MBSSs estimated the probability of each swallowing task yielding the derived…

  16. Detection and rate discrimination of amplitude modulation in electrical hearing.

    PubMed

    Chatterjee, Monita; Oberzut, Cherish

    2011-09-01

    Three experiments were designed to examine temporal envelope processing by cochlear implant (CI) listeners. In experiment 1, the hypothesis that listeners' modulation sensitivity would in part determine their ability to discriminate between temporal modulation rates was examined. Temporal modulation transfer functions (TMTFs) obtained in an amplitude modulation detection (AMD) task were compared to threshold functions obtained in an amplitude modulation rate discrimination (AMRD) task. Statistically significant nonlinear correlations were observed between the two measures. In experiment 2, results of loudness-balancing showed small increases in the loudness of modulated over unmodulated stimuli beyond a modulation depth of 16%. Results of experiment 3 indicated small but statistically significant effects of level-roving on the overall gain of the TMTF, but no impact of level-roving on the average shape of the TMTF across subjects. This suggested that level-roving simply increased the task difficulty for most listeners, but did not indicate increased use of intensity cues under more challenging conditions. Data obtained with one subject, however, suggested that the most sensitive listeners may derive some benefit from intensity cues in these tasks. Overall, results indicated that intensity cues did not play an important role in temporal envelope processing by the average CI listener. © 2011 Acoustical Society of America

  17. Examining the influence of a spatially irrelevant working memory load on attentional allocation.

    PubMed

    McDonnell, Gerald P; Dodd, Michael D

    2013-08-01

    The present study examined the influence of holding task-relevant gaze cues in working memory during a target detection task. Gaze cues shift attention in gaze-consistent directions, even when they are irrelevant to a primary detection task. It is unclear, however, whether gaze cues need to be perceived online to elicit these effects, or how these effects may be moderated if the gaze cues are relevant to a secondary task. In Experiment 1, participants encoded a face for a subsequent memory task, after which they performed an unrelated target detection task. Critically, gaze direction was irrelevant to the target detection task, but memory for the perceived face was tested at trial conclusion. Surprisingly, participants exhibited inhibition-of-return (IOR) and not facilitation, with slower response times for the gazed-at location. In Experiments 2, presentation duration and cue-target stimulus-onset asynchrony were manipulated and we continued to observe IOR with no early facilitation. Experiment 3 revealed facilitation but not IOR when the memory task was removed; Experiment 4 also revealed facilitation when the gaze cue memory task was replaced with arrows cues. The present experiments provide an important dissociation between perceiving cues online versus holding them in memory as it relates to attentional allocation. 2013 APA, all rights reserved

  18. Cascaded systems analysis of noise and detectability in dual-energy cone-beam CT

    PubMed Central

    Gang, Grace J.; Zbijewski, Wojciech; Webster Stayman, J.; Siewerdsen, Jeffrey H.

    2012-01-01

    Purpose: Dual-energy computed tomography and dual-energy cone-beam computed tomography (DE-CBCT) are promising modalities for applications ranging from vascular to breast, renal, hepatic, and musculoskeletal imaging. Accordingly, the optimization of imaging techniques for such applications would benefit significantly from a general theoretical description of image quality that properly incorporates factors of acquisition, reconstruction, and tissue decomposition in DE tomography. This work reports a cascaded systems analysis model that includes the Poisson statistics of x rays (quantum noise), detector model (flat-panel detectors), anatomical background, image reconstruction (filtered backprojection), DE decomposition (weighted subtraction), and simple observer models to yield a task-based framework for DE technique optimization. Methods: The theoretical framework extends previous modeling of DE projection radiography and CBCT. Signal and noise transfer characteristics are propagated through physical and mathematical stages of image formation and reconstruction. Dual-energy decomposition was modeled according to weighted subtraction of low- and high-energy images to yield the 3D DE noise-power spectrum (NPS) and noise-equivalent quanta (NEQ), which, in combination with observer models and the imaging task, yields the dual-energy detectability index (d′). Model calculations were validated with NPS and NEQ measurements from an experimental imaging bench simulating the geometry of a dedicated musculoskeletal extremities scanner. Imaging techniques, including kVp pair and dose allocation, were optimized using d′ as an objective function for three example imaging tasks: (1) kidney stone discrimination; (2) iodine vs bone in a uniform, soft-tissue background; and (3) soft tissue tumor detection on power-law anatomical background. Results: Theoretical calculations of DE NPS and NEQ demonstrated good agreement with experimental measurements over a broad range of imaging conditions. Optimization results suggest a lower fraction of total dose imparted by the low-energy acquisition, a finding consistent with previous literature. The selection of optimal kVp pair reveals the combined effect of both quantum noise and contrast in the kidney stone discrimination and soft-tissue tumor detection tasks, whereas the K-edge effect of iodine was the dominant factor in determining kVp pairs in the iodine vs bone task. The soft-tissue tumor task illustrated the benefit of dual-energy imaging in eliminating anatomical background noise and improving detectability beyond that achievable by single-energy scans. Conclusions: This work established a task-based theoretical framework that is predictive of DE image quality. The model can be utilized in optimizing a broad range of parameters in image acquisition, reconstruction, and decomposition, providing a useful tool for maximizing DE-CBCT image quality and reducing dose. PMID:22894440

  19. Dissociation of Neural Substrates of Response Inhibition to Negative Information between Implicit and Explicit Facial Go/Nogo Tasks: Evidence from an Electrophysiological Study

    PubMed Central

    Sun, Shiyue; Carretié, Luis; Zhang, Lei; Dong, Yi; Zhu, Chunyan; Luo, Yuejia; Wang, Kai

    2014-01-01

    Background Although ample evidence suggests that emotion and response inhibition are interrelated at the behavioral and neural levels, neural substrates of response inhibition to negative facial information remain unclear. Thus we used event-related potential (ERP) methods to explore the effects of explicit and implicit facial expression processing in response inhibition. Methods We used implicit (gender categorization) and explicit emotional Go/Nogo tasks (emotion categorization) in which neutral and sad faces were presented. Electrophysiological markers at the scalp and the voxel level were analyzed during the two tasks. Results We detected a task, emotion and trial type interaction effect in the Nogo-P3 stage. Larger Nogo-P3 amplitudes during sad conditions versus neutral conditions were detected with explicit tasks. However, the amplitude differences between the two conditions were not significant for implicit tasks. Source analyses on P3 component revealed that right inferior frontal junction (rIFJ) was involved during this stage. The current source density (CSD) of rIFJ was higher with sad conditions compared to neutral conditions for explicit tasks, rather than for implicit tasks. Conclusions The findings indicated that response inhibition was modulated by sad facial information at the action inhibition stage when facial expressions were processed explicitly rather than implicitly. The rIFJ may be a key brain region in emotion regulation. PMID:25330212

  20. Viral vector-based reversible neuronal inactivation and behavioral manipulation in the macaque monkey

    PubMed Central

    Nielsen, Kristina J.; Callaway, Edward M.; Krauzlis, Richard J.

    2012-01-01

    Viral vectors are promising tools for the dissection of neural circuits. In principle, they can manipulate neurons at a level of specificity not otherwise achievable. While many studies have used viral vector-based approaches in the rodent brain, only a few have employed this technique in the non-human primate, despite the importance of this animal model for neuroscience research. Here, we report evidence that a viral vector-based approach can be used to manipulate a monkey's behavior in a task. For this purpose, we used the allatostatin receptor/allatostatin (AlstR/AL) system, which has previously been shown to allow inactivation of neurons in vivo. The AlstR was expressed in neurons in monkey V1 by injection of an adeno-associated virus 1 (AAV1) vector. Two monkeys were trained in a detection task, in which they had to make a saccade to a faint peripheral target. Injection of AL caused a retinotopic deficit in the detection task in one monkey. Specifically, the monkey showed marked impairment for detection targets placed at the visual field location represented at the virus injection site, but not for targets shown elsewhere. We confirmed that these deficits indeed were due to the interaction of AlstR and AL by injecting saline, or AL at a V1 location without AlstR expression. Post-mortem histology confirmed AlstR expression in this monkey. We failed to replicate the behavioral results in a second monkey, as AL injection did not impair the second monkey's performance in the detection task. However, post-mortem histology revealed a very low level of AlstR expression in this monkey. Our results demonstrate that viral vector-based approaches can produce effects strong enough to influence a monkey's performance in a behavioral task, supporting the further development of this approach for studying how neuronal circuits control complex behaviors in non-human primates. PMID:22723770

  1. The rate of transient beta frequency events predicts behavior across tasks and species

    PubMed Central

    Law, Robert; Tsutsui, Shawn; Moore, Christopher I; Jones, Stephanie R

    2017-01-01

    Beta oscillations (15-29Hz) are among the most prominent signatures of brain activity. Beta power is predictive of healthy and abnormal behaviors, including perception, attention and motor action. In non-averaged signals, beta can emerge as transient high-power 'events'. As such, functionally relevant differences in averaged power across time and trials can reflect changes in event number, power, duration, and/or frequency span. We show that functionally relevant differences in averaged beta power in primary somatosensory neocortex reflect a difference in the number of high-power beta events per trial, i.e. event rate. Further, beta events occurring close to the stimulus were more likely to impair perception. These results are consistent across detection and attention tasks in human magnetoencephalography, and in local field potentials from mice performing a detection task. These results imply that an increased propensity of beta events predicts the failure to effectively transmit information through specific neocortical representations. PMID:29106374

  2. A model of the human observer and decision maker

    NASA Technical Reports Server (NTRS)

    Wewerinke, P. H.

    1981-01-01

    The decision process is described in terms of classical sequential decision theory by considering the hypothesis that an abnormal condition has occurred by means of a generalized likelihood ratio test. For this, a sufficient statistic is provided by the innovation sequence which is the result of the perception an information processing submodel of the human observer. On the basis of only two model parameters, the model predicts the decision speed/accuracy trade-off and various attentional characteristics. A preliminary test of the model for single variable failure detection tasks resulted in a very good fit of the experimental data. In a formal validation program, a variety of multivariable failure detection tasks was investigated and the predictive capability of the model was demonstrated.

  3. Error Detection Processes during Observational Learning

    ERIC Educational Resources Information Center

    Badets, Arnaud; Blandin, Yannick; Wright, David L.; Shea, Charles H.

    2006-01-01

    The purpose of this experiment was to determine whether a faded knowledge of results (KR) frequency during observation of a model's performance enhanced error detection capabilities. During the observation phase, participants observed a model performing a timing task and received KR about the model's performance on each trial or on one of two…

  4. Event-related near-infrared spectroscopy detects conflict in the motor cortex in a Stroop task.

    PubMed

    Szűcs, Dénes; Killikelly, Clare; Cutini, Simone

    2012-10-05

    The Stroop effect is one of the most popular models of conflict processing in neuroscience and psychology. The response conflict theory of the Stroop effect explains decreased performance in the incongruent condition of Stroop tasks by assuming that the task-relevant and the task-irrelevant stimulus features elicit conflicting response tendencies. However, to date, there is not much explicit neural evidence supporting this theory. Here we used functional near-infrared imaging (fNIRS) to examine whether conflict at the level of the motor cortex can be detected in the incongruent relative to the congruent condition of a Stroop task. Response conflict was determined by comparing the activity of the hemisphere ipsilateral to the response hand in the congruent and incongruent conditions. First, results provided explicit hemodynamic evidence supporting the response conflict theory of the Stroop effect: there was greater motor cortex activation in the hemisphere ipsilateral to the response hand in the incongruent than in the congruent condition during the initial stage of the hemodynamic response. Second, as fNIRS is still a relatively novel technology, it is methodologically significant that our data shows that fNIRS is able to detect a brief and transient increase in hemodynamic activity localized to the motor cortex, which in this study is related to subthreshold motor response activation. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Attention during active visual tasks: counting, pointing, or simply looking

    PubMed Central

    Wilder, John D.; Schnitzer, Brian S.; Gersch, Timothy M.; Dosher, Barbara A.

    2009-01-01

    Visual attention and saccades are typically studied in artificial situations, with stimuli presented to the steadily fixating eye, or saccades made along specified paths. By contrast, in the real world saccadic patterns are constrained only by the demands of the motivating task. We studied attention during pauses between saccades made to perform 3 free-viewing tasks: counting dots, pointing to the same dots with a visible cursor, or simply looking at the dots using a freely-chosen path. Attention was assessed by the ability to identify the orientation of a briefly-presented Gabor probe. All primary tasks produced losses in identification performance, with counting producing the largest losses, followed by pointing and then looking-only. Looking-only resulted in a 37% increase in contrast thresholds in the orientation task. Counting produced more severe losses that were not overcome by increasing Gabor contrast. Detection or localization of the Gabor, unlike identification, were largely unaffected by any of the primary tasks. Taken together, these results show that attention is required to control saccades, even with freely-chosen paths, but the attentional demands of saccades are less than those attached to tasks such as counting, which have a significant cognitive load. Counting proved to be a highly demanding task that either exhausted momentary processing capacity (e.g., working memory or executive functions), or, alternatively, encouraged a strategy of filtering out all signals irrelevant to counting itself. The fact that the attentional demands of saccades (as well as those of detection/localization) are relatively modest makes it possible to continually adjust both the spatial and temporal pattern of saccades so as to re-allocate attentional resources as needed to handle the complex and multifaceted demands of real-world environments. PMID:18649913

  6. Task-dependent individual differences in prefrontal connectivity.

    PubMed

    Biswal, Bharat B; Eldreth, Dana A; Motes, Michael A; Rypma, Bart

    2010-09-01

    Recent advances in neuroimaging have permitted testing of hypotheses regarding the neural bases of individual differences, but this burgeoning literature has been characterized by inconsistent results. To test the hypothesis that differences in task demands could contribute to between-study variability in brain-behavior relationships, we had participants perform 2 tasks that varied in the extent of cognitive involvement. We examined connectivity between brain regions during a low-demand vigilance task and a higher-demand digit-symbol visual search task using Granger causality analysis (GCA). Our results showed 1) Significant differences in numbers of frontoparietal connections between low- and high-demand tasks 2) that GCA can detect activity changes that correspond with task-demand changes, and 3) faster participants showed more vigilance-related activity than slower participants, but less visual-search activity. These results suggest that relatively low-demand cognitive performance depends on spontaneous bidirectionally fluctuating network activity, whereas high-demand performance depends on a limited, unidirectional network. The nature of brain-behavior relationships may vary depending on the extent of cognitive demand. High-demand network activity may reflect the extent to which individuals require top-down executive guidance of behavior for successful task performance. Low-demand network activity may reflect task- and performance monitoring that minimizes executive requirements for guidance of behavior.

  7. Task-Dependent Individual Differences in Prefrontal Connectivity

    PubMed Central

    Biswal, Bharat B.; Eldreth, Dana A.; Motes, Michael A.

    2010-01-01

    Recent advances in neuroimaging have permitted testing of hypotheses regarding the neural bases of individual differences, but this burgeoning literature has been characterized by inconsistent results. To test the hypothesis that differences in task demands could contribute to between-study variability in brain-behavior relationships, we had participants perform 2 tasks that varied in the extent of cognitive involvement. We examined connectivity between brain regions during a low-demand vigilance task and a higher-demand digit–symbol visual search task using Granger causality analysis (GCA). Our results showed 1) Significant differences in numbers of frontoparietal connections between low- and high-demand tasks 2) that GCA can detect activity changes that correspond with task-demand changes, and 3) faster participants showed more vigilance-related activity than slower participants, but less visual-search activity. These results suggest that relatively low-demand cognitive performance depends on spontaneous bidirectionally fluctuating network activity, whereas high-demand performance depends on a limited, unidirectional network. The nature of brain-behavior relationships may vary depending on the extent of cognitive demand. High-demand network activity may reflect the extent to which individuals require top-down executive guidance of behavior for successful task performance. Low-demand network activity may reflect task- and performance monitoring that minimizes executive requirements for guidance of behavior. PMID:20064942

  8. Assessment of the dose reduction potential of a model-based iterative reconstruction algorithm using a task-based performance metrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samei, Ehsan, E-mail: samei@duke.edu; Richard, Samuel

    2015-01-15

    Purpose: Different computed tomography (CT) reconstruction techniques offer different image quality attributes of resolution and noise, challenging the ability to compare their dose reduction potential against each other. The purpose of this study was to evaluate and compare the task-based imaging performance of CT systems to enable the assessment of the dose performance of a model-based iterative reconstruction (MBIR) to that of an adaptive statistical iterative reconstruction (ASIR) and a filtered back projection (FBP) technique. Methods: The ACR CT phantom (model 464) was imaged across a wide range of mA setting on a 64-slice CT scanner (GE Discovery CT750 HD,more » Waukesha, WI). Based on previous work, the resolution was evaluated in terms of a task-based modulation transfer function (MTF) using a circular-edge technique and images from the contrast inserts located in the ACR phantom. Noise performance was assessed in terms of the noise-power spectrum (NPS) measured from the uniform section of the phantom. The task-based MTF and NPS were combined with a task function to yield a task-based estimate of imaging performance, the detectability index (d′). The detectability index was computed as a function of dose for two imaging tasks corresponding to the detection of a relatively small and a relatively large feature (1.5 and 25 mm, respectively). The performance of MBIR in terms of the d′ was compared with that of ASIR and FBP to assess its dose reduction potential. Results: Results indicated that MBIR exhibits a variability spatial resolution with respect to object contrast and noise while significantly reducing image noise. The NPS measurements for MBIR indicated a noise texture with a low-pass quality compared to the typical midpass noise found in FBP-based CT images. At comparable dose, the d′ for MBIR was higher than those of FBP and ASIR by at least 61% and 19% for the small feature and the large feature tasks, respectively. Compared to FBP and ASIR, MBIR indicated a 46%–84% dose reduction potential, depending on task, without compromising the modeled detection performance. Conclusions: The presented methodology based on ACR phantom measurements extends current possibilities for the assessment of CT image quality under the complex resolution and noise characteristics exhibited with statistical and iterative reconstruction algorithms. The findings further suggest that MBIR can potentially make better use of the projections data to reduce CT dose by approximately a factor of 2. Alternatively, if the dose held unchanged, it can improve image quality by different levels for different tasks.« less

  9. Sequential stream segregation in normally-hearing and cochlear-implant listenersa)

    PubMed Central

    Tejani, Viral D.; Schvartz-Leyzac, Kara C.; Chatterjee, Monita

    2017-01-01

    Sequential stream segregation by normal hearing (NH) and cochlear implant (CI) listeners was investigated using an irregular rhythm detection (IRD) task. Pure tones and narrowband noises of different bandwidths were presented monaurally to older and younger NH listeners via headphones. For CI users, stimuli were delivered as pure tones via soundfield and via direct electrical stimulation. Results confirmed that tonal pitch is not essential for stream segregation by NH listeners and that aging does not reduce NH listeners' stream segregation. CI listeners' stream segregation was significantly poorer than NH listeners' with pure tone stimuli. With direct stimulation, however, CI listeners showed significantly stronger stream segregation, with a mean normalized pattern similar to NH listeners, implying that the CI speech processors possibly degraded acoustic cues. CI listeners' performance on an electrode discrimination task indicated that cues that are salient enough to make two electrodes highly discriminable may not be sufficiently salient for stream segregation, and that gap detection/discrimination, which must depend on perceptual electrode differences, did not play a role in the IRD task. Although the IRD task does not encompass all aspects of full stream segregation, these results suggest that some CI listeners may demonstrate aspects of stream segregation. PMID:28147600

  10. A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance.

    PubMed

    von Trapp, Gardiner; Buran, Bradley N; Sen, Kamal; Semple, Malcolm N; Sanes, Dan H

    2016-10-26

    The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability of the neural response becomes smaller during task performance, thereby improving neural detection thresholds. Copyright © 2016 the authors 0270-6474/16/3611097-10$15.00/0.

  11. A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance

    PubMed Central

    Buran, Bradley N.; Sen, Kamal; Semple, Malcolm N.; Sanes, Dan H.

    2016-01-01

    The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. SIGNIFICANCE STATEMENT The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability of the neural response becomes smaller during task performance, thereby improving neural detection thresholds. PMID:27798189

  12. Observer efficiency in free-localization tasks with correlated noise.

    PubMed

    Abbey, Craig K; Eckstein, Miguel P

    2014-01-01

    The efficiency of visual tasks involving localization has traditionally been evaluated using forced choice experiments that capitalize on independence across locations to simplify the performance of the ideal observer. However, developments in ideal observer analysis have shown how an ideal observer can be defined for free-localization tasks, where a target can appear anywhere in a defined search region and subjects respond by localizing the target. Since these tasks are representative of many real-world search tasks, it is of interest to evaluate the efficiency of observer performance in them. The central question of this work is whether humans are able to effectively use the information in a free-localization task relative to a similar task where target location is fixed. We use a yes-no detection task at a cued location as the reference for this comparison. Each of the tasks is evaluated using a Gaussian target profile embedded in four different Gaussian noise backgrounds having power-law noise power spectra with exponents ranging from 0 to 3. The free localization task had a square 6.7° search region. We report on two follow-up studies investigating efficiency in a detect-and-localize task, and the effect of processing the white-noise backgrounds. In the fixed-location detection task, we find average observer efficiency ranges from 35 to 59% for the different noise backgrounds. Observer efficiency improves dramatically in the tasks involving localization, ranging from 63 to 82% in the forced localization tasks and from 78 to 92% in the detect-and- localize tasks. Performance in white noise, the lowest efficiency condition, was improved by filtering to give them a power-law exponent of 2. Classification images, used to examine spatial frequency weights for the tasks, show better tuning to ideal weights in the free-localization tasks. The high absolute levels of efficiency suggest that observers are well-adapted to free-localization tasks.

  13. Observer efficiency in free-localization tasks with correlated noise

    PubMed Central

    Abbey, Craig K.; Eckstein, Miguel P.

    2014-01-01

    The efficiency of visual tasks involving localization has traditionally been evaluated using forced choice experiments that capitalize on independence across locations to simplify the performance of the ideal observer. However, developments in ideal observer analysis have shown how an ideal observer can be defined for free-localization tasks, where a target can appear anywhere in a defined search region and subjects respond by localizing the target. Since these tasks are representative of many real-world search tasks, it is of interest to evaluate the efficiency of observer performance in them. The central question of this work is whether humans are able to effectively use the information in a free-localization task relative to a similar task where target location is fixed. We use a yes-no detection task at a cued location as the reference for this comparison. Each of the tasks is evaluated using a Gaussian target profile embedded in four different Gaussian noise backgrounds having power-law noise power spectra with exponents ranging from 0 to 3. The free localization task had a square 6.7° search region. We report on two follow-up studies investigating efficiency in a detect-and-localize task, and the effect of processing the white-noise backgrounds. In the fixed-location detection task, we find average observer efficiency ranges from 35 to 59% for the different noise backgrounds. Observer efficiency improves dramatically in the tasks involving localization, ranging from 63 to 82% in the forced localization tasks and from 78 to 92% in the detect-and- localize tasks. Performance in white noise, the lowest efficiency condition, was improved by filtering to give them a power-law exponent of 2. Classification images, used to examine spatial frequency weights for the tasks, show better tuning to ideal weights in the free-localization tasks. The high absolute levels of efficiency suggest that observers are well-adapted to free-localization tasks. PMID:24817854

  14. The influence of schizotypal traits on attention under high perceptual load.

    PubMed

    Stotesbury, Hanne; Gaigg, Sebastian B; Kirhan, Saim; Haenschel, Corinna

    2018-03-01

    Schizophrenia Spectrum Disorders (SSD) are known to be characterised by abnormalities in attentional processes, but there are inconsistencies in the literature that remain unresolved. This article considers whether perceptual resource limitations play a role in moderating attentional abnormalities in SSD. According to perceptual load theory, perceptual resource limitations can lead to attenuated or superior performance on dual-task paradigms depending on whether participants are required to process, or attempt to ignore, secondary stimuli. If SSD is associated with perceptual resource limitations, and if it represents the extreme end of an otherwise normally distributed neuropsychological phenotype, schizotypal traits in the general population should lead to disproportionate performance costs on dual-task paradigms as a function of the perceptual task demands. To test this prediction, schizotypal traits were quantified via the Schizotypal Personality Questionnaire (SPQ) in 74 healthy volunteers, who also completed a dual-task signal detection paradigm that required participants to detect central and peripheral stimuli across conditions that varied in the overall number of stimuli presented. The results confirmed decreasing performance as the perceptual load of the task increased. More importantly, significant correlations between SPQ scores and task performance confirmed that increased schizotypal traits, particularly in the cognitive-perceptual domain, are associated with greater performance decrements under increasing perceptual load. These results confirm that attentional difficulties associated with SSD extend sub-clinically into the general population and suggest that cognitive-perceptual schizotypal traits may represent a risk factor for difficulties in the regulation of attention under increasing perceptual load.

  15. The Pattern and Loci of Training-Induced Brain Changes in Healthy Older Adults Are Predicted by the Nature of the Intervention

    PubMed Central

    Belleville, Sylvie; Mellah, Samira; de Boysson, Chloé; Demonet, Jean-Francois; Bier, Bianca

    2014-01-01

    There is enormous interest in designing training methods for reducing cognitive decline in healthy older adults. Because it is impaired with aging, multitasking has often been targeted and has been shown to be malleable with appropriate training. Investigating the effects of cognitive training on functional brain activation might provide critical indication regarding the mechanisms that underlie those positive effects, as well as provide models for selecting appropriate training methods. The few studies that have looked at brain correlates of cognitive training indicate a variable pattern and location of brain changes - a result that might relate to differences in training formats. The goal of this study was to measure the neural substrates as a function of whether divided attentional training programs induced the use of alternative processes or whether it relied on repeated practice. Forty-eight older adults were randomly allocated to one of three training programs. In the SINGLE REPEATED training, participants practiced an alphanumeric equation and a visual detection task, each under focused attention. In the DIVIDED FIXED training, participants practiced combining verification and detection by divided attention, with equal attention allocated to both tasks. In the DIVIDED VARIABLE training, participants completed the task by divided attention, but were taught to vary the attentional priority allocated to each task. Brain activation was measured with fMRI pre- and post-training while completing each task individually and the two tasks combined. The three training programs resulted in markedly different brain changes. Practice on individual tasks in the SINGLE REPEATED training resulted in reduced brain activation whereas DIVIDED VARIABLE training resulted in a larger recruitment of the right superior and middle frontal gyrus, a region that has been involved in multitasking. The type of training is a critical factor in determining the pattern of brain activation. PMID:25119464

  16. The impact of walking while using a smartphone on pedestrians' awareness of roadside events.

    PubMed

    Lin, Ming-I Brandon; Huang, Yu-Ping

    2017-04-01

    Previous studies have shown that using a cell phone to talk or text while walking changes gait kinematics and encourages risky street-crossing behaviors. However, less is known about how the motor-cognitive interference imposed by smartphone tasks affects pedestrians' situational awareness to environmental targets relevant to pedestrian safety. This study systematically investigated the influence of smartphone use on detection of and responses to a variety of roadside events in a semi-virtual walking environment. Twenty-four healthy participants completed six treadmill walking sessions while engaged in a concurrent picture-dragging, texting, or news-reading task. During distracted walking, they were required to simultaneously monitor the occurrence of road events for two different levels of event frequency. Performance measures for smartphone tasks and event responses, eye movements, and perceived workload and situational awareness were compared across different dual-task conditions. The results revealed that during dual-task walking, the reading app was associated with a significantly higher level of perceived workload, and impaired awareness of the surrounding environment to a greater extent compared with the texting or picture-dragging apps. Pedestrians took longer to visually detect the roadside events in the reading and texting conditions than in the dragging condition. Differences in event response performances were mainly dependent on their salient features but were also affected by the type of smartphone task. Texting was found to make participants more reliant on their central vision to detect road events. Moreover, different gaze-scanning patterns were adopted by participants to better protect dual-task performance in response to the changes in road-event frequency. The findings of relationships between workload, dual-task performances, and allocation strategies for visual attention further our understanding of pedestrian behavior and safety. By knowing how attentional and motor demands involved in different smartphone tasks affect pedestrians' awareness to critical roadside events, effective awareness campaigns might be devised to discourage smartphone use while walking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Electrophysiological evidence of automatic early semantic processing.

    PubMed

    Hinojosa, José A; Martín-Loeches, Manuel; Muñoz, Francisco; Casado, Pilar; Pozo, Miguel A

    2004-01-01

    This study investigates the automatic-controlled nature of early semantic processing by means of the Recognition Potential (RP), an event-related potential response that reflects lexical selection processes. For this purpose tasks differing in their processing requirements were used. Half of the participants performed a physical task involving a lower-upper case discrimination judgement (shallow processing requirements), whereas the other half carried out a semantic task, consisting in detecting animal names (deep processing requirements). Stimuli were identical in the two tasks. Reaction time measures revealed that the physical task was easier to perform than the semantic task. However, RP effects elicited by the physical and semantic tasks did not differ in either latency, amplitude, or topographic distribution. Thus, the results from the present study suggest that early semantic processing is automatically triggered whenever a linguistic stimulus enters the language processor.

  18. Minimum time search in uncertain dynamic domains with complex sensorial platforms.

    PubMed

    Lanillos, Pablo; Besada-Portas, Eva; Lopez-Orozco, Jose Antonio; de la Cruz, Jesus Manuel

    2014-08-04

    The minimum time search in uncertain domains is a searching task, which appears in real world problems such as natural disasters and sea rescue operations, where a target has to be found, as soon as possible, by a set of sensor-equipped searchers. The automation of this task, where the time to detect the target is critical, can be achieved by new probabilistic techniques that directly minimize the Expected Time (ET) to detect a dynamic target using the observation probability models and actual observations collected by the sensors on board the searchers. The selected technique, described in algorithmic form in this paper for completeness, has only been previously partially tested with an ideal binary detection model, in spite of being designed to deal with complex non-linear/non-differential sensorial models. This paper covers the gap, testing its performance and applicability over different searching tasks with searchers equipped with different complex sensors. The sensorial models under test vary from stepped detection probabilities to continuous/discontinuous differentiable/non-differentiable detection probabilities dependent on distance, orientation, and structured maps. The analysis of the simulated results of several static and dynamic scenarios performed in this paper validates the applicability of the technique with different types of sensor models.

  19. Minimum Time Search in Uncertain Dynamic Domains with Complex Sensorial Platforms

    PubMed Central

    Lanillos, Pablo; Besada-Portas, Eva; Lopez-Orozco, Jose Antonio; de la Cruz, Jesus Manuel

    2014-01-01

    The minimum time search in uncertain domains is a searching task, which appears in real world problems such as natural disasters and sea rescue operations, where a target has to be found, as soon as possible, by a set of sensor-equipped searchers. The automation of this task, where the time to detect the target is critical, can be achieved by new probabilistic techniques that directly minimize the Expected Time (ET) to detect a dynamic target using the observation probability models and actual observations collected by the sensors on board the searchers. The selected technique, described in algorithmic form in this paper for completeness, has only been previously partially tested with an ideal binary detection model, in spite of being designed to deal with complex non-linear/non-differential sensorial models. This paper covers the gap, testing its performance and applicability over different searching tasks with searchers equipped with different complex sensors. The sensorial models under test vary from stepped detection probabilities to continuous/discontinuous differentiable/non-differentiable detection probabilities dependent on distance, orientation, and structured maps. The analysis of the simulated results of several static and dynamic scenarios performed in this paper validates the applicability of the technique with different types of sensor models. PMID:25093345

  20. Effects of age and auditory and visual dual tasks on closed-road driving performance.

    PubMed

    Chaparro, Alex; Wood, Joanne M; Carberry, Trent

    2005-08-01

    This study investigated how driving performance of young and old participants is affected by visual and auditory secondary tasks on a closed driving course. Twenty-eight participants comprising two age groups (younger, mean age = 27.3 years; older, mean age = 69.2 years) drove around a 5.1-km closed-road circuit under both single and dual task conditions. Measures of driving performance included detection and identification of road signs, detection and avoidance of large low-contrast road hazards, gap judgment, lane keeping, and time to complete the course. The dual task required participants to verbally report the sums of pairs of single-digit numbers presented through either a computer speaker (auditorily) or a dashboard-mounted monitor (visually) while driving. Participants also completed a vision and cognitive screening battery, including LogMAR visual acuity, Pelli-Robson letter contrast sensitivity, the Trails test, and the Digit Symbol Substitution (DSS) test. Drivers reported significantly fewer signs, hit more road hazards, misjudged more gaps, and increased their time to complete the course under the dual task (visual and auditory) conditions compared with the single task condition. The older participants also reported significantly fewer road signs and drove significantly more slowly than the younger participants, and this was exacerbated for the visual dual task condition. The results of the regression analysis revealed that cognitive aging (measured by the DSS and Trails test) rather than chronologic age was a better predictor of the declines seen in driving performance under dual task conditions. An overall z score was calculated, which took into account both driving and the secondary task (summing) performance under the two dual task conditions. Performance was significantly worse for the auditory dual task compared with the visual dual task, and the older participants performed significantly worse than the young subjects. These findings demonstrate that multitasking had a significant detrimental impact on driving performance and that cognitive aging was the best predictor of the declines seen in driving performance under dual task conditions. These results have implications for use of mobile phones or in-vehicle navigational devices while driving, especially for older adults.

  1. An analysis of the suitability of a low-cost eye tracker for assessing the cognitive load of drivers.

    PubMed

    Čegovnik, Tomaž; Stojmenova, Kristina; Jakus, Grega; Sodnik, Jaka

    2018-04-01

    This paper presents a driving simulator study in which we investigated whether the Eye Tribe eye tracker (ET) is capable of assessing changes in the cognitive load of drivers through oculography and pupillometry. In the study, participants were asked to drive a simulated vehicle and simultaneously perform a set of secondary tasks with different cognitive complexity levels. We measured changes in eye properties, such as the pupil size, blink rate and fixation time. We also performed a measurement with a Detection Response Task (DRT) to validate the results and to prove a steady increase of cognitive load with increasing secondary task difficulty. The results showed that the ET precisely recognizes an increasing pupil diameter with increasing secondary task difficulty. In addition, the ET shows increasing blink rates, decreasing fixation time and narrowing of the attention field with increasing secondary task difficulty. The results were validated with the DRT method and the secondary task performance. We conclude that the Eye Tribe ET is a suitable device for assessing a driver's cognitive load. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. How Fast is Famous Face Recognition?

    PubMed Central

    Barragan-Jason, Gladys; Lachat, Fanny; Barbeau, Emmanuel J.

    2012-01-01

    The rapid recognition of familiar faces is crucial for social interactions. However the actual speed with which recognition can be achieved remains largely unknown as most studies have been carried out without any speed constraints. Different paradigms have been used, leading to conflicting results, and although many authors suggest that face recognition is fast, the speed of face recognition has not been directly compared to “fast” visual tasks. In this study, we sought to overcome these limitations. Subjects performed three tasks, a familiarity categorization task (famous faces among unknown faces), a superordinate categorization task (human faces among animal ones), and a gender categorization task. All tasks were performed under speed constraints. The results show that, despite the use of speed constraints, subjects were slow when they had to categorize famous faces: minimum reaction time was 467 ms, which is 180 ms more than during superordinate categorization and 160 ms more than in the gender condition. Our results are compatible with a hierarchy of face processing from the superordinate level to the familiarity level. The processes taking place between detection and recognition need to be investigated in detail. PMID:23162503

  3. Identification of a self-paced hitting task in freely moving rats based on adaptive spike detection from multi-unit M1 cortical signals

    PubMed Central

    Hammad, Sofyan H. H.; Farina, Dario; Kamavuako, Ernest N.; Jensen, Winnie

    2013-01-01

    Invasive brain–computer interfaces (BCIs) may prove to be a useful rehabilitation tool for severely disabled patients. Although some systems have shown to work well in restricted laboratory settings, their usefulness must be tested in less controlled environments. Our objective was to investigate if a specific motor task could reliably be detected from multi-unit intra-cortical signals from freely moving animals. Four rats were trained to hit a retractable paddle (defined as a “hit”). Intra-cortical signals were obtained from electrodes placed in the primary motor cortex. First, the signal-to-noise ratio was increased by wavelet denoising. Action potentials were then detected using an adaptive threshold, counted in three consecutive time intervals and were used as features to classify either a “hit” or a “no-hit” (defined as an interval between two “hits”). We found that a “hit” could be detected with an accuracy of 75 ± 6% when wavelet denoising was applied whereas the accuracy dropped to 62 ± 5% without prior denoising. We compared our approach with the common daily practice in BCI that consists of using a fixed, manually selected threshold for spike detection without denoising. The results showed the feasibility of detecting a motor task in a less restricted environment than commonly applied within invasive BCI research. PMID:24298254

  4. Visual short-term memory load reduces retinotopic cortex response to contrast.

    PubMed

    Konstantinou, Nikos; Bahrami, Bahador; Rees, Geraint; Lavie, Nilli

    2012-11-01

    Load Theory of attention suggests that high perceptual load in a task leads to reduced sensory visual cortex response to task-unrelated stimuli resulting in "load-induced blindness" [e.g., Lavie, N. Attention, distraction and cognitive control under load. Current Directions in Psychological Science, 19, 143-148, 2010; Lavie, N. Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9, 75-82, 2005]. Consideration of the findings that visual STM (VSTM) involves sensory recruitment [e.g., Pasternak, T., & Greenlee, M. Working memory in primate sensory systems. Nature Reviews Neuroscience, 6, 97-107, 2005] within Load Theory led us to a new hypothesis regarding the effects of VSTM load on visual processing. If VSTM load draws on sensory visual capacity, then similar to perceptual load, high VSTM load should also reduce visual cortex response to incoming stimuli leading to a failure to detect them. We tested this hypothesis with fMRI and behavioral measures of visual detection sensitivity. Participants detected the presence of a contrast increment during the maintenance delay in a VSTM task requiring maintenance of color and position. Increased VSTM load (manipulated by increased set size) led to reduced retinotopic visual cortex (V1-V3) responses to contrast as well as reduced detection sensitivity, as we predicted. Additional visual detection experiments established a clear tradeoff between the amount of information maintained in VSTM and detection sensitivity, while ruling out alternative accounts for the effects of VSTM load in terms of differential spatial allocation strategies or task difficulty. These findings extend Load Theory to demonstrate a new form of competitive interactions between early visual cortex processing and visual representations held in memory under load and provide a novel line of support for the sensory recruitment hypothesis of VSTM.

  5. Pedestrian detection in video surveillance using fully convolutional YOLO neural network

    NASA Astrophysics Data System (ADS)

    Molchanov, V. V.; Vishnyakov, B. V.; Vizilter, Y. V.; Vishnyakova, O. V.; Knyaz, V. A.

    2017-06-01

    More than 80% of video surveillance systems are used for monitoring people. Old human detection algorithms, based on background and foreground modelling, could not even deal with a group of people, to say nothing of a crowd. Recent robust and highly effective pedestrian detection algorithms are a new milestone of video surveillance systems. Based on modern approaches in deep learning, these algorithms produce very discriminative features that can be used for getting robust inference in real visual scenes. They deal with such tasks as distinguishing different persons in a group, overcome problem with sufficient enclosures of human bodies by the foreground, detect various poses of people. In our work we use a new approach which enables to combine detection and classification tasks into one challenge using convolution neural networks. As a start point we choose YOLO CNN, whose authors propose a very efficient way of combining mentioned above tasks by learning a single neural network. This approach showed competitive results with state-of-the-art models such as FAST R-CNN, significantly overcoming them in speed, which allows us to apply it in real time video surveillance and other video monitoring systems. Despite all advantages it suffers from some known drawbacks, related to the fully-connected layers that obstruct applying the CNN to images with different resolution. Also it limits the ability to distinguish small close human figures in groups which is crucial for our tasks since we work with rather low quality images which often include dense small groups of people. In this work we gradually change network architecture to overcome mentioned above problems, train it on a complex pedestrian dataset and finally get the CNN detecting small pedestrians in real scenes.

  6. The role of perceptual load in inattentional blindness.

    PubMed

    Cartwright-Finch, Ula; Lavie, Nilli

    2007-03-01

    Perceptual load theory offers a resolution to the long-standing early vs. late selection debate over whether task-irrelevant stimuli are perceived, suggesting that irrelevant perception depends upon the perceptual load of task-relevant processing. However, previous evidence for this theory has relied on RTs and neuroimaging. Here we tested the effects of load on conscious perception using the "inattentional blindness" paradigm. As predicted by load theory, awareness of a task-irrelevant stimulus was significantly reduced by higher perceptual load (with increased numbers of search items, or a harder discrimination vs. detection task). These results demonstrate that conscious perception of task-irrelevant stimuli critically depends upon the level of task-relevant perceptual load rather than intentions or expectations, thus enhancing the resolution to the early vs. late selection debate offered by the perceptual load theory.

  7. Subliminal gaze cues increase preference levels for items in the gaze direction.

    PubMed

    Mitsuda, Takashi; Masaki, Syuta

    2017-08-29

    Another individual's gaze automatically shifts an observer's attention to a location. This reflexive response occurs even when the gaze is presented subliminally over a short period. Another's gaze also increases the preference level for items in the gaze direction; however, it was previously unclear if this effect occurs when the gaze is presented subliminally. This study showed that the preference levels for nonsense figures looked at by a subliminal gaze were significantly greater than those for items that were subliminally looked away from (Task 1). Targets that were looked at by a subliminal gaze were detected faster (Task 2); however, the participants were unable to detect the gaze direction (Task 3). These results indicate that another individual's gaze automatically increases the preference levels for items in the gaze direction without conscious awareness.

  8. The "EyeCane", a new electronic travel aid for the blind: Technology, behavior & swift learning.

    PubMed

    Maidenbaum, Shachar; Hanassy, Shlomi; Abboud, Sami; Buchs, Galit; Chebat, Daniel-Robert; Levy-Tzedek, Shelly; Amedi, Amir

    2014-01-01

    Independent mobility is one of the most pressing problems facing people who are blind. We present the EyeCane, a new mobility aid aimed at increasing perception of environment beyond what is provided by the traditional White Cane for tasks such as distance estimation, navigation and obstacle detection. The "EyeCane" enhances the traditional White Cane by using tactile and auditory output to increase detectable distance and angles. It circumvents the technical pitfalls of other devices, such as weight, short battery life, complex interface schemes, and slow learning curve. It implements multiple beams to enables detection of obstacles at different heights, and narrow beams to provide active sensing that can potentially increase the user's spatial perception of the environment. Participants were tasked with using the EyeCane for several basic tasks with minimal training. Blind and blindfolded-sighted participants were able to use the EyeCane successfully for distance estimation, simple navigation and simple obstacle detection after only several minutes of training. These results demonstrate the EyeCane's potential for mobility rehabilitation. The short training time is especially important since available mobility training resources are limited, not always available, and can be quite expensive and/or entail long waiting periods.

  9. WE-EF-207-01: FEATURED PRESENTATION and BEST IN PHYSICS (IMAGING): Task-Driven Imaging for Cone-Beam CT in Interventional Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gang, G; Stayman, J; Ouadah, S

    2015-06-15

    Purpose: This work introduces a task-driven imaging framework that utilizes a patient-specific anatomical model, mathematical definition of the imaging task, and a model of the imaging system to prospectively design acquisition and reconstruction techniques that maximize task-based imaging performance. Utility of the framework is demonstrated in the joint optimization of tube current modulation and view-dependent reconstruction kernel in filtered-backprojection reconstruction and non-circular orbit design in model-based reconstruction. Methods: The system model is based on a cascaded systems analysis of cone-beam CT capable of predicting the spatially varying noise and resolution characteristics as a function of the anatomical model and amore » wide range of imaging parameters. Detectability index for a non-prewhitening observer model is used as the objective function in a task-driven optimization. The combination of tube current and reconstruction kernel modulation profiles were identified through an alternating optimization algorithm where tube current was updated analytically followed by a gradient-based optimization of reconstruction kernel. The non-circular orbit is first parameterized as a linear combination of bases functions and the coefficients were then optimized using an evolutionary algorithm. The task-driven strategy was compared with conventional acquisitions without modulation, using automatic exposure control, and in a circular orbit. Results: The task-driven strategy outperformed conventional techniques in all tasks investigated, improving the detectability of a spherical lesion detection task by an average of 50% in the interior of a pelvis phantom. The non-circular orbit design successfully mitigated photon starvation effects arising from a dense embolization coil in a head phantom, improving the conspicuity of an intracranial hemorrhage proximal to the coil. Conclusion: The task-driven imaging framework leverages a knowledge of the imaging task within a patient-specific anatomical model to optimize image acquisition and reconstruction techniques, thereby improving imaging performance beyond that achievable with conventional approaches. 2R01-CA-112163; R01-EB-017226; U01-EB-018758; Siemens Healthcare (Forcheim, Germany)« less

  10. A Mechanism for Error Detection in Speeded Response Time Tasks

    ERIC Educational Resources Information Center

    Holroyd, Clay B.; Yeung, Nick; Coles, Michael G. H.; Cohen, Jonathan D.

