Sample records for detection technology supports

  1. Using Scientific Detective Videos to Support the Design of Technology Learning Activities

    ERIC Educational Resources Information Center

    Yu, Kuang-Chao; Fan, Szu-Chun; Tsai, Fu-Hsing; Chu, Yih-hsien

    2013-01-01

    This article examines the effect of scientific detective video as a vehicle to support the design of technology activities by technology teachers. Ten graduate students, including current and future technology teachers, participated in a required technology graduate course that used scientific detective videos as a pedagogical tool to motivate…

  2. Cancer Detection, Diagnosis, and Treatment Technologies for Global Health: Supporting the developmen

    Cancer.gov

    NCI, Center for Global Health supports the development and validation of low-cost, portable technologies that can improve cancer detection, diagnosis, and treatment in low-and middle-income countries.

  3. A Technology Analysis to Support Acquisition of UAVs for Gulf Coalition Forces Operations

    DTIC Science & Technology

    2017-06-01

    their selection of the most suitable and cost-effective unmanned aerial vehicles to support detection operations. This study uses Map Aware Non ...being detected by Gulf Coalition Forces and improved time to detect them, support the use of UAVs in detection missions. Computer experimentations and...aerial vehicles to support detection operations. We use Map Aware Non - Uniform Automata, an agent-based simulation software platform, for the

  4. Research on IPv6 intrusion detection system Snort-based

    NASA Astrophysics Data System (ADS)

    Shen, Zihao; Wang, Hui

    2010-07-01

    This paper introduces the common intrusion detection technologies, discusses the work flow of Snort intrusion detection system, and analyzes IPv6 data packet encapsulation and protocol decoding technology. We propose the expanding Snort architecture to support IPv6 intrusion detection in accordance with CIDF standard combined with protocol analysis technology and pattern matching technology, and present its composition. The research indicates that the expanding Snort system can effectively detect various intrusion attacks; it is high in detection efficiency and detection accuracy and reduces false alarm and omission report, which effectively solves the problem of IPv6 intrusion detection.

  5. Center for Global Health announces grants to support portable technologies

    Cancer.gov

    NCI's Center for Global Health announced grants that will support the development and validation of low-cost, portable technologies. These technologies have the potential to improve early detection, diagnosis, and non-invasive or minimally invasive treatm

  6. Analysis of the development of missile-borne IR imaging detecting technologies

    NASA Astrophysics Data System (ADS)

    Fan, Jinxiang; Wang, Feng

    2017-10-01

    Today's infrared imaging guiding missiles are facing many challenges. With the development of targets' stealth, new-style IR countermeasures and penetrating technologies as well as the complexity of the operational environments, infrared imaging guiding missiles must meet the higher requirements of efficient target detection, capability of anti-interference and anti-jamming and the operational adaptability in complex, dynamic operating environments. Missileborne infrared imaging detecting systems are constrained by practical considerations like cost, size, weight and power (SWaP), and lifecycle requirements. Future-generation infrared imaging guiding missiles need to be resilient to changing operating environments and capable of doing more with fewer resources. Advanced IR imaging detecting and information exploring technologies are the key technologies that affect the future direction of IR imaging guidance missiles. Infrared imaging detecting and information exploring technologies research will support the development of more robust and efficient missile-borne infrared imaging detecting systems. Novelty IR imaging technologies, such as Infrared adaptive spectral imaging, are the key to effectively detect, recognize and track target under the complicated operating and countermeasures environments. Innovative information exploring techniques for the information of target, background and countermeasures provided by the detection system is the base for missile to recognize target and counter interference, jamming and countermeasure. Modular hardware and software development is the enabler for implementing multi-purpose, multi-function solutions. Uncooled IRFPA detectors and High-operating temperature IRFPA detectors as well as commercial-off-the-shelf (COTS) technology will support the implementing of low-cost infrared imaging guiding missiles. In this paper, the current status and features of missile-borne IR imaging detecting technologies are summarized. The key technologies and its development trends of missiles' IR imaging detecting technologies are analyzed.

  7. Innovative hazard detection and avoidance strategy for autonomous safe planetary landing

    NASA Astrophysics Data System (ADS)

    Jiang, Xiuqiang; Li, Shuang; Tao, Ting

    2016-09-01

    Autonomous hazard detection and avoidance (AHDA) is one of the key technologies for future safe planetary landing missions. In this paper, we address the latest progress on planetary autonomous hazard detection and avoidance technologies. First, the innovative autonomous relay hazard detection and avoidance strategy adopted in Chang'e-3 lunar soft landing mission and its flight results are reported in detail. Second, two new conceptual candidate schemes of hazard detection and avoidance are presented based on the Chang'e-3 AHDA system and the latest developing technologies for the future planetary missions, and some preliminary testing results are also given. Finally, the related supporting technologies for the two candidate schemes above are analyzed.

  8. U.S. Customs Service technology: past, present, and future

    NASA Astrophysics Data System (ADS)

    Pennella, John J.; Smith, Douglas E.

    2001-02-01

    This document describes the law enforcement charter and activities of the United States Customs Service and the internal technology organization that supports it, the Applied Technology Division. The enforcement activities of Customs include interdiction, outbound anti-smuggling, investigation and surveillance, processing of documentation and data, and detection of drugs and other contraband. An overview of the various technologies applied in support of these activities over the past 25 years is provided. Additionally, technologies proposed for implementation in the future are discussed.

  9. SWIR hyperspectral imaging detector for surface residues

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew P.; Mangold, Paul; Gomer, Nathaniel; Klueva, Oksana; Treado, Patrick

    2013-05-01

    ChemImage has developed a SWIR Hyperspectral Imaging (HSI) sensor which uses hyperspectral imaging for wide area surveillance and standoff detection of surface residues. Existing detection technologies often require close proximity for sensing or detecting, endangering operators and costly equipment. Furthermore, most of the existing sensors do not support autonomous, real-time, mobile platform based detection of threats. The SWIR HSI sensor provides real-time standoff detection of surface residues. The SWIR HSI sensor provides wide area surveillance and HSI capability enabled by liquid crystal tunable filter technology. Easy-to-use detection software with a simple, intuitive user interface produces automated alarms and real-time display of threat and type. The system has potential to be used for the detection of variety of threats including chemicals and illicit drug substances and allows for easy updates in the field for detection of new hazardous materials. SWIR HSI technology could be used by law enforcement for standoff screening of suspicious locations and vehicles in pursuit of illegal labs or combat engineers to support route-clearance applications- ultimately to save the lives of soldiers and civilians. In this paper, results from a SWIR HSI sensor, which include detection of various materials in bulk form, as well as residue amounts on vehicles, people and other surfaces, will be discussed.

  10. Powered Descent Trajectory Guidance and Some Considerations for Human Lunar Landing

    NASA Technical Reports Server (NTRS)

    Sostaric, Ronald R.

    2007-01-01

    The Autonomous Precision Landing and Hazard Detection and Avoidance Technology development (ALHAT) will enable an accurate (better than 100m) landing on the lunar surface. This technology will also permit autonomous (independent from ground) avoidance of hazards detected in real time. A preliminary trajectory guidance algorithm capable of supporting these tasks has been developed and demonstrated in simulations. Early results suggest that with expected improvements in sensor technology and lunar mapping, mission objectives are achievable.

  11. A Community-Based, Technology-Supported Health Service for Detecting and Preventing Frailty among Older Adults: A Participatory Design Development Process.

    PubMed

    van Velsen, Lex; Illario, Maddalena; Jansen-Kosterink, Stephanie; Crola, Catherine; Di Somma, Carolina; Colao, Annamaria; Vollenbroek-Hutten, Miriam

    2015-01-01

    Frailty is a multifaceted condition that affects many older adults and marks decline on areas such as cognition, physical condition, and nutritional status. Frail individuals are at increased risk for the development of disability, dementia, and falls. There are hardly any health services that enable the identification of prefrail individuals and that focus on prevention of further functional decline. In this paper, we discuss the development of a community-based, technology-supported health service for detecting prefrailty and preventing frailty and further functional decline via participatory design with a wide range of stakeholders. The result is an innovative service model in which an online platform supports the integration of traditional services with novel, Information Communication Technology supported tools. This service is capable of supporting the different phases of screening and offers training services, by also integrating them with community-based services. The service model can be used as a basis for developing similar services within a wide range of healthcare systems. We present the service model, the general functioning of the technology platform, and the different ways in which screening for and prevention of frailty has been localized. Finally, we reflect on the added value of participatory design for creating such health services.

  12. Survey of Enabling Technologies for CAPS

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Mazanek, Daniel D.; Koons, Robert H.

    2005-01-01

    The enabling technologies required for the development of a viable Comet/Asteroid Protection System (CAPS) can be divided into two principal areas: detection and deflection/orbit modification. With the proper funding levels, many of the technologies needed to support a CAPS architecture could be achievable within the next 15 to 20 years. In fact, many advanced detection technologies are currently in development for future in-space telescope systems such as the James Webb Space Telescope (JWST), formerly known as the Next Generation Space Telescope. It is anticipated that many of the JWST technologies would be available for application for CAPS detection concepts. Deflection/orbit modification technologies are also currently being studied as part of advanced power and propulsion research. However, many of these technologies, such as extremely high-output power systems, advanced propulsion, heat rejection, and directed energy systems, would likely be farther term in availability than many of the detection technologies. Discussed subsequently is a preliminary examination of the main technologies that have been identified as being essential to providing the element functionality defined during the CAPS conceptual study. The detailed requirements for many of the technology areas are still unknown, and many additional technologies will be identified as future in-depth studies are conducted in this area.

  13. Observations on military exploitation of explosives detection technologies

    NASA Astrophysics Data System (ADS)

    Faust, Anthony A.; de Ruiter, C. J.; Ehlerding, Anneli; McFee, John E.; Svinsås, Eirik; van Rheenen, Arthur D.

    2011-06-01

    Accurate and timely detection of explosives, energetic materials, and their associated compounds would provide valuable information to military commanders in a wide range of military operations: protection of fast moving convoys from mobile or static IED threats; more deliberate countermine and counter-IED operations during route or area clearance; and static roles such as hasty or deliberate checkpoints, critical infrastructure protection and support to public security. The detection of hidden explosive hazards is an extremely challenging problem, as evidenced by the fact that related research has been ongoing in many countries for at least seven decades and no general purpose solution has yet been found. Technologies investigated have spanned all major scientific fields, with emphasis on the physical sciences, life sciences, engineering, robotics, computer technology and mathematics. This paper will present a limited, operationally-focused overview of the current status of detection technologies. Emphasis will be on those technologies that directly detect the explosive hazard, as opposed to those that detect secondary properties of the threat, such as the casing, associated wires or electronics. Technologies that detect explosives include those based on nuclear radiation and terahertz radiation, as well as trace and biological detection techniques. Current research areas of the authors will be used to illustrate the practical applications.

  14. Risk reduction using DDP (Defect Detection and Prevention): Software support and software applications

    NASA Technical Reports Server (NTRS)

    Feather, M. S.

    2001-01-01

    Risk assessment and mitigation is the focus of the Defect Detection and Prevention (DDP) process, which has been applied to spacecraft technology assessments and planning, both hardware and software. DDP's major elements and their relevance to core requirement engineering concerns are summarized. The accompanying research demonstration illustrates DDP's tool support, and further customizations for application to software.

  15. DOTD support for UTC project : traffic counting using existing video detection cameras, [research project capsule].

    DOT National Transportation Integrated Search

    2013-10-01

    This study will evaluate the video detection technologies currently adopted by the city : of Baton Rouge, LA, and DOTD with the purpose of establishing design guidelines based : on the detection needs, functionality, and cost. The study will also dev...

  16. About the Early Detection Research Group | Division of Cancer Prevention

    Cancer.gov

    The Early Detection Research Group supports research that seeks to determine the effectiveness, operating characteristics and clinical impact (harms as well as benefits) of cancer early detection technologies and practices, such as imaging and molecular biomarker approaches.   The group ran two large-scale early detection trials for which data and biospecimens are available

  17. Applications of aerospace technology in the public sector

    NASA Technical Reports Server (NTRS)

    Anuskiewicz, T.; Johnston, J.; Zimmerman, R. R.

    1971-01-01

    Current activities of the program to accelerate specific applications of space related technology in major public sector problem areas are summarized for the period 1 June 1971 through 30 November 1971. An overview of NASA technology, technology applications, and supporting activities are presented. Specific technology applications in biomedicine are reported including cancer detection, treatment and research; cardiovascular diseases, diagnosis, and treatment; medical instrumentation; kidney function disorders, treatment, and research; and rehabilitation medicine.

  18. Remote Sensing Technologies and Geospatial Modelling Hierarchy for Smart City Support

    NASA Astrophysics Data System (ADS)

    Popov, M.; Fedorovsky, O.; Stankevich, S.; Filipovich, V.; Khyzhniak, A.; Piestova, I.; Lubskyi, M.; Svideniuk, M.

    2017-12-01

    The approach to implementing the remote sensing technologies and geospatial modelling for smart city support is presented. The hierarchical structure and basic components of the smart city information support subsystem are considered. Some of the already available useful practical developments are described. These include city land use planning, urban vegetation analysis, thermal condition forecasting, geohazard detection, flooding risk assessment. Remote sensing data fusion approach for comprehensive geospatial analysis is discussed. Long-term city development forecasting by Forrester - Graham system dynamics model is provided over Kiev urban area.

  19. Camouflage target reconnaissance based on hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Hua, Wenshen; Guo, Tong; Liu, Xun

    2015-08-01

    Efficient camouflaged target reconnaissance technology makes great influence on modern warfare. Hyperspectral images can provide large spectral range and high spectral resolution, which are invaluable in discriminating between camouflaged targets and backgrounds. Hyperspectral target detection and classification technology are utilized to achieve single class and multi-class camouflaged targets reconnaissance respectively. Constrained energy minimization (CEM), a widely used algorithm in hyperspectral target detection, is employed to achieve one class camouflage target reconnaissance. Then, support vector machine (SVM), a classification method, is proposed to achieve multi-class camouflage target reconnaissance. Experiments have been conducted to demonstrate the efficiency of the proposed method.

  20. Investigation of Low Cost Sensor-Based Leak Detection System for Fence Line Applications

    EPA Science Inventory

    With recent technological advances, low-cost time-resolved sensors may become effective tools to support time-integrated passive sampling strategies by helping to decipher origin of emissions in real-time. As part of the Petroleum Refinery Risk and Technology Review, New Source ...

  1. Development of a QCL based IR polarimetric system for the stand-off detection and location of IEDs

    NASA Astrophysics Data System (ADS)

    Stokes, Robert J.; Normand, Erwan L.; Carrie, Iain D.; Foulger, Brian; Lewis, Colin

    2009-09-01

    Following the development of point sensing improvised explosive device (IED) technology[1] Cascade Technologies have initial work in the development of equivalent stand-off capability. Stand-off detection of IEDs is a very important technical requirement that would enable the safe identification and quantification of hazardous materials prior to a terrorist attack. This could provide advanced warning of potential danger allowing evacuation and mitigation measures to be implemented. With support from the UK government, Cascade Technologies is currently investigating technology developments aimed at addressing the above stand-off IED detection capability gap. To demonstrate and validate the concept, a novel stand-off platform will target the detection and identification of common high vapor pressure IED precursor compounds, such as hydrogen peroxide (H2O2), emanating from a point source. By actively probing a scene with polarized light, the novel platform will offer both enhanced selectivity and sensitivity as compared to traditional hyperspectral sensors, etc. The presentation will highlight the concept of this novel detection technique as well as illustrating preliminary results.

  2. Investigation of a Low Cost Sensor-Based Leak Detection System for Fence Line Applications

    EPA Science Inventory

    With recent technological advances, low-cost time-resolved sensors may become effective tools to support time-integrated passive sampling strategies by helping to decipher origin of emissions in real-time. As part of the Petroleum Refinery Risk and Technology Review, New Source P...

  3. MotorSense: Using Motion Tracking Technology to Support the Identification and Treatment of Gross-Motor Dysfunction.

    PubMed

    Arnedillo-Sánchez, Inmaculada; Boyle, Bryan; Bossavit, Benoît

    2017-01-01

    MotorSense is a motion detection and tracking technology that can be implemented across a range of environments to assist in detecting delays in gross-motor skills development. The system utilises the motion tracking functionality of Microsoft's Kinect™. It features games that require children to perform graded gross-motor tasks matched with their chronological and developmental ages. This paper describes the rationale for MotorSense, provides an overview of the functionality of the system and illustrates sample activities.

  4. Digital technology for treating and preventing mental disorders in low-income and middle-income countries: a narrative review of the literature.

    PubMed

    Naslund, John A; Aschbrenner, Kelly A; Araya, Ricardo; Marsch, Lisa A; Unützer, Jürgen; Patel, Vikram; Bartels, Stephen J

    2017-06-01

    Few individuals living with mental disorders around the globe have access to mental health care, yet most have access to a mobile phone. Digital technology holds promise for improving access to, and quality of, mental health care. We reviewed evidence on the use of mobile, online, and other remote technologies for treatment and prevention of mental disorders in low-income and middle-income countries. Of the 49 studies identified, most were preliminary evaluations of feasibility and acceptability. The findings were promising, showing the potential effectiveness of online, text-messaging, and telephone support interventions. We summarised the evaluations as: technology for supporting clinical care and educating health workers, mobile tools for facilitating diagnosis and detection of mental disorders, technologies for promoting treatment adherence and supporting recovery, online self-help programmes for individuals with mental disorders, and programmes for substance misuse prevention and treatment. Continued research is needed to rigorously evaluate effectiveness, assess costs, and carefully consider potential risks of digital technology interventions for mental disorders, while determining how emerging technologies might support the scale-up of mental health treatment and prevention efforts across low-resource settings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Digital technology for treating and preventing mental disorders in low-income and middle-income countries: a narrative review of the literature

    PubMed Central

    Naslund, John A; Aschbrenner, Kelly A; Araya, Ricardo; Marsch, Lisa A; Unützer, Jürgen; Patel, Vikram; Bartels, Stephen J

    2017-01-01

    Few individuals living with mental disorders around the globe have access to mental health care, yet most have access to a mobile phone. Digital technology holds promise for improving access to, and quality of, mental health care. We reviewed evidence on the use of mobile, online, and other remote technologies for treatment and prevention of mental disorders in low-income and middle-income countries. Of the 49 studies identified, most were preliminary evaluations of feasibility and acceptability. The findings were promising, showing the potential effectiveness of online, text-messaging, and telephone support interventions. We summarised the evaluations as: technology for supporting clinical care and educating health workers, mobile tools for facilitating diagnosis and detection of mental disorders, technologies for promoting treatment adherence and supporting recovery, online self-help programmes for individuals with mental disorders, and programmes for substance misuse prevention and treatment. Continued research is needed to rigorously evaluate effectiveness, assess costs, and carefully consider potential risks of digital technology interventions for mental disorders, while determining how emerging technologies might support the scale-up of mental health treatment and prevention efforts across low-resource settings. PMID:28433615

  6. Critical Homeland Infrastructure Protection

    DTIC Science & Technology

    2007-01-01

    talent. Examples include: * Detection of surveillance activities; * Stand-off detection of chemical, biological, nuclear, radiation and explosive ...Manager Guardian DARPA Overview Mr. Roger Gibbs DARPA LLNL Technologies in Support of Infrastructure Mr. Don Prosnitz LLNL Protection Sandia National...FP Antiterrorism/Force Protection CBRNE Chemical Biological Radiological Nuclear Explosive CERT Commuter Emergency Response Team CIA Central

  7. Neutron and Gamma Imaging for National Security Applications

    NASA Astrophysics Data System (ADS)

    Hornback, Donald

    2017-09-01

    The Department of Energy, National Nuclear Security Administration (NNSA), Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D/NA-22) possesses, in part, the mission to develop technologies in support of nuclear security efforts in coordination with other U.S. government entities, such as the Department of Defense and the Department of Homeland Security. DNN R&D has long supported research in nuclear detection at national labs, universities, and through the small business innovation research (SBIR) program. Research topics supported include advanced detector materials and electronics, detection algorithm development, and advanced gamma/neutron detection systems. Neutron and gamma imaging, defined as the directional detection of radiation as opposed to radiography, provides advanced detection capabilities for the NNSA mission in areas of emergency response, international safeguards, and nuclear arms control treaty monitoring and verification. A technical and programmatic overview of efforts in this field of research will be summarized.

  8. An ethical assessment model for digital disease detection technologies.

    PubMed

    Denecke, Kerstin

    2017-09-20

    Digital epidemiology, also referred to as digital disease detection (DDD), successfully provided methods and strategies for using information technology to support infectious disease monitoring and surveillance or understand attitudes and concerns about infectious diseases. However, Internet-based research and social media usage in epidemiology and healthcare pose new technical, functional and formal challenges. The focus of this paper is on the ethical issues to be considered when integrating digital epidemiology with existing practices. Taking existing ethical guidelines and the results from the EU project M-Eco and SORMAS as starting point, we develop an ethical assessment model aiming at providing support in identifying relevant ethical concerns in future DDD projects. The assessment model has four dimensions: user, application area, data source and methodology. The model supports in becoming aware, identifying and describing the ethical dimensions of DDD technology or use case and in identifying the ethical issues on the technology use from different perspectives. It can be applied in an interdisciplinary meeting to collect different viewpoints on a DDD system even before the implementation starts and aims at triggering discussions and finding solutions for risks that might not be acceptable even in the development phase. From the answers, ethical issues concerning confidence, privacy, data and patient security or justice may be judged and weighted.

  9. Active and passive computed tomography mixed waste focus area final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberson, G P

    1998-08-19

    The Mixed Waste Focus Area (MWFA) Characterization Development Strategy delineates an approach to resolve technology deficiencies associated with the characterization of mixed wastes. The intent of this strategy is to ensure the availability of technologies to support the Department of Energy's (DOE) mixed waste low-level or transuranic (TRU) contaminated waste characterization management needs. To this end the MWFA has defined and coordinated characterization development programs to ensure that data and test results necessary to evaluate the utility of non-destructive assay technologies are available to meet site contact handled waste management schedules. Requirements used as technology development project benchmarks are basedmore » in the National TRU Program Quality Assurance Program Plan. These requirements include the ability to determine total bias and total measurement uncertainty. These parameters must be completely evaluated for waste types to be processed through a given nondestructive waste assay system constituting the foundation of activities undertaken in technology development projects. Once development and testing activities have been completed, Innovative Technology Summary Reports are generated to provide results and conclusions to support EM-30, -40, or -60 end user/customer technology selection. The Active and Passive Computed Tomography non-destructive assay system is one of the technologies selected for development by the MWFA. Lawrence Livermore National Laboratory's (LLNL) is developing the Active and Passive Computed Tomography (A&PCT) nondestructive assay (NDA) technology to identify and accurately quantify all detectable radioisotopes in closed containers of waste. This technology will be applicable to all types of waste regardless of .their classification; low level, transuranic or provide results and conclusions to support EM-30, -40, or -60 end user/customer technology selection. The Active and Passive Computed Tomography non-destructive assay system is one of the technologies selected for development by the MWFA. Lawrence Livermore National Laboratory's (LLNL) is developing the Active and Passive Computed Tomography (A&PCT) nondestructive assay (NDA) technology to identify and accurately quantify all detectable radioisotopes in closed containers of waste. This technology will be applicable to all types of waste regardless of .their classification; low level, transuranic or mixed, which contains radioactivity and hazardous organic species. The scope of our technology is to develop a non-invasive waste-drum scanner that employs the principles of computed tomography and gamma-ray spectral analysis to identify and quantify all of the detectable radioisotopes. Once this and other applicable technologies are developed, waste drums can be non- destructively and accurately characterized to satisfy repository and regulatory guidelines prior to disposal.« less

  10. PERKAM: Personalized Knowledge Awareness Map for Computer Supported Ubiquitous Learning

    ERIC Educational Resources Information Center

    El-Bishouty, Moushir M.; Ogata, Hiroaki; Yano, Yoneo

    2007-01-01

    This paper introduces a ubiquitous computing environment in order to support the learners while doing tasks; this environment is called PERKAM (PERsonalized Knowledge Awareness Map). PERKAM allows the learners to share knowledge, interact, collaborate, and exchange individual experiences. It utilizes the RFID ubiquities technology to detect the…

  11. Planetary Gearbox Fault Detection Using Vibration Separation Techniques

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.

  12. Usage of Fault Detection Isolation & Recovery (FDIR) in Constellation (CxP) Launch Operations

    NASA Technical Reports Server (NTRS)

    Ferrell, Rob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Spirkovska, Lilly; Hall, David; Brown, Barbara

    2010-01-01

    This paper will explore the usage of Fault Detection Isolation & Recovery (FDIR) in the Constellation Exploration Program (CxP), in particular Launch Operations at Kennedy Space Center (KSC). NASA's Exploration Technology Development Program (ETDP) is currently funding a project that is developing a prototype FDIR to demonstrate the feasibility of incorporating FDIR into the CxP Ground Operations Launch Control System (LCS). An architecture that supports multiple FDIR tools has been formulated that will support integration into the CxP Ground Operation's Launch Control System (LCS). In addition, tools have been selected that provide fault detection, fault isolation, and anomaly detection along with integration between Flight and Ground elements.

  13. Can Handheld Thermal Imaging Technology Improve Detection of Poachers in African Bushveldt?

    PubMed Central

    Dandy, Shantelle; Stubbs, Hannah; MacTavish, Dougal; MacTavish, Lynne

    2015-01-01

    Illegal hunting (poaching) is a global threat to wildlife. Anti-poaching initiatives are making increasing use of technology, such as infrared thermography (IRT), to support traditional foot and vehicle patrols. To date, the effectiveness of IRT for poacher location has not been tested under field conditions, where thermal signatures are often complex. Here, we test the hypothesis that IRT will increase the distance over which a poacher hiding in African scrub bushveldt can be detected relative to a conventional flashlight. We also test whether any increase in effectiveness is related to the cost and complexity of the equipment by comparing comparatively expensive (22000 USD) and relatively inexpensive (2000 USD) IRT devices. To test these hypotheses we employ a controlled, fully randomised, double-blind procedure to find a poacher in nocturnal field conditions in African bushveldt. Each of our 27 volunteer observers walked three times along a pathway using one detection technology on each pass in randomised order. They searched a prescribed search area of bushveldt within which the target was hiding. Hiding locations were pre-determined, randomised, and changed with each pass. Distances of first detection and positive detection were noted. All technologies could be used to detect the target. Average first detection distance for flashlight was 37.3m, improving by 19.8m to 57.1m using LIRT and by a further 11.2m to 68.3m using HIRT. Although detection distances were significantly greater for both IRTs compared to flashlight, there was no significant difference between LIRT and HIRT. False detection rates were low and there was no significant association between technology and accuracy of detection. Although IRT technology should ideally be tested in the specific environment intended before significant investment is made, we conclude that IRT technology is promising for anti-poaching patrols and that for this purpose low cost IRT units are as effective as units ten times more expensive. PMID:26110865

  14. The future of intelligent assistive technologies for cognition: devices under development to support independent living and aging-with-choice.

    PubMed

    Boger, Jennifer; Mihailidis, Alex

    2011-01-01

    A person's ability to be independent is dependent on his or her overall health, mobility, and ability to complete activities of daily living. Intelligent assistive technologies (IATs) are devices that incorporate context into their decision-making process, which enables them to provide customised and dynamic assistance in an appropriate manner. IATs have tremendous potential to support people with cognitive impairments as they can be used to support many facets of well-being; from augmenting memory and decision making tasks to providing autonomous and early detection of possible changes in health. This paper presents IATs that are currently in development in the research community to support tasks that can be impacted by compromised cognition. While they are not yet ready for the general public, these devices showcase the capabilities of technologies one can expect to see in the consumer marketplace in the near future.

  15. Advances in radiation detection technologies for responders.

    PubMed

    Unterweger, Michael P; Pibida, Leticia S

    2005-11-01

    The Department of Homeland Security is supporting the development of a large number of standards for first responders. In the area of detection of radioactive and nuclear materials, four new standards (ANSI N42.32, N42.33, N42.34, and N42.35) and their corresponding test and evaluation protocols were developed to meet Department of Homeland Security needs. Testing of the standards and protocols was carried out at the National Institute of Standards and Technology, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory.

  16. Smart Toys Designed for Detecting Developmental Delays

    PubMed Central

    Rivera, Diego; García, Antonio; Alarcos, Bernardo; Velasco, Juan R.; Ortega, José Eugenio; Martínez-Yelmo, Isaías

    2016-01-01

    In this paper, we describe the design considerations and implementation of a smart toy system, a technology for supporting the automatic recording and analysis for detecting developmental delays recognition when children play using the smart toy. To achieve this goal, we take advantage of the current commercial sensor features (reliability, low consumption, easy integration, etc.) to develop a series of sensor-based low-cost devices. Specifically, our prototype system consists of a tower of cubes augmented with wireless sensing capabilities and a mobile computing platform that collect the information sent from the cubes allowing the later analysis by childhood development professionals in order to verify a normal behaviour or to detect a potential disorder. This paper presents the requirements of the toy and discusses our choices in toy design, technology used, selected sensors, process to gather data from the sensors and generate information that will help in the decision-making and communication of the information to the collector system. In addition, we also describe the play activities the system supports. PMID:27879626

  17. Smart Toys Designed for Detecting Developmental Delays.

    PubMed

    Rivera, Diego; García, Antonio; Alarcos, Bernardo; Velasco, Juan R; Ortega, José Eugenio; Martínez-Yelmo, Isaías

    2016-11-20

    In this paper, we describe the design considerations and implementation of a smart toy system, a technology for supporting the automatic recording and analysis for detecting developmental delays recognition when children play using the smart toy. To achieve this goal, we take advantage of the current commercial sensor features (reliability, low consumption, easy integration, etc.) to develop a series of sensor-based low-cost devices. Specifically, our prototype system consists of a tower of cubes augmented with wireless sensing capabilities and a mobile computing platform that collect the information sent from the cubes allowing the later analysis by childhood development professionals in order to verify a normal behaviour or to detect a potential disorder. This paper presents the requirements of the toy and discusses our choices in toy design, technology used, selected sensors, process to gather data from the sensors and generate information that will help in the decision-making and communication of the information to the collector system. In addition, we also describe the play activities the system supports.

  18. MutScan: fast detection and visualization of target mutations by scanning FASTQ data.

    PubMed

    Chen, Shifu; Huang, Tanxiao; Wen, Tiexiang; Li, Hong; Xu, Mingyan; Gu, Jia

    2018-01-22

    Some types of clinical genetic tests, such as cancer testing using circulating tumor DNA (ctDNA), require sensitive detection of known target mutations. However, conventional next-generation sequencing (NGS) data analysis pipelines typically involve different steps of filtering, which may cause miss-detection of key mutations with low frequencies. Variant validation is also indicated for key mutations detected by bioinformatics pipelines. Typically, this process can be executed using alignment visualization tools such as IGV or GenomeBrowse. However, these tools are too heavy and therefore unsuitable for validating mutations in ultra-deep sequencing data. We developed MutScan to address problems of sensitive detection and efficient validation for target mutations. MutScan involves highly optimized string-searching algorithms, which can scan input FASTQ files to grab all reads that support target mutations. The collected supporting reads for each target mutation will be piled up and visualized using web technologies such as HTML and JavaScript. Algorithms such as rolling hash and bloom filter are applied to accelerate scanning and make MutScan applicable to detect or visualize target mutations in a very fast way. MutScan is a tool for the detection and visualization of target mutations by only scanning FASTQ raw data directly. Compared to conventional pipelines, this offers a very high performance, executing about 20 times faster, and offering maximal sensitivity since it can grab mutations with even one single supporting read. MutScan visualizes detected mutations by generating interactive pile-ups using web technologies. These can serve to validate target mutations, thus avoiding false positives. Furthermore, MutScan can visualize all mutation records in a VCF file to HTML pages for cloud-friendly VCF validation. MutScan is an open source tool available at GitHub: https://github.com/OpenGene/MutScan.

  19. Retention payoff-based cost per day open regression equations: Application in a user-friendly decision support tool for investment analysis of automated estrus detection technologies.

    PubMed

    Dolecheck, K A; Heersche, G; Bewley, J M

    2016-12-01

    Assessing the economic implications of investing in automated estrus detection (AED) technologies can be overwhelming for dairy producers. The objectives of this study were to develop new regression equations for estimating the cost per day open (DO) and to apply the results to create a user-friendly, partial budget, decision support tool for investment analysis of AED technologies. In the resulting decision support tool, the end user can adjust herd-specific inputs regarding general management, current reproductive management strategies, and the proposed AED system. Outputs include expected DO, reproductive cull rate, net present value, and payback period for the proposed AED system. Utility of the decision support tool was demonstrated with an example dairy herd created using data from DairyMetrics (Dairy Records Management Systems, Raleigh, NC), Food and Agricultural Policy Research Institute (Columbia, MO), and published literature. Resulting herd size, rolling herd average milk production, milk price, and feed cost were 323 cows, 10,758kg, $0.41/kg, and $0.20/kg of dry matter, respectively. Automated estrus detection technologies with 2 levels of initial system cost (low: $5,000 vs. high: $10,000), tag price (low: $50 vs. high: $100), and estrus detection rate (low: 60% vs. high: 80%) were compared over a 7-yr investment period. Four scenarios were considered in a demonstration of the investment analysis tool: (1) a herd using 100% visual observation for estrus detection before adopting 100% AED, (2) a herd using 100% visual observation before adopting 75% AED and 25% visual observation, (3) a herd using 100% timed artificial insemination (TAI) before adopting 100% AED, and (4) a herd using 100% TAI before adopting 75% AED and 25% TAI. Net present value in scenarios 1 and 2 was always positive, indicating a positive investment situation. Net present value in scenarios 3 and 4 was always positive in combinations using a $50 tag price, and in scenario 4, the $5,000, $100, and 80% combination. Overall, the payback period ranged from 1.6 yr to greater than 10 yr. Investment analysis demonstration results were highly dependent on assumptions, especially AED system initial investment and labor costs. Dairy producers can use herd-specific inputs with the cost per day open regression equations and the decision support tool to estimate individual herd results. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Perspectives on genetically modified crops and food detection.

    PubMed

    Lin, Chih-Hui; Pan, Tzu-Ming

    2016-01-01

    Genetically modified (GM) crops are a major product of the global food industry. From 1996 to 2014, 357 GM crops were approved and the global value of the GM crop market reached 35% of the global commercial seed market in 2014. However, the rapid growth of the GM crop-based industry has also created controversies in many regions, including the European Union, Egypt, and Taiwan. The effective detection and regulation of GM crops/foods are necessary to reduce the impact of these controversies. In this review, the status of GM crops and the technology for their detection are discussed. As the primary gap in GM crop regulation exists in the application of detection technology to field regulation, efforts should be made to develop an integrated, standardized, and high-throughput GM crop detection system. We propose the development of an integrated GM crop detection system, to be used in combination with a standardized international database, a decision support system, high-throughput DNA analysis, and automated sample processing. By integrating these technologies, we hope that the proposed GM crop detection system will provide a method to facilitate comprehensive GM crop regulation. Copyright © 2015. Published by Elsevier B.V.

  1. Evaluation and analysis of non-intrusive techniques for detecting illicit substances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micklich, B.J.; Roche, C.T.; Fink, C.L.

    1995-12-31

    Argonne National Laboratory (ANL) and the Houston Advanced Research Center (HARC) have been tasked by the Counterdrug Technology Assessment Center of the Office of National Drug Control Policy to conduct evaluations and analyses of technologies for the non-intrusive inspection of containers for illicit substances. These technologies span the range of nuclear, X-ray, and chemical techniques used in nondestructive sample analysis. ANL has performed assessments of nuclear and X-ray inspection concepts and undertaken site visits with developers to understand the capabilities and the range of applicability of candidate systems. ANL and HARC have provided support to law enforcement agencies (LEAs), includingmore » participation in numerous field studies. Both labs have provided staff to assist in the Narcotics Detection Technology Assessment (NDTA) program for evaluating drug detection systems. Also, the two labs are performing studies of drug contamination of currency. HARC has directed technical evaluations of automated ballistics imaging and identification systems under consideration by law enforcement agencies. ANL and HARC have sponsored workshops and a symposium, and are participating in a Non-Intrusive Inspection Study being led by Dynamics Technology, Incorporated.« less

  2. Technology-based counseling in the management of weight and lifestyles of obese or overweight children and adolescents: A descriptive systematic literature review.

    PubMed

    Kaakinen, Pirjo; Kyngäs, Helvi; Kääriäinen, Maria

    2018-03-01

    The number of overweight and obese children and adolescents has increased worldwide. Obese children and adolescents need counseling interventions, including technology-based methods, to help them manage their weight by changing their lifestyles. To describe technology-based counseling interventions in supporting obese or overweight children and adolescents to change their weight/lifestyle. Descriptive systematic literature review. A literature search was conducted using Cinahl, Medline, PsycINFO, and Medic databases in September 2010 and updated in January 2015. Predefined inclusion criteria were used for the search. After a quality assessment, 28 studies were included in the data extraction. No statistically significant difference in BMI was detected between the intervention and control groups. However, in some studies, it was found that BMI decreases and there were statistically significant differences in fruit and vegetable consumption. In two studies, differences in physical activity were detected between the intervention and control groups, but in eight studies, the difference was not significant. Goal setting and feedback on progress support physical activity and changes in diet. This study identifies available technology interventions for obese or overweight children and adolescents. It seems that using technology-based counseling intervention may encourage obese and overweight children and adolescents to pursue a healthier lifestyle.

  3. Detection of Nuclear Weapons and Materials: Science, Technologies, Observations

    DTIC Science & Technology

    2010-06-04

    extensive use of photons, packets of energy with no rest mass and no electrical charge. Electromagnetic radiation consists of photons, and may be measured...bulk property, expressed as mass per unit volume. In general, the densest materials are those of high Z. These properties may be used to detect...SNM by detecting the time pattern of neutron generation. A subcritical mass of highly enriched uranium or weapons-grade plutonium can support a

  4. Nuclear Terrorism - Dimensions, Options, and Perspectives in Moldova

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok; Susmann, P.; Braman, Eric W.; Enaki, Nicolae A.

    Securing nuclear materials, controlling contraband and preventing proliferation is an international priority to resolve using technology, diplomacy, strategic alliances, and if necessary, targeted military exercises. Nuclear security consists of complementary programs involving international legal and regulatory structure, intelligence and law enforcement agencies, border and customs forces, point and stand-off radiation detectors, personal protection equipment, preparedness for emergency and disaster, and consequence management teams. The strategic goal of UNSCR 1540 and the GICNT is to prevent nuclear materials from finding their way into the hands of our adversaries. This multi-jurisdictional and multi-agency effort demands tremendous coordination, technology assessment, policy development and guidance from several sectors. The overall goal envisions creating a secured environment that controls and protects nuclear materials while maintaining the free flow of commerce and individual liberty on international basis. Integral to such efforts are technologies to sense/detect nuclear material, provide advance information of nuclear smuggling routes, and other advanced means to control nuclear contraband and prevent proliferation. We provide an overview of GICNT and several initiatives supporting such efforts. An overview is provided of technological advances in support of point and stand-off detection and receiving advance information of nuclear material movement from perspectives of the Republic of Moldova.

  5. Ageing-in-place with the use of ambient intelligence technology: perspectives of older users.

    PubMed

    van Hoof, J; Kort, H S M; Rutten, P G S; Duijnstee, M S H

    2011-05-01

    Ambient intelligence technologies are a means to support ageing-in-place by monitoring clients in the home. In this study, monitoring is applied for the purpose of raising an alarm in an emergency situation, and thereby, providing an increased sense of safety and security. Apart from these technological solutions, there are numerous environmental interventions in the home environment that can support people to age-in-place. The aim of this study was to investigate the needs and motives, related to ageing-in-place, of the respondents receiving ambient intelligence technologies, and to investigate whether, and how, these technologies contributed to aspects of ageing-in-place. This paper presents the results of a qualitative study comprised of interviews and observations of technology and environmental interventions in the home environment among 18 community-dwelling older adults with a complex demand for care. These respondents had a prototype of the Unattended Autonomous Surveillance system, an example of ambient intelligence technology, installed in their homes as a means to age-in-place. The UAS-system offers a large range of functionalities, including mobility monitoring, voice response, fire detection, as well as wandering detection and prevention, which can be installed in different configurations. The respondents had various motives to use ambient intelligence technologies to support ageing-in-place. The most prominent reason was to improve the sense of safety and security, in particular, in case of fall incidents, when people were afraid not to be able to use their existing emergency response systems. The ambient intelligence technologies were initially seen as a welcome addition to strategies already adopted by the respondents, including a variety of home modifications and assistive devices. The systems tested increased the sense of safety and security and helped to postpone institutionalisation. Respondents came up with a set of specifications in terms of the operation and the design of the technology. False alarms were also regarded as a sign that the ambient intelligence technology is functioning. Moreover, a good integration of the new technologies in the provision of health care is indispensable, and installation should be done in an acceptable and unobtrusive manner. Ambient intelligence technologies can contribute to an increased safety and security at home. The technologies alone offer no all encompassing solution as home care and additional environmental interventions are still needed to support ageing-in-place. Results of the study are used to further improve the ambient intelligence technologies and their implementation. 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Acceptability Among Community Healthcare Nurses of Intelligent Wireless Sensor-system Technology for the Rapid Detection of Health Issues in Home-dwelling Older Adults.

    PubMed

    Cohen, Christine; Kampel, Thomas; Verloo, Henk

    2017-01-01

    The effective care and support of community healthcare nurses (CHNs) contribute greatly to the healthy aging of older adults living at home. Integrating innovative technologies into CHNs' daily practice offers new opportunities and perspectives for early detection of health issues and interventions among home-dwelling older adults. To explore the perception of acceptability among CHNs of an intelligent wireless sensor system (IWSS) for use in daily practice for the detection of health issues in home-dwelling older adults receiving home healthcare. Descriptive and qualitative data were sourced from a pilot randomized controlled trial involving 17 CHNs using an IWSS in their daily practice to rapidly detect falls and other health issues in patients' homes. IWSS alerts indicating behavior changes were sent to CHNs. Their perceived usefulness (PU) and perceived ease of use (PEOU) were assessed. The acceptability of IWSS technology was explored using a questionnaire and focus group discussions. The PU and PEOU of the IWSS technology were low to moderate. A majority of the CHNs were dissatisfied with its performance and intrusiveness; they reported multiple obstacles in the usefulness and ease of use of the IWSS technology in daily practice. To improve the IWSS technology's low to moderate acceptability among CHNs, we recommend a more user-centered implementation strategy and an embedded model of nursing care.

  7. Quantum Cascade Laser (QCL) based sensor for the detection of explosive compounds

    NASA Astrophysics Data System (ADS)

    Normand, Erwan; Howieson, Iain; McCulloch, Michael; Black, Paul

    2006-09-01

    Following Cascade Technologies first success at using Quantum Cascade Lasers (QCL) for trace gas detection in the continuous emission monitoring market, the core technology platform is now being developed towards homeland security applications. This paper will highlight the potential of QCL based trace gas sensor for detecting vapours of explosives. Furthermore we will present results that let foresee the use of such technologies at addressing security gaps for protection against terrorism in infrastructures where high throughput screening of individuals or items is required. Preliminary measurements have shown that rapid identification, or fingerprinting, of explosive is achievable in 10ms at extrapolated sensitivities in the sub-part per billion range. The experiments were carried out with support form the Home Office Scientific Development Branch (HOSDB) in the UK and were focused at selecting a variety of explosive compounds and showing their detection using a novel sniffer platform system based on the use of quantum cascade lasers. Preliminary studies on the technology have indicated that direct fingerprinting (detection - identification) of explosive compounds such as NG and tagging agents such as EGDN by sniffing surrounding ambient air is achievable. Furthermore these studies have also indicated that detection of such compounds on packaging used to ship the sealed compounds is possible, making this platform a strong contender for detection through cross contamination on material that have been in contact with each other. Additionally, it was also possible to detect breakdown products associated with sample material NG providing a further capability that could be exploited to enhance the detection and identification of explosive compounds.

  8. UAS Detection Classification and Neutralization: Market Survey 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birch, Gabriel Carisle; Griffin, John Clark; Erdman, Matthew Kelly

    The purpose of this document is to briefly frame the challenges of detecting low, slow, and small (LSS) unmanned aerial systems (UAS). The conclusion drawn from internal discussions and external reports is the following; detection of LSS UAS is a challenging problem that can- not be achieved with a single detection modality for all potential targets. Classification of LSS UAS, especially classification in the presence of background clutter (e.g., urban environment) or other non-threating targets (e.g., birds), is under-explored. Though information of avail- able technologies is sparse, many of the existing options for UAS detection appear to be in theirmore » infancy (when compared to more established ground-based air defense systems for larger and/or faster threats). Companies currently providing or developing technologies to combat the UAS safety and security problem are certainly worth investigating, however, no company has provided the statistical evidence necessary to support robust detection, identification, and/or neutralization of LSS UAS targets. The results of a market survey are included that highlights potential commercial entities that could contribute some technology that assists in the detection, classification, and neutral- ization of a LSS UAS. This survey found no clear and obvious commercial solution, though recommendations are given for further investigation of several potential systems.« less

  9. Smart Coatings for Launch Site Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.

    2014-01-01

    Smart, environmentally friendly paint system for early corrosion detection, mitigation, and healing that will enable supportability in KSC launch facilities and ground systems through their operational life cycles. KSC's Corrosion Technology Laboratory is developing a smart, self-healing coating that can detect and repair corrosion at an early stage. This coating is being developed using microcapsules specifically designed to deliver the contents of their core when corrosion starts.

  10. Windshear detection radar signal processing studies

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1993-01-01

    This final report briefly summarizes research work at Clemson in the Radar Systems Laboratory under the NASA Langley Research Grant NAG-1-928 in support of the Antenna and Microwave Branch, Guidance and Control Division, program to develop airborne sensor technology for the detection of low altitude windshear. A bibliography of all publications generated by Clemson personnel is included. An appendix provides abstracts of all publications.

  11. Report of the Defense Science Board Task Force on Critical Homeland Infrastructure Protection

    DTIC Science & Technology

    2007-01-01

    nuclear, radiation and explosive hazards; • Monitoring “people of interest” while protecting civil liberties; • Detection of hostile intent; • Detect...Guardian DARPA Overview Mr. Roger Gibbs DARPA LLNL Technologies in Support of Infrastructure Protection Mr. Don Prosnitz LLNL Sandia National...Mechanical Engineers AT/FP Antiterrorism/Force Protection CBRNE Chemical Biological Radiological Nuclear Explosive CERT Commuter Emergency Response Team

  12. Smart self management: assistive technology to support people with chronic disease.

    PubMed

    Zheng, Huiru; Nugent, Chris; McCullagh, Paul; Huang, Yan; Zhang, Shumei; Burns, William; Davies, Richard; Black, Norman; Wright, Peter; Mawson, Sue; Eccleston, Christopher; Hawley, Mark; Mountain, Gail

    2010-01-01

    We have developed a personalised self management system to support self management of chronic conditions with support from health-care professionals. Accelerometers are used to measure gross levels of activity, for example walking around the house, and used to infer higher level activity states, such as standing, sitting and lying. A smart phone containing an accelerometer and a global positioning system (GPS) module can be used to monitor outdoor activity, providing both activity and location based information. Heart rate, blood pressure and weight are recorded and input to the system by the user. A decision support system (DSS) detects abnormal activity and distinguishes life style patterns. The DSS is used to assess the self management process, and automates feedback to the user, consistent with the achievement of their life goals. We have found that telecare and assistive technology is feasible to support self management for chronic conditions within the home and local community environments.

  13. Autonomous Landing and Hazard Avoidance Technology (ALHAT)

    NASA Technical Reports Server (NTRS)

    Epp, Chirold

    2007-01-01

    This viewgraph presentation reviews the work towards technology that will result in an autonomous landing on the lunar surface, that will avoid the hazards of lunar landing. In October 2005, the Exploration Systems Mission Directorate at NASA Headquarters assigned the development of new technologies to support the return to the moon. One of these was Autonomous Precision Landing and Hazard Detection and Avoidance Technology now known as ALHAT ALHAT is a lunar descent and landing GNC technology development project led by Johnson Space Center (JSC) with team members from Langley Research Center (LaRC), Jet Propulsion Laboratory (JPL), Draper Laboratories (CSDL) and the Applied Physics Laboratory (APL)

  14. Flight Deck Display Technologies for 4DT and Surface Equivalent Visual Operations

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Jones, Denis R.; Shelton, Kevin J.; Arthur, Jarvis J., III; Bailey, Randall E.; Allamandola, Angela S.; Foyle, David C.; Hooey, Becky L.

    2009-01-01

    NASA research is focused on flight deck display technologies that may significantly enhance situation awareness, enable new operating concepts, and reduce the potential for incidents/accidents for terminal area and surface operations. The display technologies include surface map, head-up, and head-worn displays; 4DT guidance algorithms; synthetic and enhanced vision technologies; and terminal maneuvering area traffic conflict detection and alerting systems. This work is critical to ensure that the flight deck interface technologies and the role of the human participants can support the full realization of the Next Generation Air Transportation System (NextGen) and its novel operating concepts.

  15. Specific NIST projects in support of the NIJ Concealed Weapon Detection and Imaging Program

    NASA Astrophysics Data System (ADS)

    Paulter, Nicholas G.

    1998-12-01

    The Electricity Division of the National Institute of Standards and Technology is developing revised performance standards for hand-held (HH) and walk-through (WT) metal weapon detectors, test procedures and systems for these detectors, and a detection/imaging system for finding concealed weapons. The revised standards will replace the existing National Institute of Justice (NIJ) standards for HH and WT devices and will include detection performance specifications as well as system specifications (environmental conditions, mechanical strength and safety, response reproducibility and repeatability, quality assurance, test reporting, etc.). These system requirements were obtained from the Law Enforcement and corrections Technology Advisory Council, an advisory council for the NIJ. Reproducible and repeatable test procedures and appropriate measurement systems will be developed for evaluating HH and WT detection performance. A guide to the technology and application of non- eddy-current-based detection/imaging methods (such as acoustic, passive millimeter-wave and microwave, active millimeter-wave and terahertz-wave, x-ray, etc.) Will be developed. The Electricity Division is also researching the development of a high- frequency/high-speed (300 GH to 1 THz) pulse-illuminated, stand- off, video-rate, concealed weapons/contraband imaging system.

  16. Independent Review of Aviation Technology and Research Information Analysis System (ATRIAS) Database

    DTIC Science & Technology

    1994-02-01

    capability to support the Federal Aviation Administration (FAA)/ Aviation Security Research and Development Service’s (ACA) Explosive Detection...Systems (EDS) programs and Aviation Security Human Factors Program (ASHFP). This review was conducted by an independent consultant selected by the FAA...sections 2 and 3 of the report. Overall, ATRIAS was found to address many technology application areas relevant to the FAA’s aviation security programs

  17. Market Assessment of Forward-Looking Turbulence Sensing Systems

    NASA Technical Reports Server (NTRS)

    Kauffmann, Paul; Sousa-Poza, Andres

    2001-01-01

    In recognition of the importance of turbulence mitigation as a tool to improve aviation safety, NASA's Aviation Safety Program developed a Turbulence Detection and Mitigation Sub-element. The objective of this effort is to develop highly reliable turbulence detection technologies for commercial transport aircraft to sense dangerous turbulence with sufficient time warning so that defensive measures can be implemented and prevent passenger and crew injuries. Current research involves three forward sensing products to improve the cockpit awareness of possible turbulence hazards. X-band radar enhancements will improve the capabilities of current weather radar to detect turbulence associated with convective activity. LIDAR (Light Detection and Ranging) is a laser-based technology that is capable of detecting turbulence in clear air. Finally, a possible Radar-LIDAR hybrid sensor is envisioned to detect the full range of convective and clear air turbulence. To support decisions relating to the development of these three forward-looking turbulence sensor technologies, the objective of this study was defined as examination of cost and implementation metrics. Tasks performed included the identification of cost factors and certification issues, the development and application of an implementation model, and the development of cost budget/targets for installing the turbulence sensor and associated software devices into the commercial transport fleet.

  18. Evaluation report : driver experience with the enhanced object detection system for transit buses

    DOT National Transportation Integrated Search

    2003-12-01

    Since 1998, the Federal Transit Administration (FTA), with support from the USDOTs ITS Joint Program Office (JPO), has been partnering with the Pennsylvania Department of Transportation (PennDOT) and various research organizations and technology p...

  19. Real-Time Hazard Detection and Avoidance Demonstration for a Planetary Lander

    NASA Technical Reports Server (NTRS)

    Epp, Chirold D.; Robertson, Edward A.; Carson, John M., III

    2014-01-01

    The Autonomous Landing Hazard Avoidance Technology (ALHAT) Project is chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. In addition to precision landing close to a pre-mission defined landing location, the ALHAT System must be capable of autonomously identifying and avoiding surface hazards in real-time to enable a safe landing under any lighting conditions. This paper provides an overview of the recent results of the ALHAT closed loop hazard detection and avoidance flight demonstrations on the Morpheus Vertical Testbed (VTB) at the Kennedy Space Center, including results and lessons learned. This effort is also described in the context of a technology path in support of future crewed and robotic planetary exploration missions based upon the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN).

  20. Automatic detection of confusion in elderly users of a web-based health instruction video.

    PubMed

    Postma-Nilsenová, Marie; Postma, Eric; Tates, Kiek

    2015-06-01

    Because of cognitive limitations and lower health literacy, many elderly patients have difficulty understanding verbal medical instructions. Automatic detection of facial movements provides a nonintrusive basis for building technological tools supporting confusion detection in healthcare delivery applications on the Internet. Twenty-four elderly participants (70-90 years old) were recorded while watching Web-based health instruction videos involving easy and complex medical terminology. Relevant fragments of the participants' facial expressions were rated by 40 medical students for perceived level of confusion and analyzed with automatic software for facial movement recognition. A computer classification of the automatically detected facial features performed more accurately and with a higher sensitivity than the human observers (automatic detection and classification, 64% accuracy, 0.64 sensitivity; human observers, 41% accuracy, 0.43 sensitivity). A drill-down analysis of cues to confusion indicated the importance of the eye and eyebrow region. Confusion caused by misunderstanding of medical terminology is signaled by facial cues that can be automatically detected with currently available facial expression detection technology. The findings are relevant for the development of Web-based services for healthcare consumers.

  1. National Institute of Justice (NIJ): improving the effectiveness of law enforcement via homeland security technology improvements (Keynote Address)

    NASA Astrophysics Data System (ADS)

    Morgan, John S.

    2005-05-01

    Law enforcement agencies play a key role in protecting the nation from and responding to terrorist attacks. Preventing terrorism and promoting the nation"s security is the Department of Justice"s number one strategic priority. This is reflected in its technology development efforts, as well as its operational focus. The National Institute of Justice (NIJ) is the national focal point for the research, development, test and evaluation of technology for law enforcement. In addition to its responsibilities in supporting day-to-day criminal justice needs in areas such as less lethal weapons and forensic science, NIJ also provides critical support for counter-terrorism capacity improvements in state and local law enforcement in several areas. The most important of these areas are bomb response, concealed weapons detection, communications and information technology, which together offer the greatest potential benefit with respect to improving the ability to law enforcement agencies to respond to all types of crime including terrorist acts. NIJ coordinates its activities with several other key federal partners, including the Department of Homeland Security"s Science and Technology Directorate, the Technical Support Working Group, and the Department of Defense.

  2. Ion mobility spectrometry fingerprints: A rapid detection technology for adulteration of sesame oil.

    PubMed

    Zhang, Liangxiao; Shuai, Qian; Li, Peiwu; Zhang, Qi; Ma, Fei; Zhang, Wen; Ding, Xiaoxia

    2016-02-01

    A simple and rapid detection technology was proposed based on ion mobility spectrometry (IMS) fingerprints to determine potential adulteration of sesame oil. Oil samples were diluted by n-hexane and analyzed by IMS for 20s. Then, chemometric methods were employed to establish discriminant models for sesame oils and four other edible oils, pure and adulterated sesame oils, and pure and counterfeit sesame oils, respectively. Finally, Random Forests (RF) classification model could correctly classify all five types of edible oils. The detection results indicated that the discriminant models built by recursive support vector machine (R-SVM) method could identify adulterated sesame oil samples (⩾ 10%) with an accuracy value of 94.2%. Therefore, IMS was shown to be an effective method to detect the adulterated sesame oils. Meanwhile, IMS fingerprints work well to detect the counterfeit sesame oils produced by adding sesame oil essence into cheaper edible oils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Advanced shortwave infrared and Raman hyperspectral sensors for homeland security and law enforcement operations

    NASA Astrophysics Data System (ADS)

    Klueva, Oksana; Nelson, Matthew P.; Gardner, Charles W.; Gomer, Nathaniel R.

    2015-05-01

    Proliferation of chemical and explosive threats as well as illicit drugs continues to be an escalating danger to civilian and military personnel. Conventional means of detecting and identifying hazardous materials often require the use of reagents and/or physical sampling, which is a time-consuming, costly and often dangerous process. Stand-off detection allows the operator to detect threat residues from a safer distance minimizing danger to people and equipment. Current fielded technologies for standoff detection of chemical and explosive threats are challenged by low area search rates, poor targeting efficiency, lack of sensitivity and specificity or use of costly and potentially unsafe equipment such as lasers. A demand exists for stand-off systems that are fast, safe, reliable and user-friendly. To address this need, ChemImage Sensor Systems™ (CISS) has developed reagent-less, non-contact, non-destructive sensors for the real-time detection of hazardous materials based on widefield shortwave infrared (SWIR) and Raman hyperspectral imaging (HSI). Hyperspectral imaging enables automated target detection displayed in the form of image making result analysis intuitive and user-friendly. Application of the CISS' SWIR-HSI and Raman sensing technologies to Homeland Security and Law Enforcement for standoff detection of homemade explosives and illicit drugs and their precursors in vehicle and personnel checkpoints is discussed. Sensing technologies include a portable, robot-mounted and standalone variants of the technology. Test data is shown that supports the use of SWIR and Raman HSI for explosive and drug screening at checkpoints as well as screening for explosives and drugs at suspected clandestine manufacturing facilities.

  4. Using mobile health technology to deliver decision support for self-monitoring after lung transplantation.

    PubMed

    Jiang, Yun; Sereika, Susan M; DeVito Dabbs, Annette; Handler, Steven M; Schlenk, Elizabeth A

    2016-10-01

    Lung transplant recipients (LTR) experience problems recognizing and reporting critical condition changes during their daily health self-monitoring. Pocket PATH(®), a mobile health application, was designed to provide automatic feedback messages to LTR to guide decisions for detecting and reporting critical values of health indicators. To examine the degree to which LTR followed decision support messages to report recorded critical values, and to explore predictors of appropriately following technology decision support by reporting critical values during the first year after transplantation. A cross-sectional correlational study was conducted to analyze existing data from 96 LTR who used the Pocket PATH for daily health self-monitoring. When a critical value is entered, the device automatically generated a feedback message to guide LTR about when and what to report to their transplant coordinators. Their socio-demographics and clinical characteristics were obtained before discharge. Their use of Pocket PATH for health self-monitoring during 12 months was categorized as low (≤25% of days), moderate (>25% to ≤75% of days), and high (>75% of days) use. Following technology decision support was defined by the total number of critical feedback messages appropriately handled divided by the total number of critical feedback messages generated. This variable was dichotomized by whether or not all (100%) feedback messages were appropriately followed. Binary logistic regression was used to explore predictors of appropriately following decision support. Of the 96 participants, 53 had at least 1 critical feedback message generated during 12 months. Of these 53 participants, the average message response rate was 90% and 33 (62%) followed 100% decision support. LTR who moderately used Pocket PATH (n=23) were less likely to follow technology decision support than the high (odds ratio [OR]=0.11, p=0.02) and low (OR=0.04, p=0.02) use groups. The odds of following decision support were reduced in LTR whose income met basic needs (OR=0.01, p=0.01) or who had longer hospital stays (OR=0.94, p=0.004). A significant interaction was found between gender and past technology experience (OR=0.21, p=0.03), suggesting that with increased past technology experience, the odds of following decision support to report all critical values decreased in men but increased in women. The majority of LTR responded appropriately to mobile technology-based decision support for reporting recorded critical values. Appropriately following technology decision support was associated with gender, income, experience with technology, length of hospital stay, and frequency of use of technology for self-monitoring. Clinicians should monitor LTR, who are at risk for poor reporting of recorded critical values, more vigilantly even when LTR are provided with mobile technology decision support. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Statistical methods for identifying and bounding a UXO target area or minefield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinstry, Craig A.; Pulsipher, Brent A.; Gilbert, Richard O.

    2003-09-18

    The sampling unit for minefield or UXO area characterization is typically represented by a geographical block or transect swath that lends itself to characterization by geophysical instrumentation such as mobile sensor arrays. New spatially based statistical survey methods and tools, more appropriate for these unique sampling units have been developed and implemented at PNNL (Visual Sample Plan software, ver. 2.0) with support from the US Department of Defense. Though originally developed to support UXO detection and removal efforts, these tools may also be used in current form or adapted to support demining efforts and aid in the development of newmore » sensors and detection technologies by explicitly incorporating both sampling and detection error in performance assessments. These tools may be used to (1) determine transect designs for detecting and bounding target areas of critical size, shape, and density of detectable items of interest with a specified confidence probability, (2) evaluate the probability that target areas of a specified size, shape and density have not been missed by a systematic or meandering transect survey, and (3) support post-removal verification by calculating the number of transects required to achieve a specified confidence probability that no UXO or mines have been missed.« less

  6. Life Support and Habitation Systems: Crew Support and Protection for Human Exploration Missions Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; McQuillan, Jeffrey

    2010-01-01

    Life Support and Habitation Systems (LSHS) is one of 10 Foundational Domains as part of the National Aeronautics and Space Administration s proposed Enabling Technology Development and Demonstration (ETDD) Program. LSHS will develop and mature technologies to sustain life on long duration human missions beyond Low Earth Orbit that are reliable, have minimal logistics supply and increase self-sufficiency. For long duration exploration missions, further closure of life support systems is paramount, including focus on key technologies for atmosphere revitalization, water recovery, waste management, thermal control and crew accommodation that recover additional consumable mass, reduce requirements for power, volume, heat rejection, crew involvement, and which have increased reliability and capability. Other areas of focus include technologies for radiation protection, environmental monitoring and fire protection. Beyond LEO, return to Earth will be constrained. The potability of recycled water and purity of regenerated air must be measured and certified aboard the spacecraft. Missions must be able to recover from fire events through early detection, use of non-toxic suppression agents, and operation of recovery systems that protect on-board Environmental Control and Life Support (ECLS) hardware. Without the protection of the Earth s geomagnetic field, missions beyond LEO must have improved radiation shielding and dosimetry, as well as warning systems to protect the crew against solar particle events. This paper will describe plans for the new LSHS Foundational Domain and mission factors that will shape its technology development portfolio.

  7. Delaying investments in sensor technology: The rationality of dairy farmers' investment decisions illustrated within the framework of real options theory.

    PubMed

    Rutten, C J; Steeneveld, W; Oude Lansink, A G J M; Hogeveen, H

    2018-05-02

    The adoption rate of sensors on dairy farms varies widely. Whereas some sensors are hardly adopted, others are adopted by many farmers. A potential rational explanation for the difference in adoption may be the expected future technological progress in the sensor technology and expected future improved decision support possibilities. For some sensors not much progress can be expected because the technology has already made enormous progress in recent years, whereas for sensors that have only recently been introduced on the market, much progress can be expected. The adoption of sensors may thus be partly explained by uncertainty about the investment decision, in which uncertainty lays in the future performance of the sensors and uncertainty about whether improved informed decision support will become available. The overall aim was to offer a plausible example of why a sensor may not be adopted now. To explain this, the role of uncertainty about technological progress in the investment decision was illustrated for highly adopted sensors (automated estrus detection) and hardly adopted sensors (automated body condition score). This theoretical illustration uses the real options theory, which accounts for the role of uncertainty in the timing of investment decisions. A discrete event model, simulating a farm of 100 dairy cows, was developed to estimate the net present value (NPV) of investing now and investing in 5 yr in both sensor systems. The results show that investing now in automated estrus detection resulted in a higher NPV than investing 5 yr from now, whereas for the automated body condition score postponing the investment resulted in a higher NPV compared with investing now. These results are in line with the observation that farmers postpone investments in sensors. Also, the current high adoption of automated estrus detection sensors can be explained because the NPV of investing now is higher than the NPV of investing in 5 yr. The results confirm that uncertainty about future sensor performance and uncertainty about whether improved decision support will become available play a role in investment decisions. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. USGS lidar science strategy—Mapping the technology to the science

    USGS Publications Warehouse

    Stoker, Jason M.; Brock, John C.; Soulard, Christopher E.; Ries, Kernell G.; Sugarbaker, Larry J.; Newton, Wesley E.; Haggerty, Patricia K.; Lee, Kathy E.; Young, John A.

    2016-01-11

    The U.S. Geological Survey (USGS) utilizes light detection and ranging (lidar) and enabling technologies to support many science research activities. Lidar-derived metrics and products have become a fundamental input to complex hydrologic and hydraulic models, flood inundation models, fault detection and geologic mapping, topographic and land-surface mapping, landslide and volcano hazards mapping and monitoring, forest canopy and habitat characterization, coastal and fluvial erosion mapping, and a host of other research and operational activities. This report documents the types of lidar being used by the USGS, discusses how lidar technology facilitates the achievement of individual mission area goals within the USGS, and offers recommendations and suggested changes in direction in terms of how a mission area could direct work using lidar as it relates to the mission area goals that have already been established.

  9. Airborne wildfire intelligence system: a decision support tool for wildland fire managers in Alberta

    NASA Astrophysics Data System (ADS)

    Campbell, Doug; Born, Wally G.; Beck, Judi; Bereska, Bill; Frederick, Kurt; Hua, Sun

    2002-03-01

    The Airborne Wildfire Intelligence System (AWIS) defines the state-of-the-art in remotely sensed wildfire intelligence. AWIS is a commercial, automated, intelligence service, delivering GIS integrated fire intelligence, classified interpretive and analysis layers, and higher level decision support products for wildfires in near real time via the Internet. The AWIS effort illustrates flexible and dynamic cooperation between industry and government to combine technology with field knowledge and experience into an effective, optimized end-user tool. In Alberta the Forest Protection Division of the department of Sustainable Resource Development uses AWIS for several applications: holdover and wildfire hotspot detection, fire front and burned area perimeter mapping, strategic and tactical support through 3D visualization, research into the effects of fire and its severity and to document burn patterns across the landscape. A discussion of all of the scientific themes behind the AWIS is outside the scope of this paper, however, the science of sub-element detection will be reviewed. An independent study has been conducted by the Forest Engineering Research Institute of Canada (FERIC) to investigate the capability of a variety of thermal infrared remote sensing systems to detect small and subtle hotspots in an effort to identify the strengths and weaknesses thereof. As a result of this work, method suitability guidelines have been established to match appropriate infrared technology with a given wildfire management objective.

  10. Wearable Therapy - Detecting Information from Wearables and Mobiles that are Relevant to Clinical and Self-directed Therapy.

    PubMed

    Arnrich, Bert; Ersoy, Cem; Mayora, Oscar; Dey, Anind; Berthouze, Nadia; Kunze, Kai

    2017-01-09

    This accompanying editorial provides a brief introduction into the focus theme "Wearable Therapy". The focus theme "Wearable Therapy" aims to present contributions which target wearable and mobile technologies to support clinical and self-directed therapy. A call for papers was announced to all participants of the "9th International Conference on Pervasive Computing Technologies for Healthcare" and was published in November 2015. A peer review process was conducted to select the papers for the focus theme. Six papers were selected to be included in this focus theme. The paper topics cover a broad range including an approach to build a health informatics research program, a comprehensive literature review of self-quantification for health self-management, methods for affective state detection of informal care givers, social-aware handling of falls, smart shoes for supporting self-directed therapy of alcohol addicts, and reference information model for pervasive health systems. More empirical evidence is needed that confirms sustainable effects of employing wearable and mobile technology for clinical and self-directed therapy. Inconsistencies between different conceptual approaches need to be revealed in order to enable more systematic investigations and comparisons.

