ERIC Educational Resources Information Center
Lay, Robert S.
The advantages and disadvantages of new software for market segmentation analysis are discussed, and the application of this new, chi-square based procedure (CHAID), is illustrated. A comparison is presented of an earlier, binary segmentation technique (THAID) and a multiple discriminant analysis. It is suggested that CHAID is superior to earlier…
Pattern analysis of fraud case in Taiwan, China and Indonesia
NASA Astrophysics Data System (ADS)
Kusumo, A. H.; Chi, C.-F.; Dewi, R. S.
2017-11-01
The current study analyzed 125 successful fraud cases happened in Taiwan, China, and Indonesia from 2008 to 2012 published in the English online newspapers. Each of the case report was coded in terms of scam principle, information media (information exchange between fraudsters and victim), money media (media used by fraudsters to obtain unauthorized financial benefit) and other additional information which was judged to be relevant. The Chi-square Automatic Interaction Detector (CHAID) was applied to the coded data of information, scam principle and money media to find a subset of predictors that might derive meaningful classifications. A series of flow diagrams was constructed based on CHAID result to illustrate the flow of information (scam) travelling from information media to money media.
NASA Astrophysics Data System (ADS)
Firat, Mehmet
2017-04-01
In the past, distance education was used as a method to meet the educational needs of citizens with limited options to attend an institution of higher education. Nowadays, it has become irreplaceable in higher education thanks to developments in instructional technology. But the question of why students choose distance education is still important. The purpose of this study was to determine Turkish students' reasons for choosing distance education and to investigate how these reasons differ depending on their financial circumstances. The author used a Chi squared Automatic Interaction Detector (CHAID) analysis to determine 18,856 Turkish students' reasons for choosing distance education. Results of the research revealed that Turkish students chose distance education not because of geographical limitations, family-related problems or economic difficulties, but for such reasons as already being engaged in their profession, increasing their knowledge, and seeking promotion to a better position.
Detection of fraudulent financial statements using the hybrid data mining approach.
Chen, Suduan
2016-01-01
The purpose of this study is to construct a valid and rigorous fraudulent financial statement detection model. The research objects are companies which experienced both fraudulent and non-fraudulent financial statements between the years 2002 and 2013. In the first stage, two decision tree algorithms, including the classification and regression trees (CART) and the Chi squared automatic interaction detector (CHAID) are applied in the selection of major variables. The second stage combines CART, CHAID, Bayesian belief network, support vector machine and artificial neural network in order to construct fraudulent financial statement detection models. According to the results, the detection performance of the CHAID-CART model is the most effective, with an overall accuracy of 87.97 % (the FFS detection accuracy is 92.69 %).
Flow diagram analysis of electrical fatalities in construction industry.
Chi, Chia-Fen; Lin, Yuan-Yuan; Ikhwan, Mohamad
2012-01-01
The current study reanalyzed 250 electrical fatalities in the construction industry from 1996 to 2002 into seven patterns based on source of electricity (power line, energized equipment, improperly installed or damaged equipment), direct contact or indirect contact through some source of injury (boom vehicle, metal bar or pipe, and other conductive material). Each fatality was coded in terms of age, company size, experience, performing tasks, source of injury, accident cause and hazard pattern. The Chi-square Automatic Interaction Detector (CHAID) was applied to the coded data of the fatal electrocution to find a subset of predictors that might derive meaningful classifications or accidents scenarios. A series of Flow Diagrams was constructed based on CHAID result to illustrate the flow of electricity travelling from electrical source to human body. Each of the flow diagrams can be directly linked with feasible prevention strategies by cutting the flow of electricity.
Diagnosis related group grouping study of senile cataract patients based on E-CHAID algorithm.
Luo, Ai-Jing; Chang, Wei-Fu; Xin, Zi-Rui; Ling, Hao; Li, Jun-Jie; Dai, Ping-Ping; Deng, Xuan-Tong; Zhang, Lei; Li, Shao-Gang
2018-01-01
To figure out the contributed factors of the hospitalization expenses of senile cataract patients (HECP) and build up an area-specified senile cataract diagnosis related group (DRG) of Shanghai thereby formulating the reference range of HECP and providing scientific basis for the fair use and supervision of the health care insurance fund. The data was collected from the first page of the medical records of 22 097 hospitalized patients from tertiary hospitals in Shanghai from 2010 to 2012 whose major diagnosis were senile cataract. Firstly, we analyzed the influence factors of HECP using univariate and multivariate analysis. DRG grouping was conducted according to the exhaustive Chi-squared automatic interaction detector (E-CHAID) model, using HECP as target variable. Finally we evaluated the grouping results using non-parametric test such as Kruskal-Wallis H test, RIV, CV, etc. The 6 DRGs were established as well as criterion of HECP, using age, sex, type of surgery and whether complications/comorbidities occurred as the key variables of classification node of senile cataract cases. The grouping of senile cataract cases based on E-CHAID algorithm is reasonable. And the criterion of HECP based on DRG can provide a feasible way of management in the fair use and supervision of medical insurance fund.
Diagnosis related group grouping study of senile cataract patients based on E-CHAID algorithm
Luo, Ai-Jing; Chang, Wei-Fu; Xin, Zi-Rui; Ling, Hao; Li, Jun-Jie; Dai, Ping-Ping; Deng, Xuan-Tong; Zhang, Lei; Li, Shao-Gang
2018-01-01
AIM To figure out the contributed factors of the hospitalization expenses of senile cataract patients (HECP) and build up an area-specified senile cataract diagnosis related group (DRG) of Shanghai thereby formulating the reference range of HECP and providing scientific basis for the fair use and supervision of the health care insurance fund. METHODS The data was collected from the first page of the medical records of 22 097 hospitalized patients from tertiary hospitals in Shanghai from 2010 to 2012 whose major diagnosis were senile cataract. Firstly, we analyzed the influence factors of HECP using univariate and multivariate analysis. DRG grouping was conducted according to the exhaustive Chi-squared automatic interaction detector (E-CHAID) model, using HECP as target variable. Finally we evaluated the grouping results using non-parametric test such as Kruskal-Wallis H test, RIV, CV, etc. RESULTS The 6 DRGs were established as well as criterion of HECP, using age, sex, type of surgery and whether complications/comorbidities occurred as the key variables of classification node of senile cataract cases. CONCLUSION The grouping of senile cataract cases based on E-CHAID algorithm is reasonable. And the criterion of HECP based on DRG can provide a feasible way of management in the fair use and supervision of medical insurance fund. PMID:29487824
NASA Astrophysics Data System (ADS)
Susanti, Yuliana; Zukhronah, Etik; Pratiwi, Hasih; Respatiwulan; Sri Sulistijowati, H.
2017-11-01
To achieve food resilience in Indonesia, food diversification by exploring potentials of local food is required. Corn is one of alternating staple food of Javanese society. For that reason, corn production needs to be improved by considering the influencing factors. CHAID and CRT are methods of data mining which can be used to classify the influencing variables. The present study seeks to dig up information on the potentials of local food availability of corn in regencies and cities in Java Island. CHAID analysis yields four classifications with accuracy of 78.8%, while CRT analysis yields seven classifications with accuracy of 79.6%.
CHAID Analysis to Determine Socioeconomic Variables That Explain Students' Academic Success
ERIC Educational Resources Information Center
Önder, Emine; Uyar, Seyma
2017-01-01
This study aims to determine students' characteristics that predict their academic success. The study group consisted of 4,229 students studying at middle schools in Burdur. The data were collected using a questionnaire in the 2014-2015 academic year and analyzed using CHAID (Chi-squared Automatic Interaction Detection) analysis, a type of…
Computer Aided Segmentation Analysis: New Software for College Admissions Marketing.
ERIC Educational Resources Information Center
Lay, Robert S.; Maguire, John J.
1983-01-01
Compares segmentation solutions obtained using a binary segmentation algorithm (THAID) and a new chi-square-based procedure (CHAID) that segments the prospective pool of college applicants using application and matriculation as criteria. Results showed a higher number of estimated qualified inquiries and more accurate estimates with CHAID. (JAC)
Lee, Saro; Park, Inhye
2013-09-30
Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events. Copyright © 2013. Published by Elsevier Ltd.
Ye, Fang; Chen, Zhi-Hua; Chen, Jie; Liu, Fang; Zhang, Yong; Fan, Qin-Ying; Wang, Lin
2016-01-01
Background: In the past decades, studies on infant anemia have mainly focused on rural areas of China. With the increasing heterogeneity of population in recent years, available information on infant anemia is inconclusive in large cities of China, especially with comparison between native residents and floating population. This population-based cross-sectional study was implemented to determine the anemic status of infants as well as the risk factors in a representative downtown area of Beijing. Methods: As useful methods to build a predictive model, Chi-squared automatic interaction detection (CHAID) decision tree analysis and logistic regression analysis were introduced to explore risk factors of infant anemia. A total of 1091 infants aged 6–12 months together with their parents/caregivers living at Heping Avenue Subdistrict of Beijing were surveyed from January 1, 2013 to December 31, 2014. Results: The prevalence of anemia was 12.60% with a range of 3.47%–40.00% in different subgroup characteristics. The CHAID decision tree model has demonstrated multilevel interaction among risk factors through stepwise pathways to detect anemia. Besides the three predictors identified by logistic regression model including maternal anemia during pregnancy, exclusive breastfeeding in the first 6 months, and floating population, CHAID decision tree analysis also identified the fourth risk factor, the maternal educational level, with higher overall classification accuracy and larger area below the receiver operating characteristic curve. Conclusions: The infant anemic status in metropolis is complex and should be carefully considered by the basic health care practitioners. CHAID decision tree analysis has demonstrated a better performance in hierarchical analysis of population with great heterogeneity. Risk factors identified by this study might be meaningful in the early detection and prompt treatment of infant anemia in large cities. PMID:27174328
Ye, Fang; Chen, Zhi-Hua; Chen, Jie; Liu, Fang; Zhang, Yong; Fan, Qin-Ying; Wang, Lin
2016-05-20
In the past decades, studies on infant anemia have mainly focused on rural areas of China. With the increasing heterogeneity of population in recent years, available information on infant anemia is inconclusive in large cities of China, especially with comparison between native residents and floating population. This population-based cross-sectional study was implemented to determine the anemic status of infants as well as the risk factors in a representative downtown area of Beijing. As useful methods to build a predictive model, Chi-squared automatic interaction detection (CHAID) decision tree analysis and logistic regression analysis were introduced to explore risk factors of infant anemia. A total of 1091 infants aged 6-12 months together with their parents/caregivers living at Heping Avenue Subdistrict of Beijing were surveyed from January 1, 2013 to December 31, 2014. The prevalence of anemia was 12.60% with a range of 3.47%-40.00% in different subgroup characteristics. The CHAID decision tree model has demonstrated multilevel interaction among risk factors through stepwise pathways to detect anemia. Besides the three predictors identified by logistic regression model including maternal anemia during pregnancy, exclusive breastfeeding in the first 6 months, and floating population, CHAID decision tree analysis also identified the fourth risk factor, the maternal educational level, with higher overall classification accuracy and larger area below the receiver operating characteristic curve. The infant anemic status in metropolis is complex and should be carefully considered by the basic health care practitioners. CHAID decision tree analysis has demonstrated a better performance in hierarchical analysis of population with great heterogeneity. Risk factors identified by this study might be meaningful in the early detection and prompt treatment of infant anemia in large cities.
Rodríguez, Alejandro H; Avilés-Jurado, Francesc X; Díaz, Emili; Schuetz, Philipp; Trefler, Sandra I; Solé-Violán, Jordi; Cordero, Lourdes; Vidaur, Loreto; Estella, Ángel; Pozo Laderas, Juan C; Socias, Lorenzo; Vergara, Juan C; Zaragoza, Rafael; Bonastre, Juan; Guerrero, José E; Suberviola, Borja; Cilloniz, Catia; Restrepo, Marcos I; Martín-Loeches, Ignacio
2016-02-01
To define which variables upon ICU admission could be related to the presence of coinfection using CHAID (Chi-squared Automatic Interaction Detection) analysis. A secondary analysis from a prospective, multicentre, observational study (2009-2014) in ICU patients with confirmed A(H1N1)pdm09 infection. We assessed the potential of biomarkers and clinical variables upon admission to the ICU for coinfection diagnosis using CHAID analysis. Performance of cut-off points obtained was determined on the basis of the binominal distributions of the true (+) and true (-) results. Of the 972 patients included, 196 (20.3%) had coinfection. Procalcitonin (PCT; ng/mL 2.4 vs. 0.5, p < 0.001), but not C-reactive protein (CRP; mg/dL 25 vs. 38.5; p = 0.62) was higher in patients with coinfection. In CHAID analyses, PCT was the most important variable for coinfection. PCT <0.29 ng/mL showed high sensitivity (Se = 88.2%), low Sp (33.2%) and high negative predictive value (NPV = 91.9%). The absence of shock improved classification capacity. Thus, for PCT <0.29 ng/mL, the Se was 84%, the Sp 43% and an NPV of 94% with a post-test probability of coinfection of only 6%. PCT has a high negative predictive value (94%) and lower PCT levels seems to be a good tool for excluding coinfection, particularly for patients without shock. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Liu, Pei-Yang
2014-01-01
Metabolic syndrome (MetS) in young adults (age 20–39) is often undiagnosed. A simple screening tool using a surrogate measure might be invaluable in the early detection of MetS. Methods. A chi-squared automatic interaction detection (CHAID) decision tree analysis with waist circumference user-specified as the first level was used to detect MetS in young adults using data from the National Health and Nutrition Examination Survey (NHANES) 2009-2010 Cohort as a representative sample of the United States population (n = 745). Results. Twenty percent of the sample met the National Cholesterol Education Program Adult Treatment Panel III (NCEP) classification criteria for MetS. The user-specified CHAID model was compared to both CHAID model with no user-specified first level and logistic regression based model. This analysis identified waist circumference as a strong predictor in the MetS diagnosis. The accuracy of the final model with waist circumference user-specified as the first level was 92.3% with its ability to detect MetS at 71.8% which outperformed comparison models. Conclusions. Preliminary findings suggest that young adults at risk for MetS could be identified for further followup based on their waist circumference. Decision tree methods show promise for the development of a preliminary detection algorithm for MetS. PMID:24817904
Ploquin, A; Olmos, D; Lacombe, D; A'Hern, R; Duhamel, A; Twelves, C; Marsoni, S; Morales-Barrera, R; Soria, J-C; Verweij, J; Voest, E E; Schöffski, P; Schellens, J H; Kramar, A; Kristeleit, R S; Arkenau, H-T; Kaye, S B; Penel, N
2012-09-25
Selecting patients with 'sufficient life expectancy' for Phase I oncology trials remains challenging. The Royal Marsden Hospital Score (RMS) previously identified high-risk patients as those with ≥ 2 of the following: albumin <35 g l(-1); LDH > upper limit of normal; >2 metastatic sites. This study developed an alternative prognostic model, and compared its performance with that of the RMS. The primary end point was the 90-day mortality rate. The new model was developed from the same database as RMS, but it used Chi-squared Automatic Interaction Detection (CHAID). The ROC characteristics of both methods were then validated in an independent database of 324 patients enrolled in European Organization on Research and Treatment of Cancer Phase I trials of cytotoxic agents between 2000 and 2009. The CHAID method identified high-risk patients as those with albumin <33 g l(-1) or ≥ 33 g l(-1), but platelet counts ≥ 400.000 mm(-3). In the validation data set, the rates of correctly classified patients were 0.79 vs 0.67 for the CHAID model and RMS, respectively. The negative predictive values (NPV) were similar for the CHAID model and RMS. The CHAID model and RMS provided a similarly high level of NPV, but the CHAID model gave a better accuracy in the validation set. Both CHAID model and RMS may improve the screening process in phase I trials.
ADA perceived disability claims: a decision-tree analysis.
Draper, William R; Hawley, Carolyn E; McMahon, Brian T; Reid, Christine A; Barbir, Lara A
2014-06-01
The purpose of this study is to examine the possible interactions of predictor variables pertaining to perceived disability claims contained in a large governmental database. Specifically, it is a retrospective analysis of US Equal Employment Opportunity Commission (EEOC) data for the entire population of workplace discrimination claims based on the "regarded as disabled" prong of the Americans with Disabilities Act (ADA) definition of disability. The study utilized records extracted from a "master database" of over two million charges of workplace discrimination in the Integrated Mission System of the EEOC. This database includes all ADA-related discrimination allegations filed from July 26, 1992 through December 31, 2008. Chi squared automatic interaction detection (CHAID) was employed to analyze interaction effects of relevant variables, such as issue (grievance) and industry type. The research question addressed by CHAID is: What combination of factors are associated with merit outcomes for people making ADA EEOC allegations who are "regarded as" having disabilities? The CHAID analysis shows how merit outcome is predicted by the interaction of relevant variables. Issue was found to be the most prominent variable in determining merit outcome, followed by industry type, but the picture is made more complex by qualifications regarding age and race data. Although discharge was the most frequent grievance among charging parties in the perceived disability group, its merit outcome was significantly less than that for the leading factor of hiring.
NASA Astrophysics Data System (ADS)
Kaur, Parneet; Singh, Sukhwinder; Garg, Sushil; Harmanpreet
2010-11-01
In this paper we study about classification algorithms for farm DSS. By applying classification algorithms i.e. Limited search, ID3, CHAID, C4.5, Improved C4.5 and One VS all Decision Tree on common data set of crop with specified class, results are obtained. The tool used to derive results is SPINA. The graphical results obtained from tool are compared to suggest best technique to develop farm Decision Support System. This analysis would help to researchers to design effective and fast DSS for farmer to take decision for enhancing their yield.
Predictors and patterns of problematic Internet game use using a decision tree model
Rho, Mi Jung; Jeong, Jo-Eun; Chun, Ji-Won; Cho, Hyun; Jung, Dong Jin; Choi, In Young; Kim, Dai-Jin
2016-01-01
Background and aims Problematic Internet game use is an important social issue that increases social expenditures for both individuals and nations. This study identified predictors and patterns of problematic Internet game use. Methods Data were collected from online surveys between November 26 and December 26, 2014. We identified 3,881 Internet game users from a total of 5,003 respondents. A total of 511 participants were assigned to the problematic Internet game user group according to the Diagnostic and Statistical Manual of Mental Disorders Internet gaming disorder criteria. From the remaining 3,370 participants, we used propensity score matching to develop a normal comparison group of 511 participants. In all, 1,022 participants were analyzed using the chi-square automatic interaction detector (CHAID) algorithm. Results According to the CHAID algorithm, six important predictors were found: gaming costs (50%), average weekday gaming time (23%), offline Internet gaming community meeting attendance (13%), average weekend and holiday gaming time (7%), marital status (4%), and self-perceptions of addiction to Internet game use (3%). In addition, three patterns out of six classification rules were explored: cost-consuming, socializing, and solitary gamers. Conclusion This study provides direction for future work on the screening of problematic Internet game use in adults. PMID:27499227
Predictors and patterns of problematic Internet game use using a decision tree model.
Rho, Mi Jung; Jeong, Jo-Eun; Chun, Ji-Won; Cho, Hyun; Jung, Dong Jin; Choi, In Young; Kim, Dai-Jin
2016-09-01
Background and aims Problematic Internet game use is an important social issue that increases social expenditures for both individuals and nations. This study identified predictors and patterns of problematic Internet game use. Methods Data were collected from online surveys between November 26 and December 26, 2014. We identified 3,881 Internet game users from a total of 5,003 respondents. A total of 511 participants were assigned to the problematic Internet game user group according to the Diagnostic and Statistical Manual of Mental Disorders Internet gaming disorder criteria. From the remaining 3,370 participants, we used propensity score matching to develop a normal comparison group of 511 participants. In all, 1,022 participants were analyzed using the chi-square automatic interaction detector (CHAID) algorithm. Results According to the CHAID algorithm, six important predictors were found: gaming costs (50%), average weekday gaming time (23%), offline Internet gaming community meeting attendance (13%), average weekend and holiday gaming time (7%), marital status (4%), and self-perceptions of addiction to Internet game use (3%). In addition, three patterns out of six classification rules were explored: cost-consuming, socializing, and solitary gamers. Conclusion This study provides direction for future work on the screening of problematic Internet game use in adults.
Bertoni, Neilane; Burnett, Chantal; Cruz, Marcelo Santos; Andrade, Tarcisio; Bastos, Francisco I; Leal, Erotildes; Fischer, Benedikt
2014-08-28
Studies have shown important gender differences among drug (including crack) users related to: drug use patterns; health risks and consequences; criminal involvement; and service needs/use. Crack use is prevalent in Brazil; however, few comparative data by sex exist. We examined and compared by sex key drug use, health, socio-economic indicators and service use in a bi-city sample of young (18-24 years), regular and marginalized crack users in Brazil. Study participants (total n = 159; n = 124 males and n = 35 females) were recruited by community-based methods from impoverished neighborhoods in Rio de Janeiro and Salvador. Assessments occurred by an anonymous interviewer-administered questionnaire and serum collection for blood-borne virus testing between November 2010 and June 2011. Descriptive statistics and differences for key variables by sex were computed; in addition, a 'chi-squared automatic interaction detector' ('CHAID') analysis explored potential primary factors differentiating male and female participants. Most participants were non-white, and had low education and multiple income sources. More women had unstable housing and income from sex work and/or panhandling/begging, whereas more men were employed. Both groups indicated multi-year histories of and frequent daily crack use, but virtually no drug injection histories. Men reported more co-use of other drugs. More women were: involved in sex-for-drug exchanges; blood-borne virus (BBV) tested and HIV+. Both groups reported similar physical and mental health patterns; however women more commonly utilized social or health services. The CHAID analysis identified sex work; paid work; begging/panhandling; as well as physical and mental health status (all at p < 0.05) as primary differentiating factors by sex. Crack users in our study showed notable differences by sex, including socio-economic indicators, drug co-use patterns, sex risks/work, BBV testing and status, and service utilization. Results emphasize the need for targeted special interventions and services for males and female crack users in Brazil.
Shah, Jui A; Emina, Jacques B O; Eckert, Erin; Ye, Yazoume
2015-08-25
Scaling up diagnostic testing and treatment is a key strategy to reduce the burden of malaria. Delays in accessing treatment can have fatal consequences; however, few studies have systematically assessed these delays among children under five years of age in malaria-endemic countries of sub-Saharan Africa. This study identifies predictors of prompt treatment with first-line artemisinin combination therapy (ACT) and describes profiles of children who received this recommended treatment. This study uses data from the most recent Demographic and Health Survey, Malaria Indicator Survey, or Anaemia and Parasite Prevalence Survey conducted in 13 countries. A Chi square automatic interaction detector (CHAID) model was used to identify factors associated with prompt and effective treatment among children under five years of age. The percentage of children with fever who received any anti-malarial treatment varies from 3.6 % (95 % CI 2.8-4.4 %) in Ethiopia to 64.5 % (95 % CI 62.7-66.2 %) in Uganda. Among those who received prompt treatment with any anti-malarial medicine, the percentage who received ACT ranged from 32.2 % (95 % CI 26.1-38.4 %) in Zambia to nearly 100 % in Tanzania mainland and Zanzibar. The CHAID analysis revealed that country of residence is the best predictor of prompt and effective treatment (p < 0.001). Depending on the country, the second best predictor was maternal education (p = 0.004), place of residence (p = 0.008), or household wealth index (p < 0.001). This study reveals that country of residence, maternal education, place of residence, and socio-economic status are key predictors of prompt access to malaria treatment. Achieving universal coverage and the elimination agenda will require effective monitoring to detect disparities early and sustained investments in routine data collection and policy formulation.
NASA Astrophysics Data System (ADS)
Abbaszadeh Afshar, Farideh; Ayoubi, Shamsollah; Besalatpour, Ali Asghar; Khademi, Hossein; Castrignano, Annamaria
2016-03-01
This study was conducted to estimate soil clay content in two depths using geophysical techniques (Ground Penetration Radar-GPR and Electromagnetic Induction-EMI) and ancillary variables (remote sensing and topographic data) in an arid region of the southeastern Iran. GPR measurements were performed throughout ten transects of 100 m length with the line spacing of 10 m, and the EMI measurements were done every 10 m on the same transect in six sites. Ten soil cores were sampled randomly in each site and soil samples were taken from the depth of 0-20 and 20-40 cm, and then the clay fraction of each of sixty soil samples was measured in the laboratory. Clay content was predicted using three different sets of properties including geophysical data, ancillary data, and a combination of both as inputs to multiple linear regressions (MLR) and decision tree-based algorithm of Chi-Squared Automatic Interaction Detection (CHAID) models. The results of the CHAID and MLR models with all combined data showed that geophysical data were the most important variables for the prediction of clay content in two depths in the study area. The proposed MLR model, using the combined data, could explain only 0.44 and 0.31% of the total variability of clay content in 0-20 and 20-40 cm depths, respectively. Also, the coefficient of determination (R2) values for the clay content prediction, using the constructed CHAID model with the combined data, was 0.82 and 0.76 in 0-20 and 20-40 cm depths, respectively. CHAID models, therefore, showed a greater potential in predicting soil clay content from geophysical and ancillary data, while traditional regression methods (i.e. the MLR models) did not perform as well. Overall, the results may encourage researchers in using georeferenced GPR and EMI data as ancillary variables and CHAID algorithm to improve the estimation of soil clay content.
Using data mining techniques to predict the severity of bicycle crashes.
Prati, Gabriele; Pietrantoni, Luca; Fraboni, Federico
2017-04-01
To investigate the factors predicting severity of bicycle crashes in Italy, we used an observational study of official statistics. We applied two of the most widely used data mining techniques, CHAID decision tree technique and Bayesian network analysis. We used data provided by the Italian National Institute of Statistics on road crashes that occurred on the Italian road network during the period ranging from 2011 to 2013. In the present study, the dataset contains information about road crashes occurred on the Italian road network during the period ranging from 2011 to 2013. We extracted 49,621 road accidents where at least one cyclist was injured or killed from the original database that comprised a total of 575,093 road accidents. CHAID decision tree technique was employed to establish the relationship between severity of bicycle crashes and factors related to crash characteristics (type of collision and opponent vehicle), infrastructure characteristics (type of carriageway, road type, road signage, pavement type, and type of road segment), cyclists (gender and age), and environmental factors (time of the day, day of the week, month, pavement condition, and weather). CHAID analysis revealed that the most important predictors were, in decreasing order of importance, road type (0.30), crash type (0.24), age of cyclist (0.19), road signage (0.08), gender of cyclist (0.07), type of opponent vehicle (0.05), month (0.04), and type of road segment (0.02). These eight most important predictors of the severity of bicycle crashes were included as predictors of the target (i.e., severity of bicycle crashes) in Bayesian network analysis. Bayesian network analysis identified crash type (0.31), road type (0.19), and type of opponent vehicle (0.18) as the most important predictors of severity of bicycle crashes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Explaining match outcome in elite Australian Rules football using team performance indicators.
Robertson, Sam; Back, Nicole; Bartlett, Jonathan D
2016-01-01
The relationships between team performance indicators and match outcome have been examined in many team sports, however are limited in Australian Rules football. Using data from the 2013 and 2014 Australian Football League (AFL) regular seasons, this study assessed the ability of commonly reported discrete team performance indicators presented in their relative form (standardised against their opposition for a given match) to explain match outcome (Win/Loss). Logistic regression and decision tree (chi-squared automatic interaction detection (CHAID)) analyses both revealed relative differences between opposing teams for "kicks" and "goal conversion" as the most influential in explaining match outcome, with two models achieving 88.3% and 89.8% classification accuracies, respectively. Models incorporating a smaller performance indicator set displayed a slightly reduced ability to explain match outcome (81.0% and 81.5% for logistic regression and CHAID, respectively). However, both were fit to 2014 data with reduced error in comparison to the full models. Despite performance similarities across the two analysis approaches, the CHAID model revealed multiple winning performance indicator profiles, thereby increasing its comparative feasibility for use in the field. Coaches and analysts may find these results useful in informing strategy and game plan development in Australian Rules football, with the development of team-specific models recommended in future.
What Satisfies Students?: Mining Student-Opinion Data with Regression and Decision Tree Analysis
ERIC Educational Resources Information Center
Thomas, Emily H.; Galambos, Nora
2004-01-01
To investigate how students' characteristics and experiences affect satisfaction, this study uses regression and decision tree analysis with the CHAID algorithm to analyze student-opinion data. A data mining approach identifies the specific aspects of students' university experience that most influence three measures of general satisfaction. The…
ERIC Educational Resources Information Center
Thomas, Emily H.; Galambos, Nora
To investigate how students' characteristics and experiences affect satisfaction, this study used regression and decision-tree analysis with the CHAID algorithm to analyze student opinion data from a sample of 1,783 college students. A data-mining approach identifies the specific aspects of students' university experience that most influence three…
Stratification of the severity of critically ill patients with classification trees
2009-01-01
Background Development of three classification trees (CT) based on the CART (Classification and Regression Trees), CHAID (Chi-Square Automatic Interaction Detection) and C4.5 methodologies for the calculation of probability of hospital mortality; the comparison of the results with the APACHE II, SAPS II and MPM II-24 scores, and with a model based on multiple logistic regression (LR). Methods Retrospective study of 2864 patients. Random partition (70:30) into a Development Set (DS) n = 1808 and Validation Set (VS) n = 808. Their properties of discrimination are compared with the ROC curve (AUC CI 95%), Percent of correct classification (PCC CI 95%); and the calibration with the Calibration Curve and the Standardized Mortality Ratio (SMR CI 95%). Results CTs are produced with a different selection of variables and decision rules: CART (5 variables and 8 decision rules), CHAID (7 variables and 15 rules) and C4.5 (6 variables and 10 rules). The common variables were: inotropic therapy, Glasgow, age, (A-a)O2 gradient and antecedent of chronic illness. In VS: all the models achieved acceptable discrimination with AUC above 0.7. CT: CART (0.75(0.71-0.81)), CHAID (0.76(0.72-0.79)) and C4.5 (0.76(0.73-0.80)). PCC: CART (72(69-75)), CHAID (72(69-75)) and C4.5 (76(73-79)). Calibration (SMR) better in the CT: CART (1.04(0.95-1.31)), CHAID (1.06(0.97-1.15) and C4.5 (1.08(0.98-1.16)). Conclusion With different methodologies of CTs, trees are generated with different selection of variables and decision rules. The CTs are easy to interpret, and they stratify the risk of hospital mortality. The CTs should be taken into account for the classification of the prognosis of critically ill patients. PMID:20003229
ERIC Educational Resources Information Center
Montoya, Isaac D.
2008-01-01
Three classification techniques (Chi-square Automatic Interaction Detection [CHAID], Classification and Regression Tree [CART], and discriminant analysis) were tested to determine their accuracy in predicting Temporary Assistance for Needy Families program recipients' future employment. Technique evaluation was based on proportion of correctly…
Rodríguez, Alejandro; Ferri, Cristina; Martin-Loeches, Ignacio; Díaz, Emili; Masclans, Joan R; Gordo, Federico; Sole-Violán, Jordi; Bodí, María; Avilés-Jurado, Francesc X; Trefler, Sandra; Magret, Monica; Moreno, Gerard; Reyes, Luis F; Marin-Corral, Judith; Yebenes, Juan C; Esteban, Andres; Anzueto, Antonio; Aliberti, Stefano; Restrepo, Marcos I
2017-10-01
Despite wide use of noninvasive ventilation (NIV) in several clinical settings, the beneficial effects of NIV in patients with hypoxemic acute respiratory failure (ARF) due to influenza infection remain controversial. The aim of this study was to identify the profile of patients with risk factors for NIV failure using chi-square automatic interaction detection (CHAID) analysis and to determine whether NIV failure is associated with ICU mortality. This work was a secondary analysis from prospective and observational multi-center analysis in critically ill subjects admitted to the ICU with ARF due to influenza infection requiring mechanical ventilation. Three groups of subjects were compared: (1) subjects who received NIV immediately after ICU admission for ARF and then failed (NIV failure group); (2) subjects who received NIV immediately after ICU admission for ARF and then succeeded (NIV success group); and (3) subjects who received invasive mechanical ventilation immediately after ICU admission for ARF (invasive mechanical ventilation group). Profiles of subjects with risk factors for NIV failure were obtained using CHAID analysis. Of 1,898 subjects, 806 underwent NIV, and 56.8% of them failed. Acute Physiology and Chronic Health Evaluation II (APACHE II) score, Sequential Organ Failure Assessment (SOFA) score, infiltrates in chest radiograph, and ICU mortality (38.4% vs 6.3%) were higher ( P < .001) in the NIV failure than in the NIV success group. SOFA score was the variable most associated with NIV failure, and 2 cutoffs were determined. Subjects with SOFA ≥ 5 had a higher risk of NIV failure (odds ratio = 3.3, 95% CI 2.4-4.5). ICU mortality was higher in subjects with NIV failure (38.4%) compared with invasive mechanical ventilation subjects (31.3%, P = .018), and NIV failure was associated with increased ICU mortality (odds ratio = 11.4, 95% CI 6.5-20.1). An automatic and non-subjective algorithm based on CHAID decision-tree analysis can help to define the profile of patients with different risks of NIV failure, which might be a promising tool to assist in clinical decision making to avoid the possible complications associated with NIV failure. Copyright © 2017 by Daedalus Enterprises.
ERIC Educational Resources Information Center
Firat, Mehmet
2017-01-01
In the past, distance education was used as a method to meet the educational needs of citizens with limited options to attend an institution of higher education. Nowadays, it has become irreplaceable in higher education thanks to developments in instructional technology. But the question of why students choose distance education is still…
An early, novel illness severity score to predict outcome after cardiac arrest.