    2005-01-01

    The concept of error detection plays a central role in theories of executive control. In this article, the authors present a mechanism that can rapidly detect errors in speeded response time tasks. This error monitor assigns values to the output of cognitive processes involved in stimulus categorization and response generation and detects errors…

  11. Fit for the frontline? A focus group exploration of auditory tasks carried out by infantry and combat support personnel.

    PubMed

    Bevis, Zoe L; Semeraro, Hannah D; van Besouw, Rachel M; Rowan, Daniel; Lineton, Ben; Allsopp, Adrian J

    2014-01-01

    In order to preserve their operational effectiveness and ultimately their survival, military personnel must be able to detect important acoustic signals and maintain situational awareness. The possession of sufficient hearing ability to perform job-specific auditory tasks is defined as auditory fitness for duty (AFFD). Pure tone audiometry (PTA) is used to assess AFFD in the UK military; however, it is unclear whether PTA is able to accurately predict performance on job-specific auditory tasks. The aim of the current study was to gather information about auditory tasks carried out by infantry personnel on the frontline and the environment these tasks are performed in. The study consisted of 16 focus group interviews with an average of five participants per group. Eighty British army personnel were recruited from five infantry regiments. The focus group guideline included seven open-ended questions designed to elicit information about the auditory tasks performed on operational duty. Content analysis of the data resulted in two main themes: (1) the auditory tasks personnel are expected to perform and (2) situations where personnel felt their hearing ability was reduced. Auditory tasks were divided into subthemes of sound detection, speech communication and sound localization. Reasons for reduced performance included background noise, hearing protection and attention difficulties. The current study provided an important and novel insight to the complex auditory environment experienced by British infantry personnel and identified 17 auditory tasks carried out by personnel on operational duties. These auditory tasks will be used to inform the development of a functional AFFD test for infantry personnel.

  12. Neurophysiological signature of effective anticipatory task-set control: a task-switching investigation.

    PubMed

    Lavric, Aureliu; Mizon, Guy A; Monsell, Stephen

    2008-09-01

    Changing between cognitive tasks requires a reorganization of cognitive processes. Behavioural evidence suggests this can occur in advance of the stimulus. However, the existence or detectability of an anticipatory task-set reconfiguration process remains controversial, in part because several neuroimaging studies have not detected extra brain activity during preparation for a task switch relative to a task repeat. In contrast, electrophysiological studies have identified potential correlates of preparation for a task switch, but their interpretation is hindered by the scarcity of evidence on their relationship to performance. We aimed to: (i) identify the brain potential(s) reflecting effective preparation for a task-switch in a task-cuing paradigm that shows clear behavioural evidence for advance preparation, and (ii) characterize this activity by means of temporal segmentation and source analysis. Our results show that when advance preparation was effective (as indicated by fast responses), a protracted switch-related component, manifesting itself as widespread posterior positivity and concurrent right anterior negativity, preceded stimulus onset for approximately 300 ms, with sources primarily in the left lateral frontal, right inferior frontal and temporal cortices. When advance preparation was ineffective (as implied by slow responses), or made impossible by a short cue-stimulus interval (CSI), a similar component, with lateral prefrontal generators, peaked approximately 300 ms poststimulus. The protracted prestimulus component (which we show to be distinct from P3 or contingent negative variation, CNV) also correlated over subjects with a behavioural measure of preparation. Furthermore, its differential lateralization for word and picture cues was consistent with a role for verbal self-instruction in preparatory task-set reconfiguration.

  13. No psychological effect of color context in a low level vision task.

    PubMed

    Pedley, Adam; Wade, Alex R

    2013-01-01

    A remarkable series of recent papers have shown that colour can influence performance in cognitive tasks. In particular, they suggest that viewing a participant number printed in red ink or other red ancillary stimulus elements improves performance in tasks requiring local processing and impedes performance in tasks requiring global processing whilst the reverse is true for the colour blue. The tasks in these experiments require high level cognitive processing such as analogy solving or remote association tests and the chromatic effect on local vs. global processing is presumed to involve widespread activation of the autonomic nervous system. If this is the case, we might expect to see similar effects on all local vs. global task comparisons. To test this hypothesis, we asked whether chromatic cues also influence performance in tasks involving low level visual feature integration. Subjects performed either local (contrast detection) or global (form detection) tasks on achromatic dynamic Glass pattern stimuli. Coloured instructions, target frames and fixation points were used to attempt to bias performance to different task types. Based on previous literature, we hypothesised that red cues would improve performance in the (local) contrast detection task but would impede performance in the (global) form detection task.  A two-way, repeated measures, analysis of covariance (2×2 ANCOVA) with gender as a covariate, revealed no influence of colour on either task, F(1,29) = 0.289, p = 0.595, partial η (2) = 0.002. Additional analysis revealed no significant differences in only the first attempts of the tasks or in the improvement in performance between trials. We conclude that motivational processes elicited by colour perception do not influence neuronal signal processing in the early visual system, in stark contrast to their putative effects on processing in higher areas.

  14. Simulation of a Real-Time Brain Computer Interface for Detecting a Self-Paced Hitting Task.

    PubMed

    Hammad, Sofyan H; Kamavuako, Ernest N; Farina, Dario; Jensen, Winnie

    2016-12-01

    An invasive brain-computer interface (BCI) is a promising neurorehabilitation device for severely disabled patients. Although some systems have been shown to work well in restricted laboratory settings, their utility must be tested in less controlled, real-time environments. Our objective was to investigate whether a specific motor task could be reliably detected from multiunit intracortical signals from freely moving animals in a simulated, real-time setting. Intracortical signals were first obtained from electrodes placed in the primary motor cortex of four rats that were trained to hit a retractable paddle (defined as a "Hit"). In the simulated real-time setting, the signal-to-noise-ratio was first increased by wavelet denoising. Action potentials were detected, and features were extracted (spike count, mean absolute values, entropy, and combination of these features) within pre-defined time windows (200 ms, 300 ms, and 400 ms) to classify the occurrence of a "Hit." We found higher detection accuracy of a "Hit" (73.1%, 73.4%, and 67.9% for the three window sizes, respectively) when the decision was made based on a combination of features rather than on a single feature. However, the duration of the window length was not statistically significant (p = 0.5). Our results showed the feasibility of detecting a motor task in real time in a less restricted environment compared to environments commonly applied within invasive BCI research, and they showed the feasibility of using information extracted from multiunit recordings, thereby avoiding the time-consuming and complex task of extracting and sorting single units. © 2016 International Neuromodulation Society.

  15. Response-Guided Community Detection: Application to Climate Index Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bello, Gonzalo; Angus, Michael; Pedemane, Navya

    Discovering climate indices-time series that summarize spatiotemporal climate patterns-is a key task in the climate science domain. In this work, we approach this task as a problem of response-guided community detection; that is, identifying communities in a graph associated with a response variable of interest. To this end, we propose a general strategy for response-guided community detection that explicitly incorporates information of the response variable during the community detection process, and introduce a graph representation of spatiotemporal data that leverages information from multiple variables. We apply our proposed methodology to the discovery of climate indices associated with seasonal rainfall variability.more » Our results suggest that our methodology is able to capture the underlying patterns known to be associated with the response variable of interest and to improve its predictability compared to existing methodologies for data-driven climate index discovery and official forecasts.« less

  16. Crowding with detection and coarse discrimination of simple visual features.

    PubMed

    Põder, Endel

    2008-04-24

    Some recent studies have suggested that there are actually no crowding effects with detection and coarse discrimination of simple visual features. The present study tests the generality of this idea. A target Gabor patch, surrounded by either 2 or 6 flanker Gabors, was presented briefly at 4 deg eccentricity of the visual field. Each Gabor patch was oriented either vertically or horizontally (selected randomly). Observers' task was either to detect the presence of the target (presented with probability 0.5) or to identify the orientation of the target. The target-flanker distance was varied. Results were similar for the two tasks but different for 2 and 6 flankers. The idea that feature detection and coarse discrimination are immune to crowding may be valid for the two-flanker condition only. With six flankers, a normal crowding effect was observed. It is suggested that the complexity of the full pattern (target plus flankers) could explain the difference.

  17. Impaired visual recognition of biological motion in schizophrenia.

    PubMed

    Kim, Jejoong; Doop, Mikisha L; Blake, Randolph; Park, Sohee

    2005-09-15

    Motion perception deficits have been suggested to be an important feature of schizophrenia but the behavioral consequences of such deficits are unknown. Biological motion refers to the movements generated by living beings. The human visual system rapidly and effortlessly detects and extracts socially relevant information from biological motion. A deficit in biological motion perception may have significant consequences for detecting and interpreting social information. Schizophrenia patients and matched healthy controls were tested on two visual tasks: recognition of human activity portrayed in point-light animations (biological motion task) and a perceptual control task involving detection of a grouped figure against the background noise (global-form task). Both tasks required detection of a global form against background noise but only the biological motion task required the extraction of motion-related information. Schizophrenia patients performed as well as the controls in the global-form task, but were significantly impaired on the biological motion task. In addition, deficits in biological motion perception correlated with impaired social functioning as measured by the Zigler social competence scale [Zigler, E., Levine, J. (1981). Premorbid competence in schizophrenia: what is being measured? Journal of Consulting and Clinical Psychology, 49, 96-105.]. The deficit in biological motion processing, which may be related to the previously documented deficit in global motion processing, could contribute to abnormal social functioning in schizophrenia.

  18. Investigating the effects of caffeine on executive functions using traditional Stroop and a new ecologically-valid virtual reality task, the Jansari assessment of Executive Functions (JEF(©)).

    PubMed

    Soar, K; Chapman, E; Lavan, N; Jansari, A S; Turner, J J D

    2016-10-01

    Caffeine has been shown to have effects on certain areas of cognition, but in executive functioning the research is limited and also inconsistent. One reason could be the need for a more sensitive measure to detect the effects of caffeine on executive function. This study used a new non-immersive virtual reality assessment of executive functions known as JEF(©) (the Jansari Assessment of Executive Function) alongside the 'classic' Stroop Colour-Word task to assess the effects of a normal dose of caffeinated coffee on executive function. Using a double-blind, counterbalanced within participants procedure 43 participants were administered either a caffeinated or decaffeinated coffee and completed the 'JEF(©)' and Stroop tasks, as well as a subjective mood scale and blood pressure pre- and post condition on two separate occasions a week apart. JEF(©) yields measures for eight separate aspects of executive functions, in addition to a total average score. Findings indicate that performance was significantly improved on the planning, creative thinking, event-, time- and action-based prospective memory, as well as total JEF(©) score following caffeinated coffee relative to the decaffeinated coffee. The caffeinated beverage significantly decreased reaction times on the Stroop task, but there was no effect on Stroop interference. The results provide further support for the effects of a caffeinated beverage on cognitive functioning. In particular, it has demonstrated the ability of JEF(©) to detect the effects of caffeine across a number of executive functioning constructs, which weren't shown in the Stroop task, suggesting executive functioning improvements as a result of a 'typical' dose of caffeine may only be detected by the use of more real-world, ecologically valid tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Granger causality analysis reveals distinct spatio-temporal connectivity patterns in motor and perceptual visuo-spatial working memory.

    PubMed

    Protopapa, Foteini; Siettos, Constantinos I; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2014-01-01

    We employed spectral Granger causality analysis on a full set of 56 electroencephalographic recordings acquired during the execution of either a 2D movement pointing or a perceptual (yes/no) change detection task with memory and non-memory conditions. On the basis of network characteristics across frequency bands, we provide evidence for the full dissociation of the corresponding cognitive processes. Movement-memory trial types exhibited higher degree nodes during the first 2 s of the delay period, mainly at central, left frontal and right-parietal areas. Change detection-memory trial types resulted in a three-peak temporal pattern of the total degree with higher degree nodes emerging mainly at central, right frontal, and occipital areas. Functional connectivity networks resulting from non-memory trial types were characterized by more sparse structures for both tasks. The movement-memory trial types encompassed an apparent coarse flow from frontal to parietal areas while the opposite flow from occipital, parietal to central and frontal areas was evident for the change detection-memory trial types. The differences among tasks and conditions were more profound in α (8-12 Hz) and β (12-30 Hz) and less in γ (30-45 Hz) band. Our results favor the hypothesis which considers spatial working memory as a by-product of specific mental processes that engages common brain areas under different network organizations.

  20. It's the deceiver, not the receiver: No individual differences when detecting deception in a foreign and a native language.

    PubMed

    Law, Marvin K H; Jackson, Simon A; Aidman, Eugene; Geiger, Mattis; Olderbak, Sally; Kleitman, Sabina

    2018-01-01

    Individual differences in lie detection remain poorly understood. Bond and DePaulo's meta-analysis examined judges (receivers) who were ascertaining lies from truths and senders (deceiver) who told these lies and truths. Bond and DePaulo found that the accuracy of detecting deception depended more on the characteristics of senders rather than the judges' ability to detect lies/truths. However, for many studies in this meta-analysis, judges could hear and understand senders. This made language comprehension a potential confound. This paper presents the results of two studies. Extending previous work, in Study 1, we removed language comprehension as a potential confound by having English-speakers (N = 126, mean age = 19.86) judge the veracity of German speakers (n = 12) in a lie detection task. The twelve lie-detection stimuli included emotional and non-emotional content, and were presented in three modalities-audio only, video only, and audio and video together. The intelligence (General, Auditory, Emotional) and personality (Dark Triads and Big 6) of participants was also assessed. In Study 2, a native German-speaking sample (N = 117, mean age = 29.10) were also tested on a similar lie detection task to provide a control condition. Despite significantly extending research design and the selection of constructs employed to capture individual differences, both studies replicated Bond and DePaulo's findings. The results of Study1 indicated that removing language comprehension did not amplify individual differences in judge's ability to ascertain lies from truths. Study 2 replicated these results confirming a lack of individual differences in judge's ability to detect lies. The results of both studies suggest that Sender (deceiver) characteristics exerted a stronger influence on the outcomes of lie detection than the judge's attributes.

  1. Focusing on task conflict in the Stroop effect.

    PubMed

    Entel, Olga; Tzelgov, Joseph

    2018-03-01

    Two types of conflict underlie performance in the Stroop task-informational (between the incongruent word and its ink color) and task (between the relevant color-naming task and the irrelevant word-reading task). We manipulated congruent-to-neutral trial ratio in an attempt to reveal whether task conflict can be monitored and controlled in the absence of an informational conflict. In our first experiment, no incongruent trials were included, thus allowing examination of a pure task conflict situation. The results revealed an impressively large facilitation when most of the stimuli were congruent and a smaller yet significant facilitation when most of the stimuli were neutrals. In Experiments 2, exposing participants to incongruent trials during pre-experimental practice (but not during the experimental blocks) slowed down the responses to congruent trials, resulting in a reduced facilitation effect in the mostly congruent condition, and in a negative facilitation in the mostly neutral condition. In our third experiment, we replicated our results, eliminating possible contingency and frequency biases. Overall, our findings show that experiencing, or at least expecting, informational conflict is essential to reveal conflict, while control is recruited through task demands. This challenges previous findings and points out that additional research is needed to clarify the necessity of informational conflict for conflict detection.

  2. Effects of Grammatical Categories on Letter Detection in Continuous Text

    ERIC Educational Resources Information Center

    Foucambert, Denis; Zuniga, Michael

    2012-01-01

    The present study focuses on the interplay between the linguistic principles and the psycholinguistic processes involved in reading. Results from 56 participants on a letter detection task reveal that readers do not process all function words in the same manner. Omission rates were highest for function words occupying the head of maximal…

  3. Automatic detection of apical roots in oral radiographs

    NASA Astrophysics Data System (ADS)

    Wu, Yi; Xie, Fangfang; Yang, Jie; Cheng, Erkang; Megalooikonomou, Vasileios; Ling, Haibin

    2012-03-01

    The apical root regions play an important role in analysis and diagnosis of many oral diseases. Automatic detection of such regions is consequently the first step toward computer-aided diagnosis of these diseases. In this paper we propose an automatic method for periapical root region detection by using the state-of-theart machine learning approaches. Specifically, we have adapted the AdaBoost classifier for apical root detection. One challenge in the task is the lack of training cases especially for diseased ones. To handle this problem, we boost the training set by including more root regions that are close to the annotated ones and decompose the original images to randomly generate negative samples. Based on these training samples, the Adaboost algorithm in combination with Haar wavelets is utilized in this task to train an apical root detector. The learned detector usually generates a large amount of true and false positives. In order to reduce the number of false positives, a confidence score for each candidate detection result is calculated for further purification. We first merge the detected regions by combining tightly overlapped detected candidate regions and then we use the confidence scores from the Adaboost detector to eliminate the false positives. The proposed method is evaluated on a dataset containing 39 annotated digitized oral X-Ray images from 21 patients. The experimental results show that our approach can achieve promising detection accuracy.

  4. Narrative Abilities, Memory and Attention in Children with a Specific Language Impairment

    ERIC Educational Resources Information Center

    Duinmeijer, Iris; de Jong, Jan; Scheper, Annette

    2012-01-01

    Background: While narrative tasks have proven to be valid measures for detecting language disorders, measuring communicative skills and predicting future academic performance, research into the comparability of different narrative tasks has shown that outcomes are dependent on the type of task used. Although many of the studies detecting task…

  5. Time and number of displays impact critical signal detection in fetal heart rate tracings.

    PubMed

    Anderson, Brittany L; Scerbo, Mark W; Belfore, Lee A; Abuhamad, Alfred Z

    2011-06-01

    Interest in centralized monitoring in labor and delivery units is growing because it affords the opportunity to monitor multiple patients simultaneously. However, a long history of research on sustained attention reveals these types of monitoring tasks can be problematic. The goal of the present experiment was to examine the ability of individuals to detect critical signals in fetal heart rate (FHR) tracings in one or more displays over an extended period of time. Seventy-two participants monitored one, two, or four computer-simulated FHR tracings on a computer display for the appearance of late decelerations over a 48-minute vigil. Measures of subjective stress and workload were also obtained before and after the vigil. The results showed that detection accuracy decreased over time and also declined as the number of displays increased. The subjective reports indicated that participants found the task to be stressful and mentally demanding, effortful, and frustrating. The results suggest that centralized monitoring that allows many patients to be monitored simultaneously may impose a detrimental attentional burden on the observer. Furthermore, this seemingly benign task may impose an additional source of stress and mental workload above what is commonly found in labor and delivery units. © Thieme Medical Publishers.

  6. Detecting target changes in multiple object tracking with peripheral vision: More pronounced eccentricity effects for changes in form than in motion.

    PubMed

    Vater, Christian; Kredel, Ralf; Hossner, Ernst-Joachim

    2017-05-01

    In the current study, dual-task performance is examined with multiple-object tracking as a primary task and target-change detection as a secondary task. The to-be-detected target changes in conditions of either change type (form vs. motion; Experiment 1) or change salience (stop vs. slowdown; Experiment 2), with changes occurring at either near (5°-10°) or far (15°-20°) eccentricities (Experiments 1 and 2). The aim of the study was to test whether changes can be detected solely with peripheral vision. By controlling for saccades and computing gaze distances, we could show that participants used peripheral vision to monitor the targets and, additionally, to perceive changes at both near and far eccentricities. Noticeably, gaze behavior was not affected by the actual target change. Detection rates as well as response times generally varied as a function of change condition and eccentricity, with faster detections for motion changes and near changes. However, in contrast to the effects found for motion changes, sharp declines in detection rates and increased response times were observed for form changes as a function of the eccentricities. This result can be ascribed to properties of the visual system, namely to the limited spatial acuity in the periphery and the comparably receptive motion sensitivity of peripheral vision. These findings show that peripheral vision is functional for simultaneous target monitoring and target-change detection as saccadic information suppression can be avoided and covert attention can be optimally distributed to all targets. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Challenges in the Detection of Working Memory and Attention Decrements among Overweight Adolescent Girls.

    PubMed

    Bauer, Lance O; Manning, Kevin J

    2016-01-01

    The present study is unique in employing unusually difficult attention and working memory tasks to reveal subtle cognitive decrements among overweight/obese adolescents. It evaluated novel measures of background electroencephalographic (EEG) activity during one of the tasks and tested correlations of these and other measures with psychological and psychiatric predictors of obesity maintenance or progression. Working memory and sustained attention tasks were presented to 158 female adolescents who were rated on dichotomous (body mass index percentile <85 vs. ≥85) and continuous (triceps skinfold thickness) measures of adiposity. The results revealed a significant association between excess adiposity and performance errors during the working memory task. During the sustained attention task, overweight/obese adolescents exhibited more EEG frontal beta power as well as greater intraindividual variability in reaction time and beta power across task periods than their normal-weight peers. Secondary analyses showed that frontal beta power during the sustained attention task was positively correlated with anxiety, panic, borderline personality features, drug abuse, and loss of control over food intake. The findings suggest that working memory and sustained attention decrements do exist among overweight/obese adolescent girls. The reliable detection of the decrements may depend on the difficulty of the tasks as well as the manner in which performance and brain activity are measured. Future studies should examine the relevance of these decrements to dietary education efforts and treatment response. © 2016 S. Karger AG, Basel.

  8. The Role of Visual Eccentricity on Preference for Abstract Symmetry

    PubMed Central

    O’ Sullivan, Noreen; Bertamini, Marco

    2016-01-01

    This study tested preference for abstract patterns, comparing random patterns to a two-fold bilateral symmetry. Stimuli were presented at random locations in the periphery. Preference for bilateral symmetry has been extensively studied in central vision, but evaluation at different locations had not been systematically investigated. Patterns were presented for 200 ms within a large circular region. On each trial participant changed fixation and were instructed to select any location. Eccentricity values were calculated a posteriori as the distance between ocular coordinates at pattern onset and coordinates for the centre of the pattern. Experiment 1 consisted of two Tasks. In Task 1, participants detected pattern regularity as fast as possible. In Task 2 they evaluated their liking for the pattern on a Likert-scale. Results from Task 1 revealed that with our parameters eccentricity did not affect symmetry detection. However, in Task 2, eccentricity predicted more negative evaluation of symmetry, but not random patterns. In Experiment 2 participants were either presented with symmetry or random patterns. Regularity was task-irrelevant in this task. Participants discriminated the proportion of black/white dots within the pattern and then evaluated their liking for the pattern. Even when only one type of regularity was presented and regularity was task-irrelevant, preference evaluation for symmetry decreased with increasing eccentricity, whereas eccentricity did not affect the evaluation of random patterns. We conclude that symmetry appreciation is higher for foveal presentation in a way not fully accounted for by sensitivity. PMID:27124081

  9. The Role of Visual Eccentricity on Preference for Abstract Symmetry.

    PubMed

    Rampone, Giulia; O' Sullivan, Noreen; Bertamini, Marco

    2016-01-01

    This study tested preference for abstract patterns, comparing random patterns to a two-fold bilateral symmetry. Stimuli were presented at random locations in the periphery. Preference for bilateral symmetry has been extensively studied in central vision, but evaluation at different locations had not been systematically investigated. Patterns were presented for 200 ms within a large circular region. On each trial participant changed fixation and were instructed to select any location. Eccentricity values were calculated a posteriori as the distance between ocular coordinates at pattern onset and coordinates for the centre of the pattern. Experiment 1 consisted of two Tasks. In Task 1, participants detected pattern regularity as fast as possible. In Task 2 they evaluated their liking for the pattern on a Likert-scale. Results from Task 1 revealed that with our parameters eccentricity did not affect symmetry detection. However, in Task 2, eccentricity predicted more negative evaluation of symmetry, but not random patterns. In Experiment 2 participants were either presented with symmetry or random patterns. Regularity was task-irrelevant in this task. Participants discriminated the proportion of black/white dots within the pattern and then evaluated their liking for the pattern. Even when only one type of regularity was presented and regularity was task-irrelevant, preference evaluation for symmetry decreased with increasing eccentricity, whereas eccentricity did not affect the evaluation of random patterns. We conclude that symmetry appreciation is higher for foveal presentation in a way not fully accounted for by sensitivity.

  10. Biomechanical patterns of text-message distraction.

    PubMed

    Le, Peter; Hwang, Jaejin; Grawe, Sarah; Li, Jing; Snyder, Alison; Lee, Christina; Marras, William S

    2015-01-01

    The objective of this study was to identify biomechanical measures that can distinguish texting distraction in a laboratory-simulated driving environment. The goal would be to use this information to provide an intervention for risky driving behaviour. Sixteen subjects participated in this study. Three independent variables were tested: task (texting, visual targeting, weighted and non-weighted movements), task direction (front and side) and task distance (close and far). Dependent variables consisted of biomechanical moments, head displacement and the length of time to complete each task. Results revealed that the time to complete each task was higher for texting compared to other tasks. Peak moments during texting were only distinguishable from visual targeting. Peak head displacement and cumulative biomechanical exposure measures indicated that texting can be distinguished from other tasks. Therefore, it may be useful to take into account both temporal and biomechanical measures when considering warning systems to detect texting distraction.

  11. Flexibility in data interpretation: effects of representational format.

    PubMed

    Braithwaite, David W; Goldstone, Robert L

    2013-01-01

    Graphs and tables differentially support performance on specific tasks. For tasks requiring reading off single data points, tables are as good as or better than graphs, while for tasks involving relationships among data points, graphs often yield better performance. However, the degree to which graphs and tables support flexibility across a range of tasks is not well-understood. In two experiments, participants detected main and interaction effects in line graphs and tables of bivariate data. Graphs led to more efficient performance, but also lower flexibility, as indicated by a larger discrepancy in performance across tasks. In particular, detection of main effects of variables represented in the graph legend was facilitated relative to detection of main effects of variables represented in the x-axis. Graphs may be a preferable representational format when the desired task or analytical perspective is known in advance, but may also induce greater interpretive bias than tables, necessitating greater care in their use and design.

  12. Measuring Attention in Rodents: Comparison of a Modified Signal Detection Task and the 5-Choice Serial Reaction Time Task

    PubMed Central

    Turner, Karly M.; Peak, James; Burne, Thomas H. J.

    2016-01-01

    Neuropsychiatric research has utilized cognitive testing in rodents to improve our understanding of cognitive deficits and for preclinical drug development. However, more sophisticated cognitive tasks have not been as widely exploited due to low throughput and the extensive training time required. We developed a modified signal detection task (SDT) based on the growing body of literature aimed at improving cognitive testing in rodents. This study directly compares performance on the modified SDT with a traditional test for measuring attention, the 5-choice serial reaction time task (5CSRTT). Adult male Sprague-Dawley rats were trained on either the 5CSRTT or the SDT. Briefly, the 5CSRTT required rodents to pay attention to a spatial array of five apertures and respond with a nose poke when an aperture was illuminated. The SDT required the rat to attend to a light panel and respond either left or right to indicate the presence of a signal. In addition, modifications were made to the reward delivery, timing, control of body positioning, and the self-initiation of trials. It was found that less training time was required for the SDT, with both sessions to criteria and daily session duration significantly reduced. Rats performed with a high level of accuracy (>87%) on both tasks, however omissions were far more frequent on the 5CSRTT. The signal duration was reduced on both tasks as a manipulation of task difficulty relevant to attention and a similar pattern of decreasing accuracy was observed on both tasks. These results demonstrate some of the advantages of the SDT over the traditional 5CSRTT as being higher throughput with reduced training time, fewer omission responses and their body position was controlled at stimulus onset. In addition, rats performing the SDT had comparable high levels of accuracy. These results highlight the differences and similarities between the 5CSRTT and a modified SDT as tools for assessing attention in preclinical animal models. PMID:26834597

  13. Adult brains don't fully overcome biases that lead to incorrect performance during cognitive development: an fMRI study in young adults completing a Piaget-like task.

    PubMed

    Leroux, Gaëlle; Spiess, Jeanne; Zago, Laure; Rossi, Sandrine; Lubin, Amélie; Turbelin, Marie-Renée; Mazoyer, Bernard; Tzourio-Mazoyer, Nathalie; Houdé, Olivier; Joliot, Marc

    2009-03-01

    A current issue in developmental science is that greater continuity in cognition between children and adults may exist than is usually appreciated in Piaget-like (stages or 'staircase') models. This phenomenon has been demonstrated at the behavioural level, but never at the brain level. Here we show with functional magnetic resonance imaging (fMRI), for the first time, that adult brains do not fully overcome the biases of childhood. More specifically, the aim of this fMRI study was to evaluate whether the perceptual bias that leads to incorrect performance during cognitive development in a Piaget-like task is still a bias in the adult brain and hence requires an executive network to overcome it. Here, we compared two numerical-judgment tasks, one being a Piaget-like task with number-length interference (called 'INT') and the other being a control task with number-length covariation ('COV'). We also used a colour-detection task to control for stimuli numerosity, spatial distribution, and frequency. Our behavioural results confirmed that INT remains a difficult task for young adults. Indeed, response times were significantly higher in INT than in COV. Moreover, we observed that only in INT did response times increase linearly as a function of the number of items. The fMRI results indicate that the brain network common to INT and COV shows a large rightward functional asymmetry, emphasizing the visuospatial nature of these two tasks. When INT was compared with COV, activations were found within a right frontal network, including the pre-supplementary motor area, the anterior cingulate cortex, and the middle frontal gyrus, which probably reflect detection of the number/length conflict and inhibition of the 'length-equals-number' response strategy. Finally, activations related to visuospatial and quantitative processing, enhanced or specifically recruited in the Piaget-like task, were found in bilateral posterior areas.

  14. Validation of auditory detection response task method for assessing the attentional effects of cognitive load.

    PubMed

    Stojmenova, Kristina; Sodnik, Jaka

    2018-07-04

    There are 3 standardized versions of the Detection Response Task (DRT), 2 using visual stimuli (remote DRT and head-mounted DRT) and one using tactile stimuli. In this article, we present a study that proposes and validates a type of auditory signal to be used as DRT stimulus and evaluate the proposed auditory version of this method by comparing it with the standardized visual and tactile version. This was a within-subject design study performed in a driving simulator with 24 participants. Each participant performed 8 2-min-long driving sessions in which they had to perform 3 different tasks: driving, answering to DRT stimuli, and performing a cognitive task (n-back task). Presence of additional cognitive load and type of DRT stimuli were defined as independent variables. DRT response times and hit rates, n-back task performance, and pupil size were observed as dependent variables. Significant changes in pupil size for trials with a cognitive task compared to trials without showed that cognitive load was induced properly. Each DRT version showed a significant increase in response times and a decrease in hit rates for trials with a secondary cognitive task compared to trials without. Similar and significantly better results in differences in response times and hit rates were obtained for the auditory and tactile version compared to the visual version. There were no significant differences in performance rate between the trials without DRT stimuli compared to trials with and among the trials with different DRT stimuli modalities. The results from this study show that the auditory DRT version, using the signal implementation suggested in this article, is sensitive to the effects of cognitive load on driver's attention and is significantly better than the remote visual and tactile version for auditory-vocal cognitive (n-back) secondary tasks.

  15. Detecting vocal fatigue in student singers using acoustic measures of mean fundamental frequency, jitter, shimmer, and harmonics-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Sisakun, Siphan

    2000-12-01

    The purpose of this study is to explore the ability of four acoustic parameters, mean fundamental frequency, jitter, shimmer, and harmonics-to-noise ratio, to detect vocal fatigue in student singers. The participants are 15 voice students, who perform two distinct tasks, data collection task and vocal fatiguing task. The data collection task includes the sustained vowel /a/, reading a standard passage, and self-rate on a vocal fatigue form. The vocal fatiguing task is the vocal practice of musical scores for a total of 45 minutes. The four acoustic parameters are extracted using the software EZVoicePlus. The data analyses are performed to answer eight research questions. The first four questions relate to correlations of the self-rating scale and each of the four parameters. The next four research questions relate to differences in the parameters over time using one-factor repeated measures analysis of variance (ANOVA). The result yields a proposed acoustic profile of vocal fatigue in student singers. This profile is characterized by increased fundamental frequency; slightly decreased jitter; slightly decreased shimmer; and slightly increased harmonics-to-noise ratio. The proposed profile requires further investigation.

  16. Effects of visual attention on chromatic and achromatic detection sensitivities.

    PubMed

    Uchikawa, Keiji; Sato, Masayuki; Kuwamura, Keiko

    2014-05-01

    Visual attention has a significant effect on various visual functions, such as response time, detection and discrimination sensitivity, and color appearance. It has been suggested that visual attention may affect visual functions in the early visual pathways. In this study we examined selective effects of visual attention on sensitivities of the chromatic and achromatic pathways to clarify whether visual attention modifies responses in the early visual system. We used a dual task paradigm in which the observer detected a peripheral test stimulus presented at 4 deg eccentricities while the observer concurrently carried out an attention task in the central visual field. In experiment 1, it was confirmed that peripheral spectral sensitivities were reduced more for short and long wavelengths than for middle wavelengths with the central attention task so that the spectral sensitivity function changed its shape by visual attention. This indicated that visual attention affected the chromatic response more strongly than the achromatic response. In experiment 2 it was obtained that the detection thresholds increased in greater degrees in the red-green and yellow-blue chromatic directions than in the white-black achromatic direction in the dual task condition. In experiment 3 we showed that the peripheral threshold elevations depended on the combination of color-directions of the central and peripheral stimuli. Since the chromatic and achromatic responses were separately processed in the early visual pathways, the present results provided additional evidence that visual attention affects responses in the early visual pathways.

  17. The role of audience participation and task relevance on change detection during a card trick.

    PubMed

    Smith, Tim J

    2015-01-01

    Magicians utilize many techniques for misdirecting audience attention away from the secret sleight of a trick. One technique is to ask an audience member to participate in a trick either physically by asking them to choose a card or cognitively by having them keep track of a card. While such audience participation is an established part of most magic the cognitive mechanisms by which it operates are unknown. Failure to detect changes to objects while passively viewing magic tricks has been shown to be conditional on the changing feature being irrelevant to the current task. How change blindness operates during interactive tasks is unclear but preliminary evidence suggests that relevance of the changing feature may also play a role (Triesch et al., 2003). The present study created a simple on-line card trick inspired by Triesch et al.'s (2003) that allowed playing cards to be instantaneously replaced without distraction or occlusion as participants were either actively sorting the cards (Doing condition) or watching another person perform the task (Watching conditions). Participants were given one of three sets of instructions. The relevance of the card color to the task increased across the three instructions. During half of the trials a card changed color (but retained its number) as it was moving to the stack. Participants were instructed to immediately report such changes. Analysis of the probability of reporting a change revealed that actively performing the sorting task led to more missed changes than passively watching the same task but only when the changing feature was irrelevant to the sorting task. If the feature was relevant during either the pick-up or put-down action change detection was as good as during the watching block. These results confirm the ability of audience participation to create subtle dynamics of attention and perception during a magic trick and hide otherwise striking changes at the center of attention.

  18. The role of audience participation and task relevance on change detection during a card trick

    PubMed Central

    Smith, Tim J.

    2015-01-01

    Magicians utilize many techniques for misdirecting audience attention away from the secret sleight of a trick. One technique is to ask an audience member to participate in a trick either physically by asking them to choose a card or cognitively by having them keep track of a card. While such audience participation is an established part of most magic the cognitive mechanisms by which it operates are unknown. Failure to detect changes to objects while passively viewing magic tricks has been shown to be conditional on the changing feature being irrelevant to the current task. How change blindness operates during interactive tasks is unclear but preliminary evidence suggests that relevance of the changing feature may also play a role (Triesch et al., 2003). The present study created a simple on-line card trick inspired by Triesch et al.’s (2003) that allowed playing cards to be instantaneously replaced without distraction or occlusion as participants were either actively sorting the cards (Doing condition) or watching another person perform the task (Watching conditions). Participants were given one of three sets of instructions. The relevance of the card color to the task increased across the three instructions. During half of the trials a card changed color (but retained its number) as it was moving to the stack. Participants were instructed to immediately report such changes. Analysis of the probability of reporting a change revealed that actively performing the sorting task led to more missed changes than passively watching the same task but only when the changing feature was irrelevant to the sorting task. If the feature was relevant during either the pick-up or put-down action change detection was as good as during the watching block. These results confirm the ability of audience participation to create subtle dynamics of attention and perception during a magic trick and hide otherwise striking changes at the center of attention. PMID:25698986

  19. An attentional bias for LEGO® people using a change detection task: Are LEGO® people animate?

    PubMed

    LaPointe, Mitchell R P; Cullen, Rachael; Baltaretu, Bianca; Campos, Melissa; Michalski, Natalie; Sri Satgunarajah, Suja; Cadieux, Michelle L; Pachai, Matthew V; Shore, David I

    2016-09-01

    Animate objects have been shown to elicit attentional priority in a change detection task. This benefit has been seen for both human and nonhuman animals compared with inanimate objects. One explanation for these results has been based on the importance animate objects have served over the course of our species' history. In the present set of experiments, we present stimuli, which could be perceived as animate, but with which our distant ancestors would have had no experience, and natural selection could have no direct pressure on their prioritization. In the first experiment, we compared LEGO® "people" with LEGO "nonpeople" in a change detection task. In a second experiment, we attempt to control the heterogeneity of the nonanimate objects by using LEGO blocks, matched in size and colour to LEGO people. In the third experiment, we occlude the faces of the LEGO people to control for facial pattern recognition. In the final 2 experiments, we attempt to obscure high-level categorical information processing of the stimuli by inverting and blurring the scenes. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Task deactivation reductions and atrophy within parietal default mode regions are overlapping but only weakly correlated in mild cognitive impairment

    PubMed Central

    Threlkeld, Zachary D.; Jicha, Greg A.; Smith, Charles D.; Gold, Brian T.

    2012-01-01

    Reduced task deactivation within regions of the default mode network (DMN) has been frequently reported in Alzheimer’s disease (AD) and amnestic mild cognitive impairment (aMCI). As task deactivations reductions become increasingly used in the study of early AD states, it is important to understand their relationship to atrophy. To address this issue, the present study compared task deactivation reductions during a lexical decision task and atrophy in aMCI, using a series of parallel voxel-wise and region-wise analyses of fMRI and structural data. Our results identified multiple regions within parietal cortex as convergence areas of task deactivation and atrophy in aMCI. Relationships between parietal regions showing overlapping task deactivation reductions and atrophy in aMCI were then explored. Regression analyses demonstrated minimal correlation between task deactivation reductions and either local or global atrophy in aMCI. In addition, a logistic regression model which combined task deactivation reductions and atrophy in parietal DMN regions showed higher classificatory accuracy of aMCI than separate task deactivation or atrophy models. Results suggest that task deactivation reductions and atrophy in parietal regions provide complementary rather than redundant information in aMCI. Future longitudinal studies will be required to assess the utility of combining task deactivation reductions and atrophy in the detection of early AD. PMID:21860094

  1. Heart rate variability and cognitive processing: The autonomic response to task demands.

    PubMed

    Luque-Casado, Antonio; Perales, José C; Cárdenas, David; Sanabria, Daniel

    2016-01-01

    This study investigated variations in heart rate variability (HRV) as a function of cognitive demands. Participants completed an execution condition including the psychomotor vigilance task, a working memory task and a duration discrimination task. The control condition consisted of oddball versions (participants had to detect the rare event) of the tasks from the execution condition, designed to control for the effect of the task parameters (stimulus duration and stimulus rate) on HRV. The NASA-TLX questionnaire was used as a subjective measure of cognitive workload across tasks and conditions. Three major findings emerged from this study. First, HRV varied as a function of task demands (with the lowest values in the working memory task). Second, and crucially, we found similar HRV values when comparing each of the tasks with its oddball control equivalent, and a significant decrement in HRV as a function of time-on-task. Finally, the NASA-TLX results showed larger cognitive workload in the execution condition than in the oddball control condition, and scores variations as a function of task. Taken together, our results suggest that HRV is highly sensitive to overall demands of sustained attention over and above the influence of other cognitive processes suggested by previous literature. In addition, our study highlights a potential dissociation between objective and subjective measures of mental workload, with important implications in applied settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Prospective memory: effects of divided attention on spontaneous retrieval.

    PubMed

    Harrison, Tyler L; Mullet, Hillary G; Whiffen, Katie N; Ousterhout, Hunter; Einstein, Gilles O

    2014-02-01

    We examined the effects of divided attention on the spontaneous retrieval of a prospective memory intention. Participants performed an ongoing lexical decision task with an embedded prospective memory demand, and also performed a divided-attention task during some segments of lexical decision trials. In all experiments, monitoring was highly discouraged, and we observed no evidence that participants engaged monitoring processes. In Experiment 1, performing a moderately demanding divided-attention task (a digit detection task) did not affect prospective memory performance. In Experiment 2, performing a more challenging divided-attention task (random number generation) impaired prospective memory. Experiment 3 showed that this impairment was eliminated when the prospective memory cue was perceptually salient. Taken together, the results indicate that spontaneous retrieval is not automatic and that challenging divided-attention tasks interfere with spontaneous retrieval and not with the execution of a retrieved intention.

  3. Analyzing ROC curves using the effective set-size model

    NASA Astrophysics Data System (ADS)

    Samuelson, Frank W.; Abbey, Craig K.; He, Xin

    2018-03-01

    The Effective Set-Size model has been used to describe uncertainty in various signal detection experiments. The model regards images as if they were an effective number (M*) of searchable locations, where the observer treats each location as a location-known-exactly detection task with signals having average detectability d'. The model assumes a rational observer behaves as if he searches an effective number of independent locations and follows signal detection theory at each location. Thus the location-known-exactly detectability (d') and the effective number of independent locations M* fully characterize search performance. In this model the image rating in a single-response task is assumed to be the maximum response that the observer would assign to these many locations. The model has been used by a number of other researchers, and is well corroborated. We examine this model as a way of differentiating imaging tasks that radiologists perform. Tasks involving more searching or location uncertainty may have higher estimated M* values. In this work we applied the Effective Set-Size model to a number of medical imaging data sets. The data sets include radiologists reading screening and diagnostic mammography with and without computer-aided diagnosis (CAD), and breast tomosynthesis. We developed an algorithm to fit the model parameters using two-sample maximum-likelihood ordinal regression, similar to the classic bi-normal model. The resulting model ROC curves are rational and fit the observed data well. We find that the distributions of M* and d' differ significantly among these data sets, and differ between pairs of imaging systems within studies. For example, on average tomosynthesis increased readers' d' values, while CAD reduced the M* parameters. We demonstrate that the model parameters M* and d' are correlated. We conclude that the Effective Set-Size model may be a useful way of differentiating location uncertainty from the diagnostic uncertainty in medical imaging tasks.

  4. Effects of Night Work, Sleep Loss and Time on Task on Simulated Threat Detection Performance

    PubMed Central

    Basner, Mathias; Rubinstein, Joshua; Fomberstein, Kenneth M.; Coble, Matthew C.; Ecker, Adrian; Avinash, Deepa; Dinges, David F.

    2008-01-01

    Study Objectives: To investigate the effects of night work and sleep loss on a simulated luggage screening task (SLST) that mimicked the x-ray system used by airport luggage screeners. Design: We developed more than 5,800 unique simulated x-ray images of luggage organized into 31 stimulus sets of 200 bags each. 25% of each set contained either a gun or a knife with low or high target difficulty. The 200-bag stimuli sets were then run on software that simulates an x-ray screening system (SLST). Signal detection analysis was used to obtain measures of hit rate (HR), false alarm rate (FAR), threat detection accuracy (A′), and response bias (B″D). Setting: Experimental laboratory study Participants: 24 healthy nonprofessional volunteers (13 women, mean age ± SD = 29.9 ± 6.5 years). Interventions: Subjects performed the SLST every 2 h during a 5-day period that included a 35 h period of wakefulness that extended to night work and then another day work period after the night without sleep. Results: Threat detection accuracy A′ decreased significantly (P < 0.001) while FAR increased significantly (P < 0.001) during night work, while both A′ (P = 0.001) and HR decreased (P = 0.008) during day work following sleep loss. There were prominent time-on-task effects on response bias B″D (P = 0.002) and response latency (P = 0.004), but accuracy A′ was unaffected. Both HR and FAR increased significantly with increasing study duration (both P < 0.001), while response latency decreased significantly (P < 0.001). Conclusions: This study provides the first systematic evidence that night work and sleep loss adversely affect the accuracy of detecting complex real world objects among high levels of background clutter. If the results can be replicated in professional screeners and real work environments, fatigue in luggage screening personnel may pose a threat for air traffic safety unless countermeasures for fatigue are deployed. Citation: Basner M; Rubinstein J; Fomberstein KM; Coble MC; Avinash D; Dinges DF. Effects of Night Work, Sleep Loss and Time on Task on Simulated Threat Detection Performance. SLEEP 2008;31(9):1251-1259. PMID:18788650

  5. Exploring General Versus Task-Specific Assessments of Metacognition in University Chemistry Students: A Multitrait-Multimethod Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Chia-Yu

    2015-08-01

    The purpose of this study was to use multiple assessments to investigate the general versus task-specific characteristics of metacognition in dissimilar chemistry topics. This mixed-method approach investigated the nature of undergraduate general chemistry students' metacognition using four assessments: a self-report questionnaire, assessment of concurrent metacognitive skills, confidence judgment, and calibration accuracy. Data were analyzed using a multitrait-multimethod correlation matrix, supplemented with regression analyses, and qualitative interpretation. Significant correlations among task performance, calibration accuracy, and concurrent metacognition within a task suggest a converging relationship. Confidence judgment, however, was not associated with task performance or the other metacognitive measurements. The results partially support hypotheses of both general and task-specific metacognition. However, general and task-specific properties of metacognition were detected using different assessments. Case studies were constructed for two participants to illustrate how concurrent metacognition varied within different task demands. Considerations of how each assessment may appropriate different metacognitive constructs and the importance of the alignment of analytical constructs when using multiple assessments are discussed. These results may help lead to improvements in metacognition assessment and may provide insights into designs of effective metacognitive instruction.