  11. Toward a fractal spectrum approach for neutron and gamma pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Zhe; Liu, Bing-Qi; Zuo, Zhuo; Wang, Lei; Zan, Gui-Bin; Tuo, Xian-Guo

    2016-06-01

    Accurately selecting neutron signals and discriminating γ signals from a mixed radiation field is a key research issue in neutron detection. This paper proposes a fractal spectrum discrimination approach by means of different spectral characteristics of neutrons and γ rays. Figure of merit and average discriminant error ratio are used together to evaluate the discrimination effects. Different neutron and γ signals with various noise and pulse pile-up are simulated according to real data in the literature. The proposed approach is compared with the digital charge integration and pulse gradient methods. It is found that the fractal approach exhibits the best discrimination performance, followed by the digital charge integration method and the pulse gradient method, respectively. The fractal spectrum approach is not sensitive to high frequency noise and pulse pile-up. This means that the proposed approach has superior performance for effective and efficient anti-noise and high discrimination in neutron detection. Supported by the National Natural Science Foundation of China (41274109), Sichuan Youth Science and Technology Innovation Research Team (2015TD0020), Scientific and Technological Support Program of Sichuan Province (2013FZ0022), and the Creative Team Program of Chengdu University of Technology.

  12. THE FLUIDS AND COMBUSTION FACILITY: ENABLING THE EXPLORATION OF SPACE

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J.; Gati, Frank G.; Hill, Myron E.; OMalley, Terence; Zurawski, Robert L.

    2005-01-01

    The Fluids and Combustion Facility (FCF) is an International Space Station facility designed to support physical and biological research as well as technology experiments in space. The FCF consists of two racks called the Combustion Integrated Rack (CIR) and the Fluids Integrated Rack (FIR). The capabilities of the CIR and the FIR and plans for their utilization will support the President s vision for space exploration. The CIR will accommodate physical research and technology experiments that address needs in the areas of spacecraft fire prevention, detection and suppression, incineration of solid wastes, and power generation. Initial experiments will provide data to support design decisions for exploration spacecraft. The CIR provides a large sealed chamber in a near-weightless environment. The chamber supports many simulated atmospheres including lunar or Martian environments. The FIR will accommodate experiments that address needs for advanced life support, power, propulsion, and spacecraft thermal control systems. The FIR can also serve as a platform for experiments that address human health and performance, medical technologies, and biological sciences. The FIR provides a large volume for payload hardware, reconfigurable diagnostics, customizable software, active rack-level vibration isolation, and data acquisition and management in a nearly uniform temperature environment.

  13. The Fluids and Combustion Facility: Enabling the Exploration of Space

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J.; Gati, Frank G.; Hill, Myron E.; O'Malley Terence F.; Zurawski, Robert L.

    2005-01-01

    The Fluids and Combustion Facility (FCF) is an International Space Station facility designed to support physical and biological research as well as technology experiments in space. The FCF consists of two racks called the Combustion Integrated Rack (CIR) and the Fluids Integrated Rack (FIR). The capabilities of the CIR and the FIR and plans for their utilization will support the President's vision for space exploration. The CIR will accommodate physical research and technology experiments that address needs in the areas of spacecraft fire prevention, detection and suppression, incineration of solid wastes, and power generation. Initial experiments will provide data to support design decisions for exploration spacecraft. The CIR provides a large sealed chamber in a near-weightless environment. The chamber supports many simulated atmospheres including lunar or Martian environments. The FIR will accommodate experiments that address needs for advanced life support, power, propulsion, and spacecraft thermal control systems. The FIR can also serve as a platform for experiments that address human health and performance, medical technologies, and biological sciences. The FIR provides a large volume for payload hardware, reconfigurable diagnostics, customizable software, active rack-level vibration isolation, and data acquisition and management in a nearly uniform temperature environment.

  14. Detection of new in-path targets by drivers using Stop & Go Adaptive Cruise Control.

    PubMed

    Stanton, Neville A; Dunoyer, Alain; Leatherland, Adam

    2011-05-01

    This paper reports on the design and evaluation of in-car displays used to support Stop & Go Adaptive Cruise Control. Stop & Go Adaptive Cruise Control is an extension of Adaptive Cruise Control, as it is able to bring the vehicle to a complete stop. Previous versions of Adaptive Cruise Control have only operated above 26 kph. The greatest concern for these technologies is the appropriateness of the driver's response in any given scenario. Three different driver interfaces were proposed to support the detection of modal, spatial and temporal changes of the system: an iconic display, a flashing iconic display, and a representation of the radar. The results show that drivers correctly identified more changes detected by the system with the radar display than with the other displays, but higher levels of workload accompanied this increased detection. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  15. Chromoendoscopy and Advanced Imaging Technologies for Surveillance of Patients with IBD

    PubMed Central

    Barkin, Jodie A.; Abreu, Maria T.

    2012-01-01

    Inflammatory bowel disease patients with long-standing colitis have an increased risk of colorectal cancer. The high rate of interval colitis-associated cancers among patients who adhere to a nontargeted, random biopsy surveillance strategy underlies the need for improved methods of early dysplasia detection. Compelling evidence supports the efficacy of chromoendoscopy for increasing the detection rate of dysplasia; however, this technology is currently underutilized in the clinical setting. Other contrast-based technologies—including confocal laser endomicroscopy (Pentax), endocytoscopy, multiband imaging, i-scan (Pentax), and molecular-targeted techniques—show promise in the detection of dysplasia in patients with inflammatory bowel disease. The strategies currently available for identifying patients with dysplasia or colitis-associated cancers remain inadequate and need to demonstrate both cost and time efficiency before they can be adopted in community-based practices. PMID:24693269

  16. The NASA L3 Study

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2016-01-01

    The Astrophysics Implementation Plan calls for a minority role in L3, planned for launch in 2034. L3 The third large mission in ESAs Cosmic Visions 2015-2025 Programme NASA and ESA have been discussing a collaboration for 2 years Gravitational Observatory Advisory Team (GOAT) ESA study evaluating and recommend scientific performance tradeoffs, detection technologies, technology development activities, data analysis capabilities, schedule and cost US representatives: Guido Mueller, Mark Kasevich, Bill Klipstein, RTS Started in October 2014, concluding with a final report in late Marchor early April 2016. ESA solicited interest from ESA Member States in November 2015 NASA is continuing technology development support. ESA is restarting technology development activities.

  17. Acoustic detection of Melolonthine larvae in Australian sugarcane

    USDA-ARS?s Scientific Manuscript database

    Decision support systems have been developed for risk analysis and control of root-feeding white grub pests in Queensland sugarcane, based partly on manual inspection of cane soil samples. Acoustic technology was considered as a potential alternative to this laborious procedure. Field surveys were...

  18. A Powerful, Cost Effective, Web Based Engineering Solution Supporting Conjunction Detection and Visual Analysis

    NASA Astrophysics Data System (ADS)

    Novak, Daniel M.; Biamonti, Davide; Gross, Jeremy; Milnes, Martin

    2013-08-01

    An innovative and visually appealing tool is presented for efficient all-vs-all conjunction analysis on a large catalogue of objects. The conjunction detection uses a nearest neighbour search algorithm, based on spatial binning and identification of pairs of objects in adjacent bins. This results in the fastest all vs all filtering the authors are aware of. The tool is constructed on a server-client architecture, where the server broadcasts to the client the conjunction data and ephemerides, while the client supports the user interface through a modern browser, without plug-in. In order to make the tool flexible and maintainable, Java software technologies were used on the server side, including Spring, Camel, ActiveMQ and CometD. The user interface and visualisation are based on the latest web technologies: HTML5, WebGL, THREE.js. Importance has been given on the ergonomics and visual appeal of the software. In fact certain design concepts have been borrowed from the gaming industry.

  19. USSP-IAEA WORKSHOP ON ADVANCED SENSORS FOR SAFEGUARDS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PEPPER,S.; QUEIROLO, A.; ZENDEL, M.

    2007-11-13

    The IAEA Medium Term Strategy (2006-2011) defines a number of specific goals in respect to the IAEA's ability to provide assurances to the international community regarding the peaceful use of nuclear energy through States adherences to their respective non-proliferation treaty commitments. The IAEA has long used and still needs the best possible sensors to detect and measure nuclear material. The Department of Safeguards, recognizing the importance of safeguards-oriented R&D, especially targeting improved detection capabilities for undeclared facilities, materials and activities, initiated a number of activities in early 2005. The initiatives included letters to Member State Support Programs (MSSPs), personal contactsmore » with known technology holders, topical meetings, consultant reviews of safeguards technology, and special workshops to identify new and novel technologies and methodologies. In support of this objective, the United States Support Program to IAEA Safeguards hosted a workshop on ''Advanced Sensors for Safeguards'' in Santa Fe, New Mexico, from April 23-27, 2007. The Organizational Analysis Corporation, a U.S.-based management consulting firm, organized and facilitated the workshop. The workshop's goal was to help the IAEA identify and plan for new sensors for safeguards implementation. The workshop, which was attended by representatives of seven member states and international organizations, included presentations by technology holders and developers on new technologies thought to have relevance to international safeguards, but not yet in use by the IAEA. The presentations were followed by facilitated breakout sessions where the participants considered two scenarios typical of what IAEA inspectors might face in the field. One scenario focused on an enrichment plant; the other scenario focused on a research reactor. The participants brainstormed using the technologies presented by the participants and other technologies known to them to propose techniques and methods that could be used by the IAEA to strengthen safeguards. Creative thinking was encouraged during discussion of the proposals. On the final day of the workshop, the OAC facilitators summarized the participant's ideas in a combined briefing. This paper will report on the results of the April 2007 USSP-IAEA Workshop on Advanced Sensors for Safeguards and give an overview of the proposed technologies of greatest promise.« less

  20. Acceptability Among Community Healthcare Nurses of Intelligent Wireless Sensor-system Technology for the Rapid Detection of Health Issues in Home-dwelling Older Adults

    PubMed Central

    Cohen, Christine; Kampel, Thomas; Verloo, Henk

    2017-01-01

    Background: The effective care and support of community healthcare nurses (CHNs) contribute greatly to the healthy aging of older adults living at home. Integrating innovative technologies into CHNs’ daily practice offers new opportunities and perspectives for early detection of health issues and interventions among home-dwelling older adults. Aim: To explore the perception of acceptability among CHNs of an intelligent wireless sensor system (IWSS) for use in daily practice for the detection of health issues in home-dwelling older adults receiving home healthcare. Method: Descriptive and qualitative data were sourced from a pilot randomized controlled trial involving 17 CHNs using an IWSS in their daily practice to rapidly detect falls and other health issues in patients’ homes. IWSS alerts indicating behavior changes were sent to CHNs. Their perceived usefulness (PU) and perceived ease of use (PEOU) were assessed. The acceptability of IWSS technology was explored using a questionnaire and focus group discussions. Results: The PU and PEOU of the IWSS technology were low to moderate. A majority of the CHNs were dissatisfied with its performance and intrusiveness; they reported multiple obstacles in the usefulness and ease of use of the IWSS technology in daily practice. Conclusion: To improve the IWSS technology’s low to moderate acceptability among CHNs, we recommend a more user-centered implementation strategy and an embedded model of nursing care. PMID:28567170

  1. Development of Solid-State Nanopore Technology for Life Detection

    NASA Technical Reports Server (NTRS)

    Bywaters, K. B.; Schmidt, H.; Vercoutere, W.; Deamer, D.; Hawkins, A. R.; Quinn, R. C.; Burton, A. S.; Mckay, C. P.

    2017-01-01

    Biomarkers for life on Earth are an important starting point to guide the search for life elsewhere. However, the search for life beyond Earth should incorporate technologies capable of recognizing an array of potential biomarkers beyond what we see on Earth, in order to minimize the risk of false negatives from life detection missions. With this in mind, charged linear polymers may be a universal signature for life, due to their ability to store information while also inherently reducing the tendency of complex tertiary structure formation that significantly inhibit replication. Thus, these molecules are attractive targets for biosignature detection as potential "self-sustaining chemical signatures." Examples of charged linear polymers, or polyelectrolytes, include deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) as well as synthetic polyelectrolytes that could potentially support life, including threose nucleic acid (TNA) and other xenonucleic acids (XNAs). Nanopore analysis is a novel technology that has been developed for singlemolecule sequencing with exquisite single nucleotide resolution which is also well-suited for analysis of polyelectrolyte molecules. Nanopore analysis has the ability to detect repeating sequences of electrical charges in organic linear polymers, and it is not molecule- specific (i.e. it is not restricted to only DNA or RNA). In this sense, it is a better life detection technique than approaches that are based on specific molecules, such as the polymerase chain reaction (PCR), which requires that the molecule being detected be composed of DNA.

  2. Detection and classification of concealed weapons using a magnetometer-based portal

    NASA Astrophysics Data System (ADS)

    Kotter, Dale K.; Roybal, Lyle G.; Polk, Robert E.

    2002-08-01

    A concealed weapons detection technology was developed through the support of the National Institute of Justice (NIJ) to provide a non intrusive means for rapid detection, location, and archiving of data (including visual) of potential suspects and weapon threats. This technology, developed by the Idaho National Engineering and Environmental Laboratory (INEEL), has been applied in a portal style weapons detection system using passive magnetic sensors as its basis. This paper will report on enhancements to the weapon detection system to enable weapon classification and to discriminate threats from non-threats. Advanced signal processing algorithms were used to analyze the magnetic spectrum generated when a person passes through a portal. These algorithms analyzed multiple variables including variance in the magnetic signature from random weapon placement and/or orientation. They perform pattern recognition and calculate the probability that the collected magnetic signature correlates to a known database of weapon versus non-weapon responses. Neural networks were used to further discriminate weapon type and identify controlled electronic items such as cell phones and pagers. False alarms were further reduced by analyzing the magnetic detector response by using a Joint Time Frequency Analysis digital signal processing technique. The frequency components and power spectrum for a given sensor response were derived. This unique fingerprint provided additional information to aid in signal analysis. This technology has the potential to produce major improvements in weapon detection and classification.

  3. Application of CMOS Technology to Silicon Photomultiplier Sensors.

    PubMed

    D'Ascenzo, Nicola; Zhang, Xi; Xie, Qingguo

    2017-09-25

    We use the 180 nm GLOBALFOUNDRIES (GF) BCDLite CMOS process for the production of a silicon photomultiplier prototype. We study the main characteristics of the developed sensor in comparison with commercial SiPMs obtained in custom technologies and other SiPMs developed with CMOS-compatible processes. We support our discussion with a transient modeling of the detection process of the silicon photomultiplier as well as with a series of static and dynamic experimental measurements in dark and illuminated environments.

  4. What is a missing link among wireless persistent surveillance?

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Szu, Harold

    2011-06-01

    The next generation surveillance system will equip with versatile sensor devices and information focus capable of conducting regular and irregular surveillance and security environments worldwide. The community of the persistent surveillance must invest the limited energy and money effectively into researching enabling technologies such as nanotechnology, wireless networks, and micro-electromechanical systems (MEMS) to develop persistent surveillance applications for the future. Wireless sensor networks can be used by the military for a number of purposes such as monitoring militant activity in remote areas and force protection. Being equipped with appropriate sensors these networks can enable detection of enemy movement, identification of enemy force and analysis of their movement and progress. Among these sensor network technologies, covert communication is one of the challenging tasks in the persistent surveillance because it is highly demanded to provide secured sensor nodes and linkage for fear of deliberate sabotage. Due to the matured VLSI/DSP technologies, affordable COTS of UWB technology with noise-like direct sequence (DS) time-domain pulses is a potential solution to support low probability of intercept and low probability of detection (LPI/LPD) data communication and transmission. This paper will describe a number of technical challenges in wireless persistent surveillance development include covert communication, network control and routing, collaborating signal and information processing, and etc. The paper concludes by presenting Hermitian Wavelets to enhance SNR in support of secured communication.

  5. Infrared detectors and test technology of cryogenic camera

    NASA Astrophysics Data System (ADS)

    Yang, Xiaole; Liu, Xingxin; Xing, Mailing; Ling, Long

    2016-10-01

    Cryogenic camera which is widely used in deep space detection cools down optical system and support structure by cryogenic refrigeration technology, thereby improving the sensitivity. Discussing the characteristics and design points of infrared detector combined with camera's characteristics. At the same time, cryogenic background test systems of chip and detector assembly are established. Chip test system is based on variable cryogenic and multilayer Dewar, and assembly test system is based on target and background simulator in the thermal vacuum environment. The core of test is to establish cryogenic background. Non-uniformity, ratio of dead pixels and noise of test result are given finally. The establishment of test system supports for the design and calculation of infrared systems.

  6. Seizure reporting technologies for epilepsy treatment: A review of clinical information needs and supporting technologies.

    PubMed

    Bidwell, Jonathan; Khuwatsamrit, Thanin; Askew, Brittain; Ehrenberg, Joshua Andrew; Helmers, Sandra

    2015-11-01

    This review surveys current seizure detection and classification technologies as they relate to aiding clinical decision-making during epilepsy treatment. Interviews and data collected from neurologists and a literature review highlighted a strong need for better distinguishing between patients exhibiting generalized and partial seizure types as well as achieving more accurate seizure counts. This information is critical for enabling neurologists to select the correct class of antiepileptic drugs (AED) for their patients and evaluating AED efficiency during long-term treatment. In our questionnaire, 100% of neurologists reported they would like to have video from patients prior to selecting an AED during an initial consultation. Presently, only 30% have access to video. In our technology review we identified that only a subset of available technologies surpassed patient self-reporting performance due to high false positive rates. Inertial seizure detection devices coupled with video capture for recording seizures at night could stand to address collecting seizure counts that are more accurate than current patient self-reporting during day and night time use. Copyright © 2015. Published by Elsevier Ltd.

  7. Compact Laser Multi-gas Spectral Sensors for Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Tittel, Frank K.

    1997-01-01

    The objective of this research effort has been the development of a new gas sensor technology to meet NASA requirements for spacecraft and space station human life support systems for sensitive selective and real time detection of trace gas species in the mid-infrared spectral region.

  8. Explosive detection systems data collection final report

    DTIC Science & Technology

    2016-10-01

    Institute of Standards and Technology (NIST) project to develop standards for bomb squad operators. Under this effort, ARA was tasked with developing and...Collection (EDSDC) ................................................................ 5    DHS/NIST Support ( Bomb Squad Robotic Training Standards...Development ................................................................................................ 5  Figure 3. Layout of the Bomb Squad Test

  9. Report on Cosmic Dust Capture Research and Development for the Exobiology Program

    NASA Technical Reports Server (NTRS)

    Nishioka, Kenji

    1997-01-01

    Collaboration with Ames' personnel was in: 1) grant administration, 2) intellectual science support, 3) collaboration with the University of Paris for the Mir flight experiment, and 4) arranging scanning and X-ray probe analytical support from UCB and SUNYP. LNIMS provided access to: 1) analytical research instruments, 2) chemical analyses support, 3) cleanroom facilities, and 4) design and fabrication expertise of hardware and electronics. They also supported the hypervelocity testing along with test data acquisition and its reduction for the breadboard instrument. A&M Associates provided technical expertise and support on determining the expected charges on orbital particles and a conceptual design for a breadboard particle charge detection sensor. University of California provided analytical support for the recovered Mir flight modules using their unique scanning capability to detect particle tracks in the aerogel. SUNYP, along with help from the University of Chicago, analyzed particle tracks found in the aerogel for biogenic compounds using an x-ray probe instrument. Dr. Schultz provided access to his experiments and the benefits of his considerable hyper-velocity testing expertise at the Ames hypervelocity gun facility, and this proved beneficial to our development testing, significantly reducing the test time and cost for the breadboard instrument development testing. The participants in this activity acknowledge and thank the National Aeronautics and Space Administration and its Ames Research Center for providing the necessary support and resources to conduct this investigation on instrument technology for exobiology application and being able to acquire some interesting results. Primarily, the newly identified technology problems for future research are the important results of this research.

  10. Monitoring System for Storm Readiness and Recovery of Test Facilities: Integrated System Health Management (ISHM) Approach

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Franzl, Richard; Walker, Mark; Kapadia, Ravi; Venkatesh, Meera; Schmalzel, John

    2010-01-01

    Severe weather events are likely occurrences on the Mississippi Gulf Coast. It is important to rapidly diagnose and mitigate the effects of storms on Stennis Space Center's rocket engine test complex to avoid delays to critical test article programs, reduce costs, and maintain safety. An Integrated Systems Health Management (ISHM) approach and technologies are employed to integrate environmental (weather) monitoring, structural modeling, and the suite of available facility instrumentation to provide information for readiness before storms, rapid initial damage assessment to guide mitigation planning, and then support on-going assurance as repairs are effected and finally support recertification. The system is denominated Katrina Storm Monitoring System (KStorMS). Integrated Systems Health Management (ISHM) describes a comprehensive set of capabilities that provide insight into the behavior the health of a system. Knowing the status of a system allows decision makers to effectively plan and execute their mission. For example, early insight into component degradation and impending failures provides more time to develop work around strategies and more effectively plan for maintenance. Failures of system elements generally occur over time. Information extracted from sensor data, combined with system-wide knowledge bases and methods for information extraction and fusion, inference, and decision making, can be used to detect incipient failures. If failures do occur, it is critical to detect and isolate them, and suggest an appropriate course of action. ISHM enables determining the condition (health) of every element in a complex system-of-systems or SoS (detect anomalies, diagnose causes, predict future anomalies), and provide data, information, and knowledge (DIaK) to control systems for safe and effective operation. ISHM capability is achieved by using a wide range of technologies that enable anomaly detection, diagnostics, prognostics, and advise for control: (1) anomaly detection algorithms and strategies, (2) fusion of DIaK for anomaly detection (model-based, numerical, statistical, empirical, expert-based, qualitative, etc.), (3) diagnostics/prognostics strategies and methods, (4) user interface, (5) advanced control strategies, (6) integration architectures/frameworks, (7) embedding of intelligence. Many of these technologies are mature, and they are being used in the KStorMS. The paper will describe the design, implementation, and operation of the KStorMS; and discuss further evolution to support other needs such as condition-based maintenance (CBM).

  11. BioSense/SR-BioSpectra demonstrations of wide area/early warning for bioaerosol threats: program description and early test and evaluation results

    NASA Astrophysics Data System (ADS)

    Simard, Jean-Robert; Buteau, Sylvie; Lahaie, Pierre; Mathieu, Pierre; Roy, Gilles; Nadeau, Denis; McFee, John; Ho, Jim; Rowsell, Susan; Ho, Nicolas; Babin, François; Cantin, Daniel; Healey, Dave; Robinson, Jennifer; Wood, Scott; Hsu, Jack

    2011-11-01

    Threats associated with bioaerosol weapons have been around for several decades and have been mostly associated with terrorist activities or rogue nations. Up to the turn of the millennium, defence concepts against such menaces relied mainly on point or in-situ detection technologies. Over the last 10 years, significant efforts have been deployed by multiple countries to supplement the limited spatial coverage of a network of one or more point bio-detectors using lidar technology. The addition of such technology makes it possible to detect within seconds suspect aerosol clouds over area of several tens of square kilometers and track their trajectories. These additional capabilities are paramount in directing presumptive ID missions, mapping hazardous areas, establishing efficient counter-measures and supporting subsequent forensic investigations. In order to develop such capabilities, Defence Research and Development Canada (DRDC) and the Chemical, Biological, Radiological-Nuclear, and Explosives Research and Technology Initiative (CRTI) have supported two major demonstrations based on spectrally resolved Laser Induced Fluorescence (LIF) lidar: BioSense, aimed at defence military missions in wide open spaces, and SR-BioSpectra, aimed at surveillance of enclosed or semienclosed wide spaces common to defence and public security missions. This article first reviews briefly the modeling behind these demonstration concepts. Second, the lidar-adapted and the benchtop bioaerosol LIF chambers (BSL1), developed to challenge the constructed detection systems and to accelerate the population of the library of spectral LIF properties of bioaerosols and interferents of interest, will be described. Next, the most recent test and evaluation (T&E) results obtained with SR-BioSpectra and BioSense are reported. Finally, a brief discussion stating the way ahead for a complete defence suite is provided.

  12. LWIR detector requirements for low-background space applications

    NASA Technical Reports Server (NTRS)

    Deluccia, Frank J.

    1990-01-01

    Detection of cold bodies (200 to 300 K) against space backgrounds has many important applications, both military and non-military. The detector performance and design characteristics required to support low-background applications are discussed, with particular emphasis on those characteristics required for space surveillance. The status of existing detector technologies under active development for these applications is also discussed. In order to play a role in future systems, new, potentially competing detector technologies such as multiple quantum well detectors must not only meet system-derived requirements, but also offer distinct performance or other advantages over these incumbent technologies.

  13. The Detection Method of Fire Abnormal Based on Directional Drilling in Complex Conditions of Mine

    NASA Astrophysics Data System (ADS)

    Huijun, Duan; Shijun, Hao; Jie, Feng

    2018-06-01

    In the light of more and more urgent hidden fire abnormal detection problem in complex conditions of mine, a method which is used directional drilling technology is put forward. The method can avoid the obstacles in mine, and complete the fire abnormal detection. This paper based on analyzing the trajectory control of directional drilling, measurement while drilling and the characteristic of open branch process, the project of the directional drilling is formulated combination with a complex condition mine, and the detection of fire abnormal is implemented. This method can provide technical support for fire prevention, which also can provide a new way for fire anomaly detection in the similar mine.

  14. Development of a remote vital signs sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladd, M.D.; Pacheco, M.S.; Rivas, R.R.

    1997-06-01

    This paper describes the work at Sandia National Laboratories to develop sensors that remotely detect unique life-form characteristics, such as breathing patterns or heartbeat patterns. This paper will address the Technical Support Working Group`s (TSWG) objective: to develop a remote vital signs detector which can be used to assess someone`s malevolent intent. The basic concept of operations for the projects, system development issues, and the preliminary results for a radar device currently in-house and the implications for implementation are described. A survey that identified the in-house technology currently being evaluated is reviewed, as well as ideas for other potential technologiesmore » to explore. A radar unit for breathing and heartbeat detection is being tested, and the applicability of infrared technology is being explored. The desire for rapid prototyping is driving the need for off-the-shelf technology. As a conclusion, current status and future directions of the effort are reviewed.« less

  15. Occupant detection using support vector machines with a polynomial kernel function

    NASA Astrophysics Data System (ADS)

    Destefanis, Eduardo A.; Kienzle, Eberhard; Canali, Luis R.

    2000-10-01

    The use of air bags in the presence of bad passenger and baby seat positions in car seats can injure or kill these individuals in case of an accident when this device is inflated. A proposed solution is the use of range sensors to detect passenger and baby seat risky positions. Such sensors allow the Airbag inflation to be controlled. This work is concerned with the application of different classification schemes to a real world problem and the optimization of a sensor as a function of the classification performance. The sensor is constructed using a new technology which is called Photo-Mixer-Device (PMD). A systematic analysis of the occupant detection problem was made using real and virtual environments. The challenge is to find the best sensor geometry and to adapt a classification scheme under the current technological constraints. Passenger head position detection is also a desirable issue. A couple of classifiers have been used into a simple configuration to reach this goal. Experiences and results are described.

  16. Review: Behavioral signs of estrus and the potential of fully automated systems for detection of estrus in dairy cattle.

    PubMed

    Reith, S; Hoy, S

    2018-02-01

    Efficient detection of estrus is a permanent challenge for successful reproductive performance in dairy cattle. In this context, comprehensive knowledge of estrus-related behaviors is fundamental to achieve optimal estrus detection rates. This review was designed to identify the characteristics of behavioral estrus as a necessary basis for developing strategies and technologies to improve the reproductive management on dairy farms. The focus is on secondary symptoms of estrus (mounting, activity, aggressive and agonistic behaviors) which seem more indicative than standing behavior. The consequences of management, housing conditions and cow- and environmental-related factors impacting expression and detection of estrus as well as their relative importance are described in order to increase efficiency and accuracy of estrus detection. As traditional estrus detection via visual observation is time-consuming and ineffective, there has been a considerable advancement of detection aids during the last 10 years. By now, a number of fully automated technologies including pressure sensing systems, activity meters, video cameras, recordings of vocalization as well as measurements of body temperature and milk progesterone concentration are available. These systems differ in many aspects regarding sustainability and efficiency as keys to their adoption for farm use. As being most practical for estrus detection a high priority - according to the current research - is given to the detection based on sensor-supported activity monitoring, especially accelerometer systems. Due to differences in individual intensity and duration of estrus multivariate analysis can support herd managers in determining the onset of estrus. Actually, there is increasing interest in investigating the potential of combining data of activity monitoring and information of several other methods, which may lead to the best results concerning sensitivity and specificity of detection. Future improvements will likely require more multivariate detection by data and systems already existing on farms.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Karin; DeGeorge, Elise

    The Bald and Golden Eagle Protection Act (BGEPA) prohibits the 'take' of these birds. The act defines take as to 'pursue, shoot, shoot at, poison, wound, kill, capture, trap, collect, destroy, molest or disturb.' The 2009 Eagle Permit Rule (74 FR 46836) authorizes the U.S. Fish and Wildlife Service (USFWS) to issue nonpurposeful (i.e., incidental) take permits, and the USFWS 2013 Eagle Conservation Plan Guidance provides a voluntary framework for issuing programmatic take permits to wind facilities that incorporate scientifically supportable advanced conservation practices (ACPs). Under these rules, the Service can issue permits that authorize individual instances of take ofmore » bald and golden eagles when the take is associated with, but not the purpose of, an otherwise lawful activity, and cannot practicably be avoided. To date, the USFWS has not approved any ACPs, citing the lack of evidence for 'scientifically supportable measures.' The Eagle Detection and Deterrents Research Gaps and Solutions Workshop was convened at the National Renewable Energy Laboratory in December 2015 with a goal to comprehensively assess the current state of technologies to detect and deter eagles from wind energy sites and the key gaps concerning reducing eagle fatalities and facilitating permitting under the BGEPA. During the workshop, presentations and discussions focused primarily on existing knowledge (and limitations) about the biology of eagles as well as technologies and emerging or novel ideas, including innovative applications of tools developed for use in other sectors, such as the U.S. Department of Defense and aviation. The main activity of the workshop was the breakout sessions, which focused on the current state of detection and deterrent technologies and novel concepts/applications for detecting and minimizing eagle collisions with wind turbines. Following the breakout sessions, participants were asked about their individual impressions of the relative priority of each of the existing and novel ideas.« less

  18. Identifying and tracking attacks on networks: C3I displays and related technologies

    NASA Astrophysics Data System (ADS)

    Manes, Gavin W.; Dawkins, J.; Shenoi, Sujeet; Hale, John C.

    2003-09-01

    Converged network security is extremely challenging for several reasons; expanded system and technology perimeters, unexpected feature interaction, and complex interfaces all conspire to provide hackers with greater opportunities for compromising large networks. Preventive security services and architectures are essential, but in and of themselves do not eliminate all threat of compromise. Attack management systems mitigate this residual risk by facilitating incident detection, analysis and response. There are a wealth of attack detection and response tools for IP networks, but a dearth of such tools for wireless and public telephone networks. Moreover, methodologies and formalisms have yet to be identified that can yield a common model for vulnerabilities and attacks in converged networks. A comprehensive attack management system must coordinate detection tools for converged networks, derive fully-integrated attack and network models, perform vulnerability and multi-stage attack analysis, support large-scale attack visualization, and orchestrate strategic responses to cyber attacks that cross network boundaries. We present an architecture that embodies these principles for attack management. The attack management system described engages a suite of detection tools for various networking domains, feeding real-time attack data to a comprehensive modeling, analysis and visualization subsystem. The resulting early warning system not only provides network administrators with a heads-up cockpit display of their entire network, it also supports guided response and predictive capabilities for multi-stage attacks in converged networks.

  19. Space station automation and robotics study. Operator-systems interface

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This is the final report of a Space Station Automation and Robotics Planning Study, which was a joint project of the Boeing Aerospace Company, Boeing Commercial Airplane Company, and Boeing Computer Services Company. The study is in support of the Advanced Technology Advisory Committee established by NASA in accordance with a mandate by the U.S. Congress. Boeing support complements that provided to the NASA Contractor study team by four aerospace contractors, the Stanford Research Institute (SRI), and the California Space Institute. This study identifies automation and robotics (A&R) technologies that can be advanced by requirements levied by the Space Station Program. The methodology used in the study is to establish functional requirements for the operator system interface (OSI), establish the technologies needed to meet these requirements, and to forecast the availability of these technologies. The OSI would perform path planning, tracking and control, object recognition, fault detection and correction, and plan modifications in connection with extravehicular (EV) robot operations.

  20. Implementation of Quality Management in Core Service Laboratories

    PubMed Central

    Creavalle, T.; Haque, K.; Raley, C.; Subleski, M.; Smith, M.W.; Hicks, B.

    2010-01-01

    CF-28 The Genetics and Genomics group of the Advanced Technology Program of SAIC-Frederick exists to bring innovative genomic expertise, tools and analysis to NCI and the scientific community. The Sequencing Facility (SF) provides next generation short read (Illumina) sequencing capacity to investigators using a streamlined production approach. The Laboratory of Molecular Technology (LMT) offers a wide range of genomics core services including microarray expression analysis, miRNA analysis, array comparative genome hybridization, long read (Roche) next generation sequencing, quantitative real time PCR, transgenic genotyping, Sanger sequencing, and clinical mutation detection services to investigators from across the NIH. As the technology supporting this genomic research becomes more complex, the need for basic quality processes within all aspects of the core service groups becomes critical. The Quality Management group works alongside members of these labs to establish or improve processes supporting operations control (equipment, reagent and materials management), process improvement (reengineering/optimization, automation, acceptance criteria for new technologies and tech transfer), and quality assurance and customer support (controlled documentation/SOPs, training, service deficiencies and continual improvement efforts). Implementation and expansion of quality programs within unregulated environments demonstrates SAIC-Frederick's dedication to providing the highest quality products and services to the NIH community.

  1. Enhanced Product Generation at NASA Data Centers Through Grid Technology

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.; Hinke, Thomas H.; Gavali, Shradha; Seufzer, William J.

    2003-01-01

    This paper describes how grid technology can support the ability of NASA data centers to provide customized data products. A combination of grid technology and commodity processors are proposed to provide the bandwidth necessary to perform customized processing of data, with customized data subsetting providing the initial example. This customized subsetting engine can be used to support a new type of subsetting, called phenomena-based subsetting, where data is subsetted based on its association with some phenomena, such as mesoscale convective systems or hurricanes. This concept is expanded to allow the phenomena to be detected in one type of data, with the subsetting requirements transmitted to the subsetting engine to subset a different type of data. The subsetting requirements are generated by a data mining system and transmitted to the subsetter in the form of an XML feature index that describes the spatial and temporal extent of the phenomena. For this work, a grid-based mining system called the Grid Miner is used to identify the phenomena and generate the feature index. This paper discusses the value of grid technology in facilitating the development of a high performance customized product processing and the coupling of a grid mining system to support phenomena-based subsetting.

  2. Sensor Acquisition for Water Utilities: Survey, Down Selection Process, and Technology List

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alai, M; Glascoe, L; Love, A

    2005-06-29

    The early detection of the biological and chemical contamination of water distribution systems is a necessary capability for securing the nation's water supply. Current and emerging early-detection technology capabilities and shortcomings need to be identified and assessed to provide government agencies and water utilities with an improved methodology for assessing the value of installing these technologies. The Department of Homeland Security (DHS) has tasked a multi-laboratory team to evaluate current and future needs to protect the nation's water distribution infrastructure by supporting an objective evaluation of current and new technologies. The LLNL deliverable from this Operational Technology Demonstration (OTD) wasmore » to assist the development of a technology acquisition process for a water distribution early warning system. The technology survey includes a review of previous sensor surveys and current test programs and a compiled database of relevant technologies. In the survey paper we discuss previous efforts by governmental agencies, research organizations, and private companies. We provide a survey of previous sensor studies with regard to the use of Early Warning Systems (EWS) that includes earlier surveys, testing programs, and response studies. The list of sensor technologies was ultimately developed to assist in the recommendation of candidate technologies for laboratory and field testing. A set of recommendations for future sensor selection efforts has been appended to this document, as has a down selection example for a hypothetical water utility.« less

  3. Salivary diagnostics and its impact in dentistry, research, education, and the professional community.

    PubMed

    Slavkin, H C; Fox, C H; Meyer, D M

    2011-10-01

    Oral fluid-based (salivary) tests have the potential to create practical, point-of-care clinical instruments that are convenient, practical, and comfortable to use in dentistry and medicine. Currently, there are no simple, accurate, and inexpensive sampling, screening, or detection methods to support definitive diagnostic platforms across dental and medical disciplines. Though the benefits from advancing screening and detection technologies seem eminent, analytical, chemical, molecular, genetic, and protein markers are still under development. Clinical applications in patient care must be validated independently to ensure that they are clinically accurate, reliable, precise, and uniformly consistent for screening and detecting specific diseases or conditions. As technology designed to improve patient care through risk assessment, prevention, and disease management is transferred into clinical practice, dentistry may need to reassess its role in general health care. © International & American Associations for Dental Research

  4. Applying predictive analytics to develop an intelligent risk detection application for healthcare contexts.

    PubMed

    Moghimi, Fatemeh Hoda; Cheung, Michael; Wickramasinghe, Nilmini

    2013-01-01

    Healthcare is an information rich industry where successful outcomes require the processing of multi-spectral data and sound decision making. The exponential growth of data and big data issues coupled with a rapid increase of service demands in healthcare contexts today, requires a robust framework enabled by IT (information technology) solutions as well as real-time service handling in order to ensure superior decision making and successful healthcare outcomes. Such a context is appropriate for the application of real time intelligent risk detection decision support systems using predictive analytic techniques such as data mining. To illustrate the power and potential of data science technologies in healthcare decision making scenarios, the use of an intelligent risk detection (IRD) model is proffered for the context of Congenital Heart Disease (CHD) in children, an area which requires complex high risk decisions that need to be made expeditiously and accurately in order to ensure successful healthcare outcomes.

  5. 10th EDRN Scientific Workshop | Division of Cancer Prevention

    Cancer.gov

    This year's event entitled, "Cancer Biomarkers in Precision Medicine" will include both lectures and panel debates. The topics of the workshop include discussions on standards and regulatory science, novel technologies for precision detection, imaging, clinical and validation science, alliances and consortia on biomarkers, non-profit foundations support for biomarkers. Agenda

  6. Evaluation of Holographic Technology in Close Air Support Mission Planning and Execution

    DTIC Science & Technology

    2008-03-18

    Figures Figure 1: 2D representation of 3D hologram of Baghdad area using 1-meter resolution LIDAR data...Alias Maya Software................................................................................................. 11 Figure 3: Suburban...and light detection and ranging ( LIDAR ) sensors for several geographic areas was performed in parallel with formulation of the approach

  7. Information Communications Technology Support to Reconstruction and Development: Some Observations from Afghanistan

    DTIC Science & Technology

    2007-06-01

    banditry. Afghan women are still among the worst off in the world: most are illite many have no access to healthcare, and child and forced marriages...Cyber security » Virus and spyware protection, intrusion detection-protection, firewalls » Control use of pirated software and porn surfing by

  8. Previously Funded Teams | Division of Cancer Prevention

    Cancer.gov

    The first group of NCI-supported Tumor Glycomics Laboratories teams offered different approaches and concentrations to exploit the potential of glycomics to yield biomarkers for early cancer detection, and used various technologies to investigate complex carbohydrate biochemistry. They are listed here with links to more information about each laboratory, including publications

  9. An electromagnetic induction method for underground target detection and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartel, L.C.; Cress, D.H.

    1997-01-01

    An improved capability for subsurface structure detection is needed to support military and nonproliferation requirements for inspection and for surveillance of activities of threatening nations. As part of the DOE/NN-20 program to apply geophysical methods to detect and characterize underground facilities, Sandia National Laboratories (SNL) initiated an electromagnetic induction (EMI) project to evaluate low frequency electromagnetic (EM) techniques for subsurface structure detection. Low frequency, in this case, extended from kilohertz to hundreds of kilohertz. An EMI survey procedure had already been developed for borehole imaging of coal seams and had successfully been applied in a surface mode to detect amore » drug smuggling tunnel. The SNL project has focused on building upon the success of that procedure and applying it to surface and low altitude airborne platforms. Part of SNL`s work has focused on improving that technology through improved hardware and data processing. The improved hardware development has been performed utilizing Laboratory Directed Research and Development (LDRD) funding. In addition, SNL`s effort focused on: (1) improvements in modeling of the basic geophysics of the illuminating electromagnetic field and its coupling to the underground target (partially funded using LDRD funds) and (2) development of techniques for phase-based and multi-frequency processing and spatial processing to support subsurface target detection and characterization. The products of this project are: (1) an evaluation of an improved EM gradiometer, (2) an improved gradiometer concept for possible future development, (3) an improved modeling capability, (4) demonstration of an EM wave migration method for target recognition, and a demonstration that the technology is capable of detecting targets to depths exceeding 25 meters.« less

  10. Application of CMOS Technology to Silicon Photomultiplier Sensors

    PubMed Central

    D’Ascenzo, Nicola; Zhang, Xi; Xie, Qingguo

    2017-01-01

    We use the 180 nm GLOBALFOUNDRIES (GF) BCDLite CMOS process for the production of a silicon photomultiplier prototype. We study the main characteristics of the developed sensor in comparison with commercial SiPMs obtained in custom technologies and other SiPMs developed with CMOS-compatible processes. We support our discussion with a transient modeling of the detection process of the silicon photomultiplier as well as with a series of static and dynamic experimental measurements in dark and illuminated environments. PMID:28946675

  11. Icing: Accretion, Detection, Protection

    NASA Technical Reports Server (NTRS)

    Reinmann, John J.

    1994-01-01

    The global aircraft industry and its regulatory agencies are currently involved in three major icing efforts: ground icing; advanced technologies for in-flight icing; and tailplane icing. These three major icing topics correspondingly support the three major segments of any aircraft flight profile: takeoff; cruise and hold; and approach and land. This lecture addressess these three topics in the same sequence as they appear in flight, starting with ground deicing, followed by advanced technologies for in-flight ice protection, and ending with tailplane icing.

  12. Telemedicine Based Ultrasound for Detecting Neonatal Heart Disease in Babies at Remote Military or Native American Health Care Facilities

    DTIC Science & Technology

    2009-09-01

    Telemedicine & Advanced Technology Research Center (TATRC). The additional funds are being used to extend the life of the TeleEcho Project in order to...practitioners for the Tele-ECHO project. This is held at Madigan Army Medical Center in the clinic and the NICU . Learning objectives: 1. Learners will...support and expertise. Funding is provided through AMEDD Advanced Medical Technology Initiative (AAMTI) FY09, APC-T690 Special Fund for TeleEcho. The

  13. A Blind Segmentation Approach to Acoustic Event Detection Based on I Vector

    DTIC Science & Technology

    2013-08-25

    Hui Lee1 1 School of ECE, Georgia Institute of Technology , Atlanta, GA. 30332-0250, USA 2 School of Computing, University of Eastern Finland, Finland...recordings obtained at low signal-to-noise-ratio (SNR) enviroments with highly-mixed events in a single acous- tic segment. Research in AED [1] is...2532–2535. [28] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM Transactions on Intelligent Systems and Technology

  14. Underground pipeline laying using the pipe-in-pipe system

    NASA Astrophysics Data System (ADS)

    Antropova, N.; Krets, V.; Pavlov, M.

    2016-09-01

    The problems of resource saving and environmental safety during the installation and operation of the underwater crossings are always relevant. The paper describes the existing methods of trenchless pipeline technology, the structure of multi-channel pipelines, the types of supporting and guiding systems. The rational design is suggested for the pipe-in-pipe system. The finite element model is presented for the most dangerous sections of the inner pipes, the optimum distance is detected between the roller supports.

  15. Interface Supports Multiple Broadcast Transceivers for Flight Applications

    NASA Technical Reports Server (NTRS)

    Block, Gary L.; Whitaker, William D.; Dillon, James W.; Lux, James P.; Ahmad, Mohammad

    2011-01-01

    A wireless avionics interface provides a mechanism for managing multiple broadcast transceivers. This interface isolates the control logic required to support multiple transceivers so that the flight application does not have to manage wireless transceivers. All of the logic to select transceivers, detect transmitter and receiver faults, and take autonomous recovery action is contained in the interface, which is not restricted to using wireless transceivers. Wired, wireless, and mixed transceiver technologies are supported. This design s use of broadcast data technology provides inherent cross strapping of data links. This greatly simplifies the design of redundant flight subsystems. The interface fully exploits the broadcast data link to determine the health of other transceivers used to detect and isolate faults for fault recovery. The interface uses simplified control logic, which can be implemented as an intellectual-property (IP) core in a field-programmable gate array (FPGA). The interface arbitrates the reception of inbound data traffic appearing on multiple receivers. It arbitrates the transmission of outbound traffic. This system also monitors broadcast data traffic to determine the health of transmitters in the network, and then uses this health information to make autonomous decisions for routing traffic through transceivers. Multiple selection strategies are supported, like having an active transceiver with the secondary transceiver powered off except to send periodic health status reports. Transceivers can operate in round-robin for load-sharing and graceful degradation.

  16. Free-space high data rate communications technologies for near terrestrial space

    NASA Astrophysics Data System (ADS)

    Edwards, C. L.; Bruzzi, J. R.; Boone, B. G.

    2008-08-01

    Recent progress at the Applied Physics Laboratory in high data rate communications technology development is described in this paper. System issues for developing and implementing high data rate downlinks from geosynchronous earth orbit to the ground, either for CONUS or in-theater users is considered. Technology is described that supports a viable dual-band multi-channel system concept. Modeling and simulation of micro-electro-mechanical systems (MEMS) beamsteering mirrors has been accomplished to evaluate the potential for this technology to support multi-channel optical links with pointing accuracies approaching 10 microradians. These models were validated experimentally down to levels in which Brownian motion was detected and characterized for single mirror devices only 500 microns across. This multi-channel beamsteering technology can be designed to address environmental compromises to free-space optical links, which derive from turbulence, clouds, as well as spacecraft vibration. Another technology concept is being pursued that is designed to mitigate the adverse effects of weather. It consists of a dual-band (RF/optical) antenna that is optimally designed in both bands simultaneously (e.g., Ku-band and near infrared). This technology would enable optical communications hardware to be seamlessly integrated with existing RF communications hardware on spacecraft platforms, while saving on mass and power, and improving overall system performance. These technology initiatives have been pursued principally because of potential sponsor interest in upgrading existing systems to accommodate quick data recovery and decision support, particularly for the warfighter in future conflicts where the exchange of large data sets such as high resolution imagery would have significant tactical benefits.

  17. Real Time Intrusion Detection (la detection des intrusions en temps reel)

    DTIC Science & Technology

    2003-06-01

    prometteuses actuelles et nouvelles, susceptibles d’être utilisées pour des applications temps réel, et laisse prévoir ainsi les technologies et les...components, to survivability, as a risk management problem requiring the involvement of the whole organization to support the survival of the organization’s...this topic. In all fairness , until recently “reaction” has not been part of IDS’s functionality. Above all and as stated previously, traditional RT

  18. Experiences with Acquiring Highly Redundant Spatial Data to Support Driverless Vehicle Technologies

    NASA Astrophysics Data System (ADS)

    Koppanyi, Z.; Toth, C. K.

    2018-05-01

    As vehicle technology is moving towards higher autonomy, the demand for highly accurate geospatial data is rapidly increasing, as accurate maps have a huge potential of increasing safety. In particular, high definition 3D maps, including road topography and infrastructure, as well as city models along the transportation corridors represent the necessary support for driverless vehicles. In this effort, a vehicle equipped with high-, medium- and low-resolution active and passive cameras acquired data in a typical traffic environment, represented here by the OSU campus, where GPS/GNSS data are available along with other navigation sensor data streams. The data streams can be used for two purposes. First, high-definition 3D maps can be created by integrating all the sensory data, and Data Analytics/Big Data methods can be tested for automatic object space reconstruction. Second, the data streams can support algorithmic research for driverless vehicle technologies, including object avoidance, navigation/positioning, detecting pedestrians and bicyclists, etc. Crucial cross-performance analyses on map database resolution and accuracy with respect to sensor performance metrics to achieve economic solution for accurate driverless vehicle positioning can be derived. These, in turn, could provide essential information on optimizing the choice of geospatial map databases and sensors' quality to support driverless vehicle technologies. The paper reviews the data acquisition and primary data processing challenges and performance results.

  19. Status of the Prototype Pulsed Photonuclear Assessment (PPA) Inspection System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prototype Photonuclear Inspection Technoloby - An

    Prototype Photonuclear Inspection Technology – An Integrated Systems Approach* James L. Jonesa, Daren R. Normana, Kevin J. Haskella, James W. Sterbentza, Woo Y. Yoona, Scott M. Watsona, James T. Johnsona, John M. Zabriskiea, Calvin E. Mossb, Frank Harmonc a – Idaho National Laboratory, P.O. Box 1625-2802, Idaho Falls, Idaho 83415-2802 b – Los Alamos National Laboratory, P.O. Box 1663, MS B228, Los Alamos, New Mexico, 87585 c – Idaho State University, 1500 Alvin Ricken Dr., Pocatello, Idaho 83201 Active interrogation technologies are being pursued in order to address many of today’s challenging inspection requirements related to both nuclear and non-nuclearmore » material detection. The Idaho National Laboratory, along with the Los Alamos National Laboratory and the Idaho State University’s Idaho Accelerator Center, continue to develop electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo containers. This paper presents an overview and status of the prototype Pulsed Photonuclear Assessment (PPA) inspection system and its ability to detect shielded nuclear material by focusing on the integration of three major detection system components: delayed neutron measurement, delayed gamma-ray measurements, and a transmission, gray-scale mapping for shield material detection. Areas of future development and advancement within each detection component will be presented. *Supported in part by the Department of Homeland Security under DOE-ID Contract Number DE-AC07-99ID13727. POC: James L. Jones, 208-526-1730« less

  20. Scientific Programs and Funding Opportunities at the National Institute of Biomedical Imaging and Bioengineering

    NASA Astrophysics Data System (ADS)

    Baird, Richard

    2006-03-01

    The mission of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) is to improve human health by promoting the development and translation of emerging technologies in biomedical imaging and bioengineering. To this end, NIBIB supports a coordinated agenda of research programs in advanced imaging technologies and engineering methods that enable fundamental biomedical discoveries across a broad spectrum of biological processes, disorders, and diseases and have significant potential for direct medical application. These research programs dramatically advance the Nation's healthcare by improving the detection, management and, ultimately, the prevention of disease. The research promoted and supported by NIBIB also is strongly synergistic with other NIH Institutes and Centers as well as across government agencies. This presentation will provide an overview of the scientific programs and funding opportunities supported by NIBIB, highlighting those that are of particular important to the field of medical physics.

  1. Intelligent Vehicle Health Management

    NASA Technical Reports Server (NTRS)

    Paris, Deidre E.; Trevino, Luis; Watson, Michael D.

    2005-01-01

    As a part of the overall goal of developing Integrated Vehicle Health Management systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of INM. These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the INM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission objectives: Guidance and Navigation; Communications and Tracking; Vehicle Monitoring; Information Transport and Integration; Vehicle Diagnostics; Vehicle Prognostics; Vehicle mission Planning; Automated Repair and Replacement; Vehicle Control; Human Computer Interface; and Onboard Verification and Validation. Furthermore, the presented framework provides complete vehicle management which not only allows for increased crew safety and mission success through new intelligence capabilities, but also yields a mechanism for more efficient vehicle operations. The representative IVHM technologies for computer platform using heterogeneous communication, 3) coupled electromagnetic oscillators for enhanced communications, 4) Linux-based real-time systems, 5) genetic algorithms, 6) Bayesian Networks, 7) evolutionary algorithms, 8) dynamic systems control modeling, and 9) advanced sensing capabilities. This paper presents IVHM technologies developed under NASA's NFFP pilot project and the integration of these technologies forms the framework for IIVM.

  2. Review of methodology and technology available for the detection of extrasolar planetary systems

    NASA Technical Reports Server (NTRS)

    Tarter, J. C.; Black, D. C.; Billingham, J.

    1986-01-01

    Anyone undertaking an interstellar voyage might wish to be assured of the existence of a safe planetary harbor at the other end! Aside from the obvious interest of the participants in this Symposium, astronomers and astrophysicists are also eager to detect and study other planetary systems in order to better understand the formation of our own Solar System. Scientists involved in the search for extraterrestrial intelligence argue that planets suitable for the evolution of life may abound elsewhere within our own Milky Way Galaxy. On theoretical grounds, they are probably correct, but they lack any observational support. For in spite of decades of claimed astrometric detections of planetary companions and the recent exciting and tantalizing observations from the IRAS satellite and the IR speckle observations of Van Biesbroeck 8 and other cool stars, there is no unambiguous proof for the existence of another planetary system beyond our own. In this paper we review the various methods for detecting extrasolar planets and briefly describe the Earth and space based technology currently available and discuss the near-term plans to implement these different search techniques. In each case an attempt is made to identify the limiting source of systematic error inherent to the methodology and to assess the potential for technological improvements.

  3. Framework for a space shuttle main engine health monitoring system

    NASA Technical Reports Server (NTRS)

    Hawman, Michael W.; Galinaitis, William S.; Tulpule, Sharayu; Mattedi, Anita K.; Kamenetz, Jeffrey

    1990-01-01

    A framework developed for a health management system (HMS) which is directed at improving the safety of operation of the Space Shuttle Main Engine (SSME) is summarized. An emphasis was placed on near term technology through requirements to use existing SSME instrumentation and to demonstrate the HMS during SSME ground tests within five years. The HMS framework was developed through an analysis of SSME failure modes, fault detection algorithms, sensor technologies, and hardware architectures. A key feature of the HMS framework design is that a clear path from the ground test system to a flight HMS was maintained. Fault detection techniques based on time series, nonlinear regression, and clustering algorithms were developed and demonstrated on data from SSME ground test failures. The fault detection algorithms exhibited 100 percent detection of faults, had an extremely low false alarm rate, and were robust to sensor loss. These algorithms were incorporated into a hierarchical decision making strategy for overall assessment of SSME health. A preliminary design for a hardware architecture capable of supporting real time operation of the HMS functions was developed. Utilizing modular, commercial off-the-shelf components produced a reliable low cost design with the flexibility to incorporate advances in algorithm and sensor technology as they become available.

  4. Review of methodology and technology available for the detection of extrasolar planetary systems.

    PubMed

    Tarter, J C; Black, D C; Billingham, J

    1986-01-01

    Anyone undertaking an interstellar voyage might wish to be assured of the existence of a safe planetary harbor at the other end! Aside from the obvious interest of the participants in this Symposium, astronomers and astrophysicists are also eager to detect and study other planetary systems in order to better understand the formation of our own Solar System. Scientists involved in the search for extraterrestrial intelligence argue that planets suitable for the evolution of life may abound elsewhere within our own Milky Way Galaxy. On theoretical grounds, they are probably correct, but they lack any observational support. For in spite of decades of claimed astrometric detections of planetary companions and the recent exciting and tantalizing observations from the IRAS satellite and the IR speckle observations of Van Biesbroeck 8 and other cool stars, there is no unambiguous proof for the existence of another planetary system beyond our own. In this paper we review the various methods for detecting extrasolar planets and briefly describe the Earth and space based technology currently available and discuss the near-term plans to implement these different search techniques. In each case an attempt is made to identify the limiting source of systematic error inherent to the methodology and to assess the potential for technological improvements.

  5. Clinical Decision Support Systems (CDSS) for preventive management of COPD patients.

    PubMed

    Velickovski, Filip; Ceccaroni, Luigi; Roca, Josep; Burgos, Felip; Galdiz, Juan B; Marina, Nuria; Lluch-Ariet, Magí

    2014-11-28

    The use of information and communication technologies to manage chronic diseases allows the application of integrated care pathways, and the optimization and standardization of care processes. Decision support tools can assist in the adherence to best-practice medicine in critical decision points during the execution of a care pathway. The objectives are to design, develop, and assess a clinical decision support system (CDSS) offering a suite of services for the early detection and assessment of chronic obstructive pulmonary disease (COPD), which can be easily integrated into a healthcare providers' work-flow. The software architecture model for the CDSS, interoperable clinical-knowledge representation, and inference engine were designed and implemented to form a base CDSS framework. The CDSS functionalities were iteratively developed through requirement-adjustment/development/validation cycles using enterprise-grade software-engineering methodologies and technologies. Within each cycle, clinical-knowledge acquisition was performed by a health-informatics engineer and a clinical-expert team. A suite of decision-support web services for (i) COPD early detection and diagnosis, (ii) spirometry quality-control support, (iii) patient stratification, was deployed in a secured environment on-line. The CDSS diagnostic performance was assessed using a validation set of 323 cases with 90% specificity, and 96% sensitivity. Web services were integrated in existing health information system platforms. Specialized decision support can be offered as a complementary service to existing policies of integrated care for chronic-disease management. The CDSS was able to issue recommendations that have a high degree of accuracy to support COPD case-finding. Integration into healthcare providers' work-flow can be achieved seamlessly through the use of a modular design and service-oriented architecture that connect to existing health information systems.

  6. Clinical Decision Support Systems (CDSS) for preventive management of COPD patients

    PubMed Central

    2014-01-01

    Background The use of information and communication technologies to manage chronic diseases allows the application of integrated care pathways, and the optimization and standardization of care processes. Decision support tools can assist in the adherence to best-practice medicine in critical decision points during the execution of a care pathway. Objectives The objectives are to design, develop, and assess a clinical decision support system (CDSS) offering a suite of services for the early detection and assessment of chronic obstructive pulmonary disease (COPD), which can be easily integrated into a healthcare providers' work-flow. Methods The software architecture model for the CDSS, interoperable clinical-knowledge representation, and inference engine were designed and implemented to form a base CDSS framework. The CDSS functionalities were iteratively developed through requirement-adjustment/development/validation cycles using enterprise-grade software-engineering methodologies and technologies. Within each cycle, clinical-knowledge acquisition was performed by a health-informatics engineer and a clinical-expert team. Results A suite of decision-support web services for (i) COPD early detection and diagnosis, (ii) spirometry quality-control support, (iii) patient stratification, was deployed in a secured environment on-line. The CDSS diagnostic performance was assessed using a validation set of 323 cases with 90% specificity, and 96% sensitivity. Web services were integrated in existing health information system platforms. Conclusions Specialized decision support can be offered as a complementary service to existing policies of integrated care for chronic-disease management. The CDSS was able to issue recommendations that have a high degree of accuracy to support COPD case-finding. Integration into healthcare providers' work-flow can be achieved seamlessly through the use of a modular design and service-oriented architecture that connect to existing health information systems. PMID:25471545

  7. Concrete bridge deck early problem detection and mitigation using robotics

    NASA Astrophysics Data System (ADS)

    Gucunski, Nenad; Yi, Jingang; Basily, Basily; Duong, Trung; Kim, Jinyoung; Balaguru, Perumalsamy; Parvardeh, Hooman; Maher, Ali; Najm, Husam

    2015-04-01

    More economical management of bridges can be achieved through early problem detection and mitigation. The paper describes development and implementation of two fully automated (robotic) systems for nondestructive evaluation (NDE) and minimally invasive rehabilitation of concrete bridge decks. The NDE system named RABIT was developed with the support from Federal Highway Administration (FHWA). It implements multiple NDE technologies, namely: electrical resistivity (ER), impact echo (IE), ground-penetrating radar (GPR), and ultrasonic surface waves (USW). In addition, the system utilizes advanced vision to substitute traditional visual inspection. The RABIT system collects data at significantly higher speeds than it is done using traditional NDE equipment. The associated platform for the enhanced interpretation of condition assessment in concrete bridge decks utilizes data integration, fusion, and deterioration and defect visualization. The interpretation and visualization platform specifically addresses data integration and fusion from the four NDE technologies. The data visualization platform facilitates an intuitive presentation of the main deterioration due to: corrosion, delamination, and concrete degradation, by integrating NDE survey results and high resolution deck surface imaging. The rehabilitation robotic system was developed with the support from National Institute of Standards and Technology-Technology Innovation Program (NIST-TIP). The system utilizes advanced robotics and novel materials to repair problems in concrete decks, primarily early stage delamination and internal cracking, using a minimally invasive approach. Since both systems use global positioning systems for navigation, some of the current efforts concentrate on their coordination for the most effective joint evaluation and rehabilitation.

  8. Detection of Misconceptions and Misleading Questions by Using Quantitative Diagnostic Assessment

    ERIC Educational Resources Information Center

    Weng, Martin M.; Chang, Wen-Chih; Yen, Neil Y.; Shih, Timothy K.; Hsu, Hui-Huang

    2014-01-01

    Researches into E-Learning pay emphasis on how the technology is applied for comprehensive learning support in various perspectives. Lots of advantages are involved while performing the E-Learning. For example, timely contents are applicable to be delivered via the Internet, and in a similar manner, instant feedback which identifies the learning…

  9. Voice Interactive Analysis System Study. Final Report, August 28, 1978 through March 23, 1979.

    ERIC Educational Resources Information Center

    Harry, D. P.; And Others

    The Voice Interactive Analysis System study continued research and development of the LISTEN real-time, minicomputer based connected speech recognition system, within NAVTRAEQUIPCEN'S program of developing automatic speech technology in support of training. An attempt was made to identify the most effective features detected by the TTI-500 model…

  10. Baseline Assessment and Prioritization Framework for IVHM Integrity Assurance Enabling Capabilities

    NASA Technical Reports Server (NTRS)

    Cooper, Eric G.; DiVito, Benedetto L.; Jacklin, Stephen A.; Miner, Paul S.

    2009-01-01

    Fundamental to vehicle health management is the deployment of systems incorporating advanced technologies for predicting and detecting anomalous conditions in highly complex and integrated environments. Integrated structural integrity health monitoring, statistical algorithms for detection, estimation, prediction, and fusion, and diagnosis supporting adaptive control are examples of advanced technologies that present considerable verification and validation challenges. These systems necessitate interactions between physical and software-based systems that are highly networked with sensing and actuation subsystems, and incorporate technologies that are, in many respects, different from those employed in civil aviation today. A formidable barrier to deploying these advanced technologies in civil aviation is the lack of enabling verification and validation tools, methods, and technologies. The development of new verification and validation capabilities will not only enable the fielding of advanced vehicle health management systems, but will also provide new assurance capabilities for verification and validation of current generation aviation software which has been implicated in anomalous in-flight behavior. This paper describes the research focused on enabling capabilities for verification and validation underway within NASA s Integrated Vehicle Health Management project, discusses the state of the art of these capabilities, and includes a framework for prioritizing activities.

  11. A Mass Spectrometric Analysis Method Based on PPCA and SVM for Early Detection of Ovarian Cancer.

    PubMed

    Wu, Jiang; Ji, Yanju; Zhao, Ling; Ji, Mengying; Ye, Zhuang; Li, Suyi

    2016-01-01

    Background. Surfaced-enhanced laser desorption-ionization-time of flight mass spectrometry (SELDI-TOF-MS) technology plays an important role in the early diagnosis of ovarian cancer. However, the raw MS data is highly dimensional and redundant. Therefore, it is necessary to study rapid and accurate detection methods from the massive MS data. Methods. The clinical data set used in the experiments for early cancer detection consisted of 216 SELDI-TOF-MS samples. An MS analysis method based on probabilistic principal components analysis (PPCA) and support vector machine (SVM) was proposed and applied to the ovarian cancer early classification in the data set. Additionally, by the same data set, we also established a traditional PCA-SVM model. Finally we compared the two models in detection accuracy, specificity, and sensitivity. Results. Using independent training and testing experiments 10 times to evaluate the ovarian cancer detection models, the average prediction accuracy, sensitivity, and specificity of the PCA-SVM model were 83.34%, 82.70%, and 83.88%, respectively. In contrast, those of the PPCA-SVM model were 90.80%, 92.98%, and 88.97%, respectively. Conclusions. The PPCA-SVM model had better detection performance. And the model combined with the SELDI-TOF-MS technology had a prospect in early clinical detection and diagnosis of ovarian cancer.

  12. A radar-enabled collaborative sensor network integrating COTS technology for surveillance and tracking.

    PubMed

    Kozma, Robert; Wang, Lan; Iftekharuddin, Khan; McCracken, Ernest; Khan, Muhammad; Islam, Khandakar; Bhurtel, Sushil R; Demirer, R Murat

    2012-01-01

    The feasibility of using Commercial Off-The-Shelf (COTS) sensor nodes is studied in a distributed network, aiming at dynamic surveillance and tracking of ground targets. Data acquisition by low-cost (<$50 US) miniature low-power radar through a wireless mote is described. We demonstrate the detection, ranging and velocity estimation, classification and tracking capabilities of the mini-radar, and compare results to simulations and manual measurements. Furthermore, we supplement the radar output with other sensor modalities, such as acoustic and vibration sensors. This method provides innovative solutions for detecting, identifying, and tracking vehicles and dismounts over a wide area in noisy conditions. This study presents a step towards distributed intelligent decision support and demonstrates effectiveness of small cheap sensors, which can complement advanced technologies in certain real-life scenarios.

  13. A Framework for Integration of IVHM Technologies for Intelligent Integration for Vehicle Management

    NASA Technical Reports Server (NTRS)

    Paris, Deidre E.; Trevino, Luis; Watson, Mike

    2005-01-01

    As a part of the overall goal of developing Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of IIVM. These real-time responses allow the IIVM to modify the effected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the IIVM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission objectives: Guidance and Navigation; Communications and Tracking; Vehicle Monitoring; Information Transport and Integration; Vehicle Diagnostics; Vehicle Prognostics; Vehicle mission Planning; Automated Repair and Replacement; Vehicle Control; Human Computer Interface; and Onboard Verification and Validation. Furthermore, the presented framework provides complete vehicle management which not only allows for increased crew safety and mission success through new intelligence capabilities, but also yields a mechanism for more efficient vehicle operations. The representative IVHM technologies for IIVH includes: 1) robust controllers for use in re-usable launch vehicles, 2) scaleable/flexible computer platform using heterogeneous communication, 3) coupled electromagnetic oscillators for enhanced communications, 4) Linux-based real-time systems, 5) genetic algorithms, 6) Bayesian Networks, 7) evolutionary algorithms, 8) dynamic systems control modeling, and 9) advanced sensing capabilities. This paper presents IVHM technologies developed under NASA's NFFP pilot project. The integration of these IVHM technologies forms the framework for IIVM.

  14. FDA's Activities Supporting Regulatory Application of "Next Gen" Sequencing Technologies.

    PubMed

    Wilson, Carolyn A; Simonyan, Vahan

    2014-01-01

    Applications of next-generation sequencing (NGS) technologies require availability and access to an information technology (IT) infrastructure and bioinformatics tools for large amounts of data storage and analyses. The U.S. Food and Drug Administration (FDA) anticipates that the use of NGS data to support regulatory submissions will continue to increase as the scientific and clinical communities become more familiar with the technologies and identify more ways to apply these advanced methods to support development and evaluation of new biomedical products. FDA laboratories are conducting research on different NGS platforms and developing the IT infrastructure and bioinformatics tools needed to enable regulatory evaluation of the technologies and the data sponsors will submit. A High-performance Integrated Virtual Environment, or HIVE, has been launched, and development and refinement continues as a collaborative effort between the FDA and George Washington University to provide the tools to support these needs. The use of a highly parallelized environment facilitated by use of distributed cloud storage and computation has resulted in a platform that is both rapid and responsive to changing scientific needs. The FDA plans to further develop in-house capacity in this area, while also supporting engagement by the external community, by sponsoring an open, public workshop to discuss NGS technologies and data formats standardization, and to promote the adoption of interoperability protocols in September 2014. Next-generation sequencing (NGS) technologies are enabling breakthroughs in how the biomedical community is developing and evaluating medical products. One example is the potential application of this method to the detection and identification of microbial contaminants in biologic products. In order for the U.S. Food and Drug Administration (FDA) to be able to evaluate the utility of this technology, we need to have the information technology infrastructure and bioinformatics tools to be able to store and analyze large amounts of data. To address this need, we have developed the High-performance Integrated Virtual Environment, or HIVE. HIVE uses a combination of distributed cloud storage and distributed cloud computations to provide a platform that is both rapid and responsive to support the growing and increasingly diverse scientific and regulatory needs of FDA scientists in their evaluation of NGS in research and ultimately for evaluation of NGS data in regulatory submissions. © PDA, Inc. 2014.