Rittenberger, Jon C; Tisherman, Samuel A; Holm, Margo B; Guyette, Francis X; Callaway, Clifton W
2011-11-01
Illness severity scores are commonly employed in critically ill patients to predict outcome. To date, prior scores for post-cardiac arrest patients rely on some event-related data. We developed an early, novel post-arrest illness severity score to predict survival, good outcome and development of multiple organ failure (MOF) after cardiac arrest. Retrospective review of data from adults treated after in-hospital or out-of-hospital cardiac arrest in a single tertiary care facility between 1/1/2005 and 12/31/2009. In addition to clinical data, initial illness severity was measured using serial organ function assessment (SOFA) scores and full outline of unresponsiveness (FOUR) scores at hospital or intensive care unit arrival. Outcomes were hospital mortality, good outcome (discharge to home or rehabilitation) and development of multiple organ failure (MOF). Single-variable logistic regression followed by Chi-squared automatic interaction detector (CHAID) was used to determine predictors of outcome. Stepwise multivariate logistic regression was used to determine the independent association between predictors and each outcome. The Hosmer-Lemeshow test was used to evaluate goodness of fit. The n-fold method was used to cross-validate each CHAID analysis and the difference between the misclassification risk estimates was used to determine model fit. Complete data from 457/495 (92%) subjects identified distinct categories of illness severity using combined FOUR motor and brainstem subscales, and combined SOFA cardiovascular and respiratory subscales: I. Awake; II. Moderate coma without cardiorespiratory failure; III. Moderate coma with cardiorespiratory failure; and IV. Severe coma. Survival was independently associated with category (I: OR 58.65; 95% CI 27.78, 123.82; II: OR 14.60; 95% CI 7.34, 29.02; III: OR 10.58; 95% CI 4.86, 23.00). Category was also similarly associated with good outcome and development of MOF. The proportion of subjects in each category changed over time. Initial illness severity explains much of the variation in cardiac arrest outcome. This model provides prognostic information at hospital arrival and may be used to stratify patients in future studies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Traditional and Digital Game Preferences of Children: A CHAID Analysis on Middle School Students
ERIC Educational Resources Information Center
Tatli, Zeynep
2018-01-01
The purpose of this study is to determine types of games that middle school students play in their daily lives and analyze the effects of various variables such as gender, available technology, grade in school and parents' education levels on their game preferences. The sample consisted of a total of 464 grade 5-8 students (212 girls and 252…
Early warning system for financially distressed hospitals via data mining application.
Koyuncugil, Ali Serhan; Ozgulbas, Nermin
2012-08-01
The aim of this study is to develop a Financial Early Warning System (FEWS) for hospitals by using data mining. A data mining method, Chi-Square Automatic Interaction Detector (CHAID) decision tree algorithm, was used in the study for financial profiling and developing FEWS. The study was conducted in Turkish Ministry of Health's public hospitals which were in financial distress and in need of urgent solutions for financial issues. 839 hospitals were covered and financial data of the year 2008 was obtained from Ministry of Health. As a result of the study, it was determined that 28 hospitals (3.34%) had good financial performance, and 811 hospitals (96.66%) had poor financial performance. According to FEWS, the covered hospitals were categorized into 11 different financial risk profiles, and it was found that 6 variables affected financial risk of hospitals. According to the profiles of hospitals in financial distress, one early warning signal was detected and financial road map was developed for risk mitigation.
Chen, Weisheng; Sun, Cheng; Wei, Ru; Zhang, Yanlin; Ye, Heng; Chi, Ruibin; Zhang, Yichen; Hu, Bei; Lv, Bo; Chen, Lifang; Zhang, Xiunong; Lan, Huilan; Chen, Chunbo
2016-08-31
Despite the use of prokinetic agents, the overall success rate for postpyloric placement via a self-propelled spiral nasoenteric tube is quite low. This retrospective study was conducted in the intensive care units of 11 university hospitals from 2006 to 2016 among adult patients who underwent self-propelled spiral nasoenteric tube insertion. Success was defined as postpyloric nasoenteric tube placement confirmed by abdominal x-ray scan 24 hours after tube insertion. Chi-square automatic interaction detection (CHAID), simple classification and regression trees (SimpleCart), and J48 methodologies were used to develop decision tree models, and multiple logistic regression (LR) methodology was used to develop an LR model for predicting successful postpyloric nasoenteric tube placement. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of these models. Successful postpyloric nasoenteric tube placement was confirmed in 427 of 939 patients enrolled. For predicting successful postpyloric nasoenteric tube placement, the performance of the 3 decision trees was similar in terms of the AUCs: 0.715 for the CHAID model, 0.682 for the SimpleCart model, and 0.671 for the J48 model. The AUC of the LR model was 0.729, which outperformed the J48 model. Both the CHAID and LR models achieved an acceptable discrimination for predicting successful postpyloric nasoenteric tube placement and were useful for intensivists in the setting of self-propelled spiral nasoenteric tube insertion. © 2016 American Society for Parenteral and Enteral Nutrition.
Chen, Weisheng; Sun, Cheng; Wei, Ru; Zhang, Yanlin; Ye, Heng; Chi, Ruibin; Zhang, Yichen; Hu, Bei; Lv, Bo; Chen, Lifang; Zhang, Xiunong; Lan, Huilan; Chen, Chunbo
2018-01-01
Despite the use of prokinetic agents, the overall success rate for postpyloric placement via a self-propelled spiral nasoenteric tube is quite low. This retrospective study was conducted in the intensive care units of 11 university hospitals from 2006 to 2016 among adult patients who underwent self-propelled spiral nasoenteric tube insertion. Success was defined as postpyloric nasoenteric tube placement confirmed by abdominal x-ray scan 24 hours after tube insertion. Chi-square automatic interaction detection (CHAID), simple classification and regression trees (SimpleCart), and J48 methodologies were used to develop decision tree models, and multiple logistic regression (LR) methodology was used to develop an LR model for predicting successful postpyloric nasoenteric tube placement. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of these models. Successful postpyloric nasoenteric tube placement was confirmed in 427 of 939 patients enrolled. For predicting successful postpyloric nasoenteric tube placement, the performance of the 3 decision trees was similar in terms of the AUCs: 0.715 for the CHAID model, 0.682 for the SimpleCart model, and 0.671 for the J48 model. The AUC of the LR model was 0.729, which outperformed the J48 model. Both the CHAID and LR models achieved an acceptable discrimination for predicting successful postpyloric nasoenteric tube placement and were useful for intensivists in the setting of self-propelled spiral nasoenteric tube insertion. © 2016 American Society for Parenteral and Enteral Nutrition.
Nickelson, Jen; Alfonso, Moya L; McDermott, Robert J; Bumpus, Elizabeth C; Bryant, Carol A; Baldwin, Julie A
2011-04-01
Creating community-based opportunities for youth to be physically active is challenging for many municipalities. A Lexington, Kentucky community coalition designed and piloted a physical activity program, 'VERB™ summer scorecard (VSS)', leveraging the brand equity of the national VERB™--It's What You Do! campaign. Key elements of VSS subsequently were adopted in Sarasota County, FL. This study identified characteristics of Sarasota's VSS participants and non-participants. Students in Grades 5-8 from six randomly selected public schools completed a survey assessing VSS participation, physical activity level, psychosocial variables, parental support for physical activity and demographics. Logistic regression showed that VSS participants were more likely to be from Grades 5 to 6 versus Grades 7 and 8 [odds ratio (OR) = 6.055] and perceive high versus low parental support for physical activity (OR = 4.627). Moreover, for each unit rise in self-efficacy, the odds of VSS participation rose by 1.839. Chi-squared automatic interaction detector (CHAID) analysis suggested an interaction effect between grade and school socioeconomic status (SES), with a large proportion of seventh and eighth graders from high SES schools being non-participants (76.6%). A VSS-style program can be expected to be more effective with tweens who are younger, in a middle SES school, having high self-efficacy and high parental support for physical activity.
James, Lachlan P; Robertson, Sam; Haff, G Gregory; Beckman, Emma M; Kelly, Vincent G
2017-03-01
To determine those performance indicators that have the greatest influence on classifying outcome at the elite level of mixed martial arts (MMA). A secondary objective was to establish the efficacy of decision tree analysis in explaining the characteristics of victory when compared to alternate statistical methods. Cross-sectional observational. Eleven raw performance indicators from male Ultimate Fighting Championship bouts (n=234) from July 2014 to December 2014 were screened for analysis. Each raw performance indicator was also converted to a rate-dependent measure to be scaled to fight duration. Further, three additional performance indicators were calculated from the dataset and included in the analysis. Cohen's d effect sizes were employed to determine the magnitude of the differences between Wins and Losses, while decision tree (chi-square automatic interaction detector (CHAID)) and discriminant function analyses (DFA) were used to classify outcome (Win and Loss). Effect size comparisons revealed differences between Wins and Losses across a number of performance indicators. Decision tree (raw: 71.8%; rate-scaled: 76.3%) and DFA (raw: 71.4%; rate-scaled 71.2%) achieved similar classification accuracies. Grappling and accuracy performance indicators were the most influential in explaining outcome. The decision tree models also revealed multiple combinations of performance indicators leading to victory. The decision tree analyses suggest that grappling activity and technique accuracy are of particular importance in achieving victory in elite-level MMA competition. The DFA results supported the importance of these performance indicators. Decision tree induction represents an intuitive and slightly more accurate approach to explaining bout outcome in this sport when compared to DFA. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Althuwaynee, Omar F.; Pradhan, Biswajeet; Ahmad, Noordin
2014-06-01
This article uses methodology based on chi-squared automatic interaction detection (CHAID), as a multivariate method that has an automatic classification capacity to analyse large numbers of landslide conditioning factors. This new algorithm was developed to overcome the subjectivity of the manual categorization of scale data of landslide conditioning factors, and to predict rainfall-induced susceptibility map in Kuala Lumpur city and surrounding areas using geographic information system (GIS). The main objective of this article is to use CHi-squared automatic interaction detection (CHAID) method to perform the best classification fit for each conditioning factor, then, combining it with logistic regression (LR). LR model was used to find the corresponding coefficients of best fitting function that assess the optimal terminal nodes. A cluster pattern of landslide locations was extracted in previous study using nearest neighbor index (NNI), which were then used to identify the clustered landslide locations range. Clustered locations were used as model training data with 14 landslide conditioning factors such as; topographic derived parameters, lithology, NDVI, land use and land cover maps. Pearson chi-squared value was used to find the best classification fit between the dependent variable and conditioning factors. Finally the relationship between conditioning factors were assessed and the landslide susceptibility map (LSM) was produced. An area under the curve (AUC) was used to test the model reliability and prediction capability with the training and validation landslide locations respectively. This study proved the efficiency and reliability of decision tree (DT) model in landslide susceptibility mapping. Also it provided a valuable scientific basis for spatial decision making in planning and urban management studies.
Problem gambling in the workplace, characteristics of employees seeking help.
Hawley, Carolyn E; Glenn, Margaret K; Diaz, Sebastian
2007-01-01
Few rigorous research studies exist to define the impact problem gambling may have on the workforce and the workplace. This study is an initial attempt to address this void by exploring the vocational patterns and demographics of callers with self report gambling problems to a state helpline. It utilizes Chi-squared Automatic Interaction (CHAID) Technique analysis to assess 1072 working age callers with gambling related problems. The goal of this exploratory investigation is to determine if the issue of problem gambling in the workplace warrants further research and, potentially, design of interventions. Discussion centers on the use of the information for development of employer based prevention and intervention efforts.
Fearful and Distracted in School: Predicting Bullying among Youths
ERIC Educational Resources Information Center
Brewer, Steven Lawrence, Jr.; Meckley-Brewer, Hannah; Stinson, Philip M.
2017-01-01
Bullying and aggression in schools can have a traumatic and lasting effect on the well-being of children and youths. Using data from the 2013 National Crime Victimization Survey's School Crime Supplement, this study uses a chi-square automatic interaction detection (CHAID) decision tree and logistic regression models to identify factors that…
ERIC Educational Resources Information Center
Horner, Stacy B.; Fireman, Gary D.; Wang, Eugene W.
2010-01-01
Peer nominations and demographic information were collected from a diverse sample of 1493 elementary school participants to examine behavior (overt and relational aggression, impulsivity, and prosociality), context (peer status), and demographic characteristics (race and gender) as predictors of teacher and administrator decisions about…
Incorporating the sampling design in weighting adjustments for panel attrition
Chen, Qixuan; Gelman, Andrew; Tracy, Melissa; Norris, Fran H.; Galea, Sandro
2015-01-01
We review weighting adjustment methods for panel attrition and suggest approaches for incorporating design variables, such as strata, clusters and baseline sample weights. Design information can typically be included in attrition analysis using multilevel models or decision tree methods such as the CHAID algorithm. We use simulation to show that these weighting approaches can effectively reduce bias in the survey estimates that would occur from omitting the effect of design factors on attrition while keeping the resulted weights stable. We provide a step-by-step illustration on creating weighting adjustments for panel attrition in the Galveston Bay Recovery Study, a survey of residents in a community following a disaster, and provide suggestions to analysts in decision making about weighting approaches. PMID:26239405
NASA Astrophysics Data System (ADS)
Weller, Andrew F.; Harris, Anthony J.; Ware, J. Andrew; Jarvis, Paul S.
2006-11-01
The classification of sedimentary organic matter (OM) images can be improved by determining the saliency of image analysis (IA) features measured from them. Knowing the saliency of IA feature measurements means that only the most significant discriminating features need be used in the classification process. This is an important consideration for classification techniques such as artificial neural networks (ANNs), where too many features can lead to the 'curse of dimensionality'. The classification scheme adopted in this work is a hybrid of morphologically and texturally descriptive features from previous manual classification schemes. Some of these descriptive features are assigned to IA features, along with several others built into the IA software (Halcon) to ensure that a valid cross-section is available. After an image is captured and segmented, a total of 194 features are measured for each particle. To reduce this number to a more manageable magnitude, the SPSS AnswerTree Exhaustive CHAID (χ 2 automatic interaction detector) classification tree algorithm is used to establish each measurement's saliency as a classification discriminator. In the case of continuous data as used here, the F-test is used as opposed to the published algorithm. The F-test checks various statistical hypotheses about the variance of groups of IA feature measurements obtained from the particles to be classified. The aim is to reduce the number of features required to perform the classification without reducing its accuracy. In the best-case scenario, 194 inputs are reduced to 8, with a subsequent multi-layer back-propagation ANN recognition rate of 98.65%. This paper demonstrates the ability of the algorithm to reduce noise, help overcome the curse of dimensionality, and facilitate an understanding of the saliency of IA features as discriminators for sedimentary OM classification.
Pattern of oral-maxillofacial trauma from violence against women and its associated factors.
da Nóbrega, Lorena Marques; Bernardino, Ítalo de Macedo; Barbosa, Kevan Guilherme Nóbrega; E Silva, Jéssica Antoniana Lira; Massoni, Andreza Cristina de Lima Targino; d'Avila, Sérgio
2017-06-01
Violence against women is a global public health problem. The aim of this study was to characterize the profile of women victims of violence and identify factors associated with maxillofacial injuries. A cross-sectional study was performed based on an evaluation of 884 medico-legal and social records of women victims of physical aggression treated at the Center of Forensic Medicine and Dentistry in Brazil. The variables investigated were related to the sociodemographic characteristics of victims, circumstances of aggressions, and patterns of trauma. Descriptive and multivariate statistics using decision tree analysis by the Chi-squared automatic interaction detector (CHAID) algorithm, as well as univariate and multivariate Poisson regression analyses were performed. The occurrence of maxillofacial trauma was 46.4%. The mean age of victims was 29.38 (SD=12.55 years). Based on decision tree, the profile of violence against women can be explained by the aggressor's gender (P<.001) and sociodemographic characteristics of victims, such as marital status (P=.001), place of residence (P=.019), and educational level (P=.014). Based on the final Poisson regression model, women living in suburban areas were more likely to suffer maxillofacial trauma (PR=1.752; CI 95%=1.153-2.662; P=.009) compared to those living in rural areas. Moreover, aggression using a weapon resulted in a lower occurrence of maxillofacial trauma (PR=0.476; CI 95%=0.284-0.799; P=.005) compared to cases of aggression using physical force. The prevalence of oral-maxillofacial trauma was high, and the main associated factors were place of residence and mechanism of aggression. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Igarashi, Ayumi; Ishibashi, Tomoaki; Shinozaki, Tomohiro; Yamamoto-Mitani, Noriko
2014-09-10
To develop a quality community-based care management system, it is important to identify the actual use of long-term care insurance (LTCI) services and the most frequent combinations of services. It is also important to determine the factors associated with the use of such combinations. This study was conducted in 10 care management agencies in the urban area around Tokyo, Japan. The assessment and services data of 983 clients using the Minimum Data Set for Home Care were collected from the agencies. We categorized combination patterns of services from descriptive data analysis of service use and conducted chi-squared automatic interaction detection (CHAID) analysis to identify the primary variables determining the combinations of the services used. We identified nine patterns of service use: day care only (16.5%); day care and assistive devices (14.4%); day care, home helper, and assistive devices (13.2%); home helper and assistive devices (11.8%); assistive devices only (10.9%); home helper only (8.7%); day care and home helper (7.7%); home helper, visiting nurse, and assistive devices (5.4%); and others (11.3%). The CHAID dendrogram illustrated the relative importance of significant independent variables in determining combination use; the most important variables in predicting combination use were certified care need level, living arrangements, cognitive function, and need for medical procedures. The characteristics of care managers and agencies were not associated with the combinations. This study clarified patterns of community-based service use in the LTCI system in Japan. The combinations of services were more related to the physical and psychosocial status of older adults than to the characteristics of agencies and care managers. Although we found no association between service use and the characteristics of agencies and care managers, further examination of possible bias in the use of services should be included in future studies. Researchers and policymakers can use these combinations identified in this study to categorize the use of community-based care service and measure the outcomes of care interventions.
Ramos, Mariana Figueira; Ribeiro, Diego Egídio; Cirillo, Marcelo Ângelo; Borém, Flávio Meira
2016-08-01
Knowledge of the sensory profile of coffee quality, associated with genetic and environmental factors, is of utmost importance for the international market, as well as for the productive sector. In this context, the goal of this study was to classify the quality of Coffea arabica L., cv. Yellow Bourbon, according to different scores obtained through sensory evaluations based on the Specialty Coffee Association of America protocol (SCAA), and by means of decision trees resulting from applying the CHAID method (chi-square automatic interaction detection). To that end, we used a database with the sensory characteristics of cv. Yellow Bourbon and the environmental characteristics of the Mantiqueira de Minas region, State of Minas Gerais, Brazil. The method used exhibited promising results regarding accuracy and success rates in order to discriminate coffee sensory quality as a function of the production environment. The results obtained clearly show the effect of the coffee growing environment on the Yellow Bourbon variety, resulting in notable sensory differences in the beverage. It was possible to discriminate cv. Yellow Bourbon coffee samples, the sensory evaluations of which resulted in scores of ≥88 points, which are associated with growing environments at altitudes of ≥1200 m. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Zare Hosseini, Zeinab; Mohammadzadeh, Mahdi
2016-01-01
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer demographic and transactions information. Data mining techniques can be used to analyze this data and discover hidden knowledge of customers. This research develops an extended RFM model, namely RFML (added parameter: Length) based on health care services for a public sector hospital in Iran with the idea that there is contrast between patient and customer loyalty, to estimate customer life time value (CLV) for each patient. We used Two-step and K-means algorithms as clustering methods and Decision tree (CHAID) as classification technique to segment the patients to find out target, potential and loyal customers in order to implement strengthen CRM. Two approaches are used for classification: first, the result of clustering is considered as Decision attribute in classification process and second, the result of segmentation based on CLV value of patients (estimated by RFML) is considered as Decision attribute. Finally the results of CHAID algorithm show the significant hidden rules and identify existing patterns of hospital consumers.
Zare Hosseini, Zeinab; Mohammadzadeh, Mahdi
2016-01-01
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer demographic and transactions information. Data mining techniques can be used to analyze this data and discover hidden knowledge of customers. This research develops an extended RFM model, namely RFML (added parameter: Length) based on health care services for a public sector hospital in Iran with the idea that there is contrast between patient and customer loyalty, to estimate customer life time value (CLV) for each patient. We used Two-step and K-means algorithms as clustering methods and Decision tree (CHAID) as classification technique to segment the patients to find out target, potential and loyal customers in order to implement strengthen CRM. Two approaches are used for classification: first, the result of clustering is considered as Decision attribute in classification process and second, the result of segmentation based on CLV value of patients (estimated by RFML) is considered as Decision attribute. Finally the results of CHAID algorithm show the significant hidden rules and identify existing patterns of hospital consumers. PMID:27610177
2012-09-01
3,435 10,461 9.1 3.1 63 Unmarried with Children+ Unmarried without Children 439,495 0.01 10,350 43,870 10.1 2.2 64 Married with Children+ Married ...logistic regression model was used to predict the probability of eligibility for the survey (known eligibility vs . unknown eligibility). A second logistic...regression model was used to predict the probability of response among eligible sample members (complete response vs . non-response). CHAID (Chi
NASA Astrophysics Data System (ADS)
Bichler, Andrea; Neumaier, Arnold; Hofmann, Thilo
2014-11-01
Microbial contamination of groundwater used for drinking water can affect public health and is of major concern to local water authorities and water suppliers. Potential hazards need to be identified in order to protect raw water resources. We propose a non-parametric data mining technique for exploring the presence of total coliforms (TC) in a groundwater abstraction well and its relationship to readily available, continuous time series of hydrometric monitoring parameters (seven year records of precipitation, river water levels, and groundwater heads). The original monitoring parameters were used to create an extensive generic dataset of explanatory variables by considering different accumulation or averaging periods, as well as temporal offsets of the explanatory variables. A classification tree based on the Chi-Squared Automatic Interaction Detection (CHAID) recursive partitioning algorithm revealed statistically significant relationships between precipitation and the presence of TC in both a production well and a nearby monitoring well. Different secondary explanatory variables were identified for the two wells. Elevated water levels and short-term water table fluctuations in the nearby river were found to be associated with TC in the observation well. The presence of TC in the production well was found to relate to elevated groundwater heads and fluctuations in groundwater levels. The generic variables created proved useful for increasing significance levels. The tree-based model was used to predict the occurrence of TC on the basis of hydrometric variables.
Assink, Mark; van der Put, Claudia E; Oort, Frans J; Stams, Geert Jan J M
2015-03-04
In The Netherlands, police officers not only come into contact with juvenile offenders, but also with a large number of juveniles who were involved in a criminal offense, but not in the role of a suspect (i.e., juvenile non-offenders). Until now, no valid and reliable instrument was available that can be used by Dutch police officers for estimating the risk for future care needs of juvenile non-offenders. In the present study, the Youth Actuarial Care Needs Assessment Tool for Non-Offenders (Y-ACNAT-NO) was developed for predicting the risk for future care needs that consisted of (1) a future supervision order as imposed by a juvenile court judge and (2) future worrisome incidents involving child abuse, domestic violence/strife, and/or sexual offensive behavior at the juvenile's living address (i.e., problems in the child-rearing environment). Police records of 3,200 juveniles were retrieved from the Dutch police registration system after which the sample was randomly split in a construction (n = 1,549) and validation sample (n = 1,651). The Y-ACNAT-NO was developed by performing an Exhaustive CHAID analysis using the construction sample. The predictive validity of the instrument was examined in the validation sample by calculating several performance indicators that assess discrimination and calibration. The CHAID output yielded an instrument that consisted of six variables and eleven different risk groups. The risk for future care needs ranged from 0.06 in the lowest risk group to 0.83 in the highest risk group. The AUC value in the validation sample was .764 (95% CI [.743, .784]) and Sander's calibration score indicated an average assessment error of 3.74% in risk estimates per risk category. The Y-ACNAT-NO is the first instrument that can be used by Dutch police officers for estimating the risk for future care needs of juvenile non-offenders. The predictive validity of the Y-ACNAT-NO in terms of discrimination and calibration was sufficient to justify its use as an initial screening instrument when a decision is needed about referring a juvenile for further assessment of care needs.
Izad Shenas, Seyed Abdolmotalleb; Raahemi, Bijan; Hossein Tekieh, Mohammad; Kuziemsky, Craig
2014-10-01
In this paper, we use data mining techniques, namely neural networks and decision trees, to build predictive models to identify very high-cost patients in the top 5 percentile among the general population. A large empirical dataset from the Medical Expenditure Panel Survey with 98,175 records was used in our study. After pre-processing, partitioning and balancing the data, the refined dataset of 31,704 records was modeled by Decision Trees (including C5.0 and CHAID), and Neural Networks. The performances of the models are analyzed using various measures including accuracy, G-mean, and Area under ROC curve. We concluded that the CHAID classifier returns the best G-mean and AUC measures for top performing predictive models ranging from 76% to 85%, and 0.812 to 0.942 units, respectively. We also identify a small set of 5 non-trivial attributes among a primary set of 66 attributes to identify the top 5% of the high cost population. The attributes are the individual׳s overall health perception, age, history of blood cholesterol check, history of physical/sensory/mental limitations, and history of colonic prevention measures. The small set of attributes are what we call non-trivial and does not include visits to care providers, doctors or hospitals, which are highly correlated with expenditures and does not offer new insight to the data. The results of this study can be used by healthcare data analysts, policy makers, insurer, and healthcare planners to improve the delivery of health services. Copyright © 2014 Elsevier Ltd. All rights reserved.
Herrera Lara, Susana; Fernández-Fabrellas, Estrella; Juan Samper, Gustavo; Marco Buades, Josefa; Andreu Lapiedra, Rafael; Pinilla Moreno, Amparo; Morales Suárez-Varela, María
2017-10-01
The usefulness of clinical, radiological and pleural fluid analytical parameters for diagnosing malignant and paramalignant pleural effusion is not clearly stated. Hence this study aimed to identify possible predictor variables of diagnosing malignancy in pleural effusion of unknown aetiology. Clinical, radiological and pleural fluid analytical parameters were obtained from consecutive patients who had suffered pleural effusion of unknown aetiology. They were classified into three groups according to their final diagnosis: malignant, paramalignant and benign pleural effusion. The CHAID (Chi-square automatic interaction detector) methodology was used to estimate the implication of the clinical, radiological and analytical variables in daily practice through decision trees. Of 71 patients, malignant (n = 31), paramalignant (n = 15) and benign (n = 25), smoking habit, dyspnoea, weight loss, radiological characteristics (mass, node, adenopathies and pleural thickening) and pleural fluid analytical parameters (pH and glucose) distinguished malignant and paramalignant pleural effusions (all with a p < 0.05). Decision tree 1 classified 77.8% of malignant and paramalignant pleural effusions in step 2. Decision tree 2 classified 83.3% of malignant pleural effusions in step 2, 73.3% of paramalignant pleural effusions and 91.7% of benign ones. The data herein suggest that the identified predictor values applied to tree diagrams, which required no extraordinary measures, have a higher rate of correct identification of malignant, paramalignant and benign effusions when compared to techniques available today and proved most useful for usual clinical practice. Future studies are still needed to further improve the classification of patients.
Protein attributes contribute to halo-stability, bioinformatics approach
2011-01-01
Halophile proteins can tolerate high salt concentrations. Understanding halophilicity features is the first step toward engineering halostable crops. To this end, we examined protein features contributing to the halo-toleration of halophilic organisms. We compared more than 850 features for halophilic and non-halophilic proteins with various screening, clustering, decision tree, and generalized rule induction models to search for patterns that code for halo-toleration. Up to 251 protein attributes selected by various attribute weighting algorithms as important features contribute to halo-stability; from them 14 attributes selected by 90% of models and the count of hydrogen gained the highest value (1.0) in 70% of attribute weighting models, showing the importance of this attribute in feature selection modeling. The other attributes mostly were the frequencies of di-peptides. No changes were found in the numbers of groups when K-Means and TwoStep clustering modeling were performed on datasets with or without feature selection filtering. Although the depths of induced trees were not high, the accuracies of trees were higher than 94% and the frequency of hydrophobic residues pointed as the most important feature to build trees. The performance evaluation of decision tree models had the same values and the best correctness percentage recorded with the Exhaustive CHAID and CHAID models. We did not find any significant difference in the percent of correctness, performance evaluation, and mean correctness of various decision tree models with or without feature selection. For the first time, we analyzed the performance of different screening, clustering, and decision tree algorithms for discriminating halophilic and non-halophilic proteins and the results showed that amino acid composition can be used to discriminate between halo-tolerant and halo-sensitive proteins. PMID:21592393
Risk Factors for Smoking in Rural Women
Salsberry, Pamela J.; Ferketich, Amy K.; Ahijevych, Karen L.; Hood, Nancy E.; Paskett, Electra D.
2012-01-01
Abstract Background This study examined the association between social, demographic, and psychologic factors and smoking status among Appalachian Ohio women. A secondary aim examined whether specific factors could be identified and segmented for future tailored treatment of tobacco dependence. Methods A cross-sectional survey (n=570) obtained information about social, demographic, and psychologic factors and smoking. Logistic regression described associations between these characteristics and smoking status. Chi-square automatic interaction detection (CHAID) analyses identified subgroups at risk for smoking. Results Fifty-two percent never smoked, with 20.5% and 27.5% categorized as former and current smokers, respectively. Women with low adult socioeconomic position (SEP) were more likely to smoke (odds ratio [OR] 3.05, 95% confidence interval [CI] 1.74-5.34) compared to high SEP women. Other factors associated with current smoking included age 31–50 (OR 2.30, 95% CI 1.22-4.33), age 18–30 (OR 3.29, 95% CI 1.72-5.34), Center for Epidemiologic Studies Depression scale (CES-D) score≥16 (OR 1.99, 95% CI 1.31-3.05), and first pregnancy at age<20 (OR 1.74, 95% CI 1.14-2.66). The prevalence of smoking was 50% among those with four or more risk factors compared to 10% for those reporting no risk factors. CHAID analyses identified low adult SEP and depressive symptoms as the combination of risk factors most strongly associated with smoking; 49.3% of women in this subgroup currently smoked. Conclusions Low SEP in adulthood, maternal circumstances, and depressive symptoms are associated with current smoking. Tailored cessation interventions that address these risk factors should be developed and further evaluated in an attempt to reduce disparities in smoking prevalence among this vulnerable group of women. PMID:22360694
Profile of male Brazilian injecting drug users who have sex with men.
Ferreira, Aline Dayrell; Caiaffa, Waleska Teixeira; Bastos, Francisco I; Mingoti, Sueli Aparecida
2006-04-01
This study aims to characterize the profile of male injecting drug users who have sex with other men (MSM IDUs) recruited through a cross-sectional multi-city survey (AjUDE-Brasil II Project) in six Brazilian cities, in 2000-2001. MSM IDUs were compared to other male IDUs using bivariate and multivariate procedures (logistic regression and answer tree analysis with the CHAID algorithm). Among the 709 male IDUs, 187 (26.4%) reported ever having had sex with other men, while only 37 reported sex with other men in the previous six months. MSM IDUs were more likely to be unemployed (OR = 2.3), to have injected tranquilizers (OR = 3.6), and to be HIV-seropositive (OR = 2.1), compared to other male IDUs. Male same-sex relations in this subgroup appear to be associated with strategies to finance drug consuming habits, including sex for drugs with occasional female partners or obtaining injection paraphernalia from occasional sex partners. Further studies should focus on this especially vulnerable subgroup of IDUs, due to the bidirectional and complex interrelationships between their drug injecting habits and sexual risk behaviors.
Prevalence and profile of alcohol consumption among university students in Ecuador.
Ruisoto, Pablo; Cacho, Raúl; López-Goñi, José J; Vaca, Silvia; Jiménez, Marco
2016-01-01
Alcohol consumption is one of the main health and social problems in Ecuador. The aim of this study was to explore gender differences in the prevalence and psychosocial profile of problematic consumers among university students. We surveyed 3,232 students by using the AUDIT and psychosocial scales. To discriminate the explanatory value of each variable, a CHAID segmentation analysis was used. The prevalence of alcohol consumption was 92.24% in men and 82.86% in women. In total, 49.73% of men and 23.80% of women reported problematic consumption. In men, the profile of problematic consumption was defined by higher scores in anxiety and depression, especially if they showed higher levels of psychological stress and lower life engagement. In women, problematic consumption showed a tendency towards psychological inflexibility, especially in those with lower life engagement. There is a need to prioritise attention to alcohol consumption in university students and to design different interventions for men and women. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.
Catalano, Denise; Pereira, Ana Paula; Wu, Ming-Yi; Ho, Hanson; Chan, Fong
2006-01-01
This study analyzed the Rehabilitation Services Administration (RSA) case service report (RSA-911) data for fiscal year 2004 to examine effects of demographic characteristics, work disincentives, and vocational rehabilitation services patterns on employment outcomes of persons with traumatic brain injuries (TBI). The results indicated that European Americans (53%) had appreciably higher competitive employment rates than Native American (50%), Asian Americans (44%), African Americans (42%), and Hispanic/Latino Americans (41%). Clients without co-occurring psychiatric disabilities had a higher employment rate (51%) than those with psychiatric disabilities (45%). Clients without work disincentives showed better employment outcomes (58%) than those with disincentives (45%). An important finding from this analysis was the central role of job search assistance, job placement assistance, and on-the-job support services for persons with TBI in predicting employment outcomes. A data mining technique, the exhaustive CHAID analysis, was used to examine the interaction effects of race, gender, work disincentives and service variables on employment outcomes. The results indicated that the TBI clients in this study could be segmented into 29 homogeneous subgroups with employment rates ranging from a low of 11% to a high of 82%, and these differences can be explained by differences in work disincentives, race, and rehabilitation service patterns.
Intelligent data analysis: the best approach for chronic heart failure (CHF) follow up management.
Mohammadzadeh, Niloofar; Safdari, Reza; Baraani, Alireza; Mohammadzadeh, Farshid
2014-08-01
Intelligent data analysis has ability to prepare and present complex relations between symptoms and diseases, medical and treatment consequences and definitely has significant role in improving follow-up management of chronic heart failure (CHF) patients, increasing speed and accuracy in diagnosis and treatments; reducing costs, designing and implementation of clinical guidelines. The aim of this article is to describe intelligent data analysis methods in order to improve patient monitoring in follow and treatment of chronic heart failure patients as the best approach for CHF follow up management. Minimum data set (MDS) requirements for monitoring and follow up of CHF patient designed in checklist with six main parts. All CHF patients that discharged in 2013 from Tehran heart center have been selected. The MDS for monitoring CHF patient status were collected during 5 months in three different times of follow up. Gathered data was imported in RAPIDMINER 5 software. Modeling was based on decision trees methods such as C4.5, CHAID, ID3 and k-Nearest Neighbors algorithm (K-NN) with k=1. Final analysis was based on voting method. Decision trees and K-NN evaluate according to Cross-Validation. Creating and using standard terminologies and databases consistent with these terminologies help to meet the challenges related to data collection from various places and data application in intelligent data analysis. It should be noted that intelligent analysis of health data and intelligent system can never replace cardiologists. It can only act as a helpful tool for the cardiologist's decisions making.