  6. A novel onset detection technique for brain-computer interfaces using sound-production related cognitive tasks in simulated-online system

    NASA Astrophysics Data System (ADS)

    Song, YoungJae; Sepulveda, Francisco

    2017-02-01

    Objective. Self-paced EEG-based BCIs (SP-BCIs) have traditionally been avoided due to two sources of uncertainty: (1) precisely when an intentional command is sent by the brain, i.e., the command onset detection problem, and (2) how different the intentional command is when compared to non-specific (or idle) states. Performance evaluation is also a problem and there are no suitable standard metrics available. In this paper we attempted to tackle these issues. Approach. Self-paced covert sound-production cognitive tasks (i.e., high pitch and siren-like sounds) were used to distinguish between intentional commands (IC) and idle states. The IC states were chosen for their ease of execution and negligible overlap with common cognitive states. Band power and a digital wavelet transform were used for feature extraction, and the Davies-Bouldin index was used for feature selection. Classification was performed using linear discriminant analysis. Main results. Performance was evaluated under offline and simulated-online conditions. For the latter, a performance score called true-false-positive (TFP) rate, ranging from 0 (poor) to 100 (perfect), was created to take into account both classification performance and onset timing errors. Averaging the results from the best performing IC task for all seven participants, an 77.7% true-positive (TP) rate was achieved in offline testing. For simulated-online analysis the best IC average TFP score was 76.67% (87.61% TP rate, 4.05% false-positive rate). Significance. Results were promising when compared to previous IC onset detection studies using motor imagery, in which best TP rates were reported as 72.0% and 79.7%, and which, crucially, did not take timing errors into account. Moreover, based on our literature review, there is no previous covert sound-production onset detection system for spBCIs. Results showed that the proposed onset detection technique and TFP performance metric have good potential for use in SP-BCIs.

  7. The electrocortical correlates of fluctuating states of attention during vigilance tasks

    NASA Technical Reports Server (NTRS)

    Cunningham, Stephen G.; Freeman, Frederick

    1994-01-01

    This study investigated the electrocortical correlates of attention. Sixteen subjects (seven females, nine males) engaged in a forty-minute target detection vigilance task. Task-irrelevant probe tones were presented every 2-4 seconds. While performing the vigilance task, the subjects were asked to press a button if they were daydreaming (i.e. having a task unrelated thought or TUT). Continuous electroencephalograms (EEG's) and event-related potentials (ERP's) were recorded from the subjects during the entire task. The continuous EEG data were analyzed for differences in absolute power throughout the task as well as before and after the subjects indicated that they were daydreaming (TUT response). ERP's elicited by task-irrelevant probe tones were analyzed in the same manner. The results indicated performance decrements as reflected by increased RT to correct detections, and decreased number of hits. Further, as the task progressed, the number of reports of daydreaming increased. The analysis of the EEG data indicated a significant difference in the absolute power of the different frequency bands across periods. The greatest difference was observed at the posterior parietal electrode sites. In addition, when the EEG data was converted into band ratios (beta/alpha and beta/alpha+theta), the pre-TUT conditions were found to be significantly different than the post-TUT conditions in the posterior sites. The ERP components (N1, N2, and P2) were not significantly different before and after a TUT response or across periods. However, the ERP's across periods exhibited amplitudes that were similar to those found in previous studies of vigilance and ERP's.

  8. The role of motivation in distracting attention away from pain: an experimental study.

    PubMed

    Verhoeven, Katrien; Crombez, Geert; Eccleston, Christopher; Van Ryckeghem, Dimitri M L; Morley, Stephen; Van Damme, Stefaan

    2010-05-01

    Research on the effectiveness of distraction as a method of pain control is inconclusive. One mechanism pertains to the motivational relevance of distraction tasks. In this study the motivation to engage in a distraction task during pain was experimentally manipulated. Undergraduate students (N=73) participated in a cold pressor test (CPT) and were randomly assigned to three groups: a distraction-only group performed a tone-detection task during the CPT, a motivated-distraction group performed the same task and received a monetary reward for good task performance, and a control group did not perform the tone-detection task. Results indicated that engagement in the distraction task was better in the motivated-distraction group in comparison with the distraction-only group. Participants in both distraction groups experienced less pain compared to the control group. There were no overall differences in pain intensity between the two distraction groups. The effect of distraction was influenced by the level of catastrophic thinking about pain. For low catastrophizers, both distraction groups reported less pain as compared to the non-distracted control group. This was not the case for high catastrophizers. For high catastrophizers it mattered whether the distraction task was motivationally relevant: high catastrophizers reported less intense pain in the motivated-distraction group, as compared to the non-distracted control group. We conclude that increasing the motivational relevance of the distraction task may increase the effects of distraction, especially for those who catastrophize about pain. Copyright 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  9. Quantifying Human Performance of a Dynamic Military Target Detection Task: An Application of the Theory of Signal Detection.

    DTIC Science & Technology

    1995-06-01

    applied to analyze numerous experimental tasks (Macmillan and Creelman , 1991). One of these tasks, target detection, is the subject research. In...between each associated pair of false alarm rate and hit rate z-scores is d’ for the bias level associated with the pairing (Macmillan and Creelman , 1991...unequal variance in normal distributions (Macmillan and Creelman , 1991). 61 1966). It is described in detail for the interested reader by Green and

  10. Getting a Grip on Social Gaze: Control over Others' Gaze Helps Gaze Detection in High-Functioning Autism

    ERIC Educational Resources Information Center

    Dratsch, Thomas; Schwartz, Caroline; Yanev, Kliment; Schilbach, Leonhard; Vogeley, Kai; Bente, Gary

    2013-01-01

    We investigated the influence of control over a social stimulus on the ability to detect direct gaze in high-functioning autism (HFA). In a pilot study, 19 participants with and 19 without HFA were compared on a gaze detection and a gaze setting task. Participants with HFA were less accurate in detecting direct gaze in the detection task, but did…

  11. Examining the impact of age and multitasking on motorcycle conspicuity.

    PubMed

    Ledbetter, Jonathan L; Boyce, Michael W; Fekety, Drea K; Sawyer, Ben; Smither, Janan A

    2012-01-01

    This poster presents a study to assess one's ability to detect motorcycles under different conditions of conspicuity while performing a secondary visual load task. Previous research in which participants were required to detect motorcycles revealed differences in age (young adults/older adult) as well as differences associated with motorcycle conspicuity conditions. Past research has specifically found motorcycles with headlights ON and modulating headlights (flashing) to be more conspicuous than motorcycles with headlights OFF within traffic conditions. The present study seeks to provide more information on the effects of multitasking on motorcycle conspicuity and safety. The current study seeks to determine the degree to which multitasking limits the conspicuity of a motorcycle within traffic. We expect our results will indicate main effects for distraction task, age, gender, motorcycle lighting conditions, and vehicular DRLs on one's ability to effectively detect a motorcycle. The results have implications for motorcycle safety in general and through this research, a better understanding of motorcycle conspicuity can be established so as to minimize the risk involved with motorcycle operation.

  12. Confused or not Confused?: Disentangling Brain Activity from EEG Data Using Bidirectional LSTM Recurrent Neural Networks.

    PubMed

    Ni, Zhaoheng; Yuksel, Ahmet Cem; Ni, Xiuyan; Mandel, Michael I; Xie, Lei

    2017-08-01

    Brain fog, also known as confusion, is one of the main reasons for low performance in the learning process or any kind of daily task that involves and requires thinking. Detecting confusion in a human's mind in real time is a challenging and important task that can be applied to online education, driver fatigue detection and so on. In this paper, we apply Bidirectional LSTM Recurrent Neural Networks to classify students' confusion in watching online course videos from EEG data. The results show that Bidirectional LSTM model achieves the state-of-the-art performance compared with other machine learning approaches, and shows strong robustness as evaluated by cross-validation. We can predict whether or not a student is confused in the accuracy of 73.3%. Furthermore, we find the most important feature to detecting the brain confusion is the gamma 1 wave of EEG signal. Our results suggest that machine learning is a potentially powerful tool to model and understand brain activity.

  13. Selective Maintenance in Visual Working Memory Does Not Require Sustained Visual Attention

    PubMed Central

    Hollingworth, Andrew; Maxcey-Richard, Ashleigh M.

    2012-01-01

    In four experiments, we tested whether sustained visual attention is required for the selective maintenance of objects in VWM. Participants performed a color change-detection task. During the retention interval, a valid cue indicated the item that would be tested. Change detection performance was higher in the valid-cue condition than in a neutral-cue control condition. To probe the role of visual attention in the cuing effect, on half of the trials, a difficult search task was inserted after the cue, precluding sustained attention on the cued item. The addition of the search task produced no observable decrement in the magnitude of the cuing effect. In a complementary test, search efficiency was not impaired by simultaneously prioritizing an object for retention in VWM. The results demonstrate that selective maintenance in VWM can be dissociated from the locus of visual attention. PMID:23067118

  14. Selective maintenance in visual working memory does not require sustained visual attention.

    PubMed

    Hollingworth, Andrew; Maxcey-Richard, Ashleigh M

    2013-08-01

    In four experiments, we tested whether sustained visual attention is required for the selective maintenance of objects in visual working memory (VWM). Participants performed a color change-detection task. During the retention interval, a valid cue indicated the item that would be tested. Change-detection performance was higher in the valid-cue condition than in a neutral-cue control condition. To probe the role of visual attention in the cuing effect, on half of the trials, a difficult search task was inserted after the cue, precluding sustained attention on the cued item. The addition of the search task produced no observable decrement in the magnitude of the cuing effect. In a complementary test, search efficiency was not impaired by simultaneously prioritizing an object for retention in VWM. The results demonstrate that selective maintenance in VWM can be dissociated from the locus of visual attention. 2013 APA, all rights reserved

  15. Examining the Pilot and Controller Performance Data When in a Free Flight with Weather Phenomenon

    NASA Technical Reports Server (NTRS)

    Nituen, Celestine A.; Lozito, Sandra C. (Technical Monitor)

    2002-01-01

    The present study investigated effects of weather related factors on the performance of pilots under free flight. A weather scenario was defined by a combination of precipitation factors (light rain, moderate rain, and heavy rain or snow), visibility (1,4,8 miles), wind conditions (light, medium, or heavy), cloud ceiling (800ft. below, 1800ft above, and 4000ft horizontal). The performance of the aircraft self-separation was evaluated in terms of detection accuracy and detection times for student- and commercial (expert) pilots. Overall, the results obtained from a behavioral analysis showed that in general, the ability to recognize intruder aircraft conflict incidents, followed by the ability to acquire the spatial location of the intruder aircraft relative to ownership aircraft were judged to be the major cognitive tasks as perceived by the participants during self-separation. Further, the participants rarely used cockpit display of traffic information (CDTI) during conflict management related to aircraft separation, but used CDTI highly during decision-making tasks. In all weather scenarios, there were remarkable differences between expert and student pilots in detection times. In summary, weather scenarios were observed to affect intruder aircraft detection performance accuracies. There was interaction effects between weather Scenario-1 and Scenario-2 for climbing task data generated by both expert- and student- pilots at high traffic density. Scenario-3 weather condition provided an opportunity for poor detection accuracy as well as detection time increase. This may be attributed to low visibility. The intruder aircraft detection times were not affected by the weather conditions during climbing and descending tasks. The decision of pilots to fly into certain weather condition was dependent in part on the warning distance to the location of the weather. When pilots were warned of the weather conditions, they were more likely to fly their aircraft into it, but mostly when the warning was not close to the weather location.

  16. Impact of Automation Support on the Conflict Resolution Task in a Human-in-the-Loop Air Traffic Control Simulation

    NASA Technical Reports Server (NTRS)

    Mercer, Joey; Gomez, Ashley; Gabets, Cynthia; Bienert, Nancy; Edwards, Tamsyn; Martin, Lynne; Gujral, Vimmy; Homola, Jeffrey

    2016-01-01

    To determine the capabilities and limitations of human operators and automation in separation assurance roles, the second of three Human-in-the-Loop (HITL) part-task studies investigated air traffic controllers ability to detect and resolve conflicts under varying task sets, traffic densities, and run lengths. Operations remained within a single sector, staffed by a single controller, and explored, among other things, the controllers responsibility for conflict resolution with or without their involvement in the conflict detection task. Furthermore, these conditions were examined across two different traffic densities; 1x (current-day traffic) and a 20 increase above current-day traffic levels (1.2x). Analyses herein offer an examination of the conflict resolution strategies employed by controllers. In particular, data in the form of elapsed time between conflict detection and conflict resolution are used to assess if, and how, the controllers involvement in the conflict detection task affected the way in which they resolved traffic conflicts.

  17. Accounting for sequential trial effects in the flanker task: conflict adaptation or associative priming?

    PubMed

    Nieuwenhuis, Sander; Stins, John F; Posthuma, Danielle; Polderman, Tinca J C; Boomsma, Dorret I; de Geus, Eco J

    2006-09-01

    The conflict-control loop theory proposes that the detection of conflict in information processing triggers an increase in cognitive control, resulting in improved performance on the subsequent trial. This theory seems consistent with the robust finding that conflict susceptibility is reduced following correct trials associated with high conflict: the conflict adaptation effect. However, despite providing favorable conditions for eliciting and detecting conflict-triggered performance adjustments, none of the five experiments reported here provide unequivocal evidence of such adjustments. Instead, the results corroborate and extend earlier findings by demonstrating that the conflict adaptation effect, at least in the flanker task, is only present for a specific subset of trial sequences that is characterized by a response repetition. This pattern of results provides strong evidence that the conflict adaptation effect reflects associative stimulus-response priming instead of conflict-driven adaptations in cognitive control.

  18. Task-Driven Orbit Design and Implementation on a Robotic C-Arm System for Cone-Beam CT.

    PubMed

    Ouadah, S; Jacobson, M; Stayman, J W; Ehtiati, T; Weiss, C; Siewerdsen, J H

    2017-03-01

    This work applies task-driven optimization to the design of non-circular orbits that maximize imaging performance for a particular imaging task. First implementation of task-driven imaging on a clinical robotic C-arm system is demonstrated, and a framework for orbit calculation is described and evaluated. We implemented a task-driven imaging framework to optimize orbit parameters that maximize detectability index d '. This framework utilizes a specified Fourier domain task function and an analytical model for system spatial resolution and noise. Two experiments were conducted to test the framework. First, a simple task was considered consisting of frequencies lying entirely on the f z -axis (e.g., discrimination of structures oriented parallel to the central axial plane), and a "circle + arc" orbit was incorporated into the framework as a means to improve sampling of these frequencies, and thereby increase task-based detectability. The orbit was implemented on a robotic C-arm (Artis Zeego, Siemens Healthcare). A second task considered visualization of a cochlear implant simulated within a head phantom, with spatial frequency response emphasizing high-frequency content in the ( f y , f z ) plane of the cochlea. An optimal orbit was computed using the task-driven framework, and the resulting image was compared to that for a circular orbit. For the f z -axis task, the circle + arc orbit was shown to increase d ' by a factor of 1.20, with an improvement of 0.71 mm in a 3D edge-spread measurement for edges located far from the central plane and a decrease in streak artifacts compared to a circular orbit. For the cochlear implant task, the resulting orbit favored complementary views of high tilt angles in a 360° orbit, and d ' was increased by a factor of 1.83. This work shows that a prospective definition of imaging task can be used to optimize source-detector orbit and improve imaging performance. The method was implemented for execution of non-circular, task-driven orbits on a clinical robotic C-arm system. The framework is sufficiently general to include both acquisition parameters (e.g., orbit, kV, and mA selection) and reconstruction parameters (e.g., a spatially varying regularizer).

  19. Repeated Induction of Inattentional Blindness in a Simulated Aviation Environment

    NASA Technical Reports Server (NTRS)

    Kennedy, Kellie D.; Stephens, Chad L.; Williams, Ralph A.; Schutte, Paul C.

    2017-01-01

    The study reported herein is a subset of a larger investigation on the role of automation in the context of the flight deck and used a fixed-based, human-in-the-loop simulator. This paper explored the relationship between automation and inattentional blindness (IB) occurrences in a repeated induction paradigm using two types of runway incursions. The critical stimuli for both runway incursions were directly relevant to primary task performance. Sixty non-pilot participants performed the final five minutes of a landing scenario twice in one of three automation conditions: full automation (FA), partial automation (PA), and no automation (NA). The first induction resulted in a 70 percent (42 of 60) detection failure rate with those in the PA condition significantly more likely to detect the incursion compared to the FA condition or the NA condition. The second induction yielded a 50 percent detection failure rate. Although detection improved (detection failure rates declined) in all conditions, those in the FA condition demonstrated the greatest improvement with doubled detection rates. The detection behavior in the first trial did not preclude a failed detection in the second induction. Group membership (IB vs. Detection) in the FA condition showed a greater improvement than those in the NA condition and rated the Mental Demand and Effort subscales of the NASA-TLX (NASA Task Load Index) significantly higher for Time 2 compared Time 1. Participants in the FA condition used the experience of IB exposure to improve task performance whereas those in the NA condition did not, indicating the availability and reallocation of attentional resources in the FA condition. These findings support the role of engagement in operational attention detriment and the consideration of attentional failure causation to determine appropriate mitigation strategies.

  20. Assessing the feasibility of time-resolved fNIRS to detect brain activity during motor imagery

    NASA Astrophysics Data System (ADS)

    Abdalmalak, Androu; Milej, Daniel; Diop, Mamadou; Naci, Lorina; Owen, Adrian M.; St. Lawrence, Keith

    2016-03-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive optical technique for detecting brain activity, which has been previously used during motor and motor executive tasks. There is an increasing interest in using fNIRS as a brain computer interface (BCI) for patients who lack the physical, but not the mental, ability to respond to commands. The goal of this study is to assess the feasibility of time-resolved fNIRS to detect brain activity during motor imagery. Stability tests were conducted to ensure the temporal stability of the signal, and motor imagery data were acquired on healthy subjects. The NIRS probes were placed on the scalp over the premotor cortex (PMC) and supplementary motor area (SMA), as these areas are responsible for motion planning. To confirm the fNIRS results, subjects underwent functional magnetic resonance imaging (fMRI) while performing the same task. Seven subjects have participated to date, and significant activation in the SMA and/or the PMC during motor imagery was detected by both fMRI and fNIRS in 4 of the 7 subjects. No activation was detected by either technique in the remaining three participants, which was not unexpected due to the nature of the task. The agreement between the two imaging modalities highlights the potential of fNIRS as a BCI, which could be adapted for bedside studies of patients with disorders of consciousness.

  1. Disruption in neural phase synchrony is related to identification of inattentional deafness in real-world setting.

    PubMed

    Callan, Daniel E; Gateau, Thibault; Durantin, Gautier; Gonthier, Nicolas; Dehais, Frédéric

    2018-06-01

    Individuals often have reduced ability to hear alarms in real world situations (e.g., anesthesia monitoring, flying airplanes) when attention is focused on another task, sometimes with devastating consequences. This phenomenon is called inattentional deafness and usually occurs under critical high workload conditions. It is difficult to simulate the critical nature of these tasks in the laboratory. In this study, dry electroencephalography is used to investigate inattentional deafness in real flight while piloting an airplane. The pilots participating in the experiment responded to audio alarms while experiencing critical high workload situations. It was found that missed relative to detected alarms were marked by reduced stimulus evoked phase synchrony in theta and alpha frequencies (6-14 Hz) from 120 to 230 ms poststimulus onset. Correlation of alarm detection performance with intertrial coherence measures of neural phase synchrony showed different frequency and time ranges for detected and missed alarms. These results are consistent with selective attentional processes actively disrupting oscillatory coherence in sensory networks not involved with the primary task (piloting in this case) under critical high load conditions. This hypothesis is corroborated by analyses of flight parameters showing greater maneuvering associated with difficult phases of flight occurring during missed alarms. Our results suggest modulation of neural oscillation is a general mechanism of attention utilizing enhancement of phase synchrony to sharpen alarm perception during successful divided attention, and disruption of phase synchrony in brain networks when attentional demands of the primary task are great, such as in the case of inattentional deafness. © 2018 Wiley Periodicals, Inc.

  2. Incidental orthographic learning during a color detection task.

    PubMed

    Protopapas, Athanassios; Mitsi, Anna; Koustoumbardis, Miltiadis; Tsitsopoulou, Sofia M; Leventi, Marianna; Seitz, Aaron R

    2017-09-01

    Orthographic learning refers to the acquisition of knowledge about specific spelling patterns forming words and about general biases and constraints on letter sequences. It is thought to occur by strengthening simultaneously activated visual and phonological representations during reading. Here we demonstrate that a visual perceptual learning procedure that leaves no time for articulation can result in orthographic learning evidenced in improved reading and spelling performance. We employed task-irrelevant perceptual learning (TIPL), in which the stimuli to be learned are paired with an easy task target. Assorted line drawings and difficult-to-spell words were presented in red color among sequences of other black-colored words and images presented in rapid succession, constituting a fast-TIPL procedure with color detection being the explicit task. In five experiments, Greek children in Grades 4-5 showed increased recognition of words and images that had appeared in red, both during and after the training procedure, regardless of within-training testing, and also when targets appeared in blue instead of red. Significant transfer to reading and spelling emerged only after increased training intensity. In a sixth experiment, children in Grades 2-3 showed generalization to words not presented during training that carried the same derivational affixes as in the training set. We suggest that reinforcement signals related to detection of the target stimuli contribute to the strengthening of orthography-phonology connections beyond earlier levels of visually-based orthographic representation learning. These results highlight the potential of perceptual learning procedures for the reinforcement of higher-level orthographic representations. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. The development of real-time stability supports visual working memory performance: Young children's feature binding can be improved through perceptual structure.

    PubMed

    Simmering, Vanessa R; Wood, Chelsey M

    2017-08-01

    Working memory is a basic cognitive process that predicts higher-level skills. A central question in theories of working memory development is the generality of the mechanisms proposed to explain improvements in performance. Prior theories have been closely tied to particular tasks and/or age groups, limiting their generalizability. The cognitive dynamics theory of visual working memory development has been proposed to overcome this limitation. From this perspective, developmental improvements arise through the coordination of cognitive processes to meet demands of different behavioral tasks. This notion is described as real-time stability, and can be probed through experiments that assess how changing task demands impact children's performance. The current studies test this account by probing visual working memory for colors and shapes in a change detection task that compares detection of changes to new features versus swaps in color-shape binding. In Experiment 1, 3- to 4-year-old children showed impairments specific to binding swaps, as predicted by decreased real-time stability early in development; 5- to 6-year-old children showed a slight advantage on binding swaps, but 7- to 8-year-old children and adults showed no difference across trial types. Experiment 2 tested the proposed explanation of young children's binding impairment through added perceptual structure, which supported the stability and precision of feature localization in memory-a process key to detecting binding swaps. This additional structure improved young children's binding swap detection, but not new-feature detection or adults' performance. These results provide further evidence for the cognitive dynamics and real-time stability explanation of visual working memory development. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Distinct frontal and amygdala correlates of change detection for facial identity and expression

    PubMed Central

    Achaibou, Amal; Loth, Eva

    2016-01-01

    Recruitment of ‘top-down’ frontal attentional mechanisms is held to support detection of changes in task-relevant stimuli. Fluctuations in intrinsic frontal activity have been shown to impact task performance more generally. Meanwhile, the amygdala has been implicated in ‘bottom-up’ attentional capture by threat. Here, 22 adult human participants took part in a functional magnetic resonance change detection study aimed at investigating the correlates of successful (vs failed) detection of changes in facial identity vs expression. For identity changes, we expected prefrontal recruitment to differentiate ‘hit’ from ‘miss’ trials, in line with previous reports. Meanwhile, we postulated that a different mechanism would support detection of emotionally salient changes. Specifically, elevated amygdala activation was predicted to be associated with successful detection of threat-related changes in expression, over-riding the influence of fluctuations in top-down attention. Our findings revealed that fusiform activity tracked change detection across conditions. Ventrolateral prefrontal cortical activity was uniquely linked to detection of changes in identity not expression, and amygdala activity to detection of changes from neutral to fearful expressions. These results are consistent with distinct mechanisms supporting detection of changes in face identity vs expression, the former potentially reflecting top-down attention, the latter bottom-up attentional capture by stimulus emotional salience. PMID:26245835

  5. Neural Determinants of Task Performance during Feature-Based Attention in Human Cortex

    PubMed Central

    Gong, Mengyuan

    2018-01-01

    Abstract Studies of feature-based attention have associated activity in a dorsal frontoparietal network with putative attentional priority signals. Yet, how this neural activity mediates attentional selection and whether it guides behavior are fundamental questions that require investigation. We reasoned that endogenous fluctuations in the quality of attentional priority should influence task performance. Human subjects detected a speed increment while viewing clockwise (CW) or counterclockwise (CCW) motion (baseline task) or while attending to either direction amid distracters (attention task). In an fMRI experiment, direction-specific neural pattern similarity between the baseline task and the attention task revealed a higher level of similarity for correct than incorrect trials in frontoparietal regions. Using transcranial magnetic stimulation (TMS), we disrupted posterior parietal cortex (PPC) and found a selective deficit in the attention task, but not in the baseline task, demonstrating the necessity of this cortical area during feature-based attention. These results reveal that frontoparietal areas maintain attentional priority that facilitates successful behavioral selection. PMID:29497703

  6. Iconic memory requires attention

    PubMed Central

    Persuh, Marjan; Genzer, Boris; Melara, Robert D.

    2012-01-01

    Two experiments investigated whether attention plays a role in iconic memory, employing either a change detection paradigm (Experiment 1) or a partial-report paradigm (Experiment 2). In each experiment, attention was taxed during initial display presentation, focusing the manipulation on consolidation of information into iconic memory, prior to transfer into working memory. Observers were able to maintain high levels of performance (accuracy of change detection or categorization) even when concurrently performing an easy visual search task (low load). However, when the concurrent search was made difficult (high load), observers' performance dropped to almost chance levels, while search accuracy held at single-task levels. The effects of attentional load remained the same across paradigms. The results suggest that, without attention, participants consolidate in iconic memory only gross representations of the visual scene, information too impoverished for successful detection of perceptual change or categorization of features. PMID:22586389

  7. Iconic memory requires attention.

    PubMed

    Persuh, Marjan; Genzer, Boris; Melara, Robert D

    2012-01-01

    Two experiments investigated whether attention plays a role in iconic memory, employing either a change detection paradigm (Experiment 1) or a partial-report paradigm (Experiment 2). In each experiment, attention was taxed during initial display presentation, focusing the manipulation on consolidation of information into iconic memory, prior to transfer into working memory. Observers were able to maintain high levels of performance (accuracy of change detection or categorization) even when concurrently performing an easy visual search task (low load). However, when the concurrent search was made difficult (high load), observers' performance dropped to almost chance levels, while search accuracy held at single-task levels. The effects of attentional load remained the same across paradigms. The results suggest that, without attention, participants consolidate in iconic memory only gross representations of the visual scene, information too impoverished for successful detection of perceptual change or categorization of features.

  8. Vertex evoked potentials in a rating-scale detection task: Relation to signal probability

    NASA Technical Reports Server (NTRS)

    Squires, K. C.; Squires, N. K.; Hillyard, S. A.

    1974-01-01

    Vertex evoked potentials were recorded from human subjects performing in an auditory detection task with rating scale responses. Three values of a priori probability of signal presentation were tested. The amplitudes of the N1 and P3 components of the vertex potential associated with correct detections of the signal were found to be systematically related to the strictness of the response criterion and independent of variations in a priori signal probability. No similar evoked potential components were found associated with signal absent judgements (misses and correct rejections) regardless of the confidence level of the judgement or signal probability. These results strongly support the contention that the form of the vertex evoked response is closely correlated with the subject's psychophysical decision regarding the presence or absence of a threshold level signal.

  9. Joint Optimization of Fluence Field Modulation and Regularization in Task-Driven Computed Tomography

    PubMed Central

    Gang, G. J.; Siewerdsen, J. H.; Stayman, J. W.

    2017-01-01

    Purpose This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. Methods We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index (d′) across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength (β) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. Results The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. Conclusions The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM. PMID:28626290

  10. Fast Neural Dynamics of Proactive Cognitive Control in a Task-Switching Analogue of the Wisconsin Card Sorting Test.

    PubMed

    Gema Díaz-Blancat; Juan García-Prieto; Fernando Maestú; Francisco Barceló

    2018-05-01

    One common assumption has been that prefrontal executive control is mostly required for target detection (Posner and Petersen in Ann Rev Neurosci 13:25-42, 1990). Alternatively, cognitive control has also been related to anticipatory updating of task-set (contextual) information, a view that highlights proactive control processes. Frontoparietal cortical networks contribute to both proactive control and reactive target detection, although their fast dynamics are still largely unexplored. To examine this, we analyzed rapid magnetoencephalographic (MEG) source activations elicited by task cues and target cards in a task-cueing analogue of the Wisconsin Card Sorting Test. A single-task (color sorting) condition with equivalent perceptual and motor demands was used as a control. Our results revealed fast, transient and largely switch-specific MEG activations across frontoparietal and cingulo-opercular regions in anticipation of target cards, including (1) early (100-200 ms) cue-locked MEG signals at visual, temporo-parietal and prefrontal cortices of the right hemisphere (i.e., calcarine sulcus, precuneus, inferior frontal gyrus, anterior insula and supramarginal gyrus); and (2) later cue-locked MEG signals at the right anterior and posterior insula (200-300 ms) and the left temporo-parietal junction (300-500 ms). In all cases larger MEG signal intensity was observed in switch relative to repeat cueing conditions. Finally, behavioral restart costs and test scores of working memory capacity (forward digit span) correlated with cue-locked MEG activations at key nodes of the frontoparietal network. Together, our findings suggest that proactive cognitive control of task rule updating can be fast and transiently implemented within less than a second and in anticipation of target detection.

  11. Joint optimization of fluence field modulation and regularization in task-driven computed tomography

    NASA Astrophysics Data System (ADS)

    Gang, G. J.; Siewerdsen, J. H.; Stayman, J. W.

    2017-03-01

    Purpose: This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. Methods: We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index (d') across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength (β) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. Results: The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. Conclusions: The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM.

  12. Mental workload while driving: effects on visual search, discrimination, and decision making.

    PubMed

    Recarte, Miguel A; Nunes, Luis M

    2003-06-01

    The effects of mental workload on visual search and decision making were studied in real traffic conditions with 12 participants who drove an instrumented car. Mental workload was manipulated by having participants perform several mental tasks while driving. A simultaneous visual-detection and discrimination test was used as performance criteria. Mental tasks produced spatial gaze concentration and visual-detection impairment, although no tunnel vision occurred. According to ocular behavior analysis, this impairment was due to late detection and poor identification more than to response selection. Verbal acquisition tasks were innocuous compared with production tasks, and complex conversations, whether by phone or with a passenger, are dangerous for road safety.

  13. Dimension- and space-based intertrial effects in visual pop-out search: modulation by task demands for focal-attentional processing.

    PubMed

    Krummenacher, Joseph; Müller, Hermann J; Zehetleitner, Michael; Geyer, Thomas

    2009-03-01

    Two experiments compared reaction times (RTs) in visual search for singleton feature targets defined, variably across trials, in either the color or the orientation dimension. Experiment 1 required observers to simply discern target presence versus absence (simple-detection task); Experiment 2 required them to respond to a detection-irrelevant form attribute of the target (compound-search task). Experiment 1 revealed a marked dimensional intertrial effect of 34 ms for an target defined in a changed versus a repeated dimension, and an intertrial target distance effect, with an 4-ms increase in RTs (per unit of distance) as the separation of the current relative to the preceding target increased. Conversely, in Experiment 2, the dimension change effect was markedly reduced (11 ms), while the intertrial target distance effect was markedly increased (11 ms per unit of distance). The results suggest that dimension change/repetition effects are modulated by the amount of attentional focusing required by the task, with space-based attention altering the integration of dimension-specific feature contrast signals at the level of the overall-saliency map.

  14. Process dissociation and mixture signal detection theory.

    PubMed

    DeCarlo, Lawrence T

    2008-11-01

    The process dissociation procedure was developed in an attempt to separate different processes involved in memory tasks. The procedure naturally lends itself to a formulation within a class of mixture signal detection models. The dual process model is shown to be a special case. The mixture signal detection model is applied to data from a widely analyzed study. The results suggest that a process other than recollection may be involved in the process dissociation procedure.

  15. A bottom-up model of spatial attention predicts human error patterns in rapid scene recognition.

    PubMed

    Einhäuser, Wolfgang; Mundhenk, T Nathan; Baldi, Pierre; Koch, Christof; Itti, Laurent

    2007-07-20

    Humans demonstrate a peculiar ability to detect complex targets in rapidly presented natural scenes. Recent studies suggest that (nearly) no focal attention is required for overall performance in such tasks. Little is known, however, of how detection performance varies from trial to trial and which stages in the processing hierarchy limit performance: bottom-up visual processing (attentional selection and/or recognition) or top-down factors (e.g., decision-making, memory, or alertness fluctuations)? To investigate the relative contribution of these factors, eight human observers performed an animal detection task in natural scenes presented at 20 Hz. Trial-by-trial performance was highly consistent across observers, far exceeding the prediction of independent errors. This consistency demonstrates that performance is not primarily limited by idiosyncratic factors but by visual processing. Two statistical stimulus properties, contrast variation in the target image and the information-theoretical measure of "surprise" in adjacent images, predict performance on a trial-by-trial basis. These measures are tightly related to spatial attention, demonstrating that spatial attention and rapid target detection share common mechanisms. To isolate the causal contribution of the surprise measure, eight additional observers performed the animal detection task in sequences that were reordered versions of those all subjects had correctly recognized in the first experiment. Reordering increased surprise before and/or after the target while keeping the target and distractors themselves unchanged. Surprise enhancement impaired target detection in all observers. Consequently, and contrary to several previously published findings, our results demonstrate that attentional limitations, rather than target recognition alone, affect the detection of targets in rapidly presented visual sequences.

  16. Continuous robust sound event classification using time-frequency features and deep learning

    PubMed Central

    Song, Yan; Xiao, Wei; Phan, Huy

    2017-01-01

    The automatic detection and recognition of sound events by computers is a requirement for a number of emerging sensing and human computer interaction technologies. Recent advances in this field have been achieved by machine learning classifiers working in conjunction with time-frequency feature representations. This combination has achieved excellent accuracy for classification of discrete sounds. The ability to recognise sounds under real-world noisy conditions, called robust sound event classification, is an especially challenging task that has attracted recent research attention. Another aspect of real-word conditions is the classification of continuous, occluded or overlapping sounds, rather than classification of short isolated sound recordings. This paper addresses the classification of noise-corrupted, occluded, overlapped, continuous sound recordings. It first proposes a standard evaluation task for such sounds based upon a common existing method for evaluating isolated sound classification. It then benchmarks several high performing isolated sound classifiers to operate with continuous sound data by incorporating an energy-based event detection front end. Results are reported for each tested system using the new task, to provide the first analysis of their performance for continuous sound event detection. In addition it proposes and evaluates a novel Bayesian-inspired front end for the segmentation and detection of continuous sound recordings prior to classification. PMID:28892478

  17. Continuous robust sound event classification using time-frequency features and deep learning.

    PubMed

    McLoughlin, Ian; Zhang, Haomin; Xie, Zhipeng; Song, Yan; Xiao, Wei; Phan, Huy

    2017-01-01

    The automatic detection and recognition of sound events by computers is a requirement for a number of emerging sensing and human computer interaction technologies. Recent advances in this field have been achieved by machine learning classifiers working in conjunction with time-frequency feature representations. This combination has achieved excellent accuracy for classification of discrete sounds. The ability to recognise sounds under real-world noisy conditions, called robust sound event classification, is an especially challenging task that has attracted recent research attention. Another aspect of real-word conditions is the classification of continuous, occluded or overlapping sounds, rather than classification of short isolated sound recordings. This paper addresses the classification of noise-corrupted, occluded, overlapped, continuous sound recordings. It first proposes a standard evaluation task for such sounds based upon a common existing method for evaluating isolated sound classification. It then benchmarks several high performing isolated sound classifiers to operate with continuous sound data by incorporating an energy-based event detection front end. Results are reported for each tested system using the new task, to provide the first analysis of their performance for continuous sound event detection. In addition it proposes and evaluates a novel Bayesian-inspired front end for the segmentation and detection of continuous sound recordings prior to classification.

  18. Foveated model observers to predict human performance in 3D images

    NASA Astrophysics Data System (ADS)

    Lago, Miguel A.; Abbey, Craig K.; Eckstein, Miguel P.

    2017-03-01

    We evaluate 3D search requires model observers that take into account the peripheral human visual processing (foveated models) to predict human observer performance. We show that two different 3D tasks, free search and location-known detection, influence the relative human visual detectability of two signals of different sizes in synthetic backgrounds mimicking the noise found in 3D digital breast tomosynthesis. One of the signals resembled a microcalcification (a small and bright sphere), while the other one was designed to look like a mass (a larger Gaussian blob). We evaluated current standard models observers (Hotelling; Channelized Hotelling; non-prewhitening matched filter with eye filter, NPWE; and non-prewhitening matched filter model, NPW) and showed that they incorrectly predict the relative detectability of the two signals in 3D search. We propose a new model observer (3D Foveated Channelized Hotelling Observer) that incorporates the properties of the visual system over a large visual field (fovea and periphery). We show that the foveated model observer can accurately predict the rank order of detectability of the signals in 3D images for each task. Together, these results motivate the use of a new generation of foveated model observers for predicting image quality for search tasks in 3D imaging modalities such as digital breast tomosynthesis or computed tomography.

  19. Impact of number of repeated scans on model observer performance for a low-contrast detection task in computed tomography.

    PubMed

    Ma, Chi; Yu, Lifeng; Chen, Baiyu; Favazza, Christopher; Leng, Shuai; McCollough, Cynthia

    2016-04-01

    Channelized Hotelling observer (CHO) models have been shown to correlate well with human observers for several phantom-based detection/classification tasks in clinical computed tomography (CT). A large number of repeated scans were used to achieve an accurate estimate of the model's template. The purpose of this study is to investigate how the experimental and CHO model parameters affect the minimum required number of repeated scans. A phantom containing 21 low-contrast objects was scanned on a 128-slice CT scanner at three dose levels. Each scan was repeated 100 times. For each experimental configuration, the low-contrast detectability, quantified as the area under receiver operating characteristic curve, [Formula: see text], was calculated using a previously validated CHO with randomly selected subsets of scans, ranging from 10 to 100. Using [Formula: see text] from the 100 scans as the reference, the accuracy from a smaller number of scans was determined. Our results demonstrated that the minimum number of repeated scans increased when the radiation dose level decreased, object size and contrast level decreased, and the number of channels increased. As a general trend, it increased as the low-contrast detectability decreased. This study provides a basis for the experimental design of task-based image quality assessment in clinical CT using CHO.

  20. Impact of number of repeated scans on model observer performance for a low-contrast detection task in computed tomography

    PubMed Central

    Ma, Chi; Yu, Lifeng; Chen, Baiyu; Favazza, Christopher; Leng, Shuai; McCollough, Cynthia

    2016-01-01

    Abstract. Channelized Hotelling observer (CHO) models have been shown to correlate well with human observers for several phantom-based detection/classification tasks in clinical computed tomography (CT). A large number of repeated scans were used to achieve an accurate estimate of the model’s template. The purpose of this study is to investigate how the experimental and CHO model parameters affect the minimum required number of repeated scans. A phantom containing 21 low-contrast objects was scanned on a 128-slice CT scanner at three dose levels. Each scan was repeated 100 times. For each experimental configuration, the low-contrast detectability, quantified as the area under receiver operating characteristic curve, Az, was calculated using a previously validated CHO with randomly selected subsets of scans, ranging from 10 to 100. Using Az from the 100 scans as the reference, the accuracy from a smaller number of scans was determined. Our results demonstrated that the minimum number of repeated scans increased when the radiation dose level decreased, object size and contrast level decreased, and the number of channels increased. As a general trend, it increased as the low-contrast detectability decreased. This study provides a basis for the experimental design of task-based image quality assessment in clinical CT using CHO. PMID:27284547

  1. Task performance in astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Barrett, Harrison H.; Myers, Kyle J.; Devaney, Nicholas; Dainty, J. C.; Caucci, Luca

    2006-06-01

    In objective or task-based assessment of image quality, figures of merit are defined by the performance of some specific observer on some task of scientific interest. This methodology is well established in medical imaging but is just beginning to be applied in astronomy. In this paper we survey the theory needed to understand the performance of ideal or ideal-linear (Hotelling) observers on detection tasks with adaptive-optical data. The theory is illustrated by discussing its application to detection of exoplanets from a sequence of short-exposure images.

  2. Renewal of the Attentive Sensing Project

    DTIC Science & Technology

    2006-02-07

    decisions about target presence or absence, is denoted track before detect . We have investigated joint tracking and detection in the context of the foveal...computationally tractable bounds. 4 Task 2: Sensor Configuration for Tracking and Track Before Detect Task 2 consisted of investigation of attentive...strategy to multiple targets and to track before detect sensors. To apply principles developed in the context of foveal sensors to more immediately

  3. Is attention enough? A re-examination of the impact of feature-specific attention allocation on semantic priming effects in the pronunciation task.

    PubMed

    Becker, Manuel; Klauer, Karl Christoph; Spruyt, Adriaan

    2016-02-01

    In a series of articles, Spruyt and colleagues have developed the Feature-Specific Attention Allocation framework, stating that the semantic analysis of task-irrelevant stimuli is critically dependent upon dimension-specific attention allocation. In an adversarial collaboration, we replicate one experiment supporting this theory (Spruyt, de Houwer, & Hermans, 2009; Exp. 3), in which semantic priming effects in the pronunciation task were found to be restricted to stimulus dimensions that were task-relevant on induction trials. Two pilot studies showed the capability of our laboratory to detect priming effects in the pronunciation task, but also suggested that the original effect may be difficult to replicate. In this study, we tried to replicate the original experiment while ensuring adequate statistical power. Results show little evidence for dimension-specific priming effects. The present results provide further insight into the malleability of early semantic encoding processes, but also show the need for further research on this topic.

  4. Dermal, inhalation, and internal exposure to 1,6‐HDI and its oligomers in car body repair shop workers and industrial spray painters

    PubMed Central

    Pronk, A; Yu, F; Vlaanderen, J; Tielemans, E; Preller, L; Bobeldijk, I; Deddens, J A; Latza, U; Baur, X; Heederik, D

    2006-01-01

    Objectives To study inhalation and dermal exposure to hexamethylene diisocyanate (HDI) and its oligomers as well as personal protection equipment (PPE) use during task performance in conjunction with urinary hexamethylene diamine (HDA) in car body repair shop workers and industrial spray painters. Methods Personal task based inhalation samples (n = 95) were collected from six car body repair shops and five industrial painting companies using impingers with di‐n‐butylamine (DBA) in toluene. In parallel, dermal exposure was assessed using nitril rubber gloves. Gloves were submerged into DBA in toluene after sampling. Analysis for HDI and its oligomers was performed by LC‐MS/MS. Urine samples were collected from 55 workers (n = 291) and analysed for HDA by GC‐MS. Results Inhalation exposure was strongly associated with tasks during which aerosolisation occurs. Dermal exposure occurred during tasks that involve direct handling of paint. In car body repair shops associations were found between detectable dermal exposure and glove use (odds ratio (OR) 0.22, 95% confidence interval (CI) 0.09 to 0.57) and inhalation exposure level (OR 1.34, 95% CI 0.97 to 1.84 for a 10‐fold increase). HDA in urine could be demonstrated in 36% and 10% of car body repair shop workers and industrial painting company workers respectively. In car body repair shops, the frequency of detectable HDA was significantly elevated at the end of the working day (OR 2.13, 95% CI 1.07 to 4.22 for 3–6 pm v 0–8 am). In both branches HDA was detected in urine of ∼25% of the spray painters. In addition HDA was detected in urine of a large proportion of non‐spray painters in car body repair shops. Conclusion Although (spray) painting with lacquers containing isocyanate hardeners results in the highest external exposures to HDI and oligomers, workers that do not perform paint related tasks may also receive a considerable internal dose. PMID:16728504

  5. Mental workload and cognitive task automaticity: an evaluation of subjective and time estimation metrics.

    PubMed

    Liu, Y; Wickens, C D

    1994-11-01

    The evaluation of mental workload is becoming increasingly important in system design and analysis. The present study examined the structure and assessment of mental workload in performing decision and monitoring tasks by focusing on two mental workload measurements: subjective assessment and time estimation. The task required the assignment of a series of incoming customers to the shortest of three parallel service lines displayed on a computer monitor. The subject was either in charge of the customer assignment (manual mode) or was monitoring an automated system performing the same task (automatic mode). In both cases, the subjects were required to detect the non-optimal assignments that they or the computer had made. Time pressure was manipulated by the experimenter to create fast and slow conditions. The results revealed a multi-dimensional structure of mental workload and a multi-step process of subjective workload assessment. The results also indicated that subjective workload was more influenced by the subject's participatory mode than by the factor of task speed. The time estimation intervals produced while performing the decision and monitoring tasks had significantly greater length and larger variability than those produced while either performing no other tasks or performing a well practised customer assignment task. This result seemed to indicate that time estimation was sensitive to the presence of perceptual/cognitive demands, but not to response related activities to which behavioural automaticity has developed.