  15. Mobile phones improve case detection and management of malaria in rural Bangladesh

    PubMed Central

    2013-01-01

    Background The recent introduction of mobile phones into the rural Bandarban district of Bangladesh provided a resource to improve case detection and treatment of patients with malaria. Methods During studies to define the epidemiology of malaria in villages in south-eastern Bangladesh, an area with hypoendemic malaria, the project recorded 986 mobile phone calls from families because of illness suspected to be malaria between June 2010 and June 2012. Results Based on phone calls, field workers visited the homes with ill persons, and collected blood samples for malaria on 1,046 people. 265 (25%) of the patients tested were positive for malaria. Of the 509 symptomatic malaria cases diagnosed during this study period, 265 (52%) were detected because of an initial mobile phone call. Conclusion Mobile phone technology was found to be an efficient and effective method for rapidly detecting and treating patients with malaria in this remote area. This technology, when combined with local knowledge and field support, may be applicable to other hard-to-reach areas to improve malaria control. PMID:23374585

  16. RF Manipulation and Detection of Protons in the High Performance Antiproton Trap (HiPAT)

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Lewis, Raymond A.; Pearson, J. Boise; Sims, W. Herb; Chakrabarti, Suman; Fant, Wallace E.; McDonald, Stan

    2003-01-01

    The significant energy density of matter-antimatter annihilation is attractive to the designers of future space propulsion systems, with the potential to offer a highly compact source of power. Many propulsion concepts exist that could take advantage of matter-antimatter reactions, and current antiproton production rates are sufficient to support basic proof-of-principle evaluation of technology associated with antimatter-derived propulsion. One enabling technology for such experiments is portable storage of low energy antiprotons, allowing antiprotons to be trapped, stored, and transported for use at an experimental facility.

  17. Simulation of the Performances of WIND, an Airborne CO2 Lidar

    NASA Technical Reports Server (NTRS)

    Oh, D.; Dabas, A.; Lieutaud, F.; Loth, C.; Flamant, P. H.

    1992-01-01

    An airborne Doppler coherent lidar is under development as a joint project between France and Germany. The instrument is designed around CO2 laser technology, heterodyne detection, and a conical scanning of the line-of-site. The 10 micron domain is suitable for long range measurements due to the maturity of the technology and because it corresponds to an atmospheric window. The objectives of WIND are twofold: (1) to conduct mesoscale scientific studies in particular over oceanic and inhomogeneous terrain areas; and (2) to support the Earth-orbiting wind lidar projects.

  18. A Novel and Intelligent Home Monitoring System for Care Support of Elders with Cognitive Impairment.

    PubMed

    Lazarou, Ioulietta; Karakostas, Anastasios; Stavropoulos, Thanos G; Tsompanidis, Theodoros; Meditskos, Georgios; Kompatsiaris, Ioannis; Tsolaki, Magda

    2016-10-18

    Assistive technology, in the form of a smart home environment, is employed to support people with dementia. To propose a system for continuous and objective remote monitoring of problematic daily living activity areas and design personalized interventions based on system feedback and clinical observations for improving cognitive function and health-related quality of life. The assistive technology of the proposed system, including wearable, sleep, object motion, presence, and utility usage sensors, was methodically deployed at four different home installations of people with cognitive impairment. Detection of sleep patterns, physical activity, and activities of daily living, based on the collected sensor data and analytics, was available at all times through comprehensive data visualization solutions. Combined with clinical observation, targeted psychosocial interventions were introduced to enhance the participants' quality of life and improve their cognitive functions and daily functionality. Meanwhile, participants and their caregivers were able to visualize a reduced set of information tailored to their needs. Overall, paired-sample t-test analysis of monitored qualities revealed improvement for all participants in neuropsychological assessment. Moreover, improvement was detected from the beginning to the end of the trial, in physical condition and in the domains of sleep. Detecting abnormalities via the system, for example in sleep quality, such as REM sleep, has proved to be critical to assess current status, drive interventions, and evaluate improvements in a reliable manner. It has been proved that the proposed system is suitable to support clinicians to reliably drive and evaluate clinical interventions toward quality of life improvement of people with cognitive impairment.

  19. eHealth Technology Competencies for Health Professionals Working in Home Care to Support Older Adults to Age in Place: Outcomes of a Two-Day Collaborative Workshop

    PubMed Central

    Barakat, Ansam; Woolrych, Ryan D; Sixsmith, Andrew; Kearns, William D

    2013-01-01

    Background The demand for care is increasing, whereas in the near future the number of people working in professional care will not match with the demand for care. eHealth technology can help to meet the growing demand for care. Despite the apparent positive effects of eHealth technology, there are still barriers to technology adoption related to the absence of a composite set of knowledge and skills among health care professionals regarding the use of eHealth technology. Objective The objective of this paper is to discuss the competencies required by health care professionals working in home care, with eHealth technologies such as remote telecare and ambient assisted living (AAL), mobile health, and fall detection systems. Methods A two-day collaborative workshop was undertaken with academics across multiple disciplines with experience in working on funded research regarding the application and development of technologies to support older people. Results The findings revealed that health care professionals working in home care require a subset of composite skills as well as technology-specific competencies to develop the necessary aptitude in eHealth care. This paper argues that eHealth care technology skills must be instilled in health care professionals to ensure that technologies become integral components of future care delivery, especially to support older adults to age in place. Educating health care professionals with the necessary skill training in eHealth care will improve service delivery and optimise the eHealth care potential to reduce costs by improving efficiency. Moreover, embedding eHealth care competencies within training and education for health care professionals ensures that the benefits of new technologies are realized by casting them in the context of the larger system of care. These care improvements will potentially support the independent living of older persons at home. Conclusions This paper describes the health care professionals’ competencies and requirements needed for the use of eHealth technologies to support elderly adults to age in place. In addition, this paper underscores the need for further discussion of the changing role of health care professionals working in home care within the context of emerging eHealth care technologies. The findings are of value to local and central government, health care professionals, service delivery organizations, and commissioners of care to use this paper as a framework to conduct and develop competencies for health care professionals working with eHealth technologies. PMID:25075233

  20. eHealth Technology Competencies for Health Professionals Working in Home Care to Support Older Adults to Age in Place: Outcomes of a Two-Day Collaborative Workshop.

    PubMed

    Barakat, Ansam; Woolrych, Ryan D; Sixsmith, Andrew; Kearns, William D; Kort, Helianthe S M

    2013-01-01

    The demand for care is increasing, whereas in the near future the number of people working in professional care will not match with the demand for care. eHealth technology can help to meet the growing demand for care. Despite the apparent positive effects of eHealth technology, there are still barriers to technology adoption related to the absence of a composite set of knowledge and skills among health care professionals regarding the use of eHealth technology. The objective of this paper is to discuss the competencies required by health care professionals working in home care, with eHealth technologies such as remote telecare and ambient assisted living (AAL), mobile health, and fall detection systems. A two-day collaborative workshop was undertaken with academics across multiple disciplines with experience in working on funded research regarding the application and development of technologies to support older people. The findings revealed that health care professionals working in home care require a subset of composite skills as well as technology-specific competencies to develop the necessary aptitude in eHealth care. This paper argues that eHealth care technology skills must be instilled in health care professionals to ensure that technologies become integral components of future care delivery, especially to support older adults to age in place. Educating health care professionals with the necessary skill training in eHealth care will improve service delivery and optimise the eHealth care potential to reduce costs by improving efficiency. Moreover, embedding eHealth care competencies within training and education for health care professionals ensures that the benefits of new technologies are realized by casting them in the context of the larger system of care. These care improvements will potentially support the independent living of older persons at home. This paper describes the health care professionals' competencies and requirements needed for the use of eHealth technologies to support elderly adults to age in place. In addition, this paper underscores the need for further discussion of the changing role of health care professionals working in home care within the context of emerging eHealth care technologies. The findings are of value to local and central government, health care professionals, service delivery organizations, and commissioners of care to use this paper as a framework to conduct and develop competencies for health care professionals working with eHealth technologies.

  1. Smart systems and personalized health: the real challenge of bridging the innovation gap.

    PubMed

    Lymberis, Andreas

    2014-01-01

    Smart miniaturized systems, emerging from the integration of heterogeneous technologies like micro- and nano electronics, photonics, biotechnology, materials and information & communication technologies are considered today, after two decades of intensive public support, proven concepts and functional prototypes, as key enablers opening up new opportunities for healthcare and in particular personalized health. They offer an enhanced ability to sense, detect, analyze, communicate, respond, and monitor phenomena from macro (e.g. body, tissues) to nano scale (e.g. molecules, genes). For the majority of these projects, planning for the next phase of prototype validation, product design, supply chain, user targeting, clinical validation and commercial roll-out are now taking full attention. The new EU Framework Program for Research and Innovation, Horizon 2020, is focusing on technology transfer support and building ecosystems and value chains to ensure better time to market and higher impact of knowledge-based technologies. The state-of-the-art and upcoming challenges for the implementation of H2020 and new opportunities in smart systems for pHealth are discussed in the paper.

  2. Emerging, Photonic Based Technologies for NASA Space Communications Applications

    NASA Technical Reports Server (NTRS)

    Pouch, John; Nguyen, Hung; Lee, Richard; Levi, Anthony; Bos, Philip; Titus, Charles; Lavrentovich, Oleg

    2002-01-01

    An objective of NASA's Computing, Information, and Communications Technology program is to support the development of technologies that could potentially lower the cost of the Earth science and space exploration missions, and result in greater scientific returns. NASA-supported photonic activities which will impact space communications will be described. The objective of the RF microphotonic research is to develop a Ka-band receiver that will enable the microwaves detected by an antenna to modulate a 1.55- micron optical carrier. A key element is the high-Q, microphotonic modulator that employs a lithium niobate microdisk. The technical approach could lead to new receivers that utilize ultra-fast, photonic signal processing techniques, and are low cost, compact, low weight and power efficient. The progress in the liquid crystal (LC) beam steering research will also be reported. The predicted benefits of an LC-based device on board a spacecraft include non-mechanical, submicroradian laser-beam pointing, milliradian scanning ranges, and wave-front correction. The potential applications of these emerging technologies to the various NASA missions will be presented.

  3. Application of Nexus copy number software for CNV detection and analysis.

    PubMed

    Darvishi, Katayoon

    2010-04-01

    Among human structural genomic variation, copy number variants (CNVs) are the most frequently known component, comprised of gains/losses of DNA segments that are generally 1 kb in length or longer. Array-based comparative genomic hybridization (aCGH) has emerged as a powerful tool for detecting genomic copy number variants (CNVs). With the rapid increase in the density of array technology and with the adaptation of new high-throughput technology, a reliable and computationally scalable method for accurate mapping of recurring DNA copy number aberrations has become a main focus in research. Here we introduce Nexus Copy Number software, a platform-independent tool, to analyze the output files of all types of commercial and custom-made comparative genomic hybridization (CGH) and single-nucleotide polymorphism (SNP) arrays, such as those manufactured by Affymetrix, Agilent Technologies, Illumina, and Roche NimbleGen. It also supports data generated by various array image-analysis software tools such as GenePix, ImaGene, and BlueFuse. (c) 2010 by John Wiley & Sons, Inc.

  4. Automatic EEG spike detection.

    PubMed

    Harner, Richard

    2009-10-01

    Since the 1970s advances in science and technology during each succeeding decade have renewed the expectation of efficient, reliable automatic epileptiform spike detection (AESD). But even when reinforced with better, faster tools, clinically reliable unsupervised spike detection remains beyond our reach. Expert-selected spike parameters were the first and still most widely used for AESD. Thresholds for amplitude, duration, sharpness, rise-time, fall-time, after-coming slow waves, background frequency, and more have been used. It is still unclear which of these wave parameters are essential, beyond peak-peak amplitude and duration. Wavelet parameters are very appropriate to AESD but need to be combined with other parameters to achieve desired levels of spike detection efficiency. Artificial Neural Network (ANN) and expert-system methods may have reached peak efficiency. Support Vector Machine (SVM) technology focuses on outliers rather than centroids of spike and nonspike data clusters and should improve AESD efficiency. An exemplary spike/nonspike database is suggested as a tool for assessing parameters and methods for AESD and is available in CSV or Matlab formats from the author at brainvue@gmail.com. Exploratory Data Analysis (EDA) is presented as a graphic method for finding better spike parameters and for the step-wise evaluation of the spike detection process.

  5. Parallel, confocal, and complete spectrum imager for fluorescent detection of high-density microarray

    NASA Astrophysics Data System (ADS)

    Bogdanov, Valery L.; Boyce-Jacino, Michael

    1999-05-01

    Confined arrays of biochemical probes deposited on a solid support surface (analytical microarray or 'chip') provide an opportunity to analysis multiple reactions simultaneously. Microarrays are increasingly used in genetics, medicine and environment scanning as research and analytical instruments. A power of microarray technology comes from its parallelism which grows with array miniaturization, minimization of reagent volume per reaction site and reaction multiplexing. An optical detector of microarray signals should combine high sensitivity, spatial and spectral resolution. Additionally, low-cost and a high processing rate are needed to transfer microarray technology into biomedical practice. We designed an imager that provides confocal and complete spectrum detection of entire fluorescently-labeled microarray in parallel. Imager uses microlens array, non-slit spectral decomposer, and high- sensitive detector (cooled CCD). Two imaging channels provide a simultaneous detection of localization, integrated and spectral intensities for each reaction site in microarray. A dimensional matching between microarray and imager's optics eliminates all in moving parts in instrumentation, enabling highly informative, fast and low-cost microarray detection. We report theory of confocal hyperspectral imaging with microlenses array and experimental data for implementation of developed imager to detect fluorescently labeled microarray with a density approximately 103 sites per cm2.

  6. Participatory research to design a novel telehealth system to support the night-time needs of people with dementia: NOCTURNAL.

    PubMed

    Martin, Suzanne; Augusto, Juan Carlos; McCullagh, Paul; Carswell, William; Zheng, Huiru; Wang, Haiying; Wallace, Jonathan; Mulvenna, Maurice

    2013-12-04

    Strategies to support people living with dementia are broad in scope, proposing both pharmacological and non-pharmacological interventions as part of the care pathway. Assistive technologies form part of this offering as both stand-alone devices to support particular tasks and the more complex offering of the "smart home" to underpin ambient assisted living. This paper presents a technology-based system, which expands on the smart home architecture, orientated to support people with daily living. The system, NOCTURNAL, was developed by working directly with people who had dementia, and their carers using qualitative research methods. The research focused primarily on the nighttime needs of people living with dementia in real home settings. Eight people with dementia had the final prototype system installed for a three month evaluation at home. Disturbed sleep patterns, night-time wandering were a focus of this research not only in terms of detection by commercially available technology but also exploring if automated music, light and visual personalized photographs would be soothing to participants during the hours of darkness. The NOCTURNAL platform and associated services was informed by strong user engagement of people with dementia and the service providers who care for them. NOCTURNAL emerged as a holistic service offering a personalised therapeutic aspect with interactive capabilities.

  7. A Heuristic Algorithm for Planning Personalized Learning Paths for Context-Aware Ubiquitous Learning

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Kuo, Fan-Ray; Yin, Peng-Yeng; Chuang, Kuo-Hsien

    2010-01-01

    In a context-aware ubiquitous learning environment, learning systems can detect students' learning behaviors in the real-world with the help of context-aware (sensor) technology; that is, students can be guided to observe or operate real-world objects with personalized support from the digital world. In this study, an optimization problem that…

  8. CBRNE Detection: Technology is not a Strategy

    DTIC Science & Technology

    2008-05-25

    boundaries to the US national laboratories for definitive identification. Currently in Iraq, chemists are performing forensic analysis of explosive...force health protection, forensics and WMD elimination with one theater asset, especially where instrumentation and scientific disciplines converge...substances in the area of operations; supporting forensic requirements during sensitive site exploitation; and issues relating to the impact of

  9. NEN Division Funding Gap Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esch, Ernst I.; Goettee, Jeffrey D.; Desimone, David J.

    The work in NEN Division revolves around proliferation detection. The sponsor funding model seems to have shifted over the last decades. For the past three lustra, sponsors are mainly interested in funding ideas and detection systems that are already at a technical readiness level 6 (TRL 6 -- one step below an industrial prototype) or higher. Once this level is reached, the sponsoring agency is willing to fund the commercialization, implementation, and training for the systems (TRL 8, 9). These sponsors are looking for a fast turnaround (1-2 years) technology development efforts to implement technology. To support the critical nationalmore » and international needs for nonprolifertion solutions, we have to maintain a fluent stream of subject matter expertise from the fundamental principals of radiation detection through prototype development all the way to the implementation and training of others. NEN Division has large funding gaps in the Valley of Death region. In the current competitive climate for nuclear nonproliferation projects, it is imminent to increase our lead in this field.« less

  10. Progress in magnetic sensor technology for sea mine detection

    NASA Astrophysics Data System (ADS)

    Clem, Ted R.

    1997-07-01

    A superconducting magnetic-field gradiometer developed in the 1980's has been demonstrated infusion with acoustic sensors to enhance shallow water sea mine detection and classification, especially for buried mine detection and the reduction of acoustic false alarm rates. This sensor incorporated niobium bulk and wire superconducting components cooled by liquid helium to a temperature of 4 degrees K. An advanced superconducting gradiometer prototype is being developed to increase sensitivity and detection range. This sensor features all thin film niobium superconducting components and a new liquid helium cooling concept. In the late 1980's, a new class of 'high Tc' superconductors was discovered with critical temperatures above the boiling point of liquid nitrogen. The use of liquid nitrogen refrigeration offers new opportunities for this sensor technology, providing significant reduction in the size of sensor packages and in the requirements for cryogenic support and logistics. As a result of this breakthrough, a high Tc sensor concept using liquid nitrogen refrigeration has been developed for mine reconnaissance applications and a test article of that concept is being fabricated and evaluated. In addition to these developments in sensor technology, new signal processing approaches and recent experimental results have ben obtained to demonstrate an enhanced D/C capability. In this paper, these recent advances in sensor development and new results for an enhanced D/C capability will be reviewed and a current perspective on the role of magnetic sensors for mine detection and classification will be addressed.

  11. Nondestructive detection of pork comprehensive quality based on spectroscopy and support vector machine

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyuan; Peng, Yankun; Zhang, Leilei; Dhakal, Sagar; Wang, Caiping

    2014-05-01

    Pork is one of the highly consumed meat item in the world. With growing improvement of living standard, concerned stakeholders including consumers and regulatory body pay more attention to comprehensive quality of fresh pork. Different analytical-laboratory based technologies exist to determine quality attributes of pork. However, none of the technologies are able to meet industrial desire of rapid and non-destructive technological development. Current study used optical instrument as a rapid and non-destructive tool to classify 24 h-aged pork longissimus dorsi samples into three kinds of meat (PSE, Normal and DFD), on the basis of color L* and pH24. Total of 66 samples were used in the experiment. Optical system based on Vis/NIR spectral acquisition system (300-1100 nm) was self- developed in laboratory to acquire spectral signal of pork samples. Median smoothing filter (M-filter) and multiplication scatter correction (MSC) was used to remove spectral noise and signal drift. Support vector machine (SVM) prediction model was developed to classify the samples based on their comprehensive qualities. The results showed that the classification model is highly correlated with the actual quality parameters with classification accuracy more than 85%. The system developed in this study being simple and easy to use, results being promising, the system can be used in meat processing industry for real time, non-destructive and rapid detection of pork qualities in future.

  12. Verification of Minimum Detectable Activity for Radiological Threat Source Search

    NASA Astrophysics Data System (ADS)

    Gardiner, Hannah; Myjak, Mitchell; Baciak, James; Detwiler, Rebecca; Seifert, Carolyn

    2015-10-01

    The Department of Homeland Security's Domestic Nuclear Detection Office is working to develop advanced technologies that will improve the ability to detect, localize, and identify radiological and nuclear sources from airborne platforms. The Airborne Radiological Enhanced-sensor System (ARES) program is developing advanced data fusion algorithms for analyzing data from a helicopter-mounted radiation detector. This detector platform provides a rapid, wide-area assessment of radiological conditions at ground level. The NSCRAD (Nuisance-rejection Spectral Comparison Ratios for Anomaly Detection) algorithm was developed to distinguish low-count sources of interest from benign naturally occurring radiation and irrelevant nuisance sources. It uses a number of broad, overlapping regions of interest to statistically compare each newly measured spectrum with the current estimate for the background to identify anomalies. We recently developed a method to estimate the minimum detectable activity (MDA) of NSCRAD in real time. We present this method here and report on the MDA verification using both laboratory measurements and simulated injects on measured backgrounds at or near the detection limits. This work is supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded contract/IAA HSHQDC-12-X-00376. This support does not constitute an express or implied endorsement on the part of the Gov't.

  13. A Radar-Enabled Collaborative Sensor Network Integrating COTS Technology for Surveillance and Tracking

    PubMed Central

    Kozma, Robert; Wang, Lan; Iftekharuddin, Khan; McCracken, Ernest; Khan, Muhammad; Islam, Khandakar; Bhurtel, Sushil R.; Demirer, R. Murat

    2012-01-01

    The feasibility of using Commercial Off-The-Shelf (COTS) sensor nodes is studied in a distributed network, aiming at dynamic surveillance and tracking of ground targets. Data acquisition by low-cost (<$50 US) miniature low-power radar through a wireless mote is described. We demonstrate the detection, ranging and velocity estimation, classification and tracking capabilities of the mini-radar, and compare results to simulations and manual measurements. Furthermore, we supplement the radar output with other sensor modalities, such as acoustic and vibration sensors. This method provides innovative solutions for detecting, identifying, and tracking vehicles and dismounts over a wide area in noisy conditions. This study presents a step towards distributed intelligent decision support and demonstrates effectiveness of small cheap sensors, which can complement advanced technologies in certain real-life scenarios. PMID:22438713

  14. Monitoring Citrus Soil Moisture and Nutrients Using an IoT Based System.

    PubMed

    Zhang, Xueyan; Zhang, Jianwu; Li, Lin; Zhang, Yuzhu; Yang, Guocai

    2017-02-23

    Chongqing mountain citrus orchard is one of the main origins of Chinese citrus. Its planting terrain is complex and soil parent material is diverse. Currently, the citrus fertilization, irrigation and other management processes still have great blindness. They usually use the same pattern and the same formula rather than considering the orchard terrain features, soil differences, species characteristics and the state of tree growth. With the help of the ZigBee technology, artificial intelligence and decision support technology, this paper has developed the research on the application technology of agricultural Internet of Things for real-time monitoring of citrus soil moisture and nutrients as well as the research on the integration of fertilization and irrigation decision support system. Some achievements were obtained including single-point multi-layer citrus soil temperature and humidity detection wireless sensor nodes and citrus precision fertilization and irrigation management decision support system. They were applied in citrus base in the Three Gorges Reservoir Area. The results showed that the system could help the grower to scientifically fertilize or irrigate, improve the precision operation level of citrus production, reduce the labor cost and reduce the pollution caused by chemical fertilizer.

  15. The support system of the firefighter's activity by detecting objects in smoke space

    NASA Astrophysics Data System (ADS)

    Sakai, Masaki; Aoki, Yoshimitsu; Takagi, Mikio

    2005-12-01

    In recent years, crisis management's response to terrorist attacks and natural disasters, as well as accelerating rescue operations has become an important issue. We aim to make a support system for firefighters using the application of various engineering techniques such as information technology and radar technology. In rescue operations, one of the biggest problems is that the view of firefighters is obstructed by dense smoke. One of the current measures against this condition is the use of search sticks, like a blind man walking in town. The most important task for firefighters is to understand inside situation of a space with dense smoke. Therefore, our system supports firefighters' activity by visualizing the space with dense smoke. First, we scan target space with dense smoke by using millimeter-wave radar combined with a gyro sensor. Then multiple directional scan data can be obtained, and we construct a 3D map from high-reflection point dataset using 3D image processing technologies (3D grouping and labeling processing). In this paper, we introduce our system and report the results of the experiment in the real smoke space situation and practical achievements.

  16. A tactile sensing element based on a hetero-core optical fiber for force measurement and texture detection

    NASA Astrophysics Data System (ADS)

    Yamazaki, Hiroshi; Koyama, Yuya; Watanabe, Kazuhiro

    2014-05-01

    Tactile sensing technology can measure a given property of an object through physical contact between a sensing element and the object. Various tactile sensing techniques have been developed for several applications such as intelligent robots, tactile interface, medical support and nursing care support. A desirable tactile sensing element for supporting human daily life can be embedded in the soft material with high sensitivity and accuracy in order to prevent from damaging to human or object physically. This report describes a new tactile sensing element. Hetero-core optical fibers have high sensitivity of macro-bending at local sensor portion and temperature independency, including advantages of optical fiber itself; thin size, light weight, flexible transmission line, and immunity to electro-magnetic interference. The proposed tactile sensing element could detect textures of touched objects through the optical loss caused by the force applied to the sensing element. The characteristics of the sensing element have been evaluated, in which the sensing element has the monotonic and non-linear sensitivity against the normal force ranged from 0 to 5 N with lower accuracy than 0.25 dB. Additionally, texture detection have been successfully demonstrated in which small surface figures of 0.1 mm in height were detected with spatial resolution of 0.4 mm.

  17. Unmanned Aircraft Systems for Monitoring Department of the Interior Lands

    NASA Astrophysics Data System (ADS)

    Hutt, M. E.; Quirk, B.

    2013-12-01

    Unmanned Aircraft Systems (UAS) technology is quickly evolving and will have a significant impact on Earth science research. The U.S. Geological Survey (USGS) is conducting an operational test and evaluation of UAS to see how this technology supports the mission of the Department of the Interior (DOI). Over the last 4 years, the USGS, working with many partners, has been actively conducting proof of concept UAS operations, which are designed to evaluate the potential of UAS technology to support the mandated DOI scientific, resource and land management missions. UAS technology is being made available to monitor environmental conditions, analyze the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management and law enforcement missions. Using small UAS (sUAS), the USGS is able to tailor solutions to meet project requirements by obtaining very high resolution video data, acquiring thermal imagery, detecting chemical plumes, and generating digital terrain models at a fraction of the cost of conventional surveying methods. UAS technology is providing a mechanism to collect timely remote sensing data at a low cost and at low risk over DOI lands that can be difficult to monitor and consequently enhances our ability to provide unbiased scientific information to better enable decision makers to make informed decisions. This presentation describes the UAS technology and infrastructure being employed, the application projects already accomplished, lessons learned and future of UAS within the DOI. We fully expect that by 2020 UAS will emerge as a primary platform for all DOI remote sensing applications. Much like the use of Internet technology, Geographic Information Systems (GIS) and Global Positioning Systems (GPS), UAS have the potential of enabling the DOI to be better stewards of the land.

  18. Computer-aided detection systems to improve lung cancer early diagnosis: state-of-the-art and challenges

    NASA Astrophysics Data System (ADS)

    Traverso, A.; Lopez Torres, E.; Fantacci, M. E.; Cerello, P.

    2017-05-01

    Lung cancer is one of the most lethal types of cancer, because its early diagnosis is not good enough. In fact, the detection of pulmonary nodule, potential lung cancers, in Computed Tomography scans is a very challenging and time-consuming task for radiologists. To support radiologists, researchers have developed Computer-Aided Diagnosis (CAD) systems for the automated detection of pulmonary nodules in chest Computed Tomography scans. Despite the high level of technological developments and the proved benefits on the overall detection performance, the usage of Computer-Aided Diagnosis in clinical practice is far from being a common procedure. In this paper we investigate the causes underlying this discrepancy and present a solution to tackle it: the M5L WEB- and Cloud-based on-demand Computer-Aided Diagnosis. In addition, we prove how the combination of traditional imaging processing techniques with state-of-art advanced classification algorithms allows to build a system whose performance could be much larger than any Computer-Aided Diagnosis developed so far. This outcome opens the possibility to use the CAD as clinical decision support for radiologists.

  19. Absorption enhancement and sensing properties of Ag diamond nanoantenna arrays

    NASA Astrophysics Data System (ADS)

    Yuan, Yu-Yang; Yuan, Zong-Heng; Li, Xiao-Nan; Wu, Jun; Zhang, Wen-Tao; Ye, Song

    2015-07-01

    Noble metal nanoantenna could effectively enhance light absorption and increase detection sensitivity. In this paper, we propose a periodic Ag diamond nanoantenna array to increase the absorption of thin-film solar cells and to improve the detection sensitivity via localized surface plasmon resonance. The effect of nanoantenna arrays on the absorption enhancement is theoretically investigated using the finite difference time domain (FDTD) method with manipulating the spectral response by geometrical parameters of nanoantennas. A maximum absorption enhancement factor of 1.51 has been achieved in this study. In addition, the relation between resonant wavelength (intensity reflectivity) and refractive index is discussed in detail. When detecting the environmental index using resonant wavelengths, a maximum detection sensitivity of about 837 nm/RIU (refractive index unit) and a resolution of about 10-3 RIU can be achieved. Moreover, when using the reflectivity, the sensitivity can be as high as 0.93 AU/RIU. Furthermore, we also have theoretically studied the effectiveness of nanoantennas in distinguishing chemical reagents, solution concentrations, and solution allocation ratios by detecting refractive index. From the results presented in this paper, we conclude that this work might be useful for biosensor detection and other types of detections. Project supported by the International Scientific and Technological Cooperation Projects of Guizhou Province, China (Grant No. 20117035) and the Program for Innovative Research Team of Guilin University of Electronic Technology, China (Grant No. IRTGUET).

  20. Older adults' perceptions of technologies aimed at falls prevention, detection or monitoring: a systematic review.

    PubMed

    Hawley-Hague, Helen; Boulton, Elisabeth; Hall, Alex; Pfeiffer, Klaus; Todd, Chris

    2014-06-01

    Over recent years a number of Information and Communication Technologies (ICTs) have emerged aiming at falls prevention, falls detection and alarms for use in case of fall. There are also a range of ICT interventions, which have been created or adapted to be pro-active in preventing falls, such as those which provide strength and balance training to older adults in the prevention of falls. However, there are issues related to the adoption and continued use of these technologies by older adults. This review provides an overview of older adults' perceptions of falls technologies. We undertook systematic searches of MEDLINE, EMBASE, CINAHL and PsychINFO, COMPENDEX and the Cochrane database. Key search terms included 'older adults', 'seniors', 'preference', 'attitudes' and a wide range of technologies, they also included the key word 'fall*'. We considered all studies that included older adults aged 50 and above. Studies had to include technologies related specifically to falls prevention, detection or monitoring. The Joanna Briggs Institute (JBI) tool and the Quality Assessment Tool for Quantitative Studies by the Effective Public Health Practice Project (EPHPP) were used. We identified 76 potentially relevant papers. Some 21 studies were considered for quality review. Twelve qualitative studies, three quantitative studies and 6 mixed methods studies were included. The literature related to technologies aimed at predicting, monitoring and preventing falls suggest that intrinsic factors related to older adults' attitudes around control, independence and perceived need/requirements for safety are important for their motivation to use and continue using technologies. Extrinsic factors such as usability, feedback gained and costs are important elements which support these attitudes and perceptions. Positive messages about the benefits of falls technologies for promoting healthy active ageing and independence are critical, as is ensuring that the technologies are simple, reliable and effective and tailored to individual need. The technologies need to be clearly described in research and older peoples' attitudes towards different sorts of technologies must be clarified if specific recommendations are to be made. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Plasmonic Enhanced Infrared Detection with a Dynamic Hyper-Spectral Tuning

    DTIC Science & Technology

    2013-09-19

    performance operation and use expensive optics for sensing color information in the infrared. The integration of metallic arrays with these detectors is...technology while significantly improving performance. surface plasmons, infrared detectors , quantum dots, multi-spectral sensing Unclassified...Research Laboratory (AFRL), Albuquerque NM, for theoretical and strategic support and University of New Mexico, NM for growth of the detector

  2. Wearable wireless photoplethysmography sensors

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Erts, Renars; Nikiforovs, Vladimirs; Kviesis-Kipge, Edgars

    2008-04-01

    Wearable health monitoring sensors may support early detection of abnormal conditions and prevention of their consequences. Recent designs of three wireless photoplethysmography monitoring devices embedded in hat, glove and sock, and connected to PC or mobile phone by means of the Bluetooth technology, are described. First results of distant monitoring of heart rate and pulse wave transit time using the newly developed devices are presented.

  3. Search of the Deep and Dark Web via DARPA Memex

    NASA Astrophysics Data System (ADS)

    Mattmann, C. A.

    2015-12-01

    Search has progressed through several stages due to the increasing size of the Web. Search engines first focused on text and its rate of occurrence; then focused on the notion of link analysis and citation then on interactivity and guided search; and now on the use of social media - who we interact with, what we comment on, and who we follow (and who follows us). The next stage, referred to as "deep search," requires solutions that can bring together text, images, video, importance, interactivity, and social media to solve this challenging problem. The Apache Nutch project provides an open framework for large-scale, targeted, vertical search with capabilities to support all past and potential future search engine foci. Nutch is a flexible infrastructure allowing open access to ranking; URL selection and filtering approaches, to the link graph generated from search, and Nutch has spawned entire sub communities including Apache Hadoop and Apache Tika. It addresses many current needs with the capability to support new technologies such as image and video. On the DARPA Memex project, we are creating create specific extensions to Nutch that will directly improve its overall technological superiority for search and that will directly allow us to address complex search problems including human trafficking. We are integrating state-of-the-art algorithms developed by Kitware for IARPA Aladdin combined with work by Harvard to provide image and video understanding support allowing automatic detection of people and things and massive deployment via Nutch. We are expanding Apache Tika for scene understanding, object/person detection and classification in images/video. We are delivering an interactive and visual interface for initiating Nutch crawls. The interface uses Python technologies to expose Nutch data and to provide a domain specific language for crawls. With the Bokeh visualization library the interface we are delivering simple interactive crawl visualization and plotting techniques for exploring crawled information. The platform classifies, identify, and thwart predators, help to find victims and to identify buyers in human trafficking and will deliver technological superiority in search engines for DARPA. We are already transitioning the technologies into Geo and Planetary Science, and Bioinformatics.

  4. Cancer surveillance using data warehousing, data mining, and decision support systems.

    PubMed

    Forgionne, G A; Gangopadhyay, A; Adya, M

    2000-08-01

    This article discusses how data warehousing, data mining, and decision support systems can reduce the national cancer burden or the oral complications of cancer therapies, especially as related to oral and pharyngeal cancers. An information system is presented that will deliver the necessary information technology to clinical, administrative, and policy researchers and analysts in an effective and efficient manner. The system will deliver the technology and knowledge that users need to readily: (1) organize relevant claims data, (2) detect cancer patterns in general and special populations, (3) formulate models that explain the patterns, and (4) evaluate the efficacy of specified treatments and interventions with the formulations. Such a system can be developed through a proven adaptive design strategy, and the implemented system can be tested on State of Maryland Medicaid data (which includes women, minorities, and children).

  5. Real-time analysis for intensive care: development and deployment of the artemis analytic system.

    PubMed

    Blount, Marion; Ebling, Maria R; Eklund, J Mikael; James, Andrew G; McGregor, Carolyn; Percival, Nathan; Smith, Kathleen P; Sow, Daby

    2010-01-01

    The lives of many thousands of children born premature or ill at term around the world have been saved by those who work within neonatal intensive care units (NICUs). Modern-day neonatologists, together with nursing staff and other specialists within this domain, enjoy modern technologies for activities such as financial transactions, online purchasing, music, and video on demand. Yet, when they move into their workspace, in many cases, they are supported by nearly the same technology they used 20 years ago. Medical devices provide visual displays of vital signs through physiological streams such as electrocardiogram (ECG), heart rate, blood oxygen saturation (SpO(2)), and respiratory rate. Electronic health record initiatives around the world provide an environment for the electronic management of medical records, but they fail to support the high-frequency interpretation of streaming physiological data. We have taken a collaborative research approach to address this need to provide a flexible platform for the real-time online analysis of patients' data streams to detect medically significant conditions that precede the onset of medical complications. The platform supports automated or clinician-driven knowledge discovery to discover new relationships between physiological data stream events and latent medical conditions as well as to refine existing analytics. Patients benefit from the system because earlier detection of signs of the medical conditions may lead to earlier intervention that may potentially lead to improved patient outcomes and reduced length of stays. The clinician benefits from a decision support tool that provides insight into multiple streams of data that are too voluminous to assess with traditional methods. The remainder of this article summarizes the strengths of our research collaboration and the resulting environment known as Artemis, which is currently being piloted within the NICU of The Hospital for Sick Children (SickKids) in Toronto, Ontario, Canada. Although the discussion in this article focuses on a NICU, the technologies can be applied to any intensive care environment.

  6. Bio-Intelligence: A Research Program Facilitating the Development of New Paradigms for Tomorrow's Patient Care

    NASA Astrophysics Data System (ADS)

    Phan, Sieu; Famili, Fazel; Liu, Ziying; Peña-Castillo, Lourdes

    The advancement of omics technologies in concert with the enabling information technology development has accelerated biological research to a new realm in a blazing speed and sophistication. The limited single gene assay to the high throughput microarray assay and the laborious manual count of base-pairs to the robotic assisted machinery in genome sequencing are two examples to name. Yet even more sophisticated, the recent development in literature mining and artificial intelligence has allowed researchers to construct complex gene networks unraveling many formidable biological puzzles. To harness these emerging technologies to their full potential to medical applications, the Bio-intelligence program at the Institute for Information Technology, National Research Council Canada, aims to develop and exploit artificial intelligence and bioinformatics technologies to facilitate the development of intelligent decision support tools and systems to improve patient care - for early detection, accurate diagnosis/prognosis of disease, and better personalized therapeutic management.

  7. Quantum machine learning for quantum anomaly detection

    NASA Astrophysics Data System (ADS)

    Liu, Nana; Rebentrost, Patrick

    2018-04-01

    Anomaly detection is used for identifying data that deviate from "normal" data patterns. Its usage on classical data finds diverse applications in many important areas such as finance, fraud detection, medical diagnoses, data cleaning, and surveillance. With the advent of quantum technologies, anomaly detection of quantum data, in the form of quantum states, may become an important component of quantum applications. Machine-learning algorithms are playing pivotal roles in anomaly detection using classical data. Two widely used algorithms are the kernel principal component analysis and the one-class support vector machine. We find corresponding quantum algorithms to detect anomalies in quantum states. We show that these two quantum algorithms can be performed using resources that are logarithmic in the dimensionality of quantum states. For pure quantum states, these resources can also be logarithmic in the number of quantum states used for training the machine-learning algorithm. This makes these algorithms potentially applicable to big quantum data applications.

  8. Comparison of four machine learning methods for object-oriented change detection in high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Bai, Ting; Sun, Kaimin; Deng, Shiquan; Chen, Yan

    2018-03-01

    High resolution image change detection is one of the key technologies of remote sensing application, which is of great significance for resource survey, environmental monitoring, fine agriculture, military mapping and battlefield environment detection. In this paper, for high-resolution satellite imagery, Random Forest (RF), Support Vector Machine (SVM), Deep belief network (DBN), and Adaboost models were established to verify the possibility of different machine learning applications in change detection. In order to compare detection accuracy of four machine learning Method, we applied these four machine learning methods for two high-resolution images. The results shows that SVM has higher overall accuracy at small samples compared to RF, Adaboost, and DBN for binary and from-to change detection. With the increase in the number of samples, RF has higher overall accuracy compared to Adaboost, SVM and DBN.

  9. Anomaly detection using temporal data mining in a smart home environment.

    PubMed

    Jakkula, V; Cook, D J

    2008-01-01

    To many people, home is a sanctuary. With the maturing of smart home technologies, many people with cognitive and physical disabilities can lead independent lives in their own homes for extended periods of time. In this paper, we investigate the design of machine learning algorithms that support this goal. We hypothesize that machine learning algorithms can be designed to automatically learn models of resident behavior in a smart home, and that the results can be used to perform automated health monitoring and to detect anomalies. Specifically, our algorithms draw upon the temporal nature of sensor data collected in a smart home to build a model of expected activities and to detect unexpected, and possibly health-critical, events in the home. We validate our algorithms using synthetic data and real activity data collected from volunteers in an automated smart environment. The results from our experiments support our hypothesis that a model can be learned from observed smart home data and used to report anomalies, as they occur, in a smart home.

  10. Generic protease detection technology for monitoring periodontal disease.

    PubMed

    Zheng, Xinwei; Cook, Joseph P; Watkinson, Michael; Yang, Shoufeng; Douglas, Ian; Rawlinson, Andrew; Krause, Steffi

    2011-01-01

    Periodontal diseases are inflammatory conditions that affect the supporting tissues of teeth and can lead to destruction of the bone support and ultimately tooth loss if untreated. Progression of periodontitis is usually site specific but not uniform, and currently there are no accurate clinical methods for distinguishing sites where there is active disease progression from sites that are quiescent. Consequently, unnecessary and costly treatment of periodontal sites that are not progressing may occur. Three proteases have been identified as suitable markers for distinguishing sites with active disease progression and quiescent sites: human neutrophil elastase, cathepsin G and MMP8. Generic sensor materials for the detection of these three proteases have been developed based on thin dextran hydrogel films cross-linked with peptides. Degradation of the hydrogel films was monitored using impedance measurements. The target proteases were detected in the clinically relevant range within a time frame of 3 min. Good specificity for different proteases was achieved by choosing appropriate peptide cross-linkers.

  11. National Center for Nuclear Security: The Nuclear Forensics Project (F2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klingensmith, A. L.

    These presentation visuals introduce the National Center for Nuclear Security. Its chartered mission is to enhance the Nation’s verification and detection capabilities in support of nuclear arms control and nonproliferation through R&D activities at the NNSS. It has three focus areas: Treaty Verification Technologies, Nonproliferation Technologies, and Technical Nuclear Forensics. The objectives of nuclear forensics are to reduce uncertainty in the nuclear forensics process & improve the scientific defensibility of nuclear forensics conclusions when applied to nearsurface nuclear detonations. Research is in four key areas: Nuclear Physics, Debris collection and analysis, Prompt diagnostics, and Radiochemistry.

  12. Technologies for distributed defense

    NASA Astrophysics Data System (ADS)

    Seiders, Barbara; Rybka, Anthony

    2002-07-01

    For Americans, the nature of warfare changed on September 11, 2001. Our national security henceforth will require distributed defense. One extreme of distributed defense is represented by fully deployed military troops responding to a threat from a hostile nation state. At the other extreme is a country of 'citizen soldiers', with families and communities securing their common defense through heightened awareness, engagement as good neighbors, and local support of and cooperation with local law enforcement, emergency and health care providers. Technologies - for information exploitation, biological agent detection, health care surveillance, and security - will be critical to ensuring success in distributed defense.

  13. Three-dimensional magnetic bubble memory system

    NASA Technical Reports Server (NTRS)

    Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor)

    1994-01-01

    A compact memory uses magnetic bubble technology for providing data storage. A three-dimensional arrangement, in the form of stacks of magnetic bubble layers, is used to achieve high volumetric storage density. Output tracks are used within each layer to allow data to be accessed uniquely and unambiguously. Storage can be achieved using either current access or field access magnetic bubble technology. Optical sensing via the Faraday effect is used to detect data. Optical sensing facilitates the accessing of data from within the three-dimensional package and lends itself to parallel operation for supporting high data rates and vector and parallel processing.

  14. Social service robots to support independent living : Experiences from a field trial.

    PubMed

    Pripfl, J; Körtner, T; Batko-Klein, D; Hebesberger, D; Weninger, M; Gisinger, C

    2016-06-01

    Assistive robots could be a future means to support independent living for seniors. This article provides insights into the latest developments in social service robots (SSR) based on the recently finished HOBBIT project. The idea of the HOBBIT project was to develop a low-cost SSR which is able to reduce the risk of falling, to detect falls and handle emergencies in private homes. The main objective of the project was to raise the technology to a level that allows the robot to be fully autonomously deployed in the private homes of older users and to evaluate technology market readiness, utility, usability and affordability under real-world conditions. During the initial phase of the project, a first prototype (PT1) was developed. The results of laboratory tests with PT1 were used for the development of a second prototype (PT2), which was finally tested in seven households of senior adults (mean age 79 years) for 3 weeks each, i.e. in total more than 5 months. The results showed that PT2 is intuitive to handle and that the functions offered meet the needs of older users; however, the robot was considered more as a toy than a supportive device for independent living. Furthermore, despite an emergency function of the robot, perceived security did not increase. Reasons for this might be a lack of technological robustness and slow performance of the prototype and also the good health conditions of the users; however, users believed that a market-ready version of the robot would be vital for supporting people who are more fragile and more socially isolated. Thus, SSRs have the potential to support independent living of older people although the technology has to be considerably improved to reach market readiness.

  15. Medicine authentication technology as a counterfeit medicine-detection tool: a Delphi method study to establish expert opinion on manual medicine authentication technology in secondary care

    PubMed Central

    Naughton, Bernard; Roberts, Lindsey; Dopson, Sue; Brindley, David; Chapman, Stephen

    2017-01-01

    Objectives This study aims to establish expert opinion and potential improvements for the Falsified Medicines Directive mandated medicines authentication technology. Design and intervention A two-round Delphi method study using an online questionnaire. Setting Large National Health Service (NHS) foundation trust teaching hospital. Participants Secondary care pharmacists and accredited checking technicians. Primary outcome measures Seven-point rating scale answers which reached a consensus of 70–80% with a standard deviation (SD) of <1.0. Likert scale questions which reached a consensus of 70–80%, a SD of <1.0 and classified as important according to study criteria. Results Consensus expert opinion has described database cross-checking technology as quick and user friendly and suggested the inclusion of an audio signal to further support the detection of counterfeit medicines in secondary care (70% consensus, 0.9 SD); other important consensus with a SD of <1.0 included reviewing the colour and information in warning pop up screens to ensure they were not mistaken for the ‘already dispensed here’ pop up, encouraging the dispenser/checker to act on the warnings and making it mandatory to complete an ‘action taken’ documentation process to improve the quarantine of potentially counterfeit, expired or recalled medicines. Conclusions This paper informs key opinion leaders and decision makers as to the positives and negatives of medicines authentication technology from an operator's perspective and suggests the adjustments which may be required to improve operator compliance and the detection of counterfeit medicines in the secondary care sector. PMID:28478398

  16. A highly sensitive magnetic biosensor for detection and quantification of anticancer drugs tagged to superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Wingo, J.; Devkota, J.; Mai, T. T. T.; Nguyen, X. P.; Mukherjee, P.; Srikanth, H.; Phan, M. H.; Vietnam Academy of Science and Technology Collaboration; University of South Florida Team

    2014-03-01

    A precise detection of low concentrations of biomolecules attached to magnetic nanoparticles in complex biological systems is a challenging task and requires biosensors with improved sensitivity. Here, we present a highly sensitive magnetic biosensor based on the magneto-reactance (MX) effect of a Co65Fe4Ni2Si15B14 amorphous ribbon with nanohole-patterned surface for detection and quantification of anticancer drugs (Curcumin) tagged to Fe3O4 nanoparticles. The detection and quantification of Curcumin were assessed by the change in MX of the ribbon subject to varying concentrations of the functionalized Fe3O4 nanoparticles. A high capacity of the MX-based biosensor in quantitative analysis of the nanoparticles was achieved in the range of 0 - 50 ng/ml, beyond which the detection sensitivity (η) remained unchanged. The η of the biosensor reached an extremely high value of 30%, which is about 4-5 times higher than that of a magneto-impedance (MI) based biosensor. This biosensor is well suited for detection of low-concentration magnetic biomarkers in biological systems. This work was supported by was supported by the Florida Cluster for Advanced Smart Sensor Technologies, USAMRMC (Grant # W81XWH-07-1-0708), and the NSF-funded REU program at the USF.

  17. Deep Learning for Image-Based Cassava Disease Detection.

    PubMed

    Ramcharan, Amanda; Baranowski, Kelsee; McCloskey, Peter; Ahmed, Babuali; Legg, James; Hughes, David P

    2017-01-01

    Cassava is the third largest source of carbohydrates for human food in the world but is vulnerable to virus diseases, which threaten to destabilize food security in sub-Saharan Africa. Novel methods of cassava disease detection are needed to support improved control which will prevent this crisis. Image recognition offers both a cost effective and scalable technology for disease detection. New deep learning models offer an avenue for this technology to be easily deployed on mobile devices. Using a dataset of cassava disease images taken in the field in Tanzania, we applied transfer learning to train a deep convolutional neural network to identify three diseases and two types of pest damage (or lack thereof). The best trained model accuracies were 98% for brown leaf spot (BLS), 96% for red mite damage (RMD), 95% for green mite damage (GMD), 98% for cassava brown streak disease (CBSD), and 96% for cassava mosaic disease (CMD). The best model achieved an overall accuracy of 93% for data not used in the training process. Our results show that the transfer learning approach for image recognition of field images offers a fast, affordable, and easily deployable strategy for digital plant disease detection.

  18. Improving PET spatial resolution and detectability for prostate cancer imaging

    NASA Astrophysics Data System (ADS)

    Bal, H.; Guerin, L.; Casey, M. E.; Conti, M.; Eriksson, L.; Michel, C.; Fanti, S.; Pettinato, C.; Adler, S.; Choyke, P.

    2014-08-01

    Prostate cancer, one of the most common forms of cancer among men, can benefit from recent improvements in positron emission tomography (PET) technology. In particular, better spatial resolution, lower noise and higher detectability of small lesions could be greatly beneficial for early diagnosis and could provide a strong support for guiding biopsy and surgery. In this article, the impact of improved PET instrumentation with superior spatial resolution and high sensitivity are discussed, together with the latest development in PET technology: resolution recovery and time-of-flight reconstruction. Using simulated cancer lesions, inserted in clinical PET images obtained with conventional protocols, we show that visual identification of the lesions and detectability via numerical observers can already be improved using state of the art PET reconstruction methods. This was achieved using both resolution recovery and time-of-flight reconstruction, and a high resolution image with 2 mm pixel size. Channelized Hotelling numerical observers showed an increase in the area under the LROC curve from 0.52 to 0.58. In addition, a relationship between the simulated input activity and the area under the LROC curve showed that the minimum detectable activity was reduced by more than 23%.

  19. Hazard Detection Analysis for a Forward-Looking Interferometer

    NASA Technical Reports Server (NTRS)

    West, Leanne; Gimmestad, Gary; Herkert, Ralph; Smith, William L.; Kireev, Stanislav; Schaffner, Philip R.; Daniels, Taumi S.; Cornman, Larry B.; Sharman, Robert; Weekley, Andrew; hide

    2010-01-01

    The Forward-Looking Interferometer (FLI) is a new instrument concept for obtaining the measurements required to alert flight crews to potential weather hazards to safe flight. To meet the needs of the commercial fleet, such a sensor should address multiple hazards to warrant the costs of development, certification, installation, training, and maintenance. The FLI concept is based on high-resolution Infrared Fourier Transform Spectrometry (FTS) technologies that have been developed for satellite remote sensing. These technologies have also been applied to the detection of aerosols and gases for other purposes. The FLI concept is being evaluated for its potential to address multiple hazards including clear air turbulence (CAT), volcanic ash, wake vortices, low slant range visibility, dry wind shear, and icing during all phases of flight (takeoff, cruise, and landing). The research accomplished in this second phase of the FLI project was in three major areas: further sensitivity studies to better understand the potential capabilities and requirements for an airborne FLI instrument, field measurements that were conducted in an effort to provide empirical demonstrations of radiometric hazard detection, and theoretical work to support the development of algorithms to determine the severity of detected hazards

  20. A System for Fault Management for NASA's Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano P.; Spirkovska, Liljana; Aaseng, Gordon B.; Mccann, Robert S.; Baskaran, Vijayakumar; Ossenfort, John P.; Smith, Irene Skupniewicz; Iverson, David L.; Schwabacher, Mark A.

    2013-01-01

    NASA's exploration program envisions the utilization of a Deep Space Habitat (DSH) for human exploration of the space environment in the vicinity of Mars and/or asteroids. Communication latencies with ground control of as long as 20+ minutes make it imperative that DSH operations be highly autonomous, as any telemetry-based detection of a systems problem on Earth could well occur too late to assist the crew with the problem. A DSH-based development program has been initiated to develop and test the automation technologies necessary to support highly autonomous DSH operations. One such technology is a fault management tool to support performance monitoring of vehicle systems operations and to assist with real-time decision making in connection with operational anomalies and failures. Toward that end, we are developing Advanced Caution and Warning System (ACAWS), a tool that combines dynamic and interactive graphical representations of spacecraft systems, systems modeling, automated diagnostic analysis and root cause identification, system and mission impact assessment, and mitigation procedure identification to help spacecraft operators (both flight controllers and crew) understand and respond to anomalies more effectively. In this paper, we describe four major architecture elements of ACAWS: Anomaly Detection, Fault Isolation, System Effects Analysis, and Graphic User Interface (GUI), and how these elements work in concert with each other and with other tools to provide fault management support to both the controllers and crew. We then describe recent evaluations and tests of ACAWS on the DSH testbed. The results of these tests support the feasibility and strength of our approach to failure management automation and enhanced operational autonomy.

  1. A System for Fault Management and Fault Consequences Analysis for NASA's Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano; Spirkovska, Liljana; Baskaran, Vijaykumar; Aaseng, Gordon; McCann, Robert S.; Ossenfort, John; Smith, Irene; Iverson, David L.; Schwabacher, Mark

    2013-01-01

    NASA's exploration program envisions the utilization of a Deep Space Habitat (DSH) for human exploration of the space environment in the vicinity of Mars and/or asteroids. Communication latencies with ground control of as long as 20+ minutes make it imperative that DSH operations be highly autonomous, as any telemetry-based detection of a systems problem on Earth could well occur too late to assist the crew with the problem. A DSH-based development program has been initiated to develop and test the automation technologies necessary to support highly autonomous DSH operations. One such technology is a fault management tool to support performance monitoring of vehicle systems operations and to assist with real-time decision making in connection with operational anomalies and failures. Toward that end, we are developing Advanced Caution and Warning System (ACAWS), a tool that combines dynamic and interactive graphical representations of spacecraft systems, systems modeling, automated diagnostic analysis and root cause identification, system and mission impact assessment, and mitigation procedure identification to help spacecraft operators (both flight controllers and crew) understand and respond to anomalies more effectively. In this paper, we describe four major architecture elements of ACAWS: Anomaly Detection, Fault Isolation, System Effects Analysis, and Graphic User Interface (GUI), and how these elements work in concert with each other and with other tools to provide fault management support to both the controllers and crew. We then describe recent evaluations and tests of ACAWS on the DSH testbed. The results of these tests support the feasibility and strength of our approach to failure management automation and enhanced operational autonomy

  2. Participatory Research to Design a Novel Telehealth System to Support the Night-Time Needs of People with Dementia: NOCTURNAL

    PubMed Central

    Martin, Suzanne; Augusto, Juan Carlos; Mc Cullagh, Paul; Carswell, William; Zheng, Huiru; Wang, Haiying; Wallace, Jonathan; Mulvenna, Maurice

    2013-01-01

    Strategies to support people living with dementia are broad in scope, proposing both pharmacological and non-pharmacological interventions as part of the care pathway. Assistive technologies form part of this offering as both stand-alone devices to support particular tasks and the more complex offering of the “smart home” to underpin ambient assisted living. This paper presents a technology-based system, which expands on the smart home architecture, orientated to support people with daily living. The system, NOCTURNAL, was developed by working directly with people who had dementia, and their carers using qualitative research methods. The research focused primarily on the nighttime needs of people living with dementia in real home settings. Eight people with dementia had the final prototype system installed for a three month evaluation at home. Disturbed sleep patterns, night-time wandering were a focus of this research not only in terms of detection by commercially available technology but also exploring if automated music, light and visual personalized photographs would be soothing to participants during the hours of darkness. The NOCTURNAL platform and associated services was informed by strong user engagement of people with dementia and the service providers who care for them. NOCTURNAL emerged as a holistic service offering a personalised therapeutic aspect with interactive capabilities. PMID:24304507

  3. Information technology and medical missteps: evidence from a randomized trial.

    PubMed

    Javitt, Jonathan C; Rebitzer, James B; Reisman, Lonny

    2008-05-01

    We analyze the effect of a decision support tool designed to help physicians detect and correct medical "missteps". The data comes from a randomized trial of the technology on a population of commercial HMO patients. The key findings are that the new information technology lowers average charges by 6% relative to the control group. This reduction in resource utilization was the result of reduced in-patient charges (and associated professional charges) for the most costly patients. The rate at which identified issues were resolved was generally higher in the study group than in the control group, suggesting the possibility of improvements in care quality along measured dimensions and enhanced diffusion of new protocols based on new clinical evidence.

  4. Launch Pad Coatings for Smart Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability. Researchers at NASA's Corrosion Technology Laboratory at KSC are developing a smart, environmentally friendly coating system for early corrosion detection, inhibition, and self healing of mechanical damage without external intervention. This smart coating will detect and respond actively to corrosion and mechanical damage such as abrasion and scratches, in a functional and predictable manner, and will be capable of adapting its properties dynamically. This coating is being developed using corrosion sensitive microcapsules that deliver the contents of their core (corrosion inhibiting compounds, corrosion indicators, and self healing agents) on demand when corrosion or mechanical damage to the coating occurs.

  5. Coordinating Multiple Spacecraft Assets for Joint Science Campaigns

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Chien, Steve; Castano, Rebecca; Gaines, Daniel; de Granville, Charles; Doubleday, Josh; Anderson, Robert C.; Knight, Russell; Bornstein, Benjamin; Rabideau, Gregg; hide

    2010-01-01

    This paper describes technology to support a new paradigm of space science campaigns. These campaigns enable opportunistic science observations to be autonomously coordinated between multiple spacecraft. Coordinated spacecraft can consist of multiple orbiters, landers, rovers, or other in-situ vehicles (such as an aerobot). In this paradigm, opportunistic science detections can be cued by any of these assets where additional spacecraft are requested to take further observations characterizing the identified event or surface feature. Such coordination will enable a number of science campaigns not possible with present spacecraft technology. Examples from Mars include enabling rapid data collection from multiple craft on dynamic events such as new Mars dark slope streaks, dust-devils or trace gases. Technology to support the identification of opportunistic science events and/or the re-tasking of a spacecraft to take new measurements of the event is already in place on several individual missions such as the Mars Exploration Rover (MER) Mission and the Earth Observing One (EO1) Mission. This technology includes onboard data analysis techniques as well as capabilities for planning and scheduling. This paper describes how these techniques can be cue and coordinate multiple spacecraft in observing the same science event from their different vantage points.

  6. A strategy for detecting derelict fishing gear at sea.

    PubMed

    McElwee, Kris; Donohue, Mary J; Courtney, Catherine A; Morishige, Carey; Rivera-Vicente, Ariel

    2012-01-01

    Derelict fishing gear (DFG) is a highly persistent form of marine pollution known to cause environmental and economic damage. At-sea detection of DFG would support pelagic removal of this gear to prevent and minimize impacts on marine environments and species. In 2008, experts in marine debris, oceanography, remote sensing, and marine policy outlined a strategy to develop the capability to detect and ultimately remove DFG from the open ocean. The strategy includes three interrelated components: understanding the characteristics of the targeted DFG, indirectly detecting DFG by modeling likely locations, and directly detecting pelagic DFG using remote sensing. Together, these components aim to refine the search area, increase the likelihood of detection, and decrease mitigation response time, thereby providing guidance for removal operations. Here, we present this at-sea detection strategy, relate it to relevant extant research and technology, and identify gaps that currently prevent successful at-sea detection and removal of DFG. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. NASA IVHM Technology Experiment for X-vehicles (NITEX)

    NASA Technical Reports Server (NTRS)

    Sandra, Hayden; Bajwa, Anupa

    2001-01-01

    The purpose of the NASA IVHM Technology Experiment for X-vehicles (NITEX) is to advance the development of selected IVHM technologies in a flight environment and to demonstrate the potential for reusable launch vehicle ground processing savings. The technologies to be developed and demonstrated include system-level and detailed diagnostics for real-time fault detection and isolation, prognostics for fault prediction, automated maintenance planning based on diagnostic and prognostic results, and a microelectronics hardware platform. Complete flight The Evolution of Flexible Insulation as IVHM consists of advanced sensors, distributed data acquisition, data processing that includes model-based diagnostics, prognostics and vehicle autonomy for control or suggested action, and advanced data storage. Complete ground IVHM consists of evolved control room architectures, advanced applications including automated maintenance planning and automated ground support equipment. This experiment will advance the development of a subset of complete IVHM.

  8. Intentionally Short-Range Communications (ISRC)

    NASA Astrophysics Data System (ADS)

    Yen, J.; Poirier, P.; Obrien, M.

    1994-02-01

    The U.S. Marine Corps (USMC) desired to develop short-range communications links whose ranges are intentionally limited to very short distances. These links support tactical missions such as LAN Backbone, Wideband Data Link, and Company Radio. The short-range limitation arises from the need for low probability of detection and intercept (LPD/LPI). Since the detection of an undecipherable transmission would still provide an enemy with information regarding transmitter location and allow him to take countermeasures, the Marine Corps Systems Command (MARCORSYSCOM) is sponsoring the development of technologies that can be LPD by their very nature. The Intentionally Short-Range Communications (ISRC) project at the Naval Command, Control and Ocean Surveillance Center (NCCOSC) RDT&E Division (NRaD) is pursuing feasibility studies for these USMC missions based on such technologies as ultraviolet (LTV) lamps, UV lasers, infrared (IR) lasers, millimeter waves and direct sequence spread spectrum (DSSS) at radio frequencies.

  9. Development of Sic Gas Sensor Systems

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Okojie, R. S.; Beheim, G. M.; Thomas, V.; Chen, L.; Lukco, D.; Liu, C. C.; Ward, B.; Makel, D.

    2002-01-01

    Silicon carbide (SiC) based gas sensors have significant potential to address the gas sensing needs of aerospace applications such as emission monitoring, fuel leak detection, and fire detection. However, in order to reach that potential, a range of technical challenges must be overcome. These challenges go beyond the development of the basic sensor itself and include the need for viable enabling technologies to make a complete gas sensor system: electrical contacts, packaging, and transfer of information from the sensor to the outside world. This paper reviews the status at NASA Glenn Research Center of SiC Schottky diode gas sensor development as well as that of enabling technologies supporting SiC gas sensor system implementation. A vision of a complete high temperature microfabricated SiC gas sensor system is proposed. In the long-term, it is believed that improvements in the SiC semiconductor material itself could have a dramatic effect on the performance of SiC gas sensor systems.

  10. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging.

    PubMed

    Dazzi, Alexandre; Prater, Craig B

    2016-12-13

    Atomic force microscopy-based infrared spectroscopy (AFM-IR) is a rapidly emerging technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. AFM-IR works by using the tip of an AFM probe to locally detect thermal expansion in a sample resulting from absorption of infrared radiation. AFM-IR thus can provide the spatial resolution of AFM in combination with the chemical analysis and compositional imaging capabilities of infrared spectroscopy. This article briefly reviews the development and underlying technology of AFM-IR, including recent advances, and then surveys a wide range of applications and investigations using AFM-IR. AFM-IR applications that will be discussed include those in polymers, life sciences, photonics, solar cells, semiconductors, pharmaceuticals, and cultural heritage. In the Supporting Information , the authors provide a theoretical section that reviews the physics underlying the AFM-IR measurement and detection mechanisms.

  11. Petroleum exploration in Africa from space

    NASA Astrophysics Data System (ADS)

    Gianinetto, Marco; Frassy, Federico; Aiello, Martina; Rota Nodari, Francesco

    2017-10-01

    Hydrocarbons are nonrenewable resources but today they are the cheaper and easier energy we have access and will remain the main source of energy for this century. Nevertheless, their exploration is extremely high-risk, very expensive and time consuming. In this context, satellite technologies for Earth observation can play a fundamental role by making hydrocarbon exploration more efficient, economical and much more eco-friendly. Complementary to traditional geophysical methods such as gravity and magnetic (gravmag) surveys, satellite remote sensing can be used to detect onshore long-term biochemical and geochemical alterations on the environment produced by invisible small fluxes of light hydrocarbons migrating from the underground deposits to the surface, known as microseepage effect. This paper describes two case studies: one in South Sudan and another in Mozambique. Results show how remote sensing is a powerful technology for detecting active petroleum systems, thus supporting hydrocarbon exploration in remote or hardly accessible areas and without the need of any exploration license.

  12. Atom chip microscopy: A novel probe for strongly correlated materials

    NASA Astrophysics Data System (ADS)

    Kasch, Brian; Naides, Matthew; Turner, Richard; Ray, Ushnish; Lev, Benjamin

    2010-03-01

    Atom chip technology---substrates supporting micron-sized current-carrying wires that create magnetic microtraps near surfaces for thermal or degenerate gases of neutral atoms---will enable single-shot, large area detection of magnetic flux below the 10-7 flux quantum level. By harnessing the extreme sensitivity of Bose-Einstein condensates (BECs) to external perturbations, cryogenic atom chips could provide a magnetic flux detection capability that surpasses all other techniques by a factor of 10^2--10^3. We describe the merits of atom chip microscopy, our Rb BEC and atom chip apparatus, and prospects for imaging strongly correlated condensed matter materials.

  13. A Smartphone App (AfyaData) for Innovative One Health Disease Surveillance from Community to National Levels in Africa: Intervention in Disease Surveillance

    PubMed Central

    Sindato, Calvin; Mwabukusi, Mpoki; Teesdale, Scott; Olsen, Jennifer

    2017-01-01

    Background We describe the development and initial achievements of a participatory disease surveillance system that relies on mobile technology to promote Community Level One Health Security (CLOHS) in Africa. Objective The objective of this system, Enhancing Community-Based Disease Outbreak Detection and Response in East and Southern Africa (DODRES), is to empower community-based human and animal health reporters with training and information and communication technology (ICT)–based solutions to contribute to disease detection and response, thereby complementing strategies to improve the efficiency of infectious disease surveillance at national, regional, and global levels. In this study, we refer to techno-health as the application of ICT-based solutions to enhance early detection, timely reporting, and prompt response to health events in human and animal populations. Methods An EpiHack, involving human and animal health experts as well as ICT programmers, was held in Tanzania in 2014 to identify major challenges facing early detection, timely reporting, and prompt response to disease events. This was followed by a project inception workshop in 2015, which brought together key stakeholders, including policy makers and community representatives, to refine the objectives and implementation plan of the DODRES project. The digital ICT tools were developed and packaged together as the AfyaData app to support One Health disease surveillance. Community health reporters (CHRs) and officials from animal and human health sectors in Morogoro and Ngorongoro districts in Tanzania were trained to use the AfyaData app. The AfyaData supports near- to real-time data collection and submission at both community and health facility levels as well as the provision of feedback to reporters. The functionality of the One Health Knowledge Repository (OHKR) app has been integrated into the AfyaData app to provide health information on case definitions of diseases of humans and animals and to synthesize advice that can be transmitted to CHRs with next step response activities or interventions. Additionally, a WhatsApp social group was made to serve as a platform to sustain interactions between community members, local government officials, and DODRES team members. Results Within the first 5 months (August-December 2016) of AfyaData tool deployment, a total of 1915 clinical cases in livestock (1816) and humans (99) were reported in Morogoro (83) and Ngorongoro (1832) districts. Conclusions These initial results suggest that the DODRES community-level model creates an opportunity for One Health engagement of people in their own communities in the detection of infectious human and animal disease threats. Participatory approaches supported by digital and mobile technologies should be promoted for early disease detection, timely reporting, and prompt response at the community, national, regional, and global levels. PMID:29254916

  14. Lunar Landing Trajectory Design for Onboard Hazard Detection and Avoidance

    NASA Technical Reports Server (NTRS)

    Paschall, Steve; Brady, Tye; Sostaric, Ron

    2009-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing the software and hardware technology needed to support a safe and precise landing for the next generation of lunar missions. ALHAT provides this capability through terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard detection system to select safe landing locations, and an Autonomous Guidance, Navigation, and Control (AGNC) capability to process these measurements and safely direct the vehicle to a landing location. This paper focuses on the key trajectory design issues relevant to providing an onboard Hazard Detection and Avoidance (HDA) capability for the lander. Hazard detection can be accomplished by the crew visually scanning the terrain through a window, a sensor system imaging the terrain, or some combination of both. For ALHAT, this hazard detection activity is provided by a sensor system, which either augments the crew s perception or entirely replaces the crew in the case of a robotic landing. Detecting hazards influences the trajectory design by requiring the proper perspective, range to the landing site, and sufficient time to view the terrain. Following this, the trajectory design must provide additional time to process this information and make a decision about where to safely land. During the final part of the HDA process, the trajectory design must provide sufficient margin to enable a hazard avoidance maneuver. In order to demonstrate the effects of these constraints on the landing trajectory, a tradespace of trajectory designs was created for the initial ALHAT Design Analysis Cycle (ALDAC-1) and each case evaluated with these HDA constraints active. The ALHAT analysis process, described in this paper, narrows down this tradespace and subsequently better defines the trajectory design needed to support onboard HDA. Future ALDACs will enhance this trajectory design by balancing these issues and others in an overall system design process.