40 CFR 91.304 - Test equipment overview.
Code of Federal Regulations, 2014 CFR
2014-07-01
... infrared detector (NDIR) absorption type for carbon monoxide and carbon dioxide analysis; paramagnetic detector (PMD), zirconia (ZRDO), or electrochemical type (ECS) for oxygen analysis; a flame ionization detector (FID) or heated flame ionization detector (HFID) type for hydrocarbon analysis; and a...
Rodríguez-Martín, Boris C; Fallas-Durán, Melba; Gaitskell, Barbara; Vega-Rojas, Daniela; Martínez-Chaigneau, Paula
2017-05-01
The current study aimed to determine if positive opinions about BFR interacts with spirituality in adults from three Latin-American countries using a CHAID algorithm. Participants were 703 adults from Cuba (n = 319), Costa Rica (n = 252) and Chile (n = 132). demographic data, received information, received treatment, spirituality, dispositional optimism and willingness to use a placebo intervention were measured and analyzed. A supervised classification which included a training phase (n = 423) and a test phase (n = 280) was employed. Received information about BFR, spirituality and education were selected as significant predictors of the positive opinion about BFR (>90% of correct classifications). Copyright © 2017 Elsevier Ltd. All rights reserved.
LDEF Experiment P0006 Linear Energy Transfer Spectrum Measurement (LETSME) quick look report
NASA Technical Reports Server (NTRS)
1990-01-01
A preliminary analysis of the various passive radiation detector materials included in the P0006 LETSME experiment flown on LDEF (Long Duration Exposure Facility) is presented. It consists of four tasks: (1) readout and analysis of thermoluminescent detectors (TLD); (2) readout and analysis of fission foil/mica detectors; (3) readout and analysis of (6)LiF/CR-39 detectors; and (4) preliminary processing and readout of CR-39 and polycarbonate plastic nuclear track detectors (PNTD).
Lipid analysis via HPLC with a charged aerosol detector
USDA-ARS?s Scientific Manuscript database
Most lipid extracts are a mixture of saturated and unsaturated molecules. Therefore, the most successful HPLC detectors for the quantitative analysis of lipids have involved the use of “universal” or “mass” detectors such as flame ionization detectors (FID) and evaporative light scattering detectors...
40 CFR 91.304 - Test equipment overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
... non-dispersive infrared detector (NDIR) absorption type for carbon monoxide and carbon dioxide analysis; paramagnetic detector (PMD), zirconia (ZRDO), or electrochemical type (ECS) for oxygen analysis; a flame ionization detector (FID) or heated flame ionization detector (HFID) type for hydrocarbon...
40 CFR 91.304 - Test equipment overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
... non-dispersive infrared detector (NDIR) absorption type for carbon monoxide and carbon dioxide analysis; paramagnetic detector (PMD), zirconia (ZRDO), or electrochemical type (ECS) for oxygen analysis; a flame ionization detector (FID) or heated flame ionization detector (HFID) type for hydrocarbon...
40 CFR 91.304 - Test equipment overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
... non-dispersive infrared detector (NDIR) absorption type for carbon monoxide and carbon dioxide analysis; paramagnetic detector (PMD), zirconia (ZRDO), or electrochemical type (ECS) for oxygen analysis; a flame ionization detector (FID) or heated flame ionization detector (HFID) type for hydrocarbon...
40 CFR 91.304 - Test equipment overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
... non-dispersive infrared detector (NDIR) absorption type for carbon monoxide and carbon dioxide analysis; paramagnetic detector (PMD), zirconia (ZRDO), or electrochemical type (ECS) for oxygen analysis; a flame ionization detector (FID) or heated flame ionization detector (HFID) type for hydrocarbon...
Using cross-game behavioral markers for early identification of high-risk internet gamblers.
Braverman, Julia; LaPlante, Debi A; Nelson, Sarah E; Shaffer, Howard J
2013-09-01
Using actual gambling behavior provides the opportunity to develop behavioral markers that operators can use to predict the development of gambling-related problems among their subscribers. Participants were 4,056 Internet gamblers who subscribed to the Internet betting service provider bwin.party. Half of this sample included multiple platform gamblers who were identified by bwin.party's Responsible Gambling (RG) program; the other half were controls randomly selected from those who had the same first deposit date. Using the daily aggregated Internet betting transactions for gamblers' first 31 calendar days of online betting activities at bwin.party, we employed a 2-step analytic strategy: (a) applying an exploratory chi-squared automatic interaction detection (CHAID) decision tree method to identify characteristics that distinguished a subgroup of high-risk Internet gamblers from the rest of the sample, and (b) conducting a confirmatory analysis of those characteristics among an independent validation sample. This analysis identified two high-risk groups (i.e., groups in which 90% of the members were identified by bwin.party's RG program): Group 1 engaged in three or more gambling activities and evidenced high wager variability on casino-type games; Group 2 engaged in two different gambling activities and evidenced high variability for live action wagers. This analysis advances an ongoing research program to identify potentially problematic Internet gamblers during the earliest stages of their Internet gambling. Gambling providers and public policymakers can use these results to inform early intervention programs that target high-risk Internet gamblers. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Plural-wavelength flame detector that discriminates between direct and reflected radiation
NASA Technical Reports Server (NTRS)
Hall, Gregory H. (Inventor); Barnes, Heidi L. (Inventor); Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor); Smith, Harvey S. (Inventor)
1997-01-01
A flame detector employs a plurality of wavelength selective radiation detectors and a digital signal processor programmed to analyze each of the detector signals, and determine whether radiation is received directly from a small flame source that warrants generation of an alarm. The processor's algorithm employs a normalized cross-correlation analysis of the detector signals to discriminate between radiation received directly from a flame and radiation received from a reflection of a flame to insure that reflections will not trigger an alarm. In addition, the algorithm employs a Fast Fourier Transform (FFT) frequency spectrum analysis of one of the detector signals to discriminate between flames of different sizes. In a specific application, the detector incorporates two infrared (IR) detectors and one ultraviolet (UV) detector for discriminating between a directly sensed small hydrogen flame, and reflections from a large hydrogen flame. The signals generated by each of the detectors are sampled and digitized for analysis by the digital signal processor, preferably 250 times a second. A sliding time window of approximately 30 seconds of detector data is created using FIFO memories.
A multi-channel photometric detector for multi-component analysis in flow injection analysis
Tan, Aimin; Huang, Jialin; Geng, Liudi; Xu, Jinhua; Zhao, Xinna
1994-01-01
The detector, a multi-channel photometric detector, described in this paper was developed using multi-wavelength LEDs (light emitting diode) and phototransistors for absorbance measurement controlled by an Intel 8031 8-bit single chip microcomputer. Up to four flow cells can be attached to the detector. The LEDs and phototransistors are both inexpensive, and reliable. The results given by the detector for simultaneous determination of trace amounts of cobalt and cadmium in zinc sulphate electrolyte are reported. Because of the newly developed detector, this approach employs much less hardware apparatus than by employing conventional photometric detectors. PMID:18924688
A multi-channel photometric detector for multi-component analysis in flow injection analysis.
Tan, A; Huang, J; Geng, L; Xu, J; Zhao, X
1994-01-01
The detector, a multi-channel photometric detector, described in this paper was developed using multi-wavelength LEDs (light emitting diode) and phototransistors for absorbance measurement controlled by an Intel 8031 8-bit single chip microcomputer. Up to four flow cells can be attached to the detector. The LEDs and phototransistors are both inexpensive, and reliable. The results given by the detector for simultaneous determination of trace amounts of cobalt and cadmium in zinc sulphate electrolyte are reported. Because of the newly developed detector, this approach employs much less hardware apparatus than by employing conventional photometric detectors.
Decision tree methods: applications for classification and prediction.
Song, Yan-Yan; Lu, Ying
2015-04-25
Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Norman A.; /SLAC
Maximizing the physics performance of detectors being designed for the International Linear Collider, while remaining sensitive to cost constraints, requires a powerful, efficient, and flexible simulation, reconstruction and analysis environment to study the capabilities of a large number of different detector designs. The preparation of Letters Of Intent for the International Linear Collider involved the detailed study of dozens of detector options, layouts and readout technologies; the final physics benchmarking studies required the reconstruction and analysis of hundreds of millions of events. We describe the Java-based software toolkit (org.lcsim) which was used for full event reconstruction and analysis. The componentsmore » are fully modular and are available for tasks from digitization of tracking detector signals through to cluster finding, pattern recognition, track-fitting, calorimeter clustering, individual particle reconstruction, jet-finding, and analysis. The detector is defined by the same xml input files used for the detector response simulation, ensuring the simulation and reconstruction geometries are always commensurate by construction. We discuss the architecture as well as the performance.« less
2015-11-13
P Wijewarnasuriya at the Army Research Lab to understand the bandd offsets of HgCdTe infrared detector structures. Especially when a sample is not...Final Report: Equipment for Topographical Preparation and Analysis of Various Semiconductor Infrared Detector Samples Report Title A used calibrated...structures i. G15-38 and G15-38 Quantum Dot ---------------------------- 16 Infrared Detector Samples ii. GSU13-MPD-GB1 Heterostructure
Classification tree for the assessment of sedentary lifestyle among hypertensive.
Castelo Guedes Martins, Larissa; Venícios de Oliveira Lopes, Marcos; Gomes Guedes, Nirla; Paixão de Menezes, Angélica; de Oliveira Farias, Odaleia; Alves Dos Santos, Naftale
2016-04-01
To develop a classification tree of clinical indicators for the correct prediction of the nursing diagnosis "Sedentary lifestyle" (SL) in people with high blood pressure (HTN). A cross-sectional study conducted in an outpatient care center specializing in high blood pressure and Mellitus diabetes located in northeastern Brazil. The sample consisted of 285 people between 19 and 59 years old diagnosed with high blood pressure and was applied an interview and physical examination, obtaining socio-demographic information, related factors and signs and symptoms that made the defining characteristics for the diagnosis under study. The tree was generated using the CHAID algorithm (Chi-square Automatic Interaction Detection). The construction of the decision tree allowed establishing the interactions between clinical indicators that facilitate a probabilistic analysis of multiple situations allowing quantify the probability of an individual presenting a sedentary lifestyle. The tree included the clinical indicator Choose daily routine without exercise as the first node. People with this indicator showed a probability of 0.88 of presenting the SL. The second node was composed of the indicator Does not perform physical activity during leisure, with 0.99 probability of presenting the SL with these two indicators. The predictive capacity of the tree was established at 69.5%. Decision trees help nurses who care HTN people in decision-making in assessing the characteristics that increase the probability of SL nursing diagnosis, optimizing the time for diagnostic inference.
Carrillo-de-Albornoz, Ana; Figuero, Elena; Herrera, David; Cuesta, Pedro; Bascones-Martínez, Antonio
2012-03-01
To identify predictor variables involved in exacerbated gingival inflammation associated with pregnancy. In this cohort study, 48 pregnant and 28 non-pregnant women without periodontitis were included. The pregnant women were evaluated in the first, second and third trimester and at 3 months postpartum, whilst the non-pregnant women were evaluated twice, with a 6-month interval. At each visit, clinical [plaque index (PlI) and gingival index (GI)], hormonal (salivary progesterone and estradiol), immunological [gingival crevicular fluid interleukin-1β, interleukin-6, tumour necrosis factor-α (TNF-α) and prostaglandin-E(2) ] and microbiological (periodontal pathogens culture) evaluations were performed. Statistical analysis was undertaken using exhaustive chi-square automatic interaction detection (exhaustive CHAID) to analyse the predictive value of the independent outcomes to develop pregnancy GI. PlI was the strongest predictor implicated in the GI throughout pregnancy and after delivery. During the second and third trimesters the presence of Porphyromonas gingivalis significantly contributed to the worsening of gingival inflammation. When compared with the non-pregnant group, significant differences were found in TNF-α amounts and concentrations and in the third trimester site-specific GI. Bacterial challenge to the gingival tissues, both quantitatively (PlI) and qualitatively (harbouring P. gingivalis) appears to affect the level of gingival inflammation observed during pregnancy. © 2011 John Wiley & Sons A/S.
Schelhorn, J; Benndorf, M; Dietzel, M; Burmeister, H P; Kaiser, W A; Baltzer, P A T
2012-09-01
To evaluate the diagnostic accuracy of qualitative descriptors alone and in combination for the classification of focal liver lesions (FLLs) suspicious for metastasis in gadolinium-EOB-DTPA-enhanced liver MR imaging. Consecutive patients with clinically suspected liver metastases were eligible for this retrospective investigation. 50 patients met the inclusion criteria. All underwent Gd-EOB-DTPA-enhanced liver MRI (T2w, chemical shift T1w, dynamic T1w). Primary liver malignancies or treated lesions were excluded. All investigations were read by two blinded observers (O1, O2). Both independently identified the presence of lesions and evaluated predefined qualitative lesion descriptors (signal intensities, enhancement pattern and morphology). A reference standard was determined under consideration of all clinical and follow-up information. Statistical analysis besides contingency tables (chi square, kappa statistics) included descriptor combinations using classification trees (CHAID methodology) as well as ROC analysis. In 38 patients, 120 FLLs (52 benign, 68 malignant) were present. 115 (48 benign, 67 malignant) were identified by the observers. The enhancement pattern, relative SI upon T2w and late enhanced T1w images contributed significantly to the differentiation of FLLs. The overall classification accuracy was 91.3 % (O1) and 88.7 % (O2), kappa = 0.902. The combination of qualitative lesion descriptors proposed in this work revealed high diagnostic accuracy and interobserver agreement in the differentiation of focal liver lesions suspicious for metastases using Gd-EOB-DTPA-enhanced liver MRI. © Georg Thieme Verlag KG Stuttgart · New York.
He, Jingzhen; Zu, Yuliang; Wang, Qing; Ma, Xiangxing
2014-12-01
The purpose of this study was to determine the performance of low-dose computed tomography (CT) scanning with integrated circuit (IC) detector in defining fine structures of temporal bone in children by comparing with the conventional detector. The study was performed with the approval of our institutional review board and the patients' anonymity was maintained. A total of 86 children<3 years of age underwent imaging of temporal bone with low-dose CT (80 kV/150 mAs) equipped with either IC detector or conventional discrete circuit (DC) detector. The image noise was measured for quantitative analysis. Thirty-five structures of temporal bone were further assessed and rated by 2 radiologists for qualitative analysis. κ Statistics were performed to determine the agreement reached between the 2 radiologists on each image. Mann-Whitney U test was used to determine the difference in image quality between the 2 detector systems. Objective analysis showed that the image noise was significantly lower (P<0.001) with the IC detector than with the DC detector. The κ values for qualitative assessment of the 35 fine anatomical structures revealed high interobserver agreement. The delineation for 30 of the 35 landmarks (86%) with the IC detector was superior to that with the conventional DC detector (P<0.05) although there were no differences in the delineation of the remaining 5 structures (P>0.05). The low-dose CT images acquired with the IC detector provide better depiction of fine osseous structures of temporal bone than that with the conventional DC detector.
Detector location selection based on VIP analysis in near-infrared detection of dural hematoma.
Sun, Qiuming; Zhang, Yanjun; Ma, Jun; Tian, Feng; Wang, Huiquan; Liu, Dongyuan
2018-03-01
Detection of dural hematoma based on multi-channel near-infrared differential absorbance has the advantages of rapid and non-invasive detection. The location and number of detectors around the light source are critical for reducing the pathological characteristics of the prediction model on dural hematoma degree. Therefore, rational selection of detector numbers and their distances from the light source is very important. In this paper, a detector position screening method based on Variable Importance in the Projection (VIP) analysis is proposed. A preliminary modeling based on Partial Least Squares method (PLS) for the prediction of dural position μ a was established using light absorbance information from 30 detectors located 2.0-5.0 cm from the light source with a 0.1 cm interval. The mean relative error (MRE) of the dural position μ a prediction model was 4.08%. After VIP analysis, the number of detectors was reduced from 30 to 4 and the MRE of the dural position μ a prediction was reduced from 4.08% to 2.06% after the reduction in detector numbers. The prediction model after VIP detector screening still showed good prediction of the epidural position μ a . This study provided a new approach and important reference on the selection of detector location in near-infrared dural hematoma detection.
Particle Detectors and Data Analysis for Cusp Transient Features Campaign
NASA Technical Reports Server (NTRS)
Sharber, J. R.
1998-01-01
Grant NAG5-5084 was awarded to support the participation of South West Research Institute (SwRI) in building the energy per unit charge particle detectors for the Cusp Transient Features Campaign and analysis of flight data from these instruments. The detectors are part of an instrumented payload (Rocket 36.152, Dr. R. Pfaff, P.I.) launched from Svalbard on December 3, 1997, into the dark cusp. The particle instruments, a Cusp Electron Detector (CED) and a Cusp Ion Detector (CID), built on this project, provided differential energy and angular measurements along the rocket trajectory throughout the flight.
A handheld laser-induced fluorescence detector for multiple applications.
Fang, Xiao-Xia; Li, Han-Yang; Fang, Pan; Pan, Jian-Zhang; Fang, Qun
2016-04-01
In this paper, we present a compact handheld laser-induced fluorescence (LIF) detector based on a 450 nm laser diode and quasi-confocal optical configuration with a total size of 9.1 × 6.2 × 4.1 cm(3). Since there are few reports on the use of 450 nm laser diode in LIF detection, especially in miniaturized LIF detector, we systematically investigated various optical arrangements suitable for the requirements of 450 nm laser diode and system miniaturization, including focusing lens, filter combination, and pinhole, as well as Raman effect of water at 450 nm excitation wavelength. As the result, the handheld LIF detector integrates the light source (450 nm laser diode), optical circuit module (including a 450 nm band-pass filter, a dichroic mirror, a collimating lens, a 525 nm band-pass filter, and a 1.0mm aperture), optical detector (miniaturized photomultiplier tube), as well as electronic module (including signal recording, processing and displaying units). This detector is capable of working independently with a cost of ca. $2000 for the whole instrument. The detection limit of the instrument for sodium fluorescein solution is 0.42 nM (S/N=3). The broad applicability of the present system was demonstrated in capillary electrophoresis separation of fluorescein isothiocyanate (FITC) labeled amino acids and in flow cytometry of tumor cells as an on-line LIF detector, as well as in droplet array chip analysis as a LIF scanner. We expect such a compact LIF detector could be applied in flow analysis systems as an on-line detector, and in field analysis and biosensor analysis as a portable universal LIF detector. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siketić, Zdravko; Skukan, Natko; Bogdanović Radović, Iva
2015-08-15
In this paper, time-of-flight elastic recoil detection analysis spectrometer with a newly constructed gas ionization detector for energy detection is presented. The detector is designed in the axial (Bragg) geometry with a 3 × 3 array of 50 nm thick Si{sub 3}N{sub 4} membranes as an entrance window. 40 mbar isobutane gas was sufficient to stop a 30 MeV primary iodine beam as well as all recoils in the detector volume. Spectrometer and detector performances were determined showing significant improvement in the mass and energy resolution, respectively, comparing to the spectrometer with a standard silicon particle detector for an energymore » measurement.« less
HEAO-1 analysis of Low Energy Detectors (LED)
NASA Technical Reports Server (NTRS)
Nousek, John A.
1992-01-01
The activities at Penn State University are described. During the period Oct. 1990 to Dec. 1991 work on HEAO-1 analysis of the Low Energy Detectors (LED) concentrated on using the improved detector spectral simulation model and fitting diffuse x-ray background spectral data. Spectral fitting results, x-ray point sources, and diffuse x-ray sources are described.
Woodruff, Steven D.; Mcintyre, Dustin L.
2016-03-29
A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.
NASA Astrophysics Data System (ADS)
Tada, Tsutomu; Hitomi, Keitaro; Tanaka, Tomonobu; Wu, Yan; Kim, Seong-Yun; Yamazaki, Hiromichi; Ishii, Keizo
2011-05-01
Digital pulse processing and electronic noise analysis are proposed for improving energy resolution in planar thallium bromide (TlBr) detectors. An energy resolution of 5.8% FWHM at 662 keV was obtained from a 0.5 mm thick planar TlBr detector at room temperature using a digitizer with a sampling rate of 100 MS/s and 8 bit resolution. The electronic noise in the detector-preamplifier system was measured as a function of pulse shaping time in order to investigate the optimum shaping time for the detector. The depth of interaction (DOI) in TlBr detectors for incident gamma-rays was determined by taking the ratio of pulse heights for fast-shaped to slow-shaped signals. FWHM energy resolution of the detector was improved from 5.8% to 4.2% by implementing depth correction and by using the obtained optimum shaping time.
MTF measurement and analysis of linear array HgCdTe infrared detectors
NASA Astrophysics Data System (ADS)
Zhang, Tong; Lin, Chun; Chen, Honglei; Sun, Changhong; Lin, Jiamu; Wang, Xi
2018-01-01
The slanted-edge technique is the main method for measurement detectors MTF, however this method is commonly used on planar array detectors. In this paper the authors present a modified slanted-edge method to measure the MTF of linear array HgCdTe detectors. Crosstalk is one of the major factors that degrade the MTF value of such an infrared detector. This paper presents an ion implantation guard-ring structure which was designed to effectively absorb photo-carriers that may laterally defuse between adjacent pixels thereby suppressing crosstalk. Measurement and analysis of the MTF of the linear array detectors with and without a guard-ring were carried out. The experimental results indicated that the ion implantation guard-ring structure effectively suppresses crosstalk and increases MTF value.
Robust MOE Detector for DS-CDMA Systems with Signature Waveform Mismatch
NASA Astrophysics Data System (ADS)
Lin, Tsui-Tsai
In this letter, a decision-directed MOE detector with excellent robustness against signature waveform mismatch is proposed for DS-CDMA systems. Both the theoretic analysis and computer simulation results demonstrate that the proposed detector can provide better SINR performance than that of conventional detectors.
Analysis of Interplanetary Dust Experiment Detectors and Other Witness Plates
NASA Technical Reports Server (NTRS)
Griffis, D. P.; Wortman, J. J.
1992-01-01
The development of analytical procedures for identifying the chemical composition of residue from impacts that occurred on the Interplanetary Dust Experiment (IDE) detectors during the flight of Long Duration Exposure Facility (LDEF) and the carrying out of actual analysis on IDE detectors and other witness plates are discussed. Two papers on the following topics are presented: (1) experimental analysis of hypervelocity microparticle impact sites on IDE sensor surfaces; and (2) contaminant interfaces with secondary Ion Mass Spectrometer (SIMS) analysis of microparticle impactor residues on LDEF surfaces.
X-ray fluorescence analysis of alloy and stainless steels using a mercuric iodide detector
NASA Technical Reports Server (NTRS)
Kelliher, Warren C.; Maddox, W. Gene
1988-01-01
A mercuric iodide detector was used for the XRF analysis of a number of NBS standard steels, applying a specially developed correction method for interelemental effects. It is shown that, using this method and a good peak-deconvolution technique, the HgI2 detector is capable of achieving resolutions and count rates needed in the XRF anlysis of multielement samples. The freedom from cryogenic cooling and from power supplies necessary for an electrically cooled device makes this detector a very good candidate for a portable instrument.
HP-41CX Programs for HgCdTe Detectors and IR Systems.
1987-10-01
FIELD GROUP SUB-GROUP IPocket Computer HgCdTe PhotoSensor Programs Detectors Analysis I I l-IP-41 Infrared IR Systems __________ 19 ABSTRACT (Continue... HgCdTe detectors , focal planes, and infrared systems. They have been written to run in a basic HP-41CV or HP-41CX with no card reader or additional ROMs...Programs have been written for the HP-41CX which aid in the analysis of HgCdTe detectors , focal r planes, and infrared systems. They have been installed as a
Digital pulse-shape analysis with a TRACE early silicon prototype
NASA Astrophysics Data System (ADS)
Mengoni, D.; Dueñas, J. A.; Assié, M.; Boiano, C.; John, P. R.; Aliaga, R. J.; Beaumel, D.; Capra, S.; Gadea, A.; Gonzáles, V.; Gottardo, A.; Grassi, L.; Herrero-Bosch, V.; Houdy, T.; Martel, I.; Parkar, V. V.; Perez-Vidal, R.; Pullia, A.; Sanchis, E.; Triossi, A.; Valiente Dobón, J. J.
2014-11-01
A highly segmented silicon-pad detector prototype has been tested to explore the performance of the digital pulse shape analysis in the discrimination of the particles reaching the silicon detector. For the first time a 200 μm thin silicon detector, grown using an ordinary floating zone technique, has been shown to exhibit a level discrimination thanks to the fine segmentation. Light-charged particles down to few MeV have been separated, including their punch-through. A coaxial HPGe detector in time coincidence has further confirmed the quality of the particle discrimination.
Jahn, I; Foraita, R
2008-01-01
In Germany gender-sensitive approaches are part of guidelines for good epidemiological practice as well as health reporting. They are increasingly claimed to realize the gender mainstreaming strategy in research funding by the federation and federal states. This paper focuses on methodological aspects of data analysis, as an empirical data example of which serves the health report of Bremen, a population-based cross-sectional study. Health reporting requires analysis and reporting methods that are able to discover sex/gender issues of questions, on the one hand, and consider how results can adequately be communicated, on the other hand. The core question is: Which consequences do a different inclusion of the category sex in different statistical analyses for identification of potential target groups have on the results? As evaluation methods logistic regressions as well as a two-stage procedure were exploratively conducted. This procedure combines graphical models with CHAID decision trees and allows for visualising complex results. Both methods are analysed by stratification as well as adjusted by sex/gender and compared with each other. As a result, only stratified analyses are able to detect differences between the sexes and within the sex/gender groups as long as one cannot resort to previous knowledge. Adjusted analyses can detect sex/gender differences only if interaction terms have been included in the model. Results are discussed from a statistical-epidemiological perspective as well as in the context of health reporting. As a conclusion, the question, if a statistical method is gender-sensitive, can only be answered by having concrete research questions and known conditions. Often, an appropriate statistic procedure can be chosen after conducting a separate analysis for women and men. Future gender studies deserve innovative study designs as well as conceptual distinctiveness with regard to the biological and the sociocultural elements of the category sex/gender.
Ring Imaging Cerenkov Detector for CLAS12
NASA Astrophysics Data System (ADS)
Muhoza, Mireille; Aaron, Elise; Smoot, Waymond; Benmokhtar, Fatiha
2017-09-01
The CLAS12 detector at Thomas Jefferson National Accelerator Facility (TJNAF) is undergoing an upgrade. One of the additions to this detector is a Ring Imaging Cherenkov (RICH) detector to improve particle identification in the 3-8 GeV/c momentum range. Approximately 400 multi anode photomultiplier tubes (MAPMTs) will be used to detect Cherenkov Radiation in the single photoelectron spectra (SPS). Detector tests are taking place at Jefferson Lab, while analysis software development is ongoing at Duquesne. I will be summarizing the work done at Duquesne on the Database development and the analysis of the ADC and TDCs for the Hamamatsu Multi-Anode PMTs that are used for Cerenkov light radiation. National Science Foundation, Award 1615067.
Development of a mercuric iodide solid state spectrometer for X-ray astronomy
NASA Technical Reports Server (NTRS)
Vallerga, J.
1983-01-01
Mercuric iodide detectors, experimental development for astronomical use, X ray observations of the 1980 Cygnus X-1 High State, astronomical had X ray detectors in current use, detector development, balloon flight of large area (1500 sq cm) Phoswich detectors, had X ray telescope design, shielded mercuric iodide background measurement, Monte Carlo analysis, measurements with a shielded mercuric iodide detector are discussed.
Jiang, Yutao; Hascall, Daniel; Li, Delia; Pease, Joseph H
2015-09-11
In this paper, we introduce a high throughput LCMS/UV/CAD/CLND system that improves upon previously reported systems by increasing both the quantitation accuracy and the range of compounds amenable to testing, in particular, low molecular weight "fragment" compounds. This system consists of a charged aerosol detector (CAD) and chemiluminescent nitrogen detector (CLND) added to a LCMS/UV system. Our results show that the addition of CAD and CLND to LCMS/UV is more reliable for concentration determination for a wider range of compounds than either detector alone. Our setup also allows for the parallel analysis of each sample by all four detectors and so does not significantly increase run time per sample. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, C.G.; De Geronimo, G.; Kirkham, R.
2009-11-13
The fundamental parameter method for quantitative SXRF and PIXE analysis and imaging using the dynamic analysis method is extended to model the changing X-ray yields and detector sensitivity with angle across large detector arrays. The method is implemented in the GeoPIXE software and applied to cope with the large solid-angle of the new Maia 384 detector array and its 96 detector prototype developed by CSIRO and BNL for SXRF imaging applications at the Australian and NSLS synchrotrons. Peak-to-background is controlled by mitigating charge-sharing between detectors through careful optimization of a patterned molybdenum absorber mask. A geological application demonstrates the capabilitymore » of the method to produce high definition elemental images up to {approx}100 M pixels in size.« less
SeaWiFS on-orbit gain and detector calibrations: effect on ocean products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eplee, Robert E. Jr.; Patt, Frederick S.; Franz, Bryan A.
The NASA Ocean Biology Processing Group's Calibration and Validation Team has analyzed the mission-long Sea-Viewing Wide Field-of-View Sensor(SeaWiFS) on-orbit gain and detector calibration time series to verify that lunar calibrations, obtained at nonstandard gains and radiance ranges, are valid for Earth data collected at standard gains and typical ocean, cloud,and land radiances. For gain calibrations, a constant voltage injected into the postdetector electronics allows gain ratios to be computed for all four detectors in each band. The on-orbit lunar gain ratio time series show small drifts for the near infrared bands. These drifts are propagated into the ocean color datamore » through the atmospheric correction parameter ?, which uses the765/865 nm band ratio. An anomaly analysis of global mean normalized water-leaving radiances at510 nm shows a small decrease over the mission,while an analysis of ? shows a corresponding increase. The drifts in the lunar time series for the 765 and865 nm bands were corrected. An analysis of the revised water-leaving radiances at510 nm shows the drift has been eliminated,while an analysis of ? shows a reduced drift. For detector calibrations, solar diffuser observations made by the individual detectors in each band allows the response of the detectors to be monitored separately. The mission-long time series of detector calibration data show that the variations in the response of the individual detectors are less than 0.5% over the mission for all bands except the865 nm band, where the variations are less than 1%.« less
Williamson, N B
1975-03-01
This paper reports a decrease in the interval from calving to conception in two commercial dairy herds, associated with the use of KaMaR Heat Mount Detectors. An economic analysis of the results uses a neoclassical decision theory approach to demonstrate that the use of heat mount detectors is likely to be profitable, with an expected net return of $154.18 per 100 calvings. The analysis demonstrates the suitability of a decision-theoretic approach to the analysis of applied research, and illustrates some of the weaknesses of "Classical" statistical analysis in such circumstances.
Audience segmentation to promote lifestyle for cancer prevention in the Korean community.
Jo, Heui-Sug; Jung, Su-Mi
2011-01-01
This study was designed to segment the audience group of '10 lifestyle for cancer prevention' based on demographic characteristics and the level of knowledge about each guideline for cancer prevention among the community in South Korea. Participants were chosen through stratified random sampling according to the age and gender distribution of Gangwon province in South Korea. A telephone survey was conducted from 6 to 15 calls among 2,025 persons on October 2008. A total of 1,687 persons completed the survey (response rate: 83.3%). Survey items were composed of socio-demographic characteristics such as age, gender, income, education, and residence area and the knowledge level of '10 guidelines for cancer prevention', developed by 'Korean Ministry of Health and Welfare' and covering smoking cessation, appropriate drinking, condom use, and regular physical activity and so on. We selected the priority needed to promote awareness and segmented the audience group based on the demographic characteristics, homogeneous with respect to the knowledge level using Answer Tree 3.0 with CHAID as a data mining algorithm. The results of analysis showed that each guideline of ' 10 lifestyle for cancer prevention' had its own segmented subgroup characterized by each demographic. Especially, residence area, city or county, and ages were the first split on the perceived level of knowledge and these findings suggested that segmentation of audiences for targeting is needed to deliver more effective education of patients and community people. In developing the strategy for effective education, the method of social marketing using the decision tree analysis could be a useful and appropriate tool. The study findings demonstrate the potential value of using more sophisticated strategies of designing and providing health information based on audience segmentation.
NASA Astrophysics Data System (ADS)
Arteche, F.; Rivetta, C.; Iglesias, M.; Echeverria, I.
2016-05-01
Silicon detectors have been used in astrophysics satellites and particle detectors for high energy physics (HEP) experiments. For HEP applications, EMC studies have been conducted in silicon detectors to characterize the impact of external noise on the system. They have shown that problems associated with the new generation of silicon detectors are related with interferences generated by the power supplies and auxiliary equipment connected to the device. Characterization of these interferences along with the coupling and their propagation into the susceptible front-end circuits is required for a successful integration of these systems. This paper presents the analysis of the sensitivity curves and coupling mechanisms between the noise and the front-end electronics that have been observed during the characterization of two silicon detector prototypes: the CMS-Silicon tracker detector (CMS-ST) and Silicon Vertex Detector (Belle II-SVD). As a result of these studies, it is possible to identify critical elements in prototypes to take corrective actions in the design and improve the front-end electronics performance.
Arc detection for the ICRF system on ITER
NASA Astrophysics Data System (ADS)
D'Inca, R.