  6. Denoising forced-choice detection data.

    PubMed

    García-Pérez, Miguel A

    2010-02-01

    Observers in a two-alternative forced-choice (2AFC) detection task face the need to produce a response at random (a guess) on trials in which neither presentation appeared to display a stimulus. Observers could alternatively be instructed to use a 'guess' key on those trials, a key that would produce a random guess and would also record the resultant correct or wrong response as emanating from a computer-generated guess. A simulation study shows that 'denoising' 2AFC data with information regarding which responses are a result of guesses yields estimates of detection threshold and spread of the psychometric function that are far more precise than those obtained in the absence of this information, and parallel the precision of estimates obtained with yes-no tasks running for the same number of trials. Simulations also show that partial compliance with the instructions to use the 'guess' key reduces the quality of the estimates, which nevertheless continue to be more precise than those obtained from conventional 2AFC data if the observers are still moderately compliant. An empirical study testing the validity of simulation results showed that denoised 2AFC estimates of spread were clearly superior to conventional 2AFC estimates and similar to yes-no estimates, but variations in threshold across observers and across sessions hid the benefits of denoising for threshold estimation. The empirical study also proved the feasibility of using a 'guess' key in addition to the conventional response keys defined in 2AFC tasks.

  7. The influence of spatial resolution and smoothing on the detectability of resting-state and task fMRI.

    PubMed

    Molloy, Erin K; Meyerand, Mary E; Birn, Rasmus M

    2014-02-01

    Functional MRI blood oxygen level-dependent (BOLD) signal changes can be subtle, motivating the use of imaging parameters and processing strategies that maximize the temporal signal-to-noise ratio (tSNR) and thus the detection power of neuronal activity-induced fluctuations. Previous studies have shown that acquiring data at higher spatial resolutions results in greater percent BOLD signal changes, and furthermore that spatially smoothing higher resolution fMRI data improves tSNR beyond that of data originally acquired at a lower resolution. However, higher resolution images come at the cost of increased acquisition time, and the number of image volumes also influences detectability. The goal of our study is to determine how the detection power of neuronally induced BOLD fluctuations acquired at higher spatial resolutions and then spatially smoothed compares to data acquired at the lower resolutions with the same imaging duration. The number of time points acquired during a given amount of imaging time is a practical consideration given the limited ability of certain populations to lie still in the MRI scanner. We compare acquisitions at three different in-plane spatial resolutions (3.50×3.50mm(2), 2.33×2.33mm(2), 1.75×1.75mm(2)) in terms of their tSNR, contrast-to-noise ratio, and the power to detect both task-related activation and resting-state functional connectivity. The impact of SENSE acceleration, which speeds up acquisition time increasing the number of images collected, is also evaluated. Our results show that after spatially smoothing the data to the same intrinsic resolution, lower resolution acquisitions have a slightly higher detection power of task-activation in some, but not all, brain areas. There were no significant differences in functional connectivity as a function of resolution after smoothing. Similarly, the reduced tSNR of fMRI data acquired with a SENSE factor of 2 is offset by the greater number of images acquired, resulting in few significant differences in detection power of either functional activation or connectivity after spatial smoothing. © 2013.

  8. Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum)

    USGS Publications Warehouse

    Goldberg, Caren S.; Sepulveda, Adam; Ray, Andrew; Baumgardt, Jeremy A.; Waits, Lisette P.

    2013-01-01

    Early detection of aquatic invasive species is a critical task for management of aquatic ecosystems. This task is hindered by the difficulty and cost of surveying aquatic systems thoroughly. The New Zealand mudsnail (Potamopyrgus antipodarum) is a small, invasive parthenogenic mollusk that can reach very high population densities and severely affects ecosystem functioning. To assist in the early detection of this invasive species, we developed and validated a highly sensitive environmental deoxyribonucleic acid (eDNA) assay. We used a dose–response laboratory experiment to investigate the relationship between New Zealand mudsnail density and eDNA detected through time. We documented that as few as 1 individual in 1.5 L of water for 2 d could be detected with this method, and that eDNA from this species may remain detectable for 21 to 44 d after mudsnail removal. We used the eDNA method to confirm the presence of New Zealand mudsnail eDNA at densities as low as 11 to 144 snails/m2 in a eutrophic 5th-order river. Combined, these results demonstrate the high potential for eDNA surveys to assist with early detection of a widely distributed invasive aquatic invertebrate.

  9. Proactive Interference Does Not Meaningfully Distort Visual Working Memory Capacity Estimates in the Canonical Change Detection Task

    PubMed Central

    Lin, Po-Han; Luck, Steven J.

    2012-01-01

    The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task – in which the to-be-remembered information consists of simple, briefly presented features – is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference. PMID:22403556

  10. Proactive interference does not meaningfully distort visual working memory capacity estimates in the canonical change detection task.

    PubMed

    Lin, Po-Han; Luck, Steven J

    2012-01-01

    The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task - in which the to-be-remembered information consists of simple, briefly presented features - is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference.

  11. When Interference Helps: Increasing Executive Load to Facilitate Deception Detection in the Concealed Information Test

    PubMed Central

    Visu-Petra, George; Varga, Mihai; Miclea, Mircea; Visu-Petra, Laura

    2013-01-01

    The possibility to enhance the detection efficiency of the Concealed Information Test (CIT) by increasing executive load was investigated, using an interference design. After learning and executing a mock crime scenario, subjects underwent three deception detection tests: an RT-based CIT, an RT-based CIT plus a concurrent memory task (CITMem), and an RT-based CIT plus a concurrent set-shifting task (CITShift). The concealed information effect, consisting in increased RT and lower response accuracy for probe items compared to irrelevant items, was evidenced across all three conditions. The group analyses indicated a larger difference between RTs to probe and irrelevant items in the dual-task conditions, but this difference was not translated in a significantly increased detection efficiency at an individual level. Signal detection parameters based on the comparison with a simulated innocent group showed accurate discrimination for all conditions. Overall response accuracy on the CITMem was highest and the difference between response accuracy to probes and irrelevants was smallest in this condition. Accuracy on the concurrent tasks (Mem and Shift) was high, and responses on these tasks were significantly influenced by CIT stimulus type (probes vs. irrelevants). The findings are interpreted in relation to the cognitive load/dual-task interference literature, generating important insights for research on the involvement of executive functions in deceptive behavior. PMID:23543918

  12. Optimized in vivo detection of dopamine release using 18F-fallypride PET.

    PubMed

    Ceccarini, Jenny; Vrieze, Elske; Koole, Michel; Muylle, Tom; Bormans, Guy; Claes, Stephan; Van Laere, Koen

    2012-10-01

    The high-affinity D(2/3) PET radioligand (18)F-fallypride offers the possibility of measuring both striatal and extrastriatal dopamine release during activation paradigms. When a single (18)F-fallypride scanning protocol is used, task timing is critical to the ability to explore both striatal and extrastriatal dopamine release simultaneously. We evaluated the sensitivity and optimal timing of task administration for a single (18)F-fallypride PET protocol and the linearized simplified reference region kinetic model in detecting both striatal and extrastriatal reward-induced dopamine release, using human and simulation studies. Ten healthy volunteers underwent a single-bolus (18)F-fallypride PET protocol. A reward responsiveness learning task was initiated at 100 min after injection. PET data were analyzed using the linearized simplified reference region model, which accounts for time-dependent changes in (18)F-fallypride displacement. Voxel-based statistical maps, reflecting task-induced D(2/3) ligand displacement, and volume-of-interest-based analysis were performed to localize areas with increased ligand displacement after task initiation, thought to be proportional to changes in endogenous dopamine release (γ parameter). Simulated time-activity curves for baseline and hypothetical dopamine release functions (different peak heights of dopamine and task timings) were generated using the enhanced receptor-binding kinetic model to investigate γ as a function of these parameters. The reward task induced increased ligand displacement in extrastriatal regions of the reward circuit, including the medial orbitofrontal cortex, ventromedial prefrontal cortex, and dorsal anterior cingulate cortex. For task timing of 100 min, ligand displacement was found for the striatum only when peak height of dopamine was greater than 240 nM, whereas for frontal regions, γ was always positive for all task timings and peak heights of dopamine. Simulation results for a peak height of dopamine of 200 nM showed that an effect of striatal ligand displacement could be detected only when task timing was greater than 120 min. The prefrontal and anterior cingulate cortices are involved in reward responsiveness that can be measured using (18)F-fallypride PET in a single scanning session. To measure both striatal and extrastriatal dopamine release, the height of dopamine released and task timing need to be considered in designing activation studies depending on regional D(2/3) density.

  13. Covariance descriptor fusion for target detection

    NASA Astrophysics Data System (ADS)

    Cukur, Huseyin; Binol, Hamidullah; Bal, Abdullah; Yavuz, Fatih

    2016-05-01

    Target detection is one of the most important topics for military or civilian applications. In order to address such detection tasks, hyperspectral imaging sensors provide useful images data containing both spatial and spectral information. Target detection has various challenging scenarios for hyperspectral images. To overcome these challenges, covariance descriptor presents many advantages. Detection capability of the conventional covariance descriptor technique can be improved by fusion methods. In this paper, hyperspectral bands are clustered according to inter-bands correlation. Target detection is then realized by fusion of covariance descriptor results based on the band clusters. The proposed combination technique is denoted Covariance Descriptor Fusion (CDF). The efficiency of the CDF is evaluated by applying to hyperspectral imagery to detect man-made objects. The obtained results show that the CDF presents better performance than the conventional covariance descriptor.

  14. Flexibility in data interpretation: effects of representational format

    PubMed Central

    Braithwaite, David W.; Goldstone, Robert L.

    2013-01-01

    Graphs and tables differentially support performance on specific tasks. For tasks requiring reading off single data points, tables are as good as or better than graphs, while for tasks involving relationships among data points, graphs often yield better performance. However, the degree to which graphs and tables support flexibility across a range of tasks is not well-understood. In two experiments, participants detected main and interaction effects in line graphs and tables of bivariate data. Graphs led to more efficient performance, but also lower flexibility, as indicated by a larger discrepancy in performance across tasks. In particular, detection of main effects of variables represented in the graph legend was facilitated relative to detection of main effects of variables represented in the x-axis. Graphs may be a preferable representational format when the desired task or analytical perspective is known in advance, but may also induce greater interpretive bias than tables, necessitating greater care in their use and design. PMID:24427145

  15. High-level, but not low-level, motion perception is impaired in patients with schizophrenia.

    PubMed

    Kandil, Farid I; Pedersen, Anya; Wehnes, Jana; Ohrmann, Patricia

    2013-01-01

    Smooth pursuit eye movements are compromised in patients with schizophrenia and their first-degree relatives. Although research has demonstrated that the motor components of smooth pursuit eye movements are intact, motion perception has been shown to be impaired. In particular, studies have consistently revealed deficits in performance on tasks specific to the high-order motion area V5 (middle temporal area, MT) in patients with schizophrenia. In contrast, data from low-level motion detectors in the primary visual cortex (V1) have been inconsistent. To differentiate between low-level and high-level visual motion processing, we applied a temporal-order judgment task for motion events and a motion-defined figure-ground segregation task using patients with schizophrenia and healthy controls. Successful judgments in both tasks rely on the same low-level motion detectors in the V1; however, the first task is further processed in the higher-order motion area MT in the magnocellular (dorsal) pathway, whereas the second task requires subsequent computations in the parvocellular (ventral) pathway in visual area V4 and the inferotemporal cortex (IT). These latter structures are supposed to be intact in schizophrenia. Patients with schizophrenia revealed a significantly impaired temporal resolution on the motion-based temporal-order judgment task but only mild impairment in the motion-based segregation task. These results imply that low-level motion detection in V1 is not, or is only slightly, compromised; furthermore, our data restrain the locus of the well-known deficit in motion detection to areas beyond the primary visual cortex.

  16. The relationship between sustained attention and aerobic fitness in a group of young adults.

    PubMed

    Ciria, Luis F; Perakakis, Pandelis; Luque-Casado, Antonio; Morato, Cristina; Sanabria, Daniel

    2017-01-01

    A growing set of studies has shown a positive relationship between aerobic fitness and a broad array of cognitive functions. However, few studies have focused on sustained attention, which has been considered a fundamental cognitive process that underlies most everyday activities. The purpose of this study was to investigate the role of aerobic fitness as a key factor in sustained attention capacities in young adults. Forty-four young adults (18-23 years) were divided into two groups as a function of the level of aerobic fitness (high-fit and low-fit). Participants completed the Psychomotor Vigilance Task (PVT) and an oddball task where they had to detect infrequent targets presented among frequent non-targets. The analysis of variance (ANOVA) showed faster responses for the high-fit group than for the low-fit group in the PVT, replicating previous accounts. In the oddball task, the high-fit group maintained their accuracy (ACC) rate of target detection over time, while the low-fit group suffered a significant decline of response ACC throughout the task. Importantly, the results show that the greater sustained attention capacity of high-fit young adults is not specific to a reaction time (RT) sustained attention task like the PVT, but it is also evident in an ACC oddball task. In sum, the present findings point to the important role of aerobic fitness on sustained attention capacities in young adults.

  17. The Impact of Precaution and Practice on the Performance of a Risky Motor Task

    PubMed Central

    Keren, Hila; Boyer, Pascal; Mort, Joel; Eilam, David

    2013-01-01

    The association between threat perception and motor execution, mediated by evolved precaution systems, often results in ritual-like behavior, including many idiosyncratic acts that seem irrelevant to the task at hand. This study tested the hypothesis that threat-detection during performance of a risky motor task would result in idiosyncratic activity that is not necessary for task completion. We asked biology students to follow a particular set of instructions in mixing three solutions labeled “bio-hazardous” and then repeat this operation with “non-hazardous” substances (or vice versa). We observed a longer duration of the overall performance, a greater repertoire of acts, longer maximal act duration, and longer mean duration of acts in the “risky” task when it was performed before the “non-risky” task. Some, but not all, of these differences were eliminated when a “non-risky” task preceded the “risky” one. The increased performance of idiosyncratic unnecessary activity is in accordance with the working hypothesis of the present study: ritualized idiosyncratic activities are performed in response to a real or illusionary threat, as a means to alleviate anxiety. PMID:25379241

  18. Basic Timing Abilities Stay Intact in Patients with Musician's Dystonia

    PubMed Central

    van der Steen, M. C.; van Vugt, Floris T.; Keller, Peter E.; Altenmüller, Eckart

    2014-01-01

    Task-specific focal dystonia is a movement disorder that is characterized by the loss of voluntary motor control in extensively trained movements. Musician's dystonia is a type of task-specific dystonia that is elicited in professional musicians during instrumental playing. The disorder has been associated with deficits in timing. In order to test the hypothesis that basic timing abilities are affected by musician's dystonia, we investigated a group of patients (N = 15) and a matched control group (N = 15) on a battery of sensory and sensorimotor synchronization tasks. Results did not show any deficits in auditory-motor processing for patients relative to controls. Both groups benefited from a pacing sequence that adapted to their timing (in a sensorimotor synchronization task at a stable tempo). In a purely perceptual task, both groups were able to detect a misaligned metronome when it was late rather than early relative to a musical beat. Overall, the results suggest that basic timing abilities stay intact in patients with musician's dystonia. This supports the idea that musician's dystonia is a highly task-specific movement disorder in which patients are mostly impaired in tasks closely related to the demands of actually playing their instrument. PMID:24667273

  19. Pain judgements of patients' relatives: examining the use of social contract theory as theoretical framework.

    PubMed

    Kappesser, Judith; de C Williams, Amanda C

    2008-08-01

    Observer underestimation of others' pain was studied using a concept from evolutionary psychology: a cheater detection mechanism from social contract theory, applied to relatives and friends of chronic pain patients. 127 participants estimated characters' pain intensity and fairness of behaviour after reading four vignettes describing characters suffering from pain. Four cues were systematically varied: the character continuing or stopping liked tasks; continuing or stopping disliked tasks; availability of medical evidence; and pain intensity as rated by characters. Results revealed that pain intensity and the two behavioural variables had an effect on pain estimates: high pain self-reports and stopping all tasks led to high pain estimates; pain was estimated to be lowest when characters stopped disliked but continued with liked tasks. This combination was also rated least fair. Results support the use of social contract theory as a theoretical framework to explore pain judgements.

  20. Single-task and dual-task tandem gait test performance after concussion.

    PubMed

    Howell, David R; Osternig, Louis R; Chou, Li-Shan

    2017-07-01

    To compare single-task and dual-task tandem gait test performance between athletes after concussion with controls on observer-timed, spatio-temporal, and center-of-mass (COM) balance control measurements. Ten participants (19.0±5.5years) were prospectively identified and completed a tandem gait test protocol within 72h of concussion and again 1 week, 2 weeks, 1 month, and 2 months post-injury. Seven uninjured controls (20.0±4.5years) completed the same protocol in similar time increments. Tandem gait test trials were performed with (dual-task) and without (single-task) concurrently performing a cognitive test as whole-body motion analysis was performed. Outcome variables included test completion time, average tandem gait velocity, cadence, and whole-body COM frontal plane displacement. Concussion participants took significantly longer to complete the dual-task tandem gait test than controls throughout the first 2 weeks post-injury (mean time=16.4 [95% CI: 13.4-19.4] vs. 10.1 [95% CI: 6.4-13.7] seconds; p=0.03). Single-task tandem gait times were significantly lower 72h post-injury (p=0.04). Dual-task cadence was significantly lower for concussion participants than controls (89.5 [95% CI: 68.6-110.4] vs. 127.0 [95% CI: 97.4-156.6] steps/minute; p=0.04). Moderately-high to high correlations between tandem gait test time and whole-body COM medial-lateral displacement were detected at each time point during dual-task gait (r s =0.70-0.93; p=0.03-0.001). Adding a cognitive task during the tandem gait test resulted in longer detectable deficits post-concussion compared to the traditional single-task tandem gait test. As a clinical tool to assess dynamic motor function, tandem gait may assist with return to sport decisions after concussion. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Asynchronous P300 classification in a reactive brain-computer interface during an outlier detection task

    NASA Astrophysics Data System (ADS)

    Krumpe, Tanja; Walter, Carina; Rosenstiel, Wolfgang; Spüler, Martin

    2016-08-01

    Objective. In this study, the feasibility of detecting a P300 via an asynchronous classification mode in a reactive EEG-based brain-computer interface (BCI) was evaluated. The P300 is one of the most popular BCI control signals and therefore used in many applications, mostly for active communication purposes (e.g. P300 speller). As the majority of all systems work with a stimulus-locked mode of classification (synchronous), the field of applications is limited. A new approach needs to be applied in a setting in which a stimulus-locked classification cannot be used due to the fact that the presented stimuli cannot be controlled or predicted by the system. Approach. A continuous observation task requiring the detection of outliers was implemented to test such an approach. The study was divided into an offline and an online part. Main results. Both parts of the study revealed that an asynchronous detection of the P300 can successfully be used to detect single events with high specificity. It also revealed that no significant difference in performance was found between the synchronous and the asynchronous approach. Significance. The results encourage the use of an asynchronous classification approach in suitable applications without a potential loss in performance.

  2. Masked and unmasked error-related potentials during continuous control and feedback

    NASA Astrophysics Data System (ADS)

    Lopes Dias, Catarina; Sburlea, Andreea I.; Müller-Putz, Gernot R.

    2018-06-01

    The detection of error-related potentials (ErrPs) in tasks with discrete feedback is well established in the brain–computer interface (BCI) field. However, the decoding of ErrPs in tasks with continuous feedback is still in its early stages. Objective. We developed a task in which subjects have continuous control of a cursor’s position by means of a joystick. The cursor’s position was shown to the participants in two different modalities of continuous feedback: normal and jittered. The jittered feedback was created to mimic the instability that could exist if participants controlled the trajectory directly with brain signals. Approach. This paper studies the electroencephalographic (EEG)—measurable signatures caused by a loss of control over the cursor’s trajectory, causing a target miss. Main results. In both feedback modalities, time-locked potentials revealed the typical frontal-central components of error-related potentials. Errors occurring during the jittered feedback (masked errors) were delayed in comparison to errors occurring during normal feedback (unmasked errors). Masked errors displayed lower peak amplitudes than unmasked errors. Time-locked classification analysis allowed a good distinction between correct and error classes (average Cohen-, average TPR  =  81.8% and average TNR  =  96.4%). Time-locked classification analysis between masked error and unmasked error classes revealed results at chance level (average Cohen-, average TPR  =  60.9% and average TNR  =  58.3%). Afterwards, we performed asynchronous detection of ErrPs, combining both masked and unmasked trials. The asynchronous detection of ErrPs in a simulated online scenario resulted in an average TNR of 84.0% and in an average TPR of 64.9%. Significance. The time-locked classification results suggest that the masked and unmasked errors were indistinguishable in terms of classification. The asynchronous classification results suggest that the feedback modality did not hinder the asynchronous detection of ErrPs.

  3. Exploiting ensemble learning for automatic cataract detection and grading.

    PubMed

    Yang, Ji-Jiang; Li, Jianqiang; Shen, Ruifang; Zeng, Yang; He, Jian; Bi, Jing; Li, Yong; Zhang, Qinyan; Peng, Lihui; Wang, Qing

    2016-02-01

    Cataract is defined as a lenticular opacity presenting usually with poor visual acuity. It is one of the most common causes of visual impairment worldwide. Early diagnosis demands the expertise of trained healthcare professionals, which may present a barrier to early intervention due to underlying costs. To date, studies reported in the literature utilize a single learning model for retinal image classification in grading cataract severity. We present an ensemble learning based approach as a means to improving diagnostic accuracy. Three independent feature sets, i.e., wavelet-, sketch-, and texture-based features, are extracted from each fundus image. For each feature set, two base learning models, i.e., Support Vector Machine and Back Propagation Neural Network, are built. Then, the ensemble methods, majority voting and stacking, are investigated to combine the multiple base learning models for final fundus image classification. Empirical experiments are conducted for cataract detection (two-class task, i.e., cataract or non-cataractous) and cataract grading (four-class task, i.e., non-cataractous, mild, moderate or severe) tasks. The best performance of the ensemble classifier is 93.2% and 84.5% in terms of the correct classification rates for cataract detection and grading tasks, respectively. The results demonstrate that the ensemble classifier outperforms the single learning model significantly, which also illustrates the effectiveness of the proposed approach. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in Freehand Ultrasound.

    PubMed

    Baumgartner, Christian F; Kamnitsas, Konstantinos; Matthew, Jacqueline; Fletcher, Tara P; Smith, Sandra; Koch, Lisa M; Kainz, Bernhard; Rueckert, Daniel

    2017-11-01

    Identifying and interpreting fetal standard scan planes during 2-D ultrasound mid-pregnancy examinations are highly complex tasks, which require years of training. Apart from guiding the probe to the correct location, it can be equally difficult for a non-expert to identify relevant structures within the image. Automatic image processing can provide tools to help experienced as well as inexperienced operators with these tasks. In this paper, we propose a novel method based on convolutional neural networks, which can automatically detect 13 fetal standard views in freehand 2-D ultrasound data as well as provide a localization of the fetal structures via a bounding box. An important contribution is that the network learns to localize the target anatomy using weak supervision based on image-level labels only. The network architecture is designed to operate in real-time while providing optimal output for the localization task. We present results for real-time annotation, retrospective frame retrieval from saved videos, and localization on a very large and challenging dataset consisting of images and video recordings of full clinical anomaly screenings. We found that the proposed method achieved an average F1-score of 0.798 in a realistic classification experiment modeling real-time detection, and obtained a 90.09% accuracy for retrospective frame retrieval. Moreover, an accuracy of 77.8% was achieved on the localization task.

  5. Auditory Deficits in Amusia Extend Beyond Poor Pitch Perception

    PubMed Central

    Whiteford, Kelly L.; Oxenham, Andrew J.

    2017-01-01

    Congenital amusia is a music perception disorder believed to reflect a deficit in fine-grained pitch perception and/or short-term or working memory for pitch. Because most measures of pitch perception include memory and segmentation components, it has been difficult to determine the true extent of pitch processing deficits in amusia. It is also unclear whether pitch deficits persist at frequencies beyond the range of musical pitch. To address these questions, experiments were conducted with amusics and matched controls, manipulating both the stimuli and the task demands. First, we assessed pitch discrimination at low (500 Hz and 2000 Hz) and high (8000 Hz) frequencies using a three-interval forced-choice task. Amusics exhibited deficits even at the highest frequency, which lies beyond the existence region of musical pitch. Next, we assessed the extent to which frequency coding deficits persist in one- and two-interval frequency-modulation (FM) and amplitude-modulation (AM) detection tasks at 500 Hz at slow (fm = 4 Hz) and fast (fm = 20 Hz) modulation rates. Amusics still exhibited deficits in one-interval FM detection tasks that should not involve memory or segmentation. Surprisingly, amusics were also impaired on AM detection, which should not involve pitch processing. Finally, direct comparisons between the detection of continuous and discrete FM demonstrated that amusics suffer deficits both in coding and segmenting pitch information. Our results reveal auditory deficits in amusia extending beyond pitch perception that are subtle when controlling for memory and segmentation, and are likely exacerbated in more complex contexts such as musical listening. PMID:28315696

  6. High-Performance Signal Detection for Adverse Drug Events using MapReduce Paradigm.

    PubMed

    Fan, Kai; Sun, Xingzhi; Tao, Ying; Xu, Linhao; Wang, Chen; Mao, Xianling; Peng, Bo; Pan, Yue

    2010-11-13

    Post-marketing pharmacovigilance is important for public health, as many Adverse Drug Events (ADEs) are unknown when those drugs were approved for marketing. However, due to the large number of reported drugs and drug combinations, detecting ADE signals by mining these reports is becoming a challenging task in terms of computational complexity. Recently, a parallel programming model, MapReduce has been introduced by Google to support large-scale data intensive applications. In this study, we proposed a MapReduce-based algorithm, for common ADE detection approach, Proportional Reporting Ratio (PRR), and tested it in mining spontaneous ADE reports from FDA. The purpose is to investigate the possibility of using MapReduce principle to speed up biomedical data mining tasks using this pharmacovigilance case as one specific example. The results demonstrated that MapReduce programming model could improve the performance of common signal detection algorithm for pharmacovigilance in a distributed computation environment at approximately liner speedup rates.

  7. States of Awareness I: Subliminal Perception Relationship to Situational Awareness

    DTIC Science & Technology

    1993-05-01

    one experiment, the visual detection threshold was raised by simultaneous auditory stimulation involving subliminal emotional words. Similar results...an assessment was made of the effects of both subliminal and supraliminal auditory accessory stimulation (white noise) on a visual detection task... stimulation investigation. Both subliminal and supraliminal auditory stimulation were employed to evaluate possible differential effects in visual illusions

  8. Active optical sensors for tree stem detection and classification in nurseries.

    PubMed

    Garrido, Miguel; Perez-Ruiz, Manuel; Valero, Constantino; Gliever, Chris J; Hanson, Bradley D; Slaughter, David C

    2014-06-19

    Active optical sensing (LIDAR and light curtain transmission) devices mounted on a mobile platform can correctly detect, localize, and classify trees. To conduct an evaluation and comparison of the different sensors, an optical encoder wheel was used for vehicle odometry and provided a measurement of the linear displacement of the prototype vehicle along a row of tree seedlings as a reference for each recorded sensor measurement. The field trials were conducted in a juvenile tree nursery with one-year-old grafted almond trees at Sierra Gold Nurseries, Yuba City, CA, United States. Through these tests and subsequent data processing, each sensor was individually evaluated to characterize their reliability, as well as their advantages and disadvantages for the proposed task. Test results indicated that 95.7% and 99.48% of the trees were successfully detected with the LIDAR and light curtain sensors, respectively. LIDAR correctly classified, between alive or dead tree states at a 93.75% success rate compared to 94.16% for the light curtain sensor. These results can help system designers select the most reliable sensor for the accurate detection and localization of each tree in a nursery, which might allow labor-intensive tasks, such as weeding, to be automated without damaging crops.

  9. E-learning, dual-task, and cognitive load: The anatomy of a failed experiment.

    PubMed

    Van Nuland, Sonya E; Rogers, Kem A

    2016-01-01

    The rising popularity of commercial anatomy e-learning tools has been sustained, in part, due to increased annual enrollment and a reduction in laboratory hours across educational institutions. While e-learning tools continue to gain popularity, the research methodologies used to investigate their impact on learning remain imprecise. As new user interfaces are introduced, it is critical to understand how functionality can influence the load placed on a student's memory resources, also known as cognitive load. To study cognitive load, a dual-task paradigm wherein a learner performs two tasks simultaneously is often used, however, its application within educational research remains uncommon. Using previous paradigms as a guide, a dual-task methodology was developed to assess the cognitive load imposed by two commercial anatomical e-learning tools. Results indicate that the standard dual-task paradigm, as described in the literature, is insensitive to the cognitive load disparities across e-learning tool interfaces. Confounding variables included automation of responses, task performance tradeoff, and poor understanding of primary task cognitive load requirements, leading to unreliable quantitative results. By modifying the secondary task from a basic visual response to a more cognitively demanding task, such as a modified Stroop test, the automation of secondary task responses can be reduced. Furthermore, by recording baseline measures for the primary task as well as the secondary task, it is possible for task performance tradeoff to be detected. Lastly, it is imperative that the cognitive load of the primary task be designed such that it does not overwhelm the individual's ability to learn new material. © 2015 American Association of Anatomists.

  10. Reducing radiation dose to the female breast during CT coronary angiography: A simulation study comparing breast shielding, angular tube current modulation, reduced kV, and partial angle protocols using an unknown-location signal-detectability metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rupcich, Franco; Gilat Schmidt, Taly; Badal, Andreu

    2013-08-15

    Purpose: The authors compared the performance of five protocols intended to reduce dose to the breast during computed tomography (CT) coronary angiography scans using a model observer unknown-location signal-detectability metric.Methods: The authors simulated CT images of an anthropomorphic female thorax phantom for a 120 kV reference protocol and five “dose reduction” protocols intended to reduce dose to the breast: 120 kV partial angle (posteriorly centered), 120 kV tube-current modulated (TCM), 120 kV with shielded breasts, 80 kV, and 80 kV partial angle (posteriorly centered). Two image quality tasks were investigated: the detection and localization of 4-mm, 3.25 mg/ml and 1-mm,more » 6.0 mg/ml iodine contrast signals randomly located in the heart region. For each protocol, the authors plotted the signal detectability, as quantified by the area under the exponentially transformed free response characteristic curve estimator (A-caret{sub FE}), as well as noise and contrast-to-noise ratio (CNR) versus breast and lung dose. In addition, the authors quantified each protocol's dose performance as the percent difference in dose relative to the reference protocol achieved while maintaining equivalent A-caret{sub FE}.Results: For the 4-mm signal-size task, the 80 kV full scan and 80 kV partial angle protocols decreased dose to the breast (80.5% and 85.3%, respectively) and lung (80.5% and 76.7%, respectively) with A-caret{sub FE} = 0.96, but also resulted in an approximate three-fold increase in image noise. The 120 kV partial protocol reduced dose to the breast (17.6%) at the expense of increased lung dose (25.3%). The TCM algorithm decreased dose to the breast (6.0%) and lung (10.4%). Breast shielding increased breast dose (67.8%) and lung dose (103.4%). The 80 kV and 80 kV partial protocols demonstrated greater dose reductions for the 4-mm task than for the 1-mm task, and the shielded protocol showed a larger increase in dose for the 4-mm task than for the 1-mm task. In general, the CNR curves indicate a similar relative ranking of protocol performance as the corresponding A-caret{sub FE} curves, however, the CNR metric overestimated the performance of the shielded protocol for both tasks, leading to corresponding underestimates in the relative dose increases compared to those obtained when using the A-caret{sub FE} metric.Conclusions: The 80 kV and 80 kV partial angle protocols demonstrated the greatest reduction to breast and lung dose, however, the subsequent increase in image noise may be deemed clinically unacceptable. Tube output for these protocols can be adjusted to achieve a more desirable noise level with lesser breast dose savings. Breast shielding increased breast and lung dose when maintaining equivalent A-caret{sub FE}. The results demonstrated that comparisons of dose performance depend on both the image quality metric and the specific task, and that CNR may not be a reliable metric of signal detectability.« less

  11. Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach

    PubMed Central

    Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Åslund, Magnus

    2012-01-01

    Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption contrast. Talbot interferometry with a plane wave increased detectability for 0.1-mm tumor and glandular structures by a factor of 3–4 at equal dose, whereas absorption contrast was the preferred method for structures larger than ∼0.5 mm. Microcalcifications are small, but differ from soft tissue in atomic number more than density, which is favored by absorption contrast, and Talbot interferometry was barely beneficial at all within the resolution limit of the system. Further, Talbot interferometry favored detection of “sharp” as opposed to “smooth” structures, and discrimination tasks by about 50% compared to detection tasks. The technique was relatively insensitive to spectrum bandwidth, whereas the projected source size was more important. If equal photon economy was added as a restriction, phase-contrast efficiency was reduced so that the benefit for detection tasks almost vanished compared to absorption contrast, but discrimination tasks were still improved close to a factor of 2 at the resolution limit. Conclusions: Cascaded-systems analysis enables comprehensive and intuitive evaluation of phase-contrast efficiency in relation to absorption contrast under requirements of equal dose, equal geometry, and equal photon economy. The benefit of Talbot interferometry was highly dependent on task, in particular detection versus discrimination tasks, and target size, shape, and material. Requiring equal photon economy weakened the benefit of Talbot interferometry in mammography. PMID:22957600

  12. Pigeons (Columba livia) show change blindness in a color-change detection task.

    PubMed

    Herbranson, Walter T; Jeffers, Jacob S

    2017-07-01

    Change blindness is a phenomenon whereby changes to a stimulus are more likely go unnoticed under certain circumstances. Pigeons learned a change detection task, in which they observed sequential stimulus displays consisting of individual colors back-projected onto three response keys. The color of one response key changed during each sequence and pecks to the key that displayed the change were reinforced. Pigeons showed a change blindness effect, in that change detection accuracy was worse when there was an inter-stimulus interval interrupting the transition between consecutive stimulus displays. Birds successfully transferred to stimulus displays involving novel colors, indicating that pigeons learned a general change detection rule. Furthermore, analysis of responses to specific color combinations showed that pigeons could detect changes involving both spectral and non-spectral colors and that accuracy was better for changes involving greater differences in wavelength. These results build upon previous investigations of change blindness in both humans and pigeons and suggest that change blindness may be a general consequence of selective visual attention relevant to multiple species and stimulus dimensions.

  13. Spatio-temporal Hotelling observer for signal detection from image sequences

    PubMed Central

    Caucci, Luca; Barrett, Harrison H.; Rodríguez, Jeffrey J.

    2010-01-01

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection. PMID:19550494

  14. Spatio-temporal Hotelling observer for signal detection from image sequences.

    PubMed

    Caucci, Luca; Barrett, Harrison H; Rodriguez, Jeffrey J

    2009-06-22

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection.

  15. Using Signal Detection Theory and Time Window-based Human-In-The-Loop simulation as a tool for assessing the effectiveness of different qualitative shapes in continuous monitoring tasks.

    PubMed

    Kim, Jung Hyup; Rothrock, Ling; Laberge, Jason

    2014-05-01

    This paper provides a case study of Signal Detection Theory (SDT) as applied to a continuous monitoring dual-task environment. Specifically, SDT was used to evaluate the independent contributions of sensitivity and bias to different qualitative gauges used in process control. To assess detection performance in monitoring the gauges, we developed a Time Window-based Human-In-The-Loop (TWHITL) simulation bed. Through this test bed, we were able to generate a display similar to those monitored by console operators in oil and gas refinery plants. By using SDT and TWHITL, we evaluated the sensitivity, operator bias, and response time of flow, level, pressure, and temperature gauge shapes developed by Abnormal Situation Management(®) (ASM(®)) Consortium (www.asmconsortium.org). Our findings suggest that display density influences the effectiveness of participants in detecting abnormal shapes. Furthermore, results suggest that some shapes elicit better detection performance than others. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Visual performance on detection tasks with double-targets of the same and different difficulty.

    PubMed

    Chan, Alan H S; Courtney, Alan J; Ma, C W

    2002-10-20

    This paper reports a study of measurement of horizontal visual sensitivity limits for 16 subjects in single-target and double-targets detection tasks. Two phases of tests were conducted in the double-targets task; targets of the same difficulty were tested in phase one while targets of different difficulty were tested in phase two. The range of sensitivity for the double-targets test was found to be smaller than that for single-target in both the same and different target difficulty cases. The presence of another target was found to affect performance to a marked degree. Interference effect of the difficult target on detection of the easy one was greater than that of the easy one on the detection of the difficult one. Performance decrement was noted when correct percentage detection was plotted against eccentricity of target in both the single-target and double-targets tests. Nevertheless, the non-significant correlation found between the performance for the two tasks demonstrated that it was impossible to predict quantitatively ability for detection of double targets from the data for single targets. This indicated probable problems in generalizing data for single target visual lobes to those for multiple targets. Also lobe area values obtained from measurements using a single-target task cannot be applied in a mathematical model for situations with multiple occurrences of targets.

  17. Ventral and Dorsal Visual Stream Contributions to the Perception of Object Shape and Object Location

    PubMed Central

    Zachariou, Valentinos; Klatzky, Roberta; Behrmann, Marlene

    2017-01-01

    Growing evidence suggests that the functional specialization of the two cortical visual pathways may not be as distinct as originally proposed. Here, we explore possible contributions of the dorsal “where/how” visual stream to shape perception and, conversely, contributions of the ventral “what” visual stream to location perception in human adults. Participants performed a shape detection task and a location detection task while undergoing fMRI. For shape detection, comparable BOLD activation in the ventral and dorsal visual streams was observed, and the magnitude of this activation was correlated with behavioral performance. For location detection, cortical activation was significantly stronger in the dorsal than ventral visual pathway and did not correlate with the behavioral outcome. This asymmetry in cortical profile across tasks is particularly noteworthy given that the visual input was identical and that the tasks were matched for difficulty in performance. We confirmed the asymmetry in a subsequent psychophysical experiment in which participants detected changes in either object location or shape, while ignoring the other, task-irrelevant dimension. Detection of a location change was slowed by an irrelevant shape change matched for difficulty, but the reverse did not hold. We conclude that both ventral and dorsal visual streams contribute to shape perception, but that location processing appears to be essentially a function of the dorsal visual pathway. PMID:24001005

  18. A comparison of the effects of a secondary task and lorazepam on cognitive performance.

    PubMed

    File, S E

    1992-01-01

    In order to test whether the lorazepam-induced impairments in a variety of cognitive tasks were similar to those of divided attention, the effects of lorazepam (2.5 mg) in healthy volunteers were compared with those requiring subjects to perform an additional task (detecting silences superimposed onto classical music). Neither treatment impaired implicit memory or judgements of frequency. Both treatments impaired performance in tests of speed, lorazepam having the greatest effect on number cancellation and the additional task having the greatest effect on simple reaction time. Both treatments impaired performance in a coding task, in a test of explicit episodic memory and in judgements of recency (indicating impaired coding of contextual information). Lorazepam significantly reduced performance in a word completion task, but this was unimpaired in the group performing the additional task. In general, the pattern of results suggests that there are similarities between the effects of divided attention and lorazepam treatment, and that lorazepam-induced cognitive impairments are not restricted to explicit tests of episodic memory.

  19. Variation in Strategy Use Across Measures of Verbal Working Memory

    PubMed Central

    Morrison, Alexandra B; Rosenbaum, Gail M.; Fair, Damien; Chein, Jason M.

    2016-01-01

    The working memory (WM) literature contains a number of tasks that vary on dimensions such as when or how memory items are reported. In addition to the ways in which WM tasks are designed to differ, tasks may also diverge according to the strategies participants use during task performance. The present study included seven tasks from the WM literature, each requiring short-term retention of verbal items. Following completion of a small number of trials from each task, individuals completed a self-report questionnaire to identify their primary strategy. Results indicated substantial variation across individuals for a given task, and within the same individual across tasks. Moreover, while direct comparisons between tasks showed that some tasks evinced similar patterns of strategy use despite differing task demands, others showed markedly different patterns of self-reported strategy use. A community detection algorithm aimed at identifying groups of individuals based on their profile of strategic choices revealed unique communities of individuals who are dependent on specific strategies under varying demands. Together, the findings suggest that researchers using common working memory paradigms should very carefully consider the implications of variation in strategy use when interpreting their findings. PMID:27038310

  20. Can spectro-temporal complexity explain the autistic pattern of performance on auditory tasks?

    PubMed

    Samson, Fabienne; Mottron, Laurent; Jemel, Boutheina; Belin, Pascal; Ciocca, Valter

    2006-01-01

    To test the hypothesis that level of neural complexity explain the relative level of performance and brain activity in autistic individuals, available behavioural, ERP and imaging findings related to the perception of increasingly complex auditory material under various processing tasks in autism were reviewed. Tasks involving simple material (pure tones) and/or low-level operations (detection, labelling, chord disembedding, detection of pitch changes) show a superior level of performance and shorter ERP latencies. In contrast, tasks involving spectrally- and temporally-dynamic material and/or complex operations (evaluation, attention) are poorly performed by autistics, or generate inferior ERP activity or brain activation. Neural complexity required to perform auditory tasks may therefore explain pattern of performance and activation of autistic individuals during auditory tasks.

  1. Multitask assessment of roads and vehicles network (MARVN)

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Yi, Meng; Cai, Yiran; Blasch, Erik; Sullivan, Nichole; Sheaff, Carolyn; Chen, Genshe; Ling, Haibin

    2018-05-01

    Vehicle detection in wide area motion imagery (WAMI) has drawn increasing attention from the computer vision research community in recent decades. In this paper, we present a new architecture for vehicle detection on road using multi-task network, which is able to detect and segment vehicles, estimate their pose, and meanwhile yield road isolation for a given region. The multi-task network consists of three components: 1) vehicle detection, 2) vehicle and road segmentation, and 3) detection screening. Segmentation and detection components share the same backbone network and are trained jointly in an end-to-end way. Unlike background subtraction or frame differencing based methods, the proposed Multitask Assessment of Roads and Vehicles Network (MARVN) method can detect vehicles which are slowing down, stopped, and/or partially occluded in a single image. In addition, the method can eliminate the detections which are located at outside road using yielded road segmentation so as to decrease the false positive rate. As few WAMI datasets have road mask and vehicles bounding box anotations, we extract 512 frames from WPAFB 2009 dataset and carefully refine the original annotations. The resulting dataset is thus named as WAMI512. We extensively compare the proposed method with state-of-the-art methods on WAMI512 dataset, and demonstrate superior performance in terms of efficiency and accuracy.