  15. Computerized Detection of Lung Nodules by Means of “Virtual Dual-Energy” Radiography

    PubMed Central

    Chen, Sheng; Suzuki, Kenji

    2014-01-01

    Major challenges in current computer-aided detection (CADe) schemes for nodule detection in chest radiographs (CXRs) are to detect nodules that overlap with ribs and/or clavicles and to reduce the frequent false positives (FPs) caused by ribs. Detection of such nodules by a CADe scheme is very important, because radiologists are likely to miss such subtle nodules. Our purpose in this study was to develop a CADe scheme with improved sensitivity and specificity by use of “virtual dual-energy” (VDE) CXRs where ribs and clavicles are suppressed with massive-training artificial neural networks (MTANNs). To reduce rib-induced FPs and detect nodules overlapping with ribs, we incorporated the VDE technology in our CADe scheme. The VDE technology suppressed rib and clavicle opacities in CXRs while maintaining soft-tissue opacity by use of the MTANN technique that had been trained with real dual-energy imaging. Our scheme detected nodule candidates on VDE images by use of a morphologic filtering technique. Sixty morphologic and gray-level-based features were extracted from each candidate from both original and VDE CXRs. A nonlinear support vector classifier was employed for classification of the nodule candidates. A publicly available database containing 140 nodules in 140 CXRs and 93 normal CXRs was used for testing our CADe scheme. All nodules were confirmed by computed tomography examinations, and the average size of the nodules was 17.8 mm. Thirty percent (42/140) of the nodules were rated “extremely subtle” or “very subtle” by a radiologist. The original scheme without VDE technology achieved a sensitivity of 78.6% (110/140) with 5 (1165/233) FPs per image. By use of the VDE technology, more nodules overlapping with ribs or clavicles were detected and the sensitivity was improved substantially to 85.0% (119/140) at the same FP rate in a leave-one-out cross-validation test, whereas the FP rate was reduced to 2.5 (583/233) per image at the same sensitivity level as the original CADe scheme obtained (Difference between the specificities of the original and the VDE-based CADe schemes was statistically significant). In particular, the sensitivity of our VDE-based CADe scheme for subtle nodules (66.7% = 28/42) was statistically significantly higher than that of the original CADe scheme (57.1% = 24/42). Therefore, by use of VDE technology, the sensitivity and specificity of our CADe scheme for detection of nodules, especially subtle nodules, in CXRs were improved substantially. PMID:23193306

  16. Computerized detection of lung nodules by means of "virtual dual-energy" radiography.

    PubMed

    Chen, Sheng; Suzuki, Kenji

    2013-02-01

    Major challenges in current computer-aided detection (CADe) schemes for nodule detection in chest radiographs (CXRs) are to detect nodules that overlap with ribs and/or clavicles and to reduce the frequent false positives (FPs) caused by ribs. Detection of such nodules by a CADe scheme is very important, because radiologists are likely to miss such subtle nodules. Our purpose in this study was to develop a CADe scheme with improved sensitivity and specificity by use of "virtual dual-energy" (VDE) CXRs where ribs and clavicles are suppressed with massive-training artificial neural networks (MTANNs). To reduce rib-induced FPs and detect nodules overlapping with ribs, we incorporated the VDE technology in our CADe scheme. The VDE technology suppressed rib and clavicle opacities in CXRs while maintaining soft-tissue opacity by use of the MTANN technique that had been trained with real dual-energy imaging. Our scheme detected nodule candidates on VDE images by use of a morphologic filtering technique. Sixty morphologic and gray-level-based features were extracted from each candidate from both original and VDE CXRs. A nonlinear support vector classifier was employed for classification of the nodule candidates. A publicly available database containing 140 nodules in 140 CXRs and 93 normal CXRs was used for testing our CADe scheme. All nodules were confirmed by computed tomography examinations, and the average size of the nodules was 17.8 mm. Thirty percent (42/140) of the nodules were rated "extremely subtle" or "very subtle" by a radiologist. The original scheme without VDE technology achieved a sensitivity of 78.6% (110/140) with 5 (1165/233) FPs per image. By use of the VDE technology, more nodules overlapping with ribs or clavicles were detected and the sensitivity was improved substantially to 85.0% (119/140) at the same FP rate in a leave-one-out cross-validation test, whereas the FP rate was reduced to 2.5 (583/233) per image at the same sensitivity level as the original CADe scheme obtained (Difference between the specificities of the original and the VDE-based CADe schemes was statistically significant). In particular, the sensitivity of our VDE-based CADe scheme for subtle nodules (66.7% = 28/42) was statistically significantly higher than that of the original CADe scheme (57.1% = 24/42). Therefore, by use of VDE technology, the sensitivity and specificity of our CADe scheme for detection of nodules, especially subtle nodules, in CXRs were improved substantially.

  17. Establishment and application of a loop-mediated isothermal amplification (LAMP) system for detection of cry1Ac transgenic sugarcane

    PubMed Central

    Zhou, Dinggang; Guo, Jinlong; Xu, Liping; Gao, Shiwu; Lin, Qingliang; Wu, Qibin; Wu, Luguang; Que, Youxiong

    2014-01-01

    To meet the demand for detection of foreign genes in genetically modified (GM) sugarcane necessary for regulation of gene technology, an efficient method with high specificity and rapidity was developed for the cry1Ac gene, based on loop-mediated isothermal amplification (LAMP). A set of four primers was designed using the sequence of cry1Ac along with optimized reaction conditions: 5.25 mM of Mg2+, 4:1 ratio of inner primer to outer primer, 2.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. Three post-LAMP detection methods (precipitation, calcein (0.60 mM) with Mn2+ (0.05 mM) complex and SYBR Green I visualization), were shown to be effective. The sensitivity of the LAMP method was tenfold higher than that of conventional PCR when using templates of the recombinant cry1Ac plasmid or genomic DNA from cry1Ac transgenic sugarcane plants. More importantly, this system allowed detection of the foreign gene on-site when screening GM sugarcane without complex and expensive instruments, using the naked eye. This method can not only provide technological support for detection of cry1Ac, but can also further facilitate the use of this detection technique for other transgenes in GM sugarcane. PMID:24810230

  18. Combating Terrorism Technology Support Office 2006 Review

    DTIC Science & Technology

    2006-01-01

    emplaced beyond the control point, activated manually or automatically , with warning lights and an audible alarm to alert innocent pedestrians. The...throughout a vehicle. When a tamper event is detected, SERVANT automatically records sensor data and surveillance video and sends an alert to the security...exposure to organophosphate nerve agents, botulinum toxin, cyanide, and carbon monoxide and will be packaged into a portable , lightweight, mobile hand

  19. Design of a Multi-Touch Tabletop for Simulation-Based Training

    DTIC Science & Technology

    2014-06-01

    receive, for example using point and click mouse-based computer interactions to specify the routes that vehicles take as part of a convoy...learning, coordination and support for planning. We first provide background in tabletop interaction in general and survey earlier efforts to use...tremendous progress over the past five years. Touch detection technologies now enable multiple users to interact simultaneously on large areas with

  20. Free-Flight Terrestrial Rocket Lander Demonstration for NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) System

    NASA Technical Reports Server (NTRS)

    Rutishauser, David K.; Epp, Chirold; Robertson, Ed

    2012-01-01

    The Autonomous Landing Hazard Avoidance Technology (ALHAT) Project is chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. Since its inception in 2006, the ALHAT Project has executed four field test campaigns to characterize and mature sensors and algorithms that support real-time hazard detection and global/local precision navigation for planetary landings. The driving objective for Government Fiscal Year 2012 (GFY2012) is to successfully demonstrate autonomous, real-time, closed loop operation of the ALHAT system in a realistic free flight scenario on Earth using the Morpheus lander developed at the Johnson Space Center (JSC). This goal represents an aggressive target consistent with a lean engineering culture of rapid prototyping and development. This culture is characterized by prioritizing early implementation to gain practical lessons learned and then building on this knowledge with subsequent prototyping design cycles of increasing complexity culminating in the implementation of the baseline design. This paper provides an overview of the ALHAT/Morpheus flight demonstration activities in GFY2012, including accomplishments, current status, results, and lessons learned. The ALHAT/Morpheus effort is also described in the context of a technology path in support of future crewed and robotic planetary exploration missions based upon the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN).

  1. Early atmospheric detection of carbon dioxide from carbon capture and storage sites.

    PubMed

    Pak, Nasrin Mostafavi; Rempillo, Ofelia; Norman, Ann-Lise; Layzell, David B

    2016-08-01

    The early atmospheric detection of carbon dioxide (CO2) leaks from carbon capture and storage (CCS) sites is important both to inform remediation efforts and to build and maintain public support for CCS in mitigating greenhouse gas emissions. A gas analysis system was developed to assess the origin of plumes of air enriched in CO2, as to whether CO2 is from a CCS site or from the oxidation of carbon compounds. The system measured CO2 and O2 concentrations for different plume samples relative to background air and calculated the gas differential concentration ratio (GDCR = -ΔO2/ΔCO2). The experimental results were in good agreement with theoretical calculations that placed GDCR values for a CO2 leak at 0.21, compared with GDCR values of 1-1.8 for the combustion of carbon compounds. Although some combustion plume samples deviated in GDCR from theoretical, the very low GDCR values associated with plumes from CO2 leaks provided confidence that this technology holds promise in providing a tool for the early detection of CO2 leaks from CCS sites. This work contributes to the development of a cost-effective technology for the early detection of leaks from sites where CO2 has been injected into the subsurface to enhance oil recovery or to permanently store the gas as a strategy for mitigating climate change. Such technology will be important in building public confidence regarding the safety and security of carbon capture and storage sites.

  2. Applications of the thermography in the animal production

    NASA Astrophysics Data System (ADS)

    Piñeiro, Carlos; Vizcaino, Elena; Morales, Joaquín.; Manso, Alberto; Díaz, Immaculada; Montalvo, Gema

    2015-04-01

    Infrared thermography is a working technology for over decades, which have been applied mainly in the buildings. We want to move this use to the animal production in order to help us to detect problems of energy efficiency in the facilities preventing, for example, the animal's welfare. In animal production it is necessary to provide a suitable microclimate according to age and production stage of the animals. This microclimate is achieved in the facilities through the environment modification artificially, providing an appropriate comfort for the animals. Many of the problems detected in farms are related to a poor environmental management and control. This is where infrared thermography becomes an essential diagnostic tool to detect failures in the facilities that will be related with health and performance of the animals. The use of this technology in energy audits for buildings, facilities, etc. is becoming more frequent, enabling the technician to easily detect and assess the temperature and energy losses, and it can be used as a support to draft reports and to transmit the situation to the owner in a visual format. In this way, both will be able to decide what improvements are required. Until now, there was not an appropriate technology with affordable prices and easy to manage enough in order to allow the use of the thermography like a routine tool for the diagnostic of these problems, but currently there are some solutions which are starting to appear on the market to meet the requirements needed by the industry.

  3. Reliability analysis of instrument design of noninvasive bone marrow disease detector

    NASA Astrophysics Data System (ADS)

    Su, Yu; Li, Ting; Sun, Yunlong

    2016-02-01

    Bone marrow is an important hematopoietic organ, and bone marrow lesions (BMLs) may cause a variety of complications with high death rate and short survival time. Early detection and follow up care are particularly important. But the current diagnosis methods rely on bone marrow biopsy/puncture, with significant limitations such as invasion, complex operation, high risk, and discontinuous. It is highly in need of a non-invasive, safe, easily operated, and continuous monitoring technology. So we proposed to design a device aimed for detecting bone marrow lesions, which was based on near infrared spectrum technology. Then we fully tested its reliabilities, including the sensitivity, specificity, signal-to-noise ratio (SNR), stability, and etc. Here, we reported this sequence of reliability test experiments, the experimental results, and the following data analysis. This instrument was shown to be very sensitive, with distinguishable concentration less than 0.002 and with good linearity, stability and high SNR. Finally, these reliability-test data supported the promising clinical diagnosis and surgery guidance of our novel instrument in detection of BMLs.

  4. Radon in Soil Gas Above Bedrock Fracture Sets at the Shepley’s Hill Superfund Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.R. Giles; T.L. McLing; M.V. Carpenter

    2012-12-01

    The Idaho National Laboratory (INL) recently provided technical support for ongoing environmental remediation activities at the Shepley’s Hill remediation site near Devens, MA (Figure 1). The technical support was requested as follow-on work to an initial screening level radiation survey conducted in 2008. The purpose of the original study was to assess the efficacy of the INL-developed Backpack Sodium Iodide System (BaSIS) for detecting elevated areas of natural radioactivity due to the decay of radon-222 gases emanating from the underlying fracture sets. Although the results from the initial study were mixed, the BaSIS radiation surveys did confirm that exposed bedrockmore » outcrops have higher natural radioactivity than the surficial soils, thus a high potential for detecting elevated levels of radon and/or radon daughter products. (INL 2009) The short count times associated with the BaSIS measurements limited the ability of the system to respond to elevated levels of radioactivity from a subsurface source, in this instance radon gas emanating from fracture sets. Thus, it was postulated that a different methodology be employed to directly detect the radon in the soil gases. The CR-39 particle track detectors were investigated through an extensive literature and technology search. The relatively long deployment or “detection” time of several days, as well as the sensitivity of the measurement and robustness of the detectors made the CR-39 technology promising for deployment at the Shepley’s Hill site.« less

  5. Electrochemical Sensors for the Detection of Lead and Other Toxic Heavy Metals: The Next Generation of Personal Exposure Biomonitors

    PubMed Central

    Yantasee, Wassana; Lin, Yuehe; Hongsirikarn, Kitiya; Fryxell, Glen E.; Addleman, Raymond; Timchalk, Charles

    2007-01-01

    To support the development and implementation of biological monitoring programs, we need quantitative technologies for measuring xenobiotic exposure. Microanalytical based sensors that work with complex biomatrices such as blood, urine, or saliva are being developed and validated and will improve our ability to make definitive associations between chemical exposures and disease. Among toxic metals, lead continues to be one of the most problematic. Despite considerable efforts to identify and eliminate Pb exposure sources, this metal remains a significant health concern, particularly for young children. Ongoing research focuses on the development of portable metal analyzers that have many advantages over current available technologies, thus potentially representing the next generation of toxic metal analyzers. In this article, we highlight the development and validation of two classes of metal analyzers for the voltammetric detection of Pb, including: a) an analyzer based on flow injection analysis and anodic stripping voltammetry at a mercury-film electrode, and b) Hg-free metal analyzers employing adsorptive stripping voltammetry and novel nanostructure materials that include the self-assembled monolayers on mesoporous supports and carbon nanotubes. These sensors have been optimized to detect Pb in urine, blood, and saliva as accurately as the state-of-the-art inductively coupled plasma-mass spectrometry with high reproducibility, and sensitivity allows. These improved and portable analytical sensor platforms will facilitate our ability to conduct biological monitoring programs to understand the relationship between chemical exposure assessment and disease outcomes. PMID:18087583

  6. Laser-based standoff detection of explosives: a critical review.

    PubMed

    Wallin, Sara; Pettersson, Anna; Ostmark, Henric; Hobro, Alison

    2009-09-01

    A review of standoff detection technologies for explosives has been made. The review is focused on trace detection methods (methods aiming to detect traces from handling explosives or the vapours surrounding an explosive charge due to the vapour pressure of the explosive) rather than bulk detection methods (methods aiming to detect the bulk explosive charge). The requirements for standoff detection technologies are discussed. The technologies discussed are mostly laser-based trace detection technologies, such as laser-induced-breakdown spectroscopy, Raman spectroscopy, laser-induced-fluorescence spectroscopy and IR spectroscopy but the bulk detection technologies millimetre wave imaging and terahertz spectroscopy are also discussed as a complement to the laser-based methods. The review includes novel techniques, not yet tested in realistic environments, more mature technologies which have been tested outdoors in realistic environments as well as the most mature millimetre wave imaging technique.

  7. Advanced Virus Detection Technologies Interest Group (AVDTIG): Efforts on High Throughput Sequencing (HTS) for Virus Detection.

    PubMed

    Khan, Arifa S; Vacante, Dominick A; Cassart, Jean-Pol; Ng, Siemon H S; Lambert, Christophe; Charlebois, Robert L; King, Kathryn E

    Several nucleic-acid based technologies have recently emerged with capabilities for broad virus detection. One of these, high throughput sequencing, has the potential for novel virus detection because this method does not depend upon prior viral sequence knowledge. However, the use of high throughput sequencing for testing biologicals poses greater challenges as compared to other newly introduced tests due to its technical complexities and big data bioinformatics. Thus, the Advanced Virus Detection Technologies Users Group was formed as a joint effort by regulatory and industry scientists to facilitate discussions and provide a forum for sharing data and experiences using advanced new virus detection technologies, with a focus on high throughput sequencing technologies. The group was initiated as a task force that was coordinated by the Parenteral Drug Association and subsequently became the Advanced Virus Detection Technologies Interest Group to continue efforts for using new technologies for detection of adventitious viruses with broader participation, including international government agencies, academia, and technology service providers. © PDA, Inc. 2016.

  8. Automatic detection of small surface targets with electro-optical sensors in a harbor environment

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; de Lange, Dirk-Jan J.; van den Broek, Sebastiaan P.; Kemp, Rob A. W.; Schwering, Piet B. W.

    2008-10-01

    In modern warfare scenarios naval ships must operate in coastal environments. These complex environments, in bays and narrow straits, with cluttered littoral backgrounds and many civilian ships may contain asymmetric threats of fast targets, such as rhibs, cabin boats and jet-skis. Optical sensors, in combination with image enhancement and automatic detection, assist an operator to reduce the response time, which is crucial for the protection of the naval and land-based supporting forces. In this paper, we present our work on automatic detection of small surface targets which includes multi-scale horizon detection and robust estimation of the background intensity. To evaluate the performance of our detection technology, data was recorded with both infrared and visual-light cameras in a coastal zone and in a harbor environment. During these trials multiple small targets were used. Results of this evaluation are shown in this paper.

  9. Beyond DNA Sequencing in Space: Current and Future Omics Capabilities of the Biomolecule Sequencer Payload

    NASA Technical Reports Server (NTRS)

    Wallace, Sarah

    2017-01-01

    Why do we need a DNA sequencer to support the human exploration of space? (A) Operational environmental monitoring; (1) Identification of contaminating microbes, (2) Infectious disease diagnosis, (3) Reduce down mass (sample return for environmental monitoring, crew health, etc.). (B) Research; (1) Human, (2) Animal, (3) Microbes/Cell lines, (4) Plant. (C) Med Ops; (1) Response to countermeasures, (2) Radiation, (3) Real-time analysis can influence medical intervention. (C) Support astrobiology science investigations; (1) Technology superiorly suited to in situ nucleic acid-based life detection, (2) Functional testing for integration into robotics for extraplanetary exploration mission.

  10. GSDC: A Unique Data Center in Korea for HEP research

    NASA Astrophysics Data System (ADS)

    Ahn, Sang-Un

    2017-04-01

    Global Science experimental Data hub Center (GSDC) at Korea Institute of Science and Technology Information (KISTI) is a unique data center in South Korea established for promoting the fundamental research fields by supporting them with the expertise on Information and Communication Technology (ICT) and the infrastructure for High Performance Computing (HPC), High Throughput Computing (HTC) and Networking. GSDC has supported various research fields in South Korea dealing with the large scale of data, e.g. RENO experiment for neutrino research, LIGO experiment for gravitational wave detection, Genome sequencing project for bio-medical, and HEP experiments such as CDF at FNAL, Belle at KEK, and STAR at BNL. In particular, GSDC has run a Tier-1 center for ALICE experiment using the LHC at CERN since 2013. In this talk, we present the overview on computing infrastructure that GSDC runs for the research fields and we discuss on the data center infrastructure management system deployed at GSDC.

  11. Traffic light detection and intersection crossing using mobile computer vision

    NASA Astrophysics Data System (ADS)

    Grewei, Lynne; Lagali, Christopher

    2017-05-01

    The solution for Intersection Detection and Crossing to support the development of blindBike an assisted biking system for the visually impaired is discussed. Traffic light detection and intersection crossing are key needs in the task of biking. These problems are tackled through the use of mobile computer vision, in the form of a mobile application on an Android phone. This research builds on previous Traffic Light detection algorithms with a focus on efficiency and compatibility on a resource-limited platform. Light detection is achieved through blob detection algorithms utilizing training data to detect patterns of Red, Green and Yellow in complex real world scenarios where multiple lights may be present. Also, issues of obscurity and scale are addressed. Safe Intersection crossing in blindBike is also discussed. This module takes a conservative "assistive" technology approach. To achieve this blindBike use's not only the Android device but, an external bike cadence Bluetooth/Ant enabled sensor. Real world testing results are given and future work is discussed.

  12. Developing and evaluating a mobile driver fatigue detection network based on electroencephalograph signals

    PubMed Central

    Yin, Jinghai; Mu, Zhendong

    2016-01-01

    The rapid development of driver fatigue detection technology indicates important significance of traffic safety. The authors’ main goals of this Letter are principally three: (i) A middleware architecture, defined as process unit (PU), which can communicate with personal electroencephalography (EEG) node (PEN) and cloud server (CS). The PU receives EEG signals from PEN, recognises the fatigue state of the driver, and transfer this information to CS. The CS sends notification messages to the surrounding vehicles. (ii) An android application for fatigue detection is built. The application can be used for the driver to detect the state of his/her fatigue based on EEG signals, and warn neighbourhood vehicles. (iii) The detection algorithm for driver fatigue is applied based on fuzzy entropy. The idea of 10-fold cross-validation and support vector machine are used for classified calculation. Experimental results show that the average accurate rate of detecting driver fatigue is about 95%, which implying that the algorithm is validity in detecting state of driver fatigue. PMID:28529761

  13. Developing and evaluating a mobile driver fatigue detection network based on electroencephalograph signals.

    PubMed

    Yin, Jinghai; Hu, Jianfeng; Mu, Zhendong

    2017-02-01

    The rapid development of driver fatigue detection technology indicates important significance of traffic safety. The authors' main goals of this Letter are principally three: (i) A middleware architecture, defined as process unit (PU), which can communicate with personal electroencephalography (EEG) node (PEN) and cloud server (CS). The PU receives EEG signals from PEN, recognises the fatigue state of the driver, and transfer this information to CS. The CS sends notification messages to the surrounding vehicles. (ii) An android application for fatigue detection is built. The application can be used for the driver to detect the state of his/her fatigue based on EEG signals, and warn neighbourhood vehicles. (iii) The detection algorithm for driver fatigue is applied based on fuzzy entropy. The idea of 10-fold cross-validation and support vector machine are used for classified calculation. Experimental results show that the average accurate rate of detecting driver fatigue is about 95%, which implying that the algorithm is validity in detecting state of driver fatigue.

  14. Performance evaluation and modeling of a conformal filter (CF) based real-time standoff hazardous material detection sensor

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew P.; Tazik, Shawna K.; Bangalore, Arjun S.; Treado, Patrick J.; Klem, Ethan; Temple, Dorota

    2017-05-01

    Hyperspectral imaging (HSI) systems can provide detection and identification of a variety of targets in the presence of complex backgrounds. However, current generation sensors are typically large, costly to field, do not usually operate in real time and have limited sensitivity and specificity. Despite these shortcomings, HSI-based intelligence has proven to be a valuable tool, thus resulting in increased demand for this type of technology. By moving the next generation of HSI technology into a more adaptive configuration, and a smaller and more cost effective form factor, HSI technologies can help maintain a competitive advantage for the U.S. armed forces as well as local, state and federal law enforcement agencies. Operating near the physical limits of HSI system capability is often necessary and very challenging, but is often enabled by rigorous modeling of detection performance. Specific performance envelopes we consistently strive to improve include: operating under low signal to background conditions; at higher and higher frame rates; and under less than ideal motion control scenarios. An adaptable, low cost, low footprint, standoff sensor architecture we have been maturing includes the use of conformal liquid crystal tunable filters (LCTFs). These Conformal Filters (CFs) are electro-optically tunable, multivariate HSI spectrometers that, when combined with Dual Polarization (DP) optics, produce optimized spectral passbands on demand, which can readily be reconfigured, to discriminate targets from complex backgrounds in real-time. With DARPA support, ChemImage Sensor Systems (CISS™) in collaboration with Research Triangle Institute (RTI) International are developing a novel, real-time, adaptable, compressive sensing short-wave infrared (SWIR) hyperspectral imaging technology called the Reconfigurable Conformal Imaging Sensor (RCIS) based on DP-CF technology. RCIS will address many shortcomings of current generation systems and offer improvements in operational agility and detection performance, while addressing sensor weight, form factor and cost needs. This paper discusses recent test and performance modeling results of a RCIS breadboard apparatus.

  15. Sustainable Systems for exploration, stays with increased duration in LEO and Earth application -an overview about life support activities

    NASA Astrophysics Data System (ADS)

    Slenzka, Klaus; Duenne, Matthias

    Solar system exploration with extended stays in totally closed habitats far away from Earth as well as longer stays in LEO requires intensive preparatory activities. Activities supporting life in a more or less close meaning are essential in this context -on a scientific as well as on a technical level. These needed activities are supporting life by e.g.: i) increasing knowledge about the impact of single and combined effects of different exploration related environmental conditions (e. g. microgravity, radiation, reduced pressure and temperature, lunar soil etc.) on biological systems. This is needed to enable safe life of humans itself as well as safe operating of required bioregenerative life support systems. Thus, different human cell types as well as representatives of bioregenerative life support system protagonists (algae, bacteria as well as higher organisms) needs to be addressed. ii) provision of required consumables (oxygen, food, energy equivalents etc.) on site, mainly via bioregenerative life support systems, Bio-ISRU-units etc. Preparation is needed on a scientific as well as technological level. iii) ensuring reduced negative effects on humans (and partially also equipment), which could be caused by living in a closed habitat in general (and thus being not space related per se): E. g. detection systems for the quality of water and air, antimicrobial and selfhealing as well as anti-icing materials without dangerous hazard substances, psychological health enhancing components etc. Referring payloads for above mentioned investigations (scientific evaluation and technology demonstration) must be developed. Extended stays and extended closure in habitats without the possibility of material transport into and out of the system are leading to the necessity of more autonomous technologies and sustainable processes. Latter one will rely mainly on biological processes and structures, which increases additionally the necessity of an intensive scientific and technological verification before routine use under extreme conditions during solar system exploration.

  16. Peripleural lung disease detection based on multi-slice CT images

    NASA Astrophysics Data System (ADS)

    Matsuhiro, M.; Suzuki, H.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.

    2015-03-01

    With the development of multi-slice CT technology, obtaining accurate 3D images of lung field in a short time become possible. To support that, a lot of image processing methods need to be developed. Detection peripleural lung disease is difficult due to its existence out of lung region, because lung extraction is often performed based on threshold processing. The proposed method uses thoracic inner region extracted by inner cavity of bone as well as air region, covers peripleural lung diseased cases such as lung nodule, calcification, pleural effusion and pleural plaque. We applied this method to 50 cases including 39 peripleural lung diseased cases. This method was able to detect 39 peripleural lung disease with 2.9 false positive per case.

  17. Intelligent vehicle control: Opportunities for terrestrial-space system integration

    NASA Technical Reports Server (NTRS)

    Shoemaker, Charles

    1994-01-01

    For 11 years the Department of Defense has cooperated with a diverse array of other Federal agencies including the National Institute of Standards and Technology, the Jet Propulsion Laboratory, and the Department of Energy, to develop robotics technology for unmanned ground systems. These activities have addressed control system architectures supporting sharing of tasks between the system operator and various automated subsystems, man-machine interfaces to intelligent vehicles systems, video compression supporting vehicle driving in low data rate digital communication environments, multiple simultaneous vehicle control by a single operator, path planning and retrace, and automated obstacle detection and avoidance subsystem. Performance metrics and test facilities for robotic vehicles were developed permitting objective performance assessment of a variety of operator-automated vehicle control regimes. Progress in these areas will be described in the context of robotic vehicle testbeds specifically developed for automated vehicle research. These initiatives, particularly as regards the data compression, task sharing, and automated mobility topics, also have relevance in the space environment. The intersection of technology development interests between these two communities will be discussed in this paper.

  18. Advanced Geophysical Classification with the Marine Towed Array

    NASA Astrophysics Data System (ADS)

    Steinhurst, D.; Harbaugh, G.; Keiswetter, D.; Bell, T. W.; Massey, G.; Wright, D.

    2017-12-01

    The Marine Towed Array, or MTA, is an underwater dual-mode sensor array that has been successfully deployed at multiple marine venues in support of Strategic Environmental Research and Development Program (SERDP) and Environmental Security Technology Certification Program (ESTCP) demonstrations beginning in 2004. It provided both marine electromagnetic and marine magnetic sensors for detection and mapping of underwater UXO. The EMI sensor array was based on older technology, which in several ESTCP demonstrations has not been able to support advanced geophysical classification (AGC). Under ESTCP funding, the U.S. Naval Research Laboratory is in the process of upgrading the MTA with modern, advanced electromagnetic (EMI) electronics and replacing the sensor array with a modern, multistatic array design. A half-scale version of the proposed array has been built and tested on land. Six tri-axial receiver cubes were placed inside two- and three- transmit coil configurations in equivalent positions to design locations for the MTA wing. The responses of a variety of munitions items and test spheres were measured over a range of target-to-array geometries and in both static and simulated dynamic data collection modes. The multi-transmit coil configuration was shown to provide enhanced single-pass classification performance over the original single coil design, particularly as a function of target location relative to the centerline. The ability to go beyond anomaly detection and additionally classify detected anomalies from survey data would dramatically improve the state of the art for underwater UXO remediation by reducing costs and improving the efficiency of these efforts. The results of our efforts to return the MTA to service and validating the new EMI array's design for UXO detection and classification in the underwater environment will be the focus of this presentation.

  19. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization

    PubMed Central

    Girard, Laurie D.; Boissinot, Karel; Peytavi, Régis; Boissinot, Maurice; Bergeron, Michel G.

    2014-01-01

    The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have a high complexity cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotidesequence-dependent segment and a unique “target sequence-independent” 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design of lab-on-chip microfluidic devices, while also reducing consumable costs. At term, it will allow the cost-effective automation of highly multiplexed assays for detection and identification of genetic targets. PMID:25489607

  20. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization.

    PubMed

    Girard, Laurie D; Boissinot, Karel; Peytavi, Régis; Boissinot, Maurice; Bergeron, Michel G

    2015-02-07

    The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have high complexity and cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotide sequence-dependent segment and a unique "target sequence-independent" 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design of lab-on-chip microfluidic devices, while also reducing consumable costs. At term, it will allow the cost-effective automation of highly multiplexed assays for detection and identification of genetic targets.

  1. Remote Oil Spill Detection and Monitoring Beneath Sea Ice

    NASA Astrophysics Data System (ADS)

    Polak, Adam; Marshall, Stephen; Ren, Jinchang; Hwang, Byongjun (Phil); Hagan, Bernard; Stothard, David J. M.

    2016-08-01

    The spillage of oil in Polar Regions is particularly serious due to the threat to the environment and the difficulties in detecting and tracking the full extent of the oil seepage beneath the sea ice. Development of fast and reliable sensing techniques is highly desirable. In this paper hyperspectral imaging combined with signal processing and classification techniques are proposed as a potential tool to detect the presence of oil beneath the sea ice. A small sample, lab based experiment, serving as a proof of concept, resulted in the successful identification of oil presence beneath the thin ice layer as opposed to the other sample with ice only. The paper demonstrates the results of this experiment that granted a financial support to execute full feasibility study of this technology for oil spill detection beneath the sea ice.

  2. NIITEK-NVESD AMDS program and interim field-ready system

    NASA Astrophysics Data System (ADS)

    Hibbard, Mark W.; Etebari, Ali

    2010-04-01

    NIITEK (Non-Intrusive Inspection Technology, Inc) develops and fields vehicle-mounted mine and buried threat detection systems. Since 2003, the NIITEK has developed and tested a remote robot-mounted mine detection system for use in the NVESD AMDS program. This paper will discuss the road map of development since the outset of the program, including transition from a data collection platform towards a militarized field-ready system for immediate use as a remote countermine and buried threat detection solution with real-time autonomous threat classification. The detection system payload has been integrated on both the iRobot Packbot and the Foster-Miller Talon robot. This brief will discuss the requirements for a successful near-term system, the progressive development of the system, our current real-time capabilities, and our planned upgrades for moving into and supporting field testing, evaluation, and ongoing operation.

  3. Medicine authentication technology as a counterfeit medicine-detection tool: a Delphi method study to establish expert opinion on manual medicine authentication technology in secondary care.

    PubMed

    Naughton, Bernard; Roberts, Lindsey; Dopson, Sue; Brindley, David; Chapman, Stephen

    2017-05-06

    This study aims to establish expert opinion and potential improvements for the Falsified Medicines Directive mandated medicines authentication technology. A two-round Delphi method study using an online questionnaire. Large National Health Service (NHS) foundation trust teaching hospital. Secondary care pharmacists and accredited checking technicians. Seven-point rating scale answers which reached a consensus of 70-80% with a standard deviation (SD) of <1.0. Likert scale questions which reached a consensus of 70-80%, a SD of <1.0 and classified as important according to study criteria. Consensus expert opinion has described database cross-checking technology as quick and user friendly and suggested the inclusion of an audio signal to further support the detection of counterfeit medicines in secondary care (70% consensus, 0.9 SD); other important consensus with a SD of <1.0 included reviewing the colour and information in warning pop up screens to ensure they were not mistaken for the 'already dispensed here' pop up, encouraging the dispenser/checker to act on the warnings and making it mandatory to complete an 'action taken' documentation process to improve the quarantine of potentially counterfeit, expired or recalled medicines. This paper informs key opinion leaders and decision makers as to the positives and negatives of medicines authentication technology from an operator's perspective and suggests the adjustments which may be required to improve operator compliance and the detection of counterfeit medicines in the secondary care sector. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Damage Detection in Railway Prestressed Concrete Sleepers using Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Clark, A.; Kaewunruen, S.; Janeliukstis, R.; Papaelias, M.

    2017-10-01

    Prestressed concrete sleepers (or railroad ties) are safety-critical elements in railway tracks that distribute the wheel loads from the rails to the track support system. Over a period of time, the concrete sleepers age and deteriorate in addition to experiencing various types of static and dynamic loading conditions, which are attributable to train operations. In many cases, structural cracks can develop within the sleepers due to high intensity impact loads or due to poor track maintenance. Often, cracks of sleepers develop and present at the midspan due to excessive negative bending. These cracks can cause broken sleepers and sometimes called ‘center bound’ problem in railway lines. This paper is the world first to present an application of non-destructive acoustic emission technology for damage detection in railway concrete sleepers. It presents experimental investigations in order to detect center-bound cracks in railway prestressed concrete sleepers. Experimental laboratory testing involves three-point bending tests of four concrete sleepers. Three-point bending tests correspond to a real failure mode, when the loads are not transferred uniformly to the ballast support. It is observed that AE sensing provides an accurate means for detecting the location and magnitude of cracks in sleepers. Sensor location criticality is also highlighted in the paper to demonstrate the reliability-based damage detection of the sleepers.

  5. [Information technology use in preventing infection].

    PubMed

    Ohmagari, Norio

    2011-11-01

    Infection prevention requires handling enormous amounts of medical information collection, analysis, and delivery--a cumbersome, inefficient process. Hospital information system (HIS) data not intended for preventing infection cannot be used directly for such prevention. The rapid introduction of information technology in infection prevention can potentially solve these problems. The IT-based infection prevention system (ITIPS) structure depends on the purpose specified, however, and using this information in hospitals requires that the detailed HIS structure be clarified, especially the connection between HIS and ITIPS. The future ITIPS role is envisioned in early infection detection and warning. This, in turn, requires that ITIPS field operational support systems for medical staff mature further.

  6. Mars Analog Rio Tinto Experiment (MARTE): An Experimental Demonstration of Key Technologies for Searching for Life on Mars

    NASA Technical Reports Server (NTRS)

    Stoker, Carol

    2004-01-01

    The discovery of near surface ground ice by the Mars Odyssey mission and the abundant evidence for recent Gulley features observed by the Mars Global Surveyor mission support longstanding theoretical arguments for subsurface liquid water on Mars. Thus, implementing the Mars program goal to search for life points to drilling on Mars to reach liquid water, collecting samples and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. Searching for life in the subsurface of Mars will require drilling, sample extraction and handling, and new technologies to find and identify biomarker compounds and search for living organisms.

  7. Operational efficiency subpanel advanced mission control

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1990-01-01

    Herein, the term mission control will be taken quite broadly to include both ground and space based operations as well as the information infrastructure necessary to support such operations. Three major technology areas related to advanced mission control are examined: (1) Intelligent Assistance for Ground-Based Mission Controllers and Space-Based Crews; (2) Autonomous Onboard Monitoring, Control and Fault Detection Isolation and Reconfiguration; and (3) Dynamic Corporate Memory Acquired, Maintained, and Utilized During the Entire Vehicle Life Cycle. The current state of the art space operations are surveyed both within NASA and externally for each of the three technology areas and major objectives are discussed from a user point of view for technology development. Ongoing NASA and other governmental programs are described. An analysis of major research issues and current holes in the program are provided. Several recommendations are presented for enhancing the technology development and insertion process to create advanced mission control environments.

  8. Tech Support.

    ERIC Educational Resources Information Center

    Beem, Kate

    2002-01-01

    Discusses technology-support issues, including staff training, cost, and outsourcing. Describes how various school districts manage technology-support services. Features the Technology Support Index, developed by the International Society for Technology in Education, to gauge the operation of school district technology-support programs. (PKP)

  9. chimeraviz: a tool for visualizing chimeric RNA.

    PubMed

    Lågstad, Stian; Zhao, Sen; Hoff, Andreas M; Johannessen, Bjarne; Lingjærde, Ole Christian; Skotheim, Rolf I

    2017-09-15

    Advances in high-throughput RNA sequencing have enabled more efficient detection of fusion transcripts, but the technology and associated software used for fusion detection from sequencing data often yield a high false discovery rate. Good prioritization of the results is important, and this can be helped by a visualization framework that automatically integrates RNA data with known genomic features. Here we present chimeraviz , a Bioconductor package that automates the creation of chimeric RNA visualizations. The package supports input from nine different fusion-finder tools: deFuse, EricScript, InFusion, JAFFA, FusionCatcher, FusionMap, PRADA, SOAPfuse and STAR-FUSION. chimeraviz is an R package available via Bioconductor ( https://bioconductor.org/packages/release/bioc/html/chimeraviz.html ) under Artistic-2.0. Source code and support is available at GitHub ( https://github.com/stianlagstad/chimeraviz ). rolf.i.skotheim@rr-research.no. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  10. Computer-aided diagnosis for osteoporosis using chest 3D CT images

    NASA Astrophysics Data System (ADS)

    Yoneda, K.; Matsuhiro, M.; Suzuki, H.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.

    2016-03-01

    The patients of osteoporosis comprised of about 13 million people in Japan and it is one of the problems the aging society has. In order to prevent the osteoporosis, it is necessary to do early detection and treatment. Multi-slice CT technology has been improving the three dimensional (3-D) image analysis with higher body axis resolution and shorter scan time. The 3-D image analysis using multi-slice CT images of thoracic vertebra can be used as a support to diagnose osteoporosis and at the same time can be used for lung cancer diagnosis which may lead to early detection. We develop automatic extraction and partitioning algorithm for spinal column by analyzing vertebral body structure, and the analysis algorithm of the vertebral body using shape analysis and a bone density measurement for the diagnosis of osteoporosis. Osteoporosis diagnosis support system obtained high extraction rate of the thoracic vertebral in both normal and low doses.

  11. One Door to the Corps: The U.S. Army Engineering and Support Center, Huntsville Historical Update, 1998-2007

    DTIC Science & Technology

    2009-01-01

    with Transpiring Wall Reactor; and Gas Phase Chemical Reduction systems . After much study , ACWA selected three technologies for additional study ...detection systems , and hardware development. Importantly, these advancements allowed for a more effective and cost-efficient remediation process... grounds at the ASPs, the munitions contractors considered a variety of factors, including proximity to the local civilian population and potential

  12. 4.3 THz quantum-well photodetectors with high detection sensitivity

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenzhen; Fu, Zhanglong; Guo, Xuguang; Cao, Juncheng

    2018-03-01

    Not Available Project supported by the National Key R&D Program of China (Grant No. 2017YFF0106302), the National Basic Research Program of of China (Grant No. 2014CB339803), the National Natural Science Foundation of China (Grant Nos. 61404150, 61405233, and 61604161), and the Shanghai Municipal Commission of Science and Technology, China (Grant Nos. 15JC1403800, 17ZR1448300, and 17YF1429900).

  13. Challenges for Life Support Systems in Space Environments, Including Food Production

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2012-01-01

    Environmental Control and Life Support Systems (ECLSS) refer to the technologies needed to sustain human life in space environments. Histor ically these technologies have focused on providing a breathable atmo sphere, clean water, food, managing wastes, and the associated monitoring capabilities. Depending on the space agency or program, ELCSS has sometimes expanded to include other aspects of managing space enviro nments, such as thermal control, radiation protection, fire detection I suppression, and habitat design. Other times, testing and providing these latter technologies have been associated with the vehicle engi neering. The choice of ECLSS technologies is typically driven by the mission profile and their associated costs and reliabilities. These co sts are largely defined by the mass, volume, power, and crew time req uirements. For missions close to Earth, e.g., low-Earth orbit flights, stowage and resupply of food, some 0 2, and some water are often the most cost effective option. But as missions venture further into spa ce, e.g., transit missions to Mars or asteroids, or surface missions to Moon or Mars, the supply line economics change and the need to clos e the loop on life support consumables increases. These are often ref erred to as closed loop or regenerative life support systems. Regardless of the technologies, the systems must be capable of operating in a space environment, which could include micro to fractional g setting s, high radiation levels, and tightly closed atmospheres, including perhaps reduced cabin pressures. Food production using photosynthetic o rganisms such as plants by nature also provides atmospheric regenerat ion (e.g., CO2 removal and reduction, and 0 2 production), yet to date such "bioregenerative" technologies have not been used due largely t o the high power requirements for lighting. A likely first step in te sting bioregenerative capabilities will involve production of small a mounts of fresh foods to supplement to crew's diet. As humans venture further into space, regenerative life support technologies will becom e more important, and gathering accurate data on their performance an d reliabilities will require long lead times. As we learn more about sustainable living in space, we almost certainly learn more about sust ainable living on Earth.

  14. Assessing Unilateral Spatial Neglect using advanced technologies: The potentiality of mobile virtual reality.

    PubMed

    Pallavicini, Federica; Pedroli, Elisa; Serino, Silvia; Dell'Isola, Andrea; Cipresso, Pietro; Cisari, Carlo; Riva, Giuseppe

    2015-01-01

    Unilateral Spatial Neglect, or neglect, is a common behavioral syndrome in patients following unilateral brain damage, such as stroke. In recent years, new technologies, such as computer-based tools and virtual reality have been used in order to solve some limitations of the traditional neglect evaluation. Within this perspective, also mobile devices such as tablets seems to be promising tools, being able to support interactive virtual environments and, at the same time, allowing to easily reproduce traditional paper-and-pencil test. In this context, the aim of our study was to investigate the potentiality of a new mobile application (Neglect App) designed and developed for tablet (iPad) for screening neglect symptoms. To address this objective, we divided a sample of 16 right-damaged patients according to the presence or absence of neglect and we administered assessment test in their traditional and Neglect App version. Results showed that the cancellation tests developed within Neglect App were equally effective to traditional paper-and-pencil tests (Line cancellation test and Star Cancellation test) in detecting neglect symptoms. Secondly, according to our results, the Neglect App Card Dealing task was more sensitive in detecting neglect symptoms than traditional functional task. Globally, results gives preliminary evidences supporting the feasibility of Neglect App for the screening of USN symptoms.

  15. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 5: Human Support

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of briefings from the Space Systems and Technology Advisory Committee (SSTAC)/ARTS review of the draft integrated technology plan (ITP) on human support are included. Topics covered include: human support program; human factors; life support technology; fire safety; medical support technology; advanced refrigeration technology; EVA suit system; advanced PLSS technology; and ARC-EVA systems research program.

  16. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Lightmore » Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.« less

  17. Raising quality of maintenance and control of metallic structures in large-load technological machines

    NASA Astrophysics Data System (ADS)

    Drygin, M. Yu; Kuryshkin, N. P.

    2018-01-01

    Active growth of coal extraction and underinvestment of coal mining in Russia lead to the fact that technical state of more than 86% of technological machines at opencast coal mines is unacceptable. One of the most significant problems is unacceptable state of supporting metallic structures of excavators and mine dump trucks. The analysis has shown that defects in these metallic structures had been accumulated for a long time. Their removal by the existing method of repair welding was not effective - the flaws reappeared in 2-6 months of technological machines’ service. The authors detected the prime causes that did not allow to make a good repair welding joint. A new technology of repair welding had been tested and endorsed, and this allowed to reduce the number of welded joints’ flaws by 85% without additional raising welders’ qualification. As a result the number of flaws in metallic structures of the equipment had been reduced by 35 % as early as in the first year of using the new technology.

  18. Spacecraft environmental interactions: A joint Air Force and NASA research and technology program

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Purvis, C. K.; Hudson, W. R.

    1985-01-01

    A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.

  19. Point-of-care and point-of-procedure optical imaging technologies for primary care and global health

    PubMed Central

    Boppart, Stephen A.; Richards-Kortum, Rebecca

    2015-01-01

    Leveraging advances in consumer electronics and wireless telecommunications, low-cost, portable optical imaging devices have the potential to improve screening and detection of disease at the point of care in primary health care settings in both low- and high-resource countries. Similarly, real-time optical imaging technologies can improve diagnosis and treatment at the point of procedure by circumventing the need for biopsy and analysis by expert pathologists, who are scarce in developing countries. Although many optical imaging technologies have been translated from bench to bedside, industry support is needed to commercialize and broadly disseminate these from the patient level to the population level to transform the standard of care. This review provides an overview of promising optical imaging technologies, the infrastructure needed to integrate them into widespread clinical use, and the challenges that must be addressed to harness the potential of these technologies to improve health care systems around the world. PMID:25210062

  20. Point-of-care and point-of-procedure optical imaging technologies for primary care and global health.

    PubMed

    Boppart, Stephen A; Richards-Kortum, Rebecca

    2014-09-10

    Leveraging advances in consumer electronics and wireless telecommunications, low-cost, portable optical imaging devices have the potential to improve screening and detection of disease at the point of care in primary health care settings in both low- and high-resource countries. Similarly, real-time optical imaging technologies can improve diagnosis and treatment at the point of procedure by circumventing the need for biopsy and analysis by expert pathologists, who are scarce in developing countries. Although many optical imaging technologies have been translated from bench to bedside, industry support is needed to commercialize and broadly disseminate these from the patient level to the population level to transform the standard of care. This review provides an overview of promising optical imaging technologies, the infrastructure needed to integrate them into widespread clinical use, and the challenges that must be addressed to harness the potential of these technologies to improve health care systems around the world. Copyright © 2014, American Association for the Advancement of Science.

  1. Sensor technology for smart homes.

    PubMed

    Ding, Dan; Cooper, Rory A; Pasquina, Paul F; Fici-Pasquina, Lavinia

    2011-06-01

    A smart home is a residence equipped with technology that observes the residents and provides proactive services. Most recently, it has been introduced as a potential solution to support independent living of people with disabilities and older adults, as well as to relieve the workload from family caregivers and health providers. One of the key supporting features of a smart home is its ability to monitor the activities of daily living and safety of residents, and in detecting changes in their daily routines. With the availability of inexpensive low-power sensors, radios, and embedded processors, current smart homes are typically equipped with a large amount of networked sensors which collaboratively process and make deductions from the acquired data on the state of the home as well as the activities and behaviors of its residents. This article reviews sensor technology used in smart homes with a focus on direct environment sensing and infrastructure mediated sensing. The article also points out the strengths and limitations of different sensor technologies, as well as discusses challenges and opportunities from clinical, technical, and ethical perspectives. It is recommended that sensor technologies for smart homes address actual needs of all stake holders including end users, their family members and caregivers, and their doctors and therapists. More evidence on the appropriateness, usefulness, and cost benefits analysis of sensor technologies for smart homes is necessary before these sensors should be widely deployed into real-world residential settings and successfully integrated into everyday life and health care services. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Detection of the ideal resource for multiqubit teleportation

    NASA Astrophysics Data System (ADS)

    Zhao, Ming-Jing; Chen, Bin; Fei, Shao-Ming

    2015-07-01

    We give a sufficient condition for detecting the entanglement resource for perfect multiqubit teleportation. The criterion involves only local measurements on some complementary observables and can be experimentally implemented. It is also a necessary condition for full separability of multiqubit states. Moreover, by proving the optimality of teleportation witnesses, we solve the open problem in Phys. Rev. A 86, 032315 (2012). Project supported by the National Natural Science Foundation of China (Grant Nos. 11401032, 11275131, and 61473325), the Foundation of Beijing Information Science and Technology University, China (Grant No. 1425032), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China.

  3. Superpixel-based spectral classification for the detection of head and neck cancer with hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Chung, Hyunkoo; Lu, Guolan; Tian, Zhiqiang; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei

    2016-03-01

    Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications. HSI acquires two dimensional images at various wavelengths. The combination of both spectral and spatial information provides quantitative information for cancer detection and diagnosis. This paper proposes using superpixels, principal component analysis (PCA), and support vector machine (SVM) to distinguish regions of tumor from healthy tissue. The classification method uses 2 principal components decomposed from hyperspectral images and obtains an average sensitivity of 93% and an average specificity of 85% for 11 mice. The hyperspectral imaging technology and classification method can have various applications in cancer research and management.

  4. Benefits of Time Correlation Measurements for Passive Screening

    NASA Astrophysics Data System (ADS)

    Murer, David; Blackie, Douglas; Peerani, Paolo

    2014-02-01

    The “FLASH Portals Project” is a collaboration between Arktis Radiation Detectors Ltd (CH), the Atomic Weapons Establishment (UK), and the Joint Research Centre (European Commission), supported by the Technical Support Working Group (TSWG). The program's goal was to develop and demonstrate a technology to detect shielded special nuclear materials (SNM) more efficiently and less ambiguously by exploiting time correlation. This study presents experimental results of a two-sided portal monitor equipped with in total 16 4He fast neutron detectors as well as four polyvinyltoluene (PVT) plastic scintillators. All detectors have been synchronized to nanosecond precision, thereby allowing the resolution of time correlations from timescales of tens of microseconds (such as (n, γ) reactions) down to prompt fission correlations directly. Our results demonstrate that such correlations can be detected in a typical radiation portal monitor (RPM) geometry and within operationally acceptable time scales, and that exploiting these signatures significantly improves the performance of the RPM compared to neutron counting. Furthermore, the results show that some time structure remains even in the presence of heavy shielding, thus significantly improving the sensitivity of the detection system to shielded SNM.

  5. Modeling and Simulation Plans in Support of Low Cost, Size, Weight, and Power Surveillance Systems for Detecting and Tracking Non-Cooperative Aircraft

    NASA Technical Reports Server (NTRS)

    Wu, Gilbert; Santiago, Confesor

    2017-01-01

    RTCA Special Committee (SC) 228 has initiated a second phase for the development of minimum operational performance standards (MOPS) for UAS detect and avoid (DAA) systems. Technologies to enable UAS with less available Size, Weight, and Power (SWaP) will be considered. RTCA SC-228 has established sub-working groups and one of the sub-working groups is focused on aligning modeling and simulations activities across all participating committee members. This briefing will describe NASAs modeling and simulation plans for the development of performance standards for low cost, size, weight, and power (C-SWaP) surveillance systems that detect and track non-cooperative aircraft. The briefing will also describe the simulation platform NASA intends to use to support end-to-end verification and validation for these DAA systems. Lastly, the briefing will highlight the experiment plan for our first simulation study, and provide a high-level description of our future flight test plans. This briefing does not contain any results or data.

  6. Odor-Sensing System to Support Social Participation of People Suffering from Incontinence

    PubMed Central

    Ortiz Pérez, Alvaro; Kallfaß-de Frenes, Vera; Filbert, Alexander; Kneer, Janosch; Bierer, Benedikt; Held, Pirmin; Klein, Philipp; Wöllenstein, Jürgen; Benyoucef, Dirk; Kallfaß, Sigrid; Mescheder, Ulrich; Palzer, Stefan

    2016-01-01

    This manuscript describes the design considerations, implementation, and laboratory validation of an odor sensing module whose purpose is to support people that suffer from incontinence. Because of the requirements expressed by the affected end-users the odor sensing unit is realized as a portable accessory that may be connected to any pre-existing smart device. We have opted for a low-cost, low-power consuming metal oxide based gas detection approach to highlight the viability of developing an inexpensive yet helpful odor recognition technology. The system consists of a hotplate employing, inkjet-printed p-type semiconducting layers of copper(II) oxide, and chromium titanium oxide. Both functional layers are characterized with respect to their gas-sensitive behavior towards humidity, ammonia, methylmercaptan, and dimethylsulfide and we demonstrate detection limits in the parts-per-billion range for the two latter gases. Employing a temperature variation scheme that reads out the layer’s resistivity in a steady-state, we use each sensor chip as a virtual array. With this setup, we demonstrate the feasibility of detecting odors associated with incontinence. PMID:28036081

  7. Odor-Sensing System to Support Social Participation of People Suffering from Incontinence.

    PubMed

    Ortiz Pérez, Alvaro; Kallfaß-de Frenes, Vera; Filbert, Alexander; Kneer, Janosch; Bierer, Benedikt; Held, Pirmin; Klein, Philipp; Wöllenstein, Jürgen; Benyoucef, Dirk; Kallfaß, Sigrid; Mescheder, Ulrich; Palzer, Stefan

    2016-12-29

    This manuscript describes the design considerations, implementation, and laboratory validation of an odor sensing module whose purpose is to support people that suffer from incontinence. Because of the requirements expressed by the affected end-users the odor sensing unit is realized as a portable accessory that may be connected to any pre-existing smart device. We have opted for a low-cost, low-power consuming metal oxide based gas detection approach to highlight the viability of developing an inexpensive yet helpful odor recognition technology. The system consists of a hotplate employing, inkjet-printed p-type semiconducting layers of copper(II) oxide, and chromium titanium oxide. Both functional layers are characterized with respect to their gas-sensitive behavior towards humidity, ammonia, methylmercaptan, and dimethylsulfide and we demonstrate detection limits in the parts-per-billion range for the two latter gases. Employing a temperature variation scheme that reads out the layer's resistivity in a steady-state, we use each sensor chip as a virtual array. With this setup, we demonstrate the feasibility of detecting odors associated with incontinence.

  8. Fluorescence emission spectral measurements for the detection of oil on shore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balick, L.K.; Di Benedetto, J.A.; Lutz, S.S.

    1997-06-01

    The US DOE Special Technologies Laboratory is developing an airborne Laser-Induced Fluorescence Imaging (LIFI) system to support environmental management of government Utilities. This system, or a system to be derived from it, is being evaluated for its potential to detect spilled oils on shore, in wetlands, and on ice. To more fully understand the detectivity of oil spills, emphasis has been placed on the spectral contrast between the oil signatures and signatures associated with the natural backgrounds (sand, vegetation, etc.). To support this evaluation, two series of controlled measurements have been performed to provide rigorous characterization of the excitation-emission propertiesmore » of some oils and background materials, and to look at the effects of weathering of oil on terrestrial background materials. Oil targets included a heavy crude oil, diesel, kerosene, and aviation fuel and backgrounds included beach sand, straw, mud, tar and kelp. Fluorescence of oil on background materials decreases rapidly over the first few days of exposure to the environment and is more rapid than for neat oil samples.« less

  9. Fluorescence emission spectral measurements for the detection of oil on shore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balick, L.K.; Di Benedetto, J.A.; Lutz, S.S.

    1996-12-31

    The U.S. DOE Special Technologies Laboratory is developing an airborne Laser-Induced Fluorescence Imaging (LIFI) system to support environmental management of government facilities. This system, or a system to be derived from it, is being evaluated for its potential to detect spilled oils oN shore, in wetlands, and on ice. To more fully understand the detectivity of oil spills, emphasis has been placed on the spectral contrast between the oil signatures and signatures associated with the natural backgrounds (sand, vegetation, etc.). To support this evaluation, two series of controlled measurements have been performed to provide rigorous characterization of the excitation-emission propertiesmore » of some oils and background materials, and to look at the effects of weathering of oil on terrestrial background materials. Oil targets included a heavy crude oil, diesel, kerosene, and aviation fuel and backgrounds included beach sand, straw, mud, tar and kelp. Fluorescence of oil on background materials decreases rapidly over the first few days of exposure to the environment and is more rapid than for neat oil samples.« less

  10. Application of harmonic detection technology in methane telemetry

    NASA Astrophysics Data System (ADS)

    Huo, Yuehua; Fan, Weiqiang

    2017-08-01

    Methane telemetry plays a vital role in ensuring the safe production of coal mines and monitoring the leakage of natural gas pipelines. Harmonic detection is the key technology of methane telemetry accuracy and sensitivity, but the current telemetry distance is short, the relationship between different modulation parameters is complex, and the harmonic signal is affected by noise interference. These factors seriously affect the development of harmonic detection technology. In this paper, the principle of methane telemetry based on harmonic detection technology is introduced. The present situation and characteristics of harmonic detection technology are expounded. The problems existing in harmonic detection are analyzed. Finally, the future development trend is discussed.

  11. Development and application of a rapid and visual loop-mediated isothermal amplification for the detection of Sporisorium scitamineum in sugarcane

    PubMed Central

    Su, Yachun; Yang, Yuting; Peng, Qiong; Zhou, Dinggang; Chen, Yun; Wang, Zhuqing; Xu, Liping; Que, Youxiong

    2016-01-01

    Smut is a fungal disease with widespread prevalence in sugarcane planting areas. Early detection and proper identification of Sporisorium scitamineum are essential in smut management practices. In the present study, four specific primers targeting the core effector Pep1 gene of S. scitamineum were designed. Optimal concentrations of Mg2+, primer and Bst DNA polymerase, the three important components of the loop-mediated isothermal amplification (LAMP) reaction system, were screened using a single factor experiment method and the L16(45) orthogonal experimental design. Hence, a LAMP system suitable for detection of S. scitamineum was established. High specificity of the LAMP method was confirmed by the assay of S. scitamineum, Fusarium moniliforme, Pestalotia ginkgo, Helminthospcrium sacchari, Fusarium oxysporum and endophytes of Yacheng05-179 and ROC22. The sensitivity of the LAMP method was equal to that of the conventional PCR targeting Pep1 gene and was 100 times higher than that of the conventional PCR assay targeting bE gene in S. scitamineum. The results suggest that this novel LAMP system has strong specificity and high sensitivity. This method not only provides technological support for the epidemic monitoring of sugarcane smut, but also provides a good case for development of similar detection technology for other plant pathogens. PMID:27035751

  12. A New Network Modeling Tool for the Ground-based Nuclear Explosion Monitoring Community

    NASA Astrophysics Data System (ADS)

    Merchant, B. J.; Chael, E. P.; Young, C. J.

    2013-12-01

    Network simulations have long been used to assess the performance of monitoring networks to detect events for such purposes as planning station deployments and network resilience to outages. The standard tool has been the SAIC-developed NetSim package. With correct parameters, NetSim can produce useful simulations; however, the package has several shortcomings: an older language (FORTRAN), an emphasis on seismic monitoring with limited support for other technologies, limited documentation, and a limited parameter set. Thus, we are developing NetMOD (Network Monitoring for Optimal Detection), a Java-based tool designed to assess the performance of ground-based networks. NetMOD's advantages include: coded in a modern language that is multi-platform, utilizes modern computing performance (e.g. multi-core processors), incorporates monitoring technologies other than seismic, and includes a well-validated default parameter set for the IMS stations. NetMOD is designed to be extendable through a plugin infrastructure, so new phenomenological models can be added. Development of the Seismic Detection Plugin is being pursued first. Seismic location and infrasound and hydroacoustic detection plugins will follow. By making NetMOD an open-release package, it can hopefully provide a common tool that the monitoring community can use to produce assessments of monitoring networks and to verify assessments made by others.

  13. How to apply modern scientific and technological advances to the practice of clinical gastroenterology in Vietnam.

    PubMed

    Ha, M V

    1997-06-01

    There are some differences between the spectrum of gastroenterological diseases in Vietnam compared with those of more developed countries. These may be due to different living standards, quality of nutrition, and different infection rates of intestinal parasites and hepatotropic viruses. Gastric carcinoma and hepatocellular carcinoma (HCC) are leading malignancies, while colorectal cancer is less frequent. Bile duct stones often have Ascaris eggs in the centre, and they prevail in incidence over gall-bladder stones. The majority of digestive cancers are detected at a very late stage. The Vietnamese Association of Gastroenterology aims to contribute to the development of modern gastroenterology (GE) in Vietnam, to study and apply recent advances in imaging technology, such as fibre-optic diagnostic and therapeutical endoscopy, ultrasonography, laparoscopic surgery etc. and to do further work in molecular biology. For this purpose, besides our self-reliance, we need, and ask for, support and assistance from the Japanese Society of GE (JSGE), the Asian Pacific Association of GE (APAGE) and the Organisation Mondiale de GE (OMEGE). At the same time, we suggest a choice be made among the different technologies, bearing in mind their cost-effectiveness, and to give preference to measures for the primary prevention and early detection of the diseases. Japanese experience in the early detection of gastric cancer and HCC, and in the Percutaneous Ethanol Injection Therapy (PEIT) for treatment of HCC, are highly appreciated. We recommend also a judicious and scientific combination of traditional medicine and modern technology in the research and the struggle against digestive diseases.

  14. Quantum cascade laser-based screening portal for the detection of explosive precursors

    NASA Astrophysics Data System (ADS)

    Lindley, Ruth; Normand, Erwan; Howieson, Iain; McCulloch, Michael; Black, Paul; Lewis, Colin; Foulger, Brian

    2007-10-01

    In recent years, quantum cascade lasers (QCL) have been proven in robust, high-performance gas analyzers designed for continuous emission monitoring (CEM) in harsh environments. In 2006, Cascade Technologies reported progress towards adapting its patented technology for homeland security applications by publishing initial results on explosive compound detection. This paper presents the performance and results from a QCL-based people screening portal developed during the past year and aimed at the detection of precursors used in the make up of improvised explosive devices (IED). System tests have been carried out on a large number of potential interferents, together with target precursor materials, reinforcing original assumptions that compound fingerprinting can be effectively demonstrated using this technique. Results have shown that an extremely high degree of specificity can be achieved with a sub-second response time. Furthermore, it has been shown that unambiguous precursor signature recognition can be extended to compound mixtures associated with the intermediate stages in the make up of IEDs, whilst maintaining interferent immunity. The portal sensitivity was configured for parts per billion (ppb) detection level thresholds, but is currently being reconfigured for sub-ppb detection. In summary, the results obtained from the QCL based portal indicate that development of a low cost detection system, with enhanced features such as low false positive and high throughput screening of individuals or items, is possible. Development and testing was carried out with the support of the UK government.

  15. (abstract) Formal Inspection Technology Transfer Program

    NASA Technical Reports Server (NTRS)

    Welz, Linda A.; Kelly, John C.

    1993-01-01

    A Formal Inspection Technology Transfer Program, based on the inspection process developed by Michael Fagan at IBM, has been developed at JPL. The goal of this program is to support organizations wishing to use Formal Inspections to improve the quality of software and system level engineering products. The Technology Transfer Program provides start-up materials and assistance to help organizations establish their own Formal Inspection program. The course materials and certified instructors associated with the Technology Transfer Program have proven to be effective in classes taught at other NASA centers as well as at JPL. Formal Inspections (NASA tailored Fagan Inspections) are a set of technical reviews whose objective is to increase quality and reduce the cost of software development by detecting and correcting errors early. A primary feature of inspections is the removal of engineering errors before they amplify into larger and more costly problems downstream in the development process. Note that the word 'inspection' is used differently in software than in a manufacturing context. A Formal Inspection is a front-end quality enhancement technique, rather than a task conducted just prior to product shipment for the purpose of sorting defective systems (manufacturing usage). Formal Inspections are supporting and in agreement with the 'total quality' approach being adopted by many NASA centers.

  16. Telemedicine and ocular health in diabetes mellitus.

    PubMed

    Bursell, Sven-Erik; Brazionis, Laima; Jenkins, Alicia

    2012-05-01

    Teleretinal/teleophthalmological programs that use existing health information technology infrastructure solutions for people with diabetes increase access to and adherence to appropriate eye care. Teleophthalmological studies indicate that the single act of patients viewing their own retinal images improves self-management behaviour and clinical outcomes. In some settings this can be done at lower cost and with improved visual outcomes compared with standard eye care. Cost-effective and sustainable teleretinal surveillance for detection of diabetic retinopathy requires a combination of an inexpensive portable device for taking low light-level retinal images without the use of pharmacological dilation of the pupil and a computer-assisted methodology for rapidly detecting and diagnosing diabetic retinopathy. A more holistic telehealth-care paradigm augmented with the use of health information technology, medical devices, mobile phone and mobile health applications and software applications to improve health-care co-ordination, self-care management and education can significantly impact a broad range of health outcomes, including prevention of diabetes-associated visual loss. This approach will require a collaborative, transformational, patient-centred health-care program that integrates data from medical record systems with remote monitoring of data and a longitudinal health record. This includes data associated with social media applications and personal mobile health technology and should support continuous interactions between the patient, health-care team and the patient's social environment. Taken together, this system will deliver contextually and temporally relevant decision support to patients to facilitate their well-being and to reduce the risk of diabetic complications. © 2012 The Authors. Clinical and Experimental Optometry © 2012 Optometrists Association Australia.

  17. Early atmospheric detection of carbon dioxide from carbon capture and storage sites

    PubMed Central

    Pak, Nasrin Mostafavi; Rempillo, Ofelia; Norman, Ann-Lise; Layzell, David B.

    2016-01-01

    ABSTRACT The early atmospheric detection of carbon dioxide (CO2) leaks from carbon capture and storage (CCS) sites is important both to inform remediation efforts and to build and maintain public support for CCS in mitigating greenhouse gas emissions. A gas analysis system was developed to assess the origin of plumes of air enriched in CO2, as to whether CO2 is from a CCS site or from the oxidation of carbon compounds. The system measured CO2 and O2 concentrations for different plume samples relative to background air and calculated the gas differential concentration ratio (GDCR = −ΔO2/ΔCO2). The experimental results were in good agreement with theoretical calculations that placed GDCR values for a CO2 leak at 0.21, compared with GDCR values of 1–1.8 for the combustion of carbon compounds. Although some combustion plume samples deviated in GDCR from theoretical, the very low GDCR values associated with plumes from CO2 leaks provided confidence that this technology holds promise in providing a tool for the early detection of CO2 leaks from CCS sites.  Implications: This work contributes to the development of a cost-effective technology for the early detection of leaks from sites where CO2 has been injected into the subsurface to enhance oil recovery or to permanently store the gas as a strategy for mitigating climate change. Such technology will be important in building public confidence regarding the safety and security of carbon capture and storage sites. PMID:27111469

  18. TOPICAL REVIEW: Biological and chemical sensors for cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Simon, Elfriede

    2010-11-01

    The great challenge for sensor systems to be accepted as a relevant diagnostic and therapeutic tool for cancer detection is the ability to determine the presence of relevant biomarkers or biomarker patterns comparably to or even better than the traditional analytical systems. Biosensor and chemical sensor technologies are already used for several clinical applications such as blood glucose or blood gas measurements. However, up to now not many sensors have been developed for cancer-related tests because only a few of the biomarkers have shown clinical relevance and the performance of the sensor systems is not always satisfactory. New genomic and proteomic tools are used to detect new molecular signatures and identify which combinations of biomarkers may detect best the presence or risk of cancer or monitor cancer therapies. These molecular signatures include genetic and epigenetic signatures, changes in gene expressions, protein biomarker profiles and other metabolite profile changes. They provide new changes in using different sensor technologies for cancer detection especially when complex biomarker patterns have to be analyzed. To address requirements for this complex analysis, there have been recent efforts to develop sensor arrays and new solutions (e.g. lab on a chip) in which sampling, preparation, high-throughput analysis and reporting are integrated. The ability of parallelization, miniaturization and the degree of automation are the focus of new developments and will be supported by nanotechnology approaches. This review recaps some scientific considerations about cancer diagnosis and cancer-related biomarkers, relevant biosensor and chemical sensor technologies, their application as cancer sensors and consideration about future challenges.