2011-12-01
The ICRF system for ITER is designed to respect the high voltage breakdown limits. However arcs can still statistically happen and must be quickly detected and suppressed by shutting the RF power down. For the conception of a reliable and efficient detector, the analysis of the mechanism of arcs is necessary to find their unique signature. Numerous systems have been conceived to address the issues of arc detection. VSWR-based detectors, RF noise detectors, sound detectors, optical detectors, S-matrix based detectors. Until now, none of them has succeeded in demonstrating the fulfillment of all requirements and the studies for ITER now follow three directions: improvement of the existing concepts to fix their flaws, development of new theoretically fully compliant detectors (like the GUIDAR) and combination of several detectors to benefit from the advantages of each of them. Together with the physical and engineering challenges, the development of an arc detection system for ITER raises methodological concerns to extrapolate the results from basic experiments and present machines to the ITER scale ICRF system and to conduct a relevant risk analysis.
Guan, Y-G; Yu, P; Yu, S-J; Xu, X-B; Wu, X-L
2012-11-01
A simultaneous analysis of reducing sugars and 5-hydroxymethyl-2-furaldehyde of the Maillard reaction products was detailed. It was based on a high performance anion exchange chromatography with electrochemical detector system and an HPLC with refractive index detector. Results showed that high performance anion exchange chromatography with electrochemical detector using a CarboPac PA-1 column (Dionex Corp., Sunnyvale, CA) was more suitable for reducing sugars and 5-hydroxymethyl-2-furaldehyde determination, especially for trace analysis. The lowest detectable limit of reducing sugars and 5-hydroxymethyl-2-furaldehyde was 0.00005 mol/L in this experiment. However, HPLC with a refractive index detector always produces a tailing peak for 5-hydroxymethyl-2-furaldehyde, and mannose and fructose cannot be absolutely separated. The results of the present study could provide a more sensitive means for 5-hydroxymethyl-2-furaldehyde and reducing sugar detection. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Smet, M H; Breysem, L; Mussen, E; Bosmans, H; Marshall, N W; Cockmartin, L
2018-07-01
To evaluate the impact of digital detector, dose level and post-processing on neonatal chest phantom X-ray image quality (IQ). A neonatal phantom was imaged using four different detectors: a CR powder phosphor (PIP), a CR needle phosphor (NIP) and two wireless CsI DR detectors (DXD and DRX). Five different dose levels were studied for each detector and two post-processing algorithms evaluated for each vendor. Three paediatric radiologists scored the images using European quality criteria plus additional questions on vascular lines, noise and disease simulation. Visual grading characteristics and ordinal regression statistics were used to evaluate the effect of detector type, post-processing and dose on VGA score (VGAS). No significant differences were found between the NIP, DXD and CRX detectors (p>0.05) whereas the PIP detector had significantly lower VGAS (p< 0.0001). Processing did not influence VGAS (p=0.819). Increasing dose resulted in significantly higher VGAS (p<0.0001). Visual grading analysis (VGA) identified a detector air kerma/image (DAK/image) of ~2.4 μGy as an ideal working point for NIP, DXD and DRX detectors. VGAS tracked IQ differences between detectors and dose levels but not image post-processing changes. VGA showed a DAK/image value above which perceived IQ did not improve, potentially useful for commissioning. • A VGA study detects IQ differences between detectors and dose levels. • The NIP detector matched the VGAS of the CsI DR detectors. • VGA data are useful in setting initial detector air kerma level. • Differences in NNPS were consistent with changes in VGAS.
Principal Component Analysis for pulse-shape discrimination of scintillation radiation detectors
NASA Astrophysics Data System (ADS)
Alharbi, T.
2016-01-01
In this paper, we report on the application of Principal Component analysis (PCA) for pulse-shape discrimination (PSD) of scintillation radiation detectors. The details of the method are described and the performance of the method is experimentally examined by discriminating between neutrons and gamma-rays with a liquid scintillation detector in a mixed radiation field. The performance of the method is also compared against that of the conventional charge-comparison method, demonstrating the superior performance of the method particularly at low light output range. PCA analysis has the important advantage of automatic extraction of the pulse-shape characteristics which makes the PSD method directly applicable to various scintillation detectors without the need for the adjustment of a PSD parameter.
Energy resolution improvement of CdTe detectors by using the principal component analysis technique
NASA Astrophysics Data System (ADS)
Alharbi, T.
2018-02-01
In this paper, we report on the application of the Principal Component Analysis (PCA) technique for the improvement of the γ-ray energy resolution of CdTe detectors. The PCA technique is used to estimate the amount of charge-trapping effect which is reflected in the shape of each detector pulse, thereby correcting for the charge-trapping effect. The details of the method are described and the results obtained with a CdTe detector are shown. We have achieved an energy resolution of 1.8 % (FWHM) at 662 keV with full detection efficiency from a 1 mm thick CdTe detector which gives an energy resolution of 4.5 % (FWHM) by using the standard pulse processing method.
GADRAS Detector Response Function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G
2014-11-01
The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.
NASA Astrophysics Data System (ADS)
Grupen, Claus; Shwartz, Boris
2011-09-01
Preface to the first edition; Preface to the second edition; Introduction; 1. Interactions of particles and radiation with matter; 2. Characteristic properties of detectors; 3. Units of radiation measurements and radiation sources; 4. Accelerators; 5. Main physical phenomena used for particle detection and basic counter types; 6. Historical track detectors; 7. Track detectors; 8. Calorimetry; 9. Particle identification; 10. Neutrino detectors; 11. Momentum measurement and muon detection; 12. Ageing and radiation effects; 13. Example of a general-purpose detector: Belle; 14. Electronics; 15. Data analysis; 16. Applications of particle detectors outside particle physics; 17. Glossary; 18. Solutions; 19. Resumé; Appendixes; Index.
[Analysis of community composition in dental plaque of elder people with root caries].
Ma, Shan-fen; Liang, Jing-ping; Jiang, Yun-tao; Zhu, Cai-lian
2011-10-01
To analyze the community in dental plaque of elder people with root caries. Total DNAs were extracted from the root caries dental plaques of nine elders over 60 years of age. Polymerase chaid reaction-based denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the microbial composition, DGGE bands were excised from the gels for sequencing and identification. The dominant genus in root caries dental plaque of elder people were: Acinetobacte [0.9% (1/114)], Actinobaculum [1.8% (2/114)], Actinomyces [15.8% (18/114)], Aggregatibacter [0.9% (1/114)], Capnocytophaga [14.0% (16/114)], Corynebacterium [0.9% (1/114)], Haemophilus [0.9% (1/114)], Mobiluncus [0.9% (1/114)], Naxibacter [0.9% (1/114)], Neisseriaceae [10.5% (12/114)], Porphyromonas [0.9% (1/114)], Prevotella [12.3% (14/114)], Selenomonas [6.1% (7/114)], Staphylococcus [1.8% (2/114)], Oralis streptococcus [6.1% (7/114)], Mutans streptococcu [7.9% (9/114)], Tannerella [0.9% (1/114)], Treponema [1.8% (2/114)], Veillonella [10.5% (12/114)] and two uncultured unknown genus [1.8% (2/114)]. Uncultred genotypes accounted for 19.30% of the total. Gram-positive bacteria genotype accounted for 31.6% (36/114), and Gram-negative bacteria genotype accounted for 66.7% (76/114). There were many bacteria genotypes in root caries dental plaque in the elderly, which were widely distributed. Gram-negative bacteria accounted for the majority. Genotype-specific pathogenic bacteria were not found.
LANDSAT-4 band 6 data evaluation
NASA Technical Reports Server (NTRS)
1983-01-01
The radiometric integrity of the LANDSAT-D thematic mapper (TM) thermal infrared channel (band 6) data was evaluated to develop improved radiometric preprocessing calibration techniques for removal of atmospheric effects. Primary data analysis was spent in evaluating the line to line and detector to detector variation in the thermal infrared data. The data studied was in the core area of Lake Ontario where very stable temperatures were expected. The detectors and the scan direction were taken as separate parameters and an analysis of variance was conducted. The data indicate that significant variability exists both between detectors and between scan directions.
NASA Technical Reports Server (NTRS)
Gorenstein, P.
1979-01-01
The expected performance of an X-ray detector as an instrument aboard a mission to a comet was evaluated. The functions of the detector are both nondispersive analysis of chemical composition and measurement of mass flow from the comet nucleus. Measurements are to be carried out at a distance from the comet. The approach distances considered are of the order of 1000 km and 100 km. A new type of X-ray detector, a proportional scintillation detector, is considered as an X-ray counter for nondispersive elemental analysis.
Characterization and Analysis of InGaAsSb Detectors
NASA Technical Reports Server (NTRS)
Abedin, M. Nurul; Refaat, Tamer F.; Joshi, Ravindra P.; Sulima, Oleg V.; Mauk, Michael; Singh, Upendra N.
2003-01-01
Profiling of atmospheric CO2 at 2 micron wavelength using the LIDAR technique, has recently gained interest. Although several detectors might be suitable for this application, an ideal device would have high gain, low noise and narrow spectral response peaking around the wavelength of interest. This increases the detector signal-to-noise ratio and minimizes the background signal, thereby increasing the device sensitivity and dynamic range. Detectors meeting the above idealized criteria are commercially unavailable for this particular wavelength. In this paper, the characterization and analysis of Sb-based detectors for 2 micron lidar applications are presented. The detectors were manufactured by AstroPower, Inc., with an InGaAsSb absorbing layer and AlGaAsSb passivating layer. The characterization experiments included spectral response, current versus voltage and noise measurements. The effect of the detectors bias voltage and temperature on its performance, have been investigated as well. The detectors peak responsivity is located at the 2 micron wavelength. Comparing three detector samples, an optimization of the spectral response around the 2 micron wavelength, through a narrower spectral period was observed. Increasing the detector bias voltage enhances the device gain at the narrow spectral range, while cooling the device reduces the cut-off wavelength and lowers its noise. Noise-equivalent-power analysis results in a value as low as 4 x 10(exp -12) W/Hz(exp 1/2) corresponding to D* of 1 x 10(exp 10) cmHz(exp 1/2)/W, at -1 V and 20 C. Discussions also include device operational physics and optimization guidelines, taking into account peculiarity of the Type II heterointerface and transport mechanisms under these conditions.
NASA Astrophysics Data System (ADS)
Lien, Amy; Markwardt, Craig B.; Krimm, Hans Albert; Barthelmy, Scott D.; Cenko, Bradley
2018-01-01
We will present the current status of the Swift/BAT detector. In particular, we will report the updated detector gain calibration, the number of enable detectors, and the global bad time intervals with potential calibration issues. We will also summarize the results of the yearly BAT calibration using the Crab nebula. Finally, we will discuss the effects on the BAT survey, such as the sensitivity, localization, and spectral analysis, due to the changes in detector status.
Direct-injection chemiluminescence detector. Properties and potential applications in flow analysis.
Koronkiewicz, Stanislawa; Kalinowski, Slawomir
2015-02-01
We present a novel chemiluminescence detector, with a cone-shaped detection chamber where the analytical reaction takes place. The sample and appropriate reagents are injected directly into the chamber in countercurrent using solenoid-operated pulse micro-pumps. The proposed detector allows for fast measurement of the chemiluminescence signal in stop-flow conditions from the moment of reagents mixing. To evaluate potential applications of the detector the Fenton-like reaction with a luminol-H2O2 system and several transition metal ions (Co(2+), Cu(2+), Cr(3+), Fe(3+)) as a catalyst were investigated. The results demonstrate suitability of the proposed detector for quantitative analysis and for investigations of reaction kinetics, particularly rapid reactions. A multi-pumping flow system was designed and optimized. The developed methodology demonstrated that the shape of the analytical signals strongly depends on the type and concentration of the metal ions. The application of the detector in quantitative analysis was assessed for determination of Fe(III). The direct-injection chemiluminescence detector allows for a sensitive and repeatable (R.S.D. 2%) determination. The intensity of chemiluminescence increased linearly in the range from about 0.5 to 10 mg L(-1) Fe(III) with the detection limit of 0.025 mg L(-1). The time of analysis depended mainly on reaction kinetics. It is possible to achieve the high sampling rate of 144 samples per hour. Copyright © 2014 Elsevier B.V. All rights reserved.
dada - a web-based 2D detector analysis tool
NASA Astrophysics Data System (ADS)
Osterhoff, Markus
2017-06-01
The data daemon, dada, is a server backend for unified access to 2D pixel detector image data stored with different detectors, file formats and saved with varying naming conventions and folder structures across instruments. Furthermore, dada implements basic pre-processing and analysis routines from pixel binning over azimuthal integration to raster scan processing. Common user interactions with dada are by a web frontend, but all parameters for an analysis are encoded into a Uniform Resource Identifier (URI) which can also be written by hand or scripts for batch processing.
Gravitational Wave Experiments - Proceedings of the First Edoardo Amaldi Conference
NASA Astrophysics Data System (ADS)
Coccia, E.; Pizzella, G.; Ronga, F.
1995-07-01
The Table of Contents for the full book PDF is as follows: * Foreword * Notes on Edoardo Amaldi's Life and Activity * PART I. INVITED LECTURES * Sources and Telescopes * Sources of Gravitational Radiation for Detectors of the 21st Century * Neutrino Telescopes * γ-Ray Bursts * Space Detectors * LISA — Laser Interferometer Space Antenna for Gravitational Wave Measurements * Search for Massive Coalescing Binaries with the Spacecraft ULYSSES * Interferometers * The LIGO Project: Progress and Prospects * The VIRGO Experiment: Status of the Art * GEO 600 — A 600-m Laser Interferometric Gravitational Wave Antenna * 300-m Laser Interferometer Gravitational Wave Detector (TAMA300) in Japan * Resonant Detectors * Search for Continuous Gravitational Wave from Pulsars with Resonant Detector * Operation of the ALLEGRO Detector at LSU * Preliminary Results of the New Run of Measurements with the Resonant Antenna EXPLORER * Operation of the Perth Cryogenic Resonant-Bar Gravitational Wave Detector * The NAUTILUS Experiment * Status of the AURIGA Gravitational Wave Antenna and Perspectives for the Gravitational Waves Search with Ultracryogenic Resonant Detectors * Ultralow Temperature Resonant-Mass Gravitational Radiation Detectors: Current Status of the Stanford Program * Electromechanical Transducers and Bandwidth of Resonant-Mass Gravitational-Wave Detectors * Fully Numerical Data Analysis for Resonant Gravitational Wave Detectors: Optimal Filter and Available Information * PART II. CONTRIBUTED PAPERS * Sources and Telescopes * The Local Supernova Production * Periodic Gravitational Signals from Galactic Pulsars * On a Possibility of Scalar Gravitational Wave Detection from the Binary Pulsars PSR 1913+16 * Kazan Gravitational Wave Detector “Dulkyn”: General Concept and Prospects of Construction * Hierarchical Approach to the Theory of Detection of Periodic Gravitational Radiation * Application of Gravitational Antennae for Fundamental Geophysical Problems * On Production of Gravitational Radiation by Particle Accelerators and by High Power Lasers * NESTOR: An Underwater Cerenkov Detector for Neutrino Astronomy * A Cosmic-Ray Veto System for the Gravitational Wave Detector NAUTLUS * Interferometers * Development of a 20m Prototype Laser Interferometric Gravitational Wave Detector at NAO * Production of Higher-Order Light Modes by High Quality Optical Components * Vibration Isolation and Suspension Systems for Laser Interferometer Gravitational Wave Detectors * Quality Factors of Stainless Steel Pendulum Wires * Reduction of Suspension Thermal Noises in Laser Free Masses Gravitational Antenna by Correlation of the Output with Additional Optical Signal * Resonant Detectors * Regeneration Effects in a Resonant Gravitational Wave Detector * A Cryogenic Sapphire Transducer with Double Frequency Pumping for Resonant Mass GW Detectors * Effect of Parametric Instability of Gravitational Wave Antenna with Microwave Cavity Transducer * Resonators of Novel Geometry for Large Mass Resonant Transducers * Measurements on the Gravitational Wave Antenna ALTAIR Equipped with a BAE Transducer * The Rome BAE Transducer: Perspectives of its Application to Ultracryogenic Gravitational Wave Antennas * Behavior of a de SQUID Tightly Coupled to a High-Q Resonant Transducer * High Q-Factor LC Resonators for Optimal Coupling * Comparison Between Different Data Analysis Procedures for Gravitational Wave Pulse Detection * Supernova 1987A Rome Maryland Gravitational Radiation Antenna Observations * Analysis of the Data Recorded by the Maryland and Rome Gravitational-Wave Detectors and the Seismic Data from Moscow and Obninsk Station during SN1987A * Multitransducer Resonant Gravitational Antennas * Local Array of High Frequency Antennas * Interaction Cross-Sections for Spherical Resonant GW Antennae * Signal-To-Noise Analysis for a Spherical Gravitational Wave Antenna Instrumented with Multiple Transducers * On the Design of Ultralow Temperature Spherical Gravitational Wave Detectors * List of Participants
Jain, A; Bednarek, D; Rudin, S
2012-06-01
The need for high-resolution, dynamic x-ray imaging capability for neurovascular applications has put an ever increasing demand on x-ray detector technology. Present state-of-the-art detectors such as flat panels have limited resolution and noise performance. A linear cascade model analysis was used to estimate the theoretical performance for a proposed CMOS-based detector. The proposed CMOS-based detector was assumed to have a 300-micron thick HL type CsI phosphor, 35-micron pixels, a variable gain light image intensifier (LU), and 400 electron readout noise. The proposed detector has a CMOS sensor coupled to an LII which views the output of the CsI phosphor. For the analysis the whole imaging chain was divided into individual stages characterized by one of the basic processes (stochastic/deterministic blurring, binomial selection, quantum gain, additive noise). Standard linear cascade modeling was used for the propagation of signal and noise through the stages and an RQA5 spectrum was assumed. The gain, blurring or transmission of different stages was either measured or taken from manufacturer's specifications. The theoretically calculated MTF and DQE for the proposed detector were compared with a high-resolution, high-sensitive Micro-Angio Fluoroscope (MAF), predecessor of the proposed detector. Signal and noise for each of the 19 stages in the complete imaging chain were calculated and showed improved performance. For example, at 5 cycles/mm the MTF and DQE were 0.08 and 0.28, respectively, for the CMOS detector compared to 0.05 and 0.07 for the MAF detector. The proposed detector will have improved MTF and DQE and slimmer physical dimension due to the elimination of the large fiber-optic taper used in the MAF. Once operational, the proposed CMOS detector will serve as a further improvement over standard flat panel detectors compared to the MAF which is already receiving a very positive reception by neuro-vascular interventionalists. (Support:NIH-Grant R01EB002873) NIH Grants R01- EB008425, R01-EB002873 and an equipment grant from Toshiba Medical Systems Corp. © 2012 American Association of Physicists in Medicine.
Particle Identification in the NIMROD-ISiS Detector Array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wuenschel, S.; Hagel, K.; May, L. W.
Interest in the influence of the neutron-to-proton (N/Z) ratio on multifragmenting nuclei has demanded an improvement in the capabilities of multi-detector arrays as well as the companion analysis methods. The particle identification method used in the NIMROD-ISiS 4{pi} array is described. Performance of the detectors and the analysis method are presented for the reaction of {sup 86}Kr+{sup 64}Ni at 35 MeV/u.
Mercuric iodine room temperature gamma-ray detectors
NASA Technical Reports Server (NTRS)
Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.
1990-01-01
high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.
[Analysis of the effect of detector's operating temperature on SNR in space-based remote sensor].
Li, Zhan-feng; Wang, Shu-rong; Huang, Yu
2012-03-01
Limb viewing is a new viewing geometry for space-based atmospheric remote sensing, but the spectral radiance of atmosphere scattering reduces rapidly with limb height. So the signal-noise-ratio (SNR) is a key performance parameter of limb remote sensor. A SNR model varying with detector's temperature is proposed, based on analysis of spectral radiative transfer and noise' source in representative instruments. The SNR at limb height 70 km under space conditions was validated by simulation experiment on limb remote sensing spectrometer prototype. Theoretic analysis and experiment's results indicate congruously that when detector's temperature reduces to some extent, a maximum SNR will be reached. After considering the power consumption, thermal conductivity and other issues, optimal operating temperature of detector can be decided.
Optimized "detectors" for dynamics analysis in solid-state NMR
NASA Astrophysics Data System (ADS)
Smith, Albert A.; Ernst, Matthias; Meier, Beat H.
2018-01-01
Relaxation in nuclear magnetic resonance (NMR) results from stochastic motions that modulate anisotropic NMR interactions. Therefore, measurement of relaxation-rate constants can be used to characterize molecular-dynamic processes. The motion is often characterized by Markov processes using an auto-correlation function, which is assumed to be a sum of multiple decaying exponentials. We have recently shown that such a model can lead to severe misrepresentation of the real motion, when the real correlation function is more complex than the model. Furthermore, multiple distributions of motion may yield the same set of dynamics data. Therefore, we introduce optimized dynamics "detectors" to characterize motions which are linear combinations of relaxation-rate constants. A detector estimates the average or total amplitude of motion for a range of motional correlation times. The information obtained through the detectors is less specific than information obtained using an explicit model, but this is necessary because the information contained in the relaxation data is ambiguous, if one does not know the correct motional model. On the other hand, if one has a molecular dynamics trajectory, one may calculate the corresponding detector responses, allowing direct comparison to experimental NMR dynamics analysis. We describe how to construct a set of optimized detectors for a given set of relaxation measurements. We then investigate the properties of detectors for a number of different data sets, thus gaining an insight into the actual information content of the NMR data. Finally, we show an example analysis of ubiquitin dynamics data using detectors, using the DIFRATE software.
NASA Technical Reports Server (NTRS)
Price, P. B.
1976-01-01
The design, experimental testing, and calibration (error analysis) of a high resolution Cerenkov-scintillation detector is presented. The detector is capable of detecting iron isotopes and heavy ions of cosmic rays, and of performing direct measurements of individual neighboring isotopes at charge resolution 26. It utilizes Lexan (trademark) sheets, and has been used in flight packages of balloons and on the Skylab. The detector will be able to provide more information on violet astrophysical processes, such as thermonuclear reactions on neutron stars. Ground support and display equipment which are to be used in conjunction with the detector are also discussed.
Low energy prompt gamma-ray tests of a large volume BGO detector.
Naqvi, A A; Kalakada, Zameer; Al-Anezi, M S; Raashid, M; Khateeb-ur-Rehman; Maslehuddin, M; Garwan, M A
2012-01-01
Tests of a large volume Bismuth Germinate (BGO) detector were carried out to detect low energy prompt gamma-rays from boron and cadmium-contaminated water samples using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. Inspite of strong interference between the sample- and the detector-associated prompt gamma-rays, an excellent agreement has been observed between the experimental and calculated yields of the prompt gamma-rays, indicating successful application of the large volume BGO detector in the PGNAA analysis of bulk samples using low energy prompt gamma-rays. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Pendleton, Geoffrey N.; Paciesas, William S.; Mallozzi, Robert S.; Koshut, Tom M.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Horack, John M.; Lestrade, John Patrick
1995-01-01
The detector response matrices for the Burst And Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO) are described, including their creation and operation in data analysis. These response matrices are a detailed abstract representation of the gamma-ray detectors' operating characteristics that are needed for data analysis. They are constructed from an extensive set of calibration data coupled with a complex geometry electromagnetic cascade Monte Carlo simulation code. The calibration tests and simulation algorithm optimization are described. The characteristics of the BATSE detectors in the spacecraft environment are also described.
Noise characteristics analysis of short wave infrared InGaAs focal plane arrays
NASA Astrophysics Data System (ADS)
Yu, Chunlei; Li, Xue; Yang, Bo; Huang, Songlei; Shao, Xiumei; Zhang, Yaguang; Gong, Haimei
2017-09-01
The increasing application of InGaAs short wave infrared (SWIR) focal plane arrays (FPAs) in low light level imaging requires ultra-low noise FPAs. This paper presents the theoretical analysis of FPA noise, and point out that both dark current and detector capacitance strongly affect the FPA noise. The impact of dark current and detector capacitance on FPA noise is compared in different situations. In order to obtain low noise performance FPAs, the demand for reducing detector capacitance is higher especially when pixel pitch is smaller, integration time is shorter, and integration capacitance is larger. Several InGaAs FPAs were measured and analyzed, the experiments' results could be well fitted to the calculated results. The study found that the major contributor of FPA noise is coupled noise with shorter integration time. The influence of detector capacitance on FPA noise is more significant than that of dark current. To investigate the effect of detector performance on FPA noise, two kinds of photodiodes with different concentration of the absorption layer were fabricated. The detectors' performance and noise characteristics were measured and analyzed, the results are consistent with that of theoretical analysis.
Rahman, Md Musfiqur; Abd El-Aty, A M; Kim, Sung-Woo; Shin, Sung Chul; Shin, Ho-Chul; Shim, Jae-Han
2017-01-01
In pesticide residue analysis, relatively low-sensitivity traditional detectors, such as UV, diode array, electron-capture, flame photometric, and nitrogen-phosphorus detectors, have been used following classical sample preparation (liquid-liquid extraction and open glass column cleanup); however, the extraction method is laborious, time-consuming, and requires large volumes of toxic organic solvents. A quick, easy, cheap, effective, rugged, and safe method was introduced in 2003 and coupled with selective and sensitive mass detectors to overcome the aforementioned drawbacks. Compared to traditional detectors, mass spectrometers are still far more expensive and not available in most modestly equipped laboratories, owing to maintenance and cost-related issues. Even available, traditional detectors are still being used for analysis of residues in agricultural commodities. It is widely known that the quick, easy, cheap, effective, rugged, and safe method is incompatible with conventional detectors owing to matrix complexity and low sensitivity. Therefore, modifications using column/cartridge-based solid-phase extraction instead of dispersive solid-phase extraction for cleanup have been applied in most cases to compensate and enable the adaptation of the extraction method to conventional detectors. In gas chromatography, the matrix enhancement effect of some analytes has been observed, which lowers the limit of detection and, therefore, enables gas chromatography to be compatible with the quick, easy, cheap, effective, rugged, and safe extraction method. For liquid chromatography with a UV detector, a combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction was found to reduce the matrix interference and increase the sensitivity. A suitable double-layer column/cartridge-based solid-phase extraction might be the perfect solution, instead of a time-consuming combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction. Therefore, replacing dispersive solid-phase extraction with column/cartridge-based solid-phase extraction in the cleanup step can make the quick, easy, cheap, effective, rugged, and safe extraction method compatible with traditional detectors for more sensitive, effective, and green analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of Cadmium Based Neutron Detector Configurations
NASA Astrophysics Data System (ADS)
James, Brian; Rees, Lawrence; Czirr, J. Bart
2012-10-01
Due to national security concerns pertaining to the smuggling of special nuclear materials and a small supply of He-3 for use in neutron detectors, there is currently a need for a new kind of neutron detector. Using Monte Carlo techniques I have studied the neutron capture efficiency of an array of cadmium wedge detectors in the presence of a californium source. By using varying numbers of wedges and comparing their capture ratios we will be better able to design future detectors.
Suomi NPP VIIRS Striping Analysis using Radiative Transfer Model Calculations
NASA Astrophysics Data System (ADS)
Wang, Z.; Cao, C.
2015-12-01
Modern satellite radiometers such as VIIRS have many detectors with slightly different relative spectral response (RSR). These differences can introduce artifacts such as striping in the imagery. In recent studies we have analyzed the striping pattern related to the detector level RSR difference in VIIRS Thermal Emissive Bands (TEB) M15 and M16, which includes line-by-line radiative transfer model (LBLRTM) detector level response study and onboard detector stability evaluation using the solar diffuser. Now we extend these analysis to the Reflective Solar Bands (RSB) using MODTRAN atmospheric radiative transfer model (RTM) for detector level radiance simulation. Previous studies analyzed the striping pattern in the images of VIIRS ocean color and reflectance in RSB, further studies about the root cause for striping are still needed. In this study, we will use the MODTRAN model at spectral resolution of 1 cm^-1 under different atmospheric conditions for VIIRS RSB, for example band M1 centered at 410nm which is used for Ocean Color product retrieval. The impact of detector level RSR difference, atmospheric dependency, and solar geometry on the striping in VIIRS SDR imagery will be investigated. The cumulative histogram method used successfully for the TEB striping analysis will be used to quantify the striping. These analysis help S-NPP and J1 to better understand the root cause for VIIRS image artifacts and reduce the uncertainties in geophysical retrievals to meet the user needs.
Techniques Suitable for a Portable Wear Metal Analyzer.
1981-09-01
measured by a detector. Commonly used detectors are semiconductor detectors or proportional counters. b. Energy-Dispersive XRPS . In the energy-dispersive...because the sample must be charred before the analysis. C. X-Ray Fluorescence Spectroscopy. Normally the counting time for XRPS is 100 seconds
NASA Technical Reports Server (NTRS)
Woeller, F. H.; Kojiro, D. R.; Carle, G. C.
1984-01-01
The present investigation is concerned with a miniature metastable ionization detector featuring an unconventional electrode configuration, whose performance characteristics parallel those of traditional design. The ionization detector is to be incorporated in a flight gas chromatograph (GC) for use in the Space Shuttle. The design of the detector is discussed, taking into account studies which verified the sensitivity of the detector. The triaxial design of the detector is compared with a flat-plate style. The obtained results show that the principal goal of developing a miniature, highly sensitive ionization detector for flight applications was achieved. Improved fabrication techniques will utilize glass-to-metal seals and brazing procedures.
Radiograph and passive data analysis using mixed variable optimization
Temple, Brian A.; Armstrong, Jerawan C.; Buescher, Kevin L.; Favorite, Jeffrey A.
2015-06-02
Disclosed herein are representative embodiments of methods, apparatus, and systems for performing radiography analysis. For example, certain embodiments perform radiographic analysis using mixed variable computation techniques. One exemplary system comprises a radiation source, a two-dimensional detector for detecting radiation transmitted through a object between the radiation source and detector, and a computer. In this embodiment, the computer is configured to input the radiographic image data from the two-dimensional detector and to determine one or more materials that form the object by using an iterative analysis technique that selects the one or more materials from hierarchically arranged solution spaces of discrete material possibilities and selects the layer interfaces from the optimization of the continuous interface data.
77 FR 30555 - Petitions for Modification of Application of Existing Mandatory Safety Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
..., oscilloscopes, vibration analysis machines, insulation testers (meggers), and cable fault detectors (impulse... temperature probes; infrared temperature devices and recorders; insulation testers (meggers); voltage, current..., vibration analysis machines, insulation testers (meggers), and cable fault detectors (impulse generators and...
Ovejero, M C; Pérez Vega-Leal, A; Gallardo, M I; Espino, J M; Selva, A; Cortés-Giraldo, M A; Arráns, R
2017-02-01
The aim of this work is to present a new data acquisition, control, and analysis software system written in LabVIEW. This system has been designed to obtain the dosimetry of a silicon strip detector in polyethylene. It allows the full automation of the experiments and data analysis required for the dosimetric characterization of silicon detectors. It becomes a useful tool that can be applied in the daily routine check of a beam accelerator.
Superlinear threshold detectors in quantum cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lydersen, Lars; Maroey, Oystein; Skaar, Johannes
2011-09-15
We introduce the concept of a superlinear threshold detector, a detector that has a higher probability to detect multiple photons if it receives them simultaneously rather than at separate times. Highly superlinear threshold detectors in quantum key distribution systems allow eavesdropping the full secret key without being revealed. Here, we generalize the detector control attack, and analyze how it performs against quantum key distribution systems with moderately superlinear detectors. We quantify the superlinearity in superconducting single-photon detectors based on earlier published data, and gated avalanche photodiode detectors based on our own measurements. The analysis shows that quantum key distribution systemsmore » using detector(s) of either type can be vulnerable to eavesdropping. The avalanche photodiode detector becomes superlinear toward the end of the gate. For systems expecting substantial loss, or for systems not monitoring loss, this would allow eavesdropping using trigger pulses containing less than 120 photons per pulse. Such an attack would be virtually impossible to catch with an optical power meter at the receiver entrance.« less
Gaseous detectors for energy dispersive X-ray fluorescence analysis
NASA Astrophysics Data System (ADS)
Veloso, J. F. C. A.; Silva, A. L. M.
2018-01-01
The energy resolution capability of gaseous detectors is being used in the last years to perform studies on the detection of characteristic X-ray lines emitted by elements when excited by external radiation sources. One of the most successful techniques is the Energy Dispersive X-ray Fluorescence (EDXRF) analysis. Recent developments in the new generation of micropatterned gaseous detectors (MPGDs), triggered the possibility not only of recording the photon energy, but also of providing position information, extending their application to EDXRF imaging. The relevant features and strategies to be applied in gaseous detectors in order to better fit the requirements for EDXRF imaging will be reviewed and discussed, and some application examples will be presented.
Advanced Gravitational Wave Detectors
NASA Astrophysics Data System (ADS)
Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.
2012-02-01
Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.
Test of the Equivalence Principle in an Einstein Elevator
NASA Technical Reports Server (NTRS)
Shapiro, Irwin I.; Glashow, S.; Lorenzini, E. C.; Cosmo, M. L.; Cheimets, P. N.; Finkelstein, N.; Schneps, M.
2005-01-01
This Annual Report illustrates the work carried out during the last grant-year activity on the Test of the Equivalence Principle in an Einstein Elevator. The activity focused on the following main topics: (1) analysis and conceptual design of a detector configuration suitable for the flight tests; (2) development of techniques for extracting a small signal from data strings with colored and white noise; (3) design of the mechanism that spins and releases the instrument package inside the cryostat; and (4) experimental activity carried out by our non-US partners (a summary is shown in this report). The analysis and conceptual design of the flight-detector (point 1) was focused on studying the response of the differential accelerometer during free fall, in the presence of errors and precession dynamics, for various detector's configurations. The goal was to devise a detector configuration in which an Equivalence Principle violation (EPV) signal at the sensitivity threshold level can be successfully measured and resolved out of a much stronger dynamics-related noise and gravity gradient. A detailed analysis and comprehensive simulation effort led us to a detector's design that can accomplish that goal successfully.