  2. Dynamic sequence analysis of a decision making task of multielement target tracking and its usage as a learning method

    NASA Astrophysics Data System (ADS)

    Kang, Ziho

    This dissertation is divided into four parts: 1) Development of effective methods for comparing visual scanning paths (or scanpaths) for a dynamic task of multiple moving targets, 2) application of the methods to compare the scanpaths of experts and novices for a conflict detection task of multiple aircraft on radar screen, 3) a post-hoc analysis of other eye movement characteristics of experts and novices, and 4) finding out whether the scanpaths of experts can be used to teach the novices. In order to compare experts' and novices' scanpaths, two methods are developed. The first proposed method is the matrix comparisons using the Mantel test. The second proposed method is the maximum transition-based agglomerative hierarchical clustering (MTAHC) where comparisons of multi-level visual groupings are held out. The matrix comparison method was useful for a small number of targets during the preliminary experiment, but turned out to be inapplicable to a realistic case when tens of aircraft were presented on screen; however, MTAHC was effective with large number of aircraft on screen. The experiments with experts and novices on the aircraft conflict detection task showed that their scanpaths are different. The MTAHC result was able to explicitly show how experts visually grouped multiple aircraft based on similar altitudes while novices tended to group them based on convergence. Also, the MTAHC results showed that novices paid much attention to the converging aircraft groups even if they are safely separated by altitude; therefore, less attention was given to the actual conflicting pairs resulting in low correct conflict detection rates. Since the analysis showed the scanpath differences, experts' scanpaths were shown to novices in order to find out its effectiveness. The scanpath treatment group showed indications that they changed their visual movements from trajectory-based to altitude-based movements. Between the treatment and the non-treatment group, there were no significant differences in terms of number of correct detections; however, the treatment group made significantly fewer false alarms.

  3. Robust obstacle detection for unmanned surface vehicles

    NASA Astrophysics Data System (ADS)

    Qin, Yueming; Zhang, Xiuzhi

    2018-03-01

    Obstacle detection is of essential importance for Unmanned Surface Vehicles (USV). Although some obstacles (e.g., ships, islands) can be detected by Radar, there are many other obstacles (e.g., floating pieces of woods, swimmers) which are difficult to be detected via Radar because these obstacles have low radar cross section. Therefore, detecting obstacle from images taken onboard is an effective supplement. In this paper, a robust vision-based obstacle detection method for USVs is developed. The proposed method employs the monocular image sequence captured by the camera on the USVs and detects obstacles on the sea surface from the image sequence. The experiment results show that the proposed scheme is efficient to fulfill the obstacle detection task.

  4. An Investigation of the Use of Real-time Image Mosaicing for Facilitating Global Spatial Awareness in Visual Search

    NASA Astrophysics Data System (ADS)

    Soung Yee, Anthony

    Three experiments have been completed to investigate whether and how a software technique called real-time image mosaicing applied to a restricted field of view (FOV) might influence target detection and path integration performance in simulated aerial search scenarios, representing local and global spatial awareness tasks respectively. The mosaiced FOV (mFOV) was compared to single FOV (sFOV) and one with double the single size (dFOV). In addition to advancing our understanding of visual information in mosaicing, the present study examines the advantages and limitations of a number of metrics used to evaluate performance in path integration tasks, with particular attention paid to measuring performance in identifying complex routes. The highlights of the results are summarized as follows, according to Experiments 1 through 3 respectively. 1. A novel response method for evaluating route identification performance was developed. The surmised benefits of the mFOV relative to sFOV and dFOV revealed no significant differences in performance for the relatively simple route shapes tested. Compared to the mFOV and dFOV conditions, target detection performance in the local task was found to be superior in the sFOV condition. 2. In order to appropriately quantify the observed differences in complex route selections made by the participants, a novel analysis method was developed using the Thurstonian Paired Comparisons Method. 3. To investigate the effect of display size and elevation angle (EA) in a complex route environment, a 2x3 experiment was conducted for the two spatial tasks, at a height selected from Experiment 2. Although no significant differences were found in the target detection task, contrasts in the Paired Comparisons Method results revealed that route identification performance were as hypothesised: mFOV > dFOV > sFOV for EA = 90°. Results were similar for EA = 45°, but with mFOV being no different than dFOV. As hypothesised, EA was found to have an effect on route selection performance, with a top down view performing better than an angled view for the mFOV and sFOV conditions.

  5. Reliability of a novel serious game using dual-task gait profiles to early characterize aMCI

    PubMed Central

    Tarnanas, Ioannis; Papagiannopoulos, Sotirios; Kazis, Dimitris; Wiederhold, Mark; Widerhold, Brenda; Tsolaki, Magda

    2015-01-01

    Background: As the population of older adults is growing, the interest in a simple way to detect characterize amnestic mild cognitive impairment (aMCI), a prodromal stage of Alzheimer’s disease (AD), is becoming increasingly important. Serious game (SG) -based cognitive and motor performance profiles while performing everyday activities and dual-task walking (DTW) “motor signatures” are two very promising markers that can be detected in predementia states. We aim to compare the consistency, or conformity, of measurements made by a custom SG with DTW (NAV), a SG without DTW (DOT), neuropsychological measures and genotyping as markers for early detection of aMCI. Methods: The study population included three groups: early AD (n = 86), aMCI (n = 65), and healthy control subjects (n = 76), who completed the custom SG tasks in three separate sessions over a 3-month period. Outcome measures were neuropsychological data across-domain and within-domain intra-individual variability (IIV) and DOT and NAV latency-based and accuracy-based IIV. IIV reflects a transient, within-person change in behavioral performance, either during different cognitive domains (across-domain) or within the same domain (within-domain). Test–retest reliability of the DOT and NAV markers were assessed using an intraclass correlation (ICC) analysis. Results: Results indicated that performance data, such as the NAV latency-based and accuracy-based IIV, during the task displayed greater reliability across sessions compared to DOT. During the NAV task-engagement, the executive function, planning, and motor performance profiles exhibited moderate to good reliability (ICC = 0.6–0.8), while during DOT, executive function and spatial memory accuracy profiles exhibited fair to moderate reliability (ICC = 0.3–0.6). Additionally, reliability across tasks was more stable when three sessions were used in the ICC calculation relative to two sessions. Discussion: Our findings suggest that “motor signature” data during the NAV tasks were a more reliable marker for early diagnosis of aMCI than DOT. This result accentuates the importance of utilizing motor performance data as a metric for aMCI populations where memory decline is often the behavioral outcome of interest. In conclusion, custom SG with DTW performance data provide an ecological and reliable approach for cognitive assessment across multiple sessions and thus can be used as a useful tool for tracking longitudinal change in observational and interventional studies on aMCI. PMID:25954193

  6. Prolonged maturation of auditory perception and learning in gerbils

    PubMed Central

    Sarro, Emma C.; Sanes, Dan H.

    2011-01-01

    In humans, auditory perception reaches maturity over a broad age range, extending through adolescence. Despite this slow maturation, children are considered to be outstanding learners, suggesting that immature perceptual skills might actually be advantageous to improvement on an acoustic task as a result of training (perceptual learning). Previous non-human studies have not employed an identical task when comparing perceptual performance of young and mature subjects, making it difficult to assess learning. Here, we used an identical procedure on juvenile and adult gerbils to examine the perception of amplitude modulation (AM), a stimulus feature that is an important component of most natural sounds. On average, Adult animals could detect smaller fluctuations in amplitude (i.e. smaller modulation depths) than Juveniles, indicating immature perceptual skills in Juveniles. However, the population variance was much greater for Juveniles, a few animals displaying adult-like AM detection. To determine whether immature perceptual skills facilitated learning, we compared naïve performance on the AM detection task with the amount of improvement following additional training. The amount of improvement in Adults correlated with naïve performance: those with the poorest naïve performance improved the most. In contrast, the naïve performance of Juveniles did not predict the amount of learning. Those Juveniles with immature AM detection thresholds did not display greater learning than Adults. Furthermore, for several of the Juveniles with adult-like thresholds, AM detection deteriorated with repeated testing. Thus, immature perceptual skills in young animals were not associated with greater learning. PMID:20506133

  7. SIGNAL DETECTION BEHAVIOR IN HUMANS AND RATS: A COMPARISON WITH MATCHED TASKS.

    EPA Science Inventory

    Animal models of human cognitive processes are essential for studying the neurobiological mechanisms of these processes and for developing therapies for intoxication and neurodegenerative diseases. A discrete-trial signal detection task was developed for assessing sustained atten...

  8. Performance effects of nicotine during selective attention, divided attention, and simple stimulus detection: an fMRI study.

    PubMed

    Hahn, Britta; Ross, Thomas J; Wolkenberg, Frank A; Shakleya, Diaa M; Huestis, Marilyn A; Stein, Elliot A

    2009-09-01

    Attention-enhancing effects of nicotine appear to depend on the nature of the attentional function. Underlying neuroanatomical mechanisms, too, may vary depending on the function modulated. This functional magnetic resonance imaging study recorded blood oxygen level-dependent (BOLD) activity in minimally deprived smokers during tasks of simple stimulus detection, selective attention, or divided attention after single-blind application of a transdermal nicotine (21 mg) or placebo patch. Smokers' performance in the placebo condition was unimpaired as compared with matched nonsmokers. Nicotine reduced reaction time (RT) in the stimulus detection and selective attention but not divided attention condition. Across all task conditions, nicotine reduced activation in frontal, temporal, thalamic, and visual regions and enhanced deactivation in so-called "default" regions. Thalamic effects correlated with RT reduction selectively during stimulus detection. An interaction with task condition was observed in middle and superior frontal gyri, where nicotine reduced activation only during stimulus detection. A visuomotor control experiment provided evidence against nonspecific effects of nicotine. In conclusion, although prefrontal activity partly displayed differential modulation by nicotine, most BOLD effects were identical across tasks, despite differential performance effects, suggesting that common neuronal mechanisms can selectively benefit different attentional functions. Overall, the effects of nicotine may be explained by increased functional efficiency and downregulated task-independent "default" functions.

  9. Health Monitor for Multitasking, Safety-Critical, Real-Time Software

    NASA Technical Reports Server (NTRS)

    Zoerner, Roger

    2011-01-01

    Health Manager can detect Bad Health prior to a failure occurring by periodically monitoring the application software by looking for code corruption errors, and sanity-checking each critical data value prior to use. A processor s memory can fail and corrupt the software, or the software can accidentally write to the wrong address and overwrite the executing software. This innovation will continuously calculate a checksum of the software load to detect corrupted code. This will allow a system to detect a failure before it happens. This innovation monitors each software task (thread) so that if any task reports "bad health," or does not report to the Health Manager, the system is declared bad. The Health Manager reports overall system health to the outside world by outputting a square wave signal. If the square wave stops, this indicates that system health is bad or hung and cannot report. Either way, "bad health" can be detected, whether caused by an error, corrupted data, or a hung processor. A separate Health Monitor Task is started and run periodically in a loop that starts and stops pending on a semaphore. Each monitored task registers with the Health Manager, which maintains a count for the task. The registering task must indicate if it will run more or less often than the Health Manager. If the task runs more often than the Health Manager, the monitored task calls a health function that increments the count and verifies it did not go over max-count. When the periodic Health Manager runs, it verifies that the count did not go over the max-count and zeroes it. If the task runs less often than the Health Manager, the periodic Health Manager will increment the count. The monitored task zeroes the count, and both the Health Manager and monitored task verify that the count did not go over the max-count.

  10. Determination of the Underlying Task Scheduling Algorithm for an Ada Runtime System

    DTIC Science & Technology

    1989-12-01

    was also curious as to how well I could model the test cases with Ada programs . In particular, I wanted to see whether I could model the equal arrival...parameter relationshis=s required to detect the execution of individual algorithms. These test cases were modeled using Ada programs . Then, the...results were analyzed to determine whether the Ada programs were capable of revealing the task scheduling algorithm used by the Ada run-time system. This

  11. Expiratory Muscle Strength Training Evaluated With Simultaneous High Resolution Manometry and Electromyography

    PubMed Central

    Hutcheson, Katherine A.; Hammer, Michael J.; Rosen, Sarah P.; Jones, Corinne A.; McCulloch, Timothy M.

    2017-01-01

    Objective To examine feasibility of a simultaneous high-resolution pharyngeal manometry (HRM) and electromyography (EMG) experimental paradigm to detect swallowing-related patterns of palatal, laryngeal, and pharyngeal muscle activity during expiratory training. Study Design Technical report. Methods Simultaneous HRM, surface submental, and intramuscular EMG were acquired in two healthy participants during five tasks: 10-cc water swallow, maximum expiratory pressure (MEP) testing, and expiratory muscle strength training (EMST) at three pressure levels (sham, 50%, and 75% MEP). Results Experimental conditions were feasible. Velopharyngeal closing pressure, palate EMG activity, and pharyngeal EMG activity increased as expiratory load increased. In contrast, thyroarytenoid EMG activity was low during the expiratory task, consistent with glottic opening during exhalation. Submental EMG patterns were more variable during expiratory tasks. Intraluminal air pressures recorded with HRM were correlated with measured expiratory pressures and target valve-opening pressures of the EMST device. Conclusion Results suggest that a simultaneous HRM/EMG/EMST paradigm may be used to detect previously unquantified swallowing-related muscle activity during EMST, particularly in the palate and pharynx. Our approach and initial findings will be helpful to guide future hypothesis-driven studies and may enable investigators to evaluate other muscle groups active during these tasks. Defining mechanisms of action is a critical next step toward refining therapeutic algorithms using EMST and other targeted treatments for populations with dysphagia and airway disorders. PMID:28083946

  12. Performance on perceptual word identification is mediated by discrete states.

    PubMed

    Swagman, April R; Province, Jordan M; Rouder, Jeffrey N

    2015-02-01

    We contrast predictions from discrete-state models of all-or-none information loss with signal-detection models of graded strength for the identification of briefly flashed English words. Previous assessments have focused on whether ROC curves are straight or not, which is a test of a discrete-state model where detection leads to the highest confidence response with certainty. We along with many others argue this certainty assumption is too constraining, and, consequently, the straight-line ROC test is too stringent. Instead, we assess a core property of discrete-state models, conditional independence, where the pattern of responses depends only on which state is entered. The conditional independence property implies that confidence ratings are a mixture of detect and guess state responses, and that stimulus strength factors, the duration of the flashed word in this report, affect only the probability of entering a state and not responses conditional on a state. To assess this mixture property, 50 participants saw words presented briefly on a computer screen at three variable flash durations followed by either a two-alternative confidence ratings task or a yes-no confidence ratings task. Comparable discrete-state and signal-detection models were fit to the data for each participant and task. The discrete-state models outperformed the signal detection models for 90 % of participants in the two-alternative task and for 68 % of participants in the yes-no task. We conclude discrete-state models are viable for predicting performance across stimulus conditions in a perceptual word identification task.

  13. Interoceptive awareness in experienced meditators.

    PubMed

    Khalsa, Sahib S; Rudrauf, David; Damasio, Antonio R; Davidson, Richard J; Lutz, Antoine; Tranel, Daniel

    2008-07-01

    Attention to internal body sensations is practiced in most meditation traditions. Many traditions state that this practice results in increased awareness of internal body sensations, but scientific studies evaluating this claim are lacking. We predicted that experienced meditators would display performance superior to that of nonmeditators on heartbeat detection, a standard noninvasive measure of resting interoceptive awareness. We compared two groups of meditators (Tibetan Buddhist and Kundalini) to an age- and body mass index-matched group of nonmeditators. Contrary to our prediction, we found no evidence that meditators were superior to nonmeditators in the heartbeat detection task, across several sessions and respiratory modulation conditions. Compared to nonmeditators, however, meditators consistently rated their interoceptive performance as superior and the difficulty of the task as easier. These results provide evidence against the notion that practicing attention to internal body sensations, a core feature of meditation, enhances the ability to sense the heartbeat at rest.

  14. Interoceptive awareness in experienced meditators

    PubMed Central

    KHALSA, SAHIB S.; RUDRAUF, DAVID; DAMASIO, ANTONIO R.; DAVIDSON, RICHARD J.; LUTZ, ANTOINE; TRANEL, DANIEL

    2009-01-01

    Attention to internal body sensations is practiced inmost meditation traditions. Many traditions state that this practice results in increased awareness of internal body sensations, but scientific studies evaluating this claim are lacking. We predicted that experienced meditators would display performance superior to that of nonmeditators on heartbeat detection, a standard noninvasive measure of resting interoceptive awareness. We compared two groups of meditators (Tibetan Buddhist and Kundalini) to an age- and body mass index-matched group of nonmeditators. Contrary to our prediction, we found no evidence that meditators were superior to nonmeditators in the heartbeat detection task, across several sessions and respiratory modulation conditions. Compared to nonmeditators, however, meditators consistently rated their interoceptive performance as superior and the difficulty of the task as easier. These results provide evidence against the notion that practicing attention to internal body sensations, a core feature of meditation, enhances the ability to sense the heartbeat at rest. PMID:18503485

  15. Signal detection theory and methods for evaluating human performance in decision tasks

    NASA Technical Reports Server (NTRS)

    Obrien, Kevin; Feldman, Evan M.

    1993-01-01

    Signal Detection Theory (SDT) can be used to assess decision making performance in tasks that are not commonly thought of as perceptual. SDT takes into account both the sensitivity and biases in responding when explaining the detection of external events. In the standard SDT tasks, stimuli are selected in order to reveal the sensory capabilities of the observer. SDT can also be used to describe performance when decisions must be made as to the classification of easily and reliably sensed stimuli. Numbers are stimuli that are minimally affected by sensory processing and can belong to meaningful categories that overlap. Multiple studies have shown that the task of categorizing numbers from overlapping normal distributions produces performance predictable by SDT. These findings are particularly interesting in view of the similarity between the task of the categorizing numbers and that of determining the status of a mechanical system based on numerical values that represent sensor readings. Examples of the use of SDT to evaluate performance in decision tasks are reviewed. The methods and assumptions of SDT are shown to be effective in the measurement, evaluation, and prediction of human performance in such tasks.

  16. How Important is Conflict Detection to the Conflict Resolution Task?

    NASA Technical Reports Server (NTRS)

    Mercer, Joey; Gabets, Cynthia; Gomez, Ashley; Edwards, Tamsyn; Bienert, Nancy; Claudatos, Lauren; Homola, Jeffrey R.

    2016-01-01

    To determine the capabilities and limitations of human operators and automation in separation assurance roles, the second of three Human-in-the-Loop (HITL) part-task studies investigates air traffic controllers ability to detect and resolve conflicts under varying task sets, traffic densities, and run lengths. Operations remained within a single sector, staffed by a single controller, and explored, among other things, the controllers conflict resolution performance in conditions with or without their involvement in the conflict detection task. Whereas comparisons of conflict resolution performance between these two conditions are available in a prior publication, this paper explores whether or not other subjective measures display a relationship to that data. Analyses of controller workload and situation awareness measures attempt to quantify their contribution to controllers ability to resolve traffic conflicts.

  17. SU-G-IeP2-08: Investigation On Signal Detectability in Volumetric Cone Beam CT Images with Anatomical Background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, M; Baek, J

    2016-06-15

    Purpose: To investigate the slice direction dependent detectability in cone beam CT images with anatomical background. Methods: We generated 3D anatomical background images using breast anatomy model. To generate 3D breast anatomy, we filtered 3D Gaussian noise with a square root of 1/f{sup 3}, and then assigned the attenuation coefficient of glandular (0.8cm{sup −1}) and adipose (0.46 cm{sup −1}) tissues based on voxel values. Projections were acquired by forward projection, and quantum noise was added to the projection data. The projection data were reconstructed by FDK algorithm. We compared the detectability of a 3 mm spherical signal in the imagemore » reconstructed from four different backprojection Methods: Hanning weighted ramp filter with linear interpolation (RECON1), Hanning weighted ramp filter with Fourier interpolation (RECON2), ramp filter with linear interpolation (RECON3), and ramp filter with Fourier interpolation (RECON4), respectively. We computed task SNR of the spherical signal in transverse and longitudinal planes using channelized Hotelling observer with Laguerre-Gauss channels. Results: Transverse plane has similar task SNR values for different backprojection methods, while longitudinal plane has a maximum task SNR value in RECON1. For all backprojection methods, longitudinal plane has higher task SNR than transverse plane. Conclusion: In this work, we investigated detectability for different slice direction in cone beam CT images with anatomical background. Longitudinal plane has a higher task SNR than transverse plane, and backprojection with hanning weighted ramp filter with linear interpolation method (i.e., RECON1) produced the highest task SNR among four different backprojection methods. This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the IT Consilience Creative Programs(IITP-2015-R0346-15-1008) supervised by the IITP (Institute for Information & Communications Technology Promotion), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the MSIP (2015R1C1A1A01052268) and framework of international cooperation program managed by NRF (NRF-2015K2A1A2067635).« less

  18. Oscillatory signatures of crossmodal congruence effects: An EEG investigation employing a visuotactile pattern matching paradigm.

    PubMed

    Göschl, Florian; Friese, Uwe; Daume, Jonathan; König, Peter; Engel, Andreas K

    2015-08-01

    Coherent percepts emerge from the accurate combination of inputs from the different sensory systems. There is an ongoing debate about the neurophysiological mechanisms of crossmodal interactions in the brain, and it has been proposed that transient synchronization of neurons might be of central importance. Oscillatory activity in lower frequency ranges (<30Hz) has been implicated in mediating long-range communication as typically studied in multisensory research. In the current study, we recorded high-density electroencephalograms while human participants were engaged in a visuotactile pattern matching paradigm and analyzed oscillatory power in the theta- (4-7Hz), alpha- (8-13Hz) and beta-bands (13-30Hz). Employing the same physical stimuli, separate tasks of the experiment either required the detection of predefined targets in visual and tactile modalities or the explicit evaluation of crossmodal stimulus congruence. Analysis of the behavioral data showed benefits for congruent visuotactile stimulus combinations. Differences in oscillatory dynamics related to crossmodal congruence within the two tasks were observed in the beta-band for crossmodal target detection, as well as in the theta-band for congruence evaluation. Contrasting ongoing activity preceding visuotactile stimulation between the two tasks revealed differences in the alpha- and beta-bands. Source reconstruction of between-task differences showed prominent involvement of premotor cortex, supplementary motor area, somatosensory association cortex and the supramarginal gyrus. These areas not only exhibited more involvement in the pre-stimulus interval for target detection compared to congruence evaluation, but were also crucially involved in post-stimulus differences related to crossmodal stimulus congruence within the detection task. These results add to the increasing evidence that low frequency oscillations are functionally relevant for integration in distributed brain networks, as demonstrated for crossmodal interactions in visuotactile pattern matching in the current study. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Dermal, inhalation, and internal exposure to 1,6-HDI and its oligomers in car body repair shop workers and industrial spray painters.

    PubMed

    Pronk, A; Yu, F; Vlaanderen, J; Tielemans, E; Preller, L; Bobeldijk, I; Deddens, J A; Latza, U; Baur, X; Heederik, D

    2006-09-01

    To study inhalation and dermal exposure to hexamethylene diisocyanate (HDI) and its oligomers as well as personal protection equipment (PPE) use during task performance in conjunction with urinary hexamethylene diamine (HDA) in car body repair shop workers and industrial spray painters. Personal task based inhalation samples (n = 95) were collected from six car body repair shops and five industrial painting companies using impingers with di-n-butylamine (DBA) in toluene. In parallel, dermal exposure was assessed using nitril rubber gloves. Gloves were submerged into DBA in toluene after sampling. Analysis for HDI and its oligomers was performed by LC-MS/MS. Urine samples were collected from 55 workers (n = 291) and analysed for HDA by GC-MS. Inhalation exposure was strongly associated with tasks during which aerosolisation occurs. Dermal exposure occurred during tasks that involve direct handling of paint. In car body repair shops associations were found between detectable dermal exposure and glove use (odds ratio (OR) 0.22, 95% confidence interval (CI) 0.09 to 0.57) and inhalation exposure level (OR 1.34, 95% CI 0.97 to 1.84 for a 10-fold increase). HDA in urine could be demonstrated in 36% and 10% of car body repair shop workers and industrial painting company workers respectively. In car body repair shops, the frequency of detectable HDA was significantly elevated at the end of the working day (OR 2.13, 95% CI 1.07 to 4.22 for 3-6 pm v 0-8 am). In both branches HDA was detected in urine of approximately 25% of the spray painters. In addition HDA was detected in urine of a large proportion of non-spray painters in car body repair shops. Although (spray) painting with lacquers containing isocyanate hardeners results in the highest external exposures to HDI and oligomers, workers that do not perform paint related tasks may also receive a considerable internal dose.

  20. Dual-echo ASL based assessment of motor networks: a feasibility study

    NASA Astrophysics Data System (ADS)

    Storti, Silvia Francesca; Boscolo Galazzo, Ilaria; Pizzini, Francesca B.; Menegaz, Gloria

    2018-04-01

    Objective. Dual-echo arterial spin labeling (DE-ASL) technique has been recently proposed for the simultaneous acquisition of ASL and blood-oxygenation-level-dependent (BOLD)-functional magnetic resonance imaging (fMRI) data. The assessment of this technique in detecting functional connectivity at rest or during motor and motor imagery tasks is still unexplored both per-se and in comparison with conventional methods. The purpose is to quantify the sensitivity of the DE-ASL sequence with respect to the conventional fMRI sequence (cvBOLD) in detecting brain activations, and to assess and compare the relevance of node features in decoding the network structure. Approach. Thirteen volunteers were scanned acquiring a pseudo-continuous DE-ASL sequence from which the concomitant BOLD (ccBOLD) simultaneously to the ASL can be extracted. The approach consists of two steps: (i) model-based analyses for assessing brain activations at individual and group levels, followed by statistical analysis for comparing the activation elicited by the three sequences under two conditions (motor and motor imagery), respectively; (ii) brain connectivity graph-theoretical analysis for assessing and comparing the network models properties. Main results. Our results suggest that cvBOLD and ccBOLD have comparable sensitivity in detecting the regions involved in the active task, whereas ASL offers a higher degree of co-localization with smaller activation volumes. The connectivity results and the comparative analysis of node features across sequences revealed that there are no strong changes between rest and tasks and that the differences between the sequences are limited to few connections. Significance. Considering the comparable sensitivity of the ccBOLD and cvBOLD sequences in detecting activated brain regions, the results demonstrate that DE-ASL can be successfully applied in functional studies allowing to obtain both ASL and BOLD information within a single sequence. Further, DE-ASL is a powerful technique for research and clinical applications allowing to perform quantitative comparisons as well as to characterize functional connectivity.

  1. Performance under dichoptic versus binocular viewing conditions - Effects of attention and task requirements

    NASA Technical Reports Server (NTRS)

    Kimchi, Ruth; Gopher, Daniel; Rubin, Yifat; Raij, David

    1993-01-01

    Three experiments investigated subjects' ability to allocate attention and cope with task requirements under dichoptic versus binocular viewing conditions. Experiments 1 and 2 employed a target detection task in compound and noncompound stimuli, and Experiment 3 employed a relative-proximity judgment task. The tasks were performed in a focused attention condition in which subjects had to attend to the stimulus presented to one eye or field (under dichoptic and binocular viewing conditions, respectively) while ignoring the stimulus presented to the other eye or field, and in a divided attention condition in which subjects had to attend to the stimuli presented to both eyes or fields. Subjects' performance was affected by the interaction of attention conditions with task requirements, but it was generally the same under dichoptic and binocular viewing conditions. The more dependent the task was on finer discrimination, the more performance was impaired by divided attention. These results suggest that at least with discrete tasks and relatively short exposure durations, performance when each eye is presented with a separate stimulus is the same as when the entire field of stimulation is viewed by both eyes.

  2. Automation in visual inspection tasks: X-ray luggage screening supported by a system of direct, indirect or adaptable cueing with low and high system reliability.

    PubMed

    Chavaillaz, Alain; Schwaninger, Adrian; Michel, Stefan; Sauer, Juergen

    2018-05-25

    The present study evaluated three automation modes for improving performance in an X-ray luggage screening task. 140 participants were asked to detect the presence of prohibited items in X-ray images of cabin luggage. Twenty participants conducted this task without automatic support (control group), whereas the others worked with either indirect cues (system indicated the target presence without specifying its location), or direct cues (system pointed out the exact target location) or adaptable automation (participants could freely choose between no cue, direct and indirect cues). Furthermore, automatic support reliability was manipulated (low vs. high). The results showed a clear advantage for direct cues regarding detection performance and response time. No benefits were observed for adaptable automation. Finally, high automation reliability led to better performance and higher operator trust. The findings overall confirmed that automatic support systems for luggage screening should be designed such that they provide direct, highly reliable cues.

  3. UAS Integration in the NAS Project: Part Task 6 V & V Simulation: Primary Results

    NASA Technical Reports Server (NTRS)

    Rorie, Conrad; Fern, Lisa; Shively, Jay; Santiago, Confesor

    2016-01-01

    This is a presentation of the preliminary results on final V and V (Verification and Validation) activity of [RTCA (Radio Technical Commission for Aeronautics)] SC (Special Committee)-228 DAA (Detect and Avoid) HMI (Human-Machine Interface) requirements for display alerting and guidance.

  4. Automatic detection of lexical change: an auditory event-related potential study.

    PubMed

    Muller-Gass, Alexandra; Roye, Anja; Kirmse, Ursula; Saupe, Katja; Jacobsen, Thomas; Schröger, Erich

    2007-10-29

    We investigated the detection of rare task-irrelevant changes in the lexical status of speech stimuli. Participants performed a nonlinguistic task on word and pseudoword stimuli that occurred, in separate conditions, rarely or frequently. Task performance for pseudowords was deteriorated relative to words, suggesting unintentional lexical analysis. Furthermore, rare word and pseudoword changes had a similar effect on the event-related potentials, starting as early as 165 ms. This is the first demonstration of the automatic detection of change in lexical status that is not based on a co-occurring acoustic change. We propose that, following lexical analysis of the incoming stimuli, a mental representation of the lexical regularity is formed and used as a template against which lexical change can be detected.

  5. Noticing spiders on the left: Evidence on attentional bias and spider fear in the inattentional blindness paradigm.

    PubMed

    Brailsford, Richard; Catherwood, Di; Tyson, Philip J; Edgar, Graham

    2014-01-01

    Attentional biases in anxiety disorders have been assessed primarily using three types of experiment: the emotional Stroop task, the probe-detection task, and variations of the visual search task. It is proposed that the inattentional blindness procedure has the ability to overcome limitations of these paradigms in regard to identifying the components of attentional bias. Three experiments examined attentional responding to spider images in individuals with low and moderate to high spider fear. The results demonstrate that spider fear causes a bias in the engage component of visual attention and this is specific to stimuli presented in the left visual field (i.e., to the right hemisphere). The implications of the results are discussed and recommendations for future research are made.

  6. Does training under consistent mapping conditions lead to automatic attention attraction to targets in search tasks?

    PubMed

    Lefebvre, Christine; Cousineau, Denis; Larochelle, Serge

    2008-11-01

    Schneider and Shiffrin (1977) proposed that training under consistent stimulus-response mapping (CM) leads to automatic target detection in search tasks. Other theories, such as Treisman and Gelade's (1980) feature integration theory, consider target-distractor discriminability as the main determinant of search performance. The first two experiments pit these two principles against each other. The results show that CM training is neither necessary nor sufficient to achieve optimal search performance. Two other experiments examine whether CM trained targets, presented as distractors in unattended display locations, attract attention away from current targets. The results are again found to vary with target-distractor similarity. Overall, the present study strongly suggests that CM training does not invariably lead to automatic attention attraction in search tasks.

  7. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases

    PubMed Central

    Janowczyk, Andrew; Madabhushi, Anant

    2016-01-01

    Background: Deep learning (DL) is a representation learning approach ideally suited for image analysis challenges in digital pathology (DP). The variety of image analysis tasks in the context of DP includes detection and counting (e.g., mitotic events), segmentation (e.g., nuclei), and tissue classification (e.g., cancerous vs. non-cancerous). Unfortunately, issues with slide preparation, variations in staining and scanning across sites, and vendor platforms, as well as biological variance, such as the presentation of different grades of disease, make these image analysis tasks particularly challenging. Traditional approaches, wherein domain-specific cues are manually identified and developed into task-specific “handcrafted” features, can require extensive tuning to accommodate these variances. However, DL takes a more domain agnostic approach combining both feature discovery and implementation to maximally discriminate between the classes of interest. While DL approaches have performed well in a few DP related image analysis tasks, such as detection and tissue classification, the currently available open source tools and tutorials do not provide guidance on challenges such as (a) selecting appropriate magnification, (b) managing errors in annotations in the training (or learning) dataset, and (c) identifying a suitable training set containing information rich exemplars. These foundational concepts, which are needed to successfully translate the DL paradigm to DP tasks, are non-trivial for (i) DL experts with minimal digital histology experience, and (ii) DP and image processing experts with minimal DL experience, to derive on their own, thus meriting a dedicated tutorial. Aims: This paper investigates these concepts through seven unique DP tasks as use cases to elucidate techniques needed to produce comparable, and in many cases, superior to results from the state-of-the-art hand-crafted feature-based classification approaches. Results: Specifically, in this tutorial on DL for DP image analysis, we show how an open source framework (Caffe), with a singular network architecture, can be used to address: (a) nuclei segmentation (F-score of 0.83 across 12,000 nuclei), (b) epithelium segmentation (F-score of 0.84 across 1735 regions), (c) tubule segmentation (F-score of 0.83 from 795 tubules), (d) lymphocyte detection (F-score of 0.90 across 3064 lymphocytes), (e) mitosis detection (F-score of 0.53 across 550 mitotic events), (f) invasive ductal carcinoma detection (F-score of 0.7648 on 50 k testing patches), and (g) lymphoma classification (classification accuracy of 0.97 across 374 images). Conclusion: This paper represents the largest comprehensive study of DL approaches in DP to date, with over 1200 DP images used during evaluation. The supplemental online material that accompanies this paper consists of step-by-step instructions for the usage of the supplied source code, trained models, and input data. PMID:27563488

  8. SU-F-18C-01: Minimum Detectability Analysis for Comprehensive Sized Based Optimization of Image Quality and Radiation Dose Across CT Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smitherman, C; Chen, B; Samei, E

    2014-06-15

    Purpose: This work involved a comprehensive modeling of task-based performance of CT across a wide range of protocols. The approach was used for optimization and consistency of dose and image quality within a large multi-vendor clinical facility. Methods: 150 adult protocols from the Duke University Medical Center were grouped into sub-protocols with similar acquisition characteristics. A size based image quality phantom (Duke Mercury Phantom) was imaged using these sub-protocols for a range of clinically relevant doses on two CT manufacturer platforms (Siemens, GE). The images were analyzed to extract task-based image quality metrics such as the Task Transfer Function (TTF),more » Noise Power Spectrum, and Az based on designer nodule task functions. The data were analyzed in terms of the detectability of a lesion size/contrast as a function of dose, patient size, and protocol. A graphical user interface (GUI) was developed to predict image quality and dose to achieve a minimum level of detectability. Results: Image quality trends with variations in dose, patient size, and lesion contrast/size were evaluated and calculated data behaved as predicted. The GUI proved effective to predict the Az values representing radiologist confidence for a targeted lesion, patient size, and dose. As an example, an abdomen pelvis exam for the GE scanner, with a task size/contrast of 5-mm/50-HU, and an Az of 0.9 requires a dose of 4.0, 8.9, and 16.9 mGy for patient diameters of 25, 30, and 35 cm, respectively. For a constant patient diameter of 30 cm, the minimum detected lesion size at those dose levels would be 8.4, 5, and 3.9 mm, respectively. Conclusion: The designed CT protocol optimization platform can be used to evaluate minimum detectability across dose levels and patient diameters. The method can be used to improve individual protocols as well as to improve protocol consistency across CT scanners.« less

  9. Classification of EEG signals to identify variations in attention during motor task execution.

    PubMed

    Aliakbaryhosseinabadi, Susan; Kamavuako, Ernest Nlandu; Jiang, Ning; Farina, Dario; Mrachacz-Kersting, Natalie

    2017-06-01

    Brain-computer interface (BCI) systems in neuro-rehabilitation use brain signals to control external devices. User status such as attention affects BCI performance; thus detecting the user's attention drift due to internal or external factors is essential for high detection accuracy. An auditory oddball task was applied to divert the users' attention during a simple ankle dorsiflexion movement. Electroencephalogram signals were recorded from eighteen channels. Temporal and time-frequency features were projected to a lower dimension space and used to analyze the effect of two attention levels on motor tasks in each participant. Then, a global feature distribution was constructed with the projected time-frequency features of all participants from all channels and applied for attention classification during motor movement execution. Time-frequency features led to significantly better classification results with respect to the temporal features, particularly for electrodes located over the motor cortex. Motor cortex channels had a higher accuracy in comparison to other channels in the global discrimination of attention level. Previous methods have used the attention to a task to drive external devices, such as the P300 speller. However, here we focus for the first time on the effect of attention drift while performing a motor task. It is possible to explore user's attention variation when performing motor tasks in synchronous BCI systems with time-frequency features. This is the first step towards an adaptive real-time BCI with an integrated function to reveal attention shifts from the motor task. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. An Automated, Adaptive Framework for Optimizing Preprocessing Pipelines in Task-Based Functional MRI

    PubMed Central

    Churchill, Nathan W.; Spring, Robyn; Afshin-Pour, Babak; Dong, Fan; Strother, Stephen C.

    2015-01-01

    BOLD fMRI is sensitive to blood-oxygenation changes correlated with brain function; however, it is limited by relatively weak signal and significant noise confounds. Many preprocessing algorithms have been developed to control noise and improve signal detection in fMRI. Although the chosen set of preprocessing and analysis steps (the “pipeline”) significantly affects signal detection, pipelines are rarely quantitatively validated in the neuroimaging literature, due to complex preprocessing interactions. This paper outlines and validates an adaptive resampling framework for evaluating and optimizing preprocessing choices by optimizing data-driven metrics of task prediction and spatial reproducibility. Compared to standard “fixed” preprocessing pipelines, this optimization approach significantly improves independent validation measures of within-subject test-retest, and between-subject activation overlap, and behavioural prediction accuracy. We demonstrate that preprocessing choices function as implicit model regularizers, and that improvements due to pipeline optimization generalize across a range of simple to complex experimental tasks and analysis models. Results are shown for brief scanning sessions (<3 minutes each), demonstrating that with pipeline optimization, it is possible to obtain reliable results and brain-behaviour correlations in relatively small datasets. PMID:26161667

  11. Applying the metro map to software development management

    NASA Astrophysics Data System (ADS)

    Aguirregoitia, Amaia; Dolado, J. Javier; Presedo, Concepción

    2010-01-01

    This paper presents MetroMap, a new graphical representation model for controlling and managing the software development process. Metromap uses metaphors and visual representation techniques to explore several key indicators in order to support problem detection and resolution. The resulting visualization addresses diverse management tasks, such as tracking of deviations from the plan, analysis of patterns of failure detection and correction, overall assessment of change management policies, and estimation of product quality. The proposed visualization uses a metaphor with a metro map along with various interactive techniques to represent information concerning the software development process and to deal efficiently with multivariate visual queries. Finally, the paper shows the implementation of the tool in JavaFX with data of a real project and the results of testing the tool with the aforementioned data and users attempting several information retrieval tasks. The conclusion shows the results of analyzing user response time and efficiency using the MetroMap visualization system. The utility of the tool was positively evaluated.

  12. Visual-search models for location-known detection tasks

    NASA Astrophysics Data System (ADS)

    Gifford, H. C.; Karbaschi, Z.; Banerjee, K.; Das, M.

    2017-03-01

    Lesion-detection studies that analyze a fixed target position are generally considered predictive of studies involving lesion search, but the extent of the correlation often goes untested. The purpose of this work was to develop a visual-search (VS) model observer for location-known tasks that, coupled with previous work on localization tasks, would allow efficient same-observer assessments of how search and other task variations can alter study outcomes. The model observer featured adjustable parameters to control the search radius around the fixed lesion location and the minimum separation between suspicious locations. Comparisons were made against human observers, a channelized Hotelling observer and a nonprewhitening observer with eye filter in a two-alternative forced-choice study with simulated lumpy background images containing stationary anatomical and quantum noise. These images modeled single-pinhole nuclear medicine scans with different pinhole sizes. When the VS observer's search radius was optimized with training images, close agreement was obtained with human-observer results. Some performance differences between the humans could be explained by varying the model observer's separation parameter. The range of optimal pinhole sizes identified by the VS observer was in agreement with the range determined with the channelized Hotelling observer.

  13. Improving Visual Threat Detection: Research to Validate the Threat Detection Skills Trainer

    DTIC Science & Technology

    2013-08-01

    potential threats present in this scene and explain the meaning and implications of these threats. You have two minutes to write a response...could be due to the nature of the tasks or to fatigue. Requiring Soldiers to write answers on multiple trials, and across similar tasks, might have...tasks will likely be significantly different from those experienced in the trainer. This would remove the writing requirement over multiple trials

  14. SmartMal: a service-oriented behavioral malware detection framework for mobile devices.

    PubMed

    Wang, Chao; Wu, Zhizhong; Li, Xi; Zhou, Xuehai; Wang, Aili; Hung, Patrick C K

    2014-01-01

    This paper presents SmartMal--a novel service-oriented behavioral malware detection framework for vehicular and mobile devices. The highlight of SmartMal is to introduce service-oriented architecture (SOA) concepts and behavior analysis into the malware detection paradigms. The proposed framework relies on client-server architecture, the client continuously extracts various features and transfers them to the server, and the server's main task is to detect anomalies using state-of-art detection algorithms. Multiple distributed servers simultaneously analyze the feature vector using various detectors and information fusion is used to concatenate the results of detectors. We also propose a cycle-based statistical approach for mobile device anomaly detection. We accomplish this by analyzing the users' regular usage patterns. Empirical results suggest that the proposed framework and novel anomaly detection algorithm are highly effective in detecting malware on Android devices.

  15. SmartMal: A Service-Oriented Behavioral Malware Detection Framework for Mobile Devices

    PubMed Central

    Wu, Zhizhong; Li, Xi; Zhou, Xuehai; Wang, Aili; Hung, Patrick C. K.

    2014-01-01

    This paper presents SmartMal—a novel service-oriented behavioral malware detection framework for vehicular and mobile devices. The highlight of SmartMal is to introduce service-oriented architecture (SOA) concepts and behavior analysis into the malware detection paradigms. The proposed framework relies on client-server architecture, the client continuously extracts various features and transfers them to the server, and the server's main task is to detect anomalies using state-of-art detection algorithms. Multiple distributed servers simultaneously analyze the feature vector using various detectors and information fusion is used to concatenate the results of detectors. We also propose a cycle-based statistical approach for mobile device anomaly detection. We accomplish this by analyzing the users' regular usage patterns. Empirical results suggest that the proposed framework and novel anomaly detection algorithm are highly effective in detecting malware on Android devices. PMID:25165729

  16. Characterization of task-free and task-performance brain states via functional connectome patterns.

    PubMed

    Zhang, Xin; Guo, Lei; Li, Xiang; Zhang, Tuo; Zhu, Dajiang; Li, Kaiming; Chen, Hanbo; Lv, Jinglei; Jin, Changfeng; Zhao, Qun; Li, Lingjiang; Liu, Tianming

    2013-12-01

    Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the functional activities of the human brain during task-free and task-performance periods, respectively. However, due to the difficulty in strictly controlling the participating subject's mental status and their cognitive behaviors during R-fMRI/T-fMRI scans, it has been challenging to ascertain whether or not an R-fMRI/T-fMRI scan truly reflects the participant's functional brain states during task-free/task-performance periods. This paper presents a novel computational approach to characterizing and differentiating the brain's functional status into task-free or task-performance states, by which the functional brain activities can be effectively understood and differentiated. Briefly, the brain's functional state is represented by a whole-brain quasi-stable connectome pattern (WQCP) of R-fMRI or T-fMRI data based on 358 consistent cortical landmarks across individuals, and then an effective sparse representation method was applied to learn the atomic connectome patterns (ACPs) of both task-free and task-performance states. Experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI datasets are substantially different, as expected. A certain portion of ACPs from R-fMRI and T-fMRI data were overlapped, suggesting some subjects with overlapping ACPs were not in the expected task-free/task-performance brain states. Besides, potential outliers in the T-fMRI dataset were further investigated via functional activation detections in different groups, and our results revealed unexpected task-performances of some subjects. This work offers novel insights into the functional architectures of the brain. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Characterization of Task-free and Task-performance Brain States via Functional Connectome Patterns

    PubMed Central

    Zhang, Xin; Guo, Lei; Li, Xiang; Zhang, Tuo; Zhu, Dajiang; Li, Kaiming; Chen, Hanbo; Lv, Jinglei; Jin, Changfeng; Zhao, Qun; Li, Lingjiang; Liu, Tianming

    2014-01-01

    Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the functional activities of the human brain during task-free and task-performance periods, respectively. However, due to the difficulty in strictly controlling the participating subject's mental status and their cognitive behaviors during R-fMRI/T-fMRI scans, it has been challenging to ascertain whether or not an R-fMRI/T-fMRI scan truly reflects the participant's functional brain states during task-free/task-performance periods. This paper presents a novel computational approach to characterizing and differentiating the brain's functional status into task-free or task-performance states, by which the functional brain activities can be effectively understood and differentiated. Briefly, the brain's functional state is represented by a whole-brain quasi-stable connectome pattern (WQCP) of R-fMRI or T-fMRI data based on 358 consistent cortical landmarks across individuals, and then an effective sparse representation method was applied to learn the atomic connectome patterns (ACP) of both task-free and task-performance states. Experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI datasets are substantially different, as expected. A certain portion of ACPs from R-fMRI and T-fMRI data were overlapped, suggesting some subjects with overlapping ACPs were not in the expected task-free/task-performance brain states. Besides, potential outliers in the T-fMRI dataset were further investigated via functional activation detections in different groups, and our results revealed unexpected task-performances of some subjects. This work offers novel insights into the functional architectures of the brain. PMID:23938590

  18. Using near infrared spectroscopy and heart rate variability to detect mental overload.

    PubMed

    Durantin, G; Gagnon, J-F; Tremblay, S; Dehais, F

    2014-02-01

    Mental workload is a key factor influencing the occurrence of human error, especially during piloting and remotely operated vehicle (ROV) operations, where safety depends on the ability of pilots to act appropriately. In particular, excessively high or low mental workload can lead operators to neglect critical information. The objective of the present study is to investigate the potential of functional near infrared spectroscopy (fNIRS) - a non-invasive method of measuring prefrontal cortex activity - in combination with measurements of heart rate variability (HRV), to predict mental workload during a simulated piloting task, with particular regard to task engagement and disengagement. Twelve volunteers performed a computer-based piloting task in which they were asked to follow a dynamic target with their aircraft, a task designed to replicate key cognitive demands associated with real life ROV operating tasks. In order to cover a wide range of mental workload levels, task difficulty was manipulated in terms of processing load and difficulty of control - two critical sources of workload associated with piloting and remotely operating a vehicle. Results show that both fNIRS and HRV are sensitive to different levels of mental workload; notably, lower prefrontal activation as well as a lower LF/HF ratio at the highest level of difficulty, suggest that these measures are suitable for mental overload detection. Moreover, these latter measurements point toward the existence of a quadratic model of mental workload. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Functional consequences of experience-dependent plasticity on tactile perception following perceptual learning.