  19. 77 FR 55199 - Radiation Detection Technologies, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ... DEPARTMENT OF ENERGY Radiation Detection Technologies, Inc. AGENCY: Office of the General Counsel... given to an intent to grant to Radiation Detection Technologies, Inc., of Manhattan, Kansas, an... Assistant General Counsel for Technology Transfer and Intellectual Property, U.S. Department of Energy, 1000...

  20. SLAE–CPS: Smart Lean Automation Engine Enabled by Cyber-Physical Systems Technologies

    PubMed Central

    Ma, Jing; Wang, Qiang; Zhao, Zhibiao

    2017-01-01

    In the context of Industry 4.0, the demand for the mass production of highly customized products will lead to complex products and an increasing demand for production system flexibility. Simply implementing lean production-based human-centered production or high automation to improve system flexibility is insufficient. Currently, lean automation (Jidoka) that utilizes cyber-physical systems (CPS) is considered a cost-efficient and effective approach for improving system flexibility under shrinking global economic conditions. Therefore, a smart lean automation engine enabled by CPS technologies (SLAE–CPS), which is based on an analysis of Jidoka functions and the smart capacity of CPS technologies, is proposed in this study to provide an integrated and standardized approach to design and implement a CPS-based smart Jidoka system. A set of comprehensive architecture and standardized key technologies should be presented to achieve the above-mentioned goal. Therefore, a distributed architecture that joins service-oriented architecture, agent, function block (FB), cloud, and Internet of things is proposed to support the flexible configuration, deployment, and performance of SLAE–CPS. Then, several standardized key techniques are proposed under this architecture. The first one is for converting heterogeneous physical data into uniform services for subsequent abnormality analysis and detection. The second one is a set of Jidoka scene rules, which is abstracted based on the analysis of the operator, machine, material, quality, and other factors in different time dimensions. These Jidoka rules can support executive FBs in performing different Jidoka functions. Finally, supported by the integrated and standardized approach of our proposed engine, a case study is conducted to verify the current research results. The proposed SLAE–CPS can serve as an important reference value for combining the benefits of innovative technology and proper methodology. PMID:28657577

  1. SLAE-CPS: Smart Lean Automation Engine Enabled by Cyber-Physical Systems Technologies.

    PubMed

    Ma, Jing; Wang, Qiang; Zhao, Zhibiao

    2017-06-28

    In the context of Industry 4.0, the demand for the mass production of highly customized products will lead to complex products and an increasing demand for production system flexibility. Simply implementing lean production-based human-centered production or high automation to improve system flexibility is insufficient. Currently, lean automation (Jidoka) that utilizes cyber-physical systems (CPS) is considered a cost-efficient and effective approach for improving system flexibility under shrinking global economic conditions. Therefore, a smart lean automation engine enabled by CPS technologies (SLAE-CPS), which is based on an analysis of Jidoka functions and the smart capacity of CPS technologies, is proposed in this study to provide an integrated and standardized approach to design and implement a CPS-based smart Jidoka system. A set of comprehensive architecture and standardized key technologies should be presented to achieve the above-mentioned goal. Therefore, a distributed architecture that joins service-oriented architecture, agent, function block (FB), cloud, and Internet of things is proposed to support the flexible configuration, deployment, and performance of SLAE-CPS. Then, several standardized key techniques are proposed under this architecture. The first one is for converting heterogeneous physical data into uniform services for subsequent abnormality analysis and detection. The second one is a set of Jidoka scene rules, which is abstracted based on the analysis of the operator, machine, material, quality, and other factors in different time dimensions. These Jidoka rules can support executive FBs in performing different Jidoka functions. Finally, supported by the integrated and standardized approach of our proposed engine, a case study is conducted to verify the current research results. The proposed SLAE-CPS can serve as an important reference value for combining the benefits of innovative technology and proper methodology.

  2. Cyberpark 2000: Protected Areas Management Pilot Project. Satellite time series vegetation monitoring

    NASA Astrophysics Data System (ADS)

    Monteleone, M.; Lanorte, A.; Lasaponara, R.

    2009-04-01

    Cyberpark 2000 is a project funded by the UE Regional Operating Program of the Apulia Region (2000-2006). The main objective of the Cyberpark 2000 project is to develop a new assessment model for the management and monitoring of protected areas in Foggia Province (Apulia Region) based on Information and Communication Technologies. The results herein described are placed inside the research activities finalized to develop an environmental monitoring system knowledge based on the use of satellite time series. This study include: - A- satellite time series of high spatial resolution data for supporting the analysis of fire static risk factors through land use mapping and spectral/quantitative characterization of vegetation fuels; - B- satellite time series of MODIS for supporting fire dynamic risk evaluation of study area - Integrated fire detection by using thermal imaging cameras placed on panoramic view-points; - C - integrated high spatial and high temporal satellite time series for supporting studies in change detection factors or anomalies in vegetation covers; - D - satellite time-series for monitoring: (i) post fire vegetation recovery and (ii) spatio/temporal vegetation dynamics in unburned and burned vegetation covers.

  3. A solid phase enzyme-linked immunosorbent assay for the antigenic detection of Legionella pneumophila (serogroup 1): A compliment for the space station diagnostic capability

    NASA Technical Reports Server (NTRS)

    Hejtmancik, Kelly E.

    1987-01-01

    It is necessary that an adequate microbiology capability be provided as part of the Health Maintenance Facility (HMF) to support expected microbial disease events and environmental monitoring during long periods of space flight. The application of morphological and biochemical studies to confirm the presence of certain bacterial and fungal disease agents are currently available and under consideration. This confirmation would be facilitated through employment of serological methods to aid in the identification of bacterial, fungal, and viral agents. A number of serological approaches are currently being considered, including the use of Enzyme Linked Immunosorbent Assay (ELISA) technology, which could be utilized during microgravity conditions. A solid phase, membrane supported ELISA for the detection of Legionella pneumophila, an expected disease agent, was developed to show a potential model system that would meet the HMF requirements and specifications for the future space station. These studies demonstrate the capability of membrane supported ELISA systems for identification of expected microbial disease agents as part of the HMF.

  4. Ambulatory REACT: real-time seizure detection with a DSP microprocessor.

    PubMed

    McEvoy, Robert P; Faul, Stephen; Marnane, William P

    2010-01-01

    REACT (Real-Time EEG Analysis for event deteCTion) is a Support Vector Machine based technology which, in recent years, has been successfully applied to the problem of automated seizure detection in both adults and neonates. This paper describes the implementation of REACT on a commercial DSP microprocessor; the Analog Devices Blackfin®. The primary aim of this work is to develop a prototype system for use in ambulatory or in-ward automated EEG analysis. Furthermore, the complexity of the various stages of the REACT algorithm on the Blackfin processor is analysed; in particular the EEG feature extraction stages. This hardware profile is used to select a reduced, platform-aware feature set, in order to evaluate the seizure classification accuracy of a lower-complexity, lower-power REACT system.

  5. A Smartphone App (AfyaData) for Innovative One Health Disease Surveillance from Community to National Levels in Africa: Intervention in Disease Surveillance.

    PubMed

    Karimuribo, Esron Daniel; Mutagahywa, Eric; Sindato, Calvin; Mboera, Leonard; Mwabukusi, Mpoki; Kariuki Njenga, M; Teesdale, Scott; Olsen, Jennifer; Rweyemamu, Mark

    2017-12-18

    We describe the development and initial achievements of a participatory disease surveillance system that relies on mobile technology to promote Community Level One Health Security (CLOHS) in Africa. The objective of this system, Enhancing Community-Based Disease Outbreak Detection and Response in East and Southern Africa (DODRES), is to empower community-based human and animal health reporters with training and information and communication technology (ICT)-based solutions to contribute to disease detection and response, thereby complementing strategies to improve the efficiency of infectious disease surveillance at national, regional, and global levels. In this study, we refer to techno-health as the application of ICT-based solutions to enhance early detection, timely reporting, and prompt response to health events in human and animal populations. An EpiHack, involving human and animal health experts as well as ICT programmers, was held in Tanzania in 2014 to identify major challenges facing early detection, timely reporting, and prompt response to disease events. This was followed by a project inception workshop in 2015, which brought together key stakeholders, including policy makers and community representatives, to refine the objectives and implementation plan of the DODRES project. The digital ICT tools were developed and packaged together as the AfyaData app to support One Health disease surveillance. Community health reporters (CHRs) and officials from animal and human health sectors in Morogoro and Ngorongoro districts in Tanzania were trained to use the AfyaData app. The AfyaData supports near- to real-time data collection and submission at both community and health facility levels as well as the provision of feedback to reporters. The functionality of the One Health Knowledge Repository (OHKR) app has been integrated into the AfyaData app to provide health information on case definitions of diseases of humans and animals and to synthesize advice that can be transmitted to CHRs with next step response activities or interventions. Additionally, a WhatsApp social group was made to serve as a platform to sustain interactions between community members, local government officials, and DODRES team members. Within the first 5 months (August-December 2016) of AfyaData tool deployment, a total of 1915 clinical cases in livestock (1816) and humans (99) were reported in Morogoro (83) and Ngorongoro (1832) districts. These initial results suggest that the DODRES community-level model creates an opportunity for One Health engagement of people in their own communities in the detection of infectious human and animal disease threats. Participatory approaches supported by digital and mobile technologies should be promoted for early disease detection, timely reporting, and prompt response at the community, national, regional, and global levels. ©Esron Daniel Karimuribo, Eric Mutagahywa, Calvin Sindato, Leonard Mboera, Mpoki Mwabukusi, M Kariuki Njenga, Scott Teesdale, Jennifer Olsen, Mark Rweyemamu. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 18.12.2017.

  6. A Lunar Surface System Supportability Technology Development Roadmap

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Struk, Peter M.; Taleghani, Barmac K.

    2009-01-01

    This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA's Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of "supportability", in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in a environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test & Verification, Maintenance & Repair, and Scavenging & Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of technologies with widest possible capability and utility with a minimum impact on crew time and training and remain within the time and cost constraints of the Constellation program

  7. A Lunar Surface System Supportability Technology Development Roadmap

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Struk, Peter M.; Taleghani, barmac K.

    2011-01-01

    This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA s Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of supportability, in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test and Verification, Maintenance and Repair, and Scavenging and Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of technologies with widest possible capability and utility with a minimum impact on crew time and training and remain within the time and cost constraints of the Constellation program.

  8. Informative frame detection from wireless capsule video endoscopic images

    NASA Astrophysics Data System (ADS)

    Bashar, Md. Khayrul; Mori, Kensaku; Suenaga, Yasuhito; Kitasaka, Takayuki; Mekada, Yoshito

    2008-03-01

    Wireless capsule endoscopy (WCE) is a new clinical technology permitting the visualization of the small bowel, the most difficult segment of the digestive tract. The major drawback of this technology is the high amount of time for video diagnosis. In this study, we propose a method for informative frame detection by isolating useless frames that are substantially covered by turbid fluids or their contamination with other materials, e.g., faecal, semi-processed or unabsorbed foods etc. Such materials and fluids present a wide range of colors, from brown to yellow, and/or bubble-like texture patterns. The detection scheme, therefore, consists of two stages: highly contaminated non-bubbled (HCN) frame detection and significantly bubbled (SB) frame detection. Local color moments in the Ohta color space are used to characterize HCN frames, which are isolated by the Support Vector Machine (SVM) classifier in Stage-1. The rest of the frames go to the Stage-2, where Laguerre gauss Circular Harmonic Functions (LG-CHFs) extract the characteristics of the bubble-structures in a multi-resolution framework. An automatic segmentation method is designed to extract the bubbled regions based on local absolute energies of the CHF responses, derived from the grayscale version of the original color image. Final detection of the informative frames is obtained by using threshold operation on the extracted regions. An experiment with 20,558 frames from the three videos shows the excellent average detection accuracy (96.75%) by the proposed method, when compared with the Gabor based- (74.29%) and discrete wavelet based features (62.21%).

  9. Affinity Biosensors for Detection of Mycotoxins in Food.

    PubMed

    Evtugyn, Gennady; Subjakova, Veronika; Melikishvili, Sopio; Hianik, Tibor

    2018-01-01

    This chapter reviews recent achievements in methods of detection of mycotoxins in food. Special focus is on the biosensor technology that utilizes antibodies and nucleic acid aptamers as receptors. Development of biosensors is based on the immobilization of antibodies or aptamers onto various conventional supports like gold layer, but also on nanomaterials such as graphene oxide, carbon nanotubes, and quantum dots that provide an effective platform for achieving high sensitivity of detection using various physical methods, including electrochemical, mass sensitive, and optical. The biosensors developed so far demonstrate high sensitivity typically in subnanomolar limit of detection. Several biosensors have been validated in real samples. The sensitivity of biosensors is similar and, in some cases, even better than traditional analytical methods such as ELISA or chromatography. We believe that future trends will be focused on improving biosensor properties toward practical application in food industry. © 2018 Elsevier Inc. All rights reserved.

  10. R and D program for French sodium fast reactor: On the description and detection of sodium boiling phenomena during sub-assembly blockages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderhaegen, M.; Laboratory of Waves and Acoustic, Institut Langevin, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris; Paumel, K.

    2011-07-01

    In support of the French ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) reactor program, which aims to demonstrate the industrial applicability of sodium fast reactors with an increased level of safety demonstration and availability compared to the past French sodium fast reactors, emphasis is placed on reactor instrumentation. It is in this framework that CEA studies continuous core monitoring to detect as early as possible the onset of sodium boiling. Such a detection system is of particular interest due to the rapid progress and the consequences of a Total Instantaneous Blockage (TIB) at a subassembly inlet, where sodium boilingmore » intervenes in an early phase. In this paper, the authors describe all the particularities which intervene during the different boiling stages and explore possibilities for their detection. (authors)« less

  11. Computer aided detection system for Osteoporosis using low dose thoracic 3D CT images

    NASA Astrophysics Data System (ADS)

    Tsuji, Daisuke; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Harada, Masafumi; Kusumoto, Masahiko; Tsuchida, Takaaki; Eguchi, Kenji; Kaneko, Masahiro

    2018-02-01

    The patient of osteoporosis is about 13 million people in Japan and it is one of healthy life problems in the aging society. It is necessary to do early stage detection and treatment in order to prevent the osteoporosis. Multi-slice CT technology has been improving the three dimensional (3D) image analysis with higher resolution and shorter scan time. The 3D image analysis of thoracic vertebra can be used for supporting to diagnosis of osteoporosis. This analysis can be used for lung cancer detection at the same time. We develop method of shape analysis and CT values of spongy bone for the detection osteoporosis. Osteoporosis and lung cancer screening show high extraction rate by the thoracic vertebral evaluation CT images. In addition, we created standard pattern of CT value per thoracic vertebra for male age group using 298 low dose data.

  12. The « Intelligent Wardrobe ».

    PubMed

    Schaad, Philipp; Basler, Saskia; Medini, Meriam; Wissler, Ivan; Bürkle, Thomas; Lehmann, Michael

    2016-01-01

    In an ageing society technical systems that support the residents at home are becoming increasingly important. Many of the technologies available today focus on detecting falls or monitoring the health of residents. There are a few projects that focus the « smart home for the elderly » and offer support for the daily activities. The Institute of Medical Informatics of the Bern University of Applied Sciences has developed a prototype of an intelligent wardrobe. Based on sensor data from the apartment like inside temperature, weather forecast and todays events suggestions for appropriate clothes are generated and shown on a display. To facilitate the search, the garments are marked in the closet with colored LEDs.

  13. The future of viral hepatitis testing: innovations in testing technologies and approaches.

    PubMed

    Peeling, Rosanna W; Boeras, Debrah I; Marinucci, Francesco; Easterbrook, Philippa

    2017-11-01

    A large burden of undiagnosed hepatitis virus cases remains globally. Despite the 257 million people living with chronic hepatitis B virus infection, and 71 million with chronic viraemic HCV infection, most people with hepatitis remain unaware of their infection. Advances in rapid detection technology have created new opportunities for enhancing access to testing and care, as well as monitoring of treatment. This article examines a range of other technological innovations that can be leveraged to provide more affordable and simplified approaches to testing for HBV and HCV infection and monitoring of treatment response. These include improved access to testing through alternative sampling methods (use of dried blood spots, oral fluids, self-testing) and combination rapid diagnostic tests for detection of HIV, HBV and HCV infection; more affordable options for confirmation of virological infection (HBV DNA and HCV RNA) such as point-of-care molecular assays, HCV core antigen and multi-disease polyvalent molecular platforms that make use of existing centralised laboratory based or decentralised TB and HIV instrumentation for viral hepatitis testing; and finally health system improvements such as integration of laboratory services for procurement and sample transportation and enhanced data connectivity to support quality assurance and supply chain management.

  14. E-DECIDER Disaster Response and Decision Support Cyberinfrastructure: Technology and Challenges

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Parker, J. W.; Pierce, M. E.; Wang, J.; Eguchi, R. T.; Huyck, C. K.; Hu, Z.; Chen, Z.; Yoder, M. R.; Rundle, J. B.; Rosinski, A.

    2014-12-01

    Timely delivery of critical information to decision makers during a disaster is essential to response and damage assessment. Key issues to an efficient emergency response after a natural disaster include rapidly processing and delivering this critical information to emergency responders and reducing human intervention as much as possible. Essential elements of information necessary to achieve situational awareness are often generated by a wide array of organizations and disciplines, using any number of geospatial and non-geospatial technologies. A key challenge is the current state of practice does not easily support information sharing and technology interoperability. NASA E-DECIDER (Emergency Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response) has worked with the California Earthquake Clearinghouse and its partners to address these issues and challenges by adopting the XChangeCore Web Service Data Orchestration technology and participating in several earthquake response exercises. The E-DECIDER decision support system provides rapid delivery of advanced situational awareness data products to operations centers and emergency responders in the field. Remote sensing and hazard data, model-based map products, information from simulations, damage detection, and crowdsourcing is integrated into a single geospatial view and delivered through a service oriented architecture for improved decision-making and then directly to mobile devices of responders. By adopting a Service Oriented Architecture based on Open Geospatial Consortium standards, the system provides an extensible, comprehensive framework for geospatial data processing and distribution on Cloud platforms and other distributed environments. While the Clearinghouse and its partners are not first responders, they do support the emergency response community by providing information about the damaging effects earthquakes. It is critical for decision makers to maintain a situational awareness that is knowledgeable of potential and current conditions, possible impacts on populations and infrastructure, and other key information. E-DECIDER and the Clearinghouse have worked together to address many of these issues and challenges to deliver interoperable, authoritative decision support products.

  15. Low Level Leaks

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA has transferred the improved portable leak detector technology to UE Systems, Inc.. This instrument was developed to detect leaks in fluid systems of critical launch and ground support equipment. This system incorporates innovative electronic circuitry, improved transducers, collecting horns, and contact sensors that provide a much higher degree of reliability, sensitivity and versatility over previously used systems. Potential commercial uses are pipelines, underground utilities, air-conditioning systems, petrochemical systems, aerospace, power transmission lines and medical devices.

  16. Advanced life support technology development for the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Evanich, Peggy L.; Voecks, Gerald E.; Seshan, P. K.

    1990-01-01

    An overview is presented of NASA's advanced life support technology development strategy for the Space Exploration Initiative. Three basic life support technology areas are discussed in detail: air revitalization, water reclamation, and solid waste management. It is projected that regenerative life support systems will become increasingly more complex as system closure is maximized. Advanced life support technology development will utilize three complementary elements, including the Research and Technology Program, the Regenerative Life Support Program, and the Technology Testbed Validations.

  17. Lunar Surface Systems Supportability Technology Development Roadmap

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Struk, Peter M.; Green, Jennifer L.; Chau, Savio N.; Curell, Philip C.; Dempsey, Cathy A.; Patterson, Linda P.; Robbins, William; Steele, Michael A.; DAnnunzio, Anthony; hide

    2011-01-01

    The Lunar Surface Systems Supportability Technology Development Roadmap is a guide for developing the technologies needed to enable the supportable, sustainable, and affordable exploration of the Moon and other destinations beyond Earth. Supportability is defined in terms of space maintenance, repair, and related logistics. This report considers the supportability lessons learned from NASA and the Department of Defense. Lunar Outpost supportability needs are summarized, and a supportability technology strategy is established to make the transition from high logistics dependence to logistics independence. This strategy will enable flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. The supportability roadmap defines the general technology selection criteria. Technologies are organized into three categories: diagnostics, test, and verification; maintenance and repair; and scavenge and recycle. Furthermore, "embedded technologies" and "process technologies" are used to designate distinct technology types with different development cycles. The roadmap examines the current technology readiness level and lays out a four-phase incremental development schedule with selection decision gates. The supportability technology roadmap is intended to develop technologies with the widest possible capability and utility while minimizing the impact on crew time and training and remaining within the time and cost constraints of the program.

  18. Spectral unmixing of agents on surfaces for the Joint Contaminated Surface Detector (JCSD)

    NASA Astrophysics Data System (ADS)

    Slamani, Mohamed-Adel; Chyba, Thomas H.; LaValley, Howard; Emge, Darren

    2007-09-01

    ITT Corporation, Advanced Engineering and Sciences Division, is currently developing the Joint Contaminated Surface Detector (JCSD) technology under an Advanced Concept Technology Demonstration (ACTD) managed jointly by the U.S. Army Research, Development, and Engineering Command (RDECOM) and the Joint Project Manager for Nuclear, Biological, and Chemical Contamination Avoidance for incorporation on the Army's future reconnaissance vehicles. This paper describes the design of the chemical agent identification (ID) algorithm associated with JCSD. The algorithm detects target chemicals mixed with surface and interferent signatures. Simulated data sets were generated from real instrument measurements to support a matrix of parameters based on a Design Of Experiments approach (DOE). Decisions based on receiver operating characteristics (ROC) curves and area-under-the-curve (AUC) measures were used to down-select between several ID algorithms. Results from top performing algorithms were then combined via a fusion approach to converge towards optimum rates of detections and false alarms. This paper describes the process associated with the algorithm design and provides an illustrating example.

  19. Fall Down Detection Under Smart Home System.

    PubMed

    Juang, Li-Hong; Wu, Ming-Ni

    2015-10-01

    Medical technology makes an inevitable trend for the elderly population, therefore the intelligent home care is an important direction for science and technology development, in particular, elderly in-home safety management issues become more and more important. In this research, a low of operation algorithm and using the triangular pattern rule are proposed, then can quickly detect fall-down movements of humanoid by the installation of a robot with camera vision at home that will be able to judge the fall-down movements of in-home elderly people in real time. In this paper, it will present a preliminary design and experimental results of fall-down movements from body posture that utilizes image pre-processing and three triangular-mass-central points to extract the characteristics. The result shows that the proposed method would adopt some characteristic value and the accuracy can reach up to 90 % for a single character posture. Furthermore the accuracy can be up to 100 % when a continuous-time sampling criterion and support vector machine (SVM) classifier are used.

  20. Cold-Rolled Strip Steel Stress Detection Technology Based on a Magnetoresistance Sensor and the Magnetoelastic Effect

    PubMed Central

    Guan, Ben; Zang, Yong; Han, Xiaohui; Zheng, Kailun

    2018-01-01

    Driven by the demands for contactless stress detection, technologies are being used for shape control when producing cold-rolled strips. This paper presents a novel contactless stress detection technology based on a magnetoresistance sensor and the magnetoelastic effect, enabling the detection of internal stress in manufactured cold-rolled strips. An experimental device was designed and produced. Characteristics of this detection technology were investigated through experiments assisted by theoretical analysis. Theoretically, a linear correlation exists between the internal stress of strip steel and the voltage output of a magneto-resistive sensor. Therefore, for this stress detection system, the sensitivity of the stress detection was adjusted by adjusting the supply voltage of the magnetoresistance sensor, detection distance, and other relevant parameters. The stress detection experimental results showed that this detection system has good repeatability and linearity. The detection error was controlled within 1.5%. Moreover, the intrinsic factors of the detected strip steel, including thickness, carbon percentage, and crystal orientation, also affected the sensitivity of the detection system. The detection technology proposed in this research enables online contactless detection and meets the requirements for cold-rolled steel strips. PMID:29883387

  1. Cold-Rolled Strip Steel Stress Detection Technology Based on a Magnetoresistance Sensor and the Magnetoelastic Effect.

    PubMed

    Guan, Ben; Zang, Yong; Han, Xiaohui; Zheng, Kailun

    2018-05-21

    Driven by the demands for contactless stress detection, technologies are being used for shape control when producing cold-rolled strips. This paper presents a novel contactless stress detection technology based on a magnetoresistance sensor and the magnetoelastic effect, enabling the detection of internal stress in manufactured cold-rolled strips. An experimental device was designed and produced. Characteristics of this detection technology were investigated through experiments assisted by theoretical analysis. Theoretically, a linear correlation exists between the internal stress of strip steel and the voltage output of a magneto-resistive sensor. Therefore, for this stress detection system, the sensitivity of the stress detection was adjusted by adjusting the supply voltage of the magnetoresistance sensor, detection distance, and other relevant parameters. The stress detection experimental results showed that this detection system has good repeatability and linearity. The detection error was controlled within 1.5%. Moreover, the intrinsic factors of the detected strip steel, including thickness, carbon percentage, and crystal orientation, also affected the sensitivity of the detection system. The detection technology proposed in this research enables online contactless detection and meets the requirements for cold-rolled steel strips.

  2. Preliminary Findings of Inflight Icing Field Test to Support Icing Remote Sensing Technology Assessment

    NASA Technical Reports Server (NTRS)

    King, Michael; Reehorst, Andrew; Serke, Dave

    2015-01-01

    NASA and the National Center for Atmospheric Research have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology has recently been extended to provide volumetric coverage surrounding an airport. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize a vertical pointing cloud radar, a multifrequency microwave radiometer with azimuth and elevation pointing, and a NEXRAD radar. The new terminal area icing remote sensing system processes the data streams from these instruments to derive temperature, liquid water content, and cloud droplet size for each examined point in space. These data are then combined to ultimately provide icing hazard classification along defined approach paths into an airport.

  3. Earth benefits from space life sciences

    NASA Technical Reports Server (NTRS)

    Garshnek, V.; Nicogossian, A. E.; Griffiths, L.

    1990-01-01

    Contributions of space exploration which are widely recognized are those dealing with the impact of space technology on public health and medical services in both urban and remote rural areas. Telecommunications, image enhancement, 3-dimensional image reconstructions, miniaturization, automation, and data analysis, have transformed the delivery of medical care and have brought about a new impetus to the field of biomedicine. Many areas of medical care and biological research have been affected. These include technological breakthroughs in such areas as: (1) diagnosis, treatment, and prevention of cardiovascular diseases, (2) new approaches to the understanding of osteoporosis, (3) early detection of genetic birth defects, (4) emergency medical care, and (5) treatment of chronic metabolic disorders. These are but a few examples where technology originally developed to support space medicine or space research has been applied to solving medical and health care delivery problems on Earth.

  4. Theory and experiments in model-based space system anomaly management

    NASA Astrophysics Data System (ADS)

    Kitts, Christopher Adam

    This research program consists of an experimental study of model-based reasoning methods for detecting, diagnosing and resolving anomalies that occur when operating a comprehensive space system. Using a first principles approach, several extensions were made to the existing field of model-based fault detection and diagnosis in order to develop a general theory of model-based anomaly management. Based on this theory, a suite of algorithms were developed and computationally implemented in order to detect, diagnose and identify resolutions for anomalous conditions occurring within an engineering system. The theory and software suite were experimentally verified and validated in the context of a simple but comprehensive, student-developed, end-to-end space system, which was developed specifically to support such demonstrations. This space system consisted of the Sapphire microsatellite which was launched in 2001, several geographically distributed and Internet-enabled communication ground stations, and a centralized mission control complex located in the Space Technology Center in the NASA Ames Research Park. Results of both ground-based and on-board experiments demonstrate the speed, accuracy, and value of the algorithms compared to human operators, and they highlight future improvements required to mature this technology.

  5. Advanced Research Projects Agency counterdrug program

    NASA Astrophysics Data System (ADS)

    Pennella, John J.

    1994-03-01

    The Department of Defense (DoD), in support of the National Drug Control Strategy, has designated that detecting and countering the production, trafficking and use of illegal drugs is a high priority national security mission. The Advanced Research Projects Agency (ARPA) Counterdrug Program is assisting DoD in this objective by developing technology and prototype systems to enhance the capabilities of the DoD and civilian law enforcement agencies, consistent with the DoD mission and the supply reduction goals of the National Drug Control Strategy. The objective of this paper is to summarize the current ARPA Counterdrug Program, with special emphasis on the current efforts and future plans for developing technology to meet the National needs for Non-Intrusive Inspection.

  6. Materials Degradation and Detection (MD2): Deep Dive Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.; Montgomery, Robert O.; Ramuhalli, Pradeep

    2013-02-01

    An effort is underway at Pacific Northwest National Laboratory (PNNL) to develop a fundamental and general framework to foster the science and technology needed to support real-time monitoring of early degradation in materials used in the production of nuclear power. The development of such a capability would represent a timely solution to the mounting issues operators face with materials degradation in nuclear power plants. The envisioned framework consists of three primary and interconnected “thrust” areas including 1) microstructural science, 2) behavior assessment, and 3) monitoring and predictive capabilities. A brief state-of-the-art assessment for each of these core technology areas ismore » discussed in the paper.« less

  7. An advanced SEU tolerant latch based on error detection

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Zhu, Jianwei; Lu, Xiaoping; Li, Jingzhao

    2018-05-01

    This paper proposes a latch that can mitigate SEUs via an error detection circuit. The error detection circuit is hardened by a C-element and a stacked PMOS. In the hold state, a particle strikes the latch or the error detection circuit may cause a fault logic state of the circuit. The error detection circuit can detect the upset node in the latch and the fault output will be corrected. The upset node in the error detection circuit can be corrected by the C-element. The power dissipation and propagation delay of the proposed latch are analyzed by HSPICE simulations. The proposed latch consumes about 77.5% less energy and 33.1% less propagation delay than the triple modular redundancy (TMR) latch. Simulation results demonstrate that the proposed latch can mitigate SEU effectively. Project supported by the National Natural Science Foundation of China (Nos. 61404001, 61306046), the Anhui Province University Natural Science Research Major Project (No. KJ2014ZD12), the Huainan Science and Technology Program (No. 2013A4011), and the National Natural Science Foundation of China (No. 61371025).

  8. EGFR mutation detection in ctDNA from NSCLC patient plasma: A cross-platform comparison of leading technologies to support the clinical development of AZD9291.

    PubMed

    Thress, Kenneth S; Brant, Roz; Carr, T Hedley; Dearden, Simon; Jenkins, Suzanne; Brown, Helen; Hammett, Tracey; Cantarini, Mireille; Barrett, J Carl

    2015-12-01

    To assess the ability of different technology platforms to detect epidermal growth factor receptor (EGFR) mutations, including T790M, from circulating tumor DNA (ctDNA) in advanced non-small cell lung cancer (NSCLC) patients. A comparison of multiple platforms for detecting EGFR mutations in plasma ctDNA was undertaken. Plasma samples were collected from patients entering the ongoing AURA trial (NCT01802632), investigating the safety, tolerability, and efficacy of AZD9291 in patients with EGFR-sensitizing mutation-positive NSCLC. Plasma was collected prior to AZD9291 dosing but following clinical progression on a previous EGFR-tyrosine kinase inhibitor (TKI). Extracted ctDNA was analyzed using two non-digital platforms (cobas(®) EGFR Mutation Test and therascreen™ EGFR amplification refractory mutation system assay) and two digital platforms (Droplet Digital™ PCR and BEAMing digital PCR [dPCR]). Preliminary assessment (38 samples) was conducted using all four platforms. For EGFR-TKI-sensitizing mutations, high sensitivity (78-100%) and specificity (93-100%) were observed using tissue as a non-reference standard. For the T790M mutation, the digital platforms outperformed the non-digital platforms. Subsequent assessment using 72 additional baseline plasma samples was conducted using the cobas(®) EGFR Mutation Test and BEAMing dPCR. The two platforms demonstrated high sensitivity (82-87%) and specificity (97%) for EGFR-sensitizing mutations. For the T790M mutation, the sensitivity and specificity were 73% and 67%, respectively, with the cobas(®) EGFR Mutation Test, and 81% and 58%, respectively, with BEAMing dPCR. Concordance between the platforms was >90%, showing that multiple platforms are capable of sensitive and specific detection of EGFR-TKI-sensitizing mutations from NSCLC patient plasma. The cobas(®) EGFR Mutation Test and BEAMing dPCR demonstrate a high sensitivity for T790M mutation detection. Genomic heterogeneity of T790M-mediated resistance may explain the reduced specificity observed with plasma-based detection of T790M mutations versus tissue. These data support the use of both platforms in the AZD9291 clinical development program. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. Survey of Ultra-wideband Radar

    NASA Astrophysics Data System (ADS)

    Mokole, Eric L.; Hansen, Pete

    The development of UWB radar over the last four decades is very briefly summarized. A discussion of the meaning of UWB is followed by a short history of UWB radar developments and discussions of key supporting technologies and current UWB radars. Selected UWB radars and the associated applications are highlighted. Applications include detecting and imaging buried mines, detecting and mapping underground utilities, detecting and imaging objects obscured by foliage, through-wall detection in urban areas, short-range detection of suicide bombs, and the characterization of the impulse responses of various artificial and naturally occurring scattering objects. In particular, the Naval Research Laboratory's experimental, low-power, dual-polarized, short-pulse, ultra-high resolution radar is used to discuss applications and issues of UWB radar. Some crucial issues that are problematic to UWB radar are spectral availability, electromagnetic interference and compatibility, difficulties with waveform control/shaping, hardware limitations in the transmission chain, and the unreliability of high-power sources for sustained use above 2 GHz.

  10. Drunk driving detection based on classification of multivariate time series.

    PubMed

    Li, Zhenlong; Jin, Xue; Zhao, Xiaohua

    2015-09-01

    This paper addresses the problem of detecting drunk driving based on classification of multivariate time series. First, driving performance measures were collected from a test in a driving simulator located in the Traffic Research Center, Beijing University of Technology. Lateral position and steering angle were used to detect drunk driving. Second, multivariate time series analysis was performed to extract the features. A piecewise linear representation was used to represent multivariate time series. A bottom-up algorithm was then employed to separate multivariate time series. The slope and time interval of each segment were extracted as the features for classification. Third, a support vector machine classifier was used to classify driver's state into two classes (normal or drunk) according to the extracted features. The proposed approach achieved an accuracy of 80.0%. Drunk driving detection based on the analysis of multivariate time series is feasible and effective. The approach has implications for drunk driving detection. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.

  11. Approach to technology prioritization in support of moon initiatives in the framework of ESA exploration technology roadmaps

    NASA Astrophysics Data System (ADS)

    Aleina, Sara Cresto; Viola, Nicole; Fusaro, Roberta; Saccoccia, Giorgio

    2017-10-01

    Exploration technology roadmaps have been developed by ESA in the past few years and the latest edition has been released in 2015. Scope of these technology roadmaps, elaborated in consultation with the different ESA stakeholders (e.g. European Industries and Research Entities), is to provide a powerful tool for strategic, programmatic and technical decisions in support of the European role within an International Space Exploration context. In the context of preparation for possible future European Moon exploration initiatives, the technology roadmaps have been used to highlight the role of technology within Missions, Building Blocks and Operational Capabilities of relevance. In particular, as part of reference missions to the Moon that would fit in the time frame 2020 to 2030, ESA has addressed the definition of lunar surface exploration missions in line with its space exploration strategy, with the common mission goals of returning samples from the Moon and Mars and expanding human presence to these destinations in a step-wise approach. The roadmaps for the procurement of technologies required for the first mission elements of the above strategy have been elaborated through their main building blocks, i.e. Visual navigation, Hazard detection and avoidance; Sample acquisition, processing and containment system; Surface mobility elements; Tele-robotic and autonomous control systems; and Storable propulsion modules and equipment. Technology prioritization methodologies have been developed in support of the ESA Exploration Technology Roadmaps, in order to provide logical and quantitative instruments to verify choices of prioritization that can be carried out based on important, but non-quantitative factors. These methodologies, which are thoroughly described in the first part of the paper, proceed through subsequent steps. First, technology prioritization's criteria are selected; then decision trees are developed to highlight all feasible paths of combination of technology prioritization's criteria and to assess the final achievement of each path, i.e. the cost-effectiveness. The risk associated to each path is also evaluated. In the second part of the paper, these prioritization methodologies have been applied to some of the building blocks of relevance for the mission concepts under evaluation at ESA (such as Tele-robotic and autonomous control systems; Storable propulsion modules and equipment) and the results are presented to highlight the approach for an effective TRL increase. Eventually main conclusions are drawn.

  12. Robotic surgery in cancer care: opportunities and challenges.

    PubMed

    Mohammadzadeh, Niloofar; Safdari, Reza

    2014-01-01

    Malignancy-associated mortality, decreased productivity, and spiritual, social and physical burden in cancer patients and their families impose heavy costs on communities. Therefore cancer prevention, early detection, rapid diagnosis and timely treatment are very important. Use of modern methods based on information technology in cancer can improve patient survival and increase patient and health care provider satisfaction. Robot technology is used in different areas of health care and applications in surgery have emerged affecting the cancer treatment domain. Computerized and robotic devices can offer enhanced dexterity by tremor abolition, motion scaling, high quality 3D vision for surgeons and decreased blood loss, significant reduction in narcotic use, and reduced hospital stay for patients. However, there are many challenges like lack of surgical community support, large size, high costs and absence of tactile and haptic feedback. A comprehensive view to identify all factors in different aspects such as technical, legal and ethical items that prevent robotic surgery adoption is thus very necessary. Also evidence must be presented to surgeons to achieve appropriate support from physicians. The aim of this review article is to survey applications, opportunities and barriers to this advanced technology in patients and surgeons as an approach to improve cancer care.

  13. Estimating The Rate of Technology Adoption for Cockpit Weather Information Systems

    NASA Technical Reports Server (NTRS)

    Kauffmann, Paul; Stough, H. P.

    2000-01-01

    In February 1997, President Clinton announced a national goal to reduce the weather related fatal accident rate for aviation by 80% in ten years. To support that goal, NASA established an Aviation Weather Information Distribution and Presentation Project to develop technologies that will provide timely and intuitive information to pilots, dispatchers, and air traffic controllers. This information should enable the detection and avoidance of atmospheric hazards and support an improvement in the fatal accident rate related to weather. A critical issue in the success of NASA's weather information program is the rate at which the market place will adopt this new weather information technology. This paper examines that question by developing estimated adoption curves for weather information systems in five critical aviation segments: commercial, commuter, business, general aviation, and rotorcraft. The paper begins with development of general product descriptions. Using this data, key adopters are surveyed and estimates of adoption rates are obtained. These estimates are regressed to develop adoption curves and equations for weather related information systems. The paper demonstrates the use of adoption rate curves in product development and research planning to improve managerial decision processes and resource allocation.

  14. Usability evaluation of a medication reconciliation tool: Embedding safety probes to assess users' detection of medication discrepancies.

    PubMed

    Russ, Alissa L; Jahn, Michelle A; Patel, Himalaya; Porter, Brian W; Nguyen, Khoa A; Zillich, Alan J; Linsky, Amy; Simon, Steven R

    2018-06-01

    An electronic medication reconciliation tool was previously developed by another research team to aid provider-patient communication for medication reconciliation. To evaluate the usability of this tool, we integrated artificial safety probes into standard usability methods. The objective of this article is to describe this method of using safety probes, which enabled us to evaluate how well the tool supports users' detection of medication discrepancies. We completed a mixed-method usability evaluation in a simulated setting with 30 participants: 20 healthcare professionals (HCPs) and 10 patients. We used factual scenarios but embedded three artificial safety probes: (1) a missing medication (i.e., omission); (2) an extraneous medication (i.e., commission); and (3) an inaccurate dose (i.e., dose discrepancy). We measured users' detection of each probe to estimate the probability that a HCP or patient would detect these discrepancies. Additionally, we recorded participants' detection of naturally occurring discrepancies. Each safety probe was detected by ≤50% of HCPs. Patients' detection rates were generally higher. Estimates indicate that a HCP and patient, together, would detect 44.8% of these medication discrepancies. Additionally, HCPs and patients detected 25 and 45 naturally-occurring discrepancies, respectively. Overall, detection of medication discrepancies was low. Findings indicate that more advanced interface designs are warranted. Future research is needed on how technologies can be designed to better aid HCPs' and patients' detection of medication discrepancies. This is one of the first studies to evaluate the usability of a collaborative medication reconciliation tool and assess HCPs' and patients' detection of medication discrepancies. Results demonstrate that embedded safety probes can enhance standard usability methods by measuring additional, clinically-focused usability outcomes. The novel safety probes we used may serve as an initial, standard set for future medication reconciliation research. More prevalent use of safety probes could strengthen usability research for a variety of health information technologies. Published by Elsevier Inc.

  15. Applications of a Forward-Looking Interferometer for the On-board Detection of Aviation Weather Hazards

    NASA Technical Reports Server (NTRS)

    West, Leanne; Gimmestad, Gary; Smith, William; Kireev, Stanislav; Cornman, Larry B.; Schaffner, Philip R.; Tsoucalas, George

    2008-01-01

    The Forward-Looking Interferometer (FLI) is a new instrument concept for obtaining measurements of potential weather hazards to alert flight crews. The FLI concept is based on high-resolution Infrared (IR) Fourier Transform Spectrometry (FTS) technologies that have been developed for satellite remote sensing, and which have also been applied to the detection of aerosols and gases for other purposes. It is being evaluated for multiple hazards including clear air turbulence (CAT), volcanic ash, wake vortices, low slant range visibility, dry wind shear, and icing, during all phases of flight. Previous sensitivity and characterization studies addressed the phenomenology that supports detection and mitigation by the FLI. Techniques for determining the range, and hence warning time, were demonstrated for several of the hazards, and a table of research instrument parameters was developed for investigating all of the hazards discussed above. This work supports the feasibility of detecting multiple hazards with an FLI multi-hazard airborne sensor, and for producing enhanced IR images in reduced visibility conditions; however, further research must be performed to develop a means to estimate the intensities of the hazards posed to an aircraft and to develop robust algorithms to relate sensor measurables to hazard levels. In addition, validation tests need to be performed with a prototype system.

  16. Clinical testing of BRCA1 and BRCA2: a worldwide snapshot of technological practices.

    PubMed

    Toland, Amanda Ewart; Forman, Andrea; Couch, Fergus J; Culver, Julie O; Eccles, Diana M; Foulkes, William D; Hogervorst, Frans B L; Houdayer, Claude; Levy-Lahad, Ephrat; Monteiro, Alvaro N; Neuhausen, Susan L; Plon, Sharon E; Sharan, Shyam K; Spurdle, Amanda B; Szabo, Csilla; Brody, Lawrence C

    2018-01-01

    Clinical testing of BRCA1 and BRCA2 began over 20 years ago. With the expiration and overturning of the BRCA patents, limitations on which laboratories could offer commercial testing were lifted. These legal changes occurred approximately the same time as the widespread adoption of massively parallel sequencing (MPS) technologies. Little is known about how these changes impacted laboratory practices for detecting genetic alterations in hereditary breast and ovarian cancer genes. Therefore, we sought to examine current laboratory genetic testing practices for BRCA1 / BRCA2 . We employed an online survey of 65 questions covering four areas: laboratory characteristics, details on technological methods, variant classification, and client-support information. Eight United States (US) laboratories and 78 non-US laboratories completed the survey. Most laboratories (93%; 80/86) used MPS platforms to identify variants. Laboratories differed widely on: (1) technologies used for large rearrangement detection; (2) criteria for minimum read depths; (3) non-coding regions sequenced; (4) variant classification criteria and approaches; (5) testing volume ranging from 2 to 2.5 × 10 5 tests annually; and (6) deposition of variants into public databases. These data may be useful for national and international agencies to set recommendations for quality standards for BRCA1/BRCA2 clinical testing. These standards could also be applied to testing of other disease genes.

  17. Enhanced In-Pile Instrumentation at the Advanced Test Reactor

    NASA Astrophysics Data System (ADS)

    Rempe, Joy L.; Knudson, Darrell L.; Daw, Joshua E.; Unruh, Troy; Chase, Benjamin M.; Palmer, Joe; Condie, Keith G.; Davis, Kurt L.

    2012-08-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper provides an update on this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

  18. A Genetic Algorithm Approach to Motion Sensor Placement in Smart Environments.

    PubMed

    Thomas, Brian L; Crandall, Aaron S; Cook, Diane J

    2016-04-01

    Smart environments and ubiquitous computing technologies hold great promise for a wide range of real world applications. The medical community is particularly interested in high quality measurement of activities of daily living. With accurate computer modeling of older adults, decision support tools may be built to assist care providers. One aspect of effectively deploying these technologies is determining where the sensors should be placed in the home to effectively support these end goals. This work introduces and evaluates a set of approaches for generating sensor layouts in the home. These approaches range from the gold standard of human intuition-based placement to more advanced search algorithms, including Hill Climbing and Genetic Algorithms. The generated layouts are evaluated based on their ability to detect activities while minimizing the number of needed sensors. Sensor-rich environments can provide valuable insights about adults as they go about their lives. These sensors, once in place, provide information on daily behavior that can facilitate an aging-in-place approach to health care.

  19. A Genetic Algorithm Approach to Motion Sensor Placement in Smart Environments

    PubMed Central

    Thomas, Brian L.; Crandall, Aaron S.; Cook, Diane J.

    2016-01-01

    Smart environments and ubiquitous computing technologies hold great promise for a wide range of real world applications. The medical community is particularly interested in high quality measurement of activities of daily living. With accurate computer modeling of older adults, decision support tools may be built to assist care providers. One aspect of effectively deploying these technologies is determining where the sensors should be placed in the home to effectively support these end goals. This work introduces and evaluates a set of approaches for generating sensor layouts in the home. These approaches range from the gold standard of human intuition-based placement to more advanced search algorithms, including Hill Climbing and Genetic Algorithms. The generated layouts are evaluated based on their ability to detect activities while minimizing the number of needed sensors. Sensor-rich environments can provide valuable insights about adults as they go about their lives. These sensors, once in place, provide information on daily behavior that can facilitate an aging-in-place approach to health care. PMID:27453810

  20. Development of the reactor antineutrino detection technology within the iDream project

    NASA Astrophysics Data System (ADS)

    Gromov, M.; Kuznetsov, D.; Murchenko, A.; Novikova, G.; Obinyakov, B.; Oralbaev, A.; Plakitina, K.; Skorokhvatov, M.; Sukhotin, S.; Chepurnov, A.; Etenko, A.

    2017-12-01

    The iDREAM (industrial Detector for reactor antineutrino monitoring) project is aimed at remote monitoring of the operating modes of the atomic reactor on nuclear power plant to ensure a technical support of IAEA non-proliferation safeguards. The detector is a scintillator spectrometer. The sensitive volume (target) is filled with a liquid organic scintillator based on linear alkylbenzene where reactor antineutrinos will be detected via inverse beta-decay reaction. We present first results of laboratory tests after physical launch. The detector was deployed at sea level without background shielding. The number of calibrations with radioactive sources was conducted. All data were obtained by means of a slow control system which was put into operation.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khromova, Irina; Kužel, Petr; Brener, Igal

    Monocrystalline titanium dioxide (TiO 2) micro-spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii inline imagem through near-field time-domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub-wavelength aperture probe, we found that the magnetic dipole resonances in TiO 2 spheres have narrow linewidths of only tens of gigahertz. Lastly, anisotropic TiO 2 micro-resonators can be used to enhance the interplay of magneticmore » and electric dipole resonances in the emerging THz all-dielectric metamaterial technology.« less

  2. Application of new electro-optic technology to Space Station Freedom data management system

    NASA Technical Reports Server (NTRS)

    Husbands, C. R.; Girard, M. M.

    1993-01-01

    A low risk design methodology to permit the local bus structures to support increased data carrying capacities and to speed messages and data flow between nodes or stations on the Space Station Freedom Data Management System in anticipation of growing requirements was evaluated and recommended. The recommended design employs a collateral fiber optic technique that follows a NATO avionic standard that is developed, tested, and available. Application of this process will permit a potential 25 fold increase in data transfer performance on the local wire bus network with a fiber optic network, maintaining the functionality of the low-speed bus and supporting all of the redundant transmission and fault detection capabilities designed into the existing system. The application of wavelength division multiplexing (WDM) technology to both the local data bus and global data bus segments of the Data Management System to support anticipated additional highspeed data transmission requirements was also examined. Techniques were examined to provide a dual wavelength implementation of the fiber optic collateral networks. This dual wavelength implementation would permit each local bus to support two simultaneous high-speed transfers on the same fiber optic bus structure and operate within the limits of the existing protocol standard. A second WDM study examined the use of spectral sliced technology to provide a fourfold increase in the Fiber Distributed Data Interface (FDDI) global bus networks without requiring modifications to the existing installed cable plant. Computer simulations presented indicated that this data rate improvement can be achieved with commercially available optical components.

  3. Homeland Security Research Improves the Nation's Ability to ...

    EPA Pesticide Factsheets

    Technical Brief Homeland Security (HS) Research develops data, tools, and technologies to minimize the impact of accidents, natural disasters, terrorist attacks, and other incidents that can result in toxic chemical, biological or radiological (CBR) contamination. HS Research develops ways to detect contamination, sampling strategies, sampling and analytical methods, cleanup methods, waste management approaches, exposure assessment methods, and decision support tools (including water system models). These contributions improve EPA’s response to a broad range of environmental disasters.

  4. Solid-State High Power Radio Frequency Directed Energy Systems in Support of USMC Force Protection Operations

    DTIC Science & Technology

    2015-06-01

    Washington Post. May 7, 2015. 6 Defense has spent upward of $75 billion on new equipment, specialized units, and infrastructure against the deadly weapon...resources, in blood and treasure, spent to combat them. Observers will argue that vehicles used in suicide attempts have been used against the United...Technology Priorities list. It states that resources should be spent to, “create a capability to detect and neutralize suicide bombers including person

  5. Improving Data Collection and Analysis Interface for the Data Acquisition Software of the Spin Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Curatolo, Ben S.; Woike, Mark R.

    2011-01-01

    In jet engines, turbines spin at high rotational speeds. The forces generated from these high speeds make the rotating components of the turbines susceptible to developing cracks that can lead to major engine failures. The current inspection technologies only allow periodic examinations to check for cracks and other anomalies due to the requirements involved, which often necessitate entire engine disassembly. Also, many of these technologies cannot detect cracks that are below the surface or closed when the crack is at rest. Therefore, to overcome these limitations, efforts at NASA Glenn Research Center are underway to develop techniques and algorithms to detect cracks in rotating engine components. As a part of these activities, a high-precision spin laboratory is being utilized to expand and conduct highly specialized tests to develop methodologies that can assist in detecting predetermined cracks in a rotating turbine engine rotor. This paper discusses the various features involved in the ongoing testing at the spin laboratory and elaborates on its functionality and on the supporting data system tools needed to enable successfully running optimal tests and collecting accurate results. The data acquisition system and the associated software were updated and customized to adapt to the changes implemented on the test rig system and to accommodate the data produced by various sensor technologies. Discussion and presentation of these updates and the new attributes implemented are herein reported

  6. Intensive care unit without walls: seeking patient safety by improving the efficiency of the system.

    PubMed

    Gordo, F; Abella, A

    2014-10-01

    The term "ICU without walls" refers to innovative management in Intensive Care, based on two key elements: (1) collaboration of all medical and nursing staff involved in patient care during hospitalization and (2) technological support for severity early detection protocols by identifying patients at risk of deterioration throughout the hospital, based on the assessment of vital signs and/or laboratory test values, with the clear aim of improving critical patient safety in the hospitalization process. At present, it can be affirmed that there is important work to be done in the detection of severity and early intervention in patients at risk of organ dysfunction. Such work must be adapted to the circumstances of each center and should include training in the detection of severity, multidisciplinary work in the complete patient clinical process, and the use of technological systems allowing intervention on the basis of monitored laboratory and physiological parameters, with effective and efficient use of the information generated. Not only must information be generated, but also efficient management of such information must also be achieved. It is necessary to improve our activity through innovation in management procedures that facilitate the work of the intensivist, in collaboration with other specialists, throughout the hospital environment. Innovation is furthermore required in the efficient management of the information generated in hospitals, through intelligent and directed usage of the new available technology. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  7. Public health policy decisions on medical innovations: what role can early economic evaluation play?

    PubMed

    Hartz, Susanne; John, Jürgen

    2009-02-01

    Our contribution aims to explore the different ways in which early economic data can inform public health policy decisions on new medical technologies. A literature research was conducted to detect methodological contributions covering the health policy perspective. Early economic data on new technologies can support public health policy decisions in several ways. Embedded in horizon scanning and HTA activities, it adds to monitoring and assessment of innovations. It can play a role in the control of technology diffusion by informing coverage and reimbursement decisions as well as the direct public promotion of healthcare technologies, leading to increased efficiency. Major problems include the uncertainty related to economic data at early stages as well as the timing of the evaluation of an innovation. Decision-makers can benefit from the information supplied by early economic data, but the actual use in practice is difficult to determine. Further empirical evidence should be gathered, while the use could be promoted by further standardization.

  8. Flexible quality of service model for wireless body area sensor networks.

    PubMed

    Liao, Yangzhe; Leeson, Mark S; Higgins, Matthew D

    2016-03-01

    Wireless body area sensor networks (WBASNs) are becoming an increasingly significant breakthrough technology for smart healthcare systems, enabling improved clinical decision-making in daily medical care. Recently, radio frequency ultra-wideband technology has developed substantially for physiological signal monitoring due to its advantages such as low-power consumption, high transmission data rate, and miniature antenna size. Applications of future ubiquitous healthcare systems offer the prospect of collecting human vital signs, early detection of abnormal medical conditions, real-time healthcare data transmission and remote telemedicine support. However, due to the technical constraints of sensor batteries, the supply of power is a major bottleneck for healthcare system design. Moreover, medium access control (MAC) needs to support reliable transmission links that allow sensors to transmit data safely and stably. In this Letter, the authors provide a flexible quality of service model for ad hoc networks that can support fast data transmission, adaptive schedule MAC control, and energy efficient ubiquitous WBASN networks. Results show that the proposed multi-hop communication ad hoc network model can balance information packet collisions and power consumption. Additionally, wireless communications link in WBASNs can effectively overcome multi-user interference and offer high transmission data rates for healthcare systems.

  9. Background Characterization Techniques For Pattern Recognition Applications

    NASA Astrophysics Data System (ADS)

    Noah, Meg A.; Noah, Paul V.; Schroeder, John W.; Kessler, Bernard V.; Chernick, Julian A.

    1989-08-01

    The Department of Defense has a requirement to investigate technologies for the detection of air and ground vehicles in a clutter environment. The use of autonomous systems using infrared, visible, and millimeter wave detectors has the potential to meet DOD's needs. In general, however, the hard-ware technology (large detector arrays with high sensitivity) has outpaced the development of processing techniques and software. In a complex background scene the "problem" is as much one of clutter rejection as it is target detection. The work described in this paper has investigated a new, and innovative, methodology for background clutter characterization, target detection and target identification. The approach uses multivariate statistical analysis to evaluate a set of image metrics applied to infrared cloud imagery and terrain clutter scenes. The techniques are applied to two distinct problems: the characterization of atmospheric water vapor cloud scenes for the Navy's Infrared Search and Track (IRST) applications to support the Infrared Modeling Measurement and Analysis Program (IRAMMP); and the detection of ground vehicles for the Army's Autonomous Homing Munitions (AHM) problems. This work was sponsored under two separate Small Business Innovative Research (SBIR) programs by the Naval Surface Warfare Center (NSWC), White Oak MD, and the Army Material Systems Analysis Activity at Aberdeen Proving Ground MD. The software described in this paper will be available from the respective contract technical representatives.

  10. Comparing Natural Gas Leakage Detection Technologies Using an Open-Source "Virtual Gas Field" Simulator.

    PubMed

    Kemp, Chandler E; Ravikumar, Arvind P; Brandt, Adam R

    2016-04-19

    We present a tool for modeling the performance of methane leak detection and repair programs that can be used to evaluate the effectiveness of detection technologies and proposed mitigation policies. The tool uses a two-state Markov model to simulate the evolution of methane leakage from an artificial natural gas field. Leaks are created stochastically, drawing from the current understanding of the frequency and size distributions at production facilities. Various leak detection and repair programs can be simulated to determine the rate at which each would identify and repair leaks. Integrating the methane leakage over time enables a meaningful comparison between technologies, using both economic and environmental metrics. We simulate four existing or proposed detection technologies: flame ionization detection, manual infrared camera, automated infrared drone, and distributed detectors. Comparing these four technologies, we found that over 80% of simulated leakage could be mitigated with a positive net present value, although the maximum benefit is realized by selectively targeting larger leaks. Our results show that low-cost leak detection programs can rely on high-cost technology, as long as it is applied in a way that allows for rapid detection of large leaks. Any strategy to reduce leakage should require a careful consideration of the differences between low-cost technologies and low-cost programs.

  11. A Plane Target Detection Algorithm in Remote Sensing Images based on Deep Learning Network Technology

    NASA Astrophysics Data System (ADS)

    Shuxin, Li; Zhilong, Zhang; Biao, Li

    2018-01-01

    Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.

  12. Remote sensing observing systems of the Meteorological Service of Catalonia (SMC): application to thunderstorm surveillance

    NASA Astrophysics Data System (ADS)

    Argemí, O.; Bech, J.; Pineda, N.; Rigo, T.

    2009-09-01

    Remote sensing observing systems of the Meteorological Service of Catalonia (SMC) have been upgraded during the last years with newer technologies and enhancements. Recent changes on the weather radar network have been motivated to improve precipitation estimates by radar as well as meteorological surveillance in the area of Catalonia. This region has approximately 32,000 square kilometres and is located in the NE of Spain, limited by the Pyrenees to the North (with mountains exceeding 3000 m) and by the Mediterranean Sea to the East and South. In the case of the total lightning (intra-cloud and cloud-to-ground lightning) detection system, the current upgrades will assure a better lightning detection efficiency and location accuracy. Both upgraded systems help to enhance the tracking and the study of thunderstorm events. Initially, the weather radar network was designed to cover the complex topography of Catalonia and surrounding areas to support the regional administration, which includes civil protection and water authorities. The weather radar network was upgraded in 2008 with the addition of a new C-band Doppler radar system, which is located in the top of La Miranda Mountain (Tivissa) in the southern part of Catalonia enhancing the coverage, particularly to the South and South-West. Technically the new radar is very similar to the last one installed in 2003 (Creu del Vent radar), using a 4 m antenna (i.e., 1 degree beam width), a Vaisala-Sigmet RVP-8 digital receiver and processor and a low power transmitter using a Travelling Wave Tube (TWT) amplifier. This design allows using pulse-compression techniques to enhance radial resolution and sensitivity. Currently, the SMC is upgrading its total lightning detection system, operational since 2003. While a fourth sensor (Amposta) was added last year to enlarge the system coverage, all sensors and central processor will be upgraded this year to the new Vaisala’s total lightning location technology. The new LS8000 sensor configuration integrates two lightning detection technologies: VHF interferometry technology provides high performance in detection of cloud lightning, while LF combined magnetic direction finding and time-of-arrival technology offers a highest detection efficiency and accurate location for cloud-to-ground lightning strokes. The presentation describes in some detail all this innovation in remote sensing observing networks and also reports some examples over Catalonia which is frequently affected by different types of convective events, including severe weather (large hail, tornadic events, etc.) and heavy rainfall episodes.

  13. The state of knowledge on technologies and their use for fall detection: A scoping review.

    PubMed

    Lapierre, N; Neubauer, N; Miguel-Cruz, A; Rios Rincon, A; Liu, L; Rousseau, J

    2018-03-01

    Globally, populations are aging with increasing life spans. The normal aging process and the resulting disabilities increase fall risks. Falls are an important cause of injury, loss of independence and institutionalization. Technologies have been developed to detect falls and reduce their consequences but their use and impact on quality of life remain debatable. Reviews on fall detection technologies exist but are not extensive. A comprehensive literature review on the state of knowledge of fall detection technologies can inform research, practice, and user adoption. To examine the extent and the diversity of current technologies for fall detection in older adults. A scoping review design was used to search peer-reviewed literature on technologies to detect falls, published in English, French or Spanish since 2006. Data from the studies were analyzed descriptively. The literature search identified 3202 studies of which 118 were included for analysis. Ten types of technologies were identified ranging from wearable (e.g., inertial sensors) to ambient sensors (e.g., vision sensors). Their Technology Readiness Level was low (mean 4.54 SD 1.25; 95% CI [4.31, 4.77] out of a maximum of 9). Outcomes were typically evaluated on technological basis and in controlled environments. Few were evaluated in home settings or care units with older adults. Acceptability, implementation cost and barriers were seldom addressed. Further research should focus on increasing Technology Readiness Levels of fall detection technologies by testing them in real-life settings with older adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Using component technologies for web based wavelet enhanced mammographic image visualization.

    PubMed

    Sakellaropoulos, P; Costaridou, L; Panayiotakis, G

    2000-01-01

    The poor contrast detectability of mammography can be dealt with by domain specific software visualization tools. Remote desktop client access and time performance limitations of a previously reported visualization tool are addressed, aiming at more efficient visualization of mammographic image resources existing in web or PACS image servers. This effort is also motivated by the fact that at present, web browsers do not support domain-specific medical image visualization. To deal with desktop client access the tool was redesigned by exploring component technologies, enabling the integration of stand alone domain specific mammographic image functionality in a web browsing environment (web adaptation). The integration method is based on ActiveX Document Server technology. ActiveX Document is a part of Object Linking and Embedding (OLE) extensible systems object technology, offering new services in existing applications. The standard DICOM 3.0 part 10 compatible image-format specification Papyrus 3.0 is supported, in addition to standard digitization formats such as TIFF. The visualization functionality of the tool has been enhanced by including a fast wavelet transform implementation, which allows for real time wavelet based contrast enhancement and denoising operations. Initial use of the tool with mammograms of various breast structures demonstrated its potential in improving visualization of diagnostic mammographic features. Web adaptation and real time wavelet processing enhance the potential of the previously reported tool in remote diagnosis and education in mammography.

  15. A green synthetic strategy of nickel hexacyanoferrate nanoparticals supported on the graphene substrate and its non-enzymatic amperometric sensing application

    NASA Astrophysics Data System (ADS)

    xue, Zhonghua; He, Nan; Rao, Honghong; Hu, Chenxian; Wang, Xiaofen; Wang, Hui; Liu, Xiuhui; Lu, Xiaoquan

    2017-02-01

    Rapid glucose detection is a key requirement for both diagnosis and treatment of diabetes. A facile and green strategy to achieve spherical-shaped nickel hexacyanoferrate (NiHCF) nanoparticals supported on electrochemical reduction graphene oxide by using electrochemical cyclic voltammetry is explored. As a sensing substrate, electrochemical reduction graphene oxide deposited on a glassy carbon electrode surface exhibited obvious positive effect on the electrodeposition of NiHCF nanoparticals with spherical structure and thus effectively improved the electrical conductivity and electrochemical sensing of the proposed amperometric sensor. Proof-concept experiments demonstrated that the proposed nanocomposites modified electrode exhibited excellent sensitivity toward glucose oxidation as well as with a satisfying detection limit of 0.11 μM. More importantly, we also explore that as a simple, green and facile method, electrochemical technology can be employed and provide a new strategy for developing GO and metal hexacyanoferrate based amperometric sensing platform toward glucose and other biomolecules.

  16. Women's experiences receiving abnormal prenatal chromosomal microarray testing results.

    PubMed

    Bernhardt, Barbara A; Soucier, Danielle; Hanson, Karen; Savage, Melissa S; Jackson, Laird; Wapner, Ronald J

    2013-02-01

    Genomic microarrays can detect copy-number variants not detectable by conventional cytogenetics. This technology is diffusing rapidly into prenatal settings even though the clinical implications of many copy-number variants are currently unknown. We conducted a qualitative pilot study to explore the experiences of women receiving abnormal results from prenatal microarray testing performed in a research setting. Participants were a subset of women participating in a multicenter prospective study "Prenatal Cytogenetic Diagnosis by Array-based Copy Number Analysis." Telephone interviews were conducted with 23 women receiving abnormal prenatal microarray results. We found that five key elements dominated the experiences of women who had received abnormal prenatal microarray results: an offer too good to pass up, blindsided by the results, uncertainty and unquantifiable risks, need for support, and toxic knowledge. As prenatal microarray testing is increasingly used, uncertain findings will be common, resulting in greater need for careful pre- and posttest counseling, and more education of and resources for providers so they can adequately support the women who are undergoing testing.

  17. Research and development of biochip technologies in Taiwan

    NASA Astrophysics Data System (ADS)

    Ting, Solomon J.; Chiou, Arthur E. T.

    2000-07-01

    Recent advancements in several genome-sequencing projects have stimulated an enormous interest in microarray DNA chip technology, especially in the biomedical sciences and pharmaceutical industries. The DNA chips facilitated the miniaturization of conventional nucleic acid hybridizations, by either robotically spotting thousands of library cDNAs or in situ synthesis of high-density oligonucleotides onto solid supports. These innovations have found a wide range of applications in molecular biology, especially in studying gene expression and discovering new genes from the global view of genomic analysis. The research and development of this powerful tool has also received great attentions in Taiwan. In this paper, we report the current progresses of our DNA chip project, along with the current status of other biochip projects in Taiwan, such as protein chip, PCR chip, electrophoresis chip, olfactory chip, etc. The new development of biochip technologies integrates the biotechnology with the semiconductor processing, the micro- electro-mechanical, optoelectronic, and digital signal processing technologies. Most of these biochip technologies utilitze optical detection methods for data acquisition and analysis. The strengths and advantages of different approaches are compared and discussed in this report.

  18. New Concepts in Electromagnetic Materials and Antennas

    DTIC Science & Technology

    2015-01-01

    Bae-Ian Wu Antennas & Electromagnetics Technology Branch Multispectral Sensing & Detection Division JANUARY 2015 Final Report...Signature// //Signature// BRADLEY A. KRAMER, Program Manager TONY C. KIM, Branch Chief Antenna & Electromagnetic Technology ...Branch Antenna & Electromagnetic Technology Branch Multispectral Sensing & Detection Division Multispectral Sensing & Detection Division

  19. Embedded sensor systems for health - providing the tools in future healthcare.

    PubMed

    Lindén, Maria; Björkman, Mats

    2014-01-01

    Wearable, embedded sensor systems for health applications are foreseen to be enablers in the future healthcare. They will provide ubiquitous monitoring of multiple parameters without restricting the person to stay at home or in the hospital. By following trend changes in the health status, early deteriorations will be detected and treatment can start earlier. Also health prevention will be supported. Such future healthcare requires technology development, including miniaturized sensors, smart textiles and wireless communication. The tremendous amount of data generated by these systems calls for both signal processing and decision support to guarantee the quality of data and avoid overflow of information. Safe and secure communications have to protect the integrity of the persons monitored.

  20. Supporting the Development and Adoption of Automatic Lameness Detection Systems in Dairy Cattle: Effect of System Cost and Performance on Potential Market Shares.

    PubMed

    Van De Gucht, Tim; Van Weyenberg, Stephanie; Van Nuffel, Annelies; Lauwers, Ludwig; Vangeyte, Jürgen; Saeys, Wouter

    2017-10-08

    Most automatic lameness detection system prototypes have not yet been commercialized, and are hence not yet adopted in practice. Therefore, the objective of this study was to simulate the effect of detection performance (percentage missed lame cows and percentage false alarms) and system cost on the potential market share of three automatic lameness detection systems relative to visual detection: a system attached to the cow, a walkover system, and a camera system. Simulations were done using a utility model derived from survey responses obtained from dairy farmers in Flanders, Belgium. Overall, systems attached to the cow had the largest market potential, but were still not competitive with visual detection. Increasing the detection performance or lowering the system cost led to higher market shares for automatic systems at the expense of visual detection. The willingness to pay for extra performance was €2.57 per % less missed lame cows, €1.65 per % less false alerts, and €12.7 for lame leg indication, respectively. The presented results could be exploited by system designers to determine the effect of adjustments to the technology on a system's potential adoption rate.