Generation-recombination noise in extrinsic photoconductive detectors
NASA Technical Reports Server (NTRS)
Brukilacchio, T. J.; Skeldon, M. D.; Boyd, R. W.
1984-01-01
A theory of generation-recombination noise is presented and applied to the analysis of the performance limitations of extrinsic photoconductive detectors. The theory takes account both of the photoinduced generation of carriers and of thermal generation that is due to the finite temperature of the detector. Explicit formulas are derived that relate the detector response time, responsivity, and noise equivalent power to the material properties of the photoconductor (such as the presence of compensating impurities) and to the detector's operating conditions, such as its temperature and the presence of background radiation. The detector's performance is shown to degrade at high background levels because of saturation effects.
Ionizing radiation measurements on LDEF: A0015 Free flyer biostack experiment
NASA Technical Reports Server (NTRS)
Benton, E. V.; Frank, A. L.; Benton, E. R.; Csige, I.; Frigo, L. A.
1995-01-01
This report covers the analysis of passive radiation detectors flown as part of the A0015 Free Flyer Biostack on LDEF (Long Duration Exposure Facility). LET (linear energy transfer) spectra and track density measurements were made with CR-39 and Polycarbonate plastic nuclear track detectors. Measurements of total absorbed dose were carried out using Thermoluminescent Detectors. Thermal and resonance neutron dose equivalents were measured with LiF/CR-39 detectors. High energy neutron and proton dose equivalents were measured with fission foil/CR-39 detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yelton, John
The project involved data analysis of data taken with the Belle detector operating at KEKB accelerator, Japan. In addition commissionin of the Belle II detector, which is destined to replace the Belle detector.
Muon detector for the COSINE-100 experiment
NASA Astrophysics Data System (ADS)
Prihtiadi, H.; Adhikari, G.; Adhikari, P.; Barbosa de Souza, E.; Carlin, N.; Choi, S.; Choi, W. Q.; Djamal, M.; Ezeribe, A. C.; Ha, C.; Hahn, I. S.; Hubbard, A. J. F.; Jeon, E. J.; Jo, J. H.; Joo, H. W.; Kang, W.; Kang, W. G.; Kauer, M.; Kim, B. H.; Kim, H.; Kim, H. J.; Kim, K. W.; Kim, N. Y.; Kim, S. K.; Kim, Y. D.; Kim, Y. H.; Kudryavtsev, V. A.; Lee, H. S.; Lee, J.; Lee, J. Y.; Lee, M. H.; Leonard, D. S.; Lim, K. E.; Lynch, W. A.; Maruyama, R. H.; Mouton, F.; Olsen, S. L.; Park, H. K.; Park, H. S.; Park, J. S.; Park, K. S.; Pettus, W.; Pierpoint, Z. P.; Ra, S.; Rogers, F. R.; Rott, C.; Scarff, A.; Spooner, N. J. C.; Thompson, W. G.; Yang, L.; Yong, S. H.
2018-02-01
The COSINE-100 dark matter search experiment has started taking physics data with the goal of performing an independent measurement of the annual modulation signal observed by DAMA/LIBRA. A muon detector was constructed by using plastic scintillator panels in the outermost layer of the shield surrounding the COSINE-100 detector. It detects cosmic ray muons in order to understand the impact of the muon annual modulation on dark matter analysis. Assembly and initial performance tests of each module have been performed at a ground laboratory. The installation of the detector in the Yangyang Underground Laboratory (Y2L) was completed in the summer of 2016. Using three months of data, the muon underground flux was measured to be 328 ± 1(stat.)± 10(syst.) muons/m2/day. In this report, the assembly of the muon detector and the results from the analysis are presented.
Composition Studies with the Telescope Array Surface Detector
NASA Astrophysics Data System (ADS)
Kuznetsov, Mikhail; Piskunov, Maxim; Rubtsov, Grigory; Troitsky, Sergey; Zhezher, Yana
The results on ultra-high-energy cosmic-ray chemical composition based on the data from the Telescope Array surface-detector are presented. The method is based on the multivariate boosted decision tree (BDT) analysis which uses surface-detector observables. The results on average atomic mass in the energy range 1018.0-1020.0 eV are presented. A comparison with the Telescope Array hybrid results and the Pierre Auger Observatory surface detector results is shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samedov, V. V., E-mail: v-samedov@yandex.ru
Fluctuations of charge induced by charge carriers on the detector electrodes make a significant contribution to the energy resolution of ionization detectors, namely, semiconductor detectors and gas and liquid ionization chambers. These fluctuations are determined by the capture of charge carriers, as they drift in the bulk of the detector under the action of an electric field, by traps. In this study, we give a correct mathematical description of charge induction on electrodes of an ionization detector for an arbitrary electric field distribution in the detector with consideration of charge carrier capture by traps. The characteristic function obtained in thismore » study yields the general expression for the distribution function of the charge induced on the detector electrodes. The formulas obtained in this study are useful for analysis of the influence of charge carrier transport on energy resolution of ionization detectors.« less
Simulation of gamma-ray spectra for a variety of user-specified detector designs
NASA Technical Reports Server (NTRS)
Rester, A. C., Jr.
1994-01-01
The gamma-ray spectrum simulation program BSIMUL was designed to allow the operator to follow the path of a gamma-ray through a detector, shield and collimator whose dimensions are entered by the operator. It can also be used to simulate spectra that would be generated by a detector. Several improvements have been made to the program within the last few months. The detector, shield and collimator dimensions can now be entered through an interactive menu whose options are discussed below. In addition, spectra containing more than one gamma-ray energy can now be generated with the menu - for isotopes listed in the program. Adding isotopes to the main routine is also quite easy. Subroutines have been added to enable the operator to specify the material and dimensions of a collimator. This report details the progress made in simulating gamma-ray spectra for a variety of user-specified detector designs. In addition, a short discussion of work done in the related areas of pulse shape analysis and the spectral analysis is included. The pulse shape analysis and spectral analysis work is being performed pursuant to the requirements of contract F-94-C-0006, for the Advanced Research Projects Agency and the U.S. Air Force.
Solínová, Veronika; Kasicka, Václav; Koval, Dusan; Barth, Tomislav; Ciencialová, Alice; Záková, Lenka
2004-08-25
Capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) were used for the analysis of new synthetic derivatives of hypophysis neurohormones--vasopressin and oxytocin, and pancreatic hormone--human insulin (HI) and its octapeptide fragment, derivatized by fluorescent probe, 4-chloro-7-nitrobenzo[1,2,5]oxadiazol (NBD). The suitable composition of background electrolytes (BGEs) was selected on the basis of calculated pH dependence of effective charge of analyzed peptides. Basic ionogenic peptides were analyzed by CZE in the acidic BGE composed of 100 mM H3PO4, 50 mM Tris, pH 2.25. The ionogenic peptides with fluorescent label, NBD, were analyzed in 0.5 M acetic acid, pH 2.5. The best MEKC separation of non-ionogenic peptides was achieved in alkaline BGE, 20 mM Tris, 5 mM H3PO4, with micellar pseudophase formed by 50 mM sodium dodecylsulfate (SDS), pH 8.8. Selected characteristics (noise, detectability of substance, sensitivity of detector) of the UV-absorption detectors (single wavelength detector, multiple-wavelength photodiode array detector (PDA), both of them operating at constant wavelength 206 nm) and laser-induced fluorescence (LIF) detector (excitation/emission wavelength 488/520 nm) were determined. The detectability of peptides in the single wavelength detector was 1.3-6.0 micromol dm(-3) and in the PDA detector 1.6-3.1 micromol dm(-3). The LIF detection was more sensitive, the applied concentration of NBD derivative of insulin fragment in CZE analysis with LIF detection was three orders lower than in CZE with UV-absorption detector, and the detectability of this peptide was improved to 15.8 nmol dm(-3).
Detection techniques for tenuous planetary atmospheres
NASA Technical Reports Server (NTRS)
Hoenig, S. A.
1972-01-01
The research for the development of new types of detectors for analysis of planetary atmospheres is summarized. Topics discussed include: corona discharge humidity detector, surface catalysis and exo-electron emission, and analysis of soil samples by means of exo-electron emission. A report on the exo-electron emission during heterogeneous catalysis is included.
A maximum likelihood analysis of the CoGeNT public dataset
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelso, Chris, E-mail: ckelso@unf.edu
The CoGeNT detector, located in the Soudan Underground Laboratory in Northern Minnesota, consists of a 475 grams (fiducial mass of 330 grams) target mass of p-type point contact germanium detector that measures the ionization charge created by nuclear recoils. This detector has searched for recoils created by dark matter since December of 2009. We analyze the public dataset from the CoGeNT experiment to search for evidence of dark matter interactions with the detector. We perform an unbinned maximum likelihood fit to the data and compare the significance of different WIMP hypotheses relative to each other and the null hypothesis ofmore » no WIMP interactions. This work presents the current status of the analysis.« less
Enhanced numerical analysis of three-color HgCdTe detectors
NASA Astrophysics Data System (ADS)
Jóźwikowski, K.; Rogalski, A.
2007-04-01
The performance of three-color HgCdTe photovoltaic heterostructure detector is examined theoretically. In comparison with two-color detectors with two back-to-back junctions, three-color structure contain an absorber of intermediate wavelength placed between two junctions, and electronic barriers are used to isolate this intermediate region. This structure was first proposed by British workers. Enhanced original computer programs are applied to solve the system of non-linear continuity equations for carriers and Poisson equations. In addition, the numerical analysis includes the dependence of absorption coefficient on Burstein effect as well as interference effects in heterostructure with metallic electrical contacts. Three detector structures with different localizations of separating barriers are analyzed. The calculations results are presented in the form of spatial distributions of bandgap energy and quantum efficiency. It is shown that the performance of the detector is critically dependent on the barrier's doping level and position in relation to the junction. This behavior is serious disadvantage of the considered three color detector. A small shift of the barrier location and doping level causes serious changes in spectral responsivity.
Numerical analysis of three-colour HgCdTe detectors
NASA Astrophysics Data System (ADS)
Jóźwikowski, K.; Rogalski, A.
2007-12-01
The performance of three-colour HgCdTe photovoltaic heterostructure detector is examined theoretically. In comparison with two-colour detectors with two back-to-back junctions, three-colour structure contains an absorber of intermediate wavelength placed between two junctions and electronic barriers are used to isolate this intermediate region. This structure was first proposed by British workers. Three-detector structures with different localizations of separating barriers are analyzed. The calculation results are presented in the form of spatial distributions of bandgap energy and quantum efficiency. Enhanced original computer programs are applied to solve the system of non-linear continuity equations for carriers and Poisson equations. In addition, the numerical analysis includes the dependence of absorption coefficient on Burstein effect as well as interference effects in heterostructure with metallic electrical contacts. It is shown that the performance of the detector is critically dependent on the barrier’s doping level and position in relation to the junction. This behaviour is serious disadvantage of the considered three-colour detector. A small shift of the barrier location and doping level causes serious changes in spectral responsivity.
The Detection of Gravitational Waves
NASA Astrophysics Data System (ADS)
Blair, David G.
2005-10-01
Part I. An Introduction to Gravitational Waves and Methods for their Detection: 1. Gravitational waves in general relativity D. G. Blair; 2. Sources of gravitational waves D. G. Blair; 3. Gravitational wave detectors D. G. Blair; Part II. Gravitational Wave Detectors: 4. Resonant-bar detectors D. G. Blair; 5. Gravity wave dewars W. O. Hamilton; 6. Internal friction in high Q materials J. Ferreirinko; 7. Motion amplifiers and passive transducers J. P. Richard; 8. Parametric transducers P. J. Veitch; 9. Detection of continuous waves K. Tsubono; 10. Data analysis and algorithms for gravitational wave-antennas G. V. Paalottino; Part III. Laser Interferometer Antennas: 11. A Michelson interferometer using delay lines W. Winkler; 12. Fabry-Perot cavity gravity-wave detectors R. W. P. Drever; 13. The stabilisation of lasers for interferometric gravitational wave detectors J. Hough; 14. Vibration isolation for the test masses in interferometric gravitational wave detectors N. A. Robertson; 15. Advanced techniques A. Brillet; 16. Data processing, analysis and storage for interferometric antennas B. F. Schutz; 17. Gravitational wave detection at low and very low frequencies R. W. Hellings.
Read-noise characterization of focal plane array detectors via mean-variance analysis.
Sperline, R P; Knight, A K; Gresham, C A; Koppenaal, D W; Hieftje, G M; Denton, M B
2005-11-01
Mean-variance analysis is described as a method for characterization of the read-noise and gain of focal plane array (FPA) detectors, including charge-coupled devices (CCDs), charge-injection devices (CIDs), and complementary metal-oxide-semiconductor (CMOS) multiplexers (infrared arrays). Practical FPA detector characterization is outlined. The nondestructive readout capability available in some CIDs and FPA devices is discussed as a means for signal-to-noise ratio improvement. Derivations of the equations are fully presented to unify understanding of this method by the spectroscopic community.
Fermi LAT Observations of Cosmic-Ray Electrons
NASA Technical Reports Server (NTRS)
Moiseev, Alexander
2011-01-01
Designed as a gamma-ray instrument, the LAT is a capable detector of high energy cosmic ray electrons. The LAT is composed of a 4x4 array of identical towers. Each tower has a Tracker and a Calorimeter module. Entire LAT is covered by segmented Anti-Coincidence Detector (ACD). The electron data analysis is based on that developed for photons. The main challenge is to identify and separate electrons from all other charged species, mainly CR protons (for gamma-ray analysis this is provided by the Anti-Coincidence Detector)
NASA Astrophysics Data System (ADS)
Elfman, Mikael; Ros, Linus; Kristiansson, Per; Nilsson, E. J. Charlotta; Pallon, Jan
2016-03-01
With the recent advances towards modern Ion Beam Analysis (IBA), going from one- or few-parameter detector systems to multi-parameter systems, it has been necessary to expand and replace the more than twenty years old CAMAC based system. A new VME multi-parameter (presently up to 200 channels) data acquisition and control system has been developed and implemented at the Lund Ion Beam Analysis Facility (LIBAF). The system is based on the VX-511 Single Board Computer (SBC), acting as master with arbiter functionality and consists of standard VME modules like Analog to Digital Converters (ADC's), Charge to Digital Converters (QDC's), Time to Digital Converters (TDC's), scaler's, IO-cards, high voltage and waveform units. The modules have been specially selected to support all of the present detector systems in the laboratory, with the option of future expansion. Typically, the detector systems consist of silicon strip detectors, silicon drift detectors and scintillator detectors, for detection of charged particles, X-rays and γ-rays. The data flow of the raw data buffers out from the VME bus to the final storage place on a 16 terabyte network attached storage disc (NAS-disc) is described. The acquisition process, remotely controlled over one of the SBCs ethernet channels, is also discussed. The user interface is written in the Kmax software package, and is used to control the acquisition process as well as for advanced online and offline data analysis through a user-friendly graphical user interface (GUI). In this work the system implementation, layout and performance are presented. The user interface and possibilities for advanced offline analysis are also discussed and illustrated.
Social capital as a key determinant of perceived benefits of community-based marine protected areas.
Diedrich, Amy; Stoeckl, Natalie; Gurney, Georgina G; Esparon, Michelle; Pollnac, Richard
2017-04-01
Globally, marine protected areas (MPAs) have been relatively unsuccessful in meeting biodiversity objectives. To be effective, they require some alteration of people's use and access to marine resources, which they will resist if they do not perceive associated benefits. Stakeholders' support is crucial to ecological success of MPAs, and their support is likely to depend on their capacity to adapt to and benefit from MPAs. We examined the influence of social adaptive capacity (SAC) on perceived benefits of MPAs in Siquijor, Philippines, in the Coral Triangle. This region has substantial biodiversity and a population of over 120 million people, many of them dependent on marine resources for food and income. The region has many MPAs, most of which are managed under decentralized governance systems. We collected survey data from 540 households in 19 villages with associated MPAs. We evaluated the influence of multiple SAC variables (e.g., occupational multiplicity and social capital) on perceived benefits with decision trees (CHAID) and qualitatively analyzed this relationship with respect to types and recipients of benefits. Our models revealed the key role of social capital, particularly trust in leadership, in influencing perceptions of benefits (χ 2 = 14.762, p = 0.000). A path analysis revealed that perceptions of distributional equity were a key mechanism through which social capital affected perceived MPA benefits (root mean-square error of approximation = 0.050). Building social capital and equity within communities could lead to more effective management of MPAs and thus to expenditure of fewer resources relative to, for example, regulation enforcement. © 2016 Society for Conservation Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, Chris; Daigle, Stephen; Buckner, Matt
2015-02-18
The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ) 15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.
Neutron - Alpha irradiation response of superheated emulsion detectors
NASA Astrophysics Data System (ADS)
Felizardo, M.; Morlat, T.; Girard, T. A.; Kling, A.; Fernandes, A. C.; Marques, J. G.; Carvalho, F.; Ramos, A. R.
2017-08-01
We report new experimental investigations of the response of single superheated emulsion detectors with small droplet (<30 μm radii) size distributions to both α- and neutron irradiations. Analysis of the results in terms of the underlying detector physics yields a toy model which reasonably reproduces the observations, and identifies the initial energy of the α in the liquid and distribution of droplet sizes as primarily responsible for the detector capacity to distinguish between nuclear recoil and α events.
Distributions-per-level: a means of testing level detectors and models of patch-clamp data.
Schröder, I; Huth, T; Suitchmezian, V; Jarosik, J; Schnell, S; Hansen, U P
2004-01-01
Level or jump detectors generate the reconstructed time series from a noisy record of patch-clamp current. The reconstructed time series is used to create dwell-time histograms for the kinetic analysis of the Markov model of the investigated ion channel. It is shown here that some additional lines in the software of such a detector can provide a powerful new means of patch-clamp analysis. For each current level that can be recognized by the detector, an array is declared. The new software assigns every data point of the original time series to the array that belongs to the actual state of the detector. From the data sets in these arrays distributions-per-level are generated. Simulated and experimental time series analyzed by Hinkley detectors are used to demonstrate the benefits of these distributions-per-level. First, they can serve as a test of the reliability of jump and level detectors. Second, they can reveal beta distributions as resulting from fast gating that would usually be hidden in the overall amplitude histogram. Probably the most valuable feature is that the malfunctions of the Hinkley detectors turn out to depend on the Markov model of the ion channel. Thus, the errors revealed by the distributions-per-level can be used to distinguish between different putative Markov models of the measured time series.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horne, Steve M.; Thoreson, Greg G.; Theisen, Lisa A.
2016-05-01
The Gamma Detector Response and Analysis Software–Detector Response Function (GADRAS-DRF) application computes the response of gamma-ray and neutron detectors to incoming radiation. This manual provides step-by-step procedures to acquaint new users with the use of the application. The capabilities include characterization of detector response parameters, plotting and viewing measured and computed spectra, analyzing spectra to identify isotopes, and estimating source energy distributions from measured spectra. GADRAS-DRF can compute and provide detector responses quickly and accurately, giving users the ability to obtain usable results in a timely manner (a matter of seconds or minutes).
Design and Fabrication of Cherenkov Counters for the Detection of SNM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Anna S.; Lanza, Richard; Galaitsis, Anthony
2011-12-13
The need for large-size detectors for long-range active interrogation (AI) detection of SNM has generated interest in water-based detector technologies. Water Cherenkov Detectors (WCD) were selected for this research because of their transportability, scalability, and an inherent energy threshold. The detector design and analysis was completed using the Geant4 toolkit. It was demonstrated both computationally and experimentally that it is possible to use WCD to detect and characterize gamma rays. Absolute efficiency of the detector (with no energy cuts applied) was determined to be around 30% for a {sup 60}Co source.
NASA Technical Reports Server (NTRS)
Carpenter, Paul; Curreri, Peter A. (Technical Monitor)
2002-01-01
This course will cover practical applications of the energy-dispersive spectrometer (EDS) to x-ray microanalysis. Topics covered will include detector technology, advances in pulse processing, resolution and performance monitoring, detector modeling, peak deconvolution and fitting, qualitative and quantitative analysis, compositional mapping, and standards. An emphasis will be placed on use of the EDS for quantitative analysis, with discussion of typical problems encountered in the analysis of a wide range of materials and sample geometries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gearhart, A; Peterson, T; Johnson, L
2015-06-15
Purpose: To evaluate the impact of the exceptional energy resolution of germanium detectors for preclinical SPECT in comparison to conventional detectors. Methods: A cylindrical water phantom was created in GATE with a spherical Tc-99m source in the center. Sixty-four projections over 360 degrees using a pinhole collimator were simulated. The same phantom was simulated using air instead of water to establish the true reconstructed voxel intensity without attenuation. Attenuation correction based on the Chang method was performed on MLEM reconstructed images from the water phantom to determine a quantitative measure of the effectiveness of the attenuation correction. Similarly, a NEMAmore » phantom was simulated, and the effectiveness of the attenuation correction was evaluated. Both simulations were carried out using both NaI detectors with an energy resolution of 10% FWHM and Ge detectors with an energy resolution of 1%. Results: Analysis shows that attenuation correction without scatter correction using germanium detectors can reconstruct a small spherical source to within 3.5%. Scatter analysis showed that for standard sized objects in a preclinical scanner, a NaI detector has a scatter-to-primary ratio between 7% and 12.5% compared to between 0.8% and 1.5% for a Ge detector. Preliminary results from line profiles through the NEMA phantom suggest that applying attenuation correction without scatter correction provides acceptable results for the Ge detectors but overestimates the phantom activity using NaI detectors. Due to the decreased scatter, we believe that the spillover ratio for the air and water cylinders in the NEMA phantom will be lower using germanium detectors compared to NaI detectors. Conclusion: This work indicates that the superior energy resolution of germanium detectors allows for less scattered photons to be included within the energy window compared to traditional SPECT detectors. This may allow for quantitative SPECT without implementing scatter correction, reducing uncertainties introduced by scatter correction algorithms. Funding provided by NIH/NIBIB grant R01EB013677; Todd Peterson, Ph.D., has had a research contract with PHDs Co., Knoxville, TN.« less
Optical modeling of waveguide coupled TES detectors towards the SAFARI instrument for SPICA
NASA Astrophysics Data System (ADS)
Trappe, N.; Bracken, C.; Doherty, S.; Gao, J. R.; Glowacka, D.; Goldie, D.; Griffin, D.; Hijmering, R.; Jackson, B.; Khosropanah, P.; Mauskopf, P.; Morozov, D.; Murphy, A.; O'Sullivan, C.; Ridder, M.; Withington, S.
2012-09-01
The next generation of space missions targeting far-infrared wavelengths will require large-format arrays of extremely sensitive detectors. The development of Transition Edge Sensor (TES) array technology is being developed for future Far-Infrared (FIR) space applications such as the SAFARI instrument for SPICA where low-noise and high sensitivity is required to achieve ambitious science goals. In this paper we describe a modal analysis of multi-moded horn antennas feeding integrating cavities housing TES detectors with superconducting film absorbers. In high sensitivity TES detector technology the ability to control the electromagnetic and thermo-mechanical environment of the detector is critical. Simulating and understanding optical behaviour of such detectors at far IR wavelengths is difficult and requires development of existing analysis tools. The proposed modal approach offers a computationally efficient technique to describe the partial coherent response of the full pixel in terms of optical efficiency and power leakage between pixels. Initial wok carried out as part of an ESA technical research project on optical analysis is described and a prototype SAFARI pixel design is analyzed where the optical coupling between the incoming field and the pixel containing horn, cavity with an air gap, and thin absorber layer are all included in the model to allow a comprehensive optical characterization. The modal approach described is based on the mode matching technique where the horn and cavity are described in the traditional way while a technique to include the absorber was developed. Radiation leakage between pixels is also included making this a powerful analysis tool.
NASA Astrophysics Data System (ADS)
de Celis, B.; de la Fuente, R.; Williart, A.; de Celis Alonso, B.
2007-09-01
A novel system has been developed for the detection of low radioactivity levels using coincidence techniques. The device combines a phoswich detector for α/β/γ ray recognition with a fast digital card for electronic pulse analysis. The detector is able to discriminate different types of radiation in a mixed α/β/γ field and can be used in a coincidence mode by identifying the composite signal produced by the simultaneous detection of β particles in a plastic scintillator and γ rays in an NaI(Tl) scintillator. Use of a coincidence technique with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty, which made it necessary to monitor the low levels of xenon radioisotopes produced by underground nuclear explosions. Previous studies have shown that combining CaF 2(Eu) for β ray detection and NaI(Tl) for γ ray detection makes it difficult to identify the coincidence signals because of the similar fluorescence decay times of the two scintillators. With the device proposed here, it is possible to identify the coincidence events owing to the short fluorescence decay time of the plastic scintillator. The sensitivity of the detector may be improved by employing liquid scintillators, which allow low radioactivity levels from actinides to be measured when present in environmental samples. The device developed is simpler to use than conventional coincidence equipment because it uses a single detector and electronic circuit, and it offers fast and precise analysis of the coincidence signals by employing digital pulse shape analysis.
USDA-ARS?s Scientific Manuscript database
A ‘dilute-and-shoot’ method for vitamin D and triacylglycerols is demonstrated that employed four mass spectrometers, operating in different ionization modes, for a ‘quadruple parallel mass spectrometry’ analysis, plus three other detectors, for seven detectors overall. Sets of five samples of diet...
Conceptual study of a heavy-ion-ERDA spectrometer for energies below 6 MeV
NASA Astrophysics Data System (ADS)
Julin, Jaakko; Sajavaara, Timo
2017-09-01
Elastic recoil detection analysis (ERDA) is a well established technique and it offers unique capabilities in thin film analysis. Simultaneous detection and depth profiling of all elements, including hydrogen, is possible only with time-of-flight ERDA. Bragg ionization chambers or ΔE - E detectors can also be used to identify the recoiling element if sufficiently high energies are used. The chief limitations of time-of-flight ERDA are the beam induced sample damage and the requirement of a relatively large accelerator. In this paper we propose a detector setup, which could be used with 3 MeV to 6 MeV medium heavy beams from either a single ended accelerator (40Ar) or from a tandem accelerator (39K). The detector setup consists of two timing detectors and a gas ionization chamber energy detector. Compared to use of very heavy low energy ions the hydrogen recoils with this beam have sufficient energy to be detected with current gas ionization chamber energy detector. To reduce the beam induced damage the proposed detector setup covers a solid angle larger than 1 msr, roughly an order of magnitude improvement over most time-of-flight ERDA setups. The setup could be used together with a small accelerator to be used for light element analysis of approximately 50 nm films. The concept is tested with 39K beam from a 1.7 MV Pelletron tandem accelerator with the Jyväskylä ToF-ERDA setup. In addition to the measurements effects related to low energies and increase in the solid angle are simulated with Monte Carlo methods.
Detector Simulation and WIMP Search Analysis for the Cryogenic Dark Matter Search Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, Kevin
2013-06-01
Astrophysical and cosmological measurements on the scales of galaxies, galaxy clusters, and the universe indicate that 85% of the matter in the universe is composed of dark matter, made up of non-baryonic particles that interact with cross-sections on the weak scale or lower. Hypothetical Weakly Interacting Massive Particles, or WIMPs, represent a potential solution to the dark matter problem, and naturally arise in certain Standard Model extensions. The Cryogenic Dark Matter Search (CDMS) collaboration aims to detect the scattering of WIMP particles from nuclei in terrestrial detectors. Germanium and silicon particle detectors are deployed in the Soudan Underground Laboratory inmore » Minnesota. These detectors are instrumented with phonon and ionization sensors, which allows for discrimination against electromagnetic backgrounds, which strike the detector at rates orders of magnitude higher than the expected WIMP signal. This dissertation presents the development of numerical models of the physics of the CDMS detectors, implemented in a computational package collectively known as the CDMS Detector Monte Carlo (DMC). After substantial validation of the models against data, the DMC is used to investigate potential backgrounds to the next iteration of the CDMS experiment, known as SuperCDMS. Finally, an investigation of using the DMC in a reverse Monte Carlo analysis of WIMP search data is presented.« less
LArSoft: toolkit for simulation, reconstruction and analysis of liquid argon TPC neutrino detectors
NASA Astrophysics Data System (ADS)
Snider, E. L.; Petrillo, G.
2017-10-01
LArSoft is a set of detector-independent software tools for the simulation, reconstruction and analysis of data from liquid argon (LAr) neutrino experiments The common features of LAr time projection chambers (TPCs) enable sharing of algorithm code across detectors of very different size and configuration. LArSoft is currently used in production simulation and reconstruction by the ArgoNeuT, DUNE, LArlAT, MicroBooNE, and SBND experiments. The software suite offers a wide selection of algorithms and utilities, including those for associated photo-detectors and the handling of auxiliary detectors outside the TPCs. Available algorithms cover the full range of simulation and reconstruction, from raw waveforms to high-level reconstructed objects, event topologies and classification. The common code within LArSoft is contributed by adopting experiments, which also provide detector-specific geometry descriptions, and code for the treatment of electronic signals. LArSoft is also a collaboration of experiments, Fermilab and associated software projects which cooperate in setting requirements, priorities, and schedules. In this talk, we outline the general architecture of the software and the interaction with external libraries and detector-specific code. We also describe the dynamics of LArSoft software development between the contributing experiments, the projects supporting the software infrastructure LArSoft relies on, and the core LArSoft support project.
NASA Astrophysics Data System (ADS)
Abbaszadeh, Shiva; Karim, Karim S.; Karanassios, Vassili
2013-05-01
Traditionally, samples are collected on-site (i.e., in the field) and are shipped to a lab for chemical analysis. An alternative is offered by using portable chemical analysis instruments that can be used on-site (i.e., in the field). Many analytical measurements by optical emission spectrometry require use of light-sources and of spectral lines that are in the Ultra-Violet (UV, ~200 nm - 400 nm wavelength) region of the spectrum. For such measurements, a portable, battery-operated, fiber-optic spectrometer equipped with an un-cooled, linear, solid-state detector may be used. To take full advantage of the advanced measurement capabilities offered by state-of-the-art solid-state detectors, cooling of the detector is required. But cooling and other thermal management hamper portability and use on-site because they add size and weight and they increase electrical power requirements. To address these considerations, an alternative was implemented, as described here. Specifically, a microfabricated solid-state detector for measurement of UV photons will be described. Unlike solid-state detectors developed on crystalline Silicon, this miniaturized and low-cost detector utilizes amorphous Selenium (a-Se) as its photosensitive material. Due to its low dark current, this detector does not require cooling, thus it is better suited for portable use and for chemical measurements on-site. In this paper, a microplasma will be used as a light-source of UV photons for the a-Se detector. For example, spectra acquired using a microplasma as a light-source will be compared with those obtained with a portable, fiber-optic spectrometer equipped with a Si-based 2080-element detector. And, analytical performance obtained by introducing ng-amounts of analytes into the microplasma will be described.
Fundamental principles of absolute radiometry and the philosophy of this NBS program (1968 to 1971)
NASA Technical Reports Server (NTRS)
Geist, J.
1972-01-01
A description is given work performed on a program to develop an electrically calibrated detector (also called absolute radiometer, absolute detector, and electrically calibrated radiometer) that could be used to realize, maintain, and transfer a scale of total irradiance. The program includes a comprehensive investigation of the theoretical basis of absolute detector radiometry, as well as the design and construction of a number of detectors. A theoretical analysis of the sources of error is also included.
Physics, Astrophysics and Cosmology with Gravitational Waves.
Sathyaprakash, B S; Schutz, Bernard F
2009-01-01
Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.
Leontaris, F; Clouvas, A; Xanthos, S; Maltezos, A; Potiriadis, C; Kiriakopoulos, E; Guilhot, J
2018-02-01
The Telemetric Early Warning System Network of the Greek Atomic Energy Commission consists mainly of a network of 24 Reuter-Stokes high-pressure ionization chambers (HPIC) for gamma dose rate measurements and covers all Greece. In the present work, the response of the Reuter-Stokes HPIC to terrestrial and cosmic radiation was evaluated in comparison with spectroscopic data obtained by in situ gamma spectrometry measurements with portable hyper pure Germanium detectors (HPGe), near the Reuter-Stokes detectors and time series analysis. For the HPIC detectors, a conversion factor for the measured absorbed dose rate in air (in nGy h-1) to the total ambient dose equivalent rate Ḣ*(10), due to terrestrial and cosmic component, was deduced by the field measurements. Time series analysis of the mean monthly dose rate (measured by the Reuter-Stokes detector in Thessaloniki, northern Greece, from 2001 to 2016) was performed with advanced statistical methods (Fast Fourier Analysis and Zhao Atlas Marks Transform). Fourier analysis reveals several periodicities (periodogram). The periodogram of the absorbed dose rate in air values was compared with the periodogram of the values measured for the same period (2001-16) and in the same location with a NaI (Tl) detector which in principle is not sensitive to cosmic radiation. The obtained results are presented and discussed. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Baedecker, P.A.; Rowe, J.J.; Steinnes, E.
1977-01-01
The instrumental activation analysis of silicate rocks using epithermal neutrons has been studied using both high resolution coaxial Ge(Li) detectors and low energy photon detectors, and applied to the determination of 23 elements in eight new U.S.G.S. standard rocks. The analytical use X-ray peaks associated with electron capture or internal conversion processes has been evaluated. Of 28 elements which can be considered to be determinable by instrumental means, the epithermal activation approach is capable of giving improved sensitivity and precision in 16 cases, over the normal INAA procedure. In eleven cases the use of the low energy photon detector is thought to show advantages over convertional coaxial Ge(Li) spectroscopy. ?? 1977 Akade??miai Kiado??.
Goulding, F S; Stone, Y
1970-10-16
The past decade has seen the rapid development and exploitation of one of the most significant tools of nuclear physics, the semiconductor radiation detector. Applications of the device to the analysis of materials promises to be one of the major contributions of nuclear research to technology, and may even assist in some aspects of our environmental problems. In parallel with the development of these applications, further developments in detectors for nuclear research are taking place: the use of very thin detectors for heavyion identification, position-sensitive detectors for nuclear-reaction studies, and very pure germanium for making more satisfactory detectors for many applications suggest major future contributions to physics.