    PubMed

    Trzcinski, Natalie K; Gomez-Ramirez, Manuel; Hsiao, Steven S

    2016-09-01

    Continuous training enhances perceptual discrimination and promotes neural changes in areas encoding the experienced stimuli. This type of experience-dependent plasticity has been demonstrated in several sensory and motor systems. Particularly, non-human primates trained to detect consecutive tactile bar indentations across multiple digits showed expanded excitatory receptive fields (RFs) in somatosensory cortex. However, the perceptual implications of these anatomical changes remain undetermined. Here, we trained human participants for 9 days on a tactile task that promoted expansion of multi-digit RFs. Participants were required to detect consecutive indentations of bar stimuli spanning multiple digits. Throughout the training regime we tracked participants' discrimination thresholds on spatial (grating orientation) and temporal tasks on the trained and untrained hands in separate sessions. We hypothesized that training on the multi-digit task would decrease perceptual thresholds on tasks that require stimulus processing across multiple digits, while also increasing thresholds on tasks requiring discrimination on single digits. We observed an increase in orientation thresholds on a single digit. Importantly, this effect was selective for the stimulus orientation and hand used during multi-digit training. We also found that temporal acuity between digits improved across trained digits, suggesting that discriminating the temporal order of multi-digit stimuli can transfer to temporal discrimination of other tactile stimuli. These results suggest that experience-dependent plasticity following perceptual learning improves and interferes with tactile abilities in manners predictive of the task and stimulus features used during training. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Evidence for unlimited capacity processing of simple features in visual cortex

    PubMed Central

    White, Alex L.; Runeson, Erik; Palmer, John; Ernst, Zachary R.; Boynton, Geoffrey M.

    2017-01-01

    Performance in many visual tasks is impaired when observers attempt to divide spatial attention across multiple visual field locations. Correspondingly, neuronal response magnitudes in visual cortex are often reduced during divided compared with focused spatial attention. This suggests that early visual cortex is the site of capacity limits, where finite processing resources must be divided among attended stimuli. However, behavioral research demonstrates that not all visual tasks suffer such capacity limits: The costs of divided attention are minimal when the task and stimulus are simple, such as when searching for a target defined by orientation or contrast. To date, however, every neuroimaging study of divided attention has used more complex tasks and found large reductions in response magnitude. We bridged that gap by using functional magnetic resonance imaging to measure responses in the human visual cortex during simple feature detection. The first experiment used a visual search task: Observers detected a low-contrast Gabor patch within one or four potentially relevant locations. The second experiment used a dual-task design, in which observers made independent judgments of Gabor presence in patches of dynamic noise at two locations. In both experiments, blood-oxygen level–dependent (BOLD) signals in the retinotopic cortex were significantly lower for ignored than attended stimuli. However, when observers divided attention between multiple stimuli, BOLD signals were not reliably reduced and behavioral performance was unimpaired. These results suggest that processing of simple features in early visual cortex has unlimited capacity. PMID:28654964

  1. Functional consequences of experience-dependent plasticity on tactile perception following perceptual learning

    PubMed Central

    Trzcinski, Natalie K; Gomez-Ramirez, Manuel; Hsiao, Steven S.

    2016-01-01

    Continuous training enhances perceptual discrimination and promotes neural changes in areas encoding the experienced stimuli. This type of experience-dependent plasticity has been demonstrated in several sensory and motor systems. Particularly, non-human primates trained to detect consecutive tactile bar indentations across multiple digits showed expanded excitatory receptive fields (RFs) in somatosensory cortex. However, the perceptual implications of these anatomical changes remain undetermined. Here, we trained human participants for nine days on a tactile task that promoted expansion of multi-digit RFs. Participants were required to detect consecutive indentations of bar stimuli spanning multiple digits. Throughout the training regime we tracked participants’ discrimination thresholds on spatial (grating orientation) and temporal tasks on the trained and untrained hands in separate sessions. We hypothesized that training on the multi-digit task would decrease perceptual thresholds on tasks that require stimulus processing across multiple digits, while also increasing thresholds on tasks requiring discrimination on single digits. We observed an increase in orientation thresholds on a single-digit. Importantly, this effect was selective for the stimulus orientation and hand used during multi-digit training. We also found that temporal acuity between digits improved across trained digits, suggesting that discriminating the temporal order of multi-digit stimuli can transfer to temporal discrimination of other tactile stimuli. These results suggest that experience-dependent plasticity following perceptual learning improves and interferes with tactile abilities in manners predictive of the task and stimulus features used during training. PMID:27422224

  2. A Driving Cycle Detection Approach Using Map Service API

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Lei; Gonder, Jeffrey D

    Following advancements in smartphone and portable global positioning system (GPS) data collection, wearable GPS data have realized extensive use in transportation surveys and studies. The task of detecting driving cycles (driving or car-mode trajectory segments) from wearable GPS data has been the subject of much research. Specifically, distinguishing driving cycles from other motorized trips (such as taking a bus) is the main research problem in this paper. Many mode detection methods only focus on raw GPS speed data while some studies apply additional information, such as geographic information system (GIS) data, to obtain better detection performance. Procuring and maintaining dedicatedmore » road GIS data are costly and not trivial, whereas the technical maturity and broad use of map service application program interface (API) queries offers opportunities for mode detection tasks. The proposed driving cycle detection method takes advantage of map service APIs to obtain high-quality car-mode API route information and uses a trajectory segmentation algorithm to find the best-matched API route. The car-mode API route data combined with the actual route information, including the actual mode information, are used to train a logistic regression machine learning model, which estimates car modes and non-car modes with probability rates. The experimental results show promise for the proposed method's ability to detect vehicle mode accurately.« less

  3. Low-dose cone-beam CT via raw counts domain low-signal correction schemes: Performance assessment and task-based parameter optimization (Part II. Task-based parameter optimization).

    PubMed

    Gomez-Cardona, Daniel; Hayes, John W; Zhang, Ran; Li, Ke; Cruz-Bastida, Juan Pablo; Chen, Guang-Hong

    2018-05-01

    Different low-signal correction (LSC) methods have been shown to efficiently reduce noise streaks and noise level in CT to provide acceptable images at low-radiation dose levels. These methods usually result in CT images with highly shift-variant and anisotropic spatial resolution and noise, which makes the parameter optimization process highly nontrivial. The purpose of this work was to develop a local task-based parameter optimization framework for LSC methods. Two well-known LSC methods, the adaptive trimmed mean (ATM) filter and the anisotropic diffusion (AD) filter, were used as examples to demonstrate how to use the task-based framework to optimize filter parameter selection. Two parameters, denoted by the set P, for each LSC method were included in the optimization problem. For the ATM filter, these parameters are the low- and high-signal threshold levels p l and p h ; for the AD filter, the parameters are the exponents δ and γ in the brightness gradient function. The detectability index d' under the non-prewhitening (NPW) mathematical observer model was selected as the metric for parameter optimization. The optimization problem was formulated as an unconstrained optimization problem that consisted of maximizing an objective function d'(P), where i and j correspond to the i-th imaging task and j-th spatial location, respectively. Since there is no explicit mathematical function to describe the dependence of d' on the set of parameters P for each LSC method, the optimization problem was solved via an experimentally measured d' map over a densely sampled parameter space. In this work, three high-contrast-high-frequency discrimination imaging tasks were defined to explore the parameter space of each of the LSC methods: a vertical bar pattern (task I), a horizontal bar pattern (task II), and a multidirectional feature (task III). Two spatial locations were considered for the analysis, a posterior region-of-interest (ROI) located within the noise streaks region and an anterior ROI, located further from the noise streaks region. Optimal results derived from the task-based detectability index metric were compared to other operating points in the parameter space with different noise and spatial resolution trade-offs. The optimal operating points determined through the d' metric depended on the interplay between the major spatial frequency components of each imaging task and the highly shift-variant and anisotropic noise and spatial resolution properties associated with each operating point in the LSC parameter space. This interplay influenced imaging performance the most when the major spatial frequency component of a given imaging task coincided with the direction of spatial resolution loss or with the dominant noise spatial frequency component; this was the case of imaging task II. The performance of imaging tasks I and III was influenced by this interplay in a smaller scale than imaging task II, since the major frequency component of task I was perpendicular to imaging task II, and because imaging task III did not have strong directional dependence. For both LSC methods, there was a strong dependence of the overall d' magnitude and shape of the contours on the spatial location within the phantom, particularly for imaging tasks II and III. The d' value obtained at the optimal operating point for each spatial location and imaging task was similar when comparing the LSC methods studied in this work. A local task-based detectability framework to optimize the selection of parameters for LSC methods was developed. The framework takes into account the potential shift-variant and anisotropic spatial resolution and noise properties to maximize the imaging performance of the CT system. Optimal parameters for a given LSC method depend strongly on the spatial location within the image object. © 2018 American Association of Physicists in Medicine.

  4. Does scene context always facilitate retrieval of visual object representations?

    PubMed

    Nakashima, Ryoichi; Yokosawa, Kazuhiko

    2011-04-01

    An object-to-scene binding hypothesis maintains that visual object representations are stored as part of a larger scene representation or scene context, and that scene context facilitates retrieval of object representations (see, e.g., Hollingworth, Journal of Experimental Psychology: Learning, Memory and Cognition, 32, 58-69, 2006). Support for this hypothesis comes from data using an intentional memory task. In the present study, we examined whether scene context always facilitates retrieval of visual object representations. In two experiments, we investigated whether the scene context facilitates retrieval of object representations, using a new paradigm in which a memory task is appended to a repeated-flicker change detection task. Results indicated that in normal scene viewing, in which many simultaneous objects appear, scene context facilitation of the retrieval of object representations-henceforth termed object-to-scene binding-occurred only when the observer was required to retain much information for a task (i.e., an intentional memory task).

  5. Eye movements and hazard perception in active and passive driving

    PubMed Central

    Mackenzie, Andrew K.; Harris, Julie M.

    2015-01-01

    ABSTRACT Differences in eye movement patterns are often found when comparing passive viewing paradigms to actively engaging in everyday tasks. Arguably, investigations into visuomotor control should therefore be most useful when conducted in settings that incorporate the intrinsic link between vision and action. We present a study that compares oculomotor behaviour and hazard reaction times across a simulated driving task and a comparable, but passive, video-based hazard perception task. We found that participants scanned the road less during the active driving task and fixated closer to the front of the vehicle. Participants were also slower to detect the hazards in the driving task. Our results suggest that the interactivity of simulated driving places increased demand upon the visual and attention systems than simply viewing driving movies. We offer insights into why these differences occur and explore the possible implications of such findings within the wider context of driver training and assessment. PMID:26681913

  6. The own-age face recognition bias is task dependent.

    PubMed

    Proietti, Valentina; Macchi Cassia, Viola; Mondloch, Catherine J

    2015-08-01

    The own-age bias (OAB) in face recognition (more accurate recognition of own-age than other-age faces) is robust among young adults but not older adults. We investigated the OAB under two different task conditions. In Experiment 1 young and older adults (who reported more recent experience with own than other-age faces) completed a match-to-sample task with young and older adult faces; only young adults showed an OAB. In Experiment 2 young and older adults completed an identity detection task in which we manipulated the identity strength of target and distracter identities by morphing each face with an average face in 20% steps. Accuracy increased with identity strength and facial age influenced older adults' (but not younger adults') strategy, but there was no evidence of an OAB. Collectively, these results suggest that the OAB depends on task demands and may be absent when searching for one identity. © 2014 The British Psychological Society.

  7. Utilizing Novel Non-traditional Sensor Tasking Approaches to Enhance the Space Situational Awareness Picture Maintained by the Space Surveillance Network

    NASA Astrophysics Data System (ADS)

    Herz, A.; Herz, E.; Center, K.; George, P.; Axelrad, P.; Mutschler, S.; Jones, B.

    2016-09-01

    The Space Surveillance Network (SSN) is tasked with the increasingly difficult mission of detecting, tracking, cataloging and identifying artificial objects orbiting the Earth, including active and inactive satellites, spent rocket bodies, and fragmented debris. Much of the architecture and operations of the SSN are limited and outdated. Efforts are underway to modernize some elements of the systems. Even so, the ability to maintain the best current Space Situational Awareness (SSA) picture and identify emerging events in a timely fashion could be significantly improved by leveraging non-traditional sensor sites. Orbit Logic, the University of Colorado and the University of Texas at Austin are developing an innovative architecture and operations concept to coordinate the tasking and observation information processing of non - traditional assets based on information-theoretic approaches. These confirmed tasking schedules and the resulting data can then be used to "inform" the SSN tasking process. The 'Heimdall Web' system is comprised of core tasking optimization components and accompanying Web interfaces within a secure, split architecture that will for the first time allow non-traditional sensors to support SSA and improve SSN tasking. Heimdall Web application components appropriately score/prioritize space catalog objects based on covariance, priority, observability, expected information gain, and probability of detect - then coordinate an efficient sensor observation schedule for non-SSN sensors contributing to the overall SSA picture maintained by the Joint Space Operations Center (JSpOC). The Heimdall Web Ops concept supports sensor participation levels of "Scheduled", "Tasked" and "Contributing". Scheduled and Tasked sensors are provided optimized observation schedules or object tracking lists from central algorithms, while Contributing sensors review and select from a list of "desired track objects". All sensors are "Web Enabled" for tasking and feedback, supplying observation schedules, confirmed observations and related data back to Heimdall Web to complete the feedback loop for the next scheduling iteration.

  8. Deep Multi-Task Learning for Tree Genera Classification

    NASA Astrophysics Data System (ADS)

    Ko, C.; Kang, J.; Sohn, G.

    2018-05-01

    The goal for our paper is to classify tree genera using airborne Light Detection and Ranging (LiDAR) data with Convolution Neural Network (CNN) - Multi-task Network (MTN) implementation. Unlike Single-task Network (STN) where only one task is assigned to the learning outcome, MTN is a deep learning architect for learning a main task (classification of tree genera) with other tasks (in our study, classification of coniferous and deciduous) simultaneously, with shared classification features. The main contribution of this paper is to improve classification accuracy from CNN-STN to CNN-MTN. This is achieved by introducing a concurrence loss (Lcd) to the designed MTN. This term regulates the overall network performance by minimizing the inconsistencies between the two tasks. Results show that we can increase the classification accuracy from 88.7 % to 91.0 % (from STN to MTN). The second goal of this paper is to solve the problem of small training sample size by multiple-view data generation. The motivation of this goal is to address one of the most common problems in implementing deep learning architecture, the insufficient number of training data. We address this problem by simulating training dataset with multiple-view approach. The promising results from this paper are providing a basis for classifying a larger number of dataset and number of classes in the future.

  9. Correlation between human observer performance and model observer performance in differential phase contrast CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ke; Garrett, John; Chen, Guang-Hong

    2013-11-15

    Purpose: With the recently expanding interest and developments in x-ray differential phase contrast CT (DPC-CT), the evaluation of its task-specific detection performance and comparison with the corresponding absorption CT under a given radiation dose constraint become increasingly important. Mathematical model observers are often used to quantify the performance of imaging systems, but their correlations with actual human observers need to be confirmed for each new imaging method. This work is an investigation of the effects of stochastic DPC-CT noise on the correlation of detection performance between model and human observers with signal-known-exactly (SKE) detection tasks.Methods: The detectabilities of different objectsmore » (five disks with different diameters and two breast lesion masses) embedded in an experimental DPC-CT noise background were assessed using both model and human observers. The detectability of the disk and lesion signals was then measured using five types of model observers including the prewhitening ideal observer, the nonprewhitening (NPW) observer, the nonprewhitening observer with eye filter and internal noise (NPWEi), the prewhitening observer with eye filter and internal noise (PWEi), and the channelized Hotelling observer (CHO). The same objects were also evaluated by four human observers using the two-alternative forced choice method. The results from the model observer experiment were quantitatively compared to the human observer results to assess the correlation between the two techniques.Results: The contrast-to-detail (CD) curve generated by the human observers for the disk-detection experiments shows that the required contrast to detect a disk is inversely proportional to the square root of the disk size. Based on the CD curves, the ideal and NPW observers tend to systematically overestimate the performance of the human observers. The NPWEi and PWEi observers did not predict human performance well either, as the slopes of their CD curves tended to be steeper. The CHO generated the best quantitative agreement with human observers with its CD curve overlapping with that of human observer. Statistical equivalence between CHO and humans can be claimed within 11% of the human observer results, including both the disk and lesion detection experiments.Conclusions: The model observer method can be used to accurately represent human observer performance with the stochastic DPC-CT noise for SKE tasks with sizes ranging from 8 to 128 pixels. The incorporation of the anatomical noise remains to be studied.« less

  10. Frontal brain activation during a working memory task: a time-domain fNIRS study

    NASA Astrophysics Data System (ADS)

    Molteni, E.; Baselli, G.; Bianchi, A. M.; Caffini, M.; Contini, D.; Spinelli, L.; Torricelli, A.; Cerutti, S.; Cubeddu, R.

    2009-02-01

    We evaluated frontal brain activation during a working memory task with graded levels of difficulty in a group of 19 healthy subjects, by means of time-resolved fNIRS technique. Brain activation was computed, and was then separated into a "block-related" and a "tonic" components. Load-related increases of blood oxygenation were studied for the four different levels of task difficulty. Generalized Linear Models were applied to the data in order to explore the metabolic processes occurring during the mental effort and, possibly, their involvement in short term memorization. Results attest the presence of a persistent attentional-related metabolic activity, superimposed to a task-related mnemonic contribution. Moreover, a systemic component probably deriving from the extra-cerebral capillary bed was detected.

  11. Statistical model based iterative reconstruction in clinical CT systems. Part III. Task-based kV/mAs optimization for radiation dose reduction

    PubMed Central

    Li, Ke; Gomez-Cardona, Daniel; Hsieh, Jiang; Lubner, Meghan G.; Pickhardt, Perry J.; Chen, Guang-Hong

    2015-01-01

    Purpose: For a given imaging task and patient size, the optimal selection of x-ray tube potential (kV) and tube current-rotation time product (mAs) is pivotal in achieving the maximal radiation dose reduction while maintaining the needed diagnostic performance. Although contrast-to-noise (CNR)-based strategies can be used to optimize kV/mAs for computed tomography (CT) imaging systems employing the linear filtered backprojection (FBP) reconstruction method, a more general framework needs to be developed for systems using the nonlinear statistical model-based iterative reconstruction (MBIR) method. The purpose of this paper is to present such a unified framework for the optimization of kV/mAs selection for both FBP- and MBIR-based CT systems. Methods: The optimal selection of kV and mAs was formulated as a constrained optimization problem to minimize the objective function, Dose(kV,mAs), under the constraint that the achievable detectability index d′(kV,mAs) is not lower than the prescribed value of d℞′ for a given imaging task. Since it is difficult to analytically model the dependence of d′ on kV and mAs for the highly nonlinear MBIR method, this constrained optimization problem is solved with comprehensive measurements of Dose(kV,mAs) and d′(kV,mAs) at a variety of kV–mAs combinations, after which the overlay of the dose contours and d′ contours is used to graphically determine the optimal kV–mAs combination to achieve the lowest dose while maintaining the needed detectability for the given imaging task. As an example, d′ for a 17 mm hypoattenuating liver lesion detection task was experimentally measured with an anthropomorphic abdominal phantom at four tube potentials (80, 100, 120, and 140 kV) and fifteen mA levels (25 and 50–700) with a sampling interval of 50 mA at a fixed rotation time of 0.5 s, which corresponded to a dose (CTDIvol) range of [0.6, 70] mGy. Using the proposed method, the optimal kV and mA that minimized dose for the prescribed detectability level of d℞′=16 were determined. As another example, the optimal kV and mA for an 8 mm hyperattenuating liver lesion detection task were also measured using the developed framework. Both an in vivo animal and human subject study were used as demonstrations of how the developed framework can be applied to the clinical work flow. Results: For the first task, the optimal kV and mAs were measured to be 100 and 500, respectively, for FBP, which corresponded to a dose level of 24 mGy. In comparison, the optimal kV and mAs for MBIR were 80 and 150, respectively, which corresponded to a dose level of 4 mGy. The topographies of the iso-d′ map and the iso-CNR map were the same for FBP; thus, the use of d′- and CNR-based optimization methods generated the same results for FBP. However, the topographies of the iso-d′ and iso-CNR map were significantly different in MBIR; the CNR-based method overestimated the performance of MBIR, predicting an overly aggressive dose reduction factor. For the second task, the developed framework generated the following optimization results: for FBP, kV = 140, mA = 350, dose = 37.5 mGy; for MBIR, kV = 120, mA = 250, dose = 18.8 mGy. Again, the CNR-based method overestimated the performance of MBIR. Results of the preliminary in vivo studies were consistent with those of the phantom experiments. Conclusions: A unified and task-driven kV/mAs optimization framework has been developed in this work. The framework is applicable to both linear and nonlinear CT systems such as those using the MBIR method. As expected, the developed framework can be reduced to the conventional CNR-based kV/mAs optimization frameworks if the system is linear. For MBIR-based nonlinear CT systems, however, the developed task-based kV/mAs optimization framework is needed to achieve the maximal dose reduction while maintaining the desired diagnostic performance. PMID:26328971

  12. Detection of Subtle Cognitive Changes after mTBI Using a Novel Tablet-Based Task.

    PubMed

    Fischer, Tara D; Red, Stuart D; Chuang, Alice Z; Jones, Elizabeth B; McCarthy, James J; Patel, Saumil S; Sereno, Anne B

    2016-07-01

    This study examined the potential for novel tablet-based tasks, modeled after eye tracking techniques, to detect subtle sensorimotor and cognitive deficits after mild traumatic brain injury (mTBI). Specifically, we examined whether performance on these tablet-based tasks (Pro-point and Anti-point) was able to correctly categorize concussed versus non-concussed participants, compared with performance on other standardized tests for concussion. Patients admitted to the emergency department with mTBI were tested on the Pro-point and Anti-point tasks, a current standard cognitive screening test (i.e., the Standard Assessment of Concussion [SAC]), and another eye movement-based tablet test, the King-Devick(®) (KD). Within hours after injury, mTBI patients showed significant slowing in response times, compared with both orthopedic and age-matched control groups, in the Pro-point task, demonstrating deficits in sensorimotor function. Mild TBI patients also showed significant slowing, compared with both control groups, on the Anti-point task, even when controlling for sensorimotor slowing, indicating deficits in cognitive function. Performance on the SAC test revealed similar deficits of cognitive function in the mTBI group, compared with the age-matched control group; however, the KD test showed no evidence of cognitive slowing in mTBI patients, compared with either control group. Further, measuring the sensitivity and specificity of these tasks to accurately predict mTBI with receiver operating characteristic analysis indicated that the Anti-point and Pro-point tasks reached excellent levels of accuracy and fared better than current standardized tools for assessment of concussion. Our findings suggest that these rapid tablet-based tasks are able to reliably detect and measure functional impairment in cognitive and sensorimotor control within hours after mTBI. These tasks may provide a more sensitive diagnostic measure for functional deficits that could prove key to earlier detection of concussion, evaluation of interventions, or even prediction of persistent symptoms.

  13. Detection of Subtle Cognitive Changes after mTBI Using a Novel Tablet-Based Task

    PubMed Central

    Red, Stuart D.; Chuang, Alice Z.; Jones, Elizabeth B.; McCarthy, James J.; Patel, Saumil S.; Sereno, Anne B.

    2016-01-01

    Abstract This study examined the potential for novel tablet-based tasks, modeled after eye tracking techniques, to detect subtle sensorimotor and cognitive deficits after mild traumatic brain injury (mTBI). Specifically, we examined whether performance on these tablet-based tasks (Pro-point and Anti-point) was able to correctly categorize concussed versus non-concussed participants, compared with performance on other standardized tests for concussion. Patients admitted to the emergency department with mTBI were tested on the Pro-point and Anti-point tasks, a current standard cognitive screening test (i.e., the Standard Assessment of Concussion [SAC]), and another eye movement–based tablet test, the King-Devick® (KD). Within hours after injury, mTBI patients showed significant slowing in response times, compared with both orthopedic and age-matched control groups, in the Pro-point task, demonstrating deficits in sensorimotor function. Mild TBI patients also showed significant slowing, compared with both control groups, on the Anti-point task, even when controlling for sensorimotor slowing, indicating deficits in cognitive function. Performance on the SAC test revealed similar deficits of cognitive function in the mTBI group, compared with the age-matched control group; however, the KD test showed no evidence of cognitive slowing in mTBI patients, compared with either control group. Further, measuring the sensitivity and specificity of these tasks to accurately predict mTBI with receiver operating characteristic analysis indicated that the Anti-point and Pro-point tasks reached excellent levels of accuracy and fared better than current standardized tools for assessment of concussion. Our findings suggest that these rapid tablet-based tasks are able to reliably detect and measure functional impairment in cognitive and sensorimotor control within hours after mTBI. These tasks may provide a more sensitive diagnostic measure for functional deficits that could prove key to earlier detection of concussion, evaluation of interventions, or even prediction of persistent symptoms. PMID:26398492

  14. Fate of Mercury in Synthetic Gypsum Used for Wallboard Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessica Marshall Sanderson

    2006-06-01

    This report presents and discusses results from Task 5 of the study ''Fate of Mercury in Synthetic Gypsum Used for Wallboard Production,'' performed at a full-scale commercial wallboard plant. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. The FGD process is used to control the sulfur dioxide emissions which would result in acid rain if not controlled. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasingmore » the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies developed for power plants involve the capture of mercury in FGD systems. The objective of this study is to determine whether any mercury is released into the atmosphere when the synthetic gypsum material is used as a feedstock for wallboard production. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope includes five discrete tasks, each conducted at various USG wallboard plants using synthetic gypsum from different FGD systems. The five tasks were to include (1) a baseline test, then variations representing differing power plant (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5, which was to evaluate gypsum produced from an alternate FGD reagent, could not be conducted as planned. Instead, Task 5 was conducted at conditions similar to a previous task, Task 3, although with gypsum from an alternate FGD system. In this project, process stacks in the wallboard plant have been sampled using the Ontario Hydro method. The stack locations sampled for each task include a dryer for the wet gypsum as it enters the plant and a gypsum calciner. The stack of the dryer for the wet wallboard product was also tested as part of this task, and was tested as part of Tasks 1 and 4. Also at each site, in-stream process samples were collected and analyzed for mercury concentration before and after each significant step in wallboard production. The Ontario Hydro results, process sample mercury concentration data, and process data were used to construct mercury mass balances across the wallboard plants. Task 5 was conducted at a wallboard plant processing synthetic gypsum from a power plant that fires Eastern bituminous coal. The power plant is equipped with a selective catalytic reduction (SCR) system for NOX emissions control, but the SCR was bypassed during the time period the gypsum tested was produced. The power plant has a single-loop, open spray tower, limestone reagent FGD system, with forced oxidation conducted in a reaction tank integral with the FGD absorber. The FGD system has gypsum fines blow down as part of the dewatering step. Gypsum fines blow down is believed to be an important variable that impacts the amount of mercury in the gypsum byproduct and possibly its stability during the wallboard process. The results of the Task 5 stack testing, as measured by the Ontario Hydro method, detected that an average of 51% of the incoming mercury in the FGD gypsum was emitted during wallboard production. These losses were distributed as 2% or less each across the wet gypsum dryer and product wallboard dryer, and about 50% across the gypsum calciner. Emissions were similar to what Task 3 results showed, on both a percentage and a mass basis, for gypsum produced by a power plant firing bituminous coal and also having gypsum fines blow down as part of the FGD dewatering scheme. As was seen in the Task 1 through 4 results, most of the mercury detected in the stack testing on the wet gypsum dryer and kettle calciner was in the form of elemental mercury. In the wallboard dryer kiln, a more significant percentage of the mercury detected was in the oxidized form, particularly from the stack near the product discharge end of the kiln. However, this represented a very small percentage of the overall mercury loss.« less

  15. Combining glass box and black box evaluations in the identification of heart disease risk factors and their temporal relations from clinical records.

    PubMed

    Grouin, Cyril; Moriceau, Véronique; Zweigenbaum, Pierre

    2015-12-01

    The determination of risk factors and their temporal relations in natural language patient records is a complex task which has been addressed in the i2b2/UTHealth 2014 shared task. In this context, in most systems it was broadly decomposed into two sub-tasks implemented by two components: entity detection, and temporal relation determination. Task-level ("black box") evaluation is relevant for the final clinical application, whereas component-level evaluation ("glass box") is important for system development and progress monitoring. Unfortunately, because of the interaction between entity representation and temporal relation representation, glass box and black box evaluation cannot be managed straightforwardly at the same time in the setting of the i2b2/UTHealth 2014 task, making it difficult to assess reliably the relative performance and contribution of the individual components to the overall task. To identify obstacles and propose methods to cope with this difficulty, and illustrate them through experiments on the i2b2/UTHealth 2014 dataset. We outline several solutions to this problem and examine their requirements in terms of adequacy for component-level and task-level evaluation and of changes to the task framework. We select the solution which requires the least modifications to the i2b2 evaluation framework and illustrate it with our system. This system identifies risk factor mentions with a CRF system complemented by hand-designed patterns, identifies and normalizes temporal expressions through a tailored version of the Heideltime tool, and determines temporal relations of each risk factor with a One Rule classifier. Giving a fixed value to the temporal attribute in risk factor identification proved to be the simplest way to evaluate the risk factor detection component independently. This evaluation method enabled us to identify the risk factor detection component as most contributing to the false negatives and false positives of the global system. This led us to redirect further effort to this component, focusing on medication detection, with gains of 7 to 20 recall points and of 3 to 6 F-measure points depending on the corpus and evaluation. We proposed a method to achieve a clearer glass box evaluation of risk factor detection and temporal relation detection in clinical texts, which can provide an example to help system development in similar tasks. This glass box evaluation was instrumental in refocusing our efforts and obtaining substantial improvements in risk factor detection. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. A non-contact time-domain scanning brain imaging system: first in-vivo results

    NASA Astrophysics Data System (ADS)

    Mazurenka, M.; Di Sieno, L.; Boso, G.; Contini, D.; Pifferi, A.; Dalla Mora, A.; Tosi, A.; Wabnitz, H.; Macdonald, R.

    2013-06-01

    We present results of first in-vivo tests of an optical non-contact scanning imaging system, intended to study oxidative metabolism related processes in biological tissue by means of time-resolved near-infrared spectroscopy. Our method is a novel realization of the short source-detector separation approach and based on a fast-gated single-photon avalanche diode to detect late photons only. The scanning system is built in quasi-confocal configuration and utilizes polarizationsensitive detection. It scans an area of 4×4 cm2, recording images with 32×32 pixels, thus creating a high density of source-detector pairs. To test the system we performed a range of in vivo measurements of hemodynamic changes in several types of biological tissues, i.e. skin (Valsalva maneuver), muscle (venous and arterial occlusions) and brain (motor and cognitive tasks). Task-related changes in hemoglobin concentrations were clearly detected in skin and muscle. The brain activation shows weaker, but yet detectable changes. These changes were localized in pixels near the motor cortex area (C3). However, it was found that even very short hair substantially impairs the measurement. Thus the applicability of the scanner is limited to hairless parts of body. The results of our first in-vivo tests prove the feasibility of non-contact scanning imaging as a first step towards development of a prototype for biological tissue imaging for various medical applications.

  17. Perfluorochemical (PFC) Exposure in Children: Associations with Impaired Response Inhibition

    PubMed Central

    Gump, Brooks B.; Wu, Qian; Dumas, Amy K.; Kannan, Kurunthachalam

    2011-01-01

    Background Perfluorinated chemicals (PFCs) have been used widely in consumer products since the 1950s and are currently found at detectable levels in the blood of humans and animals across the globe. In stark contrast to this widespread exposure to PFCs, there is relatively little research on potential adverse health effects of exposure to these chemicals. Objectives We performed this cross-sectional study to determine if specific blood PFC levels are associated with impaired response inhibition in children. Methods Blood levels of 11 PFCs were measured in children (N = 83) and 6 PFCs: perfluorooctane sulfonate (PFOS), perfluorohexane sulfate (PFHxS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorooctanesulfonamide (PFOSA), and perfluorodecanoic acid (PFDA) – were found at detectable levels in most children (87.5% or greater had detectable levels). These levels were analyzed in relation to the differential reinforcement of low rates of responding (DRL) task. This task rewards delays between responses (i.e., longer inter-response times; IRTs) and therefore constitutes a measure of response inhibition. Results Higher levels of blood PFOS, PFNA, PFDA, PFHxS, and PFOSA were associated with significantly shorter IRTs during the DRL task. The magnitude of these associations was such that IRTs during the task decreased by 29–34% for every 1 SD increase in the corresponding blood PFC. Conclusions This study suggests an association between PFC exposure and children’s impulsivity. Although intriguing, there is a need for further investigation and replication with a larger sample of children. PMID:21682250

  18. The impact of secondary-task type on the sensitivity of reaction-time based measurement of cognitive load for novices learning surgical skills using simulation.

    PubMed

    Rojas, David; Haji, Faizal; Shewaga, Rob; Kapralos, Bill; Dubrowski, Adam

    2014-01-01

    Interest in the measurement of cognitive load (CL) in simulation-based education has grown in recent years. In this paper we present two pilot experiments comparing the sensitivity of two reaction time based secondary task measures of CL. The results suggest that simple reaction time measures are sensitive enough to detect changes in CL experienced by novice learners in the initial stages of simulation-based surgical skills training.

  19. Cheating following success and failure in heavy and moderate social drinkers.

    PubMed

    Corcoran, K J; Hankey, J

    1989-07-01

    Two groups of American undergraduates (moderate and heavy social drinkers) completed a matrix task and received either positive or negative feedback on their performance. Following this they were given a maze task, which was designed so that cheating could be detected. Heavy drinkers cheated more than moderate drinkers under success conditions (positive feedback). Heavy drinkers who received positive feedback also cheated more than heavy drinkers who received negative feedback. The results are interpreted in terms of self-handicapping theory.

  20. Facial emotion recognition is inversely correlated with tremor severity in essential tremor.

    PubMed

    Auzou, Nicolas; Foubert-Samier, Alexandra; Dupouy, Sandrine; Meissner, Wassilios G

    2014-04-01

    We here assess limbic and orbitofrontal control in 20 patients with essential tremor (ET) and 18 age-matched healthy controls using the Ekman Facial Emotion Recognition Task and the IOWA Gambling Task. Our results show an inverse relation between facial emotion recognition and tremor severity. ET patients also showed worse performance in joy and fear recognition, as well as subtle abnormalities in risk detection, but these differences did not reach significance after correction for multiple testing.

  1. Does attention play a role in dynamic receptive field adaptation to changing acoustic salience in A1?

    PubMed

    Fritz, Jonathan B; Elhilali, Mounya; David, Stephen V; Shamma, Shihab A

    2007-07-01

    Acoustic filter properties of A1 neurons can dynamically adapt to stimulus statistics, classical conditioning, instrumental learning and the changing auditory attentional focus. We have recently developed an experimental paradigm that allows us to view cortical receptive field plasticity on-line as the animal meets different behavioral challenges by attending to salient acoustic cues and changing its cortical filters to enhance performance. We propose that attention is the key trigger that initiates a cascade of events leading to the dynamic receptive field changes that we observe. In our paradigm, ferrets were initially trained, using conditioned avoidance training techniques, to discriminate between background noise stimuli (temporally orthogonal ripple combinations) and foreground tonal target stimuli. They learned to generalize the task for a wide variety of distinct background and foreground target stimuli. We recorded cortical activity in the awake behaving animal and computed on-line spectrotemporal receptive fields (STRFs) of single neurons in A1. We observed clear, predictable task-related changes in STRF shape while the animal performed spectral tasks (including single tone and multi-tone detection, and two-tone discrimination) with different tonal targets. A different set of task-related changes occurred when the animal performed temporal tasks (including gap detection and click-rate discrimination). Distinctive cortical STRF changes may constitute a "task-specific signature". These spectral and temporal changes in cortical filters occur quite rapidly, within 2min of task onset, and fade just as quickly after task completion, or in some cases, persisted for hours. The same cell could multiplex by differentially changing its receptive field in different task conditions. On-line dynamic task-related changes, as well as persistent plastic changes, were observed at a single-unit, multi-unit and population level. Auditory attention is likely to be pivotal in mediating these task-related changes since the magnitude of STRF changes correlated with behavioral performance on tasks with novel targets. Overall, these results suggest the presence of an attention-triggered plasticity algorithm in A1 that can swiftly change STRF shape by transforming receptive fields to enhance figure/ground separation, by using a contrast matched filter to filter out the background, while simultaneously enhancing the salient acoustic target in the foreground. These results favor the view of a nimble, dynamic, attentive and adaptive brain that can quickly reshape its sensory filter properties and sensori-motor links on a moment-to-moment basis, depending upon the current challenges the animal faces. In this review, we summarize our results in the context of a broader survey of the field of auditory attention, and then consider neuronal networks that could give rise to this phenomenon of attention-driven receptive field plasticity in A1.

  2. Dissociation of implicit and explicit memory tests: effect of age and divided attention on category exemplar generation and cued recall.

    PubMed

    Isingrini, M; Vazou, F; Leroy, P

    1995-07-01

    In this article, we report an experiment that provides further evidence concerning the differences between explicit and implicit measures of memory. The effects of age and divided attention on the implicit conceptual test of category exemplar generation (CEG) were compared with their effects on the explicit test of cued, recall, where the category names served as cues in both tasks. Four age groups (20-35, 40-55, 60-75, and 76-90) were compared. Half of the subjects were also required to carry out a secondary letter-detection task during the learning phase. Cued recall performance was significantly impaired by increased age and imposition of the secondary task. In contrast, the CEG task was unaffected by these two factors. These results suggest that implicit conceptual tasks and explicit memory tasks are mediated by different processes. This conclusion opposes those of previous studies that showed that experimental manipulations (level of processing, generation, organization) influenced these two kinds of memory tests in a similar way.

  3. Detecting experimental techniques and selecting relevant documents for protein-protein interactions from biomedical literature.

    PubMed

    Wang, Xinglong; Rak, Rafal; Restificar, Angelo; Nobata, Chikashi; Rupp, C J; Batista-Navarro, Riza Theresa B; Nawaz, Raheel; Ananiadou, Sophia

    2011-10-03

    The selection of relevant articles for curation, and linking those articles to experimental techniques confirming the findings became one of the primary subjects of the recent BioCreative III contest. The contest's Protein-Protein Interaction (PPI) task consisted of two sub-tasks: Article Classification Task (ACT) and Interaction Method Task (IMT). ACT aimed to automatically select relevant documents for PPI curation, whereas the goal of IMT was to recognise the methods used in experiments for identifying the interactions in full-text articles. We proposed and compared several classification-based methods for both tasks, employing rich contextual features as well as features extracted from external knowledge sources. For IMT, a new method that classifies pair-wise relations between every text phrase and candidate interaction method obtained promising results with an F1 score of 64.49%, as tested on the task's development dataset. We also explored ways to combine this new approach and more conventional, multi-label document classification methods. For ACT, our classifiers exploited automatically detected named entities and other linguistic information. The evaluation results on the BioCreative III PPI test datasets showed that our systems were very competitive: one of our IMT methods yielded the best performance among all participants, as measured by F1 score, Matthew's Correlation Coefficient and AUC iP/R; whereas for ACT, our best classifier was ranked second as measured by AUC iP/R, and also competitive according to other metrics. Our novel approach that converts the multi-class, multi-label classification problem to a binary classification problem showed much promise in IMT. Nevertheless, on the test dataset the best performance was achieved by taking the union of the output of this method and that of a multi-class, multi-label document classifier, which indicates that the two types of systems complement each other in terms of recall. For ACT, our system exploited a rich set of features and also obtained encouraging results. We examined the features with respect to their contributions to the classification results, and concluded that contextual words surrounding named entities, as well as the MeSH headings associated with the documents were among the main contributors to the performance.

  4. True and False DRM Memories: Differences Detected with an Implicit Task

    PubMed Central

    Marini, Maddalena; Agosta, Sara; Mazzoni, Giuliana; Barba, Gianfranco Dalla; Sartori, Giuseppe

    2012-01-01

    Memory is prone to illusions. When people are presented with lists of words associated with a non-presented critical lure, they produce a high level of false recognitions (false memories) for non-presented related stimuli indistinguishable, at the explicit level, from presented words (DRM paradigm). We assessed whether true and false DRM memories can be distinguished at the implicit level by using the autobiographical IAT (aIAT), a novel method based on indirect measures that permits to detect true autobiographical events encoded in the respondent’s mind/brain. In our experiment, after a DRM task participants performed two aIATs: the first aimed at testing implicit memory for presented words (true-memories aIAT) and the second aimed at evaluating implicit memory for critical lures (false-memories aIAT). Specifically, the two aIATs assessed the association of presented words and critical lures with the logical dimension “true.” Results showed that the aIAT detected a greater association of presented words than critical lures with the logical dimension “true.” This result indicates that although true and false DRM memories are indistinguishable at the explicit level a different association of the true and false DRM memories with the logical dimension “true” can be detected at the implicit level, and suggests that the aIAT may be a sensitive instrument to detect differences between true and false DRM memories. PMID:22969740

  5. The subjective experience of object recognition: comparing metacognition for object detection and object categorization.

    PubMed

    Meuwese, Julia D I; van Loon, Anouk M; Lamme, Victor A F; Fahrenfort, Johannes J

    2014-05-01

    Perceptual decisions seem to be made automatically and almost instantly. Constructing a unitary subjective conscious experience takes more time. For example, when trying to avoid a collision with a car on a foggy road you brake or steer away in a reflex, before realizing you were in a near accident. This subjective aspect of object recognition has been given little attention. We used metacognition (assessed with confidence ratings) to measure subjective experience during object detection and object categorization for degraded and masked objects, while objective performance was matched. Metacognition was equal for degraded and masked objects, but categorization led to higher metacognition than did detection. This effect turned out to be driven by a difference in metacognition for correct rejection trials, which seemed to be caused by an asymmetry of the distractor stimulus: It does not contain object-related information in the detection task, whereas it does contain such information in the categorization task. Strikingly, this asymmetry selectively impacted metacognitive ability when objective performance was matched. This finding reveals a fundamental difference in how humans reflect versus act on information: When matching the amount of information required to perform two tasks at some objective level of accuracy (acting), metacognitive ability (reflecting) is still better in tasks that rely on positive evidence (categorization) than in tasks that rely more strongly on an absence of evidence (detection).

  6. Metacognition and proofreading: the roles of aging, motivation, and interest.

    PubMed

    Hargis, Mary B; Yue, Carole L; Kerr, Tyson; Ikeda, Kenji; Murayama, Kou; Castel, Alan D

    2017-03-01

    The current study examined younger and older adults' error detection accuracy, prediction calibration, and postdiction calibration on a proofreading task, to determine if age-related differences would be present in this type of common error detection task. Participants were given text passages, and were first asked to predict the percentage of errors they would detect in the passage. They then read the passage and circled errors (which varied in complexity and locality), and made postdictions regarding their performance, before repeating this with another passage and answering a comprehension test of both passages. There were no age-related differences in error detection accuracy, text comprehension, or metacognitive calibration, though participants in both age groups were overconfident overall in their metacognitive judgments. Both groups gave similar ratings of motivation to complete the task. The older adults rated the passages as more interesting than younger adults did, although this level of interest did not appear to influence error-detection performance. The age equivalence in both proofreading ability and calibration suggests that the ability to proofread text passages and the associated metacognitive monitoring used in judging one's own performance are maintained in aging. These age-related similarities persisted when younger adults completed the proofreading tasks on a computer screen, rather than with paper and pencil. The findings provide novel insights regarding the influence that cognitive aging may have on metacognitive accuracy and text processing in an everyday task.