  1. Fabrication and Characterization of a Novel Nanodendrite-based Electrochemical Sensor for the Detection of Disease Biomarkers

    NASA Astrophysics Data System (ADS)

    Connolly, Timothy; Archibald, Michelle M.; Nesbitt, Nathan T.; Rossi, Matthew; Glover, Jennifer A.; Burns, Michael J.; Naughton, Michael J.; Chiles, Thomas C.

    2014-03-01

    Technologies to detect early stage cancer would provide significant benefit to cancer disease patients. Clinical measurement of biomarkers offers the promise of a noninvasive and cost effective screening for early stage detection. We are currently developing a novel 3-dimensional nanopillar dendrite biosensor array for the detection of human cancer biomarkers (e . g . CA-125 for early-stage ovarian cancer) in serum and other fluids. Here, we describe a nanoscale 3D architecture that can afford molecular detection at room temperature. We report our efforts on the development of an all-electronic, ambient temperature, rapid-response dendritic biosensor fabricated by directed electrochemical nanowire assembly (DENA) that achieves molecular-scale sensitivity for protein biomarker based detection. Each sensor is a vertically-oriented nanodendritic array where an electrochemical signal is detected from the oxidation of the redox end-product of an enzyme-linked immunosorbent assay (ELISA). Our results demonstrate the feasibility of using the present nanodendritic array structure as a sensitive device to detect a range of proteins of interest, including disease biomarkers. Supported by NIH (National Cancer Institute and the National Institute of Allergy and Infectious Diseases).

  2. Towards the Automatic Detection of Pre-Existing Termite Mounds through UAS and Hyperspectral Imagery.

    PubMed

    Sandino, Juan; Wooler, Adam; Gonzalez, Felipe

    2017-09-24

    The increased technological developments in Unmanned Aerial Vehicles (UAVs) combined with artificial intelligence and Machine Learning (ML) approaches have opened the possibility of remote sensing of extensive areas of arid lands. In this paper, a novel approach towards the detection of termite mounds with the use of a UAV, hyperspectral imagery, ML and digital image processing is intended. A new pipeline process is proposed to detect termite mounds automatically and to reduce, consequently, detection times. For the classification stage, several ML classification algorithms' outcomes were studied, selecting support vector machines as the best approach for their role in image classification of pre-existing termite mounds. Various test conditions were applied to the proposed algorithm, obtaining an overall accuracy of 68%. Images with satisfactory mound detection proved that the method is "resolution-dependent". These mounds were detected regardless of their rotation and position in the aerial image. However, image distortion reduced the number of detected mounds due to the inclusion of a shape analysis method in the object detection phase, and image resolution is still determinant to obtain accurate results. Hyperspectral imagery demonstrated better capabilities to classify a huge set of materials than implementing traditional segmentation methods on RGB images only.

  3. Extraction and classification of 3D objects from volumetric CT data

    NASA Astrophysics Data System (ADS)

    Song, Samuel M.; Kwon, Junghyun; Ely, Austin; Enyeart, John; Johnson, Chad; Lee, Jongkyu; Kim, Namho; Boyd, Douglas P.

    2016-05-01

    We propose an Automatic Threat Detection (ATD) algorithm for Explosive Detection System (EDS) using our multistage Segmentation Carving (SC) followed by Support Vector Machine (SVM) classifier. The multi-stage Segmentation and Carving (SC) step extracts all suspect 3-D objects. The feature vector is then constructed for all extracted objects and the feature vector is classified by the Support Vector Machine (SVM) previously learned using a set of ground truth threat and benign objects. The learned SVM classifier has shown to be effective in classification of different types of threat materials. The proposed ATD algorithm robustly deals with CT data that are prone to artifacts due to scatter, beam hardening as well as other systematic idiosyncrasies of the CT data. Furthermore, the proposed ATD algorithm is amenable for including newly emerging threat materials as well as for accommodating data from newly developing sensor technologies. Efficacy of the proposed ATD algorithm with the SVM classifier is demonstrated by the Receiver Operating Characteristics (ROC) curve that relates Probability of Detection (PD) as a function of Probability of False Alarm (PFA). The tests performed using CT data of passenger bags shows excellent performance characteristics.

  4. Characterizing and Improving Distributed Intrusion Detection Systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurd, Steven A; Proebstel, Elliot P.

    2007-11-01

    Due to ever-increasing quantities of information traversing networks, network administrators are developing greater reliance upon statistically sampled packet information as the source for their intrusion detection systems (IDS). Our research is aimed at understanding IDS performance when statistical packet sampling is used. Using the Snort IDS and a variety of data sets, we compared IDS results when an entire data set is used to the results when a statistically sampled subset of the data set is used. Generally speaking, IDS performance with statistically sampled information was shown to drop considerably even under fairly high sampling rates (such as 1:5). Characterizingmore » and Improving Distributed Intrusion Detection Systems4AcknowledgementsThe authors wish to extend our gratitude to Matt Bishop and Chen-Nee Chuah of UC Davis for their guidance and support on this work. Our thanks are also extended to Jianning Mai of UC Davis and Tao Ye of Sprint Advanced Technology Labs for their generous assistance.We would also like to acknowledge our dataset sources, CRAWDAD and CAIDA, without which this work would not have been possible. Support for OC48 data collection is provided by DARPA, NSF, DHS, Cisco and CAIDA members.« less

  5. Substitution of Assisted Living Services by Assistive Technology - Experts Opinions and Technical Feasibility.

    PubMed

    Schwartze, Jonas; Prekazi, Arianit; Schrom, Harald; Marschollek, Michael

    2017-01-01

    Ambient assisted living (AAL) may support ageing in place but is primarily driven by technology. The aim of this work is, to identifying reasons to move into assisted living institutions, their range of service and possible substitutability. We did semi-structured interviews with five experts from assisted living institutions and used results to design and implement assistive technologies in an AAL environment using BASIS, a cross domain bus system for smart buildings. Reasons for moving to assisted living institutions are expected benefits for chronic health problems, safety, social isolation and carefree living. We implemented six application systems for inactivity monitoring, stove shutdown, air quality monitoring, medication and appointment reminders, detection of unwanted situations before leaving and optical ringing of the doorbell. Substitution of selected assisted living services is feasible and has potential to delay necessity to move into assisted living institution if complement social services are installed.

  6. Small Business Grants at the National Cancer Institute and National Institutes of Health

    NASA Astrophysics Data System (ADS)

    Baker, Houston

    2002-10-01

    Ten Federal Agencies set aside 2.5% of their external research budget for US small businesses—mainly for technology research and development, including radiation sensor system developments. Five agencies also set aside another 0.15% for the Small Business Technology Transfer Program, which is intended to facilitate technology transfers from research laboratories to public use through small businesses. The second largest of these agencies is the Department of Health and Human Services, and almost all of its extramural research funds flow through the 28 Institutes and Centers of the National Institutes of Health. For information, instructions, and application forms, visit the NIH website's Omnibus Solicitation for SBIR and STTR applications. The National Cancer Institute is the largest NIH research unit and SBIR/STTR participant. NCI also issues SBIR and STTR Program Announcements of its own that feature details modified to better support its initiatives and objectives in cancer prevention, detection, diagnosis, treatment, and monitoring.

  7. Intelligent mobility for robotic vehicles in the army after next

    NASA Astrophysics Data System (ADS)

    Gerhart, Grant R.; Goetz, Richard C.; Gorsich, David J.

    1999-07-01

    The TARDEC Intelligent Mobility program addresses several essential technologies necessary to support the army after next (AAN) concept. Ground forces in the AAN time frame will deploy robotic unmanned ground vehicles (UGVs) in high-risk missions to avoid exposing soldiers to both friendly and unfriendly fire. Prospective robotic systems will include RSTA/scout vehicles, combat engineering/mine clearing vehicles, indirect fire artillery and missile launch platforms. The AAN concept requires high on-road and off-road mobility, survivability, transportability/deployability and low logistics burden. TARDEC is developing a robotic vehicle systems integration laboratory (SIL) to evaluate technologies and their integration into future UGV systems. Example technologies include the following: in-hub electric drive, omni-directional wheel and steering configurations, off-road tires, adaptive tire inflation, articulated vehicles, active suspension, mine blast protection, detection avoidance and evasive maneuver. This paper will describe current developments in these areas relative to the TARDEC intelligent mobility program.

  8. Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Diseases Detection.

    PubMed

    Lau, Han Yih; Botella, Jose R

    2017-01-01

    Diagnostic technologies for the detection of plant pathogens with point-of-care capability and high multiplexing ability are an essential tool in the fight to reduce the large agricultural production losses caused by plant diseases. The main desirable characteristics for such diagnostic assays are high specificity, sensitivity, reproducibility, quickness, cost efficiency and high-throughput multiplex detection capability. This article describes and discusses various DNA-based point-of care diagnostic methods for applications in plant disease detection. Polymerase chain reaction (PCR) is the most common DNA amplification technology used for detecting various plant and animal pathogens. However, subsequent to PCR based assays, several types of nucleic acid amplification technologies have been developed to achieve higher sensitivity, rapid detection as well as suitable for field applications such as loop-mediated isothermal amplification, helicase-dependent amplification, rolling circle amplification, recombinase polymerase amplification, and molecular inversion probe. The principle behind these technologies has been thoroughly discussed in several review papers; herein we emphasize the application of these technologies to detect plant pathogens by outlining the advantages and disadvantages of each technology in detail.

  9. Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Diseases Detection

    PubMed Central

    Lau, Han Yih; Botella, Jose R.

    2017-01-01

    Diagnostic technologies for the detection of plant pathogens with point-of-care capability and high multiplexing ability are an essential tool in the fight to reduce the large agricultural production losses caused by plant diseases. The main desirable characteristics for such diagnostic assays are high specificity, sensitivity, reproducibility, quickness, cost efficiency and high-throughput multiplex detection capability. This article describes and discusses various DNA-based point-of care diagnostic methods for applications in plant disease detection. Polymerase chain reaction (PCR) is the most common DNA amplification technology used for detecting various plant and animal pathogens. However, subsequent to PCR based assays, several types of nucleic acid amplification technologies have been developed to achieve higher sensitivity, rapid detection as well as suitable for field applications such as loop-mediated isothermal amplification, helicase-dependent amplification, rolling circle amplification, recombinase polymerase amplification, and molecular inversion probe. The principle behind these technologies has been thoroughly discussed in several review papers; herein we emphasize the application of these technologies to detect plant pathogens by outlining the advantages and disadvantages of each technology in detail. PMID:29375588

  10. Munitions and Explosives of Concern Survey Methodology and In-field Testing for Wind Energy Areas on the Atlantic Outer Continental Shelf

    NASA Astrophysics Data System (ADS)

    DuVal, C.; Carton, G.; Trembanis, A. C.; Edwards, M.; Miller, J. K.

    2017-12-01

    Munitions and explosives of concern (MEC) are present in U.S. waters as a result of past and ongoing live-fire testing and training, combat operations, and sea disposal. To identify MEC that may pose a risk to human safety during development of offshore wind facilities on the Atlantic Outer Continental Shelf (OCS), the Bureau of Ocean Energy Management (BOEM) is preparing to develop guidance on risk analysis and selection processes for methods and technologies to identify MEC in Wind Energy Areas (WEA). This study developed a process for selecting appropriate technologies and methodologies for MEC detection using a synthesis of historical research, physical site characterization, remote sensing technology review, and in-field trials. Personnel were tasked with seeding a portion of the Delaware WEA with munitions surrogates, while a second group of researchers not privy to the surrogate locations tested and optimized the selected methodology to find and identify the placed targets. This in-field trial, conducted in July 2016, emphasized the use of multiple sensors for MEC detection, and led to further guidance for future MEC detection efforts on the Atlantic OCS. An April 2017 follow on study determined the fate of the munitions surrogates after the Atlantic storm season had passed. Using regional hydrodynamic models and incorporating the recommendations from the 2016 field trial, the follow on study examined the fate of the MEC and compared the findings to existing research on munitions mobility, as well as models developed as part of the Office of Naval Research Mine-Burial Program. Focus was given to characterizing the influence of sediment type on surrogate munitions behavior and the influence of mophodynamics and object burial on MEC detection. Supporting Mine-Burial models, ripple bedforms were observed to impede surrogate scour and burial in coarse sediments, while surrogate burial was both predicted and observed in finer sediments. Further, incorporation of recommendations from the previous trial in the 2017 study led to fourfold improvement of MEC detection rates over the 2016 approach. The use of modeling to characterize local morphodynamics, MEC burial or mobility, and the impact of seasonal or episodic storm events are discussed in light of technology selection and timing for future MEC detection surveys.

  11. Recent U.S. Geological Survey applications of Lidar

    USGS Publications Warehouse

    Queija, Vivian R.; Stoker, Jason M.; Kosovich, John J.

    2005-01-01

    As lidar (light detection and ranging) technology matures, more applications are being explored by U.S. Geological Survey (USGS) scientists throughout the Nation, both in collaboration with other Federal agencies and alone in support of USGS natural-hazards research (Crane et al., 2004). As the technology continues to improve and evolve, USGS scientists are finding new and unique methods to use and represent high-resolution lidar data, and new ways to make these data and derived information publicly available. Different lidar sensors and configurations have offered opportunities to use high-resolution elevation data for a variety of projects across all disciplines of the USGS. The following examples are just a few of the diverse projects in the USGS where lidar data is being used.

  12. A review of X-ray explosives detection techniques for checked baggage.

    PubMed

    Wells, K; Bradley, D A

    2012-08-01

    In recent times, the security focus for civil aviation has shifted from hijacking in the 1980s, towards deliberate sabotage. X-ray imaging provides a major tool in checked baggage inspection, with various sensitive techniques being brought to bear in determining the form, and density of items within luggage as well as other material dependent parameters. This review first examines the various challenges to X-ray technology in securing a safe system of passenger transportation. An overview is then presented of the various conventional and less conventional approaches that are available to the airline industry, leading to developments in state-of-the-art imaging technology supported by enhanced machine and observer-based decision making principles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carla Miller; Mary Adamic; Stacey Barker

    Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that canmore » quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team then identified commercial off the shelf (COTS) chemical detectors that may detect the chemicals of interest. Three chemical detectors were selected and tested both in laboratory settings and in field operations settings at Idaho National Laboratory. The instruments selected are: Thermo Scientific TruDefender FT (FTIR), Thermo Scientific FirstDefender RM (Raman), and Bruker Tracer III SD (XRF). Functional specifications, operability, and chemical detectability, selectivity, and limits of detection were determined. Results from the laboratory and field tests will be presented. This work is supported by the Next Generation Safeguards Initiative, Office of Nonproliferation and International Security, National Nuclear Security Administration.« less

  14. DRAGONS - A Micrometeoroid and Orbital Debris Impact Sensor

    NASA Technical Reports Server (NTRS)

    Liou, J. C.; Sadilek, Albert; Burchell, Mark; Corsaro, Robert; Giovane, Frank

    2012-01-01

    The Debris Resistive/Acoustic Grid Orbital Navy Sensor (DRAGONS) is intended to be a large area impact sensor for in-situ measurements of micrometeoroids and orbital debris (MMOD) in the approx.0.2 to 1 mm size regime. These MMOD particles are too small to be detected by groundbased radars and optical telescopes, but still large enough to be a safety concern for human space activities and robotic missions in the low Earth orbit (LEO) region. The nominal detection area of DRAGONS is 1 sq m, consisting of four 0.5 m x 0.5 m independently operated panels. The concept of the DRAGONS design is to combine three different detection technologies to maximize information extracted from each detected impact. The first technology is a resistive grid consisting of 62.5-microns-wide resistive lines, coated in parallel and separated by 62.5 micron gaps on a Kapton film. When a particle a few hundred micrometers or larger strikes the grid, it world penetrate the film and sever some resistive lines. The size of the damage area can be estimated from the increased resistance. The second technology employs a dual-layer, 25-microns-thick Kapton film with a 10 cm separation. By measuring the time difference between impacts on the two films, the impact speed can be calculated. The third technology is based on polyvinylidene fluoride (PVDF) acoustic impact sensors. Multiple PVDF sensors are attached to the backside of both Kapton films to provide impact timing measurements. The impact location on each film can be identified from the triangulation of signals received at different PVDF sensors and provides an estimate of the impact direction. The development of DRAGONS is supported by the NASA Orbital Debris Program Office. The project is led by the U.S. Naval Academy (USNA), with additional collaboration from the U.S. Naval Research Laboratory (NRL), the University of Kent at Canterbury in Great Britain, and Virginia Tech (VT). The short-term goal of DRAGONS is to advance its Technology Readiness Level to 9 and to demonstrate the system capabilities of detecting and characterizing submillimeter MMOD impacts. The long-term goal is to deploy a large detection area (>1 sq m) DRAGONS to 700-1000 km altitude and collect sufficient data for better environment definition of MMOD in the 0.2- to 1-mm size regime. The Preliminary Design Review (PRD) of DRAGONS was held at the USNA in June 2012. The Critical Design Review (CDR) is scheduled for early 2013. A flight-ready unit with a 0.25 sq m detection area will be completed and tested by the end of September 2013. The biggest challenge for the project, however, is to identify a demonstration opportunity on the International Space Station in the coming years.

  15. Development of a Toolbox Using Chemical, Physical and Biological Technologies for Decontamination of Sediments to Support Strategic Army Response to Natural Disasters

    DTIC Science & Technology

    2006-11-01

    disinfection) was tested using soil microcosms and respirometry to determine diesel range and total organic compound degradation. These tests were...grease) such as benzo(a)pyrene were detected above chronic (long term-measured in years) screening levels. Levels of diesel and oil range organics... bioremediation , and toxicity of liquid and solid samples. The Comput-OX 4R is a 4 reactor unit with no stirring modules or temperature controlled water bath

  16. Fire Prevention, Detection and Suppression

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.

    2004-01-01

    In mid-1999, the Space and Life Sciences Directorate at Johnson Space Center was challenged to develop a new paradigm for NASA human life sciences: space medicine, space biomedical research and countermeasures, advanced human support technology. A new thrust - Bioastronautics - was formulated with a budget augmentation request. The objective are: expanded extramural community participation through the National Space Biomedical Research Institute, initiated the detailed planning and implementation of Bioastronautics, an integrated approach to ensure healthy and safe human space travel, assist in the solution of earth-based problems.

  17. A theoretical/experimental program to develop active optical pollution sensors

    NASA Technical Reports Server (NTRS)

    Mills, F. S.; Blais, R. N.; Kindle, E. C.

    1977-01-01

    Light detection and ranging (LIDAR) technology was applied to the assessment of air quality, and its usefulness was evaluated by actual field tests. Necessary hardware was successfully constructed and operated in the field. Measurements of necessary physical parameters, such as SO2 absorption coefficients were successfully completed and theoretical predictions of differential absorption performance were reported. Plume modeling improvements were proposed. A full scale field test of equipment, data analysis and auxiliary data support was conducted in Maryland during September 1976.

  18. Blind Cyclostationary Feature Detection Based Spectrum Sensing for Autonomous Self-Learning Cognitive Radios

    DTIC Science & Technology

    2012-06-01

    communication policies. Given the importance of machine learning and reconfig- urable hardware in the design of the Radiobots [1], we propose, in this paper, a...liter- ature, including, for example, the model in [9] which uses support vector machines (SVM’s). In this paper, however, we employ non-parametric...Communication Technology (ICACT ’08), vol. 1, Gangwon-Do, South Korea, Feb. 2008, pp. 481 – 485. [9] M. Ramon, T. Atwood , S. Barbin, and C

  19. Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques

    PubMed Central

    Markides, Andreas; Skillman, Severin; Acton, Sahr Thomas; Elsaleh, Tarek; Hassanpour, Masoud; Ahrabian, Alireza; Kenny, Mark; Klein, Stuart; Rostill, Helen; Nilforooshan, Ramin; Barnaghi, Payam

    2018-01-01

    The number of people diagnosed with dementia is expected to rise in the coming years. Given that there is currently no definite cure for dementia and the cost of care for this condition soars dramatically, slowing the decline and maintaining independent living are important goals for supporting people with dementia. This paper discusses a study that is called Technology Integrated Health Management (TIHM). TIHM is a technology assisted monitoring system that uses Internet of Things (IoT) enabled solutions for continuous monitoring of people with dementia in their own homes. We have developed machine learning algorithms to analyse the correlation between environmental data collected by IoT technologies in TIHM in order to monitor and facilitate the physical well-being of people with dementia. The algorithms are developed with different temporal granularity to process the data for long-term and short-term analysis. We extract higher-level activity patterns which are then used to detect any change in patients’ routines. We have also developed a hierarchical information fusion approach for detecting agitation, irritability and aggression. We have conducted evaluations using sensory data collected from homes of people with dementia. The proposed techniques are able to recognise agitation and unusual patterns with an accuracy of up to 80%. PMID:29723236

  20. ADVANCED TOOLS FOR ASSESSING SELECTED ...

    EPA Pesticide Factsheets

    The purpose of this poster is to present the application and assessment of advanced technologies in a real-world environment - wastewater effluent and source waters - for detecting six drugs (azithromycin, fluoxetine, omeprazole, levothyroxine, methamphetamine, and methylenedioxymethamphetamine). The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than parts per billion, ppb). IAG with USGS ends in FY05. APM 20 due in FY05.Subtask 2: Coordination of interagency research and public outreach activities for PPCPs. Participate on NSTC Health and Environment subcommittee working group on PPCPs. Web site maintenance and expansion, invited technica

  1. ADVANCED TOOLS FOR ASSESSING SELECTED ...

    EPA Pesticide Factsheets

    The purpose of this poster is to present the application and assessment of advanced state-of-the-art technologies in a real-world environment - wastewater effluent and source waters - for detecting six drugs [azithromycin, fluoxetine, omeprazole, levothyroxine, methamphetamine, methylenedioxymethamphetamine (MDMA)]. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than parts per billion, ppb). IAG with USGS ends in FY05. APM 20 due in FY05.Subtask 2: Coordination of interagency research and public outreach activities for PPCPs. Participate on NSTC Health and Environment subcommittee working group on PPCPs. Web site maintenance and expansi

  2. Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques.

    PubMed

    Enshaeifar, Shirin; Zoha, Ahmed; Markides, Andreas; Skillman, Severin; Acton, Sahr Thomas; Elsaleh, Tarek; Hassanpour, Masoud; Ahrabian, Alireza; Kenny, Mark; Klein, Stuart; Rostill, Helen; Nilforooshan, Ramin; Barnaghi, Payam

    2018-01-01

    The number of people diagnosed with dementia is expected to rise in the coming years. Given that there is currently no definite cure for dementia and the cost of care for this condition soars dramatically, slowing the decline and maintaining independent living are important goals for supporting people with dementia. This paper discusses a study that is called Technology Integrated Health Management (TIHM). TIHM is a technology assisted monitoring system that uses Internet of Things (IoT) enabled solutions for continuous monitoring of people with dementia in their own homes. We have developed machine learning algorithms to analyse the correlation between environmental data collected by IoT technologies in TIHM in order to monitor and facilitate the physical well-being of people with dementia. The algorithms are developed with different temporal granularity to process the data for long-term and short-term analysis. We extract higher-level activity patterns which are then used to detect any change in patients' routines. We have also developed a hierarchical information fusion approach for detecting agitation, irritability and aggression. We have conducted evaluations using sensory data collected from homes of people with dementia. The proposed techniques are able to recognise agitation and unusual patterns with an accuracy of up to 80%.

  3. Biosensor technology: technology push versus market pull.

    PubMed

    Luong, John H T; Male, Keith B; Glennon, Jeremy D

    2008-01-01

    Biosensor technology is based on a specific biological recognition element in combination with a transducer for signal processing. Since its inception, biosensors have been expected to play a significant analytical role in medicine, agriculture, food safety, homeland security, environmental and industrial monitoring. However, the commercialization of biosensor technology has significantly lagged behind the research output as reflected by a plethora of publications and patenting activities. The rationale behind the slow and limited technology transfer could be attributed to cost considerations and some key technical barriers. Analytical chemistry has changed considerably, driven by automation, miniaturization, and system integration with high throughput for multiple tasks. Such requirements pose a great challenge in biosensor technology which is often designed to detect one single or a few target analytes. Successful biosensors must be versatile to support interchangeable biorecognition elements, and in addition miniaturization must be feasible to allow automation for parallel sensing with ease of operation at a competitive cost. A significant upfront investment in research and development is a prerequisite in the commercialization of biosensors. The progress in such endeavors is incremental with limited success, thus, the market entry for a new venture is very difficult unless a niche product can be developed with a considerable market volume.

  4. Sustaining “Meaningful Use” of Health Information Technology in Low-Resource Practices

    PubMed Central

    Green, Lee A.; Potworowski, Georges; Day, Anya; May-Gentile, Rachelle; Vibbert, Danielle; Maki, Bruce; Kiesel, Leslie

    2015-01-01

    PURPOSE The implementation of electronic health records (EHRs) has been extensively studied, but their maintenance once implemented has not. The Regional Extension Center (REC) program provides implementation assistance to priority practices—those with limited financial, technical, and organizational resources—but the assistance is time limited. Our objective was to identify potential barriers to maintenance of meaningful use of EHRs in priority primary care practices using a qualitative observational study for federally qualified health centers (FQHCs) and priority practices in Michigan. METHODS We conducted cognitive task analysis (CTA) interviews and direct observations of health information technology implementation in FQHCs. In addition, we conducted semistructured interviews with implementation specialists serving priority practices to detect emergent themes relevant to maintenance. RESULTS Maintaining EHR technology will require ongoing expert technical support indefinitely beyond implementation to address upgrades and security needs. Maintaining meaningful use for quality improvement will require ongoing support for leadership and change management. Priority practices not associated with larger systems lack access to the necessary technical expertise, financial resources, and leverage with vendors to continue alone. Rural priority practices are particularly challenged, because expertise is often not available locally. CONCLUSIONS Priority practices, especially in rural areas, are at high risk for falling on the wrong side of a “digital divide” as payers and regulators enact increasing expectations for EHR use and information management. For those without affiliation to maintain the necessary expert staff, ongoing support will be needed for those practices to remain viable. PMID:25583887

  5. Sustaining "meaningful use" of health information technology in low-resource practices.

    PubMed

    Green, Lee A; Potworowski, Georges; Day, Anya; May-Gentile, Rachelle; Vibbert, Danielle; Maki, Bruce; Kiesel, Leslie

    2015-01-01

    The implementation of electronic health records (EHRs) has been extensively studied, but their maintenance once implemented has not. The Regional Extension Center (REC) program provides implementation assistance to priority practices-those with limited financial, technical, and organizational resources-but the assistance is time limited. Our objective was to identify potential barriers to maintenance of meaningful use of EHRs in priority primary care practices using a qualitative observational study for federally qualified health centers (FQHCs) and priority practices in Michigan. We conducted cognitive task analysis (CTA) interviews and direct observations of health information technology implementation in FQHCs. In addition, we conducted semistructured interviews with implementation specialists serving priority practices to detect emergent themes relevant to maintenance. Maintaining EHR technology will require ongoing expert technical support indefinitely beyond implementation to address upgrades and security needs. Maintaining meaningful use for quality improvement will require ongoing support for leadership and change management. Priority practices not associated with larger systems lack access to the necessary technical expertise, financial resources, and leverage with vendors to continue alone. Rural priority practices are particularly challenged, because expertise is often not available locally. Priority practices, especially in rural areas, are at high risk for falling on the wrong side of a "digital divide" as payers and regulators enact increasing expectations for EHR use and information management. For those without affiliation to maintain the necessary expert staff, ongoing support will be needed for those practices to remain viable. © 2015 Annals of Family Medicine, Inc.

  6. Concept Test of a Smoking Cessation Smart Case.

    PubMed

    Comello, Maria Leonora G; Porter, Jeannette H

    2018-04-05

    Wearable/portable devices that unobtrusively detect smoking and contextual data offer the potential to provide Just-In-Time Adaptive Intervention (JITAI) support for mobile cessation programs. Little has been reported on the development of these technologies. To address this gap, we offer a case report of users' experiences with a prototype "smart" cigarette case that automatically tracks time and location of smoking. Small-scale user-experience studies are typical of iterative product design and are especially helpful when proposing novel ideas. The purpose of the study was to assess concept acceptability and potential for further development. We tested the prototype case with a small sample of potential users (n = 7). Participants used the hardware/software for 2 weeks and reconvened for a 90-min focus group to discuss experiences and provide feedback. Participants liked the smart case in principle but found the prototype too bulky for easy portability. The potential for the case to convey positive messages about self also emerged as a finding. Participants indicated willingness to pay for improved technology (USD $15-$60 on a one-time basis). The smart case is a viable concept, but design detail is critical to user acceptance. Future research should examine designs that maximize convenience and that explore the device's ability to cue intentions and other cognitions that would support cessation. This study is the first to our knowledge to report formative research on the smart case concept. This initial exploration provides insights that may be helpful to other developers of JITAI-support technology.

  7. Ames expedited site characterization demonstration at the former manufactured gas plant site, Marshalltown, Iowa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevolo, A.J.; Kjartanson, B.H.; Wonder, J.D.

    1996-03-01

    The goal of the Ames Expedited Site Characterization (ESC) project is to evaluate and promote both innovative technologies (IT) and state-of-the-practice technologies (SOPT) for site characterization and monitoring. In April and May 1994, the ESC project conducted site characterization, technology comparison, and stakeholder demonstration activities at a former manufactured gas plant (FMGP) owned by Iowa Electric Services (IES) Utilities, Inc., in Marshalltown, Iowa. Three areas of technology were fielded at the Marshalltown FMGP site: geophysical, analytical and data integration. The geophysical technologies are designed to assess the subsurface geological conditions so that the location, fate and transport of the targetmore » contaminants may be assessed and forecasted. The analytical technologies/methods are designed to detect and quantify the target contaminants. The data integration technology area consists of hardware and software systems designed to integrate all the site information compiled and collected into a conceptual site model on a daily basis at the site; this conceptual model then becomes the decision-support tool. Simultaneous fielding of different methods within each of the three areas of technology provided data for direct comparison of the technologies fielded, both SOPT and IT. This document reports the results of the site characterization, technology comparison, and ESC demonstration activities associated with the Marshalltown FMGP site. 124 figs., 27 tabs.« less

  8. Optimizing substance detection by integration of canine-human team with machine technology

    NASA Astrophysics Data System (ADS)

    Prestrude, Al M.; Ternes, J. W.

    1994-02-01

    There are several promising methods and technologies for substance detection. The oldest of these methods is the trained detector or `sniffer' dog. We summarize what is known about the capabilities of dogs in substance detection and recommend comparative testing of the canine- human team with current technology to identify the optimum combination of methods to maximize the detection of explosives and contraband.

  9. Using graphics and expert system technologies to support satellite monitoring at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Shirah, Gregory W.; Luczak, Edward C.

    1994-01-01

    At NASA's Goddard Space Flight Center, fault-isolation expert systems have been developed to support data monitoring and fault detection tasks in satellite control centers. Based on the lessons learned during these efforts in expert system automation, a new domain-specific expert system development tool named the Generic Spacecraft Analysts Assistant (GenSAA), was developed to facilitate the rapid development and reuse of real-time expert systems to serve as fault-isolation assistants for spacecraft analysts. This paper describes GenSAA's capabilities and how it is supporting monitoring functions of current and future NASA missions for a variety of satellite monitoring applications ranging from subsystem health and safety to spacecraft attitude. Finally, this paper addresses efforts to generalize GenSAA's data interface for more widespread usage throughout the space and commercial industry.

  10. An opportunity analysis system for space surveillance experiments with the MSX

    NASA Technical Reports Server (NTRS)

    Sridharan, Ramaswamy; Duff, Gary; Hayes, Tony; Wiseman, Andy

    1994-01-01

    The Mid-Course Space Experiment consists of a set of payloads on a satellite being designed and built under the sponsorship of Ballistic Missile Defense Office. The MSX satellite will conduct a series of measurements of phenomenology of backgrounds, missile targets, plumes and resident space objects (RSO's); and will engage in functional demonstrations in support of detection, acquisition and tracking for ballistic missile defense and space-based space surveillance missions. A complex satellite like the MSX has several constraints imposed on its operation by the sensors, the supporting instrumentation, power resources, data recording capability, communications and the environment in which all these operate. This paper describes the implementation of an opportunity and feasibility analysis system, developed at Lincoln Laboratory, Massachusetts Institute of Technology, specifically to support the experiments of the Principal Investigator for space-based surveillance.

  11. Total Knee Replacement and the Effect of Technology on Cocreation for Improved Outcomes and Delivery: Qualitative Multi-Stakeholder Study

    PubMed Central

    van Kasteren, Yasmin; Freyne, Jill

    2018-01-01

    Background The growth in patient-centered care delivery combined with the rising costs of health care have perhaps not unsurprisingly been matched by a proliferation of patient-centered technology. This paper takes a multistakeholder approach to explore how digital technology can support the cocreation of value between patients and their care teams in the delivery of total knee replacement (TKR) surgery, an increasingly common procedure to return mobility and relieve pain for people suffering from osteoarthritis. Objective The aim of this study was to investigate communications and interactions between patients and care teams in the delivery of TKR to identify opportunities for digital technology to add value to TKR health care service by enhancing the cocreation of value. Methods A multistakeholder qualitative study of user needs was conducted with Australian stakeholders (N=34): surgeons (n=12), physiotherapists (n=3), patients (n=11), and general practitioners (n=8). Data from focus groups and interviews were recorded, transcribed, and analyzed using thematic analysis. Results Encounters between patients and their care teams are information-rich but time-poor. Results showed seven different stages of the TKR journey that starts with referral to a surgeon and ends with a postoperative review at 12 months. Each stage of the journey has different information and communication challenges that can be enhanced by digital technology. Opportunities for digital technology include improved waiting list management, supporting and reinforcing patient retention and recall of information, motivating and supporting rehabilitation, improving patient preparation for hospital stay, and reducing risks and anxiety associated with postoperative wound care. Conclusions Digital technology can add value to patients’ care team communications by enhancing information flow, assisting patient recall and retention of information, improving accessibility and portability of information, tailoring information to individual needs, and by providing patients with tools to engage in their own health care management. For care teams, digital technology can add value through early detection of postoperative complications, proactive surveillance of health data for postoperative patients and patients on waiting lists, higher compliance with rehabilitation programs, and reduced length of stay. Digital technology has the potential to improve patient satisfaction and outcomes, as well as potentially reduce hospital length of stay and the burden of disease associated with postoperative morbidity. PMID:29559424

  12. Research progress of free space coherent optical communication

    NASA Astrophysics Data System (ADS)

    Tan, Zhenkun; Ke, Xizheng

    2018-02-01

    This paper mainly introduces the research progress of free space coherent optical communication in Xi'an University of Technology. In recent years, the research on the outer modulation technology of the laser, free-space-to-fiber coupling technique, the design of transmitting and receiving optical antenna, adaptive optical technology with or without wave-front sensor, automatic polarization control technology, frequency stabilization technology, heterodyne detection technology and high speed signal processing technology. Based on the above related research, the digital signal modulation, transmission, detection and data recovery are realized by the heterodyne detection technology in the free space optical communication system, and finally the function of smooth viewing high-definition video is realized.

  13. Sensor Acquisition for Water Utilities: A Survey and Technology List

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alai, M; Glascoe, L; Love, A

    2005-03-07

    The early detection of the deliberate biological and chemical contamination of water distribution systems is a necessary capability for securing the nation's water supply. Current and emerging early-detection technology capabilities and shortcomings need to be identified and assessed to provide government agencies and water utilities with an improved methodology for assessing the value of installing these technologies. The Department of Homeland Security (DHS) has tasked a multi-laboratory team to evaluate current and future needs to protect the nation's water distribution infrastructure by supporting an objective evaluation of current and new technologies. The primary deliverables from this Operational Technology Demonstration (OTD)more » are the following: (1) establishment of an advisory board for review and approval of testing protocols, technology acquisition processes and recommendations for technology test and evaluation in laboratory and field settings; (2) development of a technology acquisition process; (3) creation of laboratory and field testing and evaluation capability; and (4) testing of candidate technologies for insertion into a water early warning system. The initial phase of this study involves the development of two separate but complementary strategies to be reviewed by the advisory board: (1) a technology acquisition strategy, and (2) a technology evaluation strategy. Lawrence Livermore National Laboratory and Sandia National Laboratories are tasked with the first strategy, while Los Alamos, Pacific Northwest, and Oak Ridge National Laboratories are tasked with the second strategy. The first goal of the acquisition strategy is the development of a technology survey process that includes a review of previous sensor surveys and current test programs and then the development of a method to solicit and select existing and emerging sensor technologies for evaluation and testing. In this paper we discuss a survey of previous efforts by governmental agencies and private companies with the aim of facilitating a water sensor technology acquisition procedure. We provide a survey of previous sensor studies with regard to the use of Early Warning Systems (EWS) including earlier surveys, testing programs, and response studies. In the project we extend this earlier work by developing a list of important sensor specifications that are then used to help assemble a sensor selection criteria. A list of sensor technologies with their specifications is appended to this document. This list will assist the second goal of the project which is a recommendation of candidate technologies for laboratory and field testing.« less

  14. IVHM Framework for Intelligent Integration for Vehicle Health Management

    NASA Technical Reports Server (NTRS)

    Paris, Deidre; Trevino, Luis C.; Watson, Michael D.

    2005-01-01

    Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, is the process of assessing, preserving, and restoring system functionality across flight and techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of Integrated Intelligent Vehicle Management (IIVM). These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, this framework integrates technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear that IIVM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission objectives. These systems include the following: Guidance and Navigation; Communications and Tracking; Vehicle Monitoring; Information Transport and Integration; Vehicle Diagnostics; Vehicle Prognostics; Vehicle Mission Planning, Automated Repair and Replacement; Vehicle Control; Human Computer Interface; and Onboard Verification and Validation. Furthermore, the presented framework provides complete vehicle management which not only allows for increased crew safety and mission success through new intelligence capabilities, but also yields a mechanism for more efficient vehicle operations.

  15. Assisting the visually impaired: obstacle detection and warning system by acoustic feedback.

    PubMed

    Rodríguez, Alberto; Yebes, J Javier; Alcantarilla, Pablo F; Bergasa, Luis M; Almazán, Javier; Cela, Andrés

    2012-12-17

    The aim of this article is focused on the design of an obstacle detection system for assisting visually impaired people. A dense disparity map is computed from the images of a stereo camera carried by the user. By using the dense disparity map, potential obstacles can be detected in 3D in indoor and outdoor scenarios. A ground plane estimation algorithm based on RANSAC plus filtering techniques allows the robust detection of the ground in every frame. A polar grid representation is proposed to account for the potential obstacles in the scene. The design is completed with acoustic feedback to assist visually impaired users while approaching obstacles. Beep sounds with different frequencies and repetitions inform the user about the presence of obstacles. Audio bone conducting technology is employed to play these sounds without interrupting the visually impaired user from hearing other important sounds from its local environment. A user study participated by four visually impaired volunteers supports the proposed system.

  16. Automatic detection of adverse events to predict drug label changes using text and data mining techniques.

    PubMed

    Gurulingappa, Harsha; Toldo, Luca; Rajput, Abdul Mateen; Kors, Jan A; Taweel, Adel; Tayrouz, Yorki

    2013-11-01

    The aim of this study was to assess the impact of automatically detected adverse event signals from text and open-source data on the prediction of drug label changes. Open-source adverse effect data were collected from FAERS, Yellow Cards and SIDER databases. A shallow linguistic relation extraction system (JSRE) was applied for extraction of adverse effects from MEDLINE case reports. Statistical approach was applied on the extracted datasets for signal detection and subsequent prediction of label changes issued for 29 drugs by the UK Regulatory Authority in 2009. 76% of drug label changes were automatically predicted. Out of these, 6% of drug label changes were detected only by text mining. JSRE enabled precise identification of four adverse drug events from MEDLINE that were undetectable otherwise. Changes in drug labels can be predicted automatically using data and text mining techniques. Text mining technology is mature and well-placed to support the pharmacovigilance tasks. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Non-local opto-electrical spin injection and detection in germanium at room temperature

    NASA Astrophysics Data System (ADS)

    Jamet, Matthieu; Rortais, Fabien; Zucchetti, Carlo; Ghirardini, Lavinia; Ferrari, Alberto; Vergnaud, Celine; Widiez, Julie; Marty, Alain; Attane, Jean-Philippe; Jaffres, Henri; George, Jean-Marie; Celebrano, Michele; Isella, Giovanni; Ciccacci, Franco; Finazzi, Marco; Bottegoni, Federico

    Non-local charge carriers injection/detection schemes lie at the foundation of information manipulation in integrated systems. The next generation electronics may operate on the spin instead of the charge and germanium appears as the best hosting material to develop such spintronics for its compatibility with mainstream silicon technology and long spin lifetime at room temperature. Moreover, the energy proximity between the direct and indirect bandgaps allows for optical spin orientation. In this presentation, we demonstrate injection of pure spin currents in Ge, combined with non-local spin detection blocks at room temperature. Spin injection is performed either electrically through a magnetic tunnel junction (MTJ) or optically, by using lithographed nanostructures to diffuse the light and create an in-plane polarized electron spin population. Pure spin current detection is achieved using either a MTJ or the inverse spin-Hall effect across a Pt stripe. Supported by the ANR project SiGeSPIN #ANR-13-BS10-0002 and the CARIPLO project SEARCH-IV (Grant 2013-0623).

  18. Assisting the Visually Impaired: Obstacle Detection and Warning System by Acoustic Feedback

    PubMed Central

    Rodríguez, Alberto; Yebes, J. Javier; Alcantarilla, Pablo F.; Bergasa, Luis M.; Almazán, Javier; Cela, Andrés

    2012-01-01

    The aim of this article is focused on the design of an obstacle detection system for assisting visually impaired people. A dense disparity map is computed from the images of a stereo camera carried by the user. By using the dense disparity map, potential obstacles can be detected in 3D in indoor and outdoor scenarios. A ground plane estimation algorithm based on RANSAC plus filtering techniques allows the robust detection of the ground in every frame. A polar grid representation is proposed to account for the potential obstacles in the scene. The design is completed with acoustic feedback to assist visually impaired users while approaching obstacles. Beep sounds with different frequencies and repetitions inform the user about the presence of obstacles. Audio bone conducting technology is employed to play these sounds without interrupting the visually impaired user from hearing other important sounds from its local environment. A user study participated by four visually impaired volunteers supports the proposed system. PMID:23247413

  19. Enhanced photothermal lens using a photonic crystal surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yunfei; Liu, Longju; Zhao, Xiangwei

    2016-08-15

    A photonic crystal (PC)-enhanced photothermal lens (PTL) is demonstrated for the detection of optically thin light absorption materials. The PC-enhanced PTL system is based on a pump-probe scheme consisting of a PC surface, pump laser beam, and probe laser beam. Heated by the pump beam, light absorption materials on the PC surface generate the PTL and cause a substantial change to the guided-mode resonance supported by the PC structure. The change of the PC resonance is detected using the probe laser beam by measuring its reflectivity from the PC surface. When applied to analyze dye molecules deposited on the PCmore » substrate, the developed system is capable of enhancing the PTL signal by 10-fold and reducing the lowest distinguishable concentration by 8-fold, in comparison to measuring without utilizing the PC resonance. The PC-enhanced PTL was also used to detect gold nanoparticles on the PC surface and exhibited a 20-fold improvement of the lowest distinguishable concentration. The PC-enhanced PTL technology offers a potential tool to obtain the absorption signatures of thin films in a broad spectral range with high sensitivity and inexpensive instrumentation. As a result, this technology will enable a broad range of applications of photothermal spectroscopy in chemical analysis and biomolecule sensing.« less

  20. [Detection of the exogenous gene copy number of the transgenic tomato anti-caries vaccine].

    PubMed

    Bai, Guo-hui; Liu, Jian-guo; Tian, Yuan; Chen, Zhu; Bai, Peng-yuan; Han, Qi; Gu, Yu; Guan, Xiao-yan; Wang, Hai-hui

    2013-12-01

    To detect the exogenous gene copy number of the transgenic tomato anti-caries vaccine by using the SYBR Green real-time PCR. Recombinant plasmid pEAC10 and pEPC10 were used as standard to detect genome samples of exogenous gene pacA-ctxB and pacP-ctxB by SYBR green fluorescent quantitation, then the average value was calculated as gene copy number. The copy number of the transgenic tomato carrying pacA-ctxB was 1.3 and the pacP-ctxB was 3.2. The transgenic tomato plants which have high stability are low-copy transgenic plants. Supported by National Natural Science Foundation of China (30160086, 81260164), Science and Technical Fund of Guizhou Province (LKZ[2011]41), Project of Technology Innovation Team in Guizhou Province, Leading Academic Discipline Construction Project in Guizhou Province and Excellent Scientific Research Team Cultivation Project in Zunyi Medical College ([2012]12).

  1. Simulating Wake Vortex Detection with the Sensivu Doppler Wind Lidar Simulator

    NASA Technical Reports Server (NTRS)

    Ramsey, Dan; Nguyen, Chi

    2014-01-01

    In support of NASA's Atmospheric Environment Safety Technologies NRA research topic on Wake Vortex Hazard Investigation, Aerospace Innovations (AI) investigated a set of techniques for detecting wake vortex hazards from arbitrary viewing angles, including axial perspectives. This technical report describes an approach to this problem and presents results from its implementation in a virtual lidar simulator developed at AI. Threedimensional data volumes from NASA's Terminal Area Simulation System (TASS) containing strong turbulent vortices were used as the atmospheric domain for these studies, in addition to an analytical vortex model in 3-D space. By incorporating a third-party radiative transfer code (BACKSCAT 4), user-defined aerosol layers can be incorporated into atmospheric models, simulating attenuation and backscatter in different environmental conditions and altitudes. A hazard detection algorithm is described that uses a twocomponent spectral model to identify vortex signatures observable from arbitrary angles.

  2. Flash LIDAR Emulator for HIL Simulation

    NASA Technical Reports Server (NTRS)

    Brewster, Paul F.

    2010-01-01

    NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project is building a system for detecting hazards and automatically landing controlled vehicles safely anywhere on the Moon. The Flash Light Detection And Ranging (LIDAR) sensor is used to create on-the-fly a 3D map of the unknown terrain for hazard detection. As part of the ALHAT project, a hardware-in-the-loop (HIL) simulation testbed was developed to test the data processing, guidance, and navigation algorithms in real-time to prove their feasibility for flight. Replacing the Flash LIDAR camera with an emulator in the testbed provided a cheaper, safer, more feasible way to test the algorithms in a controlled environment. This emulator must have the same hardware interfaces as the LIDAR camera, have the same performance characteristics, and produce images similar in quality to the camera. This presentation describes the issues involved and the techniques used to create a real-time flash LIDAR emulator to support HIL simulation.

  3. Analysing trends and forecasting malaria epidemics in Madagascar using a sentinel surveillance network: a web-based application.

    PubMed

    Girond, Florian; Randrianasolo, Laurence; Randriamampionona, Lea; Rakotomanana, Fanjasoa; Randrianarivelojosia, Milijaona; Ratsitorahina, Maherisoa; Brou, Télesphore Yao; Herbreteau, Vincent; Mangeas, Morgan; Zigiumugabe, Sixte; Hedje, Judith; Rogier, Christophe; Piola, Patrice

    2017-02-13

    The use of a malaria early warning system (MEWS) to trigger prompt public health interventions is a key step in adding value to the epidemiological data routinely collected by sentinel surveillance systems. This study describes a system using various epidemic thresholds and a forecasting component with the support of new technologies to improve the performance of a sentinel MEWS. Malaria-related data from 21 sentinel sites collected by Short Message Service are automatically analysed to detect malaria trends and malaria outbreak alerts with automated feedback reports. Roll Back Malaria partners can, through a user-friendly web-based tool, visualize potential outbreaks and generate a forecasting model. The system already demonstrated its ability to detect malaria outbreaks in Madagascar in 2014. This approach aims to maximize the usefulness of a sentinel surveillance system to predict and detect epidemics in limited-resource environments.

  4. An agent-oriented approach to automated mission operations

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Odubiyi, Jide

    1994-01-01

    As we plan for the next generation of Mission Operations Control Center (MOCC) systems, there are many opportunities for the increased utilization of innovative knowledge-based technologies. The innovative technology discussed is an advanced use of agent-oriented approaches to the automation of mission operations. The paper presents an overview of this technology and discusses applied operational scenarios currently being investigated and prototyped. A major focus of the current work is the development of a simple user mechanism that would empower operations staff members to create, in real time, software agents to assist them in common, labor intensive operations tasks. These operational tasks would include: handling routine data and information management functions; amplifying the capabilities of a spacecraft analyst/operator to rapidly identify, analyze, and correct spacecraft anomalies by correlating complex data/information sets and filtering error messages; improving routine monitoring and trend analysis by detecting common failure signatures; and serving as a sentinel for spacecraft changes during critical maneuvers enhancing the system's capabilities to support nonroutine operational conditions with minimum additional staff. An agent-based testbed is under development. This testbed will allow us to: (1) more clearly understand the intricacies of applying agent-based technology in support of the advanced automation of mission operations and (2) access the full set of benefits that can be realized by the proper application of agent-oriented technology in a mission operations environment. The testbed under development addresses some of the data management and report generation functions for the Explorer Platform (EP)/Extreme UltraViolet Explorer (EUVE) Flight Operations Team (FOT). We present an overview of agent-oriented technology and a detailed report on the operation's concept for the testbed.

  5. Methods of Oil Detection in Response to the Deepwater ...

    EPA Pesticide Factsheets

    Detecting oil in the northern Gulf of Mexico following the Deepwater Horizon oil spill presented unique challenges due to the spatial and temporal extent of the spill and the subsequent dilution of oil in the environment. Over time, physical, chemical, and biological processes altered the composition of the oil, further complicating its detection. Reservoir fluid, containing gas and oil, released from the Macondo well was detected in surface and subsurface environments. Oil monitoring during and after the spill required a variety of technologies, including nimble adaptation of techniques developed for non-oil-related applications. The oil detection technologies employed varied in sensitivity, selectivity, strategy, cost, usability, expertise of user, and reliability. Innovative technologies ranging from remote sensing to laboratory analytical techniques were employed and produced new information relevant to oil spill detection, including the chemical characterization, the dispersion effectiveness, and the detection limits of oil. The challenge remains to transfer these new technologies to oil spill responders so that detection of oil following a spill can be improved. To publish a perspective paper on oil detection technologies during the Deepwater Horizon Oil Spill. This is for a special issue book/journal.

  6. The Role of a Physical Analysis Laboratory in a 300 mm IC Development and Manufacturing Centre

    NASA Astrophysics Data System (ADS)

    Kwakman, L. F. Tz.; Bicais-Lepinay, N.; Courtas, S.; Delille, D.; Juhel, M.; Trouiller, C.; Wyon, C.; de la Bardonnie, M.; Lorut, F.; Ross, R.

    2005-09-01

    To remain competitive IC manufacturers have to accelerate the development of most advanced (CMOS) technology and to deliver high yielding products with best cycle times and at a competitive pricing. With the increase of technology complexity, also the need for physical characterization support increases, however many of the existing techniques are no longer adequate to effectively support the 65-45 nm technology node developments. New and improved techniques are definitely needed to better characterize the often marginal processes, but these should not significantly impact fabrication costs or cycle time. Hence, characterization and metrology challenges in state-of-the-art IC manufacturing are both of technical and economical nature. TEM microscopy is needed for high quality, high volume analytical support but several physical and practical hurdles have to be taken. The success rate of FIB-SEM based failure analysis drops as defects often are too small to be detected and fault isolation becomes more difficult in the nano-scale device structures. To remain effective and efficient, SEM and OBIRCH techniques have to be improved or complemented with other more effective methods. Chemical analysis of novel materials and critical interfaces requires improvements in the field of e.g. SIMS, ToF-SIMS. Techniques that previously were only used sporadically, like EBSD and XRD, have become a `must' to properly support backend process development. At the bright side, thanks to major technical advances, techniques that previously were practiced at laboratory level only now can be used effectively for at-line fab metrology: Voltage Contrast based defectivity control, XPS based gate dielectric metrology and XRD based control of copper metallization processes are practical examples. In this paper capabilities and shortcomings of several techniques and corresponding equipment are presented with practical illustrations of use in our Crolles facilities.

  7. Pregnancy, exercise and nutrition research study with smart phone app support (Pears): Study protocol of a randomized controlled trial.

    PubMed

    Kennelly, Maria A; Ainscough, Kate; Lindsay, Karen; Gibney, Eileen; Mc Carthy, Mary; McAuliffe, Fionnuala M

    2016-01-01

    Maternal adiposity confers an increased risk of GDM in pregnancy. A low glycemic index (GI) dietary intervention has been found to improve glucose homeostasis and reduce gestational weight gain. Mobile Health (mHealth) Technology-assisted interventions are becoming commonplace as an aid to treating many chronic diseases. The aim of this study is to assess the impact of a 'healthy lifestyle package' with mHealth smart phone technology as support compared with usual care on the incidence of GDM in an overweight and obese pregnant population. We propose a randomized controlled trial of an mHealth assisted healthy lifestyle intervention package versus standard obstetric care in pregnant women with a BMI ≥25kg/m(2)-39.9kg/m(2). Patients are randomized to control or intervention group in a 1:1 ratio. The intervention arm healthy lifestyle package includes a motivational counseling session to encourage behavior change, involving targeted, low GI nutritional advice and daily physical activity prescription delivered before 18weeks gestation, as well as a smart phone app to provide ongoing healthy lifestyle advice and support throughout pregnancy. The primary outcome is the incidence of GDM at 29weeks' gestation and power analysis indicates that 253 women are required in each group to detect a difference. This will be the first clinical trial to evaluate the effectiveness of a smart phone technology-assisted targeted healthy lifestyle intervention, which is grounded in behavior change theories and techniques, to support antenatal management of an overweight and obese pregnant population in preventing GDM. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laughlin, Gary L.

    The International, Homeland, and Nuclear Security (IHNS) Program Management Unit (PMU) oversees a broad portfolio of Sandia’s programs in areas ranging from global nuclear security to critical asset protection. We use science and technology, innovative research, and global engagement to counter threats, reduce dangers, and respond to disasters. The PMU draws on the skills of scientists and engineers from across Sandia. Our programs focus on protecting US government installations, safeguarding nuclear weapons and materials, facilitating nonproliferation activities, securing infrastructures, countering chemical and biological dangers, and reducing the risk of terrorist threats. We conduct research in risk and threat analysis, monitoringmore » and detection, decontamination and recovery, and situational awareness. We develop technologies for verifying arms control agreements, neutralizing dangerous materials, detecting intruders, and strengthening resiliency. Our programs use Sandia’s High-Performance Computing resources for predictive modeling and simulation of interdependent systems, for modeling dynamic threats and forecasting adaptive behavior, and for enabling decision support and processing large cyber data streams. In this report, we highlight four advanced computation projects that illustrate the breadth of the IHNS mission space.« less

  9. Annual Progress Report on the Development of Waste Tank Leak Monitoring and Detection and Mitigation Activities in Support of M-45-08

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DEFIGH PRICE, C.

    2000-09-25

    Milestone M-45-09E of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) [TPA 1996] requires submittal of an annual progress report on the development of waste tank leak detection, monitoring, and mitigation (LDMM) activities associated with the retrieval of waste from single-shell tanks (SSTs). This report details progress for fiscal year 2000, building on the current LDMM strategy and including discussion of technologies, applications, cost, schedule, and technical data. The report also includes discussion of demonstrations conducted and recommendations for additional testing. Tri-Party Agreement Milestones M-45-08A and M-45-08B required design and demonstration of LDMM systems for initialmore » retrieval of SST waste. These specific milestones have recently been deleted as part of the M-45-00A change package. Future LDMM development work has been incorporated into specific technology demonstration milestones and SST waste retrieval milestones in the M-45-03 and M-45-05 milestone series.« less

  10. Development of HANAA to Achieve Commercialization Final Report CRADA No. TC-2025-01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, R. P.; Schmidt, J. C.

    The objective of this project was to provide DOD and the intelligence agencies with highly portable, advanced, bio-detection instruments and to further the DOE objective of putting advanced instrumentation for the detection of biological terrorism agents into the hands of first responders. All sponsors of the HANAA development work at LLNL believed that the technology must be commercialized to fully contribute to their missions. Intelligence organizations, military teams, and first responders must be able to purchase the instruments for a reasonable price and obtain maintenance services and support equipment from a reliable supplier in order for the instrument to bemore » useful to them. The goal was to efficiently transfer HANAA technology from LLNL to ETG, a company that would manufacture the instrument and make it commercially available to the constituencies important to our sponsors. This was to include a current beta test instrument and all knowledge of problems with the instrument and recommendations for solving those problems in a commercial version. The following tasks were to be completed under this CRADA.« less

  11. Differential neural responses to acupuncture revealed by MEG using wavelet-based time-frequency analysis: a pilot study.

    PubMed

    You, Youbo; Bai, Lijun; Dai, Ruwei; Xue, Ting; Zhong, Chongguang; Feng, Yuanyuan; Wang, Hu; Liu, Zhenyu; Tian, Jie

    2011-01-01

    Acupoint specificity, lying at the core of the Traditional Chinese Medicine, still faces many controversies. As previous neuroimaging studies on acupuncture mainly adopted relatively low time-resolution functional magnetic resonance imaging (fMRI) technology and inappropriate block-designed experimental paradigm due to sustained effect, in the current study, we employed a single block-designed paradigm together with high temporal-resolution magnetoencephalography (MEG) technology. We applied time-frequency analysis based upon Morlet wavelet transforming approach to detect differential oscillatory brain dynamics induced by acupuncture at Stomach Meridian 36 (ST36) using a nearby nonacupoint (NAP) as control condition. We observed that frequency power changes were mainly restricted to delta band for both ST36 group and NAP group. Consistently increased delta band power in contralateral temporal regions and decreased power in the counterparts of ipsilateral hemisphere were detected following stimulation at ST36 on the right leg. Compared with ST36, no significant delta ranges were found in temporal regions in NAP group, illustrating different oscillatory brain patterns. Our results may provide additional evidence to support the specificity of acupuncture modulation effects.

  12. Idaho National Laboratory Supervisory Control and Data Acquisition Intrusion Detection System (SCADA IDS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jared Verba; Michael Milvich

    2008-05-01

    Current Intrusion Detection System (IDS) technology is not suited to be widely deployed inside a Supervisory, Control and Data Acquisition (SCADA) environment. Anomaly- and signature-based IDS technologies have developed methods to cover information technology-based networks activity and protocols effectively. However, these IDS technologies do not include the fine protocol granularity required to ensure network security inside an environment with weak protocols lacking authentication and encryption. By implementing a more specific and more intelligent packet inspection mechanism, tailored traffic flow analysis, and unique packet tampering detection, IDS technology developed specifically for SCADA environments can be deployed with confidence in detecting maliciousmore » activity.« less

  13. Contracts for field projects and supporting research on enhanced oil recovery, July--September 1992. Progress review No. 72, quarter ending September 30, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    Accomplishments for the past quarter are presented for the following tasks: Chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; and novel technology. A list of available publication is also provided.

  14. A critical review of the use of technology to provide psychosocial support for children and young people with long-term conditions.

    PubMed

    Aldiss, Susie; Baggott, Christina; Gibson, Faith; Mobbs, Sarah; Taylor, Rachel M

    2015-01-01

    Advances in technology have offered health professionals alternative mediums of providing support to patients with long-term conditions. This critical review evaluated and assessed the benefit of electronic media technologies in supporting children and young people with long-term conditions. Of 664 references identified, 40 met the inclusion criteria. Supportive technology tended to increase disease-related knowledge and improve aspects of psychosocial function. Supportive technology did not improve quality of life, reduce health service use or decrease school absences. The poor methodological quality of current evidence and lack of involvement of users in product development contribute to the uncertainty that supportive technology is beneficial. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Understanding Patterns of Social Support and Their Relationship to an ART Adherence Intervention Among Adults in Rural Southwestern Uganda.

    PubMed

    Atukunda, Esther C; Musiimenta, Angella; Musinguzi, Nicholas; Wyatt, Monique A; Ashaba, Justus; Ware, Norma C; Haberer, Jessica E

    2017-02-01

    SMS is a widely used technology globally and may also improve ART adherence, yet SMS notifications to social supporters following real-time detection of missed doses showed no clear benefit in a recent pilot trial. We examine the demographic and social-cultural dynamics that may explain this finding. In the trial, 63 HIV-positive individuals initiating ART received a real-time adherence monitor and were randomized to two types of SMS reminder interventions versus a control (no SMS). SMS notifications were also sent to 45 patient-identified social supporters for sustained adherence lapses. Like participants, social supporters were interviewed at enrollment, following their matched participant's adherence lapse and at exit. Social supporters with regular income (RR = 0.27, P = 0.001) were significantly associated with fewer adherence lapses. Instrumental support was associated with fewer adherence lapses only among social supporters who were food secure (RR = 0.58, P = 0.003). Qualitative interview data revealed diverse and complex economic and relationship dynamics, affecting social support. Resource availability in emotionally positive relationships seemingly facilitated helpful support, while limited resources prevented active provision of support for many. Effective social support appeared subject to social supporters' food security, economic stability and a well-functioning social network dependent on trust and supportive disclosure.

  16. Students' Perceptions of Self-Directed Learning and Collaborative Learning with and without Technology

    ERIC Educational Resources Information Center

    Lee, K.; Tsai, P.-S.; Chai, C. S.; Koh, J. H. L.

    2014-01-01

    This study explored students' perceptions of self-directed learning (SDL) and collaborative learning (CL) with/without technology in an information and communications technology-supported classroom environment. The factors include SDL, CL, SDL supported by technology, and CL supported by technology. Based on the literature review, this study…

  17. Integrating Oil Debris and Vibration Gear Damage Detection Technologies Using Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Afjeh, Abdollah A.

    2002-01-01

    A diagnostic tool for detecting damage to spur gears was developed. Two different measurement technologies, wear debris analysis and vibration, were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Test Rig. Experimental data were collected during experiments performed in this test rig with and without pitting. Results show combining the two measurement technologies improves the detection of pitting damage on spur gears.

  18. Design and test of a capacitance detection circuit based on a transimpedance amplifier

    NASA Astrophysics Data System (ADS)

    Linfeng, Mu; Wendong, Zhang; Changde, He; Rui, Zhang; Jinlong, Song; Chenyang, Xue

    2015-07-01

    This paper presents a transimpedance amplifier (TIA) capacitance detection circuit aimed at detecting micro-capacitance, which is caused by ultrasonic stimulation applied to the capacitive micro-machined ultrasonic transducer (CMUT). In the capacitance interface, a TIA is adopted to amplify the received signal with a center frequency of 400 kHz, and finally detect ultrasound pressure. The circuit has a strong anti-stray property and this paper also studies the calculation of compensation capacity in detail. To ensure high resolution, noise analysis is conducted. After optimization, the detected minimum ultrasound pressure is 2.1 Pa, which is two orders of magnitude higher than the former. The test results showed that the circuit was sensitive to changes in ultrasound pressure and the distance between the CMUT and stumbling block, which also successfully demonstrates the functionality of the developed TIA of the analog-front-end receiver. Project supported by the National Natural Science Foundation of China (No. 61127008) and the Subsidized Program of the National High Technology Research and Development Program of China (No. 2011AA040404).

  19. Detection of protruding lesion in wireless capsule endoscopy videos of small intestine

    NASA Astrophysics Data System (ADS)

    Wang, Chengliang; Luo, Zhuo; Liu, Xiaoqi; Bai, Jianying; Liao, Guobin

    2018-02-01

    Wireless capsule endoscopy (WCE) is a developed revolutionary technology with important clinical benefits. But the huge image data brings a heavy burden to the doctors for locating and diagnosing the lesion images. In this paper, a novel and efficient approach is proposed to help clinicians to detect protruding lesion images in small intestine. First, since there are many possible disturbances such as air bubbles and so on in WCE video frames, which add the difficulty of efficient feature extraction, the color-saliency region detection (CSD) method is developed for extracting the potentially saliency region of interest (SROI). Second, a novel color channels modelling of local binary pattern operator (CCLBP) is proposed to describe WCE images, which combines grayscale and color angle. The CCLBP feature is more robust to variation of illumination and more discriminative for classification. Moreover, support vector machine (SVM) classifier with CCLBP feature is utilized to detect protruding lesion images. Experimental results on real WCE images demonstrate that proposed method has higher accuracy on protruding lesion detection than some art-of-state methods.

  20. Autonomous unobtrusive detection of mild cognitive impairment in older adults.

    PubMed

    Akl, Ahmad; Taati, Babak; Mihailidis, Alex

    2015-05-01

    The current diagnosis process of dementia is resulting in a high percentage of cases with delayed detection. To address this problem, in this paper, we explore the feasibility of autonomously detecting mild cognitive impairment (MCI) in the older adult population. We implement a signal processing approach equipped with a machine learning paradigm to process and analyze real-world data acquired using home-based unobtrusive sensing technologies. Using the sensor and clinical data pertaining to 97 subjects, acquired over an average period of three years, a number of measures associated with the subjects' walking speed and general activity in the home were calculated. Different time spans of these measures were used to generate feature vectors to train and test two machine learning algorithms namely support vector machines and random forests. We were able to autonomously detect MCI in older adults with an area under the ROC curve of 0.97 and an area under the precision-recall curve of 0.93 using a time window of 24 weeks. This study is of great significance since it can potentially assist in the early detection of cognitive impairment in older adults.

  1. Supporting the Development and Adoption of Automatic Lameness Detection Systems in Dairy Cattle: Effect of System Cost and Performance on Potential Market Shares

    PubMed Central

    Van Weyenberg, Stephanie; Van Nuffel, Annelies; Lauwers, Ludwig; Vangeyte, Jürgen

    2017-01-01

    Simple Summary Most prototypes of systems to automatically detect lameness in dairy cattle are still not available on the market. Estimating their potential adoption rate could support developers in defining development goals towards commercially viable and well-adopted systems. We simulated the potential market shares of such prototypes to assess the effect of altering the system cost and detection performance on the potential adoption rate. We found that system cost and lameness detection performance indeed substantially influence the potential adoption rate. In order for farmers to prefer automatic detection over current visual detection, the usefulness that farmers attach to a system with specific characteristics should be higher than that of visual detection. As such, we concluded that low system costs and high detection performances are required before automatic lameness detection systems become applicable in practice. Abstract Most automatic lameness detection system prototypes have not yet been commercialized, and are hence not yet adopted in practice. Therefore, the objective of this study was to simulate the effect of detection performance (percentage missed lame cows and percentage false alarms) and system cost on the potential market share of three automatic lameness detection systems relative to visual detection: a system attached to the cow, a walkover system, and a camera system. Simulations were done using a utility model derived from survey responses obtained from dairy farmers in Flanders, Belgium. Overall, systems attached to the cow had the largest market potential, but were still not competitive with visual detection. Increasing the detection performance or lowering the system cost led to higher market shares for automatic systems at the expense of visual detection. The willingness to pay for extra performance was €2.57 per % less missed lame cows, €1.65 per % less false alerts, and €12.7 for lame leg indication, respectively. The presented results could be exploited by system designers to determine the effect of adjustments to the technology on a system’s potential adoption rate. PMID:28991188

  2. Technical note: a novel approach to the detection of estrus in dairy cows using ultra-wideband technology.

    PubMed

    Homer, E M; Gao, Y; Meng, X; Dodson, A; Webb, R; Garnsworthy, P C

    2013-10-01

    Detection of estrus is a key determinant of profitability of dairy herds, but estrus is increasingly difficult to observe in the modern dairy cow with shorter duration and less-intense estrus. Concurrent with the unfavorable correlation between milk yield and fertility, estrus-detection rates have declined to less than 50%. We tested ultra-wideband (UWB) radio technology (Thales Research & Technology Ltd., Reading, UK) for proof of concept that estrus could be detected in dairy cows (two 1-wk-long trials; n=16 cows, 8 in each test). The 3-dimensional positions of 12 cows with synchronized estrous cycles and 4 pregnant control cows were monitored continuously using UWB mobile units operating within a network of 8 base units for a period of 7d. In the study, 10 cows exhibited estrus as confirmed by visual observation, activity monitoring, and milk progesterone concentrations. Automated software was developed for analysis of UWB data to detect cows in estrus and report the onset of estrus in real time. The UWB technology accurately detected 9 out of 10 cows in estrus. In addition, UWB technology accurately confirmed all 6 cows not in estrus. In conclusion, UWB technology can accurately detect estrus and hence we have demonstrated proof of concept for a novel technology that has significant potential to improve estrus-detection rates. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Enabling inspection solutions for future mask technologies through the development of massively parallel E-Beam inspection

    NASA Astrophysics Data System (ADS)

    Malloy, Matt; Thiel, Brad; Bunday, Benjamin D.; Wurm, Stefan; Jindal, Vibhu; Mukhtar, Maseeh; Quoi, Kathy; Kemen, Thomas; Zeidler, Dirk; Eberle, Anna Lena; Garbowski, Tomasz; Dellemann, Gregor; Peters, Jan Hendrik

    2015-09-01

    The new device architectures and materials being introduced for sub-10nm manufacturing, combined with the complexity of multiple patterning and the need for improved hotspot detection strategies, have pushed current wafer inspection technologies to their limits. In parallel, gaps in mask inspection capability are growing as new generations of mask technologies are developed to support these sub-10nm wafer manufacturing requirements. In particular, the challenges associated with nanoimprint and extreme ultraviolet (EUV) mask inspection require new strategies that enable fast inspection at high sensitivity. The tradeoffs between sensitivity and throughput for optical and e-beam inspection are well understood. Optical inspection offers the highest throughput and is the current workhorse of the industry for both wafer and mask inspection. E-beam inspection offers the highest sensitivity but has historically lacked the throughput required for widespread adoption in the manufacturing environment. It is unlikely that continued incremental improvements to either technology will meet tomorrow's requirements, and therefore a new inspection technology approach is required; one that combines the high-throughput performance of optical with the high-sensitivity capabilities of e-beam inspection. To support the industry in meeting these challenges SUNY Poly SEMATECH has evaluated disruptive technologies that can meet the requirements for high volume manufacturing (HVM), for both the wafer fab [1] and the mask shop. Highspeed massively parallel e-beam defect inspection has been identified as the leading candidate for addressing the key gaps limiting today's patterned defect inspection techniques. As of late 2014 SUNY Poly SEMATECH completed a review, system analysis, and proof of concept evaluation of multiple e-beam technologies for defect inspection. A champion approach has been identified based on a multibeam technology from Carl Zeiss. This paper includes a discussion on the need for high-speed e-beam inspection and then provides initial imaging results from EUV masks and wafers from 61 and 91 beam demonstration systems. Progress towards high resolution and consistent intentional defect arrays (IDA) is also shown.