High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems
NASA Astrophysics Data System (ADS)
Schell, W. R.; Vives-Batlle, J.; Yoon, S. R.; Tobin, M. J.
1999-02-01
Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min [1, 2]. This paper presents the design features, operational methods, calibration, and detector applications.
Preliminary analysis of EUSO—TA data
NASA Astrophysics Data System (ADS)
Fenu, F.; Piotrowski, L. W.; Shin, H.; Jung, A.; Bacholle, S.; Bisconti, F.; Capel, F.; Eser, J.; Kawasaki, Y.; Kuznetsov, E.; Larsson, O.; Mackovjak, S.; Miyamoto, H.; Plebaniak, Z.; Prevot, G.; Putis, M.; Shinozaki, K.; Adams, J.; Bertaina, M.; Bobik, P.; Casolino, M.; Matthews, J. N.; Ricci, M.; Wiencke, L.;
2016-05-01
The EUSO-TA detector is a pathfinder for the JEM-EUSO project and is currently installed in Black Rock Mesa (Utah) on the site of the Telescope Array fluorescence detectors. Aim of this experiment is to validate the observation principle of JEM-EUSO on air showers measured from ground. The experiment gets data in coincidence with the TA triggers to increase the likelihood of cosmic ray detection. In this framework the collaboration is also testing the detector response with respect to several test events from lasers and LED flashers. Moreover, another aim of the project is the validation of the stability of the data acquisition chain in real sky condition and the optimization of the trigger scheme for the rejection of background. Data analysis is ongoing to identify cosmic ray events in coincidence with the TA detector. In this contribution we will show the response of the EUSO-TA detector to all the different typologies of events and we will show some preliminary results on the trigger optimization performed on such data.
Development of a new diffuse near-infrared food measuring
NASA Astrophysics Data System (ADS)
Zhang, Jun; Piao, Renguan
2006-11-01
Industries from agriculture to petrochemistry have found near infrared (NIR) spectroscopic analysis useful for quality control and quantitative analysis of materials and products. The general chemical, polymer chemistry, petrochemistry, agriculture, food and textile industries are currently using NIR spectroscopic methods for analysis. In this study, we developed a new sort NIR instrument for food measuring. The instrument consists of a light source, 12 filters to the prismatic part. The special part is that we use a mirror to get two beams of light. And two PbS detectors were used. One detector collected the radiation of one light beam directly and the value was set as the standard instead the standard white surface. Another light beam irradiate the sample surface, and the diffuse light was collected by another detector. The value of the two detectors was compared and the absorbency was computed. We tested the performance of the NIR instrument in determining the protein and fat content of milk powder. The calibration showed the accuracy of the instrument in practice.
A DSP equipped digitizer for online analysis of nuclear detector signals
NASA Astrophysics Data System (ADS)
Pasquali, G.; Ciaranfi, R.; Bardelli, L.; Bini, M.; Boiano, A.; Giannelli, F.; Ordine, A.; Poggi, G.
2007-01-01
In the framework of the NUCL-EX collaboration, a DSP equipped fast digitizer has been implemented and it has now reached the production stage. Each sampling channel is implemented on a separate daughter-board to be plugged on a VME mother-board. Each channel features a 12-bit, 125 MSamples/s ADC and a Digital Signal Processor (DSP) for online analysis of detector signals. A few algorithms have been written and successfully tested on detectors of different types (scintillators, solid-state, gas-filled), implementing pulse shape discrimination, constant fraction timing, semi-Gaussian shaping, gated integration.
NASA Astrophysics Data System (ADS)
Lee, Chang Yeol; Kim, Woo Chul; Kim, Hun Jeong; Huh, Hyun Do; Park, Seungwoo; Choi, Sang Hyoun; Kim, Kum Bae; Min, Chul Kee; Kim, Seong Hoon; Shin, Dong Oh
2017-02-01
The purpose of this study is to perform a comparison and on analysis of measured dose factor values by using various commercially available high-energy electron beam detectors to measure dose profiles and energy property data. By analyzing the high-energy electron beam data from each detector, we determined the optimal detector for measuring electron beams in clinical applications. The dose linearity, dose-rate dependence, percentage depth dose, and dose profile of each detector were measured to evaluate the dosimetry characteristics of high-energy electron beams. The dose profile and the energy characteristics of high-energy electron beams were found to be different when measured by different detectors. Through comparison with other detectors based on the analyzed data, the microdiamond detector was found to have outstanding dose linearity, a low dose-rate dependency, and a small effective volume. Thus, this detector has outstanding spatial resolution and is the optimal detector for measuring electron beams. Radiation therapy results can be improved and related medical accidents can be prevented by using the procedure developed in this research in clinical practice for all beam detectors when measuring the electron beam dose.
Cherenkov detectors for spatial imaging applications using discrete-energy photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Paul B.; Erickson, Anna S., E-mail: erickson@gatech.edu
Cherenkov detectors can offer a significant advantage in spatial imaging applications when excellent timing response, low noise and cross talk, large area coverage, and the ability to operate in magnetic fields are required. We show that an array of Cherenkov detectors with crude energy resolution coupled with monochromatic photons resulting from a low-energy nuclear reaction can be used to produce a sharp image of material while providing large and inexpensive detector coverage. The analysis of the detector response to relative transmission of photons with various energies allows for reconstruction of material's effective atomic number further aiding in high-Z material identification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behera, Biswaranjan
NOvA is a long-baseline neutrino oscillation experiment. It uses the NuMI beam from Fermilab and two sampling calorimeter detectors placed off-axis from the beam. The 293 ton Near Detector measures the unoscillated neutrino energy spectrum, which can be used to predict the neutrino energy spectrum observed at the 14 kton Far Detector. The Near Detector also provides an excellent opportunity to measure neutrino interaction cross sections with high statistics, which will benefit current and future long-baseline neutrino oscillation experiments. This analysis implements new algorithms to identifymore » $$\
The LTS timing analysis program :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Darrell Jewell; Schwarz, Jens
The LTS Timing Analysis program described in this report uses signals from the Tempest Lasers, Pulse Forming Lines, and Laser Spark Detectors to carry out calculations to quantify and monitor the performance of the the Z-Accelerators laser triggered SF6 switches. The program analyzes Z-shots beginning with Z2457, when Laser Spark Detector data became available for all lines.
Study of the $$\\beta $$ Decay of Fission Products with the DTAS Detector
Guadilla, V.; Algora, A.; Tain, J. L.; ...
2017-01-01
Total Absorption Spectroscopy measurements of the β decay of 103Mo and 103Tc, important contributors to the decay heat summation calculation in reactors, are reported in this work. Furthermore, the analysis of the experiment, performed at IGISOL with the new DTAS detector, show new β intensity that was not detected in previous measurements with Ge detectors.
Zhao, C; Vassiljev, N; Konstantinidis, A C; Speller, R D; Kanicki, J
2017-03-07
High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g. ±30°) improves the low spatial frequency (below 5 mm -1 ) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.
NASA Astrophysics Data System (ADS)
Zhao, C.; Vassiljev, N.; Konstantinidis, A. C.; Speller, R. D.; Kanicki, J.
2017-03-01
High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g. ±30°) improves the low spatial frequency (below 5 mm-1) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.
Room temperature X- and gamma-ray detectors using thallium bromide crystals
NASA Astrophysics Data System (ADS)
Hitomi, K.; Muroi, O.; Shoji, T.; Suehiro, T.; Hiratate, Y.
1999-10-01
Thallium bromide (TlBr) is a compound semiconductor with wide band gap (2.68eV) and high X- and γ-ray stopping power. The TlBr crystals were grown by the horizontal travelling molten zone (TMZ) method using purified material. Two types of room temperature X- and γ-ray detectors were fabricated from the TlBr crystals: TlBr detectors with high detection efficiency for positron annihilation γ-ray (511keV) detection and TlBr detectors with high-energy resolution for low-energy X-ray detection. The detector of the former type demonstrated energy resolution of 56keV FWHM (11%) for 511keV γ-rays. Energy resolution of 1.81keV FWHM for 5.9keV was obtained from the detector of the latter type. In order to analyze noise characteristics of the detector-preamplifier assembly, the equivalent noise charge (ENC) was measured as a function of the amplifier shaping time for the high-resolution detector. This analysis shows that parallel white noise and /1/f noise were dominant noise sources in the detector system. Current-voltage characteristics of the TlBr detector with a small Peltier cooler were also measured. Significant reduction of the detector leakage current was observed for the cooled detectors.
A rocket-borne energy spectrometer using multiple solid-state detectors for particle identification
NASA Technical Reports Server (NTRS)
Fries, K. L.; Smith, L. G.; Voss, H. D.
1979-01-01
A rocket-borne experiment using energy spectrometers that allows particle identification by the use of multiple solid-state detectors is described. The instrumentation provides information regarding the energy spectrum, pitch-angle distribution, and the type of energetic particles present in the ionosphere. Particle identification was accomplished by considering detector loss mechanisms and their effects on various types of particles. Solid state detectors with gold and aluminum surfaces of several thicknesses were used. The ratios of measured energies for the various detectors were compared against known relationships during ground-based analysis. Pitch-angle information was obtained by using detectors with small geometrical factors mounted with several look angles. Particle flux was recorded as a function of rocket azimuth angle. By considering the rocket azimuth, the rocket precession, and the location of the detectors on the rocket, the pitched angle of the incident particles was derived.
A direct electron detector for time-resolved MeV electron microscopy
Vecchione, T.; Denes, P.; Jobe, R. K.; ...
2017-03-15
The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here in this paper, we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixelmore » noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less
A direct electron detector for time-resolved MeV electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecchione, T.; Denes, P.; Jobe, R. K.
The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μmμm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The uniquemore » capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less
A direct electron detector for time-resolved MeV electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecchione, T.; Denes, P.; Jobe, R. K.
The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here in this paper, we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixelmore » noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less
Jain, Amit; Kuhls-Gilcrist, Andrew T; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen
2010-03-01
The MTF, NNPS, and DQE are standard linear system metrics used to characterize intrinsic detector performance. To evaluate total system performance for actual clinical conditions, generalized linear system metrics (GMTF, GNNPS and GDQE) that include the effect of the focal spot distribution, scattered radiation, and geometric unsharpness are more meaningful and appropriate. In this study, a two-dimensional (2D) generalized linear system analysis was carried out for a standard flat panel detector (FPD) (194-micron pixel pitch and 600-micron thick CsI) and a newly-developed, high-resolution, micro-angiographic fluoroscope (MAF) (35-micron pixel pitch and 300-micron thick CsI). Realistic clinical parameters and x-ray spectra were used. The 2D detector MTFs were calculated using the new Noise Response method and slanted edge method and 2D focal spot distribution measurements were done using a pin-hole assembly. The scatter fraction, generated for a uniform head equivalent phantom, was measured and the scatter MTF was simulated with a theoretical model. Different magnifications and scatter fractions were used to estimate the 2D GMTF, GNNPS and GDQE for both detectors. Results show spatial non-isotropy for the 2D generalized metrics which provide a quantitative description of the performance of the complete imaging system for both detectors. This generalized analysis demonstrated that the MAF and FPD have similar capabilities at lower spatial frequencies, but that the MAF has superior performance over the FPD at higher frequencies even when considering focal spot blurring and scatter. This 2D generalized performance analysis is a valuable tool to evaluate total system capabilities and to enable optimized design for specific imaging tasks.
Experiences with radiation portal detectors for international rail transport
NASA Astrophysics Data System (ADS)
Stromswold, D. C.; McCormick, K.; Todd, L.; Ashbaker, E. D.; Evans, J. C.
2006-08-01
Radiation detectors monitored trains at two international borders to evaluate the performance of NaI(Tl) and plastic (polyvinyltoluene: PVT) gamma-ray detectors to characterize rail cargo. The detectors included a prototype NaI(Tl) radiation-portal-monitor panel having four large detectors (10-cm × 10-cm × 41-cm) and a PVT panel with a 41 cm × 173 cm × 3.8-cm detector. Spectral data from the NaI(Tl) and PVT detectors were recorded. Of particular emphasis was the identification of naturally occurring radioactive material (NORM) and the resultant frequency of nuisance alarms. For rail monitoring, the difficulty in stopping trains to perform secondary inspection on alarming cars creates a need for reliable identification of NORM during initial screening. Approximately 30 trains were monitored, and the commodities in individual railcars were ascertained from manifest information. At one test site, the trains carried inter-modal containers that had been unloaded from ships, and at the other site, the trains contained bulk cargo in tanker cars and hopper cars or individual items in boxcars or flatbeds. NORM encountered included potash, liquefied petroleum gas, fireworks, televisions, and clay-based products (e.g., pottery). Analysis of the spectral data included the use of the template-fitting portion of the program GADRAS developed at Sandia National Laboratories. For most of the NORM, the NaI(Tl) data produced a correct identification of the radionuclides present in the railcars. The same analysis was also used for PVT data in which the spectral information (no peaks but only gradual spectral changes including Compton edges) was limited. However, the PVT analysis provided correct identification of 40K and 226Ra in many cases.
Experiences with radiation portal detectors for international rail transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stromswold, David C.; McCormick, Kathleen R.; Todd, Lindsay C.
Radiation detectors monitored trains at two international borders to evaluate the performance of NaI(Tl) and plastic (polyvinyltoluene: PVT) gamma-ray detectors to characterize rail cargo. The detectors included a prototype NaI(Tl) radiation-portal-monitor panel having four large detectors (10-cm × 10-cm × 41-cm) and a PVT panel with a 41 cm × 173 cm × 3.8-cm detector. Spectral data from the NaI(Tl) and PVT detectors were recorded. Of particular emphasis was the identification of naturally occurring radioactive material (NORM) and the resultant frequency of nuisance alarms. For rail monitoring, the difficulty in stopping trains to perform secondary inspection on alarming cars createsmore » a need for reliable identification of NORM during initial screening. Approximately 30 trains were monitored, and the commodities in individual railcars were ascertained from manifest information. At one test site the trains carried inter-modal containers that had been unloaded from ships, and at the other site the trains contained bulk cargo or individual items in boxcars or flatbeds. NORM encountered included potash, liquefied petroleum gas, fireworks, televisions, and clay-based products (e.g., pottery). Analysis of the spectral data included the use of the template-fitting program GADRAS/FitToDB from Sandia National Laboratories. For much of the NORM the NaI(Tl) data produced a correct identification of the radionuclides present in the railcars. The same analysis was also used for PVT data in which the spectral information (no peaks but only gradual spectral changes including Compton edges) was limited. However, the PVT analysis provided correct identification of 40K and 226Ra in many cases.« less
Electron/proton separation and analysis techniques used in the AMS-02 (e+ + e-) flux measurement
NASA Astrophysics Data System (ADS)
Graziani, Maura; AMS-02 Collaboration
2016-04-01
AMS-02 is a large acceptance cosmic ray detector which has been installed on the International Space Station (ISS) in May 2011, where it is collecting cosmic rays up to TeV energies. The search for Dark Matter indirect signatures in the rare components of the cosmic ray fluxes is among the main objectives of the experiment. AMS-02 is providing cosmic electrons and positrons data with an unprecedented precision. This is achieved by means to the excellent hadron/electron separation power obtained combining the independent measurements from the Transition Radiation Detector, electromagnetic Calorimeter and Tracker detectors. In this contribution we will detail the analysis techniques used to distinguish electrons from the hadronic background and show the in-flight performances of these detectors relevant for the electron/positron measurements.
Handheld CZT radiation detector
Murray, William S.; Butterfield, Kenneth B.; Baird, William
2004-08-24
A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.
Comparison of morphological and conventional edge detectors in medical imaging applications
NASA Astrophysics Data System (ADS)
Kaabi, Lotfi; Loloyan, Mansur; Huang, H. K.
1991-06-01
Recently, mathematical morphology has been used to develop efficient image analysis tools. This paper compares the performance of morphological and conventional edge detectors applied to radiological images. Two morphological edge detectors including the dilation residue found by subtracting the original signal from its dilation by a small structuring element, and the blur-minimization edge detector which is defined as the minimum of erosion and dilation residues of the blurred image version, are compared with the linear Laplacian and Sobel and the non-linear Robert edge detectors. Various structuring elements were used in this study: regular 2-dimensional, and 3-dimensional. We utilized two criterions for edge detector's performance classification: edge point connectivity and the sensitivity to the noise. CT/MR and chest radiograph images have been used as test data. Comparison results show that the blur-minimization edge detector, with a rolling ball-like structuring element outperforms other standard linear and nonlinear edge detectors. It is less noise sensitive, and performs the most closed contours.
NASA Astrophysics Data System (ADS)
Yuksel, Kivanc; Chang, Xin; Skarbek, Władysław
2017-08-01
The novel smile recognition algorithm is presented based on extraction of 68 facial salient points (fp68) using the ensemble of regression trees. The smile detector exploits the Support Vector Machine linear model. It is trained with few hundreds exemplar images by SVM algorithm working in 136 dimensional space. It is shown by the strict statistical data analysis that such geometric detector strongly depends on the geometry of mouth opening area, measured by triangulation of outer lip contour. To this goal two Bayesian detectors were developed and compared with SVM detector. The first uses the mouth area in 2D image, while the second refers to the mouth area in 3D animated face model. The 3D modeling is based on Candide-3 model and it is performed in real time along with three smile detectors and statistics estimators. The mouth area/Bayesian detectors exhibit high correlation with fp68/SVM detector in a range [0:8; 1:0], depending mainly on light conditions and individual features with advantage of 3D technique, especially in hard light conditions.
Methods for radiation detection and characterization using a multiple detector probe
Akers, Douglas William; Roybal, Lyle Gene
2014-11-04
Apparatuses, methods, and systems relating to radiological characterization of environments are disclosed. Multi-detector probes with a plurality of detectors in a common housing may be used to substantially concurrently detect a plurality of different radiation activities and types. Multiple multi-detector probes may be used in a down-hole environment to substantially concurrently detect radioactive activity and contents of a buried waste container. Software may process, analyze, and integrate the data from the different multi-detector probes and the different detector types therein to provide source location and integrated analysis as to the source types and activity in the measured environment. Further, the integrated data may be used to compensate for differential density effects and the effects of radiation shielding materials within the volume being measured.
NASA Astrophysics Data System (ADS)
Carr, Rachel; Double Chooz Collaboration
2015-04-01
In 2011, Double Chooz reported the first evidence for θ13-driven reactor antineutrino oscillation, derived from observations of inverse beta decay (IBD) events in a single detector located ~ 1 km from two nuclear reactors. Since then, the collaboration has honed the precision of its sin2 2θ13 measurement by reducing backgrounds, improving detection efficiency and systematics, and including additional statistics from IBD events with neutron captures on hydrogen. By 2014, the overwhelmingly dominant contribution to sin2 2θ13 uncertainty was reactor flux uncertainty, which is irreducible in a single-detector experiment. Now, as Double Chooz collects the first data with a near detector, we can begin to suppress that uncertainty and approach the experiment's full potential. In this talk, we show quality checks on initial data from the near detector. We also present our two-detector sensitivity to both sin2 2θ13 and sterile neutrino mixing, which are enhanced by analysis strategies developed in our single-detector phase. In particular, we discuss prospects for the first two-detector results from Double Chooz, expected in 2015.
Gras, Ronda; Luong, Jim; Haddad, Paul R; Shellie, Robert A
2018-05-08
An effective analytical strategy was developed and implemented to exploit the synergy derived from three different detector classes for gas chromatography, namely ultraviolet spectroscopy, flame ionization, and mass spectrometry for volatile compound analysis. This strategy was achieved by successfully hyphenating a user-selectable multi-wavelength diode array detector featuring a positive temperature coefficient thermistor as an isothermal heater to a gas chromatograph. By exploiting the non-destructive nature of the diode array detector, the effluent from the detector was split to two parallel detectors; namely a quadrupole mass spectrometer and a flame ionization detector. This multi-hyphenated configuration with the use of three detectors is a powerful approach not only for selective detection enhancement but also for improvement in structural elucidation of volatile compounds where fewer fragments can be obtained or for isomeric compound analysis. With the diode array detector capable of generating high resolution gas phase spectra, the information collected provides useful confirmatory information without a total dependence on the chromatographic separation process which is based on retention time. This information-rich approach to chromatography is achieved without incurring extra analytical time, resulting in improvements in compound identification accuracy, analytical productivity, and cost. Chromatographic performance obtained from model compounds was found to be acceptable with a relative standard deviation of the retention times of less than 0.01% RSD, and a repeatability at two levels of concentration of 100 and 1000 ppm (v/v) of less than 5% (n = 10). With this configuration, correlation of data between the three detectors was simplified by having near identical retention times for the analytes studied. Copyright © 2018 Elsevier B.V. All rights reserved.
Spectroscopic micro-tomography of metallic-organic composites by means of photon-counting detectors
NASA Astrophysics Data System (ADS)
Pichotka, M.; Jakubek, J.; Vavrik, D.
2015-12-01
The presumed capabilities of photon counting detectors have aroused major expectations in several fields of research. In the field of nuclear imaging ample benefits over standard detectors are to be expected from photon counting devices. First of all a very high contrast, as has by now been verified in numerous experiments. The spectroscopic capabilities of photon counting detectors further allow material decomposition in computed tomography and therefore inherently adequate beam hardening correction. For these reasons measurement setups featuring standard X-ray tubes combined with photon counting detectors constitute a possible replacement of the much more cost intensive tomographic setups at synchrotron light-sources. The actual application of photon counting detectors in radiographic setups in recent years has been impeded by a number of practical issues, above all by restrictions in the detectors size. Currently two tomographic setups in Czech Republic feature photon counting large-area detectors (LAD) fabricated in Prague. The employed large area hybrid pixel-detector assemblies [1] consisting of 10×10/10×5 Timepix devices have a surface area of 143×143 mm2 / 143×71,5 mm2 respectively, suitable for micro-tomographic applications. In the near future LAD devices featuring the Medipix3 readout chip as well as heavy sensors (CdTe, GaAs) will become available. Data analysis is obtained by a number of in house software tools including iterative multi-energy volume reconstruction.In this paper tomographic analysis of of metallic-organic composites is employed to illustrate the capabilities of our technology. Other than successful material decomposition by spectroscopic tomography we present a method to suppress metal artefacts under certain conditions.
Characterization and Analysis of a Multicolor Quantum Well Infrared Photodetector
2006-06-01
and characterization of performance of a newly designed, multicolor quantum well infrared photodetector ( QWIP ). Specifically, it focuses on a detector...quantum well infrared detectors makes them suitable for use in the field. 15. NUMBER OF PAGES 67 14. SUBJECT TERMS Quantum Well, QWIP , Three...characterization of performance of a newly designed, multicolor quantum well infrared photodetector ( QWIP ). Specifically, it focuses on a detector
Hua, Yujuan; Hawryluk, Myron; Gras, Ronda; Shearer, Randall; Luong, Jim
2018-01-01
A fast and reliable analytical technique for the determination of total sulfur levels in complex hydrocarbon matrices is introduced. The method employed flow injection technique using a gas chromatograph as a sample introduction device and a gas phase dual-plasma sulfur chemiluminescence detector for sulfur quantification. Using the technique described, total sulfur measurement in challenging hydrocarbon matrices can be achieved in less than 10 s with sample-to-sample time <2 min. The high degree of selectivity and sensitivity toward sulfur compounds of the detector offers the ability to measure low sulfur levels with a detection limit in the range of 20 ppb w/w S. The equimolar response characteristic of the detector allows the quantitation of unknown sulfur compounds and simplifies the calibration process. Response is linear over a concentration range of five orders of magnitude, with a high degree of repeatability. The detector's lack of response to hydrocarbons enables direct analysis without the need for time-consuming sample preparation and chromatographic separation processes. This flow injection-based sulfur chemiluminescence detection technique is ideal for fast analysis or trace sulfur analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Engel, Erwan; Ratel, Jérémy; Blinet, Patrick; Chin, Sung-Tong; Rose, Gavin; Marriott, Philip J
2013-10-11
The present study discusses the relevance, performance and complementarities of flame photometric detector in phosphorus (FPD/P) and sulfur (FPD/S) modes, micro electron capture detector (μECD), nitrogen phosphorus detector (NPD), flame ionization detector (FID) and time-of-flight mass spectrometer (TOF/MS) for the comprehensive two-dimensional gas chromatography (GC×GC) analysis of pesticides. A mix of 41 pesticides including organophosphorus pesticides, synthetic pyrethroids and fungicides was investigated in order to benchmark GC×GC systems in terms of linearity (R(2)), limits of detection (LOD), and peak shape measures (widths and asymmetries). A mixture of pesticides which contained the heteroatoms phosphorus, sulfur, nitrogen and one or several halogens, was used to acquire a comparative data set to monitor relative detector performances. GC×GC datasets were systematically compared to their GC counterpart acquired with an optimized one-dimensional GC configuration. Compared with FID, considered the most appropriate detector in terms of suitability for GC×GC, the element-selective detector FPD/P and μECD best met the peak widths (0.13-0.27s for FPD/P; 0.22-0.26s for μECD) and tailing factors (0.99-1.66 for FPD/P; 1.32-1.52 for μECD); NPD exhibited similar peak widths (0.23-0.30s), but exceeded those of the above detectors for tailing factors (1.97-2.13). These three detectors had improved detection limits of 3-7 times and 4-20 times lower LODs in GC×GC mode compared with FID and TOF-MS, respectively. In contrast FPD/S had poor peak shape (tailing factor 3.36-5.12) and much lower sensitivity (10-20 fold lower compared to FPD/P). In general, element-selective detectors with favorable detection metrics can be considered viable alternatives for pesticide determination using GC×GC in complex matrices. The controversial issue of sensitivity enhancement in GC×GC was considered for optimized GC and GC×GC operation. For all detectors, we found no significant LOD enhancement in GC×GC. Copyright © 2013 Elsevier B.V. All rights reserved.
Space Environmental Viewing and Analysis Network (SEVAN)
NASA Astrophysics Data System (ADS)
Chilingarian, Ashot
A network of particle detectors located at middle to low latitudes, SEVAN (Space Environ-mental Viewing and Analysis Network), aims to improve fundamental research of the particle acceleration in the vicinity of the sun and the space environment. The new type of particle detectors will simultaneously measure changing fluxes of most species of secondary cosmic rays, thus turning into a powerful integrated device used for exploration of solar modulation effects. The first SEVAN modules are under test operation at Aragats Space Environmental Center in Armenia, in Bulgaria and Croatia. We present the first results of SEVAN operation, as well as some characteristics of the detector setup.
NASA Astrophysics Data System (ADS)
Santarius, John; Navarro, Marcos; Michalak, Matthew; Fancher, Aaron; Kulcinski, Gerald; Bonomo, Richard
2016-10-01
A newly initiated research project will be described that investigates methods for detecting shielded special nuclear materials by combining multi-dimensional neutron sources, forward/adjoint calculations modeling neutron and gamma transport, and sparse data analysis of detector signals. The key tasks for this project are: (1) developing a radiation transport capability for use in optimizing adaptive-geometry, inertial-electrostatic confinement (IEC) neutron source/detector configurations for neutron pulses distributed in space and/or phased in time; (2) creating distributed-geometry, gas-target, IEC fusion neutron sources; (3) applying sparse data and noise reduction algorithms, such as principal component analysis (PCA) and wavelet transform analysis, to enhance detection fidelity; and (4) educating graduate and undergraduate students. Funded by DHS DNDO Project 2015-DN-077-ARI095.
High performance visual display for HENP detectors
NASA Astrophysics Data System (ADS)
McGuigan, Michael; Smith, Gordon; Spiletic, John; Fine, Valeri; Nevski, Pavel
2001-08-01
A high end visual display for High Energy Nuclear Physics (HENP) detectors is necessary because of the sheer size and complexity of the detector. For BNL this display will be of special interest because of STAR and ATLAS. To load, rotate, query, and debug simulation code with a modern detector simply takes too long even on a powerful work station. To visualize the HENP detectors with maximal performance we have developed software with the following characteristics. We develop a visual display of HENP detectors on BNL multiprocessor visualization server at multiple level of detail. We work with general and generic detector framework consistent with ROOT, GAUDI etc, to avoid conflicting with the many graphic development groups associated with specific detectors like STAR and ATLAS. We develop advanced OpenGL features such as transparency and polarized stereoscopy. We enable collaborative viewing of detector and events by directly running the analysis in BNL stereoscopic theatre. We construct enhanced interactive control, including the ability to slice, search and mark areas of the detector. We incorporate the ability to make a high quality still image of a view of the detector and the ability to generate animations and a fly through of the detector and output these to MPEG or VRML models. We develop data compression hardware and software so that remote interactive visualization will be possible among dispersed collaborators. We obtain real time visual display for events accumulated during simulations.
NASA Astrophysics Data System (ADS)
Synovec, Robert E.; Renn, Curtiss N.
1991-07-01
The refractive index gradient (RIG) of hydrodynamically controlled profiles can be universally, yet sensitively, measured by carefully probing the radial RIG passing through a z-configuration flow cell. Fiber optic technology is applied in order to provide a narrow, collimated probe beam (100 micrometers diameter) that is deflected by a RIG and measured by a position sensitive detector. The fiber optic construction allows one to probe very small volumes (1 (mu) L to 3 (mu) L) amenable to microbore liquid chromatography ((mu) LC). The combination of (mu) LC and RIG detection is very useful for the analysis of trace quantities (ng injected amounts) of chemical species that are generally difficult to measure, i.e., species that are not amenable to absorbance detection or related techniques. Furthermore, the RIG detector is compatible with conventional mobile phase gradient and thermal gradient (mu) LC, unlike traditional RI detectors. A description of the RIG detector coupled with (mu) LC for the analysis of complex polymer samples is reported. Also, exploration into using the RIG detector for supercritical fluid chromatography is addressed.
NASA Astrophysics Data System (ADS)
Forbes, Grant; Noptrex Collaboration
2017-09-01
One of the most promising explanations for the observed matter-antimatter asymmetry in our universe is the search for new sources of time-reversal (T) symmetry violation. The current amount of violation seen in the kaon and B-meson systems is not sufficient to describe this asymmetry. The Neutron Optics Time Reversal Experiment Collaboration (NOPTREX) is a null test for T violation in polarized neutron transmission through a polarized 139La target. Due to the high neutron flux needed for this experiment, as well as the ability to effectively subtract background noise, a current-mode neutron detector that can resolve resonances at epithermal energies has been proposed. In order to ascertain if this detector design would meet the requirements for the eventual NOPTREX experiment, prototypical detectors were tested at the NOBORU beam at the Japan Proton Accelerator Research Complex (JPARC) facility. Resonances in In and Ta were measured and the collected data was analyzed. This presentation will describe the analysis process and the efficacy of the detectors will be discussed. Department of Energy under Contract DE-SC0008107, UGRAS Scholarship.
NASA Astrophysics Data System (ADS)
Uenomachi, M.; Orita, T.; Shimazoe, K.; Takahashi, H.; Ikeda, H.; Tsujita, K.; Sekiba, D.
2018-01-01
High-resolution Elastic Recoil Detection Analysis (HERDA), which consists of a 90o sector magnetic spectrometer and a position-sensitive detector (PSD), is a method of quantitative hydrogen analysis. In order to increase sensitivity, a HERDA system using a multi-channel silicon-based ion detector has been developed. Here, as a parallel and fast readout circuit from a multi-channel silicon-based ion detector, a slew-rate-limited time-over-threshold (ToT) application-specific integrated circuit (ASIC) was designed, and a new slew-rate-limited ToT method is proposed. The designed ASIC has 48 channels and each channel consists of a preamplifier, a slew-rate-limited shaping amplifier, which makes ToT response linear, and a comparator. The measured equivalent noise charges (ENCs) of the preamplifier, the shaper, and the ToT on no detector capacitance were 253±21, 343±46, and 560±56 electrons RMS, respectively. The spectra from a 241Am source measured using a slew-rate-limited ToT ASIC are also reported.
Development of a fast framing detector for electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Ian J.; Bustillo, Karen C.; Ciston, Jim
2016-10-01
A high frame rate detector system is described that enables fast real-time data analysis of scanning diffraction experiments in scanning transmission electron microscopy (STEM). This is an end-to-end development that encompasses the data producing detector, data transportation, and real-time processing of data. The detector will consist of a central pixel sensor that is surrounded by annular silicon diodes. Both components of the detector system will synchronously capture data at almost 100 kHz frame rate, which produces an approximately 400 Gb/s data stream. Low-level preprocessing will be implemented in firmware before the data is streamed from the National Center for Electronmore » Microscopy (NCEM) to the National Energy Research Scientific Computing Center (NERSC). Live data processing, before it lands on disk, will happen on the Cori supercomputer and aims to present scientists with prompt experimental feedback. This online analysis will provide rough information of the sample that can be utilized for sample alignment, sample monitoring and verification that the experiment is set up correctly. Only a compressed version of the relevant data is then selected for more in-depth processing.« less
Cunefare, David; Cooper, Robert F; Higgins, Brian; Katz, David F; Dubra, Alfredo; Carroll, Joseph; Farsiu, Sina
2016-05-01
Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice's coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice's coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images.
NASA Astrophysics Data System (ADS)
Kuznetsov, Andrey; Evsenin, Alexey; Gorshkov, Igor; Osetrov, Oleg; Vakhtin, Dmitry
2009-12-01
Device for detection of explosives, radioactive and heavily shielded nuclear materials in luggage and cargo containers based on Nanosecond Neutron Analysis/Associated Particles Technique (NNA/APT) is under construction. Detection module consists of a small neutron generator with built-in position-sensitive detector of associated alpha-particles, and several scintillator-based gamma-ray detectors. Explosives and other hazardous chemicals are detected by analyzing secondary high-energy gamma-rays from reactions of fast neutrons with materials inside a container. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. An array of several neutron detectors is used to detect fast neutrons from induced fission of nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 and MCNP-PoliMi codes was used to estimate the sensitivity of the device and its optimal configuration. Comparison of the features of three gamma detector types—based on BGO, NaI and LaBr3 crystals is presented.