  7. Learning-based automatic detection of severe coronary stenoses in CT angiographies

    NASA Astrophysics Data System (ADS)

    Melki, Imen; Cardon, Cyril; Gogin, Nicolas; Talbot, Hugues; Najman, Laurent

    2014-03-01

    3D cardiac computed tomography angiography (CCTA) is becoming a standard routine for non-invasive heart diseases diagnosis. Thanks to its high negative predictive value, CCTA is increasingly used to decide whether or not the patient should be considered for invasive angiography. However, an accurate assessment of cardiac lesions using this modality is still a time consuming task and needs a high degree of clinical expertise. Thus, providing automatic tool to assist clinicians during the diagnosis task is highly desirable. In this work, we propose a fully automatic approach for accurate severe cardiac stenoses detection. Our algorithm uses the Random Forest classi cation to detect stenotic areas. First, the classi er is trained on 18 CT cardiac exams with CTA reference standard. Then, then classi cation result is used to detect severe stenoses (with a narrowing degree higher than 50%) in a 30 cardiac CT exam database. Features that best captures the di erent stenoses con guration are extracted along the vessel centerlines at di erent scales. To ensure the accuracy against the vessel direction and scale changes, we extract features inside cylindrical patterns with variable directions and radii. Thus, we make sure that the ROIs contains only the vessel walls. The algorithm is evaluated using the Rotterdam Coronary Artery Stenoses Detection and Quantication Evaluation Framework. The evaluation is performed using reference standard quanti cations obtained from quantitative coronary angiography (QCA) and consensus reading of CTA. The obtained results show that we can reliably detect severe stenosis with a sensitivity of 64%.

  8. A dimension reduction strategy for improving the efficiency of computer-aided detection for CT colonography

    NASA Astrophysics Data System (ADS)

    Song, Bowen; Zhang, Guopeng; Wang, Huafeng; Zhu, Wei; Liang, Zhengrong

    2013-02-01

    Various types of features, e.g., geometric features, texture features, projection features etc., have been introduced for polyp detection and differentiation tasks via computer aided detection and diagnosis (CAD) for computed tomography colonography (CTC). Although these features together cover more information of the data, some of them are statistically highly-related to others, which made the feature set redundant and burdened the computation task of CAD. In this paper, we proposed a new dimension reduction method which combines hierarchical clustering and principal component analysis (PCA) for false positives (FPs) reduction task. First, we group all the features based on their similarity using hierarchical clustering, and then PCA is employed within each group. Different numbers of principal components are selected from each group to form the final feature set. Support vector machine is used to perform the classification. The results show that when three principal components were chosen from each group we can achieve an area under the curve of receiver operating characteristics of 0.905, which is as high as the original dataset. Meanwhile, the computation time is reduced by 70% and the feature set size is reduce by 77%. It can be concluded that the proposed method captures the most important information of the feature set and the classification accuracy is not affected after the dimension reduction. The result is promising and further investigation, such as automatically threshold setting, are worthwhile and are under progress.

  9. Real-time object detection and semantic segmentation for autonomous driving

    NASA Astrophysics Data System (ADS)

    Li, Baojun; Liu, Shun; Xu, Weichao; Qiu, Wei

    2018-02-01

    In this paper, we proposed a Highly Coupled Network (HCNet) for joint objection detection and semantic segmentation. It follows that our method is faster and performs better than the previous approaches whose decoder networks of different tasks are independent. Besides, we present multi-scale loss architecture to learn better representation for different scale objects, but without extra time in the inference phase. Experiment results show that our method achieves state-of-the-art results on the KITTI datasets. Moreover, it can run at 35 FPS on a GPU and thus is a practical solution to object detection and semantic segmentation for autonomous driving.

  10. An analysis of relational complexity in an air traffic control conflict detection task.

    PubMed

    Boag, Christine; Neal, Andrew; Loft, Shayne; Halford, Graeme S

    2006-11-15

    Theoretical analyses of air traffic complexity were carried out using the Method for the Analysis of Relational Complexity. Twenty-two air traffic controllers examined static air traffic displays and were required to detect and resolve conflicts. Objective measures of performance included conflict detection time and accuracy. Subjective perceptions of mental workload were assessed by a complexity-sorting task and subjective ratings of the difficulty of different aspects of the task. A metric quantifying the complexity of pair-wise relations among aircraft was able to account for a substantial portion of the variance in the perceived complexity and difficulty of conflict detection problems, as well as reaction time. Other variables that influenced performance included the mean minimum separation between aircraft pairs and the amount of time that aircraft spent in conflict.

  11. Training in Contrast Detection Improves Motion Perception of Sinewave Gratings in Amblyopia

    PubMed Central

    Hou, Fang; Huang, Chang-bing; Tao, Liming; Feng, Lixia; Zhou, Yifeng; Lu, Zhong-Lin

    2011-01-01

    Purpose. One critical concern about using perceptual learning to treat amblyopia is whether training with one particular stimulus and task generalizes to other stimuli and tasks. In the spatial domain, it has been found that the bandwidth of contrast sensitivity improvement is much broader in amblyopes than in normals. Because previous studies suggested the local motion deficits in amblyopia are explained by the spatial vision deficits, the hypothesis for this study was that training in the spatial domain could benefit motion perception of sinewave gratings. Methods. Nine adult amblyopes (mean age, 22.1 ± 5.6 years) were trained in a contrast detection task in the amblyopic eye for 10 days. Visual acuity, spatial contrast sensitivity functions, and temporal modulation transfer functions (MTF) for sinewave motion detection and discrimination were measured for each eye before and after training. Eight adult amblyopes (mean age, 22.6 ± 6.7 years) served as control subjects. Results. In the amblyopic eye, training improved (1) contrast sensitivity by 6.6 dB (or 113.8%) across spatial frequencies, with a bandwidth of 4.4 octaves; (2) sensitivity of motion detection and discrimination by 3.2 dB (or 44.5%) and 3.7 dB (or 53.1%) across temporal frequencies, with bandwidths of 3.9 and 3.1 octaves, respectively; (3) visual acuity by 3.2 dB (or 44.5%). The fellow eye also showed a small amount of improvement in contrast sensitivities and no significant change in motion perception. Control subjects who received no training demonstrated no obvious improvement in any measure. Conclusions. The results demonstrate substantial plasticity in the amblyopic visual system, and provide additional empirical support for perceptual learning as a potential treatment for amblyopia. PMID:21693615

  12. Active Optical Sensors for Tree Stem Detection and Classification in Nurseries

    PubMed Central

    Garrido, Miguel; Perez-Ruiz, Manuel; Valero, Constantino; Gliever, Chris J.; Hanson, Bradley D.; Slaughter, David C.

    2014-01-01

    Active optical sensing (LIDAR and light curtain transmission) devices mounted on a mobile platform can correctly detect, localize, and classify trees. To conduct an evaluation and comparison of the different sensors, an optical encoder wheel was used for vehicle odometry and provided a measurement of the linear displacement of the prototype vehicle along a row of tree seedlings as a reference for each recorded sensor measurement. The field trials were conducted in a juvenile tree nursery with one-year-old grafted almond trees at Sierra Gold Nurseries, Yuba City, CA, United States. Through these tests and subsequent data processing, each sensor was individually evaluated to characterize their reliability, as well as their advantages and disadvantages for the proposed task. Test results indicated that 95.7% and 99.48% of the trees were successfully detected with the LIDAR and light curtain sensors, respectively. LIDAR correctly classified, between alive or dead tree states at a 93.75% success rate compared to 94.16% for the light curtain sensor. These results can help system designers select the most reliable sensor for the accurate detection and localization of each tree in a nursery, which might allow labor-intensive tasks, such as weeding, to be automated without damaging crops. PMID:24949638

  13. Using dual tasks to test immediate transfer of training between naturalistic movements: a proof-of-principle study.

    PubMed

    Schaefer, Sydney Y; Lang, Catherine E

    2012-01-01

    Theories of motor learning predict that training a movement reduces the amount of attention needed for its performance (i.e., more automatic). If training one movement transfers, then the amount of attention needed for performing a second movement should also be reduced, as measured under dual task conditions. The authors' purpose was to test whether dual task paradigms are feasible for detecting transfer of training between two naturalistic movements. Immediately following motor training, subjects improved performance of a second untrained movement under single and dual task conditions. Subjects with no training did not. Improved performance in the untrained movement was likely due to transfer, and suggests that dual tasks may be feasible for detecting transfer between naturalistic actions.

  14. Clarifying the Behavioral Economics of Social Anxiety Disorder: Effects of Interpersonal Problems and Symptom Severity on Generosity.

    PubMed

    Rodebaugh, Thomas L; Heimberg, Richard G; Taylor, Kristin P; Lenze, Eric J

    2016-01-01

    Social anxiety disorder is associated with lower interpersonal warmth, possibly explaining its associated interpersonal impairment. Across two samples, we attempted to replicate previous findings that the disorder's constraint of interpersonal warmth can be detected via behavioral economic tasks. We also tested the test-retest stability of task indices. Results indicated that factors associated with social anxiety disorder (and not the disorder itself), such as the severity of social anxiety and more extreme interpersonal problems, lead to less generous behavior on the economic task examined. Results were clearest regarding fine-grained indices derived from latent trajectories. Unexpectedly, the combination of generalized anxiety disorder and higher depression also restricted generosity. Two of three indices showed acceptable test-retest stability. Maladaptive giving behavior may be a treatment target to improve interpersonal functioning in psychiatric disorders; therefore, future work should more precisely characterize behavioral economic tasks, including basic psychometric work (i.e., tests of reliability and validity).

  15. Clarifying the Behavioral Economics of Social Anxiety Disorder: Effects of Interpersonal Problems and Symptom Severity on Generosity

    PubMed Central

    Rodebaugh, Thomas L.; Heimberg, Richard G.; Taylor, Kristin P.; Lenze, Eric J.

    2015-01-01

    Social anxiety disorder is associated with lower interpersonal warmth, possibly explaining its associated interpersonal impairment. Across two samples, we attempted to replicate previous findings that the disorder’s constraint of interpersonal warmth can be detected via behavioral economic tasks. We also tested the test-retest stability of task indices. Results indicated that factors associated with social anxiety disorder (and not the disorder itself), such as the severity of social anxiety and more extreme interpersonal problems, lead to less generous behavior on the economic task examined. Results were clearest regarding fine-grained indices derived from latent trajectories. Unexpectedly, the combination of generalized anxiety disorder and higher depression also restricted generosity. Two of three indices showed acceptable test-retest stability. Maladaptive giving behavior may be a treatment target to improve interpersonal functioning in psychiatric disorders; therefore, future work should more precisely characterize behavioral economic tasks, including basic psychometric work (i.e., tests of reliability and validity). PMID:27034911

  16. CHARACTERIZATION OF THE EFFECTS OF INHALED PERCHLOROETHYLENE ON SUSTAINED ATTENTION IN RATS PERFORMING A VISUAL SIGNAL DETECTION TASK

    EPA Science Inventory

    The aliphatic hydrocarbon perchloroethyelene (PCE) has been associated with neurobehavioral dysfunction including reduced attention in humans. The current study sought to assess the effects of inhaled PCE on sustained attention in rats performing a visual signal detection task (S...

  17. Cortical Spatio-Temporal Dynamics Underlying Phonological Target Detection in Humans

    ERIC Educational Resources Information Center

    Chang, Edward F.; Edwards, Erik; Nagarajan, Srikantan S.; Fogelson, Noa; Dalal, Sarang S.; Canolty, Ryan T.; Kirsch, Heidi E.; Barbaro, Nicholas M.; Knight, Robert T.

    2011-01-01

    Selective processing of task-relevant stimuli is critical for goal-directed behavior. We used electrocorticography to assess the spatio-temporal dynamics of cortical activation during a simple phonological target detection task, in which subjects press a button when a prespecified target syllable sound is heard. Simultaneous surface potential…

  18. Access Restoration Project Task 1.2 Report 2 (of 2) Algorithms for Debris Volume and Water Depth Computation : Appendix A

    DOT National Transportation Integrated Search

    0000-01-01

    n the Access Restoration Project Task 1.2 Report 1, the algorithms for detecting roadway debris piles and flooded areas were described in detail. Those algorithms take CRS data as input and automatically detect the roadway obstructions. Although the ...

  19. Effects of age and eccentricity on visual target detection.

    PubMed

    Gruber, Nicole; Müri, René M; Mosimann, Urs P; Bieri, Rahel; Aeschimann, Andrea; Zito, Giuseppe A; Urwyler, Prabitha; Nyffeler, Thomas; Nef, Tobias

    2013-01-01

    The aim of this study was to examine the effects of aging and target eccentricity on a visual search task comprising 30 images of everyday life projected into a hemisphere, realizing a ±90° visual field. The task performed binocularly allowed participants to freely move their eyes to scan images for an appearing target or distractor stimulus (presented at 10°; 30°, and 50° eccentricity). The distractor stimulus required no response, while the target stimulus required acknowledgment by pressing the response button. One hundred and seventeen healthy subjects (mean age = 49.63 years, SD = 17.40 years, age range 20-78 years) were studied. The results show that target detection performance decreases with age as well as with increasing eccentricity, especially for older subjects. Reaction time also increases with age and eccentricity, but in contrast to target detection, there is no interaction between age and eccentricity. Eye movement analysis showed that younger subjects exhibited a passive search strategy while older subjects exhibited an active search strategy probably as a compensation for their reduced peripheral detection performance.

  20. Fault detection and fault tolerance in robotics

    NASA Technical Reports Server (NTRS)

    Visinsky, Monica; Walker, Ian D.; Cavallaro, Joseph R.

    1992-01-01

    Robots are used in inaccessible or hazardous environments in order to alleviate some of the time, cost and risk involved in preparing men to endure these conditions. In order to perform their expected tasks, the robots are often quite complex, thus increasing their potential for failures. If men must be sent into these environments to repair each component failure in the robot, the advantages of using the robot are quickly lost. Fault tolerant robots are needed which can effectively cope with failures and continue their tasks until repairs can be realistically scheduled. Before fault tolerant capabilities can be created, methods of detecting and pinpointing failures must be perfected. This paper develops a basic fault tree analysis of a robot in order to obtain a better understanding of where failures can occur and how they contribute to other failures in the robot. The resulting failure flow chart can also be used to analyze the resiliency of the robot in the presence of specific faults. By simulating robot failures and fault detection schemes, the problems involved in detecting failures for robots are explored in more depth.

  1. Rate change detection of frequency modulated signals: developmental trends.

    PubMed

    Cohen-Mimran, Ravit; Sapir, Shimon

    2011-08-26

    The aim of this study was to examine developmental trends in rate change detection of auditory rhythmic signals (repetitive sinusoidally frequency modulated tones). Two groups of children (9-10 years old and 11-12 years old) and one group of young adults performed a rate change detection (RCD) task using three types of stimuli. The rate of stimulus modulation was either constant (CR), raised by 1 Hz in the middle of the stimulus (RR1) or raised by 2 Hz in the middle of the stimulus (RR2). Performance on the RCD task significantly improved with age. Also, the different stimuli showed different developmental trajectories. When the RR2 stimulus was used, results showed adult-like performance by the age of 10 years but when the RR1 stimulus was used performance continued to improve beyond 12 years of age. Rate change detection of repetitive sinusoidally frequency modulated tones show protracted development beyond the age of 12 years. Given evidence for abnormal processing of auditory rhythmic signals in neurodevelopmental conditions, such as dyslexia, the present methodology might help delineate the nature of these conditions.

  2. Between-Frequency and Between-Ear Gap Detections and Their Relation to Perception of Stop Consonants.

    PubMed

    Mori, Shuji; Oyama, Kazuki; Kikuchi, Yousuke; Mitsudo, Takako; Hirose, Nobuyuki

    2015-01-01

    The objective of this study was to examine the hypothesis that between-channel gap detection, which includes between-frequency and between-ear gap detection, and perception of stop consonants, which is mediated by the length of voice-onset time (VOT), share common mechanisms, namely relative-timing operation in monitoring separate perceptual channels. The authors measured gap detection thresholds and identification functions of /ba/ and /pa/ along VOT in 49 native young adult Japanese listeners. There were three gap detection tasks. In the between-frequency task, the leading and trailing markers differed in terms of center frequency (Fc). The leading marker was a broadband noise of 10 to 20,000 Hz. The trailing marker was a 0.5-octave band-passed noise of 1000-, 2000-, 4000-, or 8000-Hz Fc. In the between-ear task, the two markers were spectrally identical but presented to separate ears. In the within-frequency task, the two spectrally identical markers were presented to the same ear. The /ba/-/pa/ identification functions were obtained in a task in which the listeners were presented synthesized speech stimuli of varying VOTs from 10 to 46 msec and asked to identify them as /ba/ or /pa/. The between-ear gap thresholds were significantly positively correlated with the between-frequency gap thresholds (except those obtained with the trailing marker of 4000-Hz Fc). The between-ear gap thresholds were not significantly correlated with the within-frequency gap thresholds, which were significantly correlated with all the between-frequency gap thresholds. The VOT boundaries and slopes of /ba/-/pa/ identification functions were not significantly correlated with any of these gap thresholds. There was a close relation between the between-ear and between-frequency gap detection, supporting the view that these two types of gap detection share common mechanisms of between-channel gap detection. However, there was no evidence for a relation between the perception of stop consonants and the between-frequency/ear gap detection in native Japanese speakers.

  3. A Modified Distributed Bees Algorithm for Multi-Sensor Task Allocation.

    PubMed

    Tkach, Itshak; Jevtić, Aleksandar; Nof, Shimon Y; Edan, Yael

    2018-03-02

    Multi-sensor systems can play an important role in monitoring tasks and detecting targets. However, real-time allocation of heterogeneous sensors to dynamic targets/tasks that are unknown a priori in their locations and priorities is a challenge. This paper presents a Modified Distributed Bees Algorithm (MDBA) that is developed to allocate stationary heterogeneous sensors to upcoming unknown tasks using a decentralized, swarm intelligence approach to minimize the task detection times. Sensors are allocated to tasks based on sensors' performance, tasks' priorities, and the distances of the sensors from the locations where the tasks are being executed. The algorithm was compared to a Distributed Bees Algorithm (DBA), a Bees System, and two common multi-sensor algorithms, market-based and greedy-based algorithms, which were fitted for the specific task. Simulation analyses revealed that MDBA achieved statistically significant improved performance by 7% with respect to DBA as the second-best algorithm, and by 19% with respect to Greedy algorithm, which was the worst, thus indicating its fitness to provide solutions for heterogeneous multi-sensor systems.

  4. Contextual cueing of pop-out visual search: when context guides the deployment of attention.

    PubMed

    Geyer, Thomas; Zehetleitner, Michael; Müller, Hermann J

    2010-05-01

    Visual context information can guide attention in demanding (i.e., inefficient) search tasks. When participants are repeatedly presented with identically arranged ('repeated') displays, reaction times are faster relative to newly composed ('non-repeated') displays. The present article examines whether this 'contextual cueing' effect operates also in simple (i.e., efficient) search tasks and if so, whether there it influences target, rather than response, selection. The results were that singleton-feature targets were detected faster when the search items were presented in repeated, rather than non-repeated, arrangements. Importantly, repeated, relative to novel, displays also led to an increase in signal detection accuracy. Thus, contextual cueing can expedite the selection of pop-out targets, most likely by enhancing feature contrast signals at the overall-salience computation stage.

  5. TH-AB-207A-09: Tailoring TCM Schemes to a Task: Evaluating the Impact of Customized TCM Profiles On Detection of Lung Nodules in Simulated CT Lung Cancer Screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, J; McNitt-Gray, M; Noo, F

    Purpose: Recent work has shown that current TCM profile designs boost detection of low-contrast lung lesions in the lung apices, but yield reduced detection performance in the mid and lower lung regions relative to fixed tube current cases. This observed imbalance suggests that the TCM scheme might be tailored in new ways to maximize nodule detection throughout the entire lung. In this work, we begin a preliminary investigation into custom TCM profiles in an attempt to achieve uniform lesion detection throughout the extent of the lung. Methods: Low-contrast (25HU), 6mm nodules representing ground glass opacities were simulated at 1mm intervalsmore » over the length the lungs in a voxelized model of the XCAT phantom, one nodule per lung, per simulated scan. Voxel values represented attenuation values at 80keV. CT projection data was created by simulating a finite focal spot and using Joseph’s method for forward projection; scanner geometry was that of the Siemens Sensation 64 and the X-ray source was simulated as an 80keV monochromatic beam. Noise realizations were created using Poisson statistics, a realistic bowtie filter and varying tube current. 500 noise realizations were created for the custom TCM designs. All reconstruction was done with FreeCT-wFBP. An SKE/BKE task was used in conjunction with a 2D Hotelling Observer to calculate area-under-the-curve (AUC) as a proxy for “detectability.” AUC was plotted as a function of nodule Z-location to create a “detectability map.” The detectability map for the custom TCM curve was qualitatively assessed relative to previous results for the fixed TC and clinical TCM cases for uniformity. Results: Detection uniformity was improved throughout the mid and lower lungs, however detection remained disproportionately high in the upper lung region. Conclusion: Detection uniformity was improved with a custom TC profile. Future work will incorporate an analytic, task-specific approach to optimize the TC scheme for nodule detection. J. Hoffman: Part-time intern, Toshiba Medical Research Institute; M. McNitt-Gray: Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics; F. Noo: Institutional research agreement, Siemens Healthcare; Receives research funding from Siemens Healthcare.« less

  6. Video segmentation and camera motion characterization using compressed data

    NASA Astrophysics Data System (ADS)

    Milanese, Ruggero; Deguillaume, Frederic; Jacot-Descombes, Alain

    1997-10-01

    We address the problem of automatically extracting visual indexes from videos, in order to provide sophisticated access methods to the contents of a video server. We focus on tow tasks, namely the decomposition of a video clip into uniform segments, and the characterization of each shot by camera motion parameters. For the first task we use a Bayesian classification approach to detecting scene cuts by analyzing motion vectors. For the second task a least- squares fitting procedure determines the pan/tilt/zoom camera parameters. In order to guarantee the highest processing speed, all techniques process and analyze directly MPEG-1 motion vectors, without need for video decompression. Experimental results are reported for a database of news video clips.

  7. Better Cognitive Performance Is Associated With the Combination of High Trait Mindfulness and Low Trait Anxiety.

    PubMed

    Jaiswal, Satish; Tsai, Shao-Yang; Juan, Chi-Hung; Liang, Wei-Kuang; Muggleton, Neil G

    2018-01-01

    There are several ways in which cognitive and neurophysiological parameters have been consistently used to explain the variability in cognitive ability between people. However, little has been done to explore how such cognitive abilities are influenced by differences in personality traits. Dispositional mindfulness and anxiety are two inversely linked traits that have been independently attributed to a range of cognitive functions. The current study investigated these two traits in combination along with measures of the attentional network, cognitive inhibition, and visual working memory (VWM) capacity. A total of 392 prospective participants were screened to select two experimental groups each of 30 healthy young adults, with one having high mindfulness and low anxiety (HMLA) and the second having low mindfulness and high anxiety (LMHA). The groups performed an attentional network task, a color Stroop task, and a change detection test of VWM capacity. Results showed that the HMLA group was more accurate than the LMHA group on the Stroop and change detection tasks. Additionally, the HMLA group was more sensitive in detecting changes and had a higher WMC than the LMHA group. This research adds to the literature that has investigated mindfulness and anxiety independently with a comprehensive investigation of the effects of these two traits in conjunction on executive function.

  8. Comparative evaluation of the oral tactile function by means of teeth or implant-supported prostheses.

    PubMed

    Jacobs, R; van Steenberghe, D

    1991-01-01

    To clarify more of the tactile function of oral implants, both an interocclusal thickness detection and discrimination task were carried out in 4 different test conditions on 37 patients: t (tooth)/t, i (implant)/t, i/i and d (denture)/o (overdenture supported by implants). For the interocclusal detection of steel foils, the 50% detection threshold level (RL) in the 4 conditions was 20, 48, 64 and 108 microns, respectively, which indicates significant differences. The ability to discriminate interdental thickness differences was tested with a 0.2 and 1.0 mm standard. It was evaluated as the 75% discrimination level (DL). In the 0.2 mm discrimination task, corresponding DL-values for the t/t, i/t, i/i and d/o condition were 25, 55, 66 and 134 microns, whereas the 1.0 mm standard gave values of 193, 293, 336 and 348 microns, respectively. All results differed significantly from each other (p less than 0.05) except for the i/i-d/o comparison of the 1.0 mm discrimination task where the difference was negligible. The present findings indicate that the tactile sensibility of implants is reduced with regard to natural teeth. Remaining receptors of the peri-implant tissues might play a compensatory role in the decreased exteroceptive function.

  9. The Effects of Sensor Performance as Modeled by Signal Detection Theory on the Performance of Reinforcement Learning in a Target Acquisition Task

    NASA Astrophysics Data System (ADS)

    Quirion, Nate

    Unmanned Aerial Systems (UASs) today are fulfilling more roles than ever before. There is a general push to have these systems feature more advanced autonomous capabilities in the near future. To achieve autonomous behavior requires some unique approaches to control and decision making. More advanced versions of these approaches are able to adapt their own behavior and examine their past experiences to increase their future mission performance. To achieve adaptive behavior and decision making capabilities this study used Reinforcement Learning algorithms. In this research the effects of sensor performance, as modeled through Signal Detection Theory (SDT), on the ability of RL algorithms to accomplish a target localization task are examined. Three levels of sensor sensitivity are simulated and compared to the results of the same system using a perfect sensor. To accomplish the target localization task, a hierarchical architecture used two distinct agents. A simulated human operator is assumed to be a perfect decision maker, and is used in the system feedback. An evaluation of the system is performed using multiple metrics, including episodic reward curves and the time taken to locate all targets. Statistical analyses are employed to detect significant differences in the comparison of steady-state behavior of different systems.

  10. A model of human event detection in multiple process monitoring situations

    NASA Technical Reports Server (NTRS)

    Greenstein, J. S.; Rouse, W. B.

    1978-01-01

    It is proposed that human decision making in many multi-task situations might be modeled in terms of the manner in which the human detects events related to his tasks and the manner in which he allocates his attention among his tasks once he feels events have occurred. A model of human event detection performance in such a situation is presented. An assumption of the model is that, in attempting to detect events, the human generates the probability that events have occurred. Discriminant analysis is used to model the human's generation of these probabilities. An experimental study of human event detection performance in a multiple process monitoring situation is described and the application of the event detection model to this situation is addressed. The experimental study employed a situation in which subjects simulataneously monitored several dynamic processes for the occurrence of events and made yes/no decisions on the presence of events in each process. Input to the event detection model of the information displayed to the experimental subjects allows comparison of the model's performance with the performance of the subjects.

  11. Choice of Grating Orientation for Evaluation of Peripheral Vision.

    PubMed

    Venkataraman, Abinaya Priya; Winter, Simon; Rosén, Robert; Lundström, Linda

    2016-06-01

    Peripheral resolution acuity depends on the orientation of the stimuli. However, it is uncertain if such a meridional effect also exists for peripheral detection tasks because they are affected by optical errors. Knowledge of the quantitative differences in acuity for different grating orientations is crucial for choosing the appropriate stimuli for evaluations of peripheral resolution and detection tasks. We assessed resolution and detection thresholds for different grating orientations in the peripheral visual field. Resolution and detection thresholds were evaluated for gratings of four different orientations in eight different visual field meridians in the 20-deg visual field in white light. Detection measurements in monochromatic light (543 nm; bandwidth, 10 nm) were also performed to evaluate the effects of chromatic aberration on the meridional effect. A combination of trial lenses and adaptive optics system was used to correct the monochromatic lower- and higher-order aberrations. For both resolution and detection tasks, gratings parallel to the visual field meridian had better threshold compared with the perpendicular gratings, whereas the two oblique gratings had similar thresholds. The parallel and perpendicular grating acuity differences for resolution and detection tasks were 0.16 logMAR and 0.11 logMAD, respectively. Elimination of chromatic errors did not affect the meridional preference in detection acuity. Similar to peripheral resolution, detection also shows a meridional effect that appears to have a neural origin. The threshold difference seen for parallel and perpendicular gratings suggests the use of two oblique gratings as stimuli in alternative forced-choice procedures for peripheral vision evaluation to reduce measurement variation.

  12. Monitoring cognitive and emotional processes through pupil and cardiac response during dynamic versus logical task.

    PubMed

    Causse, Mickaël; Sénard, Jean-Michel; Démonet, Jean François; Pastor, Josette

    2010-06-01

    The paper deals with the links between physiological measurements and cognitive and emotional functioning. As long as the operator is a key agent in charge of complex systems, the definition of metrics able to predict his performance is a great challenge. The measurement of the physiological state is a very promising way but a very acute comprehension is required; in particular few studies compare autonomous nervous system reactivity according to specific cognitive processes during task performance and task related psychological stress is often ignored. We compared physiological parameters recorded on 24 healthy subjects facing two neuropsychological tasks: a dynamic task that require problem solving in a world that continually evolves over time and a logical task representative of cognitive processes performed by operators facing everyday problem solving. Results showed that the mean pupil diameter change was higher during the dynamic task; conversely, the heart rate was more elevated during the logical task. Finally, the systolic blood pressure seemed to be strongly sensitive to psychological stress. A better taking into account of the precise influence of a given cognitive activity and both workload and related task-induced psychological stress during task performance is a promising way to better monitor operators in complex working situations to detect mental overload or pejorative stress factor of error.

  13. Visual Task Demands and the Auditory Mismatch Negativity: An Empirical Study and a Meta-Analysis

    PubMed Central

    Wiens, Stefan; Szychowska, Malina; Nilsson, Mats E.

    2016-01-01

    Because the auditory system is particularly useful in monitoring the environment, previous research has examined whether task-irrelevant, auditory distracters are processed even if subjects focus their attention on visual stimuli. This research suggests that attentionally demanding visual tasks decrease the auditory mismatch negativity (MMN) to simultaneously presented auditory distractors. Because a recent behavioral study found that high visual perceptual load decreased detection sensitivity of simultaneous tones, we used a similar task (n = 28) to determine if high visual perceptual load would reduce the auditory MMN. Results suggested that perceptual load did not decrease the MMN. At face value, these nonsignificant findings may suggest that effects of perceptual load on the MMN are smaller than those of other demanding visual tasks. If so, effect sizes should differ systematically between the present and previous studies. We conducted a selective meta-analysis of published studies in which the MMN was derived from the EEG, the visual task demands were continuous and varied between high and low within the same task, and the task-irrelevant tones were presented in a typical oddball paradigm simultaneously with the visual stimuli. Because the meta-analysis suggested that the present (null) findings did not differ systematically from previous findings, the available evidence was combined. Results of this meta-analysis confirmed that demanding visual tasks reduce the MMN to auditory distracters. However, because the meta-analysis was based on small studies and because of the risk for publication biases, future studies should be preregistered with large samples (n > 150) to provide confirmatory evidence for the results of the present meta-analysis. These future studies should also use control conditions that reduce confounding effects of neural adaptation, and use load manipulations that are defined independently from their effects on the MMN. PMID:26741815

  14. Slowing down after a mild traumatic brain injury: a strategy to improve cognitive task performance?

    PubMed

    Ozen, Lana J; Fernandes, Myra A

    2012-01-01

    Long-term persistent attention and memory difficulties following a mild traumatic brain injury (TBI) often go undetected on standard neuropsychological tests, despite complaints by mild TBI individuals. We conducted a visual Repetition Detection working memory task to digits, in which we manipulated task difficulty by increasing cognitive load, to identify subtle deficits long after a mild TBI. Twenty-six undergraduate students with a self-report of one mild TBI, which occurred at least 6 months prior, and 31 non-head-injured controls took part in the study. Participants were not informed until study completion that the study's purpose was to examine cognitive changes following a mild TBI, to reduce the influence of "diagnosis threat" on performance. Neuropsychological tasks did not differentiate the groups, though mild TBI participants reported higher state anxiety levels. On our working memory task, the mild TBI group took significantly longer to accurately detect repeated targets on our task, suggesting that slowed information processing is a long-term consequence of mild TBI. Accuracy was comparable in the low-load condition and, unexpectedly, mild TBI performance surpassed that of controls in the high-load condition. Temporal analysis of target identification suggested a strategy difference between groups: mild TBI participants made a significantly greater number of accurate responses following the target's offset, and significantly fewer erroneous distracter responses prior to target onset, compared with controls. Results suggest that long after a mild TBI, high-functioning young adults invoke a strategy of delaying their identification of targets in order to maintain, and facilitate, accuracy on cognitively demanding tasks. © The Author 2011. Published by Oxford University Press. All rights reserved.

  15. Optimal joint detection and estimation that maximizes ROC-type curves

    PubMed Central

    Wunderlich, Adam; Goossens, Bart; Abbey, Craig K.

    2017-01-01

    Combined detection-estimation tasks are frequently encountered in medical imaging. Optimal methods for joint detection and estimation are of interest because they provide upper bounds on observer performance, and can potentially be utilized for imaging system optimization, evaluation of observer efficiency, and development of image formation algorithms. We present a unified Bayesian framework for decision rules that maximize receiver operating characteristic (ROC)-type summary curves, including ROC, localization ROC (LROC), estimation ROC (EROC), free-response ROC (FROC), alternative free-response ROC (AFROC), and exponentially-transformed FROC (EFROC) curves, succinctly summarizing previous results. The approach relies on an interpretation of ROC-type summary curves as plots of an expected utility versus an expected disutility (or penalty) for signal-present decisions. We propose a general utility structure that is flexible enough to encompass many ROC variants and yet sufficiently constrained to allow derivation of a linear expected utility equation that is similar to that for simple binary detection. We illustrate our theory with an example comparing decision strategies for joint detection-estimation of a known signal with unknown amplitude. In addition, building on insights from our utility framework, we propose new ROC-type summary curves and associated optimal decision rules for joint detection-estimation tasks with an unknown, potentially-multiple, number of signals in each observation. PMID:27093544

  16. Optimal Joint Detection and Estimation That Maximizes ROC-Type Curves.

    PubMed

    Wunderlich, Adam; Goossens, Bart; Abbey, Craig K

    2016-09-01

    Combined detection-estimation tasks are frequently encountered in medical imaging. Optimal methods for joint detection and estimation are of interest because they provide upper bounds on observer performance, and can potentially be utilized for imaging system optimization, evaluation of observer efficiency, and development of image formation algorithms. We present a unified Bayesian framework for decision rules that maximize receiver operating characteristic (ROC)-type summary curves, including ROC, localization ROC (LROC), estimation ROC (EROC), free-response ROC (FROC), alternative free-response ROC (AFROC), and exponentially-transformed FROC (EFROC) curves, succinctly summarizing previous results. The approach relies on an interpretation of ROC-type summary curves as plots of an expected utility versus an expected disutility (or penalty) for signal-present decisions. We propose a general utility structure that is flexible enough to encompass many ROC variants and yet sufficiently constrained to allow derivation of a linear expected utility equation that is similar to that for simple binary detection. We illustrate our theory with an example comparing decision strategies for joint detection-estimation of a known signal with unknown amplitude. In addition, building on insights from our utility framework, we propose new ROC-type summary curves and associated optimal decision rules for joint detection-estimation tasks with an unknown, potentially-multiple, number of signals in each observation.

  17. Improvement of the Error-detection Mechanism in Adults with Dyslexia Following Reading Acceleration Training.

    PubMed

    Horowitz-Kraus, Tzipi

    2016-05-01

    The error-detection mechanism aids in preventing error repetition during a given task. Electroencephalography demonstrates that error detection involves two event-related potential components: error-related and correct-response negativities (ERN and CRN, respectively). Dyslexia is characterized by slow, inaccurate reading. In particular, individuals with dyslexia have a less active error-detection mechanism during reading than typical readers. In the current study, we examined whether a reading training programme could improve the ability to recognize words automatically (lexical representations) in adults with dyslexia, thereby resulting in more efficient error detection during reading. Behavioural and electrophysiological measures were obtained using a lexical decision task before and after participants trained with the reading acceleration programme. ERN amplitudes were smaller in individuals with dyslexia than in typical readers before training but increased following training, as did behavioural reading scores. Differences between the pre-training and post-training ERN and CRN components were larger in individuals with dyslexia than in typical readers. Also, the error-detection mechanism as represented by the ERN/CRN complex might serve as a biomarker for dyslexia and be used to evaluate the effectiveness of reading intervention programmes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Comparison of two Simon tasks: neuronal correlates of conflict resolution based on coherent motion perception.

    PubMed

    Wittfoth, Matthias; Buck, Daniela; Fahle, Manfred; Herrmann, Manfred

    2006-08-15

    The present study aimed at characterizing the neural correlates of conflict resolution in two variations of the Simon effect. We introduced two different Simon tasks where subjects had to identify shapes on the basis of form-from-motion perception (FFMo) within a randomly moving dot field, while (1) motion direction (motion-based Simon task) or (2) stimulus location (location-based Simon task) had to be ignored. Behavioral data revealed that both types of Simon tasks induced highly significant interference effects. Using event-related fMRI, we could demonstrate that both tasks share a common cluster of activated brain regions during conflict resolution (pre-supplementary motor area (pre-SMA), superior parietal lobule (SPL), and cuneus) but also show task-specific activation patterns (left superior temporal cortex in the motion-based, and the left fusiform gyrus in the location-based Simon task). Although motion-based and location-based Simon tasks are conceptually very similar (Type 3 stimulus-response ensembles according to the taxonomy of [Kornblum, S., Stevens, G. (2002). Sequential effects of dimensional overlap: findings and issues. In: Prinz, W., Hommel., B. (Eds.), Common mechanism in perception and action. Oxford University Press, Oxford, pp. 9-54]) conflict resolution in both tasks results in the activation of different task-specific regions probably related to the different sources of task-irrelevant information. Furthermore, the present data give evidence those task-specific regions are most likely to detect the relationship between task-relevant and task-irrelevant information.

  19. Visual search in Dementia with Lewy Bodies and Alzheimer's disease.

    PubMed

    Landy, Kelly M; Salmon, David P; Filoteo, J Vincent; Heindel, William C; Galasko, Douglas; Hamilton, Joanne M

    2015-12-01

    Visual search is an aspect of visual cognition that may be more impaired in Dementia with Lewy Bodies (DLB) than Alzheimer's disease (AD). To assess this possibility, the present study compared patients with DLB (n = 17), AD (n = 30), or Parkinson's disease with dementia (PDD; n = 10) to non-demented patients with PD (n = 18) and normal control (NC) participants (n = 13) on single-feature and feature-conjunction visual search tasks. In the single-feature task participants had to determine if a target stimulus (i.e., a black dot) was present among 3, 6, or 12 distractor stimuli (i.e., white dots) that differed in one salient feature. In the feature-conjunction task participants had to determine if a target stimulus (i.e., a black circle) was present among 3, 6, or 12 distractor stimuli (i.e., white dots and black squares) that shared either of the target's salient features. Results showed that target detection time in the single-feature task was not influenced by the number of distractors (i.e., "pop-out" effect) for any of the groups. In contrast, target detection time increased as the number of distractors increased in the feature-conjunction task for all groups, but more so for patients with AD or DLB than for any of the other groups. These results suggest that the single-feature search "pop-out" effect is preserved in DLB and AD patients, whereas ability to perform the feature-conjunction search is impaired. This pattern of preserved single-feature search with impaired feature-conjunction search is consistent with a deficit in feature binding that may be mediated by abnormalities in networks involving the dorsal occipito-parietal cortex. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Visual Search in Dementia with Lewy Bodies and Alzheimer’s Disease

    PubMed Central

    Landy, Kelly M.; Salmon, David P.; Filoteo, J. Vincent; Heindel, William C.; Galasko, Douglas; Hamilton, Joanne M.

    2016-01-01

    Visual search is an aspect of visual cognition that may be more impaired in Dementia with Lewy Bodies (DLB) than Alzheimer’s disease (AD). To assess this possibility, the present study compared patients with DLB (n=17), AD (n=30), or Parkinson’s disease with dementia (PDD; n=10) to non-demented patients with PD (n=18) and normal control (NC) participants (n=13) on single-feature and feature-conjunction visual search tasks. In the single-feature task participants had to determine if a target stimulus (i.e., a black dot) was present among 3, 6, or 12 distractor stimuli (i.e., white dots) that differed in one salient feature. In the feature-conjunction task participants had to determine if a target stimulus (i.e., a black circle) was present among 3, 6, or 12 distractor stimuli (i.e., white dots and black squares) that shared either of the target’s salient features. Results showed that target detection time in the single-feature task was not influenced by the number of distractors (i.e., “pop-out” effect) for any of the groups. In contrast, target detection time increased as the number of distractors increased in the feature-conjunction task for all groups, but more so for patients with AD or DLB than for any of the other groups. These results suggest that the single-feature search “pop-out” effect is preserved in DLB and AD patients, whereas ability to perform the feature-conjunction search is impaired. This pattern of preserved single-feature search with impaired feature-conjunction search is consistent with a deficit in feature binding that may be mediated by abnormalities in networks involving the dorsal occipito-parietal cortex. PMID:26476402

  1. Behavioral dissociation between emotional and non-emotional facial expressions in congenital prosopagnosia

    PubMed Central

    Daini, Roberta; Comparetti, Chiara M.; Ricciardelli, Paola

    2014-01-01

    Neuropsychological and neuroimaging studies have shown that facial recognition and emotional expressions are dissociable. However, it is unknown if a single system supports the processing of emotional and non-emotional facial expressions. We aimed to understand if individuals with impairment in face recognition from birth (congenital prosopagnosia, CP) can use non-emotional facial expressions to recognize a face as an already seen one, and thus, process this facial dimension independently from features (which are impaired in CP), and basic emotional expressions. To this end, we carried out a behavioral study in which we compared the performance of 6 CP individuals to that of typical development individuals, using upright and inverted faces. Four avatar faces with a neutral expression were presented in the initial phase. The target faces presented in the recognition phase, in which a recognition task was requested (2AFC paradigm), could be identical (neutral) to those of the initial phase or present biologically plausible changes to features, non-emotional expressions, or emotional expressions. After this task, a second task was performed, in which the participants had to detect whether or not the recognized face exactly matched the study face or showed any difference. The results confirmed the CPs' impairment in the configural processing of the invariant aspects of the face, but also showed a spared configural processing of non-emotional facial expression (task 1). Interestingly and unlike the non-emotional expressions, the configural processing of emotional expressions was compromised in CPs and did not improve their change detection ability (task 2). These new results have theoretical implications for face perception models since they suggest that, at least in CPs, non-emotional expressions are processed configurally, can be dissociated from other facial dimensions, and may serve as a compensatory strategy to achieve face recognition. PMID:25520643

  2. Behavioral dissociation between emotional and non-emotional facial expressions in congenital prosopagnosia.

    PubMed

    Daini, Roberta; Comparetti, Chiara M; Ricciardelli, Paola

    2014-01-01

    Neuropsychological and neuroimaging studies have shown that facial recognition and emotional expressions are dissociable. However, it is unknown if a single system supports the processing of emotional and non-emotional facial expressions. We aimed to understand if individuals with impairment in face recognition from birth (congenital prosopagnosia, CP) can use non-emotional facial expressions to recognize a face as an already seen one, and thus, process this facial dimension independently from features (which are impaired in CP), and basic emotional expressions. To this end, we carried out a behavioral study in which we compared the performance of 6 CP individuals to that of typical development individuals, using upright and inverted faces. Four avatar faces with a neutral expression were presented in the initial phase. The target faces presented in the recognition phase, in which a recognition task was requested (2AFC paradigm), could be identical (neutral) to those of the initial phase or present biologically plausible changes to features, non-emotional expressions, or emotional expressions. After this task, a second task was performed, in which the participants had to detect whether or not the recognized face exactly matched the study face or showed any difference. The results confirmed the CPs' impairment in the configural processing of the invariant aspects of the face, but also showed a spared configural processing of non-emotional facial expression (task 1). Interestingly and unlike the non-emotional expressions, the configural processing of emotional expressions was compromised in CPs and did not improve their change detection ability (task 2). These new results have theoretical implications for face perception models since they suggest that, at least in CPs, non-emotional expressions are processed configurally, can be dissociated from other facial dimensions, and may serve as a compensatory strategy to achieve face recognition.