  4. Acoustic intrusion detection and positioning system

    NASA Astrophysics Data System (ADS)

    Berman, Ohad; Zalevsky, Zeev

    2002-08-01

    Acoustic sensors are becoming more and more applicable as a military battlefield technology. Those sensors allow a detection and direciton estimation with low false alarm rate and high probability of detection. The recent technological progress related to these fields of reserach, together with an evolution of sophisticated algorithms, allow the successful integration of those sensoe in battlefield technologies. In this paper the performances of an acoustic sensor for a detection of avionic vessels is investigated and analyzed.

  5. On-off keying transmitter design for navigation by visible light communication

    NASA Astrophysics Data System (ADS)

    Louro, P.; Vieira, M.; Costa, J.; Vieira, M. A.

    2018-02-01

    White LEDS revolutionized the field of illumination technology mainly due to the energy saving effects. Besides lighting purposes LEDs can also be used in wireless communication systems when integrated in Visible Light Communication (VLC) systems. Indoor positioning for navigation in large buildings is currently under research to overcome the difficulties associated with the use of GPS in such environments. The motivation for this application is also supported by the possibility of taking advantage of an existing lighting and WiFi infrastructure. In this work it is proposed an indoor navigation system based on the use of VLC technology. The proposed system includes trichromatic white LEDs with the red and blue chips modulated at different frequencies and a pinpin photodetector with selective spectral sensitivity. Optoelectronic features of both optical sources and photodetector device are analyzed. The photodetector device consists two pin structures based on a-SiC:H and a-Si:H with geometrical configuration optimized for the detection of short and large wavelengths in the visible range. Its sensitivity is externally tuned by steady state optical bias. The localization algorithm makes use of the Fourier transform to identify the frequencies present in the photocurrent signal and the wavelength filtering properties of the sensor under front and back optical bias to detect the existing red and blue signals. The viability of the system was demonstrated through the implementation of an automatic algorithm to infer the photodetector cardinal direction. A capacitive optoelectronic model supports the experimental results and explains the device operation.

  6. Reagentless chemiluminescence-based fiber optic sensors for regenerative life support in space

    NASA Astrophysics Data System (ADS)

    Atwater, James E.; Akse, James R.; DeHart, Jeffrey; Wheeler, Richard R., Jr.

    1995-04-01

    The initial feasibility demonstration of a reagentless chemiluminescence based fiber optic sensor technology for use in advanced regenerative life support applications in space and planetary outposts is described. The primary constraints for extraterrestrial deployment of any technology are compatibility with microgravity and hypogravity environments; minimal size, weight, and power consumption; and minimal use of expendables due to the great expense and difficulty inherent to resupply logistics. In the current research, we report the integration of solid state flow through modules for the production of aqueous phase reagents into an integrated system for the detection of important analytes by chemiluminescence, with fiber optic light transmission. By minimizing the need for resupply expendables, the use of solid phase modules makes complex chemical detection schemes practical. For the proof of concept, hydrogen peroxide and glucose were chosen as analytes. The reaction is catalyzed by glucose oxidase, an immobilized enzyme. The aqueous phase chemistry required for sensor operation is implemented using solid phase modules which adjust the pH of the influent stream, catalyze the oxidation of analyte, and provide the controlled addition of the luminophore to the flowing aqueous stream. Precise control of the pH has proven essential for the long-term sustained release of the luminophore. Electrocatalysis is achieved using a controlled potential across gold mesh and gold foil electrodes which undergo periodic polarity reversals. The development and initial characterization of performance of the reagentless fiber optic chemiluminescence sensors are presented in this paper.

  7. A dielectrophoretic method of discrimination between normal oral epithelium, and oral and oropharyngeal cancer in a clinical setting.

    PubMed

    Graham, K A; Mulhall, H J; Labeed, F H; Lewis, M P; Hoettges, K F; Kalavrezos, N; McCaul, J; Liew, C; Porter, S; Fedele, S; Hughes, M P

    2015-08-07

    Despite the accessibility of the oral cavity to clinical examination, delays in diagnosis of oral and oropharyngeal carcinoma (OOPC) are observed in a large majority of patients, with negative impact on prognosis. Diagnostic aids might help detection and improve early diagnosis, but there remains little robust evidence supporting the use of any particular diagnostic technology at the moment. The aim of the present feasibility first-in-human study was to evaluate the preliminary diagnostic validity of a novel technology platform based on dielectrophoresis (DEP). DEP does not require labeling with antibodies or stains and it is an ideal tool for rapid analysis of cell properties. Cells from OOPC/dysplasia tissue and healthy oral mucosa were collected from 57 study participants via minimally-invasive brush biopsies and tested with a prototype DEP platform using median membrane midpoint frequency as main analysis parameter. Results indicate that the current DEP platform can discriminate between brush biopsy samples from cancerous and healthy oral tissue with a diagnostic sensitivity of 81.6% and a specificity of 81.0%. The present ex vivo results support the potential application of DEP testing for identification of OOPC. This result indicates that DEP has the potential to be developed into a low-cost, rapid platform as an assistive tool for the early identification of oral cancer in primary care; given the rapid, minimally-invasive and non-expensive nature of the test, dielectric characterization represents a promising platform for cost-effective early cancer detection.

  8. Minor Body Surveyor: A Multi-Object, High Speed, Spectro-Photometer Space Mission System Employing Wide-Area Intelligent Change Detection

    NASA Astrophysics Data System (ADS)

    Kaplan, M. L.; van Cleve, J. E.; Alcock, C.

    2003-12-01

    Detection and characterization of the small bodies of the outer solar system presents unique challenges to terrestrial based sensing systems, principally the inverse 4th power decrease of reflected and thermal signals with target distance from the Sun. These limits are surpassed by new techniques [1,2,3] employing star-object occultation event sensing, which are capable of detecting sub-kilometer objects in the Kuiper Belt and Oort cloud. This poster will present an instrument and space mission concept based on adaptations of the NASA Discovery Kepler program currently in development at Ball Aerospace and Technologies Corp. Instrument technologies to enable this space science mission are being pursued and will be described. In particular, key attributes of an optimized payload include the ability to provide: 1) Coarse spectral resolution (using an objective spectrometer approach) 2) Wide FOV, simultaneous object monitoring (up to 150,000 stars employing select data regions within a large focal plane mosaic) 3) Fast temporal frame integration and readout architectures (10 to 50 msec for each monitored object) 4) Real-time, intelligent change detection processing (to limit raw data volumes) The Minor Body Surveyor combines the focal plane and processing technology elements into a densely packaged format to support general space mission issues of mass and power consumption, as well as telemetry resources. Mode flexibility is incorporated into the real-time processing elements to allow for either temporal (Occultations) or spatial (Moving targets) change detection. In addition, a basic image capture mode is provided for general pointing and field reference measurements. The overall space mission architecture is described as well. [1] M. E. Bailey. Can 'Invisible' Bodies be Observed in the Solar System. Nature, 259:290-+, January 1976. [2] T. S. Axelrod, C. Alcock, K. H. Cook, and H.-S. Park. A Direct Census of the Oort Cloud with a Robotic Telescope. In ASP Conf. Ser. 34: Robotic Telescopes in the 1990s, pages 171-181, 1992. [3] F. Roques and M. Moncuquet. A Detection Method for Small Kuiper Belt Objects: The Search for Stellar Occultations. Icarus, 147:530-544, October 2000.

  9. The potential of technology for enhancing individual placement and support supported employment.

    PubMed

    Lord, Sarah E; McGurk, Susan R; Nicholson, Joanne; Carpenter-Song, Elizabeth A; Tauscher, Justin S; Becker, Deborah R; Swanson, Sarah J; Drake, Robert E; Bond, Gary R

    2014-06-01

    The potential of technology to enhance delivery and outcomes of Individual Placement and Support (IPS) supported employment. IPS supported employment has demonstrated robust success for improving rates of competitive employment among individuals with psychiatric disabilities. Still, a majority of those with serious mental illnesses are not employed (Bond, Drake, & Becker, 2012). The need to promote awareness of IPS and expand services is urgent. In this study, we describe ways that technologies may enhance delivery of IPS supported employment across the care continuum and stakeholder groups. Directions for research are highlighted. published literature, clinical observations, IPS learning collaborative. Technology has the potential to enhance direct service as well as workflow in the IPS supported employment process, which may lead to improved fidelity and client outcomes. Mobile and cloud technologies open opportunities for collaboration, self-directed care, and ongoing support to help clients obtain and maintain meaningful employment. Research is needed to evaluate efficacy of technology-based approaches for promoting client employment outcomes, to identify provider and organization barriers to using technology for IPS delivery, and to determine effective strategies for implementing technology with IPS in different settings and with diverse client audiences.

  10. The Potential of Technology for Enhancing Individual Placement and Support Supported Employment

    PubMed Central

    Lord, Sarah E.; McGurk, Susan R.; Nicholson, Joanne; Carpenter-Song, Elizabeth A.; Tauscher, Justin S.; Becker, Deborah R.; Swanson, Sarah J.; Drake, Robert E.; Bond, Gary R.

    2015-01-01

    Topic The potential of technology to enhance delivery and outcomes of Individual Placement and Support (IPS) supported employment. Purpose IPS supported employment has demonstrated robust success for improving rates of competitive employment among individuals with psychiatric disabilities. Still, a majority of those with serious mental illnesses are not employed (Bond, Drake, & Becker, 2012). The need to promote awareness of IPS and expand services is urgent. In this study, we describe ways that technologies may enhance delivery of IPS supported employment across the care continuum and stakeholder groups. Directions for research are highlighted. Sources Used published literature, clinical observations, IPS learning collaborative. Conclusions and Implications for Practice Technology has the potential to enhance direct service as well as workflow in the IPS supported employment process, which may lead to improved fidelity and client outcomes. Mobile and cloud technologies open opportunities for collaboration, self-directed care, and ongoing support to help clients obtain and maintain meaningful employment. Research is needed to evaluate efficacy of technology-based approaches for promoting client employment outcomes, to identify provider and organization barriers to using technology for IPS delivery, and to determine effective strategies for implementing technology with IPS in different settings and with diverse client audiences. PMID:24912058

  11. The Instructional Technology Support Center at MTSU: Integrating Technology into K-12 and University Classrooms.

    ERIC Educational Resources Information Center

    Schmidt, Constance R.

    The Instructional Technology Support Center (ITSC) provides training and support for the use of instructional technology by K-12 teachers and Middle Tennessee State University (MTSU) faculty. The goals of the ITSC include: training pre-service and in-service teachers in the use of instructional technology; improving MTSU teaching through expanded…

  12. CMMAD Usability Case Study in Support of Countermine and Hazard Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor G. Walker; David I. Gertman

    2010-04-01

    During field trials, operator usability data were collected in support of lane clearing missions and hazard sensing for two robot platforms with Robot Intelligence Kernel (RIK) software and sensor scanning payloads onboard. The tests featured autonomous and shared robot autonomy levels where tasking of the robot used a graphical interface featuring mine location and sensor readings. The goal of this work was to provide insights that could be used to further technology development. The efficacy of countermine systems in terms of mobility, search, path planning, detection, and localization were assessed. Findings from objective and subjective operator interaction measures are reviewedmore » along with commentary from soldiers having taken part in the study who strongly endorse the system.« less

  13. Facial Expression Recognition using Multiclass Ensemble Least-Square Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Lawi, Armin; Sya'Rani Machrizzandi, M.

    2018-03-01

    Facial expression is one of behavior characteristics of human-being. The use of biometrics technology system with facial expression characteristics makes it possible to recognize a person’s mood or emotion. The basic components of facial expression analysis system are face detection, face image extraction, facial classification and facial expressions recognition. This paper uses Principal Component Analysis (PCA) algorithm to extract facial features with expression parameters, i.e., happy, sad, neutral, angry, fear, and disgusted. Then Multiclass Ensemble Least-Squares Support Vector Machine (MELS-SVM) is used for the classification process of facial expression. The result of MELS-SVM model obtained from our 185 different expression images of 10 persons showed high accuracy level of 99.998% using RBF kernel.

  14. Massively parallel sequencing of 32 forensic markers using the Precision ID GlobalFiler™ NGS STR Panel and the Ion PGM™ System.

    PubMed

    Wang, Zheng; Zhou, Di; Wang, Hui; Jia, Zhenjun; Liu, Jing; Qian, Xiaoqin; Li, Chengtao; Hou, Yiping

    2017-11-01

    Massively parallel sequencing (MPS) technologies have proved capable of sequencing the majority of the key forensic STR markers. By MPS, not only the repeat-length size but also sequence variations could be detected. Recently, Thermo Fisher Scientific has designed an advanced MPS 32-plex panel, named the Precision ID GlobalFiler™ NGS STR Panel, where the primer set has been designed specifically for the purpose of MPS technologies and the data analysis are supported by a new version HID STR Genotyper Plugin (V4.0). In this study, a series of experiments that evaluated concordance, reliability, sensitivity of detection, mixture analysis, and the ability to analyze case-type and challenged samples were conducted. In addition, 106 unrelated Han individuals were sequenced to perform genetic analyses of allelic diversity. As expected, MPS detected broader allele variations and gained higher power of discrimination and exclusion rate. MPS results were found to be concordant with current capillary electrophoresis methods, and single source complete profiles could be obtained stably using as little as 100pg of input DNA. Moreover, this MPS panel could be adapted to case-type samples and partial STR genotypes of the minor contributor could be detected up to 19:1 mixture. Aforementioned results indicate that the Precision ID GlobalFiler™ NGS STR Panel is reliable, robust and reproducible and have the potential to be used as a tool for human forensics. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Chemicapacitive microsensors for detection of explosives and TICs

    NASA Astrophysics Data System (ADS)

    Patel, Sanjay V.; Hobson, Stephen T.; Cemalovic, Sabina; Mlsna, Todd E.

    2005-10-01

    Seacoast Science develops chemical sensors that use polymer-coated micromachined capacitors to measure the dielectric permittivity of an array of selectively absorbing materials. We present recent results demonstrating the sensor technology's capability to detect components in explosives and toxic industrial chemicals. These target chemicals are detected with functionalized polymers or network materials, chosen for their ability to adsorb chemicals. When exposed to vapors or gases, the permittivity of these sorbent materials changes depending on the strength of the vapor-sorbent interaction. Sensor arrays made of ten microcapacitors on a single chip have been previously shown to detect vapors of organic compounds (chemical warfare agents, industrial solvents, fuels) and inorganic gases (SO2, CO2, NO2). Two silicon microcapacitor structures were used, one with parallel electrode plates and the other with interdigitated "finger-like" electrodes. The parallel-plates were approximately 300 μm wide and separated by 750 nm. The interdigitated electrodes were approximately 400 μm long and were elevated above the substrate to provide faster vapor access. Eight to sixteen of these capacitors are fabricated on chips that are 5 x 2 mm and are packaged in less than 50 cm3 with supporting electronics and batteries, all weighing less than 500 grams. The capacitors can be individually coated with different materials creating a small electronic nose that produces different selectivity patterns in response to different chemicals. The resulting system's compact size, low-power consumption and low manufacturing costs make the technology ideal for integration into various systems for numerous applications.

  16. Diagnosis of fetal syndromes by three- and four-dimensional ultrasound: is there any improvement?

    PubMed

    Barišić, Lara Spalldi; Stanojević, Milan; Kurjak, Asim; Porović, Selma; Gaber, Ghalia

    2017-08-28

    With all of our present knowledge, high technology diagnostic equipment, electronic databases and other available supporting resources, detection of fetal syndromes is still a challenge for healthcare providers in prenatal as well as in the postnatal period. Prenatal diagnosis of fetal syndromes is not straightforward, and it is a difficult puzzle that needs to be assembled and solved. Detection of one anomaly should always raise a suspicion of the existence of more anomalies, and can be a trigger to investigate further and raise awareness of possible syndromes. Highly specialized software systems for three- and four-dimensional ultrasound (3D/4D US) enabled detailed depiction of fetal anatomy and assessment of the dynamics of fetal structural and functional development in real time. With recent advances in 3D/4D US technology, antenatal diagnosis of fetal anomalies and syndromes shifted from the 2nd to the 1st trimester of pregnancy. It is questionable what can and should be done after the prenatal diagnosis of fetal syndrome. The 3D and 4D US techniques improved detection accuracy of fetal abnormalities and syndromes from early pregnancy onwards. It is not easy to make prenatal diagnosis of fetal syndromes, so tools which help like online integrated databases are needed to increase diagnostic precision. The aim of this paper is to present the possibilities of different US techniques in the detection of some fetal syndromes prenatally.

  17. "Psychogeritechnology" in Japan: Exemplars from a super-aged society.

    PubMed

    Leroi, Iracema; Watanabe, Kentaro; Hird, Nick; Sugihara, Taro

    2018-05-31

    The burgeoning field of gerontechnology, which is the interdisciplinary field of applying technology to ageing issues, has focused primarily on "active ageing" and maintaining independence for older adults. To date, there has been less focus on people who develop dementia. Here, we argue for the field of gerontechnology to have a greater emphasis on clinical applications for dementia. This can be captured under the rubric of "psychogeritechnology," a term we have coined to describe the range of technology approaches to the prevention, prediction, screening, assessment, diagnosis, management, and monitoring of people at risk of, or living with, dementia. Using Japan as the world's leading "super-aged' nation as a paradigm, the purpose of this paper is to provide a narrative review of the use of innovative technology for the diagnosis, management and support of people at risk of, or living with, dementia. By following the "life course" of dementia, we will use clinical exemplars and case studies of psychogeritechnological applications from a Japanese context, specific to each stage of dementia, from the preclinical to the advanced stage. In the preclinical stage, the focus will be on prevention and early detection of degenerative cognitive-functional trajectories. In the early-stage of dementia, we will outline examples of screening, assessment, diagnosis, and clinical monitoring, as well as the use of technology to support independent living and autonomy. In the moderate stage, examples of safety monitoring systems, and assistive technology to foster independence, quality of life will be outlined. Finally, in the advanced stage of dementia, our focus will be on assistive technology in the care home setting, and the need to foster secure and efficient communication among care providers. We will discuss these applications in terms of the evolution of the "technological roadmap" for dementia, and the need for a theoretical underpinning for the field, a meaningful and flexible evaluation framework, and consideration of the "wider perspective" including safety-critical issues, ethical issues, and the relation to policy and health economics. Japan, as a rapidly ageing society, is on the forefront of developing technology to support people with dementia. The new field of psychogeritechnology must harness the potential of such developments, while furthering the methodology to implement and evaluate the changes. Copyright © 2018 John Wiley & Sons, Ltd.

  18. AN ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) TESTING OF SEVEN TECHNOLOGIES DETECTING TOXICITY IN DRINKING WATER (R2)

    EPA Science Inventory

    Rapid toxicity technologies can detect certain toxins and with testing it can be determined their susceptibility to interfering chemical in controlled experimental matrix. Rapid toxicity technologies do not identify or determine the concentrations of specific contaminants, but s...

  19. Plastic Polymers for Efficient DNA Microarray Hybridization: Application to Microbiological Diagnostics▿

    PubMed Central

    Zhao, Zhengshan; Peytavi, Régis; Diaz-Quijada, Gerardo A.; Picard, Francois J.; Huletsky, Ann; Leblanc, Éric; Frenette, Johanne; Boivin, Guy; Veres, Teodor; Dumoulin, Michel M.; Bergeron, Michel G.

    2008-01-01

    Fabrication of microarray devices using traditional glass slides is not easily adaptable to integration into microfluidic systems. There is thus a need for the development of polymeric materials showing a high hybridization signal-to-background ratio, enabling sensitive detection of microbial pathogens. We have developed such plastic supports suitable for highly sensitive DNA microarray hybridizations. The proof of concept of this microarray technology was done through the detection of four human respiratory viruses that were amplified and labeled with a fluorescent dye via a sensitive reverse transcriptase PCR (RT-PCR) assay. The performance of the microarray hybridization with plastic supports made of PMMA [poly(methylmethacrylate)]-VSUVT or Zeonor 1060R was compared to that with high-quality glass slide microarrays by using both passive and microfluidic hybridization systems. Specific hybridization signal-to-background ratios comparable to that obtained with high-quality commercial glass slides were achieved with both polymeric substrates. Microarray hybridizations demonstrated an analytical sensitivity equivalent to approximately 100 viral genome copies per RT-PCR, which is at least 100-fold higher than the sensitivities of previously reported DNA hybridizations on plastic supports. Testing of these plastic polymers using a microfluidic microarray hybridization platform also showed results that were comparable to those with glass supports. In conclusion, PMMA-VSUVT and Zeonor 1060R are both suitable for highly sensitive microarray hybridizations. PMID:18784318

  20. Defining products for a new health technology assessment agency in Madrid, Spain: a survey of decision makers.

    PubMed

    Andradas, Elena; Blasco, Juan-Antonio; Valentín, Beatriz; López-Pedraza, María-José; Gracia, Francisco-Javier

    2008-01-01

    The aim of this study was to explore the needs and requirements of decision makers in our regional healthcare system for health technology assessment (HTA) products to support portfolio development planning for a new HTA agency in Madrid, Spain. A Delphi study was conducted during 2003. Questionnaires were developed based on a review of products and services offered by other agency members of the International Network of Agencies for Health Technology Assessment, and included preference and prioritization questions to evaluate twenty-two different products and services. The initial Delphi panel involved eighty-seven experts from twenty-one public hospitals, eleven primary healthcare centers, six private hospitals, and eight departments of the Regional Ministry of Health of the Community of Madrid. The global participation rate was 83.9 percent. Ten of the twenty-two possible products were rated of high interest by more than 80 percent of respondents. Important differences in preferences and priorities were detected across different settings. Public hospitals and primary healthcare centers shared a more "micro" perspective, preferring classic technology-centered HTA products, whereas private hospitals and Ministry representatives demanded more "macro" products and services such as organizational model and information system assessments. The high participation rate supports the representativeness of the results for our regional context. The strategic development of an HTA portfolio based on decision makers' needs and requirements as identified in this type of exercise should help achieve a better impact on policy development and decision making.

  1. SUNRISE: A SpaceFibre Router

    NASA Astrophysics Data System (ADS)

    Parkes, Steve; McClements, Chris; McLaren, David; Florit, Albert Ferrer; Gonzalez Villafranca, Alberto

    2016-08-01

    SpaceFibre is a new generation of SpaceWire technology which is able to support the very high data- rates required by sensors like SAR and multi-spectral imagers. Data rates of between 1 and 16 Gbits/s are required to support several sensors currently being planned. In addition a mass-memory unit requires high performance networking to interconnect many memory modules. SpaceFibre runs over both electrical and fibre-optic media and provides and adds quality of service and fault detection, isolation and recovery technology to the network. SpaceFibre is compatible with the widely used SpaceWire protocol at the network level allowing existing SpaceWire devices to be readily incorporated into a SpaceFibre network. SpaceFibre provides 2 to 5 Gbits/s links (2.5 to 6.25 Gbits/s data signalling rate) which can be operated in parallel (multi-laning) to give higher data rates. STAR- Dundee with University of Dundee has designed and tested several SpaceFibre interface devices.The SUNRISE project is a UK Space Agency, Centre for Earth Observation and Space Technology (CEOI- ST) project in which STAR-Dundee and University of Dundee will design and prototype critical SpaceFibre router technology necessary for future on-board data- handling systems. This will lay a vital foundation for future very high data-rate sensor and telecommunications systems.This paper give a brief introduction to SpaceFibre, explains the operation of a SpaceFibre network, and then describes the SUNRISE SpaceFibre Router. The initial results of the SUNRISE project are described.

  2. Quest for Missing Proteins: Update 2015 on Chromosome-Centric Human Proteome Project.

    PubMed

    Horvatovich, Péter; Lundberg, Emma K; Chen, Yu-Ju; Sung, Ting-Yi; He, Fuchu; Nice, Edouard C; Goode, Robert J; Yu, Simon; Ranganathan, Shoba; Baker, Mark S; Domont, Gilberto B; Velasquez, Erika; Li, Dong; Liu, Siqi; Wang, Quanhui; He, Qing-Yu; Menon, Rajasree; Guan, Yuanfang; Corrales, Fernando J; Segura, Victor; Casal, J Ignacio; Pascual-Montano, Alberto; Albar, Juan P; Fuentes, Manuel; Gonzalez-Gonzalez, Maria; Diez, Paula; Ibarrola, Nieves; Degano, Rosa M; Mohammed, Yassene; Borchers, Christoph H; Urbani, Andrea; Soggiu, Alessio; Yamamoto, Tadashi; Salekdeh, Ghasem Hosseini; Archakov, Alexander; Ponomarenko, Elena; Lisitsa, Andrey; Lichti, Cheryl F; Mostovenko, Ekaterina; Kroes, Roger A; Rezeli, Melinda; Végvári, Ákos; Fehniger, Thomas E; Bischoff, Rainer; Vizcaíno, Juan Antonio; Deutsch, Eric W; Lane, Lydie; Nilsson, Carol L; Marko-Varga, György; Omenn, Gilbert S; Jeong, Seul-Ki; Lim, Jong-Sun; Paik, Young-Ki; Hancock, William S

    2015-09-04

    This paper summarizes the recent activities of the Chromosome-Centric Human Proteome Project (C-HPP) consortium, which develops new technologies to identify yet-to-be annotated proteins (termed "missing proteins") in biological samples that lack sufficient experimental evidence at the protein level for confident protein identification. The C-HPP also aims to identify new protein forms that may be caused by genetic variability, post-translational modifications, and alternative splicing. Proteogenomic data integration forms the basis of the C-HPP's activities; therefore, we have summarized some of the key approaches and their roles in the project. We present new analytical technologies that improve the chemical space and lower detection limits coupled to bioinformatics tools and some publicly available resources that can be used to improve data analysis or support the development of analytical assays. Most of this paper's content has been compiled from posters, slides, and discussions presented in the series of C-HPP workshops held during 2014. All data (posters, presentations) used are available at the C-HPP Wiki (http://c-hpp.webhosting.rug.nl/) and in the Supporting Information.

  3. Design and test status for life support applications of SPE oxygen generation systems. [Solid Polymer Electrolyte

    NASA Technical Reports Server (NTRS)

    Titterington, W. A.; Erickson, A. C.

    1975-01-01

    An advanced six-man rated oxygen generation system has been fabricated and tested as part of a NASA/JSC technology development program for a long lived, manned spacecraft life support system. Details of the design and tests results are presented. The system is based on the Solid Polymer Electrolyte (SPE) water electrolysis technology and its nominal operating conditions are 2760 kN/sq m (400 psia) and 355 K (180 F) with an electrolysis module current density capability up to 350 mA/sq cm (326 ASF). The system is centered on a 13-cell SPE water electrolysis module having a single cell active area of 214 sq cm (33 sq in) and it incorporates instrumentation and controls for single pushbutton automatic startup/shutdown, component fault detection and isolation, and self-contained sensors and controls for automatic safe emergency shutdown. The system has been tested in both the orbital cyclic and continuous mode of operation. Various parametric tests have been completed to define the system capability for potential application in spacecraft environmental systems.

  4. Cutting Edge Technologies Presentation: An Overview of Developing Sensor Technology Directions and Possible Barriers to New Technology Implementation

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2007-01-01

    The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A range of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption; and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity, However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This presentation gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology.

  5. Reducing impaired-driving recidivism using advanced vehicle-based alcohol detection systems : a report to Congress

    DOT National Transportation Integrated Search

    2007-12-01

    Vehicle-based alcohol detection systems use technologies designed to detect the presence of alcohol in a driver. Technology suitable for use in all vehicles that will detect an impaired driver faces many challenges including public acceptability, pas...

  6. Bed bug detection: Current technologies and future directions

    USDA-ARS?s Scientific Manuscript database

    This study evaluates current technologies used to detect bed bug infestations, and presents new information regarding the underlying chemical basis of canines scent detection. The manuscript also reports new and future devices that may play a part in bed bug detection in the future....

  7. Pulsed eddy current inspection of broach support plates in steam generators

    NASA Astrophysics Data System (ADS)

    Mokros, Sarah Gwendolyn

    Steam Generators (SGs) are a critical component of nuclear reactors, employing thousands of SG tubes to convert heat generated in the reactor core into useable energy. SG tubes are supported at numerous locations by Broach Support Plates (BSPs) that have trefoil shaped holes, which prevent excessive tube vibrations, while allowing water to easily flow through the support structures. A number of degradation modes occur in SGs, such as SG tube fretting, cracking or denting, requiring periodic inspection. Currently, conventional Eddy Current Testing (ECT) is used to non-destructively assess the condition of SG tubes and components. However, as reactors age, new modes of degradation will likely appear that may be difficult to detect and characterize using conventional ECT, such as wall loss in BSPs and build-up of corrosion products, which typically form as a hard sludge called magnetite. Pulsed Eddy Current (PEC) technologies are an emerging technique that is presented in this work as a method to further advance inspection techniques used in CANDURTM nuclear reactors. A PEC probe was designed to inspect the unique shape of the trefoil shaped hole to detect and characterize wall loss and the presence of magnetite in A516 carbon steel BSPs with trefoil shaped holes from within 15.9 mm (5/8") Alloy-800 SG tubes. PEC was also used to observe how measurements of wall loss were affected by the presence of magnetite. This work presents Finite Element Method (FEM) simulations and experimental results collected to observe these degradation modes. The probe was demonstrated to be capable of detecting far side wall loss as low as 20%, locating and characterizing the relative permeability of magnetite, and of detecting wall loss when magnetite was present. FEM simulations and experimental results were found to be in good agreement, suggesting that additional investigations of the effects of BSP degradation on PEC signal response may also be performed using FEM models.

  8. Human-technology interaction for standoff IED detection

    NASA Astrophysics Data System (ADS)

    Zhang, Evan; Zou, Yiyang; Zachrich, Liping; Fulton, Jack

    2011-03-01

    IEDs kill our soldiers and innocent people every day. Lessons learned from Iraq and Afghanistan clearly indicated that IEDs cannot be detected/defeated by technology alone; human-technology interaction must be engaged. In most cases, eye is the best detector, brain is the best computer, and technologies are tools, they must be used by human being properly then can achieve full functionality. In this paper, a UV Raman/fluorescence, CCD and LWIR 3 sensor fusion system for standoff IED detection and a handheld fusion system for close range IED detection are developed and demonstrated. We must train solders using their eyes or CCD/LWIR cameras to do wide area search while on the move to find small suspected area first then use the spectrometer because the laser spot is too small, to scan a one-mile long and 2-meter wide road needs 185 days although our fusion system can detect the IED in 30m with 1s interrogating time. Even if the small suspected area (e.g., 0.5mx0.5m) is found, human eyes still cannot detect the IED, soldiers must use or interact with the technology - laser based spectrometer to scan the area then they are able to detect and identify the IED in 10 minutes not 185 days. Therefore, the human-technology interaction approach will be the best solution for IED detection.

  9. Field Simulation of a Drilling Mission to Mars to Search for Subsurface Life

    NASA Technical Reports Server (NTRS)

    Stoker, C. R.; Lemke, L. G.; Cannon, H.; Glass, B.; Dunagan, S.; Zavaleta, J.; Miller, D.; Gomez-Elvira, J.

    2005-01-01

    The discovery of near surface ground ice by the Mars Odyssey mission and the abundant evidence for recent Gulley features observed by the Mars Global Surveyor mission support longstanding theoretical arguments for subsurface liquid water on Mars. Thus, implementing the Mars program goal to search for life points to drilling on Mars to reach liquid water, collecting samples and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. Searching for life in the subsurface of Mars will require drilling, sample extraction and handling, and new technologies to find and identify biomarker compounds and search for living organisms. In spite of its obvious advantages, robotic drilling for Mars exploration is in its technological infancy and has yet to be demonstrated in even a terrestrial field environment.

  10. Family impact of assistive technology scale: development of a measurement scale for parents of children with complex communication needs.

    PubMed

    Delarosa, Elizabeth; Horner, Stephanie; Eisenberg, Casey; Ball, Laura; Renzoni, Anne Marie; Ryan, Stephen E

    2012-09-01

    Young people use augmentative and alternative communication (AAC) systems to meet their everyday communication needs. However, the successful integration of an AAC system into a child's life requires strong commitment and continuous support from parents and other family members. This article describes the development and evaluation of the Family Impact of Assistive Technology Scale for AAC Systems - a parent-report questionnaire intended to detect the impact of AAC systems on the lives of children with complex communication needs and their families. The study involved 179 parents and clinical experts to test the content and face validities of the questionnaire, demonstrate its internal reliability and stability over time, and estimate its convergent construct validity when compared to a standardized measure of family impact.

  11. Terrorism and Drug Trafficking: Technologies for Detecting Explosives and Narcotics

    DOT National Transportation Integrated Search

    1996-09-01

    The General Accounting Office (GAO) examined information on explosives and narcotics detection technologies that are available or under development. This report discusses (1) funding for those technologies, (2) characteristics and limitations of avai...

  12. A Label-Free, Redox Biosensor for Detection of Disease Biomarkers

    NASA Astrophysics Data System (ADS)

    Archibald, Michelle M.; Rizal, Binod; Connolly, Timothy; Burns, Michael J.; Naughton, Michael J.; Chiles, Thomas C.

    2014-03-01

    Technologies to detect early stage cancer would provide significant benefit to cancer disease patients. Clinical measurement of biomarkers offers the promise of a noninvasive and cost effective screening for early stage detection. We have developed a novel 3-dimensional ``nanocavity'' array for the detection of human cancer biomarkers in serum and other fluids. This all-electronic diagnostic sensor is based on a nanoscale coaxial array architecture that we have modified to enable molecular-level detection and identification. Each individual sensor in the array is a vertically-oriented coaxial capacitor, whose dielectric impedance is measurably changed when target molecules enter the coax annulus. We are designing a nanocoaxial biosensor based on electronic response to antibody recognition of a specific disease biomarker (e . g . CA-125 for early-stage ovarian cancer) on biofunctionalized metal surfaces within the nanocoax structure, thereby providing an all-electronic, ambient temperature, rapid-response, label-free redox biosensor. Our results demonstrate the feasibility of using this nanocoaxial array as an ultrasensitive device to detect a wide range of target proteins, including disease biomarkers. Supported by NIH (National Cancer Institute and the National Institute of Allergy and Infectious Diseases).

  13. Sea Ice Detection Based on an Improved Similarity Measurement Method Using Hyperspectral Data.

    PubMed

    Han, Yanling; Li, Jue; Zhang, Yun; Hong, Zhonghua; Wang, Jing

    2017-05-15

    Hyperspectral remote sensing technology can acquire nearly continuous spectrum information and rich sea ice image information, thus providing an important means of sea ice detection. However, the correlation and redundancy among hyperspectral bands reduce the accuracy of traditional sea ice detection methods. Based on the spectral characteristics of sea ice, this study presents an improved similarity measurement method based on linear prediction (ISMLP) to detect sea ice. First, the first original band with a large amount of information is determined based on mutual information theory. Subsequently, a second original band with the least similarity is chosen by the spectral correlation measuring method. Finally, subsequent bands are selected through the linear prediction method, and a support vector machine classifier model is applied to classify sea ice. In experiments performed on images of Baffin Bay and Bohai Bay, comparative analyses were conducted to compare the proposed method and traditional sea ice detection methods. Our proposed ISMLP method achieved the highest classification accuracies (91.18% and 94.22%) in both experiments. From these results the ISMLP method exhibits better performance overall than other methods and can be effectively applied to hyperspectral sea ice detection.

  14. Sea Ice Detection Based on an Improved Similarity Measurement Method Using Hyperspectral Data

    PubMed Central

    Han, Yanling; Li, Jue; Zhang, Yun; Hong, Zhonghua; Wang, Jing

    2017-01-01

    Hyperspectral remote sensing technology can acquire nearly continuous spectrum information and rich sea ice image information, thus providing an important means of sea ice detection. However, the correlation and redundancy among hyperspectral bands reduce the accuracy of traditional sea ice detection methods. Based on the spectral characteristics of sea ice, this study presents an improved similarity measurement method based on linear prediction (ISMLP) to detect sea ice. First, the first original band with a large amount of information is determined based on mutual information theory. Subsequently, a second original band with the least similarity is chosen by the spectral correlation measuring method. Finally, subsequent bands are selected through the linear prediction method, and a support vector machine classifier model is applied to classify sea ice. In experiments performed on images of Baffin Bay and Bohai Bay, comparative analyses were conducted to compare the proposed method and traditional sea ice detection methods. Our proposed ISMLP method achieved the highest classification accuracies (91.18% and 94.22%) in both experiments. From these results the ISMLP method exhibits better performance overall than other methods and can be effectively applied to hyperspectral sea ice detection. PMID:28505135

  15. Technologies and Reformed-Based Science Instruction: The Examination of a Professional Development Model Focused on Supporting Science Teaching and Learning with Technologies

    ERIC Educational Resources Information Center

    Campbell, Todd; Longhurst, Max L.; Wang, Shiang-Kwei; Hsu, Hui-Yin; Coster, Dan C.

    2015-01-01

    While access to computers, other technologies, and cyber-enabled resources that could be leveraged for enhancing student learning in science is increasing, generally it has been found that teachers use technology more for administrative purposes or to support traditional instruction. This use of technology, especially to support traditional…

  16. Maritime Situational Awareness: The MARISS Experience

    NASA Astrophysics Data System (ADS)

    Margarit, G.; Tabasco, A.; Gomez, C.

    2010-04-01

    This paper presents the operational solution developed by GMV to provide support to maritime situational awareness via Earth Observation (EO) technologies. The concept falls on integrating the information retrieved from Synthetic Aperture Radar (SAR) images and transponder-based polls (AIS and similar) in an advanced GeoPortal web. The service has been designed in the framework of the MARISS project, a project conceived to help improving ship monitoring with the support of a large user segment. In this context, the interaction with official agencies has provided good feedback about system performance and its usefulness in supporting monitoring and surveillance tasks. Some representative samples are analyzed along the paper in order to validate key kernel utilities, such as ship and coastline detection, and ship classification. They justify the promotion of extended R&D activities to increase monitoring performance and to include advanced added- value tools, such as decision making and route tracking.

  17. A Head Start to a Healthy Heart

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Cambridge Heart, Inc., has licensed the only U.S. Food and Drug Administration-cleared tool to identify those at risk for sudden cardiac death (SCD). The Microvolt T-Wave Alternans Test(TM) was invented by Dr. Richard J. Cohen, a professor at the Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, with developmental support and funding from NASA's Johnson Space Center and the National Space Biomedical Research Institute (NSBRI) in Houston, Texas. In 1993, MIT licensed the technology to Cambridge Heart, Inc., a start-up company that Dr. Cohen helped to establish. Cambridge Heart's non-invasive technology measures T-wave alternans, a change from one heartbeat to the next that is too minute to be detected by a standard electrocardiogram. Cardiac patients with such a change in heartbeat regulation are faced with a much greater risk of ventricular arrhythmia and SCD than those without it. The company's ability to measure electrical alternans on a microvolt level has been clinically proven to be just as accurate as - and in some studies, more accurate than - more costly and somewhat risky, invasive procedures, such as electrophysiological testing.

  18. Navigating Schools Past the Technology On-Ramp.

    ERIC Educational Resources Information Center

    Wasser, Judith Davidson

    1996-01-01

    Discussion of how to support schools in the use of technology focuses on the Hanau Model Schools Partnership in Germany, supported by TERC and the National Science Foundation, that was developed to create broad technological access in schools and to support teachers in developing connections between the technology and the curriculum. (LRW)

  19. How can clinicians detect and treat autism early? Methodological trends of technology use in research

    PubMed Central

    Bölte, S; Bartl-Pokorny, KD; Jonsson, U; Berggren, S; Zhang, D; Kostrzewa, E; Falck-Ytter, T; Einspieler, C; Pokorny, FB; Jones, EJH; Roeyers, H; Charman, T; Marschik, PB

    2018-01-01

    We reviewed original research papers that used quantifiable technology to detect early autism spectrum disorder (ASD) and identified 376 studies from 34 countries from 1965-2013. Publications have increased significantly since 2000, with most coming from the USA. Electroencephalogram, magnetic resonance imaging and eye-tracking were the most frequently used technologies. Conclusion The use of quantifiable technology to detect early ASD has increased in recent decades, but has had limited impact on early detection and treatment. Further scientific developments are anticipated and we hope that they will increasingly be used in clinical practice for early ASD screening, diagnosis and intervention. PMID:26479859

  20. Knowledge Sourcing in IT Support Services

    ERIC Educational Resources Information Center

    Workman, Sue B.

    2011-01-01

    Indiana University (IU) provides great support for the technology the community needs to teach, learn, and conduct research. Rather than limiting support by defining a rigid support matrix, IU has chosen instead to utilize knowledge management technology to provide self-service for repetitive information technology (IT) questions, and focus…

  1. Support Vector Machine Model for Automatic Detection and Classification of Seismic Events

    NASA Astrophysics Data System (ADS)

    Barros, Vesna; Barros, Lucas

    2016-04-01

    The automated processing of multiple seismic signals to detect, localize and classify seismic events is a central tool in both natural hazards monitoring and nuclear treaty verification. However, false detections and missed detections caused by station noise and incorrect classification of arrivals are still an issue and the events are often unclassified or poorly classified. Thus, machine learning techniques can be used in automatic processing for classifying the huge database of seismic recordings and provide more confidence in the final output. Applied in the context of the International Monitoring System (IMS) - a global sensor network developed for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) - we propose a fully automatic method for seismic event detection and classification based on a supervised pattern recognition technique called the Support Vector Machine (SVM). According to Kortström et al., 2015, the advantages of using SVM are handleability of large number of features and effectiveness in high dimensional spaces. Our objective is to detect seismic events from one IMS seismic station located in an area of high seismicity and mining activity and classify them as earthquakes or quarry blasts. It is expected to create a flexible and easily adjustable SVM method that can be applied in different regions and datasets. Taken a step further, accurate results for seismic stations could lead to a modification of the model and its parameters to make it applicable to other waveform technologies used to monitor nuclear explosions such as infrasound and hydroacoustic waveforms. As an authorized user, we have direct access to all IMS data and bulletins through a secure signatory account. A set of significant seismic waveforms containing different types of events (e.g. earthquake, quarry blasts) and noise is being analysed to train the model and learn the typical pattern of the signal from these events. Moreover, comparing the performance of the support-vector network to various classical learning algorithms used before in seismic detection and classification is an essential final step to analyze the advantages and disadvantages of the model.

  2. Point-of-care Cognitive Support Technology in Emergency Departments: A Scoping Review of Technology Acceptance by Clinicians.

    PubMed

    Jun, Shelly; Plint, Amy C; Campbell, Sandy M; Curtis, Sarah; Sabir, Kyrellos; Newton, Amanda S

    2018-05-01

    Cognitive support technologies that support clinical decisions and practices in the emergency department (ED) have the potential to optimize patient care. However, limited uptake by clinicians can prevent successful implementation. A better understanding of acceptance of these technologies from the clinician perspective is needed. We conducted a scoping review to synthesize diverse, emerging evidence on clinicians' acceptance of point-of-care (POC) cognitive support technology in the ED. We systematically searched 10 electronic databases and gray literature published from January 2006 to December 2016. Studies of any design assessing an ED-based POC cognitive support technology were considered eligible for inclusion. Studies were required to report outcome data for technology acceptance. Two reviewers independently screened studies for relevance and quality. Study quality was assessed using the Mixed-Methods Appraisal Tool. A descriptive analysis of the features of POC cognitive support technology for each study is presented, illustrating trends in technology development and evaluation. A thematic analysis of clinician, technical, patient, and organizational factors associated with technology acceptance is also presented. Of the 1,563 references screened for eligibility, 24 met the inclusion criteria and were included in the review. Most studies were published from 2011 onward (88%), scored high for methodologic quality (79%), and examined POC technologies that were novel and newly introduced into the study setting (63%). Physician use of POC technology was the most commonly studied (67%). Technology acceptance was frequently conceptualized and measured by factors related to clinician attitudes and beliefs. Experience with the technology, intention to use, and actual use were also more common outcome measures of technology acceptance. Across studies, perceived usefulness was the most noteworthy factor impacting technology acceptance, and clinicians generally had positive perceptions of the use of POC cognitive support technology in the ED. However, the actual use of POC cognitive support technology reported by clinicians was low-use, by proportion of patient cases, ranged from 30% to 59%. Of the 24 studies, only two studies investigated acceptance of POC cognitive support technology currently implemented in the ED, offering "real-world" clinical practice data. All other studies focused on acceptance of novel technologies. Technical aspects such as an unfriendly user interface, presentation of redundant or ambiguous information, and required user effort had a negative impact on acceptance. Patient expectations were also found to have a negative impact, while patient safety implications had a positive impact. Institutional support was also reported to impact technology acceptance. Findings from this scoping review suggest that while ED clinicians acknowledge the utility and value of using POC cognitive support technology, actual use of such technology can be low. Further, few studies have evaluated the acceptance and use of POC technologies in routine care. Prospective studies that evaluate how ED clinicians appraise and consider POC technology use in clinical practice are now needed with diverse clinician samples. While this review identified multiple factors contributing to technology acceptance, determining how clinician, technical, patient, and organizational factors mediate or moderate acceptance should also be a priority. © 2017 by the Society for Academic Emergency Medicine.

  3. Portable microfluidic platform for real-time, high sensitive detection and identification of trichloroethylene and other organochloride compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Erik

    In this successful SBIR Phase II effort, HJ Science & Technology, Inc. has designed and built a novel portable instrument capable of performing automated aqueous organochloride (chlorinated solvent) speciation analysis for environmental monitoring at DoE sites. Our technique employs performing organochloride conjugation, labeling the conjugate with an efficient fluorophore, and performing on-chip capillary electrophoresis separation with laser induced fluorescence detection. The key component of the portable instrument is a novel microfluidic chip capable of complete “end-to-end” automation of sample preparation, conjugation, labeling, and μCE separation and detection. In addition, the Phase II prototype includes key supporting instrumentation such as themore » optical module, pneumatic manifold, electronics, software, etc. As such, we have achieved all of the following 4 Phase II technical objectives: 1) Further refine and optimize the “on-chip” automation of the organochloride conjugation and labeling protocol, 2) Further improve the microfluidic chip fabrication process and the pneumatic manifold design in order to address issues related to performance consistency, product yield, performance reliability, and user friendliness, 3) Design and build the supporting components of the Phase II prototype including optical module, electronics, and software, and 4) Assemble the Phase II prototype hardware.« less

  4. Regional Cerebral Abnormalities Measured by Frequency-Domain Near-Infrared Spectroscopy in Pediatric Patients During Extracorporeal Membrane Oxygenation.

    PubMed

    Tian, Fenghua; Jenks, Christopher; Potter, Donald; Miles, Darryl; Raman, Lakshmi

    Extracorporeal membrane oxygenation (ECMO) is a form of advanced cardiorespiratory support provided to critically ill patients with severe respiratory or cardiovascular failure. While children undergoing ECMO therapy have significant risk for neurological morbidity, currently there is a lack of reliable bedside tool to detect the neurologic events for patients on ECMO. This study assessed the feasibility of frequency-domain near-infrared spectroscopy (NIRS) for detection of intracranial complications during ECMO therapy. The frequency-domain NIRS device measured the absorption coefficient (µa) and reduced scattering coefficient (µs') at six cranial positions from seven pediatric patients (0-16 years) during ECMO support and five healthy controls (2-14 years). Regional abnormalities in both absorption and scattering were identified among ECMO patients. A main finding in this study is that the abnormalities in scattering appear to be associated with lower-than-normal µs' values in regional areas of the brain. Because light scattering originates from the intracellular structures (such as nuclei and mitochondria), a reduction in scattering primarily reflects loss or decreased density of the brain matter. The results from this study indicate a potential to use the frequency-domain NIRS as a safe and complementary technology for detection of intracranial complications during ECMO therapy.

  5. RIGScan CR: RIGScan CR49.

    PubMed

    2004-01-01

    RIGScan CR49, a 125I-labelled CR monoclonal antibody directed against the tumour-associated antigen TAG-72, is undergoing development with Neoprobe for the intraoperative detection of metastatic colorectal cancer. The Neoprobe's proprietary RIGS (radioimmunoguided surgery) technology combines an injectable radiolabelled cancer-targeting agent and hand-held radiation detection probe that emits an audible tone when located tissue has accumulated a significant amount of the radioactive agent. Neoprobe's RIGS technology also includes a patented surgical method providing surgeons with real-time information to locate tumour deposits that can not be detected by other conventional methods. The RIGS technology has been evaluated in late clinical studies for the detection of adenocarcinomas including primary colorectal, gastrointestinal, breast, ovarian, pancreatic, prostate and neuroendocrine/endocrine. Neoprobe signed an option agreement for its first-generation RIGScan compound, RIGScan CR, with OncoSurg Inc. (formerly NuRigs Ltd). The second-generation humanised RIGScan CR agent was also optionally licensed to OncoSurg Inc. In 1997, Neoprobe filed for approval with the US FDA and the EMEA for RIGScan CR for the intraoperative detection of metastatic colorectal cancer. Both regulatory agencies have requested additional clinical data. On 19 April 2004, Neoprobe announced that it had met with the US FDA to discuss its position on submitting additional clinical information in response to the FDA's questions regarding the Biologic Licence Application (BLA) for RIGScan CR49. The company provided the FDA with new information related to a survival differential for patients whose colorectal cancer was evaluated with RIGScan CR49. The information was not available at the time of the BLA's submission in 1997. The agency indicated that it would consider accepting survival data from one of the two phase III trials, NEO2-14, but not from another trial NEO2-13, as supportive data for a prognostic indication for colorectal cancer. The FDA also clarified that two well controlled studies were required for approval, and indicated that Neoprobe needed to complete an additional confirmatory phase III study for a prognostic indication in colorectal cancer. In its Annual Report 2002, Neoprobe stated that it had been working to secure a partner for further development of its proprietary RIGS technology. The company intends either to find a development partner or sell or licence out their RIGS assets if the partner is not found.

  6. Pedestrian detection based on redundant wavelet transform

    NASA Astrophysics Data System (ADS)

    Huang, Lin; Ji, Liping; Hu, Ping; Yang, Tiejun

    2016-10-01

    Intelligent video surveillance is to analysis video or image sequences captured by a fixed or mobile surveillance camera, including moving object detection, segmentation and recognition. By using it, we can be notified immediately in an abnormal situation. Pedestrian detection plays an important role in an intelligent video surveillance system, and it is also a key technology in the field of intelligent vehicle. So pedestrian detection has very vital significance in traffic management optimization, security early warn and abnormal behavior detection. Generally, pedestrian detection can be summarized as: first to estimate moving areas; then to extract features of region of interest; finally to classify using a classifier. Redundant wavelet transform (RWT) overcomes the deficiency of shift variant of discrete wavelet transform, and it has better performance in motion estimation when compared to discrete wavelet transform. Addressing the problem of the detection of multi-pedestrian with different speed, we present an algorithm of pedestrian detection based on motion estimation using RWT, combining histogram of oriented gradients (HOG) and support vector machine (SVM). Firstly, three intensities of movement (IoM) are estimated using RWT and the corresponding areas are segmented. According to the different IoM, a region proposal (RP) is generated. Then, the features of a RP is extracted using HOG. Finally, the features are fed into a SVM trained by pedestrian databases and the final detection results are gained. Experiments show that the proposed algorithm can detect pedestrians accurately and efficiently.

  7. Urban Rail Supporting Technology Program Fiscal Year 1975 - Year End Summary

    DOT National Transportation Integrated Search

    1975-12-01

    The Urban Rail Supporting Technology Program is described for the 1975 fiscal year period. Important areas include program management, technical support and applications engineering, facilities development, test and evaluation, and technology develop...

  8. Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections

    PubMed Central

    Shen, Hui-Min; Hu, Liang; Fu, Xin

    2018-01-01

    With the extensive applications of biomagnetic signals derived from active biological tissue in both clinical diagnoses and human-computer-interaction, there is an increasing need for approachable weak biomagnetic sensing technology. The inherent merits of giant magnetoresistance (GMR) and its high integration with multiple technologies makes it possible to detect weak biomagnetic signals with micron-sized, non-cooled and low-cost sensors, considering that the magnetic field intensity attenuates rapidly with distance. This paper focuses on the state-of-art in integrated GMR technology for approachable biomagnetic sensing from the perspective of discipline fusion between them. The progress in integrated GMR to overcome the challenges in weak biomagnetic signal detection towards high resolution portable applications is addressed. The various strategies for 1/f noise reduction and sensitivity enhancement in integrated GMR technology for sub-pT biomagnetic signal recording are discussed. In this paper, we review the developments of integrated GMR technology for in vivo/vitro biomagnetic source imaging and demonstrate how integrated GMR can be utilized for biomagnetic field detection. Since the field sensitivity of integrated GMR technology is being pushed to fT/Hz0.5 with the focused efforts, it is believed that the potential of integrated GMR technology will make it preferred choice in weak biomagnetic signal detection in the future. PMID:29316670

  9. Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections.

    PubMed

    Shen, Hui-Min; Hu, Liang; Fu, Xin

    2018-01-07

    With the extensive applications of biomagnetic signals derived from active biological tissue in both clinical diagnoses and human-computer-interaction, there is an increasing need for approachable weak biomagnetic sensing technology. The inherent merits of giant magnetoresistance (GMR) and its high integration with multiple technologies makes it possible to detect weak biomagnetic signals with micron-sized, non-cooled and low-cost sensors, considering that the magnetic field intensity attenuates rapidly with distance. This paper focuses on the state-of-art in integrated GMR technology for approachable biomagnetic sensing from the perspective of discipline fusion between them. The progress in integrated GMR to overcome the challenges in weak biomagnetic signal detection towards high resolution portable applications is addressed. The various strategies for 1/ f noise reduction and sensitivity enhancement in integrated GMR technology for sub-pT biomagnetic signal recording are discussed. In this paper, we review the developments of integrated GMR technology for in vivo/vitro biomagnetic source imaging and demonstrate how integrated GMR can be utilized for biomagnetic field detection. Since the field sensitivity of integrated GMR technology is being pushed to fT/Hz 0.5 with the focused efforts, it is believed that the potential of integrated GMR technology will make it preferred choice in weak biomagnetic signal detection in the future.

  10. Selective extraction and enrichment of multiphosphorylated peptides using polyarginine-coated diamond nanoparticles.

    PubMed

    Chang, Chia-Kai; Wu, Chih-Che; Wang, Yi-Sheng; Chang, Huan-Cheng

    2008-05-15

    Despite recent advances in phosphopeptide research, detection and characterization of multiply phosphorylated peptides have been a challenge. This work presents a new strategy that not only can effectively extract phosphorylated peptides from complex samples but also can selectively enrich multiphosphorylated peptides for direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. Polyarginine-coated diamond nanoparticles are the solid-phase extraction supports used for this purpose. The supports show an exceptionally high affinity for multiphosphorylated peptides due to multiple arginine-phosphate interactions. The efficacy of this method was demonstrated by analyzing a small volume (50 microL) of tryptic digests of proteins such as beta-casein, alpha-casein, and nonfat milk at a concentration as low as 1 x 10 (-9) M. The concentration is markedly lower than that can be achieved by using other currently available technologies. We quantified the enhanced selectivity and detection sensitivity of the method using mixtures composed of mono- and tetraphosphorylated peptide standards. This new affinity-based protocol is expected to find useful applications in characterizing multiple phosphorylation sites on proteins of interest in complex and dilute analytes.

  11. Performance Monitoring of Chilled-Water Distribution Systems Using HVAC-Cx

    PubMed Central

    Ferretti, Natascha Milesi; Galler, Michael A.; Bushby, Steven T.

    2017-01-01

    In this research we develop, test, and demonstrate the newest extension of the software HVAC-Cx (NIST and CSTB 2014), an automated commissioning tool for detecting common mechanical faults and control errors in chilled-water distribution systems (loops). The commissioning process can improve occupant comfort, ensure the persistence of correct system operation, and reduce energy consumption. Automated tools support the process by decreasing the time and the skill level required to carry out necessary quality assurance measures, and as a result they enable more thorough testing of building heating, ventilating, and air-conditioning (HVAC) systems. This paper describes the algorithm, developed by National Institute of Standards and Technology (NIST), to analyze chilled-water loops and presents the results of a passive monitoring investigation using field data obtained from BACnet® (ASHRAE 2016) controllers and presents field validation of the findings. The tool was successful in detecting faults in system operation in its first field implementation supporting the investigation phase through performance monitoring. Its findings led to a full energy retrocommissioning of the field site. PMID:29167584

  12. Performance Monitoring of Chilled-Water Distribution Systems Using HVAC-Cx.

    PubMed

    Ferretti, Natascha Milesi; Galler, Michael A; Bushby, Steven T

    2017-01-01

    In this research we develop, test, and demonstrate the newest extension of the software HVAC-Cx (NIST and CSTB 2014), an automated commissioning tool for detecting common mechanical faults and control errors in chilled-water distribution systems (loops). The commissioning process can improve occupant comfort, ensure the persistence of correct system operation, and reduce energy consumption. Automated tools support the process by decreasing the time and the skill level required to carry out necessary quality assurance measures, and as a result they enable more thorough testing of building heating, ventilating, and air-conditioning (HVAC) systems. This paper describes the algorithm, developed by National Institute of Standards and Technology (NIST), to analyze chilled-water loops and presents the results of a passive monitoring investigation using field data obtained from BACnet ® (ASHRAE 2016) controllers and presents field validation of the findings. The tool was successful in detecting faults in system operation in its first field implementation supporting the investigation phase through performance monitoring. Its findings led to a full energy retrocommissioning of the field site.

  13. Rapid and Sensitive Detection of Yersinia pestis Using Amplification of Plague Diagnostic Bacteriophages Monitored by Real-Time PCR

    DTIC Science & Technology

    2010-06-01

    validation of real-time PCR assays for the identification of Yersinia pestis. Clin Chem Lab Med 46: 1239–1244. 25. Matero P, Pasanen T , Laukkanen R ...research was supported by the Defense Threat Reduction Agency, Joint Science and Technology Office, Medical S& T Division. The funders had no role in study...QA1122-F 59-CCAAATGGAAGCACTGCCCTGTAG-39 24 61.8 54.2 105 QA1122- R 59-ATGCGGTGAGAGCCTCAGGATTC-39 23 62.1 56.5 L-413C-F 59-ACGTGGTCATGTCCGTCACAATC-39 23

  14. Smart storage technologies applied to fresh foods: A review.

    PubMed

    Wang, Jingyu; Zhang, Min; Gao, Zhongxue; Adhikari, Benu

    2017-06-30

    Fresh foods are perishable, seasonal and regional in nature and their storage, transportation, and preservation of freshness are quite challenging. Smart storage technologies can online detection and monitor the changes of quality parameters and storage environment of fresh foods during storage, so that operators can make timely adjustments to reduce the loss. This article reviews the smart storage technologies from two aspects: online detection technologies and smartly monitoring technologies for fresh foods. Online detection technologies include electronic nose, nuclear magnetic resonance (NMR), near infrared spectroscopy (NIRS), hyperspectral imaging and computer vision. Smartly monitoring technologies mainly include some intelligent indicators for monitoring the change of storage environment. Smart storage technologies applied to fresh foods need to be highly efficient and nondestructive and need to be competitively priced. In this work, we have critically reviewed the principles, applications, and development trends of smart storage technologies.

  15. Advancing Partnerships Towards an Integrated Approach to Oil Spill Response

    NASA Astrophysics Data System (ADS)

    Green, D. S.; Stough, T.; Gallegos, S. C.; Leifer, I.; Murray, J. J.; Streett, D.

    2015-12-01

    Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, and remote sensing is playing a growing critical role in the detection and monitoring of oil spills, as well as facilitating validation of remote sensing oil spill products. The FOSTERRS (Federal Oil Science Team for Emergency Response Remote Sensing) interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft/instruments) and analysis techniques are quickly, effectively, appropriately, and seamlessly available to oil spills responders. Yet significant challenges remain for addressing oils spanning a vast range of chemical properties that may be spilled from the Tropics to the Arctic, with algorithms and scientific understanding needing advances to keep up with technology. Thus, FOSTERRS promotes enabling scientific discovery to ensure robust utilization of available technology as well as identifying technologies moving up the TRL (Technology Readiness Level). A recent FOSTERRS facilitated support activity involved deployment of the AVIRIS NG (Airborne Visual Infrared Imaging Spectrometer- Next Generation) during the Santa Barbara Oil Spill to validate the potential of airborne hyperspectral imaging to real-time map beach tar coverage including surface validation data. Many developing airborne technologies have potential to transition to space-based platforms providing global readiness.

  16. Integrated testing and verification system for research flight software design document

    NASA Technical Reports Server (NTRS)

    Taylor, R. N.; Merilatt, R. L.; Osterweil, L. J.

    1979-01-01

    The NASA Langley Research Center is developing the MUST (Multipurpose User-oriented Software Technology) program to cut the cost of producing research flight software through a system of software support tools. The HAL/S language is the primary subject of the design. Boeing Computer Services Company (BCS) has designed an integrated verification and testing capability as part of MUST. Documentation, verification and test options are provided with special attention on real time, multiprocessing issues. The needs of the entire software production cycle have been considered, with effective management and reduced lifecycle costs as foremost goals. Capabilities have been included in the design for static detection of data flow anomalies involving communicating concurrent processes. Some types of ill formed process synchronization and deadlock also are detected statically.

  17. The energy-efficient implementation of an adaptive-filtering-based QRS complex detection method for wearable devices

    NASA Astrophysics Data System (ADS)

    Tian, Shudong; Han, Jun; Yang, Jianwei; Zeng, Xiaoyang

    2017-10-01

    Electrocardiogram (ECG) can be used as a valid way for diagnosing heart disease. To fulfill ECG processing in wearable devices by reducing computation complexity and hardware cost, two kinds of adaptive filters are designed to perform QRS complex detection and motion artifacts removal, respectively. The proposed design achieves a sensitivity of 99.49% and a positive predictivity of 99.72%, tested under the MIT-BIH ECG database. The proposed design is synthesized under the SMIC 65-nm CMOS technology and verified by post-synthesis simulation. Experimental results show that the power consumption and area cost of this design are of 160 μW and 1.09 × 10 5 μm2, respectively. Project supported by the National Natural Science Foundation of China (Nos. 61574040, 61234002, 61525401).

  18. The Generic Resolution Advisor and Conflict Evaluator (GRACE) for Detect-And-Avoid Systems

    NASA Technical Reports Server (NTRS)

    Abramson, Michael; Refai, Mohamad; Santiago, Confesor

    2017-01-01

    Java Architecture for Detect-And-Avoid (DAA) Extensibility and Modeling (JADEM) was developed at NASA Ames Research Center as a research and modeling tool for Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS). UAS will be required to have DAA systems in order to fulfill the regulatory requirement to remain well clear'' of other traffic. JADEM supports research on technological requirements and Minimum Operational Performance Standards (MOPS) for UAS DAA systems by providing a flexible and extensible software platform that includes models and algorithms for all major DAA functions. This paper describes one of these algorithms, the Generic Resolution Advisor and Conflict Evaluator (GRACE). GRACE supports two core DAA functions: threat evaluation and guidance. GRACE is generic in the sense that it is designed to work with any aircraft or sensor type (both cooperative and non-cooperative), and to be used in various applications and DAA guidance concepts, thus supporting evolving MOPS requirements and research. GRACE combines flexibility, robustness, and computational efficiency. It has modest memory requirements and can handle multiple cooperative and noncooperative intruders. GRACE has been used as a core JADEM component in several real-time and fast-time experiments, including human-in-the-loop simulations and live flight tests.

  19. Enabling Technologies for Characterizing Exoplanet Systems with Exo-C

    NASA Astrophysics Data System (ADS)

    Cahoy, Kerri Lynn; Belikov, Ruslan; Stapelfeldt, Karl R.; Chakrabarti, Supriya; Trauger, John T.; Serabyn, Eugene; McElwain, Michael W.; Pong, Christopher M.; Brugarolas, Paul

    2015-01-01

    The Exoplanet Science and Technology Definition Team's Internal Coronagraph mission design, called 'Exo-C', utilizes several technologies that have advanced over the past decade with support from the Exoplanet Exploration Program. Following the flow of photons through the telescope, the science measurement is enabled by (i) a precision pointing system to keep the target exoplanet system precisely positioned on the detector during the integration time, (ii) high-performance coronagraphs to block the parent star's light so that the planet's reflected light can be detected, (iii) a wavefront control system to compensate for any wavefront errors such as those due to thermal or mechanical deformations in the optical path, especially errors with high spatial frequencies that could cause contrast-reducing speckles, and (iv) an integral field spectrograph (IFS) that provides moderate resolution spectra of the target exoplanets, permitting their characterization and comparison with models and other data sets. Technologies such as the wavefront control system and coronagraphs will also benefit from other funded efforts in progress, such as the Wide Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST-AFTA) program. Similarly, the Exo-C IFS will benefit from the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) demonstration. We present specific examples for each of these technologies showing that the state of the art has advanced to levels that will meet the overall scientific, cost, and schedule requirements of the Exo-C mission. These capabilities have matured with testbed and/or ground-telescope demonstrations and have reached a technological readiness level (TRL) that supports their inclusion in the baseline design for potential flight at the end of this decade. While additional work remains to build and test flight-like components (that concurrently meet science as well as size, weight, power, and environmental requirements) and to integrate these subsystems together for a hardware-in-the-loop end-to-end demonstration, the overall readiness of the suite of enabling technologies makes a compelling case for Exo-C among the exoplanet direct imaging mission candidates.

  20. Passive IR polarization sensors: a new technology for mine detection

    NASA Astrophysics Data System (ADS)

    Barbour, Blair A.; Jones, Michael W.; Barnes, Howard B.; Lewis, Charles P.