Investigation of Self Triggered Cosmic Ray Detectors using Silicon Photomultiplier
NASA Astrophysics Data System (ADS)
Knox, Adrian; Niduaza, Rommel; Hernandez, Victor; Ruiz, Daniel; Ramos, Daniel; Fan, Sewan; Fatuzzo, Laura; Ritt, Stefan
2015-04-01
The silicon photomultiplier (SiPM) is a highly sensitive light detector capable of measuring single photons. It costs a fraction of the photomultiplier tube and operates slightly above the breakdown voltage. At this conference we describe our investigation of SiPM, the multipixel photon counters (MPPC) from Hamamatsu as readout detectors for plastic scintillators working for detecting cosmic ray particles. Our setup consists of scintillator sheets embedded with blue to green wavelength shifting fibers optically coupled to MPPCs to detect scintillating light. Four detector assemblies would be constructed and arranged to work in self triggered mode. Using custom matching tee boxes, the amplified MPPC signals are fed to discriminators with threshold set to give a reasonable coincidence count rate. Moreover, the detector waveforms are digitized using a 5 Giga Samples per second waveform digitizer, the DRS4, and triggered with the coincidence logic to capture the MPPC waveforms. Offline analysis of the digitized waveforms is accomplished using the CERN package PAW and results of our experiments and the data analysis would also be discussed. US Department of Education Title V Grant Number PO31S090007.
NASA Astrophysics Data System (ADS)
Allen, Bruce
2004-10-01
It is now almost two decades since Bernard Schutz organized a landmark meeting on data analysis for gravitational wave detectors at the University of Cardiff, UK [1]. The proceedings of that meeting make interesting reading. Among the issues discussed were optimal ways to carry out searches for binary inspiral signals, and ways in which the projected growth in computer speed, memory and networking bandwidth would influence searches for gravitational wave signals. The Gravitational Wave Data Analysis Workshop traces its history to the mid-1990s. With the construction of the US LIGO detectors and the European GEO and VIRGO detectors already underway, Kip Thorne and Sam Finn realized that it was important for the world-wide data analysis community to start discussing some of the big unsettled issues in analysis. What was the optimal way to perform a pulsar search? To ensure confident detection, how accurately did binary inspiral waveforms have to be calculated? It was largely Kip and Sam's initiative that got the GWDAW started. The first (official) GWDAW was hosted by Rai Weiss at Massachusetts Institute of Technology, USA in 1996, as a follow-on to an informal meeting organized in the previous year by Sam Finn. I have pleasant memories of this first MIT GWDAW. I was new to the field and remember my excitement at learning that I had many colleagues interested in (and working on) the important issues. I also remember how refreshing it was to hear a pair of talks by Pia Astone and Marialessandra Papa who were not only studying methods but had actually carried out serious pulsar and burst searches using data from the Rome resonant bar detectors. A lot has changed since then. This issue is the Proceedings of the 8th Annual Gravitational Wave Data Analysis Workshop, held on 17-20 December 2003 at the University of Wisconsin-Milwaukee, USA. Many of the contributions concern technical details of the analysis of real data from resonant mass and interferometric detectors, setting upper limits on known pulsars, the gravitational wave stochastic background, and rates of burst and inspiral signals. Barring something unforeseen, the next decade of the GWDAW may see the launch of the LISA space-based detector, and should see the definitive detection of gravitational waves with terrestrial detectors. The scientific significance of this discovery is great enough that it probably will not be announced at a future GWDAW, but I am sure that the technical details of the analysis will get a great deal of attention there! References [1] Schutz B F (ed) 1989 Gravitational Wave Data Analysis, Proc. NATO Advanced Research Workshop (Cardiff, UK) (Amsterdam: Kluwer)
Fluorescence decay data analysis correcting for detector pulse pile-up at very high count rates
NASA Astrophysics Data System (ADS)
Patting, Matthias; Reisch, Paja; Sackrow, Marcus; Dowler, Rhys; Koenig, Marcelle; Wahl, Michael
2018-03-01
Using time-correlated single photon counting for the purpose of fluorescence lifetime measurements is usually limited in speed due to pile-up. With modern instrumentation, this limitation can be lifted significantly, but some artifacts due to frequent merging of closely spaced detector pulses (detector pulse pile-up) remain an issue to be addressed. We propose a data analysis method correcting for this type of artifact and the resulting systematic errors. It physically models the photon losses due to detector pulse pile-up and incorporates the loss in the decay fit model employed to obtain fluorescence lifetimes and relative amplitudes of the decay components. Comparison of results with and without this correction shows a significant reduction of systematic errors at count rates approaching the excitation rate. This allows quantitatively accurate fluorescence lifetime imaging at very high frame rates.
Optimization of the two-sample rank Neyman-Pearson detector
NASA Astrophysics Data System (ADS)
Akimov, P. S.; Barashkov, V. M.
1984-10-01
The development of optimal algorithms concerned with rank considerations in the case of finite sample sizes involves considerable mathematical difficulties. The present investigation provides results related to the design and the analysis of an optimal rank detector based on a utilization of the Neyman-Pearson criteria. The detection of a signal in the presence of background noise is considered, taking into account n observations (readings) x1, x2, ... xn in the experimental communications channel. The computation of the value of the rank of an observation is calculated on the basis of relations between x and the variable y, representing interference. Attention is given to conditions in the absence of a signal, the probability of the detection of an arriving signal, details regarding the utilization of the Neyman-Pearson criteria, the scheme of an optimal rank, multichannel, incoherent detector, and an analysis of the detector.
Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature.
Villa, E; Aja, B; de la Fuente, L; Artal, E
2016-01-01
This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature.
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.
2016-07-01
The Telescope Array (TA) experiment is the largest detector to observe ultra-high-energy cosmic rays in the northern hemisphere. The fluorescence detectors at two stations of TA are newly constructed and have now completed seven years of steady operation. One advantage of monocular analysis of the fluorescence detectors is a lower energy threshold for cosmic rays than that of other techniques like stereoscopic observations or coincidences with the surface detector array, allowing the measurement of an energy spectrum covering three orders of magnitude in energy. Analyzing data collected during those seven years, we report the energy spectrum of cosmic rays covering a broad range of energies above 1017.2eV measured by the fluorescence detectors and a comparison with previously published results.
Position resolution simulations for the inverted-coaxial germanium detector, SIGMA
NASA Astrophysics Data System (ADS)
Wright, J. P.; Harkness-Brennan, L. J.; Boston, A. J.; Judson, D. S.; Labiche, M.; Nolan, P. J.; Page, R. D.; Pearce, F.; Radford, D. C.; Simpson, J.; Unsworth, C.
2018-06-01
The SIGMA Germanium detector has the potential to revolutionise γ-ray spectroscopy, providing superior energy and position resolving capabilities compared with current large volume state-of-the-art Germanium detectors. The theoretical position resolution of the detector as a function of γ-ray interaction position has been studied using simulated detector signals. A study of the effects of RMS noise at various energies has been presented with the position resolution ranging from 0.33 mm FWHM at Eγ = 1 MeV, to 0.41 mm at Eγ = 150 keV. An additional investigation into the effects pulse alignment have on pulse shape analysis and in turn, position resolution has been performed. The theoretical performance of SIGMA operating in an experimental setting is presented for use as a standalone detector and as part of an ancillary system.
Cosmic ray experimental observations
NASA Technical Reports Server (NTRS)
Balasubrahmanyan, V. K.; Mcdonald, F. B.
1974-01-01
The current experimental situation in cosmic ray studies is discussed, with special emphasis on the development of new detector systems. Topics covered are the techniques for particle identification, energy measurements, gas Cerenkov counters, magnet spectrometers, ionization spectrometers, track detectors, nuclear emulsions, multiparameter analysis using arrays of detectors, the Goddard ionization spectrometer, charge spectra, relative abundances, isotope composition, antinuclei in cosmic rays, electrons, the measurement of cosmic ray arrival directions, and the prehistory of cosmic rays.
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Bellido, J. A.; Belov, K.; Belz, J. W.; Bergman, D. R.; Cao, Z.; Clay, R. W.; Cooper, M. D.; Dai, H.; Dawson, B. R.; Everett, A. A.; Fedorova, Yu. A.; Girard, J. H.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hüntemeyer, P.; Jones, B. F.; Jui, C. C.; Kieda, D. B.; Kim, K.; Kirn, M. A.; Loh, E. C.; Manago, N.; Marek, L. J.; Martens, K.; Martin, G.; Matthews, J. A.; Matthews, J. N.; Meyer, J. R.; Moore, S. A.; Morrison, P.; Moosman, A. N.; Mumford, J. R.; Munro, M. W.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M.; Sarracino, J. S.; Sasaki, M.; Schnetzer, S. R.; Shen, P.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Taylor, S. F.; Thomas, S. B.; Thompson, T. N.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Vanderveen, T. D.; Zech, A.; Zhang, X.
2004-04-01
We have measured the cosmic ray spectrum above 1017.2 eV using the two air-fluorescence detectors of the High Resolution Fly's Eye observatory operating in monocular mode. We describe the detector, phototube, and atmospheric calibrations, as well as the analysis techniques for the two detectors. We fit the spectrum to a model consisting of galactic and extragalactic sources.
A search for sterile neutrinos at the NOvA Far Detector
NASA Astrophysics Data System (ADS)
Aurisano, Adam; Davies, Gavin S.; Kafka, Gareth K.; Sousa, Alex; Suter, Louise; Yang, Shaokai
2017-09-01
NOvA is the current United States flagship long-baseline neutrino experiment designed to study the properties of neutrino oscillations. It consists of two functionally identical detectors each located 14.6 mrad off the central axis from the Fermilab NuMI neutrino beam. The Near Detector is located 1 km downstream from the beam source, and the Far Detector is located 810 km away in Ash River, Minnesota. This long baseline, combined with the ability of the NuMI facility to switch between nearly pure neutrino and anti-neutrino beams, allows NOvA to make precision measurements of neutrino mixing angles, potentially determine the neutrino mass hierarchy, and begin searching for CP violating effects in the lepton sector. However, NOvA can also probe more exotic scenarios, such as oscillations between the known active neutrinos and new sterile species. We will showcase the first search for sterile neutrinos in a 3 + 1 model at NOvA. The analysis presented searches for a deficit in the rate of neutral current events at the Far Detector using the Near Detector to constrain the predicted spectrum. This analysis was performed using data taken between February 2014 and May 2016 corresponding to 6.05 × 1020 protons on target.
An optimised oscillation analysis of MINOS beam data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culling, Andrew John
2007-09-01
This thesis presents results of the MINOS long baseline neutrino oscillation experiment. Charged Current interactions of v μ from the NuMI beamline have been recorded in both the Near and Far Detectors between May 2005 and February 2006, corresponding to 1.27 x 10 20 protons being delivered to the NuMI target. Several techniques for improving the sensitivity of an oscillation measurement are discussed and their impact assessed. 378 events are observed in the Far Detector during this period, compared to a prediction of 459 ± 31 events are observed in the Far Detector during this period, compared to a prediction of 459 ± 31 events when the observed Near Detector spectrum is extrapolated to the Far Detector over the 735 km baseline with no oscillations. In addition to this deficit of observed events, there is also evidence for spectral distortion in the Far Detector. A maximum likelihood analysis is used to determine the best fit point and allowed regions in Δmmore » $$2\\atop{23}$$ and sin 22θ 23 parameter space. The best fit values for Δm$$2\\atop{23}$$ and sin 22θ 23 are found to be 2.55$$+0.39\\atop{-0.24}$$ x 10 -3 eV 2 and > 0.87 (68% CL) respectively.« less
Directional Unfolded Source Term (DUST) for Compton Cameras.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Dean J.; Horne, Steven M.; O'Brien, Sean
2018-03-01
A Directional Unfolded Source Term (DUST) algorithm was developed to enable improved spectral analysis capabilities using data collected by Compton cameras. Achieving this objective required modification of the detector response function in the Gamma Detector Response and Analysis Software (GADRAS). Experimental data that were collected in support of this work include measurements of calibration sources at a range of separation distances and cylindrical depleted uranium castings.
NASA Astrophysics Data System (ADS)
Goss, Tristan M.
2016-05-01
With 640x512 pixel format IR detector arrays having been on the market for the past decade, Standard Definition (SD) thermal imaging sensors have been developed and deployed across the world. Now with 1280x1024 pixel format IR detector arrays becoming readily available designers of thermal imager systems face new challenges as pixel sizes reduce and the demand and applications for High Definition (HD) thermal imaging sensors increases. In many instances the upgrading of existing under-sampled SD thermal imaging sensors into more optimally sampled or oversampled HD thermal imaging sensors provides a more cost effective and reduced time to market option than to design and develop a completely new sensor. This paper presents the analysis and rationale behind the selection of the best suited HD pixel format MWIR detector for the upgrade of an existing SD thermal imaging sensor to a higher performing HD thermal imaging sensor. Several commercially available and "soon to be" commercially available HD small pixel IR detector options are included as part of the analysis and are considered for this upgrade. The impact the proposed detectors have on the sensor's overall sensitivity, noise and resolution is analyzed, and the improved range performance is predicted. Furthermore with reduced dark currents due to the smaller pixel sizes, the candidate HD MWIR detectors are operated at higher temperatures when compared to their SD predecessors. Therefore, as an additional constraint and as a design goal, the feasibility of achieving upgraded performance without any increase in the size, weight and power consumption of the thermal imager is discussed herein.
Design of the flame detector based on pyroelectric infrared sensor
NASA Astrophysics Data System (ADS)
Liu, Yang; Yu, Benhua; Dong, Lei; Li, Kai
2017-10-01
As a fire detection device, flame detector has the advantages of short reaction time and long distance. Based on pyroelectric infrared sensor working principle, the passive pyroelectric infrared alarm system is designed, which is mainly used for safety of tunnel to detect whether fire occurred or not. Modelling and Simulation of the pyroelectric Detector Using Labview. An attempt was made to obtain a simple test platform of a pyroelectric detector which would make an excellent basis for the analysis of its dynamic behaviour. After many experiments, This system has sensitive response, high anti-interference ability and safe and reliable performance.
High-energy cosmic-ray electrons - A new measurement using transition-radiation detectors
NASA Technical Reports Server (NTRS)
Hartmann, G.; Mueller, D.; Prince, T.
1977-01-01
A new detector for cosmic-ray electrons, consisting of a combination of a transition-radiation detector and a shower detector, has been constructed, calibrated at accelerator beams, and exposed in a balloon flight under 5 g/sq cm of atmosphere. The design of this instrument and the methods of data analysis are described. Preliminary results in the energy range 9-300 GeV are presented. The energy spectrum of electrons is found to be significantly steeper than that of protons, consistent with a long escape lifetime of cosmic rays in the galaxy.
Karanfil, C; Bunker, G; Newville, M; Segre, C U; Chapman, D
2012-05-01
Third-generation synchrotron radiation sources pose difficult challenges for energy-dispersive detectors for XAFS because of their count rate limitations. One solution to this problem is the bent crystal Laue analyzer (BCLA), which removes most of the undesired scatter and fluorescence before it reaches the detector, effectively eliminating detector saturation due to background. In this paper experimental measurements of BCLA performance in conjunction with a 13-element germanium detector, and a quantitative analysis of the signal-to-noise improvement of BCLAs are presented. The performance of BCLAs are compared with filters and slits.
Development of MMC Gamma Detectors for Nuclear Analysis
NASA Astrophysics Data System (ADS)
Bates, C. R.; Pies, C.; Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C.; Friedrich, S.
2014-09-01
Non-destructive assay (NDA) of nuclear materials would benefit from gamma detectors with improved energy resolution in cases where line overlap in current Ge detectors limits NDA accuracy. We are developing metallic magnetic calorimeter gamma-detectors for this purpose by electroplating 150 m thick Au absorbers into microfabricated molds on top of Au:Er sensors. Initial tests under non-optimized conditions show an energy resolution of 200 eV FWHM at 60 keV. Monte Carlo simulations illustrate that this resolution is starting to be sufficient for direct detection of Pu in plutonium separated from spent nuclear fuel.
2016 Research Outreach Program report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hye Young; Kim, Yangkyu
2016-10-13
This paper is the research activity report for 4 weeks in LANL. Under the guidance of Dr. Lee, who performs nuclear physics research at LANSCE, LANL, I studied the Low Energy NZ (LENZ) setup and how to use the LENZ. First, I studied the LENZ chamber and Si detectors, and worked on detector calibrations, using the computer software, ROOT (CERN developed data analysis tool) and EXCEL (Microsoft office software). I also performed the calibration experiments that measure alpha particles emitted from a Th-229 source by using a S1-type detector (Si detector). And with Dr. Lee, we checked the result.
Healthcare employees' progression through disability benefits.
Hawley, Carolyn E; Diaz, Sebastian; Reid, Christine
2009-01-01
Progression of Disability Benefits (PODB) refers to the migration of workers with work-limiting disabilities through a system of economic disability benefits that result in their ultimate placement into the Social Security Disability Insurance (SSDI) system [16]. Specifically, this migration involves a "progression" from short-term disability (STD) to long-term disability (LTD) to SSDI income. This project uses Chi-squared Automatic Interaction (CHAID) Technique to study the Healthcare industry, the largest industry in the United States, and its PODB experience. The first part of the study analyzes if claimant demographic (age, gender, disability type) and PODB data (movement from STD to LTD to SSDI) can be used to predict employer industry (dependent variable). Gender was the most significant predictor, while men working outside of Healthcare had the greatest amount of progression to advanced disability levels. The second part of the study assesses if the PODB experience could be predicted through claimant demographics and the sub-set industry within Healthcare in which claimants' were employed. The resulting dendogram reveals that disability type was the strongest predictor of claimant movement through disability benefits levels. Age was the second strongest predictor for all but 1 category of disability type, in which the Healthcare sector was the strongest predictor.
New approach to calculate the true-coincidence effect of HpGe detector
NASA Astrophysics Data System (ADS)
Alnour, I. A.; Wagiran, H.; Ibrahim, N.; Hamzah, S.; Siong, W. B.; Elias, M. S.
2016-01-01
The corrections for true-coincidence effects in HpGe detector are important, especially at low source-to-detector distances. This work established an approach to calculate the true-coincidence effects experimentally for HpGe detectors of type Canberra GC3018 and Ortec GEM25-76-XLB-C, which are in operation at neutron activation analysis lab in Malaysian Nuclear Agency (NM). The correction for true-coincidence effects was performed close to detector at distances 2 and 5 cm using 57Co, 60Co, 133Ba and 137Cs as standard point sources. The correction factors were ranged between 0.93-1.10 at 2 cm and 0.97-1.00 at 5 cm for Canberra HpGe detector; whereas for Ortec HpGe detector ranged between 0.92-1.13 and 0.95-100 at 2 and 5 cm respectively. The change in efficiency calibration curve of the detector at 2 and 5 cm after correction was found to be less than 1%. Moreover, the polynomial parameters functions were simulated through a computer program, MATLAB in order to find an accurate fit to the experimental data points.
TlBr and TlBr xI 1-x crystals for γ-ray detectors
NASA Astrophysics Data System (ADS)
Churilov, Alexei V.; Ciampi, Guido; Kim, Hadong; Higgins, William M.; Cirignano, Leonard J.; Olschner, Fred; Biteman, Viktor; Minchello, Mark; Shah, Kanai S.
2010-04-01
TlBr and TlBr xI 1-x are wide bandgap semiconductor materials being investigated for applications in γ-ray spectroscopy. They have a good combination of density and atomic numbers, promising to make them very efficient detectors. Their low melting points and simple cubic and orthorhombic crystal structures are favorable for bulk crystal growth. However, these semiconductors need to be extremely pure to become useful as radiation detectors. Impurities can lead to charge trapping and scattering, reducing the charge transit lengths and limiting the detector thickness to <1 mm. Additional purification steps were implemented to improve the purity and mobility-lifetime product ( μτ) of electrons. Detector-grade TlBr with the electron μτ product of up to 6×10 -3 cm 2/V has been produced, which allowed operation of detectors up to 15 mm thickness. The ternary TlBr xI 1-x was investigated at different compositions to vary the bandgap and explore the effect of added TlI on the long term stability of detectors. The material analysis and detector characterization results are included.
Gravitational wave astronomy - astronomy of the 21st century
NASA Astrophysics Data System (ADS)
Dhurandhar, S. V.
2011-03-01
An enigmatic prediction of Einstein's general theory of relativity is gravitational waves. With the observed decay in the orbit of the Hulse-Taylor binary pulsar agreeing within a fraction of a percent with the theoretically computed decay from Einstein's theory, the existence of gravitational waves was firmly established. Currently there is a worldwide effort to detect gravitational waves with inteferometric gravitational wave observatories or detectors and several such detectors have been built or being built. The initial detectors have reached their design sensitivities and now the effort is on to construct advanced detectors which are expected to detect gravitational waves from astrophysical sources. The era of gravitational wave astronomy has arrived. This article describes the worldwide effort which includes the effort on the Indian front - the IndIGO project -, the principle underlying interferometric detectors both on ground and in space, the principal noise sources that plague such detectors, the astrophysical sources of gravitational waves that one expects to detect by these detectors and some glimpse of the data analysis methods involved in extracting the very weak gravitational wave signals from detector noise.
Gravitational wave astronomy— astronomy of the 21st century
NASA Astrophysics Data System (ADS)
Dhurandhar, S. V.
2011-12-01
An enigmatic prediction of Einstein's general theory of relativity is gravitational waves. With the observed decay in the orbit of the Hulse-Taylor binary pulsar agreeing within a fraction of a percent with the theoretically computed decay from Einstein's theory, the existence of gravitational waves was firmly established. Currently there is a worldwide effort to detect gravitational waves with inteferometric gravitational wave observatories or detectors and several such detectors have been built or are being built. The initial detectors have reached their design sensitivities and now the effort is on to construct advanced detectors which are expected to detect gravitational waves from astrophysical sources. The era of gravitational wave astronomy has arrived. This article describes the worldwide effort which includes the effort on the Indian front— the IndIGO project —, the principle underlying interferometric detectors both on ground and in space, the principal noise sources that plague such detectors, the astrophysical sources of gravitational waves that one expects to detect by these detectors and some glimpse of the data analysis methods involved in extracting the very weak gravitational wave signals from detector noise.
A real negative selection algorithm with evolutionary preference for anomaly detection
NASA Astrophysics Data System (ADS)
Yang, Tao; Chen, Wen; Li, Tao
2017-04-01
Traditional real negative selection algorithms (RNSAs) adopt the estimated coverage (c0) as the algorithm termination threshold, and generate detectors randomly. With increasing dimensions, the data samples could reside in the low-dimensional subspace, so that the traditional detectors cannot effectively distinguish these samples. Furthermore, in high-dimensional feature space, c0 cannot exactly reflect the detectors set coverage rate for the nonself space, and it could lead the algorithm to be terminated unexpectedly when the number of detectors is insufficient. These shortcomings make the traditional RNSAs to perform poorly in high-dimensional feature space. Based upon "evolutionary preference" theory in immunology, this paper presents a real negative selection algorithm with evolutionary preference (RNSAP). RNSAP utilizes the "unknown nonself space", "low-dimensional target subspace" and "known nonself feature" as the evolutionary preference to guide the generation of detectors, thus ensuring the detectors can cover the nonself space more effectively. Besides, RNSAP uses redundancy to replace c0 as the termination threshold, in this way RNSAP can generate adequate detectors under a proper convergence rate. The theoretical analysis and experimental result demonstrate that, compared to the classical RNSA (V-detector), RNSAP can achieve a higher detection rate, but with less detectors and computing cost.
Study on detection geometry and detector shielding for portable PGNAA system using PHITS
NASA Astrophysics Data System (ADS)
Ithnin, H.; Dahing, L. N. S.; Lip, N. M.; Rashid, I. Q. Abd; Mohamad, E. J.
2018-01-01
Prompt gamma-ray neutron activation analysis (PGNAA) measurements require efficient detectors for gamma-ray detection. Apart from experimental studies, the Monte Carlo (MC) method has become one of the most popular tools in detector studies. The absolute efficiency for a 2 × 2 inch cylindrical Sodium Iodide (NaI) detector has been modelled using the PHITS software and compared with previous studies in literature. In the present work, PHITS code is used for optimization of portable PGNAA system using the validated NaI detector. The detection geometry is optimized by moving the detector along the sample to find the highest intensity of the prompt gamma generated from the sample. Shielding material for the validated NaI detector is also studied to find the best option for the PGNAA system setup. The result shows the optimum distance for detector is on the surface of the sample and around 15 cm from the source. The results specify that this process can be followed to determine the best setup for PGNAA system for a different sample size and detector type. It can be concluded that data from PHITS code is a strong tool not only for efficiency studies but also for optimization of PGNAA system.
Deuterium-tritium neutron yield measurements with the 4.5 m neutron-time-of-flight detectors at NIF.
Moran, M J; Bond, E J; Clancy, T J; Eckart, M J; Khater, H Y; Glebov, V Yu
2012-10-01
The first several campaigns of laser fusion experiments at the National Ignition Facility (NIF) included a family of high-sensitivity scintillator∕photodetector neutron-time-of-flight (nTOF) detectors for measuring deuterium-deuterium (DD) and DT neutron yields. The detectors provided consistent neutron yield (Y(n)) measurements from below 10(9) (DD) to nearly 10(15) (DT). The detectors initially demonstrated detector-to-detector Y(n) precisions better than 5%, but lacked in situ absolute calibrations. Recent experiments at NIF now have provided in situ DT yield calibration data that establish the absolute sensitivity of the 4.5 m differential tissue harmonic imaging (DTHI) detector with an accuracy of ± 10% and precision of ± 1%. The 4.5 m nTOF calibration measurements also have helped to establish improved detector impulse response functions and data analysis methods, which have contributed to improving the accuracy of the Y(n) measurements. These advances have also helped to extend the usefulness of nTOF measurements of ion temperature and downscattered neutron ratio (neutron yield 10-12 MeV divided by yield 13-15 MeV) with other nTOF detectors.
NASA Astrophysics Data System (ADS)
Allec, Nicholas; Abbaszadeh, Shiva; Karim, Karim S.
2011-03-01
A multilayer (single-shot) detector has previously been proposed for contrast-enhanced mammography. The multilayer detector has the benefit of avoiding motion artifacts due to simultaneous acquisition of both high and low energy images. A single layer (dual-shot) detector has the benefit of better control over the energy separation since the incident beams can be produced and filtered separately. In this paper the performance of the multilayer detector is compared to that of a single layer detector using an ideal observer detectability index which is determined from an extended cascaded systems model and a defined imaging task. The detectors are assumed to have amorphous selenium direct conversion layers, however the same theoretical techniques used here may be applied to other types of integrating detectors. The anatomical noise caused by variation of glandularity within the breast is known to dominate the noise power spectrum at low frequencies due to its inverse power law dependence and is thus taken into account in our model to provide an accurate estimate of the detectability index. The conditions leading to the optimal detectability index, such as tube voltage, filtration, and weight factor are reported for both detector designs.
Subspace Compressive GLRT Detector for MIMO Radar in the Presence of Clutter.
Bolisetti, Siva Karteek; Patwary, Mohammad; Ahmed, Khawza; Soliman, Abdel-Hamid; Abdel-Maguid, Mohamed
2015-01-01
The problem of optimising the target detection performance of MIMO radar in the presence of clutter is considered. The increased false alarm rate which is a consequence of the presence of clutter returns is known to seriously degrade the target detection performance of the radar target detector, especially under low SNR conditions. In this paper, a mathematical model is proposed to optimise the target detection performance of a MIMO radar detector in the presence of clutter. The number of samples that are required to be processed by a radar target detector regulates the amount of processing burden while achieving a given detection reliability. While Subspace Compressive GLRT (SSC-GLRT) detector is known to give optimised radar target detection performance with reduced computational complexity, it however suffers a significant deterioration in target detection performance in the presence of clutter. In this paper we provide evidence that the proposed mathematical model for SSC-GLRT detector outperforms the existing detectors in the presence of clutter. The performance analysis of the existing detectors and the proposed SSC-GLRT detector for MIMO radar in the presence of clutter are provided in this paper.
Carmona-Bayonas, A; Jiménez-Fonseca, P; Font, C; Fenoy, F; Otero, R; Beato, C; Plasencia, J M; Biosca, M; Sánchez, M; Benegas, M; Calvo-Temprano, D; Varona, D; Faez, L; de la Haba, I; Antonio, M; Madridano, O; Solis, M P; Ramchandani, A; Castañón, E; Marchena, P J; Martín, M; Ayala de la Peña, F; Vicente, V
2017-04-11
Our objective was to develop a prognostic stratification tool that enables patients with cancer and pulmonary embolism (PE), whether incidental or symptomatic, to be classified according to the risk of serious complications within 15 days. The sample comprised cases from a national registry of pulmonary thromboembolism in patients with cancer (1075 patients from 14 Spanish centres). Diagnosis was incidental in 53.5% of the events in this registry. The Exhaustive CHAID analysis was applied with 10-fold cross-validation to predict development of serious complications following PE diagnosis. About 208 patients (19.3%, 95% confidence interval (CI), 17.1-21.8%) developed a serious complication after PE diagnosis. The 15-day mortality rate was 10.1%, (95% CI, 8.4-12.1%). The decision tree detected six explanatory covariates: Hestia-like clinical decision rule (any risk criterion present vs none), Eastern Cooperative Group performance scale (ECOG-PS; <2 vs ⩾2), O 2 saturation (<90 vs ⩾90%), presence of PE-specific symptoms, tumour response (progression, unknown, or not evaluated vs others), and primary tumour resection. Three risk classes were created (low, intermediate, and high risk). The risk of serious complications within 15 days increases according to the group: 1.6, 9.4, 30.6%; P<0.0001. Fifteen-day mortality rates also rise progressively in low-, intermediate-, and high-risk patients: 0.3, 6.1, and 17.1%; P<0.0001. The cross-validated risk estimate is 0.191 (s.e.=0.012). The optimism-corrected area under the receiver operating characteristic curve is 0.779 (95% CI, 0.717-0.840). We have developed and internally validated a prognostic index to predict serious complications with the potential to impact decision-making in patients with cancer and PE.
Baltzer, Pascal A T; Dietzel, Matthias; Kaiser, Werner A
2013-08-01
In the face of multiple available diagnostic criteria in MR-mammography (MRM), a practical algorithm for lesion classification is needed. Such an algorithm should be as simple as possible and include only important independent lesion features to differentiate benign from malignant lesions. This investigation aimed to develop a simple classification tree for differential diagnosis in MRM. A total of 1,084 lesions in standardised MRM with subsequent histological verification (648 malignant, 436 benign) were investigated. Seventeen lesion criteria were assessed by 2 readers in consensus. Classification analysis was performed using the chi-squared automatic interaction detection (CHAID) method. Results include the probability for malignancy for every descriptor combination in the classification tree. A classification tree incorporating 5 lesion descriptors with a depth of 3 ramifications (1, root sign; 2, delayed enhancement pattern; 3, border, internal enhancement and oedema) was calculated. Of all 1,084 lesions, 262 (40.4 %) and 106 (24.3 %) could be classified as malignant and benign with an accuracy above 95 %, respectively. Overall diagnostic accuracy was 88.4 %. The classification algorithm reduced the number of categorical descriptors from 17 to 5 (29.4 %), resulting in a high classification accuracy. More than one third of all lesions could be classified with accuracy above 95 %. • A practical algorithm has been developed to classify lesions found in MR-mammography. • A simple decision tree consisting of five criteria reaches high accuracy of 88.4 %. • Unique to this approach, each classification is associated with a diagnostic certainty. • Diagnostic certainty of greater than 95 % is achieved in 34 % of all cases.
Underground Prototype Water Cherenkov Muon Detector with the Tibet Air Shower Array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amenomori, M.; Nanjo, H.; Bi, X. J.
2008-12-24
We are planning to build a 10,000 m{sup 2} water-Cherenkov-type muon detector (MD) array under the Tibet air shower (AS) array. The Tibet AS+MD array will have the sensitivity to detect gamma rays in the 100 TeV region by an order of the magnitude better than any other previous existing detectors in the world. In the late fall of 2007, a prototype water Cherenkov muon detector of approximately 100 m{sup 2} was constructed under the existing Tibet AS array. The preliminary data analysis is in good agreement with our MC simulation. We are now ready for further expanding the undergroundmore » water Cherenkov muon detector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendenhall, M.; Bowden, N.; Brodsky, J.
Electron anti-neutrino ( e) detectors can support nuclear safeguards, from reactor monitoring to spent fuel characterization. In recent years, the scientific community has developed multiple detector concepts, many of which have been prototyped or deployed for specific measurements by their respective collaborations. However, the diversity of technical approaches, deployment conditions, and analysis techniques complicates direct performance comparison between designs. We have begun development of a simulation framework to compare and evaluate existing and proposed detector designs for nonproliferation applications in a uniform manner. This report demonstrates the intent and capabilities of the framework by evaluating four detector design concepts, calculatingmore » generic reactor antineutrino counting sensitivity, and capabilities in a plutonium disposition application example.« less
Modular optical detector system
Horn, Brent A [Livermore, CA; Renzi, Ronald F [Tracy, CA
2006-02-14
A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.
Calibration of the Large Area X-Ray Proportional Counter (LAXPC) Instrument on board AstroSat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antia, H. M.; Yadav, J. S.; Chauhan, Jai Verdhan
We present the calibration and background model for the Large Area X-ray Proportional Counter (LAXPC) detectors on board AstroSat . The LAXPC instrument has three nominally identical detectors to achieve a large collecting area. These detectors are independent of each other, and in the event analysis mode they record the arrival time and energy of each photon that is detected. The detectors have a time resolution of 10 μ s and a dead-time of about 42 μ s. This makes LAXPC ideal for timing studies. The energy resolution and peak channel-to-energy mapping were obtained from calibration on the ground usingmore » radioactive sources coupled with GEANT4 simulations of the detectors. The response matrix was further refined from observations of the Crab after launch. At around 20 keV the energy resolution of the detectors is 10%–15%, while the combined effective area of the three detectors is about 6000 cm{sup 2}.« less
Characterizing the response of a scintillator-based detector to single electrons.