  3. Task by stimulus interactions in brain responses during Chinese character processing.

    PubMed

    Yang, Jianfeng; Wang, Xiaojuan; Shu, Hua; Zevin, Jason D

    2012-04-02

    In the visual word recognition literature, it is well understood that various stimulus effects interact with behavioral task. For example, effects of word frequency are exaggerated and effects of spelling-to-sound regularity are reduced in the lexical decision task, relative to reading aloud. Neuroimaging studies of reading often examine effects of task and stimulus properties on brain activity independently, but potential interactions between task demands and stimulus effects have not been extensively explored. To address this issue, we conducted lexical decision and symbol detection tasks using stimuli that varied parametrically in their word-likeness, and tested for task by stimulus class interactions. Interactions were found throughout the reading system, such that stimulus selectivity was observed during the lexical decision task, but not during the symbol detection task. Further, the pattern of stimulus selectivity was directly related to task difficulty, so that the strongest brain activity was observed to the most word-like stimuli that required "no" responses, whereas brain activity to words, which elicit rapid and accurate "yes" responses were relatively weak. This is in line with models that argue for task-dependent specialization of brain regions, and contrasts with the notion of task-independent stimulus selectivity in the reading system. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Gas leak detection in infrared video with background modeling

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaoxia; Huang, Likun

    2018-03-01

    Background modeling plays an important role in the task of gas detection based on infrared video. VIBE algorithm is a widely used background modeling algorithm in recent years. However, the processing speed of the VIBE algorithm sometimes cannot meet the requirements of some real time detection applications. Therefore, based on the traditional VIBE algorithm, we propose a fast prospect model and optimize the results by combining the connected domain algorithm and the nine-spaces algorithm in the following processing steps. Experiments show the effectiveness of the proposed method.

  5. Automated and accurate bridge deck crack inspection and mapping.

    DOT National Transportation Integrated Search

    2012-10-01

    One of the important tasks for bridge maintenance is bridge deck crack inspection. Traditionally, a human inspector detects cracks using his/her eyes and finds the location of cracks manually. Thus the accuracy of the inspection result is low due to ...

  6. The influence of lapses of attention on working memory capacity.

    PubMed

    Unsworth, Nash; Robison, Matthew K

    2016-02-01

    In three experiments, the influence of lapses of attention on working memory (WM) capacity measures was examined. Participants performed various change detection tasks while also reporting whether they were focused on the current task or whether they were unfocused and mind-wandering. Participants reported that they were mind-wandering roughly 27% of the time, and when participants reported mind-wandering, their performance was worse compared to when they reported being on-task. Low WM capacity individuals reported more mind-wandering and lapses of attention than high WM capacity individuals, and mind-wandering and filtering abilities were shown to make independent contributions to capacity estimates. These results provide direct support for the notion that the ability to focus attention on-task and prevent lapses of attention is an important contributor to performance on measures of WM capacity.

  7. Detection of Focal Cortical Dysplasia Lesions in MRI Using Textural Features

    NASA Astrophysics Data System (ADS)

    Loyek, Christian; Woermann, Friedrich G.; Nattkemper, Tim W.

    Focal cortical dysplasia (FCD) is a frequent cause of medically refractory partial epilepsy. The visual identification of FCD lesions on magnetic resonance images (MRI) is a challenging task in standard radiological analysis. Quantitative image analysis which tries to assist in the diagnosis of FCD lesions is an active field of research. In this work we investigate the potential of different texture features, in order to explore to what extent they are suitable for detecting lesional tissue. As a result we can show first promising results based on segmentation and texture classification.

  8. The impact of task demand on visual word recognition.

    PubMed

    Yang, J; Zevin, J

    2014-07-11

    The left occipitotemporal cortex has been found sensitive to the hierarchy of increasingly complex features in visually presented words, from individual letters to bigrams and morphemes. However, whether this sensitivity is a stable property of the brain regions engaged by word recognition is still unclear. To address the issue, the current study investigated whether different task demands modify this sensitivity. Participants viewed real English words and stimuli with hierarchical word-likeness while performing a lexical decision task (i.e., to decide whether each presented stimulus is a real word) and a symbol detection task. General linear model and independent component analysis indicated strong activation in the fronto-parietal and temporal regions during the two tasks. Furthermore, the bilateral inferior frontal gyrus and insula showed significant interaction effects between task demand and stimulus type in the pseudoword condition. The occipitotemporal cortex showed strong main effects for task demand and stimulus type, but no sensitivity to the hierarchical word-likeness was found. These results suggest that different task demands on semantic, phonological and orthographic processes can influence the involvement of the relevant regions during visual word recognition. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Final Report for Research in High Energy Physics (University of Hawaii)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browder, Thomas E.

    2013-08-31

    Here we present a final report for the DOE award for the University of Hawaii High Energy Physics Group (UHHEPG) for the period from December 1, 2009 to May 31, 2013 (including a period of no-cost extension). The high energy physics (HEP) group at the University of Hawaii (UH) has been engaged in experiments at the intensity frontier studying flavor physics (Task A: Belle, Belle-II and Task B: BES) and neutrinos (Task C: SuperK, LBNE, Double Chooz, DarkSide, and neutrino R\\&D). On the energy frontier, new types of pixel detectors were developed for upgrades of the ATLAS experiment at themore » LHC (Task D). On the cosmic frontier, there were investigations of ultra high-energy neutrino astrophysics and the highest energy cosmic rays using special radio detection techniques (Task E: AMBER, ANITA R\\&D) and results of the analysis of ANITA data. In addition, we have developed new types of sophisticated and cutting edge instrumentation based on novel ``oscilloscope on a chip'' electronics (Task F). Theoretical physics research (Task G) is phenomenologically oriented and has studied experimental consequences of existing and proposed new theories relevant to the energy, cosmic and intensity frontiers. The senior investigators for proposal were T. E. Browder (Task A), F. A. Harris (Task B), P. Gorham (Task E), J. Kumar (Task G), J. Maricic (Task C), J. G. Learned (Task C), S. Pakvasa (Task G), S. Parker (Task D), S. Matsuno (Task C), X. Tata (Task G) and G. S. Varner (Tasks F, A, E).« less

  10. Sensor Tasking for Detection and Custody of HAMR Objects

    NASA Astrophysics Data System (ADS)

    Frueh, C.; Paul, S. M.; Fiedler, H.

    High area-to-mass ratio objects (HAMR) are objects that are highly perturbed especially by non-conservative forces such as drag and solar radiation pressure. As a consequence, they are population different orbital regions than low area-to-mass ratio objects. This makes the objects hard to detect. After initial detection those objects are often lost, because standard follow-up times of thirty periods are not sufficient for redetection. This paper applies a sensor tasking and follow-up strategy to the problem of detecting and keeping custody of HAMR objects.

  11. Evaluating camouflage design using eye movement data.

    PubMed

    Lin, Chiuhsiang Joe; Chang, Chi-Chan; Lee, Yung-Hui

    2014-05-01

    This study investigates the characteristics of eye movements during a camouflaged target search task. Camouflaged targets were randomly presented on two natural landscapes. The performance of each camouflage design was assessed by target detection hit rate, detection time, number of fixations on display, first saccade amplitude to target, number of fixations on target, fixation duration on target, and subjective ratings of search task difficulty. The results showed that the camouflage patterns could significantly affect the eye-movement behavior, especially first saccade amplitude and fixation duration, and the findings could be used to increase the sensitivity of the camouflage assessment. We hypothesized that the assessment could be made with regard to the differences in detectability and discriminability of the camouflage patterns. These could explain less efficient search behavior in eye movements. Overall, data obtained from eye movements can be used to significantly enhance the interpretation of the effects of different camouflage design. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Reinforcement learning and counterfactual reasoning explain adaptive behavior in a changing environment.

    PubMed

    Zhang, Yunfeng; Paik, Jaehyon; Pirolli, Peter

    2015-04-01

    Animals routinely adapt to changes in the environment in order to survive. Though reinforcement learning may play a role in such adaptation, it is not clear that it is the only mechanism involved, as it is not well suited to producing rapid, relatively immediate changes in strategies in response to environmental changes. This research proposes that counterfactual reasoning might be an additional mechanism that facilitates change detection. An experiment is conducted in which a task state changes over time and the participants had to detect the changes in order to perform well and gain monetary rewards. A cognitive model is constructed that incorporates reinforcement learning with counterfactual reasoning to help quickly adjust the utility of task strategies in response to changes. The results show that the model can accurately explain human data and that counterfactual reasoning is key to reproducing the various effects observed in this change detection paradigm. Copyright © 2015 Cognitive Science Society, Inc.

  13. In conflict with ourselves? An investigation of heuristic and analytic processes in decision making.

    PubMed

    Bonner, Carissa; Newell, Ben R

    2010-03-01

    Many theorists propose two types of processing: heuristic and analytic. In conflict tasks, in which these processing types lead to opposing responses, giving the analytic response may require both detection and resolution of the conflict. The ratio bias task, in which people tend to treat larger numbered ratios (e.g., 20/100) as indicating a higher likelihood of winning than do equivalent smaller numbered ratios (e.g., 2/10), is considered to induce such a conflict. Experiment 1 showed response time differences associated with conflict detection, resolution, and the amount of conflict induced. The conflict detection and resolution effects were replicated in Experiment 2 and were not affected by decreasing the influence of the heuristic response or decreasing the capacity to make the analytic response. The results are consistent with dual-process accounts, but a single-process account in which quantitative, rather than qualitative, differences in processing are assumed fares equally well in explaining the data.

  14. Joint Spatial-Spectral Feature Space Clustering for Speech Activity Detection from ECoG Signals

    PubMed Central

    Kanas, Vasileios G.; Mporas, Iosif; Benz, Heather L.; Sgarbas, Kyriakos N.; Bezerianos, Anastasios; Crone, Nathan E.

    2014-01-01

    Brain machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech activity automatically from electrocorticographic signals based on joint spatial-frequency clustering of the ECoG feature space. For this study, the ECoG signals were recorded while a subject performed two different syllable repetition tasks. We found that the optimal frequency resolution to detect speech activity from ECoG signals was 8 Hz, achieving 98.8% accuracy by employing support vector machines (SVM) as a classifier. We also defined the cortical areas that held the most information about the discrimination of speech and non-speech time intervals. Additionally, the results shed light on the distinct cortical areas associated with the two syllable repetition tasks and may contribute to the development of portable ECoG-based communication. PMID:24658248

  15. REPEATED INHALATION OF TOLUENE BY RATS PERFORMING A SIGNAL DETECTION TASK LEADS TO BEHVIORAL TOLERANCE ON SOME PERFORMANCE MEASURES.

    EPA Science Inventory

    Previous work showed that trichloroethylene (TCE) impairs sustained attention as evidenced by a reduction in accuracy and elevation of response latencies in rats trained to perform a visual signal detection task (SDT). This work also showed that these effects abate during repeat...

  16. Passive wireless sensor systems can recognize activites of daily living.

    PubMed

    Urwyler, Prabitha; Stucki, Reto; Muri, Rene; Mosimann, Urs P; Nef, Tobias

    2015-08-01

    The ability to determine what activity of daily living a person performs is of interest in many application domains. It is possible to determine the physical and cognitive capabilities of the elderly by inferring what activities they perform in their houses. Our primary aim was to establish a proof of concept that a wireless sensor system can monitor and record physical activity and these data can be modeled to predict activities of daily living. The secondary aim was to determine the optimal placement of the sensor boxes for detecting activities in a room. A wireless sensor system was set up in a laboratory kitchen. The ten healthy participants were requested to make tea following a defined sequence of tasks. Data were collected from the eight wireless sensor boxes placed in specific places in the test kitchen and analyzed to detect the sequences of tasks performed by the participants. These sequence of tasks were trained and tested using the Markov Model. Data analysis focused on the reliability of the system and the integrity of the collected data. The sequence of tasks were successfully recognized for all subjects and the averaged data pattern of tasks sequences between the subjects had a high correlation. Analysis of the data collected indicates that sensors placed in different locations are capable of recognizing activities, with the movement detection sensor contributing the most to detection of tasks. The central top of the room with no obstruction of view was considered to be the best location to record data for activity detection. Wireless sensor systems show much promise as easily deployable to monitor and recognize activities of daily living.

  17. Using dual tasks to test immediate transfer of training between naturalistic movements: A proof-of-principle study

    PubMed Central

    Schaefer, Sydney Y.; Lang, Catherine E.

    2012-01-01

    Theories of motor learning predict that training a movement reduces the amount of attention needed for its performance (i.e. more automatic). If training one movement transfers, then the amount of attention needed for performing a second movement should also be reduced, as measured under dual task conditions. The purpose of this study was to test whether dual task paradigms are feasible for detecting transfer of training between two naturalistic movements. Immediately following motor training, subjects improved performance of a second untrained movement under both single and dual task conditions. Subjects with no training did not. Improved performance in the untrained movement was likely due to transfer, and suggests that dual tasks may be feasible for detecting transfer between naturalistic actions. PMID:22934682

  18. Visual search in Alzheimer's disease: a deficiency in processing conjunctions of features.

    PubMed

    Tales, A; Butler, S R; Fossey, J; Gilchrist, I D; Jones, R W; Troscianko, T

    2002-01-01

    Human vision often needs to encode multiple characteristics of many elements of the visual field, for example their lightness and orientation. The paradigm of visual search allows a quantitative assessment of the function of the underlying mechanisms. It measures the ability to detect a target element among a set of distractor elements. We asked whether Alzheimer's disease (AD) patients are particularly affected in one type of search, where the target is defined by a conjunction of features (orientation and lightness) and where performance depends on some shifting of attention. Two non-conjunction control conditions were employed. The first was a pre-attentive, single-feature, "pop-out" task, detecting a vertical target among horizontal distractors. The second was a single-feature, partly attentive task in which the target element was slightly larger than the distractors-a "size" task. This was chosen to have a similar level of attentional load as the conjunction task (for the control group), but lacked the conjunction of two features. In an experiment, 15 AD patients were compared to age-matched controls. The results suggested that AD patients have a particular impairment in the conjunction task but not in the single-feature size or pre-attentive tasks. This may imply that AD particularly affects those mechanisms which compare across more than one feature type, and spares the other systems and is not therefore simply an 'attention-related' impairment. Additionally, these findings show a double dissociation with previous data on visual search in Parkinson's disease (PD), suggesting a different effect of these diseases on the visual pathway.

  19. Executive and arousal vigilance decrement in the context of the attentional networks: The ANTI-Vea task.

    PubMed

    Luna, Fernando Gabriel; Marino, Julián; Roca, Javier; Lupiáñez, Juan

    2018-05-20

    Vigilance is generally understood as the ability to detect infrequent critical events through long time periods. In tasks like the Sustained Attention to Response Task (SART), participants tend to detect fewer events across time, a phenomenon known as "vigilance decrement". However, vigilance might also involve sustaining a tonic arousal level. In the Psychomotor Vigilance Test (PVT), the vigilance decrement corresponds to an increment across time in both mean and variability of reaction time. The present study aimed to develop a single task -Attentional Networks Test for Interactions and Vigilance - executive and arousal components (ANTI-Vea)- to simultaneously assess both components of vigilance (i.e., the executive vigilance as in the SART, and the arousal vigilance as in the PVT), while measuring the classic attentional functions (phasic alertness, orienting, and executive control). In Experiment #1, the executive vigilance decrement was found as an increment in response bias. In Experiment #2, this result was replicated, and the arousal vigilance decrement was simultaneously observed as an increment in reaction time. The ANTI-Vea solves some issues observed in the previous ANTI-V task with the executive vigilance measure (e.g., a low hit rate and no vigilance decrement). Furthermore, the new ANTI-Vea task assesses both components of vigilance together with others typical attentional functions. The new attentional networks test developed here may be useful to provide a better understanding of the human attentional system. The role of sensitivity and response bias in the executive vigilance decrement are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Deficits in discrimination after experimental frontal brain injury are mediated by motivation and can be improved by nicotinamide administration.

    PubMed

    Vonder Haar, Cole; Maass, William R; Jacobs, Eric A; Hoane, Michael R

    2014-10-15

    One of the largest challenges in experimental neurotrauma work is the development of models relevant to the human condition. This includes both creating similar pathophysiology as well as the generation of relevant behavioral deficits. Recent studies have shown that there is a large potential for the use of discrimination tasks in rats to detect injury-induced deficits. The literature on discrimination and TBI is still limited, however. The current study investigated motivational and motor factors that could potentially contribute to deficits in discrimination. In addition, the efficacy of a neuroprotective agent, nicotinamide, was assessed. Rats were trained on a discrimination task and motivation task, given a bilateral frontal controlled cortical impact TBI (+3.0 AP, 0.0 ML from bregma), and then reassessed. They were also assessed on motor ability and Morris water maze (MWM) performance. Experiment 1 showed that TBI resulted in large deficits in discrimination and motivation. No deficits were observed on gross motor measures; however, the vehicle group showed impairments in fine motor control. Both injured groups were impaired on the reference memory MWM, but only nicotinamide-treated rats were impaired on the working memory MWM. Nicotinamide administration improved performance on discrimination and motivation measures. Experiment 2 evaluated retraining on the discrimination task and suggested that motivation may be a large factor underlying discrimination deficits. Retrained rats improved considerably on the discrimination task. The tasks evaluated in this study demonstrate robust deficits and may improve the detection of pharmaceutical effects by being very sensitive to pervasive cognitive deficits that occur after frontal TBI.

  1. Optimization of medical imaging display systems: using the channelized Hotelling observer for detecting lung nodules: experimental study

    NASA Astrophysics Data System (ADS)

    Platisa, Ljiljana; Vansteenkiste, Ewout; Goossens, Bart; Marchessoux, Cédric; Kimpe, Tom; Philips, Wilfried

    2009-02-01

    Medical-imaging systems are designed to aid medical specialists in a specific task. Therefore, the physical parameters of a system need to optimize the task performance of a human observer. This requires measurements of human performance in a given task during the system optimization. Typically, psychophysical studies are conducted for this purpose. Numerical observer models have been successfully used to predict human performance in several detection tasks. Especially, the task of signal detection using a channelized Hotelling observer (CHO) in simulated images has been widely explored. However, there are few studies done for clinically acquired images that also contain anatomic noise. In this paper, we investigate the performance of a CHO in the task of detecting lung nodules in real radiographic images of the chest. To evaluate variability introduced by the limited available data, we employ a commonly used study of a multi-reader multi-case (MRMC) scenario. It accounts for both case and reader variability. Finally, we use the "oneshot" methods to estimate the MRMC variance of the area under the ROC curve (AUC). The obtained AUC compares well to those reported for human observer study on a similar data set. Furthermore, the "one-shot" analysis implies a fairly consistent performance of the CHO with the variance of AUC below 0.002. This indicates promising potential for numerical observers in optimization of medical imaging displays and encourages further investigation on the subject.

  2. Effects of Single Compared to Dual Task Practice on Learning a Dynamic Balance Task in Young Adults

    PubMed Central

    Kiss, Rainer; Brueckner, Dennis; Muehlbauer, Thomas

    2018-01-01

    Background: In everyday life, people engage in situations involving the concurrent processing of motor (balance) and cognitive tasks (i.e., “dual task situations”) that result in performance declines in at least one of the given tasks. The concurrent practice of both the motor and cognitive task may counteract these performance decrements. The purpose of this study was to examine the effects of single task (ST) compared to dual task (DT) practice on learning a dynamic balance task. Methods: Forty-eight young adults were randomly assigned to either a ST (i.e., motor or cognitive task training only) or a DT (i.e., motor-cognitive training) practice condition. The motor task required participants to stand on a platform and keeping the platform as close to horizontal as possible. In the cognitive task, participants were asked to recite serial subtractions of three. For 2 days, participants of the ST groups practiced the motor or cognitive task only, while the participants of the DT group concurrently performed both. Root-mean-square error (RMSE) for the motor and total number of correct calculations for the cognitive task were computed. Results: During practice, all groups improved their respective balance and/or cognitive task performance. With regard to the assessment of learning on day 3, we found significantly smaller RMSE values for the ST motor (d = 1.31) and the DT motor-cognitive (d = 0.76) practice group compared to the ST cognitive practice group but not between the ST motor and the DT motor-cognitive practice group under DT test condition. Further, we detected significantly larger total numbers of correct calculations under DT test condition for the ST cognitive (d = 2.19) and the DT motor-cognitive (d = 1.55) practice group compared to the ST motor practice group but not between the ST cognitive and the DT motor-cognitive practice group. Conclusion: We conclude that ST practice resulted in an effective modulation of the trained domain (i.e., motor or cognitive) while only DT practice resulted in an effective modulation of both domains (i.e., motor and cognitive). Thus, particularly DT practice frees up central resources that were used for an effective modulation of motor and cognitive processing mechanisms. PMID:29593614

  3. Viewing the workload of vigilance through the lenses of the NASA-TLX and the MRQ.

    PubMed

    Finomore, Victor S; Shaw, Tyler H; Warm, Joel S; Matthews, Gerald; Boles, David B

    2013-12-01

    The aim of this study was to compare the effectiveness of a new index of perceived mental workload, the Multiple Resource Questionnaire (MRQ), with the standard measure of workload used in the study of vigilance, the NASA Task Load Index (NASA-TLX). The NASA-TLX has been used extensively to demonstrate that vigilance tasks impose a high level of workload on observers. However, this instrument does not specify the information-processing resources needed for task performance. The MRQ offers a tool to measure the workload associated with vigilance assignments in which such resources can be identified. Two experiments were performed in which factors known to influence task demand were varied. Included were the detection of stimulus presence or absence, detecting critical signals by means of successive-type (absolute judgment) and simultaneous-type (comparative judgment) discriminations, and operating under multitask vs. single-task conditions. The MRQ paralleled the NASA-TLX in showing that vigilance tasks generally induce high levels of workload and that workload scores are greater in detecting stimulus absence than presence and in making successive as compared to simultaneous-type discriminations. Additionally, the MRQ was more effective than the NASA-TLX in reflecting higher workload in the context of multitask than in single-task conditions. The resource profiles obtained with MRQ fit well with the nature of the vigilance tasks employed, testifying to the scale's content validity. The MRQ may be a meaningful addition to the NASA-TLX for measuring the workload of vigilance assignments. By uncovering knowledge representation associated with different tasks, the MRQ may aid in designing operational vigilance displays.

  4. The Independence and Interdependence of Coacting Observers in Regard to Performance Efficiency, Workload, and Stress in a Vigilance Task.

    PubMed

    Funke, Gregory J; Warm, Joel S; Baldwin, Carryl L; Garcia, Andre; Funke, Matthew E; Dillard, Michael B; Finomore, Victor S; Matthews, Gerald; Greenlee, Eric T

    2016-09-01

    We investigated performance, workload, and stress in groups of paired observers who performed a vigilance task in a coactive (independent) manner. Previous studies have demonstrated that groups of coactive observers detect more signals in a vigilance task than observers working alone. Therefore, the use of such groups might be effective in enhancing signal detection in operational situations. However, concern over appearing less competent than one's cohort might induce elevated levels of workload and stress in coactive group members and thereby undermine group performance benefits. Accordingly, we performed the initial experiment comparing workload and stress in observers who performed a vigilance task coactively with those of observers who performed the vigilance task alone. Observers monitored a video display for collision flight paths in a simulated unmanned aerial vehicle control task. Self-reports of workload and stress were secured via the NASA-Task Load Index and the Dundee Stress State Questionnaire, respectively. Groups of coactive observers detected significantly more signals than did single observers. Coacting observers did not differ significantly from those operating by themselves in terms of workload but did in regard to stress; posttask distress was significantly lower for coacting than for single observers. Performing a visual vigilance task in a coactive manner with another observer does not elevate workload above that of observers working alone and serves to attenuate the stress associated with vigilance task performance. The use of coacting observers could be an effective vehicle for enhancing performance efficiency in operational vigilance. © 2016, Human Factors and Ergonomics Society.

  5. Classification of brain signals associated with imagination of hand grasping, opening and reaching by means of wavelet-based common spatial pattern and mutual information.

    PubMed

    Amanpour, Behzad; Erfanian, Abbas

    2013-01-01

    An important issue in designing a practical brain-computer interface (BCI) is the selection of mental tasks to be imagined. Different types of mental tasks have been used in BCI including left, right, foot, and tongue motor imageries. However, the mental tasks are different from the actions to be controlled by the BCI. It is desirable to select a mental task to be consistent with the desired action to be performed by BCI. In this paper, we investigated the detecting the imagination of the hand grasping, hand opening, and hand reaching in one hand using electroencephalographic (EEG) signals. The results show that the ERD/ERS patterns, associated with the imagination of hand grasping, opening, and reaching are different. For classification of brain signals associated with these mental tasks and feature extraction, a method based on wavelet packet, regularized common spatial pattern (CSP), and mutual information is proposed. The results of an offline analysis on five subjects show that the two-class mental tasks can be classified with an average accuracy of 77.6% using proposed method. In addition, we examine the proposed method on datasets IVa from BCI Competition III and IIa from BCI Competition IV.

  6. Real-Time Performance Feedback for the Manual Control of Spacecraft

    NASA Astrophysics Data System (ADS)

    Karasinski, John Austin

    Real-time performance metrics were developed to quantify workload, situational awareness, and manual task performance for use as visual feedback to pilots of aerospace vehicles. Results from prior lunar lander experiments with variable levels of automation were replicated and extended to provide insights for the development of real-time metrics. Increased levels of automation resulted in increased flight performance, lower workload, and increased situational awareness. Automated Speech Recognition (ASR) was employed to detect verbal callouts as a limited measure of subjects' situational awareness. A one-dimensional manual tracking task and simple instructor-model visual feedback scheme was developed. This feedback was indicated to the operator by changing the color of a guidance element on the primary flight display, similar to how a flight instructor points out elements of a display to a student pilot. Experiments showed that for this low-complexity task, visual feedback did not change subject performance, but did increase the subjects' measured workload. Insights gained from these experiments were applied to a Simplified Aid for EVA Rescue (SAFER) inspection task. The effects of variations of an instructor-model performance-feedback strategy on human performance in a novel SAFER inspection task were investigated. Real-time feedback was found to have a statistically significant effect of improving subject performance and decreasing workload in this complicated four degree of freedom manual control task with two secondary tasks.

  7. When do letter features migrate? A boundary condition for feature-integration theory.

    PubMed

    Butler, B E; Mewhort, D J; Browse, R A

    1991-01-01

    Feature-integration theory postulates that a lapse of attention will allow letter features to change position and to recombine as illusory conjunctions (Treisman & Paterson, 1984). To study such errors, we used a set of uppercase letters known to yield illusory conjunctions in each of three tasks. The first, a bar-probe task, showed whole-character mislocations but not errors based on feature migration and recombination. The second, a two-alternative forced-choice detection task, allowed subjects to focus on the presence or absence of subletter features and showed illusory conjunctions based on feature migration and recombination. The third was also a two-alternative forced-choice detection task, but we manipulated the subjects' knowledge of the shape of the stimuli: In the case-certain condition, the stimuli were always in uppercase, but in the case-uncertain condition, the stimuli could appear in either upper- or lowercase. Subjects in the case-certain condition produced illusory conjunctions based on feature recombination, whereas subjects in the case-uncertain condition did not. The results suggest that when subjects can view the stimuli as feature groups, letter features regroup as illusory conjunctions; when subjects encode the stimuli as letters, whole items may be mislocated, but subletter features are not. Thus, illusory conjunctions reflect the subject's processing strategy, rather than the architecture of the visual system.

  8. Detecting gait abnormalities after concussion or mild traumatic brain injury: A systematic review of single-task, dual-task, and complex gait.

    PubMed

    Fino, Peter C; Parrington, Lucy; Pitt, Will; Martini, Douglas N; Chesnutt, James C; Chou, Li-Shan; King, Laurie A

    2018-05-01

    While a growing number of studies have investigated the effects of concussion or mild traumatic brain injury (mTBI) on gait, many studies use different experimental paradigms and outcome measures. The path for translating experimental studies for objective clinical assessments of gait is unclear. This review asked 2 questions: 1) is gait abnormal after concussion/mTBI, and 2) what gait paradigms (single-task, dual-task, complex gait) detect abnormalities after concussion. Data sources included MEDLINE/PubMed, Scopus, Web of Science, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) accessed on March 14, 2017. Original research articles reporting gait outcomes in people with concussion or mTBI were included. Studies of moderate, severe, or unspecified TBI, and studies without a comparator were excluded. After screening 233 articles, 38 studies were included and assigned to one or more sections based on the protocol and reported outcomes. Twenty-six articles reported single-task simple gait outcomes, 24 reported dual-task simple gait outcomes, 21 reported single-task complex gait outcomes, and 10 reported dual-task complex gait outcomes. Overall, this review provides evidence for two conclusions: 1) gait is abnormal acutely after concussion/mTBI but generally resolves over time; and 2) the inconsistency of findings, small sample sizes, and small number of studies examining homogenous measures at the same time-period post-concussion highlight the need for replication across independent populations and investigators. Future research should concentrate on dual-task and complex gait tasks, as they showed promise for detecting abnormal locomotor function outside of the acute timeframe. Additionally, studies should provide detailed demographic and clinical characteristics to enable more refined comparisons across studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Using Map Service API for Driving Cycle Detection for Wearable GPS Data: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Lei; Gonder, Jeffrey D

    Following advancements in smartphone and portable global positioning system (GPS) data collection, wearable GPS data have realized extensive use in transportation surveys and studies. The task of detecting driving cycles (driving or car-mode trajectory segments) from wearable GPS data has been the subject of much research. Specifically, distinguishing driving cycles from other motorized trips (such as taking a bus) is the main research problem in this paper. Many mode detection methods only focus on raw GPS speed data while some studies apply additional information, such as geographic information system (GIS) data, to obtain better detection performance. Procuring and maintaining dedicatedmore » road GIS data are costly and not trivial, whereas the technical maturity and broad use of map service application program interface (API) queries offers opportunities for mode detection tasks. The proposed driving cycle detection method takes advantage of map service APIs to obtain high-quality car-mode API route information and uses a trajectory segmentation algorithm to find the best-matched API route. The car-mode API route data combined with the actual route information, including the actual mode information, are used to train a logistic regression machine learning model, which estimates car modes and non-car modes with probability rates. The experimental results show promise for the proposed method's ability to detect vehicle mode accurately.« less

  10. Contextual and Perceptual Brain Processes Underlying Moral Cognition: A Quantitative Meta-Analysis of Moral Reasoning and Moral Emotions

    PubMed Central

    Sevinc, Gunes; Spreng, R. Nathan

    2014-01-01

    Background and Objectives Human morality has been investigated using a variety of tasks ranging from judgments of hypothetical dilemmas to viewing morally salient stimuli. These experiments have provided insight into neural correlates of moral judgments and emotions, yet these approaches reveal important differences in moral cognition. Moral reasoning tasks require active deliberation while moral emotion tasks involve the perception of stimuli with moral implications. We examined convergent and divergent brain activity associated with these experimental paradigms taking a quantitative meta-analytic approach. Data Source A systematic search of the literature yielded 40 studies. Studies involving explicit decisions in a moral situation were categorized as active (n = 22); studies evoking moral emotions were categorized as passive (n = 18). We conducted a coordinate-based meta-analysis using the Activation Likelihood Estimation to determine reliable patterns of brain activity. Results & Conclusions Results revealed a convergent pattern of reliable brain activity for both task categories in regions of the default network, consistent with the social and contextual information processes supported by this brain network. Active tasks revealed more reliable activity in the temporoparietal junction, angular gyrus and temporal pole. Active tasks demand deliberative reasoning and may disproportionately involve the retrieval of social knowledge from memory, mental state attribution, and construction of the context through associative processes. In contrast, passive tasks reliably engaged regions associated with visual and emotional information processing, including lingual gyrus and the amygdala. A laterality effect was observed in dorsomedial prefrontal cortex, with active tasks engaging the left, and passive tasks engaging the right. While overlapping activity patterns suggest a shared neural network for both tasks, differential activity suggests that processing of moral input is affected by task demands. The results provide novel insight into distinct features of moral cognition, including the generation of moral context through associative processes and the perceptual detection of moral salience. PMID:24503959

  11. Measurement of neurovascular coupling in human motor cortex using simultaneous transcranial doppler (TCD) and electroencephalography (EEG).

    PubMed

    Alam, Monzurul; Ahmed, Ghazanfar; Ling, Yan To; Zheng, Yong-Ping

    2018-05-25

    Event-related desynchronization (ERD) is a relative power decrease of electroencephalogram (EEG) signals in a specific frequency band during physical motor execution, while transcranial Doppler (TCD) measures cerebral blood flow velocity. The objective of this study was to investigate the neurovascular coupling in the motor cortex by using an integrated EEG and TCD system, and to find any difference in hemodynamic responses in healthy young male and female adults. Approach: 30 healthy volunteers, aged 20-30 years were recruited for this study. The subjects were asked to perform a motor task for the duration of a provided visual cue. Simultaneous EEG and TCD recording was carried out using a new integrated system to detect the ERD arising from the EEG signals, and to measure the mean blood flow velocity of the left and right middle cerebral arteries from bilateral TCD signals. Main Results: The results showed a significant decrease in EEG power in mu band (7.5-12.5 Hz) during the motor task compared to the resting phase. It showed significant increase in desynchronization on the contralateral side of the motor task compared to the ipsilateral side. Mean blood flow velocity during the task phase was significantly higher in comparison with the resting phase at the contralateral side. The results also showed a significantly higher increase in the percentage of mean blood flow velocity in the contralateral side of motor task compared to the ipsilateral side. However, no significant difference in desynchronization, or change of mean blood flow velocity was found between males and females. Significance: A combined TCD-EEG system successfully detects ERD and blood flow velocity in cerebral arteries, and can be used as a useful tool to study neurovascular coupling in the brain. There is no significant difference in the hemodynamic responses in healthy young males and females. © 2018 Institute of Physics and Engineering in Medicine.

  12. Impact of voxel size variation on CBCT-based diagnostic outcome in dentistry: a systematic review.

    PubMed

    Spin-Neto, Rubens; Gotfredsen, Erik; Wenzel, Ann

    2013-08-01

    The objective of this study was to make a systematic review on the impact of voxel size in cone beam computed tomography (CBCT)-based image acquisition, retrieving evidence regarding the diagnostic outcome of those images. The MEDLINE bibliographic database was searched from 1950 to June 2012 for reports comparing diverse CBCT voxel sizes. The search strategy was limited to English-language publications using the following combined terms in the search strategy: (voxel or FOV or field of view or resolution) and (CBCT or cone beam CT). The results from the review identified 20 publications that qualitatively or quantitatively assessed the influence of voxel size on CBCT-based diagnostic outcome, and in which the methodology/results comprised at least one of the expected parameters (image acquisition, reconstruction protocols, type of diagnostic task, and presence of a gold standard). The diagnostic task assessed in the studies was diverse, including the detection of root fractures, the detection of caries lesions, and accuracy of 3D surface reconstruction and of bony measurements, among others. From the studies assessed, it is clear that no general protocol can be yet defined for CBCT examination of specific diagnostic tasks in dentistry. Rationale in this direction is an important step to define the utility of CBCT imaging.

  13. A Modified Distributed Bees Algorithm for Multi-Sensor Task Allocation †

    PubMed Central

    Nof, Shimon Y.; Edan, Yael

    2018-01-01

    Multi-sensor systems can play an important role in monitoring tasks and detecting targets. However, real-time allocation of heterogeneous sensors to dynamic targets/tasks that are unknown a priori in their locations and priorities is a challenge. This paper presents a Modified Distributed Bees Algorithm (MDBA) that is developed to allocate stationary heterogeneous sensors to upcoming unknown tasks using a decentralized, swarm intelligence approach to minimize the task detection times. Sensors are allocated to tasks based on sensors’ performance, tasks’ priorities, and the distances of the sensors from the locations where the tasks are being executed. The algorithm was compared to a Distributed Bees Algorithm (DBA), a Bees System, and two common multi-sensor algorithms, market-based and greedy-based algorithms, which were fitted for the specific task. Simulation analyses revealed that MDBA achieved statistically significant improved performance by 7% with respect to DBA as the second-best algorithm, and by 19% with respect to Greedy algorithm, which was the worst, thus indicating its fitness to provide solutions for heterogeneous multi-sensor systems. PMID:29498683

  14. Animal model of dementia induced by entorhinal synaptic damage and partial restoration of cognitive deficits by BDNF and carnitine.

    PubMed

    Ando, Susumu; Kobayashi, Satoru; Waki, Hatsue; Kon, Kazuo; Fukui, Fumiko; Tadenuma, Tomoko; Iwamoto, Machiko; Takeda, Yasuo; Izumiyama, Naotaka; Watanabe, Kazutada; Nakamura, Hiroaki

    2002-11-01

    A rat dementia model with cognitive deficits was generated by synapse-specific lesions using botulinum neurotoxin (BoNTx) type B in the entorhinal cortex. To detect cognitive deficits, different tasks were needed depending upon the age of the model animals. Impaired learning and memory with lesions were observed in adult rats using the Hebb-Williams maze, AKON-1 maze and a continuous alternation task in T-maze. Cognitive deficits in lesioned aged rats were detected by a continuous alternation and delayed non-matching-to-sample tasks in T-maze. Adenovirus-mediated BDNF gene expression enhanced neuronal plasticity, as revealed by behavioral tests and LTP formation. Chronic administration of carnitine over time pre- and post-lesions seemed to partially ameliorate the cognitive deficits caused by the synaptic lesion. The carnitine-accelerated recovery from synaptic damage was observed by electron microscopy. These results demonstrate that the BoNTx-lesioned rat can be used as a model for dementia and that cognitive deficits can be alleviated in part by BDNF gene transfer or carnitine administration. Copyright 2002 Wiley-Liss, Inc.

  15. Effects of VDT workstation lighting conditions on operator visual workload.

    PubMed

    Lin, Chiuhsiang Joe; Feng, Wen-Yang; Chao, Chin-Jung; Tseng, Feng-Yi

    2008-04-01

    Industrial lighting covers a wide range of different characteristics of working interiors and work tasks. This study investigated the effects of illumination on visual workload in visual display terminal (VDT) workstation. Ten college students (5 males and 5 females) were recruited as participants to perform VDT signal detection tasks. A randomized block design was utilized with four light colors (red, blue, green and white), two ambient illumination levels (20 lux and 340 lux), with the subject as the block. The dependent variables were the change of critical fusion frequency (CFF), visual acuity, reaction time of targets detection, error rates, and rating scores in a subjective questionnaire. The study results showed that both visual acuity and the subjective visual fatigue were significantly affected by the color of light. The illumination had significant effect on CFF threshold change and reaction time. Subjects prefer to perform VDT task under blue and white lights than green and red. Based on these findings, the study discusses and suggests ways of color lighting and ambient illumination to promote operators' visual performance and prevent visual fatigue effectively.

  16. A new method of real-time detection of changes in periodic data stream

    NASA Astrophysics Data System (ADS)

    Lyu, Chen; Lu, Guoliang; Cheng, Bin; Zheng, Xiangwei

    2017-07-01

    The change point detection in periodic time series is much desirable in many practical usages. We present a novel algorithm for this task, which includes two phases: 1) anomaly measure- on the basis of a typical regression model, we propose a new computation method to measure anomalies in time series which does not require any reference data from other measurement(s); 2) change detection- we introduce a new martingale test for detection which can be operated in an unsupervised and nonparametric way. We have conducted extensive experiments to systematically test our algorithm. The results make us believe that our algorithm can be directly applicable in many real-world change-point-detection applications.

  17. Cognitive markers of psychotic unipolar depression: a meta-analytic study.

    PubMed

    Zaninotto, Leonardo; Guglielmo, Riccardo; Calati, Raffaella; Ioime, Lucia; Camardese, Giovanni; Janiri, Luigi; Bria, Pietro; Serretti, Alessandro

    2015-03-15

    The goal of the current meta-analysis was to review and examine in detail the features of cognitive performance in psychotic (MDDP) versus non-psychotic (MDD) major depressive disorder. An electronic literature search was performed to find studies comparing cognitive performance in MDDP versus MDD. A meta-analysis of broad cognitive domains (processing speed, reasoning/problem solving, verbal learning, visual learning, attention/working memory) and individual cognitive tasks was conducted on all included studies (n=12). Demographic and clinical features were investigated via meta-regression analysis as moderators of cognitive performance. No difference in socio-demographic and clinical variables was detected between groups. In general, a poorer cognitive performance was detected in MDDP versus MDD subjects (ES=0.38), with a greater effect size in drug-free patients (ES=0.69). MDDP patients were more impaired in verbal learning (ES=0.67), visual learning (ES=0.62) and processing speed (ES=0.71) tasks. A significantly poorer performance was also detected in MDDP patients for individual tasks as Trail Making Test A, WAIS-R digit span backward and WAIS-R digit symbol. Age resulted to have a negative effect on tasks involved in working memory performance. In line with previous meta-analyses, our findings seem to support an association between psychosis and cognitive deficits in the context of affective disorders. Psychosis during the course of MDD is associated with poorer cognitive performance in some specific cognitive domains, such as visual and verbal learning and executive functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The effect of distraction on change detection in crowded acoustic scenes.

    PubMed

    Petsas, Theofilos; Harrison, Jemma; Kashino, Makio; Furukawa, Shigeto; Chait, Maria

    2016-11-01

    In this series of behavioural experiments we investigated the effect of distraction on the maintenance of acoustic scene information in short-term memory. Stimuli are artificial acoustic 'scenes' composed of several (up to twelve) concurrent tone-pip streams ('sources'). A gap (1000 ms) is inserted partway through the 'scene'; Changes in the form of an appearance of a new source or disappearance of an existing source, occur after the gap in 50% of the trials. Listeners were instructed to monitor the unfolding 'soundscapes' for these events. Distraction was measured by presenting distractor stimuli during the gap. Experiments 1 and 2 used a dual task design where listeners were required to perform a task with varying attentional demands ('High Demand' vs. 'Low Demand') on brief auditory (Experiment 1a) or visual (Experiment 1b) signals presented during the gap. Experiments 2 and 3 required participants to ignore distractor sounds and focus on the change detection task. Our results demonstrate that the maintenance of scene information in short-term memory is influenced by the availability of attentional and/or processing resources during the gap, and that this dependence appears to be modality specific. We also show that these processes are susceptible to bottom up driven distraction even in situations when the distractors are not novel, but occur on each trial. Change detection performance is systematically linked with the, independently determined, perceptual salience of the distractor sound. The findings also demonstrate that the present task may be a useful objective means for determining relative perceptual salience. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Dissociation between judgments and outcome-expectancy measures in covariation learning: a signal detection theory approach.

    PubMed

    Perales, José C; Catena, Andrés; Shanks, David R; González, José A

    2005-09-01

    A number of studies using trial-by-trial learning tasks have shown that judgments of covariation between a cue c and an outcome o deviate from normative metrics. Parameters based on trial-by-trial predictions were estimated from signal detection theory (SDT) in a standard causal learning task. Results showed that manipulations of P(c) when contingency (deltaP) was held constant did not affect participants' ability to predict the appearance of the outcome (d') but had a significant effect on response criterion (c) and numerical causal judgments. The association between criterion c and judgment was further demonstrated in 2 experiments in which the criterion was directly manipulated by linking payoffs to the predictive responses made by learners. In all cases, the more liberal the criterion c was, the higher judgments were. The results imply that the mechanisms underlying the elaboration of judgments and those involved in the elaboration of predictive responses are partially dissociable.

  20. Towards Routine Uncued Surveillance of Small Objects at and near Geostationary Orbit with Small Telescopes

    NASA Astrophysics Data System (ADS)

    Zimmer, P.; McGraw, J. T.; Ackermann, M. R.

    There is considerable interest in the capability to discover and monitor small objects (d 20cm) in geosynchronous (GEO) and near-GEO orbital regimes using small, ground-based optical telescopes (D < 0.5m). The threat of such objects is clear. Small telescopes have an unrivaled cost advantage and, under ideal lighting and sky conditions, have the capability of detecting faint objects. This combination of conditions, however, is relatively rare, making routine and persistent surveillance more challenging. In a truly geostationary orbit, a small object is easy to detect because its apparent rate of motion is nearly zero for a ground-based observer, and signal accumulation occurs as it would for more traditional sidereal-tracked astronomical observations. In this regime, though, small objects are not expected to be in controlled or predictable orbits, thus a range of inclinations and eccentricities is possible. This results in a range of apparent angular rates and directions that must be surveilled. This firmly establishes this task as uncued or blind surveillance. Detections in this case are subject to what is commonly called “trailing loss,” where the signal from the object does not accumulate in a fixed detection element, resulting in far lower sensitivity than for a similar object optimally tracked. We review some of the limits of detecting these objects under less than ideal observing conditions, subject further to the current limitations based on technological and operational realities. We demonstrate progress towards this goal using telescopes much smaller than normally considered viable for this task using novel detection and analysis techniques.

Top