    1998-09-01

    The problem of mine and minefield detection continues to provide a significant challenge to sensor systems. Although the various sensor technologies (infrared, ground penetrating radar, etc.) may excel in certain situations there does not exist a single sensor technology that can adequately detect mines in all conditions such as time of day, weather, buried or surface laid, etc. A truly robust mine detection system will likely require the fusion of data from multiple sensor technologies. The performance of these systems, however, will ultimately depend on the performance of the individual sensors. Infrared (IR) polarimetry is a new and innovative sensor technology that adds substantial capabilities to the detection of mines. IR polarimetry improves on basic IR imaging by providing improved spatial resolution of the target, an inherent ability to suppress clutter, and the capability for zero (Delta) T imaging. Nichols Research Corporation (Nichols) is currently evaluating the effectiveness of IR polarization for mine detection. This study is partially funded by the U.S. Army Night Vision & Electronic Sensors Directorate (NVESD). The goal of the study is to demonstrate, through phenomenology studies and limited field trials, that IR polarizaton outperforms conventional IR imaging in the mine detection arena.

  1. Automated Corrosion Detection Program

    DTIC Science & Technology

    2001-10-01

    More detailed explanations of the methodology development can be found in Hidden Corrosion Detection Technology Assessment, a paper presented at...Detection Program, a paper presented at the Fourth Joint DoD/FAA/NASA Conference on Aging Aircraft, 2000. AS&M PULSE. The PULSE system, developed...selection can be found in The Evaluation of Hidden Corrosion Detection Technologies on the Automated Corrosion Detection Program, a paper presented

  2. Factors influencing residents' acceptance (support) of remediation technologies.

    PubMed

    Prior, Jason

    2018-05-15

    An increasing diversity of technologies are being used to remediate contaminated sites, yet there remains little understanding of the level of acceptance that residents living near these sites hold for these technologies, and what factors influence their level of acceptance. This lack of understanding hinders the remediation industry's ability to effectively engage with these residents about remediation technology selection, at a time when such engagement is become part and parcel of remediation policy and practice. The study develops on wider research into public acceptance of technologies, using data from a telephone survey of 2009 residents living near thirteen contaminated sites across Australia. Within the survey acceptance is measured through residents' level of support for the application of remediation technologies in their local area. Firstly, a regression analysis of closed-ended questions, and coding of open-ended questions are combined to identify the main predictors of residents' support for remediation technologies. Secondly, coding of open-ended questions was analysed using Crawford and Ostrom's Institutional Grammar Tool to identify norms and sanctions guiding residents' willingness to negotiate their support. The research identifies factors associated with the residents' personal and demographic characteristics, their physical context and engagement with institution during remediation processes, and the technologies themselves which predict residents' level of support for the application of remediation technologies. Bioremediation technologies had higher levels of support than chemical, thermal and physical technologies. Furthermore, the paper identifies a core set of norms and sanctions residents use to negotiate their level of support for remediation technologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. NDE activities and technology transfer at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Shurtleff, W. W.

    1993-11-01

    The NDE, Photometrics, and Optical Data Reduction Department at Sandia National Laboratories in New Mexico provides nondestructive evaluation (NDE) support for all phases of research and development at Sandia. Present facilities and personnel provide radiography, acoustic monitoring, ultrasonic scanning, computed tomography, shearography/ESPI, infrared imaging, high speed and ultra-high speed photometrics, and image processing. Although the department includes photometrics and optical data reduction as well as NDE, I will refer to the NDE department from now on for simplicity. The NDE department has worked on technology transfer to organizations inside and outside the weapons complex. This work has been performed in all the Sandia business sectors: defense programs, energy and environment, and work for others. The technology transfer has been in the form of testing for product improvement such as validation of aircraft inspection equipment, consultation such as detecting lathe bearing slip for a major machine tool manufacturer, and products such as an acoustic sand detector for the oil and gas industry.

  4. A Nanocoaxial-Based Electrochemical Sensor for the Detection of Cholera Toxin

    NASA Astrophysics Data System (ADS)

    Archibald, Michelle M.; Rizal, Binod; Connolly, Timothy; Burns, Michael J.; Naughton, Michael J.; Chiles, Thomas C.

    2015-03-01

    Sensitive, real-time detection of biomarkers is of critical importance for rapid and accurate diagnosis of disease for point of care (POC) technologies. Current methods do not allow for POC applications due to several limitations, including sophisticated instrumentation, high reagent consumption, limited multiplexing capability, and cost. Here, we report a nanocoaxial-based electrochemical sensor for the detection of bacterial toxins using an electrochemical enzyme-linked immunosorbent assay (ELISA) and differential pulse voltammetry (DPV). Proof-of-concept was demonstrated for the detection of cholera toxin (CT). The linear dynamic range of detection was 10 ng/ml - 1 μg/ml, and the limit of detection (LOD) was found to be 2 ng/ml. This level of sensitivity is comparable to the standard optical ELISA used widely in clinical applications. In addition to matching the detection profile of the standard ELISA, the nanocoaxial array provides a simple electrochemical readout and a miniaturized platform with multiplexing capabilities for the simultaneous detection of multiple biomarkers, giving the nanocoax a desirable advantage over the standard method towards POC applications. Sensitive, real-time detection of biomarkers is of critical importance for rapid and accurate diagnosis of disease for point of care (POC) technologies. Current methods do not allow for POC applications due to several limitations, including sophisticated instrumentation, high reagent consumption, limited multiplexing capability, and cost. Here, we report a nanocoaxial-based electrochemical sensor for the detection of bacterial toxins using an electrochemical enzyme-linked immunosorbent assay (ELISA) and differential pulse voltammetry (DPV). Proof-of-concept was demonstrated for the detection of cholera toxin (CT). The linear dynamic range of detection was 10 ng/ml - 1 μg/ml, and the limit of detection (LOD) was found to be 2 ng/ml. This level of sensitivity is comparable to the standard optical ELISA used widely in clinical applications. In addition to matching the detection profile of the standard ELISA, the nanocoaxial array provides a simple electrochemical readout and a miniaturized platform with multiplexing capabilities for the simultaneous detection of multiple biomarkers, giving the nanocoax a desirable advantage over the standard method towards POC applications. This work was supported by the National Institutes of Health (National Cancer Institute award No. CA137681 and National Institute of Allergy and Infectious Diseases Award No. AI100216).

  5. Technology coordination

    NASA Technical Reports Server (NTRS)

    Hartman, Steven

    1992-01-01

    Viewgraphs on technology coordination are provided. Topics covered include: technology coordination process to date; goals; how the Office of Aeronautics and Space Technology (OAST) can support the Office of Space Science and Applications (OSSA); how OSSA can support OAST; steps to technology transfer; and recommendations.

  6. Extended mission life support systems

    NASA Technical Reports Server (NTRS)

    Quattrone, P. D.

    1985-01-01

    Extended manned space missions which include interplanetary missions require regenerative life support systems. Manned mission life support considerations are placed in perspective and previous manned space life support system technology, activities and accomplishments in current supporting research and technology (SR&T) programs are reviewed. The life support subsystem/system technologies required for an enhanced duration orbiter (EDO) and a space operations center (SOC), regenerative life support functions and technology required for manned interplanetary flight vehicles, and future development requirements are outlined. The Space Shuttle Orbiters (space transportation system) is space cabin atmosphere is maintained at Earth ambient pressure of 14.7 psia (20% O2 and 80% N2). The early Shuttle flights will be seven-day flights, and the life support system flight hardware will still utilize expendables.

  7. Readout technologies for directional WIMP Dark Matter detection

    NASA Astrophysics Data System (ADS)

    Battat, J. B. R.; Irastorza, I. G.; Aleksandrov, A.; Asada, T.; Baracchini, E.; Billard, J.; Bosson, G.; Bourrion, O.; Bouvier, J.; Buonaura, A.; Burdge, K.; Cebrián, S.; Colas, P.; Consiglio, L.; Dafni, T.; D'Ambrosio, N.; Deaconu, C.; De Lellis, G.; Descombes, T.; Di Crescenzo, A.; Di Marco, N.; Druitt, G.; Eggleston, R.; Ferrer-Ribas, E.; Fusayasu, T.; Galán, J.; Galati, G.; García, J. A.; Garza, J. G.; Gentile, V.; Garcia-Sciveres, M.; Giomataris, Y.; Guerrero, N.; Guillaudin, O.; Guler, A. M.; Harton, J.; Hashimoto, T.; Hedges, M. T.; Iguaz, F. J.; Ikeda, T.; Jaegle, I.; Kadyk, J. A.; Katsuragawa, T.; Komura, S.; Kubo, H.; Kuge, K.; Lamblin, J.; Lauria, A.; Lee, E. R.; Lewis, P.; Leyton, M.; Loomba, D.; Lopez, J. P.; Luzón, G.; Mayet, F.; Mirallas, H.; Miuchi, K.; Mizumoto, T.; Mizumura, Y.; Monacelli, P.; Monroe, J.; Montesi, M. C.; Naka, T.; Nakamura, K.; Nishimura, H.; Ochi, A.; Papevangelou, T.; Parker, J. D.; Phan, N. S.; Pupilli, F.; Richer, J. P.; Riffard, Q.; Rosa, G.; Santos, D.; Sawano, T.; Sekiya, H.; Seong, I. S.; Snowden-Ifft, D. P.; Spooner, N. J. C.; Sugiyama, A.; Taishaku, R.; Takada, A.; Takeda, A.; Tanaka, M.; Tanimori, T.; Thorpe, T. N.; Tioukov, V.; Tomita, H.; Umemoto, A.; Vahsen, S. E.; Yamaguchi, Y.; Yoshimoto, M.; Zayas, E.

    2016-11-01

    The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies.

  8. Technology Development to Support Human Health and Performance in Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Kundrot, C.E.; Steinberg, S. L.; Charles, J. B.

    2011-01-01

    In the course of defining the level of risks and mitigating the risks for exploration missions beyond low Earth orbit, NASA s Human Research Program (HRP) has identified the need for technology development in several areas. Long duration missions increase the risk of serious medical conditions due to limited options for return to Earth; no resupply; highly limited mass, power, volume; and communication delays. New space flight compatible medical capabilities required include: diagnostic imaging, oxygen concentrator, ventilator, laboratory analysis (saliva, blood, urine), kidney stone diagnosis & treatment, IV solution preparation and delivery. Maintenance of behavioral health in such an isolated, confined and extreme environment requires new sensory stimulation (e.g., virtual reality) technology. Unobtrusive monitoring of behavioral health and treatment methods are also required. Prolonged exposure to weightlessness deconditions bone, muscle, and the cardiovascular system. Novel exercise equipment or artificial gravity are necessary to prevent deconditioning. Monitoring of the degree of deconditioning is required to ensure that countermeasures are effective. New technologies are required in all the habitable volumes (e.g., suit, capsule, habitat, exploration vehicle, lander) to provide an adequate food system, and to meet human environmental standards for air, water, and surface contamination. Communication delays require the crew to be more autonomous. Onboard decision support tools that assist crew with real-time detection and diagnosis of vehicle and habitat operational anomalies will enable greater autonomy. Multi-use shield systems are required to provide shielding from solar particle events. The HRP is pursuing the development of these technologies in laboratories, flight analog environments and the ISS so that the human health and performance risks will be acceptable with the available resources.

  9. [Fast Detection of Camellia Sinensis Growth Process and Tea Quality Informations with Spectral Technology: A Review].

    PubMed

    Peng, Ji-yu; Song, Xing-lin; Liu, Fei; Bao, Yi-dan; He, Yong

    2016-03-01

    The research achievements and trends of spectral technology in fast detection of Camellia sinensis growth process information and tea quality information were being reviewed. Spectral technology is a kind of fast, nondestructive, efficient detection technology, which mainly contains infrared spectroscopy, fluorescence spectroscopy, Raman spectroscopy and mass spectroscopy. The rapid detection of Camellia sinensis growth process information and tea quality is helpful to realize the informatization and automation of tea production and ensure the tea quality and safety. This paper provides a review on its applications containing the detection of tea (Camellia sinensis) growing status(nitrogen, chlorophyll, diseases and insect pest), the discrimination of tea varieties, the grade discrimination of tea, the detection of tea internal quality (catechins, total polyphenols, caffeine, amino acid, pesticide residual and so on), the quality evaluation of tea beverage and tea by-product, the machinery of tea quality determination and discrimination. This paper briefly introduces the trends of the technology of the determination of tea growth process information, sensor and industrial application. In conclusion, spectral technology showed high potential to detect Camellia sinensis growth process information, to predict tea internal quality and to classify tea varieties and grades. Suitable chemometrics and preprocessing methods is helpful to improve the performance of the model and get rid of redundancy, which provides the possibility to develop the portable machinery. Future work is to develop the portable machinery and on-line detection system is recommended to improve the further application. The application and research achievement of spectral technology concerning about tea were outlined in this paper for the first time, which contained Camellia sinensis growth, tea production, the quality and safety of tea and by-produce and so on, as well as some problems to be solved and its future applicability in modern tea industrial.

  10. The value of gynecologic cancer follow-up: evidence-based ignorance?

    PubMed

    Lajer, Henrik; Jensen, Mette B; Kilsmark, Jannie; Albæk, Jens; Svane, Danny; Mirza, Mansoor R; Geertsen, Poul F; Reerman, Diana; Hansen, Kåre; Milter, Maya C; Mogensen, Ole

    2010-11-01

    To explore the extent of evidence-based data and cost-utility of follow-up after primary treatment of endometrial and ovarian cancer, addressing perspectives of technology, organization, economics, and patients. Systematic literature searches according to the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions were conducted separately for each of the 4 perspectives. In addition, the organizational analysis included a nationwide questionnaire survey among all relevant hospital departments, and the operating costs were calculated. None of the identified studies supported a survival benefit from hospital-based follow-up after completion of primary treatment of endometrial or ovarian cancer. The methods for follow-up were of low technology (gynecologic examination with or without ultrasound examination). Other technologies had poor sensitivity and specificity in detecting recurrence. Small changes in applied technologies and organization lead to substantial changes in costs. Substantial differences especially in frequency and applied methods were found between departments. The literature review did not find evidence that follow-up affects the women's quality of life. The main purpose of follow-up after treatment of cancer is improved survival. Our review of the literature showed no evidence of a positive effect on survival in women followed up after primary treatment of endometrial or ovarian cancer. The conception of follow-up among physicians, patients, and their relatives therefore needs revision. Follow-up after treatment should have a clearly defined and evidence-based purpose. Based on the existing literature, this purpose should presently focus on other end points rather than early detection of relapse and improved survival. These end points could be quality of life, treatment toxicity, and economy.

  11. Analysis of measurements for solid state laser remote lidar system

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1995-01-01

    The merits of using lidar systems for remote measurements of various atmospheric processes such as wind, turbulence, moisture, and aerosol concentration are widely recognized. Although the lidar technology has progressed considerably over the past two decades, significant research particularly in the area of solid state lidars remains to be conducted in order to fully exploit this technology. The work performed by the UAH (University of Alabama in Huntsville) personnel under this Delivery Order concentrated on analyses of measurements required in support of solid state laser remote sensing lidar systems which are to be designed, deployed, and used to measure atmospheric processes and constituents. UAH personnel has studied and recommended to NASA/MSFC the requirements of the optical systems needed to characterize the detection devices suitable for solid state wavelengths and to evaluate various heterodyne detection schemes. The 2-micron solid state laser technology was investigated and several preliminary laser designs were developed and their performance for remote sensing of atmospheric winds and clouds from a spaceborne platform were specified. In addition to the laser source and the detector, the other critical technologies necessary for global wind measurements by a spaceborne solid state coherent lidar systems were identified to be developed and demonstrated. As part of this work, an analysis was performed to determine the atmospheric wind velocity estimation accuracy using the line-of-sight measurements of a scanning coherent lidar. Under this delivery order, a computer database of materials related to the theory, development, testing, and operation of lidar systems was developed to serve as a source of information for lidar research and development.

  12. Detection of brain tumor margins using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Juarez-Chambi, Ronald M.; Kut, Carmen; Rico-Jimenez, Jesus; Campos-Delgado, Daniel U.; Quinones-Hinojosa, Alfredo; Li, Xingde; Jo, Javier

    2018-02-01

    In brain cancer surgery, it is critical to achieve extensive resection without compromising adjacent healthy, noncancerous regions. Various technological advances have made major contributions in imaging, including intraoperative magnetic imaging (MRI) and computed tomography (CT). However, these technologies have pros and cons in providing quantitative, real-time and three-dimensional (3D) continuous guidance in brain cancer detection. Optical Coherence Tomography (OCT) is a non-invasive, label-free, cost-effective technique capable of imaging tissue in three dimensions and real time. The purpose of this study is to reliably and efficiently discriminate between non-cancer and cancerinfiltrated brain regions using OCT images. To this end, a mathematical model for quantitative evaluation known as the Blind End-Member and Abundances Extraction method (BEAE). This BEAE method is a constrained optimization technique which extracts spatial information from volumetric OCT images. Using this novel method, we are able to discriminate between cancerous and non-cancerous tissues and using logistic regression as a classifier for automatic brain tumor margin detection. Using this technique, we are able to achieve excellent performance using an extensive cross-validation of the training dataset (sensitivity 92.91% and specificity 98.15%) and again using an independent, blinded validation dataset (sensitivity 92.91% and specificity 86.36%). In summary, BEAE is well-suited to differentiate brain tissue which could support the guiding surgery process for tissue resection.

  13. Detection of brain tumor margins using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Juarez-Chambi, Ronald M.; Kut, Carmen; Rico-Jimenez, Jesus; Campos-Delgado, Daniel U.; Quinones-Hinojosa, Alfredo; Li, Xingde; Jo, Javier

    2018-02-01

    In brain cancer surgery, it is critical to achieve extensive resection without compromising adjacent healthy, non-cancerous regions. Various technological advances have made major contributions in imaging, including intraoperative magnetic imaging (MRI) and computed tomography (CT). However, these technologies have pros and cons in providing quantitative, real-time and three-dimensional (3D) continuous guidance in brain cancer detection. Optical Coherence Tomography (OCT) is a non-invasive, label-free, cost-effective technique capable of imaging tissue in three dimensions and real time. The purpose of this study is to reliably and efficiently discriminate between non-cancer and cancer-infiltrated brain regions using OCT images. To this end, a mathematical model for quantitative evaluation known as the Blind End- Member and Abundances Extraction method (BEAE). This BEAE method is a constrained optimization technique which extracts spatial information from volumetric OCT images. Using this novel method, we are able to discriminate between cancerous and non-cancerous tissues and using logistic regression as a classifier for automatic brain tumor margin detection. Using this technique, we are able to achieve excellent performance using an extensive cross-validation of the training dataset (sensitivity 92.91% and specificity 98.15%) and again using an independent, blinded validation dataset (sensitivity 92.91% and specificity 86.36%). In summary, BEAE is well-suited to differentiate brain tissue which could support the guiding surgery process for tissue resection.

  14. Fly eye radar or micro-radar sensor technology

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Asmolova, Olga

    2014-05-01

    To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.

  15. A Survey of LIDAR Technology and Its Use in Spacecraft Relative Navigation

    NASA Technical Reports Server (NTRS)

    Christian, John A.; Cryan, Scott P.

    2013-01-01

    This paper provides a survey of modern LIght Detection And Ranging (LIDAR) sensors from a perspective of how they can be used for spacecraft relative navigation. In addition to LIDAR technology commonly used in space applications today (e.g. scanning, flash), this paper reviews emerging LIDAR technologies gaining traction in other non-aerospace fields. The discussion will include an overview of sensor operating principles and specific pros/cons for each type of LIDAR. This paper provides a comprehensive review of LIDAR technology as applied specifically to spacecraft relative navigation. HE problem of orbital rendezvous and docking has been a consistent challenge for complex space missions since before the Gemini 8 spacecraft performed the first successful on-orbit docking of two spacecraft in 1966. Over the years, a great deal of effort has been devoted to advancing technology associated with all aspects of the rendezvous, proximity operations, and docking (RPOD) flight phase. After years of perfecting the art of crewed rendezvous with the Gemini, Apollo, and Space Shuttle programs, NASA began investigating the problem of autonomous rendezvous and docking (AR&D) to support a host of different mission applications. Some of these applications include autonomous resupply of the International Space Station (ISS), robotic servicing/refueling of existing orbital assets, and on-orbit assembly.1 The push towards a robust AR&D capability has led to an intensified interest in a number of different sensors capable of providing insight into the relative state of two spacecraft. The present work focuses on exploring the state-of-the-art in one of these sensors - LIght Detection And Ranging (LIDAR) sensors. It should be noted that the military community frequently uses the acronym LADAR (LAser Detection And Ranging) to refer to what this paper calls LIDARs. A LIDAR is an active remote sensing device that is typically used in space applications to obtain the range to one or more points on a target spacecraft. As the name suggests, LIDAR sensors use light (typically a laser) to illuminate the target and measure the time it takes for the emitted signal to return to the sensor. Because the light must travel from the source, to

  16. Results of field testing with the FightSight infrared-based projectile tracking and weapon-fire characterization technology

    NASA Astrophysics Data System (ADS)

    Snarski, Steve; Menozzi, Alberico; Sherrill, Todd; Volpe, Chris; Wille, Mark

    2010-04-01

    This paper describes experimental results from recent live-fire data collects that demonstrate the capability of a prototype system for projectile detection and tracking. This system, which is being developed at Applied Research Associates, Inc., under the FightSight program, consists of a high-speed thermal camera and sophisticated image processing algorithms to detect and track projectiles. The FightSight operational vision is automated situational intelligence to detect, track, and graphically map large-scale firefights and individual shooting events onto command and control (C2) systems in real time (shot location and direction, weapon ID, movements and trends). Gaining information on enemy-fire trajectories allows educated inferences on the enemy's intent, disposition, and strength. Our prototype projectile detection and tracking system has been tested at the Joint Readiness Training Center (Ft Polk, LA) during live-fire convoy and mortar registration exercises, in the summer of 2009. It was also tested during staged military-operations- on-urban-terrain (MOUT) firefight events at Aberdeen Test Center (Aberdeen, MD) under the Hostile Fire Defeat Army Technology Objective midterm experiment, also in the summer of 2009, where we introduced fusion with acoustic and EO sensors to provide 3D localization and near-real time display of firing events. Results are presented in this paper that demonstrate effective and accurate detection and localization of weapon fire (5.56mm, 7.62mm, .50cal, 81/120mm mortars, 40mm) in diverse and challenging environments (dust, heat, day and night, rain, arid open terrain, urban clutter). FightSight's operational capabilities demonstrated under these live-fire data collects can support closecombat scenarios. As development continues, FightSight will be able to feed C2 systems with a symbolic map of enemy actions.

  17. Barriers to Technology Use in Large and Small School Districts

    ERIC Educational Resources Information Center

    Francom, Gregory M.

    2016-01-01

    Barriers to effective technology integration come in several different categories, including access to technology tools and resources, technology training and support, administrative support, time to plan and prepare for technology integration, and beliefs about the importance and usefulness of technology tools and resources. This study used…

  18. A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics.

    PubMed

    Shan, Jiajia; Zhao, Junbo; Liu, Lifen; Zhang, Yituo; Wang, Xue; Wu, Fengchang

    2018-07-01

    Hyperspectral imaging technology has been investigated as a possible way to detect microplastics contamination in soil directly and efficiently in this study. Hyperspectral images with wavelength range between 400 and 1000 nm were obtained from soil samples containing different materials including microplastics, fresh leaves, wilted leaves, rocks and dry branches. Supervised classification algorithms such as support vector machine (SVM), mahalanobis distance (MD) and maximum likelihood (ML) algorithms were used to identify microplastics from the other materials in hyperspectral images. To investigate the effect of particle size and color, white polyethylene (PE) and black PE particles extracted from soil with two different particle size ranges (1-5 mm and 0.5-1 mm) were studied in this work. The results showed that SVM was the most applicable method for detecting white PE in soil, with the precision of 84% and 77% for PE particles in size ranges of 1-5 mm and 0.5-1 mm respectively. The precision of black PE detection achieved by SVM were 58% and 76% for particles of 1-5 mm and 0.5-1 mm respectively. Six kinds of household polymers including drink bottle, bottle cap, rubber, packing bag, clothes hanger and plastic clip were used to validate the developed method, and the classification precision of polymers were obtained from 79% to 100% and 86%-99% for microplastics particle 1-5 mm and 0.5-1 mm respectively. The results indicate that hyperspectral imaging technology is a potential technique to determine and visualize the microplastics with particle size from 0.5 to 5 mm on soil surface directly. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Comparison of two new generation pulse oximeters with arterial oxygen saturation in critically ill children.

    PubMed

    Jose, Bipin; Lodha, Rakesh; Kabra, S K

    2014-12-01

    To compare the performance of two new generation pulse oximeters, one with enhanced signal extraction technology (SET) and other without enhanced SET in detecting hypoxemia and to correlate it with arterial blood gas analysis. Forty-eight patients, admitted to pediatric intensive care unit (PICU) of a teritiary care teaching hospital in India for critical care and support during the study period, who had an arterial catheter in situ were included. Children with those disease conditions known to interfere with pulse oximetry and blood gas analysis were excluded.184 set of observations were made during the study period. Each set had oxygen saturation (SpO2) measured from both the pulse oximeters and the corresponding arterial oxygen saturation (SaO2). The values were compared for occurrence of true and false alarms during periods of normal BP, hypotension and varying degrees of hypoxia. The mean arterial SaO2 in the study was 94.4 % ± 4.9. The mean SpO2 recorded in conventional and enhanced signal extraction technology (SET) pulse oximeters were 94.9 % ± 4.5 and 97.2 % ± 4.7 respectively. Enhanced signal extraction technology pulse oximeter detected 4/27 (15 %) of true hypoxemic events and 1 event was a false alarm. Conventional pulse oximeter detected 11/27 (41 %) true hypoxemic events but recorded 6 false alarms. Both pulse oximeters were not found to be performing satisfactorily in picking up hypoxemia in the study. There was good correlation with mean SpO2 from pulse oximeters and arterial SaO2. The reliability of pulse oximetry decreases with worsening hypoxemia and hypotension, and the sensitivity for picking up hypoxemia can be as low as 15 %.

  20. [Study on Ammonia Emission Rules in a Dairy Feedlot Based on Laser Spectroscopy Detection Method].

    PubMed

    He, Ying; Zhang, Yu-jun; You, Kun; Wang, Li-ming; Gao, Yan-wei; Xu, Jin-feng; Gao, Zhi-ling; Ma, Wen-qi

    2016-03-01

    It needs on-line monitoring of ammonia concentration on dairy feedlot to disclose ammonia emissions characteristics accurately for reducing ammonia emissions and improving the ecological environment. The on-line monitoring system for ammonia concentration has been designed based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) technology combining with long open-path technology, then the study has been carried out with inverse dispersion technique and the system. The ammonia concentration in-situ has been detected and ammonia emission rules have been analyzed on a dairy feedlot in Baoding in autumn and winter of 2013. The monitoring indicated that the peak of ammonia concentration was 6.11 x 10(-6) in autumn, and that was 6.56 x 10(-6) in winter. The concentration results show that the variation of ammonia concentration had an obvious diurnal periodicity, and the general characteristic of diurnal variation was that the concentration was low in the daytime and was high at night. The ammonia emissions characteristic was obtained with inverse dispersion model that the peak of ammonia emissions velocity appeared at noon. The emission velocity was from 1.48 kg/head/hr to 130.6 kg/head/hr in autumn, and it was from 0.004 5 kg/head/hr to 43.32 kg/head/hr in winter which was lower than that in autumn. The results demonstrated ammonia emissions had certain seasonal differences in dairy feedlot scale. In conclusion, the ammonia concentration was detected with optical technology, and the ammonia emissions results were acquired by inverse dispersion model analysis with large range, high sensitivity, quick response without gas sampling. Thus, it's an effective method for ammonia emissions monitoring in dairy feedlot that provides technical support for scientific breeding.

  1. [Truth curves on soot blackened paper--apparatus-supported lie detection in Graz in the 1920s].

    PubMed

    Bachhiesl, Christian

    2014-01-01

    In the 1920s, experiments with apparatus-supported lie detection and registration of expression were conducted at the Criminological Institute of the University of Graz in order to establish a sound methodological basis for testimony research. For this purpose, the criminologist Ernst Seelig used a method of lie detection developed by the psychologist Vittorio Benussi, which focuses on the analysis of breathing. Benussi had stated that the expiration after telling a lie was faster than after telling the truth, but Seelig could not verify this rule in forensic practice. Consequently, this method of lie detection was of no practical use for criminology. Seelig also carried out experiments with the method of registration of expression developed by the psychiatrist Otto Lowenstein. He registered the examinee's thoracic and abdominal breathing and the movements of the extremities with the help of a kymograph. By interpretation of the curves recorded on soot blackened paper, conclusions concerning the mental elements of an offence as well as the existence of certain dispositions and of amnesia should have been made possible. Seelig was convinced of the efficiency of this method. These experiments can be regarded as early attempts at finding not only simple facts but also answers to quasi-metaphysical questions concerning the "true nature" of man with the help of methods based on natural science and modern technology. Thus they are precursors of present-day neuroscience and neuro-imaging.

  2. AN ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PERFORMANCE TESTING OF THREE RAPID PCR TECHNOLOGIES FOR IDAHO TECHNOLOGY R.A.I.D.® SYSTEM, APPLIED BIOSYSTEMS TAQMAN® E. COLI 0157:H7 DETECTION SYSTEM, AND INVITROGEN CORPORATION PATHALERTTM DETECTION KITS

    EPA Science Inventory

    The Environmental Technology Verification (ETV) Program, beginning as an initiative of the U.S. Environmental Protection Agency (EPA) in 1995, verifies the performance of commercially available, innovative technologies that can be used to measure environmental quality. The ETV p...

  3. 40 CFR 761.30 - Authorizations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Current-limiting fuses or other equivalent technology must be used to detect sustained high current faults... fuses or other equivalent technology to avoid PCB Transformer ruptures from sustained high current... protection, such as current-limiting fuses or other equivalent technology, to detect sustained high current...

  4. A multi points ultrasonic detection method for material flow of belt conveyor

    NASA Astrophysics Data System (ADS)

    Zhang, Li; He, Rongjun

    2018-03-01

    For big detection error of single point ultrasonic ranging technology used in material flow detection of belt conveyor when coal distributes unevenly or is large, a material flow detection method of belt conveyor is designed based on multi points ultrasonic counter ranging technology. The method can calculate approximate sectional area of material by locating multi points on surfaces of material and belt, in order to get material flow according to running speed of belt conveyor. The test results show that the method has smaller detection error than single point ultrasonic ranging technology under the condition of big coal with uneven distribution.

  5. NIH-Supported Technologies of the Future

    MedlinePlus

    ... Technologies of the Future Follow us NIH-Supported Technologies of the Future Silk Screws Silk has been ... a cut. In a procedure that uses this technology, multiple beams of ultrasound focus on a target ...

  6. Multi-object detection and tracking technology based on hexagonal opto-electronic detector

    NASA Astrophysics Data System (ADS)

    Song, Yong; Hao, Qun; Li, Xiang

    2008-02-01

    A novel multi-object detection and tracking technology based on hexagonal opto-electronic detector is proposed, in which (1) a new hexagonal detector, which is composed of 6 linear CCDs, has been firstly developed to achieve the field of view of 360 degree, (2) to achieve the detection and tracking of multi-object with high speed, the object recognition criterions of Object Signal Width Criterion (OSWC) and Horizontal Scale Ratio Criterion (HSRC) are proposed. In this paper, Simulated Experiments have been carried out to verify the validity of the proposed technology, which show that the detection and tracking of multi-object can be achieved with high speed by using the proposed hexagonal detector and the criterions of OSWC and HSRC, indicating that the technology offers significant advantages in Photo-electric Detection, Computer Vision, Virtual Reality, Augment Reality, etc.

  7. A Support Database System for Integrated System Health Management (ISHM)

    NASA Technical Reports Server (NTRS)

    Schmalzel, John; Figueroa, Jorge F.; Turowski, Mark; Morris, John

    2007-01-01

    The development, deployment, operation and maintenance of Integrated Systems Health Management (ISHM) applications require the storage and processing of tremendous amounts of low-level data. This data must be shared in a secure and cost-effective manner between developers, and processed within several heterogeneous architectures. Modern database technology allows this data to be organized efficiently, while ensuring the integrity and security of the data. The extensibility and interoperability of the current database technologies also allows for the creation of an associated support database system. A support database system provides additional capabilities by building applications on top of the database structure. These applications can then be used to support the various technologies in an ISHM architecture. This presentation and paper propose a detailed structure and application description for a support database system, called the Health Assessment Database System (HADS). The HADS provides a shared context for organizing and distributing data as well as a definition of the applications that provide the required data-driven support to ISHM. This approach provides another powerful tool for ISHM developers, while also enabling novel functionality. This functionality includes: automated firmware updating and deployment, algorithm development assistance and electronic datasheet generation. The architecture for the HADS has been developed as part of the ISHM toolset at Stennis Space Center for rocket engine testing. A detailed implementation has begun for the Methane Thruster Testbed Project (MTTP) in order to assist in developing health assessment and anomaly detection algorithms for ISHM. The structure of this implementation is shown in Figure 1. The database structure consists of three primary components: the system hierarchy model, the historical data archive and the firmware codebase. The system hierarchy model replicates the physical relationships between system elements to provide the logical context for the database. The historical data archive provides a common repository for sensor data that can be shared between developers and applications. The firmware codebase is used by the developer to organize the intelligent element firmware into atomic units which can be assembled into complete firmware for specific elements.

  8. Smart Rehabilitation Garment for posture monitoring.

    PubMed

    Wang, Q; Chen, W; Timmermans, A A A; Karachristos, C; Martens, J B; Markopoulos, P

    2015-08-01

    Posture monitoring and correction technologies can support prevention and treatment of spinal pain or can help detect and avoid compensatory movements during the neurological rehabilitation of upper extremities, which can be very important to ensure their effectiveness. We describe the design and development of Smart Rehabilitation Garment (SRG) a wearable system designed to support posture correction. The SRG combines a number of inertial measurement units (IMUs), controlled by an Arduino processor. It provides feedback with vibration on the garment, audible alarm signals and visual instruction through a Bluetooth connected smartphone. We discuss the placement of sensing modules, the garment design, the feedback design and the integration of smart textiles and wearable electronics which aimed at achieving wearability and ease of use. We report on the system's accuracy as compared to optical tracker method.

  9. Narrow-band imaging for the computer assisted diagnosis in patients with Barrett's esophagus

    NASA Astrophysics Data System (ADS)

    Kage, Andreas; Raithel, Martin; Zopf, Steffen; Wittenberg, Thomas; Münzenmayer, Christian

    2009-02-01

    Cancer of the esophagus has the worst prediction of all known cancers in Germany. The early detection of suspicious changes in the esophagus allows therapies that can prevent the cancer. Barrett's esophagus is a premalignant change of the esophagus that is a strong indication for cancer. Therefore there is a big interest to detect Barrett's esophagus as early as possible. The standard examination is done with a videoscope where the physician checks the esophagus for suspicious regions. Once a suspicious region is found, the physician takes a biopsy of that region to get a histological result of it. Besides the traditional white light for the illumination there is a new technology: the so called narrow-band Imaging (NBI). This technology uses a smaller spectrum of the visible light to highlight the scene captured by the videoscope. Medical studies indicate that the use of NBI instead of white light can increase the rate of correct diagnoses of a physician. In the future, Computer-Assisted Diagnosis (CAD) which is well known in the area of mammography might be used to support the physician in the diagnosis of different lesions in the esophagus. A knowledge-based system which uses a database is a possible solution for this task. For our work we have collected NBI images containing 326 Regions of Interest (ROI) of three typical classes: epithelium, cardia mucosa and Barrett's esophagus. We then used standard texture analysis features like those proposed by Haralick, Chen, Gabor and Unser to extract features from every ROI. The performance of the classification was evaluated with a classifier using the leaving-one-out sampling. The best result that was achieved is an accuracy of 92% for all classes and an accuracy of 76% for Barrett's esophagus. These results show that the NBI technology can provide a good diagnosis support when used in a CAD system.

  10. Nondestructive evaluations

    NASA Astrophysics Data System (ADS)

    Kulkarni, S.

    1993-03-01

    This report discusses Nondestructive Evaluation (NDE) thrust area which supports initiatives that advance inspection science and technology. The goal of the NDE thrust area is to provide cutting-edge technologies that have promise of inspection tools three to five years in the future. In selecting projects, the thrust area anticipates the needs of existing and future Lawrence Livermore National Laboratory (LLNL) programs. NDE provides materials characterization inspections, finished parts, and complex objects to find flaws and fabrication defects and to determine their physical and chemical characteristics. NDE also encompasses process monitoring and control sensors and the monitoring of in-service damage. For concurrent engineering, NDE becomes a frontline technology and strongly impacts issues of certification and of life prediction and extension. In FY-92, in addition to supporting LLNL programs and the activities of nuclear weapons contractors, NDE has initiated several projects with government agencies and private industries to study aging infrastructures and to advance manufacturing processes. Examples of these projects are (1) the Aging Airplanes Inspection Program for the Federal Aviation Administration, (2) Signal Processing of Acoustic Signatures of Heart Valves for Shiley, Inc., and (3) Turbine Blade Inspection for the Air Force, jointly with Southwest Research Institute and Garrett. In FY-92, the primary contributions of the NDE thrust area, described in this report, were in fieldable chemical sensor systems, computed tomography, and laser generation and detection of ultrasonic energy.

  11. Digital technology in respiratory diseases: Promises, (no) panacea and time for a new paradigm.

    PubMed

    Pinnock, Hilary; McKinstry, Brian

    2016-05-01

    In a world where digital technology has revolutionized the way we work, shop and manage our finances it is unsurprising that digital systems are suggested as potential solutions to delivering clinically and cost-effective care for an aging population with one or more long-term conditions. However, recent evidence suggesting that telehealth may not be quite the panacea that was promised, has led to discussions on the mechanisms and role of digital technology in respiratory care. Implementation in rural and remote settings offers significant benefits in terms of convenient access to care, but is contingent on technical and organizational infrastructure. Telemonitoring systems rely on algorithms to detect deterioration and trigger alerts; machine learning may enable telemonitoring of the future to develop personalized systems that are sensitive to clinical status whilst reducing false alerts. By providing access to information, offering convenient and flexible modes of communication and enabling the transfer of monitoring data to support professional assessment, telehealth can support self-management. At present, all too often, expensive 'off the shelf' systems are purchased and given to clinicians to use. It is time for the paradigm to shift. As clinicians we should identify the specific challenges we face in delivering care, and expect flexible systems that can be customized to individual patients' requirements and adapted to our diverse healthcare contexts. © The Author(s) 2016.

  12. The Combination Design of Enabling Technologies in Group Learning: New Study Support Service for Visually Impaired University Students

    ERIC Educational Resources Information Center

    Tangsri, Chatcai; Na-Takuatoong, Onjaree; Sophatsathit, Peraphon

    2013-01-01

    This article aims to show how the process of new service technology-based development improves the current study support service for visually impaired university students. Numerous studies have contributed to improving assisted aid technology such as screen readers, the development and the use of audiobooks, and technology that supports individual…

  13. State-of-the-art technologies for intrusion and obstacle detection for railroad operations

    DOT National Transportation Integrated Search

    2007-07-01

    This report provides an update on the state-of-the-art technologies with intrusion and obstacle detection capabilities for rail rights of way (ROW) and crossings. A workshop entitled Intruder and Obstacle Detection Systems (IODS) for Railroads Requir...

  14. The Genome Sequencer FLX System--longer reads, more applications, straight forward bioinformatics and more complete data sets.

    PubMed

    Droege, Marcus; Hill, Brendon

    2008-08-31

    The Genome Sequencer FLX System (GS FLX), powered by 454 Sequencing, is a next-generation DNA sequencing technology featuring a unique mix of long reads, exceptional accuracy, and ultra-high throughput. It has been proven to be the most versatile of all currently available next-generation sequencing technologies, supporting many high-profile studies in over seven applications categories. GS FLX users have pursued innovative research in de novo sequencing, re-sequencing of whole genomes and target DNA regions, metagenomics, and RNA analysis. 454 Sequencing is a powerful tool for human genetics research, having recently re-sequenced the genome of an individual human, currently re-sequencing the complete human exome and targeted genomic regions using the NimbleGen sequence capture process, and detected low-frequency somatic mutations linked to cancer.

  15. Technology of short-distance wireless communication and its application based on equipment support

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Zheng, Liping; Zhu, Jianjie; Cao, Yingxiu; Hu, Bei

    2018-04-01

    This paper briefly introduces some common short-region wireless communication technologies, comprehensively compares the application characteristics of each technology, and summarizes the application prospect of these technologies in equipment support.

  16. A Decision Support System for Managing a Diverse Portfolio of Technology Resources

    NASA Technical Reports Server (NTRS)

    Smith, J.

    2000-01-01

    This paper describes an automated decision support system designed to facilitate the management of a continuously changing portfolio of technologies as new technologies are deployed and older technologies are decommissioned.

  17. Panoramic autofluorescence: highlighting retinal pathology.

    PubMed

    Slotnick, Samantha; Sherman, Jerome

    2012-05-01

    Recent technological advances in fundus autofluorescence (FAF) are providing new opportunities for insight into retinal physiology and pathophysiology. FAF provides distinctly different imaging information than standard photography or color separation. A review of the basis for this imaging technology is included to help the clinician understand how to interpret FAF images. Cases are presented to illustrate image interpretation. Optos, which manufactures equipment for simultaneous panoramic imaging, has recently outfitted several units with AF capabilities. Six cases are presented in which panoramic autofluorescent (PAF) images highlight retinal pathology, using Optos' Ultra-Widefield technology. Supportive imaging technologies, such as Optomap® images and spectral domain optical coherence tomography (SD-OCT), are used to assist in the clinical interpretation of retinal pathology detected on PAF. Hypofluorescent regions on FAF are identified to occur along with a disruption in the photoreceptors and/or retinal pigment epithelium, as borne out on SD-OCT. Hyperfluorescent regions on FAF occur at the advancing zones of retinal degeneration, indicating impending damage. PAF enables such inferences to be made in retinal areas which lie beyond the reach of SD-OCT imaging. PAF also enhances clinical pattern recognition over a large area and in comparison with the fellow eye. Symmetric retinal degenerations often occur with genetic conditions, such as retinitis pigmentosa, and may impel the clinician to recommend genetic testing. Autofluorescent ophthalmoscopy is a non-invasive procedure that can detect changes in metabolic activity at the retinal pigment epithelium before clinical ophthalmoscopy. Already, AF is being used as an adjunct technology to fluorescein angiography in cases of age-related macular degeneration. Both hyper- and hypoautofluorescent changes are indicative of pathology. Peripheral retinal abnormalities may precede central retinal impacts, potentially providing early signs for intervention before impacting visual acuity. The panoramic image enhances clinical pattern recognition over a large area and in comparison between eyes. Optos' Ultra-Widefield technology is capable of capturing high-resolution images of the peripheral retina without requiring dilation.

  18. Large space systems technology, 1980, volume 1

    NASA Technical Reports Server (NTRS)

    Kopriver, F., III (Compiler)

    1981-01-01

    The technological and developmental efforts in support of the large space systems technology are described. Three major areas of interests are emphasized: (1) technology pertient to large antenna systems; (2) technology related to large space systems; and (3) activities that support both antenna and platform systems.

  19. Engineering to support wellbeing of dairy animals.

    PubMed

    Caja, Gerardo; Castro-Costa, Andreia; Knight, Christopher H

    2016-05-01

    Current trends in the global milk market and the recent abolition of milk quotas have accelerated the trend of the European dairy industry towards larger farm sizes and higher-yielding animals. Dairy cows remain in focus, but there is a growing interest in other dairy species, whose milk is often directed to traditional and protected designation of origin and gourmet dairy products. The challenge for dairy farms in general is to achieve the best possible standards of animal health and welfare, together with high lactational performance and minimal environmental impact. For larger farms, this may need to be done with a much lower ratio of husbandry staff to animals. Recent engineering advances and the decreasing cost of electronic technologies has allowed the development of 'sensing solutions' that automatically collect data, such as physiological parameters, production measures and behavioural traits. Such data can potentially help the decision making process, enabling early detection of health or wellbeing problems in individual animals and hence the application of appropriate corrective husbandry practices. This review focuses on new knowledge and emerging developments in welfare biomarkers (e.g. stress and metabolic diseases), activity-based welfare assessment (e.g. oestrus and lameness detection) and sensors of temperature and pH (e.g. calving alert and rumen function) and their combination and integration into 'smart' husbandry support systems that will ensure optimum wellbeing for dairy animals and thereby maximise farm profitability. Use of novel sensors combined with new technologies for information handling and communication are expected to produce dramatic changes in traditional dairy farming systems.

  20. Development of SNS Stream Analysis Based on Forest Disaster Warning Information Service System

    NASA Astrophysics Data System (ADS)

    Oh, J.; KIM, D.; Kang, M.; Woo, C.; Kim, D.; Seo, J.; Lee, C.; Yoon, H.; Heon, S.

    2017-12-01

    Forest disasters, such as landslides and wildfires, cause huge economic losses and casualties, and the cost of recovery is increasing every year. While forest disaster mitigation technologies have been focused on the development of prevention and response technologies, they are now required to evolve into evacuation and border evacuation, and to develop technologies fused with ICT. In this study, we analyze the SNS (Social Network Service) stream and implement a system to detect the message that the forest disaster occurred or the forest disaster, and search the keyword related to the forest disaster in advance in real time. It is possible to detect more accurate forest disaster messages by repeatedly learning the retrieved results using machine learning techniques. To do this, we designed and implemented a system based on Hadoop and Spark, a distributed parallel processing platform, to handle Twitter stream messages that open SNS. In order to develop the technology to notify the information of forest disaster risk, a linkage of technology such as CBS (Cell Broadcasting System) based on mobile communication, internet-based civil defense siren, SNS and the legal and institutional issues for applying these technologies are examined. And the protocol of the forest disaster warning information service system that can deliver the SNS analysis result was developed. As a result, it was possible to grasp real-time forest disaster situation by real-time big data analysis of SNS that occurred during forest disasters. In addition, we confirmed that it is possible to rapidly propagate alarm or warning according to the disaster situation by using the function of the forest disaster warning information notification service. However, the limitation of system application due to the restriction of opening and sharing of SNS data currently in service and the disclosure of personal information remains a problem to be solved in the future. Keyword : SNS stream, Big data, Machine learning techniques, CBS, Forest disaster warning information service system Acknowledgement : This research was supported by the Forestry Technology 2015 Forestry Technology Research and Development Project (Planning project).

  1. Standoff detection of explosive substances at distances of up to 150 m.

    PubMed

    Mukherjee, Anadi; Von der Porten, Steven; Patel, C Kumar N

    2010-04-10

    We report detection and identification of trace quantities of explosives at standoff distances up to 150 m with high sensitivity (signal-to-noise ratio of approximately 70) and high selectivity. The technique involves illuminating the target object with laser radiation at a wavelength that is strongly absorbed by the target. The resulting temperature rise is observed by remotely monitoring the increased blackbody radiation from the sample. An unambiguous determination of the target, TNT, in soil samples collected from an explosives test site in China Lake Naval Air Weapons Station is achieved through the use of a tunable CO(2) laser that scans over the absorption fingerprint of the target explosives. The theoretical analysis supports the observation and indicates that, with optimized detectors and data processing algorithms, the measurement capability can be improved significantly, permitting rapid standoff detection of explosives at distances approaching 1 km. The detection sensitivity varies as R(-2) and, thus, with the availability of high power, room-temperature, tunable mid-wave infrared and long-wave infrared quantum cascade lasers, this technology may play an important role in screening personnel and their belongings at short distances, such as in airports, for detecting and identifying explosives material residue on persons.

  2. Applied breath analysis: an overview of the challenges and opportunities in developing and testing sensor technology for human health monitoring in aerospace and clinical applications

    PubMed Central

    Hunter, Gary W; Dweik, Raed A

    2010-01-01

    The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A family of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption, and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity. However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This paper gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology. Clinical applications and the potential impact to the biomedical field of miniaturized smart gas sensor technology are discussed. PMID:20622933

  3. Chemiluminescence generation and detection in a capillary-driven microfluidic chip

    NASA Astrophysics Data System (ADS)

    Ramon, Charlotte; Temiz, Yuksel; Delamarche, Emmanuel

    2017-02-01

    The use of microfluidic technology represents a strong opportunity for providing sensitive, low-cost and rapid diagnosis at the point-of-care and such a technology might therefore support better, faster and more efficient diagnosis and treatment of patients at home and in healthcare settings both in developed and developing countries. In this work, we consider luminescence-based assays as an alternative to well-established fluorescence-based systems because luminescence does not require a light source or expensive optical components and is therefore a promising detection method for point-of-care applications. Here, we show a proof-of-concept of chemiluminescence (CL) generation and detection in a capillary-driven microfluidic chip for potential immunoassay applications. We employed a commercial acridan-based reaction, which is catalyzed by horseradish peroxidase (HRP). We investigated CL generation under flow conditions using a simplified immunoassay model where HRP is used instead of the complete sandwich immunocomplex. First, CL signals were generated in a capillary microfluidic chip by immobilizing HRP on a polydimethylsiloxane (PDMS) sealing layer using stencil deposition and flowing CL substrate through the hydrophilic channels. CL signals were detected using a compact (only 5×5×2.5 cm3) and custom-designed scanner, which was assembled for less than $30 and comprised a 128×1 photodiode array, a mini stepper motor, an Arduino microcontroller, and a 3D-printed housing. In addition, microfluidic chips having specific 30-μm-deep structures were fabricated and used to immobilize ensembles of 4.50 μm beads functionalized with HRP so as to generate high CL signals from capillary-driven chips.

  4. In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion.

    PubMed

    Lungu, Gina F; Li, Meng-Lin; Xie, Xueyi; Wang, Lihong V; Stoica, George

    2007-01-01

    Hypoxia is a critical event in tumor progression and angiogenesis. Hypoxia can be detected noninvasively by a novel spectroscopic photoacoustic tomography technology (SPAT) and this finding is supported by our molecular biology investigation aimed to elucidate the etiopathogenesis of SPAT detected hypoxia and angiogenesis. The present study provides an integrated approach to define oxygen status (hypoxia) of intracranial tumor xenografts using spectroscopic photoacoustic tomography. Brain tumors can be identified based on their distorted vascular architecture and oxygen saturation (SO2) images. Noninvasive in vivo tumor oxygenation imaging using SPAT is based on the spectroscopic absorption differences between oxyhemoglobin (O2Hb) and deoxyhemoblobin (HHb). Sprague-Dawley rats inoculated intracranially with ENU1564, a carcinogen-induced rat mammary adenocarcinoma cell line, were imaged with SPAT three weeks post inoculation. Proteins important for tumor angiogenesis and invasion were detected in hypoxic brain foci identified by SPAT and were elevated compared with control brain. Immunohistochemistry, Western blotting, and semi-quantitative RT-PCR showed that HIF-1 alpha, VEGF-A, and VEGFR2 (Flk-1) protein and mRNA expression levels were significantly higher (P < 0.05) in brain tumor tissues compared to normal brain. Gelatin zymography and RT-PCR demonstrated the upregulation of MMP-9 in tumor foci compared with brain control. Together these results suggest the critical role of hypoxia in driving tumor angiogenesis and invasion through upregulation of target genes important for these functions. Moreover this report validates our hypothesis that a novel noninvasive technology (SPAT) developed in our laboratory is suitable for detection of tumors, hypoxia, and angiogenesis.

  5. Digital PCR analysis of circulating nucleic acids.

    PubMed

    Hudecova, Irena

    2015-10-01

    Detection of plasma circulating nucleic acids (CNAs) requires the use of extremely sensitive and precise methods. The commonly used quantitative real-time polymerase chain reaction (PCR) poses certain technical limitations in relation to the precise measurement of CNAs whereas the costs of massively parallel sequencing are still relatively high. Digital PCR (dPCR) now represents an affordable and powerful single molecule counting strategy to detect minute amounts of genetic material with performance surpassing many quantitative methods. Microfluidic (chip) and emulsion (droplet)-based technologies have already been integrated into platforms offering hundreds to millions of nanoliter- or even picoliter-scale reaction partitions. The compelling observations reported in the field of cancer research, prenatal testing, transplantation medicine and virology support translation of this technology into routine use. Extremely sensitive plasma detection of rare mutations originating from tumor or placental cells among a large background of homologous sequences facilitates unraveling of the early stages of cancer or the detection of fetal mutations. Digital measurement of quantitative changes in plasma CNAs associated with cancer or graft rejection provides valuable information on the monitoring of disease burden or the recipient's immune response and subsequent therapy treatment. Furthermore, careful quantitative assessment of the viral load offers great value for effective monitoring of antiviral therapy for immunosuppressed or transplant patients. The present review describes the inherent features of dPCR that make it exceptionally robust in precise and sensitive quantification of CNAs. Moreover, I provide an insight into the types of potential clinical applications that have been developed by researchers to date. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  6. Detection of hidden explosives in different scenarios with the use of nuclear probes

    NASA Astrophysics Data System (ADS)

    Nebbia, G.; Pesente, S.; Lunardon, M.; Moretto, S.; Viesti, G.; Cinausero, M.; Barbui, M.; Fioretto, E.; Filippini, V.; Sudac, D.; Nađ, K.; Blagus, S.; Valković, V.

    2005-04-01

    The detection of landmines by using available technologies is a time consuming, expensive and extremely dangerous job, so that there is a need for a technological breakthrough in this field. Atomic and nuclear physics based sensors might offer new possibilities in de-mining. Technology and methods derived from the studies applied to the detection of landmines can be successfully applied to the screening of cargo in customs inspections.

  7. [Advances in automatic detection technology for images of thin blood film of malaria parasite].

    PubMed

    Juan-Sheng, Zhang; Di-Qiang, Zhang; Wei, Wang; Xiao-Guang, Wei; Zeng-Guo, Wang

    2017-05-05

    This paper reviews the computer vision and image analysis studies aiming at automated diagnosis or screening of malaria in microscope images of thin blood film smears. On the basis of introducing the background and significance of automatic detection technology, the existing detection technologies are summarized and divided into several steps, including image acquisition, pre-processing, morphological analysis, segmentation, count, and pattern classification components. Then, the principles and implementation methods of each step are given in detail. In addition, the promotion and application in automatic detection technology of thick blood film smears are put forwarded as questions worthy of study, and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided.

  8. Current Technical Approaches for the Early Detection of Foodborne Pathogens: Challenges and Opportunities.

    PubMed

    Cho, Il-Hoon; Ku, Seockmo

    2017-09-30

    The development of novel and high-tech solutions for rapid, accurate, and non-laborious microbial detection methods is imperative to improve the global food supply. Such solutions have begun to address the need for microbial detection that is faster and more sensitive than existing methodologies (e.g., classic culture enrichment methods). Multiple reviews report the technical functions and structures of conventional microbial detection tools. These tools, used to detect pathogens in food and food homogenates, were designed via qualitative analysis methods. The inherent disadvantage of these analytical methods is the necessity for specimen preparation, which is a time-consuming process. While some literature describes the challenges and opportunities to overcome the technical issues related to food industry legal guidelines, there is a lack of reviews of the current trials to overcome technological limitations related to sample preparation and microbial detection via nano and micro technologies. In this review, we primarily explore current analytical technologies, including metallic and magnetic nanomaterials, optics, electrochemistry, and spectroscopy. These techniques rely on the early detection of pathogens via enhanced analytical sensitivity and specificity. In order to introduce the potential combination and comparative analysis of various advanced methods, we also reference a novel sample preparation protocol that uses microbial concentration and recovery technologies. This technology has the potential to expedite the pre-enrichment step that precedes the detection process.

  9. 75 FR 57520 - NASA Advisory Council; Planetary Science Subcommittee; Supporting Research and Technology Working...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... Science Subcommittee; Supporting Research and Technology Working Group; Meeting AGENCY: National... announces a meeting of the Supporting Research and Technology Working Group of the Planetary Science... INFORMATION CONTACT: Dr. Michael New, Planetary Science Division, National Aeronautics and Space...

  10. Technologies and methods used for the detection, enrichment and characterization of cancer stem cells.

    PubMed

    Williams, Anthony; Datar, Ram; Cote, Richard

    2010-01-01

    Cancer stem cells (CSCs) represent a subclass of tumour cells with the ability for self-renewal, production of differentiated progeny, prolonged survival, resistance to damaging therapeutic agents, and anchorage-independent survival, which together make this population effectively equipped to metastasize, invade and colonize secondary tissues in the face of therapeutic intervention. In recent years, investigators have increasingly focused on the characterization of CSCs to better understand the mechanisms that govern malignant disease progression in an effort to develop more effective, targeted therapeutic agents. The primary obstacle to the study of CSCs, however, is their rarity. Thus, the study of CSCs requires the use of sensitive and efficient technologies for their enrichment and detection. This review discusses technologies and methods that have been adapted and used to isolate and characterize CSCs to date, as well as new potential directions for the enhanced enrichment and detection of CSCs. While the technologies used for CSC enrichment and detection have been useful thus far for their characterization, each approach is not without limitations. Future studies of CSCs will depend on the enhanced sensitivity and specificity of currently available technologies, and the development of novel technologies for increased detection and enrichment of CSCs.

  11. Research Infrastructure for Collaborative Team Science: Challenges in Technology-Supported Workflows in and Across Laboratories, Institutions, and Geographies.

    PubMed

    Mirel, Barbara; Luo, Airong; Harris, Marcelline

    2015-05-01

    Collaborative research has many challenges. One under-researched challenge is how to align collaborators' research practices and evolving analytical reasoning with technologies and configurations of technologies that best support them. The goal of such alignment is to enhance collaborative problem solving capabilities in research. Toward this end, we draw on our own research and a synthesis of the literature to characterize the workflow of collaborating scientists in systems-level renal disease research. We describe the various phases of a hypothetical workflow among diverse collaborators within and across laboratories, extending from their primary analysis through secondary analysis. For each phase, we highlight required technology supports, and. At time, complementary organizational supports. This survey of supports matching collaborators' analysis practices and needs in research projects to technological support is preliminary, aimed ultimately at developing a research capability framework that can help scientists and technologists mutually understand workflows and technologies that can help enable and enhance them. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Extreme sensitivity biosensing platform based on hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Sreekanth, Kandammathe Valiyaveedu; Alapan, Yunus; Elkabbash, Mohamed; Ilker, Efe; Hinczewski, Michael; Gurkan, Umut A.; de Luca, Antonio; Strangi, Giuseppe

    2016-06-01

    Optical sensor technology offers significant opportunities in the field of medical research and clinical diagnostics, particularly for the detection of small numbers of molecules in highly diluted solutions. Several methods have been developed for this purpose, including label-free plasmonic biosensors based on metamaterials. However, the detection of lower-molecular-weight (<500 Da) biomolecules in highly diluted solutions is still a challenging issue owing to their lower polarizability. In this context, we have developed a miniaturized plasmonic biosensor platform based on a hyperbolic metamaterial that can support highly confined bulk plasmon guided modes over a broad wavelength range from visible to near infrared. By exciting these modes using a grating-coupling technique, we achieved different extreme sensitivity modes with a maximum of 30,000 nm per refractive index unit (RIU) and a record figure of merit (FOM) of 590. We report the ability of the metamaterial platform to detect ultralow-molecular-weight (244 Da) biomolecules at picomolar concentrations using a standard affinity model streptavidin-biotin.

  13. Around Marshall

    NASA Image and Video Library

    2003-12-01

    Helen Cole, the project manager for the Lab-on-a-Chip Applications Development program, and Lisa Monaco, the project scientist for the program, insert a lab on a chip into the Caliper 42 which is specialized equipment that controls processes on commercial chips to support development of lab-on-a-chip applications. The system has special microscopes and imaging systems, so scientists can process and study different types of fluid, chemical, and medical tests conducted on chips. For example, researchers have examined fluorescent bacteria as it flows through the chips' fluid channels or microfluidic capillaries. Researchers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, have been studying how the lab-on-a-chip technology can be used for microbial detection, water quality monitoring, and detecting biosignatures of past or present life on Mars. The Marshall Center team is also collaborating with scientists at other NASA centers and at universities to develop custom chip designs for not only space applications, but for many Earth applications, such as for detecting deadly microbes in heating and air systems. (NASA/MSFC/D.Stoffer)

  14. Development of an EMCCD for LIDAR applications

    NASA Astrophysics Data System (ADS)

    De Monte, B.; Bell, R. T.

    2017-11-01

    A novel detector, incorporating e2v's EMCCD (L3VisionTM) [1] technology for use in LIDAR (Light Detection And Ranging) applications has been designed, manufactured and characterised. The most critical performance aspect was the requirement to collect charge from a 120μm square detection area for a 667ns temporal sampling window, with low crosstalk between successive samples, followed by signal readout with sub-electron effective noise. Additional requirements included low dark signal, high quantum efficiency at the 355nm laser wavelength and the ability to handle bright laser echoes, without corruption of the much fainter useful signals. The detector architecture used high speed charge binning to combine signal from each sampling window into a single charge packet. This was then passed through a multiplication register (EMCCD) operating with a typical gain of 100X to a conventional charge detection circuit. The detector achieved a typical quantum efficiency of 80% and a total noise in darkness of < 0.5 electrons rms. Development of the detector was supported by ESA.

  15. Navy/Marine Corps innovative science and technology developments for future enhanced mine detection capabilities

    NASA Astrophysics Data System (ADS)

    Holloway, John H., Jr.; Witherspoon, Ned H.; Miller, Richard E.; Davis, Kenn S.; Suiter, Harold R.; Hilton, Russell J.

    2000-08-01

    JMDT is a Navy/Marine Corps 6.2 Exploratory Development program that is closely coordinated with the 6.4 COBRA acquisition program. The objective of the program is to develop innovative science and technology to enhance future mine detection capabilities. The objective of the program is to develop innovative science and technology to enhance future mine detection capabilities. Prior to transition to acquisition, the COBRA ATD was extremely successful in demonstrating a passive airborne multispectral video sensor system operating in the tactical Pioneer unmanned aerial vehicle (UAV), combined with an integrated ground station subsystem to detect and locate minefields from surf zone to inland areas. JMDT is investigating advanced technology solutions for future enhancements in mine field detection capability beyond the current COBRA ATD demonstrated capabilities. JMDT has recently been delivered next- generation, innovative hardware which was specified by the Coastal System Station and developed under contract. This hardware includes an agile-tuning multispectral, polarimetric, digital video camera and advanced multi wavelength laser illumination technologies to extend the same sorts of multispectral detections from a UAV into the night and over shallow water and other difficult littoral regions. One of these illumination devices is an ultra- compact, highly-efficient near-IR laser diode array. The other is a multi-wavelength range-gateable laser. Additionally, in conjunction with this new technology, algorithm enhancements are being developed in JMDT for future naval capabilities which will outperform the already impressive record of automatic detection of minefields demonstrated by the COBAR ATD.

  16. Test/QA Plan for Verification of Leak Detection and Repair Technologies

    EPA Science Inventory

    The purpose of the leak detection and repair (LDAR) test and quality assurance plan is to specify procedures for a verification test applicable to commercial LDAR technologies. The purpose of the verification test is to evaluate the performance of participating technologies in b...

  17. Using the Analytic Hierarchy Process (AHP) to understand the most important factors to design and evaluate a telehealth system for Parkinson's disease.

    PubMed

    Cancela, Jorge; Fico, Giuseppe; Arredondo Waldmeyer, Maria T

    2015-01-01

    The assessment of a new health technology is a multidisciplinary and multidimensional process, which requires a complex analysis and the convergence of different stakeholders into a common decision. This task is even more delicate when the assessment is carried out in early stage of development processes, when the maturity of the technology prevents conducting a large scale trials to evaluate the cost effectiveness through classic health economics methods. This lack of information may limit the future development and deployment in the clinical practice. This work aims to 1) identify the most relevant user needs of a new medical technology for managing and monitoring Parkinson's Disease (PD) patients and to 2) use these user needs for a preliminary assessment of a specific system called PERFORM, as a case study. Analytic Hierarchy Process (AHP) was used to design a hierarchy of 17 needs, grouped into 5 categories. A total of 16 experts, 6 of them with a clinical background and the remaining 10 with a technical background, were asked to rank these needs and categories. On/Off fluctuations detection, Increase wearability acceptance, and Increase self-management support have been identified as the most relevant user needs. No significant differences were found between the clinician and technical groups. These results have been used to evaluate the PERFORM system and to identify future areas of improvement. First of all, the AHP contributed to the elaboration of a unified hierarchy, integrating the needs of a variety of stakeholders, promoting the discussion and the agreement into a common framework of evaluation. Moreover, the AHP effectively supported the user need elicitation as well as the assignment of different weights and priorities to each need and, consequently, it helped to define a framework for the assessment of telehealth systems for PD management and monitoring. This framework can be used to support the decision-making process for the adoption of new technologies in PD.

  18. Using the Analytic Hierarchy Process (AHP) to understand the most important factors to design and evaluate a telehealth system for Parkinson's disease

    PubMed Central

    2015-01-01

    Background The assessment of a new health technology is a multidisciplinary and multidimensional process, which requires a complex analysis and the convergence of different stakeholders into a common decision. This task is even more delicate when the assessment is carried out in early stage of development processes, when the maturity of the technology prevents conducting a large scale trials to evaluate the cost effectiveness through classic health economics methods. This lack of information may limit the future development and deployment in the clinical practice. This work aims to 1) identify the most relevant user needs of a new medical technology for managing and monitoring Parkinson's Disease (PD) patients and to 2) use these user needs for a preliminary assessment of a specific system called PERFORM, as a case study. Methods Analytic Hierarchy Process (AHP) was used to design a hierarchy of 17 needs, grouped into 5 categories. A total of 16 experts, 6 of them with a clinical background and the remaining 10 with a technical background, were asked to rank these needs and categories. Results On/Off fluctuations detection, Increase wearability acceptance, and Increase self-management support have been identified as the most relevant user needs. No significant differences were found between the clinician and technical groups. These results have been used to evaluate the PERFORM system and to identify future areas of improvement. Conclusions First of all, the AHP contributed to the elaboration of a unified hierarchy, integrating the needs of a variety of stakeholders, promoting the discussion and the agreement into a common framework of evaluation. Moreover, the AHP effectively supported the user need elicitation as well as the assignment of different weights and priorities to each need and, consequently, it helped to define a framework for the assessment of telehealth systems for PD management and monitoring. This framework can be used to support the decision-making process for the adoption of new technologies in PD. PMID:26391847

  19. Technological advances for improving adenoma detection rates: The changing face of colonoscopy.

    PubMed

    Ishaq, Sauid; Siau, Keith; Harrison, Elizabeth; Tontini, Gian Eugenio; Hoffman, Arthur; Gross, Seth; Kiesslich, Ralf; Neumann, Helmut

    2017-07-01

    Worldwide, colorectal cancer is the third commonest cancer. Over 90% follow an adenoma-to-cancer sequence over many years. Colonoscopy is the gold standard method for cancer screening and early adenoma detection. However, considerable variation exists between endoscopists' detection rates. This review considers the effects of different endoscopic techniques on adenoma detection. Two areas of technological interest were considered: (1) optical technologies and (2) mechanical technologies. Optical solutions, including FICE, NBI, i-SCAN and high definition colonoscopy showed mixed results. In contrast, mechanical advances, such as cap-assisted colonoscopy, FUSE, EndoCuff and G-EYE™, showed promise, with reported detections rates of up to 69%. However, before definitive recommendations can be made for their incorporation into daily practice, further studies and comparison trials are required. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  20. Biosensing Technologies for Mycobacterium tuberculosis Detection: Status and New Developments

    PubMed Central

    Zhou, Lixia; He, Xiaoxiao; He, Dinggeng; Wang, Kemin; Qin, Dilan

    2011-01-01

    Biosensing technologies promise to improve Mycobacterium tuberculosis (M. tuberculosis) detection and management in clinical diagnosis, food analysis, bioprocess, and environmental monitoring. A variety of portable, rapid, and sensitive biosensors with immediate “on-the-spot” interpretation have been developed for M. tuberculosis detection based on different biological elements recognition systems and basic signal transducer principles. Here, we present a synopsis of current developments of biosensing technologies for M. tuberculosis detection, which are classified on the basis of basic signal transducer principles, including piezoelectric quartz crystal biosensors, electrochemical biosensors, and magnetoelastic biosensors. Special attention is paid to the methods for improving the framework and analytical parameters of the biosensors, including sensitivity and analysis time as well as automation of analysis procedures. Challenges and perspectives of biosensing technologies development for M. tuberculosis detection are also discussed in the final part of this paper. PMID:21437177

Top