Sang, Xiahan; LeBeau, James M
2016-02-01
Here we report the response of a high angle annular dark field scintillator-based detector to single electrons. We demonstrate that care must be taken when determining the single electron intensity as significant discrepancies can occur when quantifying STEM images with different methods. To account for the detector response, we first image the detector using very low beam currents (∼8fA), and subsequently model the interval between consecutive single electrons events. We find that single electrons striking the detector present a wide distribution of intensities, which we show is not described by a simple function. Further, we present a method to accurately account for the electrons within the incident probe when conducting quantitative imaging. The role detector settings play on determining the single electron intensity is also explored. Finally, we extend our analysis to describe the response of the detector to multiple electron events within the dwell interval of each pixel. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Civitani, Marta; Djalal, Sophie; Chipaux, Remi
2009-08-01
In a X-ray telescope in formation flight configuration, the optics and the focal-plane detectors reside in two different spacecraft. The dynamics of the detector spacecraft (DSC) with respect to the mirror spacecraft (MSC, carrying the mirrors of the telescope) changes continuously the arrival positions of the photons on the detectors. In this paper we analyze this issue for the case of the SIMBOL-X hard X-ray mission, extensively studied by CNES and ASI until 2009 spring. Due to the existing gaps between pixels and between detector modules, the dynamics of the system may produce a relevant photometric effect. The aim of this work is to present the optimization study of the control-law algorithm with respect to the detector's geometry. As the photometric effect may vary depending upon position of the source image on the detector, the analysis-carried out using the simuLOS (INAF, CNES, CEA) simulation tool-is extended over the entire SIMBOL-X field of view.
Giacomelli, L; Conroy, S; Gorini, G; Horton, L; Murari, A; Popovichev, S; Syme, D B
2014-02-01
The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world devoted to nuclear fusion experiments of magnetic confined Deuterium (D)/Deuterium-Tritium (DT) plasmas. Neutrons produced in these plasmas are measured using various types of neutron detectors and spectrometers. Two of these instruments on JET make use of organic liquid scintillator detectors. The neutron emission profile monitor implements 19 liquid scintillation counters to detect the 2.45 MeV neutron emission from D plasmas. A new compact neutron spectrometer is operational at JET since 2010 to measure the neutron energy spectra from both D and DT plasmas. Liquid scintillation detectors are sensitive to both neutron and gamma radiation but give light responses of different decay time such that pulse shape discrimination techniques can be applied to identify the neutron contribution of interest from the data. The most common technique consists of integrating the radiation pulse shapes within different ranges of their rising and/or trailing edges. In this article, a step forward in this type of analysis is presented. The method applies a tomographic analysis of the 3-dimensional neutron and gamma pulse shape and pulse height distribution data obtained from liquid scintillation detectors such that n/γ discrimination can be improved to lower energies and additional information can be gained on neutron contributions to the gamma events and vice versa.
Search of low-mass WIMPs with a p -type point contact germanium detector in the CDEX-1 experiment
NASA Astrophysics Data System (ADS)
Zhao, W.; Yue, Q.; Kang, K. J.; Cheng, J. P.; Li, Y. J.; Wong, H. T.; Lin, S. T.; Chang, J. P.; Chen, J. H.; Chen, Q. H.; Chen, Y. H.; Deng, Z.; Du, Q.; Gong, H.; Hao, X. Q.; He, H. J.; He, Q. J.; Huang, H. X.; Huang, T. R.; Jiang, H.; Li, H. B.; Li, J.; Li, J.; Li, J. M.; Li, X.; Li, X. Y.; Li, Y. L.; Lin, F. K.; Liu, S. K.; Lü, L. C.; Ma, H.; Ma, J. L.; Mao, S. J.; Qin, J. Q.; Ren, J.; Ren, J.; Ruan, X. C.; Sharma, V.; Shen, M. B.; Singh, L.; Singh, M. K.; Soma, A. K.; Su, J.; Tang, C. J.; Wang, J. M.; Wang, L.; Wang, Q.; Wu, S. Y.; Wu, Y. C.; Xianyu, Z. Z.; Xiao, R. Q.; Xing, H. Y.; Xu, F. Z.; Xu, Y.; Xu, X. J.; Xue, T.; Yang, L. T.; Yang, S. W.; Yi, N.; Yu, C. X.; Yu, H.; Yu, X. Z.; Zeng, M.; Zeng, X. H.; Zeng, Z.; Zhang, L.; Zhang, Y. H.; Zhao, M. G.; Zhou, Z. Y.; Zhu, J. J.; Zhu, W. B.; Zhu, X. Z.; Zhu, Z. H.; CDEX Collaboration
2016-05-01
The CDEX-1 experiment conducted a search of low-mass (<10 GeV /c2 ) weakly interacting massive particles dark matter at the China Jinping Underground Laboratory using a p-type point-contact germanium detector with a fiducial mass of 915 g at a physics analysis threshold of 475 eVee. We report the hardware setup, detector characterization, data acquisition, and analysis procedures of this experiment. No excess of unidentified events is observed after the subtraction of the known background. Using 335.6 kg-days of data, exclusion constraints on the weakly interacting massive particle-nucleon spin-independent and spin-dependent couplings are derived.
Analysis of photogenerated random telegraph signal in single electron detector (photo-SET).
Troudi, M; Sghaier, Na; Kalboussi, A; Souifi, A
2010-01-04
In this paper, we analyzed slow single traps, situated inside the tunnel oxide of small area single electron photo-detector (photo-SET or nanopixel). The relationship between excitation signal (photons) and random-telegraph-signal (RTS) was evidenced. We demonstrated that photoinduced RTS observed on a photo-detector is due to the interaction between single photogenerated charges that tunnel from dot to dot and current path. Based on RTS analysis for various temperatures, gate bias and optical power we determined the characteristics of these single photogenerated traps: the energy position within the silicon bandgap, capture cross section and the position within the Si/SiO(x = 1.5) interfaces.
Development problem analysis of correlation leak detector’s software
NASA Astrophysics Data System (ADS)
Faerman, V. A.; Avramchuk, V. S.; Marukyan, V. M.
2018-05-01
In the article, the practical application and the structure of the correlation leak detectors’ software is studied and the task of its designing is analyzed. In the first part of the research paper, the expediency of the facilities development of correlation leak detectors for the following operating efficiency of public utilities exploitation is shown. The analysis of the functional structure of correlation leak detectors is conducted and its program software tasks are defined. In the second part of the research paper some development steps of the software package – requirement forming, program structure definition and software concept creation – are examined in the context of the usage experience of the hardware-software prototype of correlation leak detector.
NMR apparatus for in situ analysis of fuel cells
Gerald, II, Rex E; Rathke, Jerome W
2012-11-13
The subject apparatus is a fuel cell toroid cavity detector for in situ analysis of samples through the use of nuclear magnetic resonance. The toroid cavity detector comprises a gas-tight housing forming a toroid cavity where the housing is exposed to an externally applied magnetic field B.sub.0 and contains fuel cell component samples to be analyzed. An NMR spectrometer is electrically coupled and applies a radiofrequency excitation signal pulse to the detector to produce a radiofrequency magnetic field B.sub.1 in the samples and in the toroid cavity. Embedded coils modulate the static external magnetic field to provide a means for spatial selection of the recorded NMR signals.
Cross-Calibration of Secondary Electron Multiplier in Noble Gas Analysis
NASA Astrophysics Data System (ADS)
Santato, Alessandro; Hamilton, Doug; Deerberg, Michael; Wijbrans, Jan; Kuiper, Klaudia; Bouman, Claudia
2015-04-01
The latest generation of multi-collector noble gas mass spectrometers has decisively improved the precision in isotopic ratio analysis [1, 2] and helped the scientific community to address new questions [3]. Measuring numerous isotopes simultaneously has two significant advantages: firstly, any fluctuations in signal intensity have no effect on the isotope ratio and secondly, the analysis time is reduced. This particular point becomes very important in static vacuum mass spectrometry where during the analysis, the signal intensity decays and at the same time the background increases. However, when multi-collector analysis is utilized, it is necessary to pay special attention to the cross calibration of the detectors. This is a key point in order to have accurate and reproducible isotopic ratios. In isotope ratio mass spectrometry, with regard to the type of detector (i.e. Faraday or Secondary Electron Multiplier, SEM), analytical technique (TIMS, MC-ICP-MS or IRMS) and isotope system of interest, several techniques are currently applied to cross-calibrate the detectors. Specifically, the gain of the Faraday cups is generally stable and only the associated amplifier must be calibrated. For example, on the Thermo Scientific instrument control systems, the 1011 and 1012 ohm amplifiers can easily be calibrated through a fully software controlled procedure by inputting a constant electric signal to each amplifier sequentially [4]. On the other hand, the yield of the SEMs can drift up to 0.2% / hour and other techniques such as peak hopping, standard-sample bracketing and multi-dynamic measurement must be used. Peak hopping allows the detectors to be calibrated by measuring an ion beam of constant intensity across the detectors whereas standard-sample bracketing corrects the drift of the detectors through the analysis of a reference standard of a known isotopic ratio. If at least one isotopic pair of the sample is known, multi-dynamic measurement can be used; in this case the known isotopic ratio is measured on different pairs of detectors and the true value of the isotopic ratio of interest can be determined by a specific equation. In noble gas analysis, due to the decay of the ion beam during the measurement as well as the special isotopic systematic of the gases themselves, the cross-calibration of the SEM using these techniques becomes more complex and other methods should be investigated. In this work we present a comparison between different approaches to cross-calibrate multiple SEM's in noble gas analysis in order to evaluate the most suitable and reliable method. References: [1] Mark et al. (2009) Geochem. Geophys. Geosyst. 10, 1-9. [2] Mark et al. (2011) Geochim. Cosmochim. 75, 7494-7501. [3] Phillips and Matchan (2013) Geochimica et Cosmochimica Acta 121, 229-239. [4] Koornneef et al. (2014) Journal of Analytical Atomic Spectrometry 28, 749-754.
On Performance of Linear Multiuser Detectors for Wireless Multimedia Applications
NASA Astrophysics Data System (ADS)
Agarwal, Rekha; Reddy, B. V. R.; Bindu, E.; Nayak, Pinki
In this paper, performance of different multi-rate schemes in DS-CDMA system is evaluated. The analysis of multirate linear multiuser detectors with multiprocessing gain is analyzed for synchronous Code Division Multiple Access (CDMA) systems. Variable data rate is achieved by varying the processing gain. Our conclusion is that bit error rate for multirate and single rate systems can be made same with a tradeoff with number of users in linear multiuser detectors.
Abbasi, R U; Abu-Zayyad, T; Amann, J F; Archbold, G; Bellido, J A; Belov, K; Belz, J W; Bergman, D R; Cao, Z; Clay, R W; Cooper, M D; Dai, H; Dawson, B R; Everett, A A; Fedorova, Yu A; Girard, J H V; Gray, R C; Hanlon, W F; Hoffman, C M; Holzscheiter, M H; Hüntemeyer, P; Jones, B F; Jui, C C H; Kieda, D B; Kim, K; Kirn, M A; Loh, E C; Manago, N; Marek, L J; Martens, K; Martin, G; Matthews, J A J; Matthews, J N; Meyer, J R; Moore, S A; Morrison, P; Moosman, A N; Mumford, J R; Munro, M W; Painter, C A; Perera, L; Reil, K; Riehle, R; Roberts, M; Sarracino, J S; Sasaki, M; Schnetzer, S R; Shen, P; Simpson, K M; Sinnis, G; Smith, J D; Sokolsky, P; Song, C; Springer, R W; Stokes, B T; Taylor, S F; Thomas, S B; Thompson, T N; Thomson, G B; Tupa, D; Westerhoff, S; Wiencke, L R; VanderVeen, T D; Zech, A; Zhang, X
2004-04-16
We have measured the cosmic ray spectrum above 10(17.2) eV using the two air-fluorescence detectors of the High Resolution Fly's Eye observatory operating in monocular mode. We describe the detector, phototube, and atmospheric calibrations, as well as the analysis techniques for the two detectors. We fit the spectrum to a model consisting of galactic and extragalactic sources.
NASA Astrophysics Data System (ADS)
D'Andrea, M.; Argan, A.; Lotti, S.; Macculi, C.; Piro, L.; Biasotti, M.; Corsini, D.; Gatti, F.; Torrioli, G.
2016-07-01
The ATHENA observatory is the second large-class mission in ESA Cosmic Vision 2015-2025, with a launch foreseen in 2028 towards the L2 orbit. The mission addresses the science theme "The Hot and Energetic Universe", by coupling a high-performance X-ray Telescope with two complementary focal-plane instruments. One of these is the X-ray Integral Field Unit (X-IFU): it is a TES based kilo-pixel order array able to provide spatially resolved high-resolution spectroscopy (2.5 eV at 6 keV) over a 5 arcmin FoV. The X-IFU sensitivity is degraded by the particles background expected at L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the background level and enable the mission science goals, a Cryogenic Anticoincidence (CryoAC) detector is placed < 1 mm below the TES array. It is a 4- pixel TES based detector, with wide Silicon absorbers sensed by Ir:Au TESes. The CryoAC development schedule foresees by Q1 2017 the delivery of a Demonstration Model (DM) to the X-IFU FPA development team. The DM is a single-pixel detector that will address the final design of the CryoAC. It will verify some representative requirements at single-pixel level, especially the detector operation at 50 mK thermal bath and the threshold energy at 20 keV. To reach the final DM design we have developed and tested the AC-S7 prototype, with 1 cm2 absorber area sensed by 65 Ir TESes. Here we will discuss the pulse analysis of this detector, which has been illuminated by the 60 keV line from a 241Am source. First, we will present the analysis performed to investigate pulses timings and spectrum, and to disentangle the athermal component of the pulses from the thermal one. Furthermore, we will show the application to our dataset of an alternative method of pulse processing, based upon Principal Component Analysis (PCA). This kind of analysis allow us to recover better energy spectra than achievable with traditional methods, improving the evaluation of the detector threshold energy, a fundamental parameter characterizing the CryoAC particle rejection efficiency.
Telescope Array Low energy Extension: TALE
NASA Astrophysics Data System (ADS)
Ogio, Shoichi
TALE, the Telescope Array Low Energy extension was designed to lower the energy threshold to about 1016.5 eV. TALE has a surface detector (SD) array made up of 103 scintillation counters (40 with 400 m spacing, 36 with 600 m spacing and 27 with 1.2 km spacing) and a Fluorescence Detector (FD) station consisting of ten FD telescopes working with the Telescope Array Middle Drum FD station, which is made up of 14 telescopes. TALE-FD full operation started in 2013 and the SD array was partially-completed with 16 SDs and continues the operation from 2014. We will describe the history and the current status of the detectors and will make a brief report about the FD and the hybrid analysis results. TALE detector will be completed as a hybrid air shower detector in 2018. We will report the technical details of the detectors, the schedule and the expected performances.
Determining Data Quality for the NOvA Experiment
NASA Astrophysics Data System (ADS)
Murphy, Ryan; NOvA Collaboration Collaboration
2016-03-01
NOvA is a long-baseline neutrino oscillation experiment with two liquid scintillator filled tracking calorimeter detectors separated by 809 km. The detectors are located 14.6 milliradians off-axis of Fermilab's NuMI beam. The NOvA experiment is designed to measure the rate of electron-neutrino appearance out of the almost-pure muon-neutrino NuMI beam, with the data measured at the Near Detector being used to accurately determine the expected rate of the Far Detector. It is therefore very important to have automated and accurate monitoring of the data recorded by the detectors so any hardware, DAQ or beam issues arising in the 0.3 million (20k) channels of the far (near) detector which could effect this extrapolation technique are identified and the affected data removed from the physics analysis data set. This poster will cover the techniques and efficiency of selecting good data, describing the selections placed on different data and hardware levels.
Hu, Yi; Wang, Jinfeng; Li, Xiaohong; Ren, Dan; Zhu, Jun
2011-01-01
On 12 May, 2008, a devastating earthquake registering 8.0 on the Richter scale occurred in Sichuan Province, China, taking tens of thousands of lives and destroying the homes of millions of people. Many of the deceased were children, particular children less than five years old who were more vulnerable to such a huge disaster than the adult. In order to obtain information specifically relevant to further researches and future preventive measures, potential risk factors associated with earthquake-related child mortality need to be identified. We used four geographical detectors (risk detector, factor detector, ecological detector, and interaction detector) based on spatial variation analysis of some potential factors to assess their effects on the under-five mortality. It was found that three factors are responsible for child mortality: earthquake intensity, collapsed house, and slope. The study, despite some limitations, has important implications for both researchers and policy makers. PMID:21738660
Hu, Yi; Wang, Jinfeng; Li, Xiaohong; Ren, Dan; Zhu, Jun
2011-01-01
On 12 May, 2008, a devastating earthquake registering 8.0 on the Richter scale occurred in Sichuan Province, China, taking tens of thousands of lives and destroying the homes of millions of people. Many of the deceased were children, particular children less than five years old who were more vulnerable to such a huge disaster than the adult. In order to obtain information specifically relevant to further researches and future preventive measures, potential risk factors associated with earthquake-related child mortality need to be identified. We used four geographical detectors (risk detector, factor detector, ecological detector, and interaction detector) based on spatial variation analysis of some potential factors to assess their effects on the under-five mortality. It was found that three factors are responsible for child mortality: earthquake intensity, collapsed house, and slope. The study, despite some limitations, has important implications for both researchers and policy makers.
NASA Astrophysics Data System (ADS)
Kim, J.; Park, J.; Kim, J.; Kim, D. W.; Yun, S.; Lim, C. H.; Kim, H. K.
2016-11-01
For the purpose of designing an x-ray detector system for cargo container inspection, we have investigated the energy-absorption signal and noise in CdWO4 detectors for megavoltage x-ray photons. We describe the signal and noise measures, such as quantum efficiency, average energy absorption, Swank noise factor, and detective quantum efficiency (DQE), in terms of energy moments of absorbed energy distributions (AEDs) in a detector. The AED is determined by using a Monte Carlo simulation. The results show that the signal-related measures increase with detector thickness. However, the improvement of Swank noise factor with increasing thickness is weak, and this energy-absorption noise characteristic dominates the DQE performance. The energy-absorption noise mainly limits the signal-to-noise performance of CdWO4 detectors operated at megavoltage x-ray beam.
Observation of the cosmic-ray shadow of the Moon with IceCube
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Bertrand, D.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohaichuk, S.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Bruijn, R.; Brunner, J.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Clevermann, F.; Coenders, S.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; De Ridder, S.; Desiati, P.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eisch, J.; Ellsworth, R. W.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grandmont, D. T.; Grant, D.; Groß, A.; Ha, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Krings, K.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leute, J.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Sheremata, C.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tešić, G.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Wasserman, R.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.; IceCube Collaboration
2014-05-01
We report on the observation of a significant deficit of cosmic rays from the direction of the Moon with the IceCube detector. The study of this "Moon shadow" is used to characterize the angular resolution and absolute pointing capabilities of the detector. The detection is based on data taken in two periods before the completion of the detector: between April 2008 and May 2009, when IceCube operated in a partial configuration with 40 detector strings deployed in the South Pole ice, and between May 2009 and May 2010 when the detector operated with 59 strings. Using two independent analysis methods, the Moon shadow has been observed to high significance (>6σ) in both detector configurations. The observed location of the shadow center is within 0.2° of its expected position when geomagnetic deflection effects are taken into account. This measurement validates the directional reconstruction capabilities of IceCube.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinilla, Maria Isabel
This report seeks to study and benchmark code predictions against experimental data; determine parameters to match MCNP-simulated detector response functions to experimental stilbene measurements; add stilbene processing capabilities to DRiFT; and improve NEUANCE detector array modeling and analysis using new MCNP6 and DRiFT features.
2011-01-01
Background Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI), but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests) were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression) in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Results Press' Q test showed that all classifiers performed better than chance alone (p < 0.05). Support Vector Machines showed the larger overall classification accuracy (Median (Me) = 0.76) an area under the ROC (Me = 0.90). However this method showed high specificity (Me = 1.0) but low sensitivity (Me = 0.3). Random Forest ranked second in overall accuracy (Me = 0.73) with high area under the ROC (Me = 0.73) specificity (Me = 0.73) and sensitivity (Me = 0.64). Linear Discriminant Analysis also showed acceptable overall accuracy (Me = 0.66), with acceptable area under the ROC (Me = 0.72) specificity (Me = 0.66) and sensitivity (Me = 0.64). The remaining classifiers showed overall classification accuracy above a median value of 0.63, but for most sensitivity was around or even lower than a median value of 0.5. Conclusions When taking into account sensitivity, specificity and overall classification accuracy Random Forests and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia predictions from neuropsychological testing. PMID:21849043
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carini, Gabriella; Denes, Peter; Gruener, Sol
The Basic Energy Sciences (BES) X-ray and neutron user facilities attract more than 12,000 researchers each year to perform cutting-edge science at these state-of-the-art sources. While impressive breakthroughs in X-ray and neutron sources give us the powerful illumination needed to peer into the nano- to mesoscale world, a stumbling block continues to be the distinct lag in detector development, which is slowing progress toward data collection and analysis. Urgently needed detector improvements would reveal chemical composition and bonding in 3-D and in real time, allow researchers to watch “movies” of essential life processes as they happen, and make much moremore » efficient use of every X-ray and neutron produced by the source The immense scientific potential that will come from better detectors has triggered worldwide activity in this area. Europe in particular has made impressive strides, outpacing the United States on several fronts. Maintaining a vital U.S. leadership in this key research endeavor will require targeted investments in detector R&D and infrastructure. To clarify the gap between detector development and source advances, and to identify opportunities to maximize the scientific impact of BES user facilities, a workshop on Neutron and X-ray Detectors was held August 1-3, 2012, in Gaithersburg, Maryland. Participants from universities, national laboratories, and commercial organizations from the United States and around the globe participated in plenary sessions, breakout groups, and joint open-discussion summary sessions. Sources have become immensely more powerful and are now brighter (more particles focused onto the sample per second) and more precise (higher spatial, spectral, and temporal resolution). To fully utilize these source advances, detectors must become faster, more efficient, and more discriminating. In supporting the mission of today’s cutting-edge neutron and X-ray sources, the workshop identified six detector research challenges (and two computing hurdles that result from the corresponding increase in data volume) for the detector community to overcome in order to realize the full potential of BES neutron and X-ray facilities. Resolving these detector impediments will improve scientific productivity both by enabling new types of experiments, which will expand the scientific breadth at the X-ray and neutron facilities, and by potentially reducing the beam time required for a given experiment. These research priorities are summarized in the table below. Note that multiple, simultaneous detector improvements are often required to take full advantage of brighter sources. High-efficiency hard X-ray sensors: The fraction of incident particles that are actually detected defines detector efficiency. Silicon, the most common direct-detection X-ray sensor material, is (for typical sensor thicknesses) 100% efficient at 8 keV, 25%efficient at 20 keV, and only 3% efficient at 50 keV. Other materials are needed for hard X-rays. Replacement for 3He for neutron detectors: 3He has long been the neutron detection medium of choice because of its high cross section over a wide neutron energy range for the reaction 3He + n —> 3H + 1H + 0.764 MeV. 3He stockpiles are rapidly dwindling, and what is available can be had only at prohibitively high prices. Doped scintillators hold promise as ways to capture neutrons and convert them into light, although work is needed on brighter, more efficient scintillator solutions. Neutron detectors also require advances in speed and resolution. Fast-framing X-ray detectors: Today’s brighter X-ray sources make time-resolved studies possible. For example, hybrid X-ray pixel detectors, initially developed for particle physics, are becoming fairly mature X-ray detectors, with considerable development in Europe. To truly enable time-resolved studies, higher frame rates and dynamic range are required, and smaller pixel sizes are desirable. High-speed spectroscopic X-ray detectors: Improvements in the readout speed and energy resolution of X-ray detectors are essential to enable chemically sensitive microscopies. Advances would make it possible to take images with simultaneous spatial and chemical information. Very high-energy-resolution X-ray detectors: The energy resolution of semiconductor detectors, while suitable for a wide range of applications, is far less than what can be achieved with X-ray optics. A direct detector that could rival the energy resolution of optics could dramatically improve the efficiency of a multitude of experiments, as experiments are often repeated at a number of different energies. Very high-energy-resolution detectors could make these experiments parallel, rather than serial. Low-background, high-spatial-resolution neutron detectors: Low-background detectors would significantly improve experiments that probe excitations (phonons, spin excitations, rotation, and diffusion in polymers and molecular substances, etc.) in condensed matter. Improved spatial resolution would greatly benefit radiography, tomography, phase-contrast imaging, and holography. Improved acquisition and visualization tools: In the past, with the limited variety of slow detectors, it was straightforward to visualize data as it was being acquired (and adjust experimental conditions accordingly) to create a compact data set that the user could easily transport. As detector complexity and data rates explode, this becomes much more challenging. Three goals were identified as important for coping with the growing data volume from high-speed detectors: Facilitate better algorithm development. In particular, algorithms that can minimize the quantity of data stored. Improve community-driven mechanisms to reduce data protocols and enhance quantitative, interactive visualization tools. Develop and distribute community-developed, detector-specific simulation tools. Aim for parallelization to take advantage of high-performance analysis platforms. Improved analysis work flows: Standardize the format of metadata that accompanies detector data and describes the experimental setup and conditions. Develop a standardized user interface and software framework for analysis and data management. The diversity of detector improvements required is necessarily as broad as the range of scientific experimentation at BES facilities. This workshop identified a variety of avenues by which detector R&D can enable enhanced science at BES facilities. The Research Directions listed above will be addressed by focused R&D and detector engineering, both of which require specialized infrastructure and skills. While U.S. leadership in neutron and X-ray detectors lags behind other countries in several areas, significant talent exists across the complex. A forum of technical experts, facilities management, and BES could be a venue to provide further definition.« less
Yamamoto, Seiichi
2013-07-01
The silicon photomultiplier (Si-PM) is a promising photodetector for PET. However, it remains unclear whether Si-PM can be used for a depth-of-interaction (DOI) detector based on the decay time differences of the scintillator where pulse shape analysis is used. For clarification, we tested the Hamamatsu 4 × 4 Si-PM array (S11065-025P) combined with scintillators that used different decay times to develop DOI block detectors using the pulse shape analysis. First, Ce-doped Gd(2)SiO(5) (GSO) scintillators of 0.5 mol% Ce were arranged in a 4 × 4 matrix and were optically coupled to the center of each pixel of the Si-PM array for measurement of the energy resolution as well as its gain variations according to the temperature. Then two types of Ce-doped Lu(1.9)Gd(0.1)Si0(5) (LGSO) scintillators, 0.025 mol% Ce (decay time: ~31 ns) and 0.75 mol% Ce (decay time: ~46 ns), were optically coupled in the DOI direction, arranged in a 11 × 7 matrix, and optically coupled to a Si-PM array for testing of the possibility of a high-resolution DOI detector. The energy resolution of the Si-PM array-based GSO block detector was 18 ± 4.4 % FWHM for a Cs-137 gamma source (662 keV). Less than 1 mm crystals were clearly resolved in the position map of the LGSO DOI block detector. The peak-to-valley ratio (P/V) derived from the pulse shape spectra of the LGSO DOI block detector was 2.2. These results confirmed that Si-PM array-based DOI block detectors are promising for high-resolution small animal PET systems.
Rejecting Non-MIP-Like Tracks using Boosted Decision Trees with the T2K Pi-Zero Subdetector
NASA Astrophysics Data System (ADS)
Hogan, Matthew; Schwehr, Jacklyn; Cherdack, Daniel; Wilson, Robert; T2K Collaboration
2016-03-01
Tokai-to-Kamioka (T2K) is a long-baseline neutrino experiment with a narrow band energy spectrum peaked at 600 MeV. The Pi-Zero detector (PØD) is a plastic scintillator-based detector located in the off-axis near detector complex 280 meters from the beam origin. It is designed to constrain neutral-current induced π0 production background at the far detector using the water target which is interleaved between scintillator layers. A PØD-based measurement of charged-current (CC) single charged pion (1π+) production on water is being developed which will have expanded phase space coverage as compared to the previous analysis. The signal channel for this analysis, which for T2K is dominated by Δ production, is defined as events that produce a single muon, single charged pion, and any number of nucleons in the final state. The analysis will employ machine learning algorithms to enhance CC1π+ selection by studying topological observables that characterize signal well. Important observables for this analysis are those that discriminate a minimum ionizing particle (MIP) like a muon or pion from a proton at the T2K energies. This work describes the development of a discriminator using Boosted Decision Trees to reject non-MIP-like PØD tracks.
Top-attack modeling and automatic target detection using synthetic FLIR scenery
NASA Astrophysics Data System (ADS)
Weber, Bruce A.; Penn, Joseph A.
2004-09-01
A series of experiments have been performed to verify the utility of algorithmic tools for the modeling and analysis of cold-target signatures in synthetic, top-attack, FLIR video sequences. The tools include: MuSES/CREATION for the creation of synthetic imagery with targets, an ARL target detection algorithm to detect imbedded synthetic targets in scenes, and an ARL scoring algorithm, using Receiver-Operating-Characteristic (ROC) curve analysis, to evaluate detector performance. Cold-target detection variability was examined as a function of target emissivity, surrounding clutter type, and target placement in non-obscuring clutter locations. Detector metrics were also individually scored so as to characterize the effect of signature/clutter variations. Results show that using these tools, a detailed, physically meaningful, target detection analysis is possible and that scenario specific target detectors may be developed by selective choice and/or weighting of detector metrics. However, developing these tools into a reliable predictive capability will require the extension of these results to the modeling and analysis of a large number of data sets configured for a wide range of target and clutter conditions. Finally, these tools should also be useful for the comparison of competitive detection algorithms by providing well defined, and controllable target detection scenarios, as well as for the training and testing of expert human observers.
WE-AB-BRB-10: Filmless QA of CyberKnife MLC-Collimated and Iris-Collimated Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gersh, J; Spectrum Medical Physics, LLC, Greenville, SC
Purpose: Current methods of CK field shape QA is based on the use of radiochromic film. Though accurate results can be attained, these methods are prone to error, time consuming, and expensive. The techniques described herein perform similar QA using the FOIL Detector (Field, Output, and Image Localization). A key feature of this in-house QA solution, and central to this study, is an aSi flat-panel detector which provides the user with the means to perform accurate, immediate, and quantitative field analysis. Methods: The FOIL detector is automatically aligned in the CK beam using fiducial markers implanted within the detector case.more » Once the system is aligned, a treatment plan is delivered which irradiates the flat-panel imager using the field being tested. The current study tests each of the clinically-used fields shaped using the Iris variable-aperture collimation system using a plan which takes 6 minutes to deliver. The user is immediately provided with field diameter and beam profile, as well as a comparison to baseline values. Additionally, the detector is used to acquire and analyze leaf positions of the InCise multi-leaf collimation system. Results: Using a 6-minute plan consisting of 11 beams of 25MU-per-beam, the FOIL detector provided the user with a quantitative analysis of all clinically-used field shapes. The FOIL detector was also able to clearly resolve field edge junctions in a picket fence test, including slight over-travel of individual leaves as well as inter-leaf leakage. Conclusion: The FOIL system provided comparable field diameter and profile data when compared to methods using film; providing results much faster and with 5% of the MU used for film. When used with the MLC system, the FOIL detector provided the means for immediate quantification of the performance of the system through analysis of leaf positions in a picket fence test field. Author is the President/Owner of Spectrum Medical Physics, LLC, a company which maintains contracts with Siemens Healthcare and Standard Imaging, Inc.« less
Detector response function of an energy-resolved CdTe single photon counting detector.
Liu, Xin; Lee, Hyoung Koo
2014-01-01
While spectral CT using single photon counting detector has shown a number of advantages in diagnostic imaging, knowledge of the detector response function of an energy-resolved detector is needed to correct the signal bias and reconstruct the image more accurately. The objective of this paper is to study the photo counting detector response function using laboratory sources, and investigate the signal bias correction method. Our approach is to model the detector response function over the entire diagnostic energy range (20 keV
Application of GEM-based detectors in full-field XRF imaging
NASA Astrophysics Data System (ADS)
Dąbrowski, W.; Fiutowski, T.; Frączek, P.; Koperny, S.; Lankosz, M.; Mendys, A.; Mindur, B.; Świentek, K.; Wiącek, P.; Wróbel, P. M.
2016-12-01
X-ray fluorescence spectroscopy (XRF) is a commonly used technique for non-destructive elemental analysis of cultural heritage objects. It can be applied to investigations of provenance of historical objects as well as to studies of art techniques. While the XRF analysis can be easily performed locally using standard available equipment there is a growing interest in imaging of spatial distribution of specific elements. Spatial imaging of elemental distrbutions is usually realised by scanning an object with a narrow focused X-ray excitation beam and measuring characteristic fluorescence radiation using a high energy resolution detector, usually a silicon drift detector. Such a technique, called macro-XRF imaging, is suitable for investigation of flat surfaces but it is time consuming because the spatial resolution is basically determined by the spot size of the beam. Another approach is the full-field XRF, which is based on simultaneous irradiation and imaging of large area of an object. The image of the investigated area is projected by a pinhole camera on a position-sensitive and energy dispersive detector. The infinite depth of field of the pinhole camera allows one, in principle, investigation of non-flat surfaces. One of possible detectors to be employed in full-field XRF imaging is a GEM based detector with 2-dimensional readout. In the paper we report on development of an imaging system equipped with a standard 3-stage GEM detector of 10 × 10 cm2 equipped with readout electronics based on dedicated full-custom ASICs and DAQ system. With a demonstrator system we have obtained 2-D spatial resolution of the order of 100 μm and energy resolution at a level of 20% FWHM for 5.9 keV . Limitations of such a detector due to copper fluorescence radiation excited in the copper-clad drift electrode and GEM foils is discussed and performance of the detector using chromium-clad electrodes is reported.
A segmented, enriched N-type germanium detector for neutrinoless double beta-decay experiments
NASA Astrophysics Data System (ADS)
Leviner, L. E.; Aalseth, C. E.; Ahmed, M. W.; Avignone, F. T.; Back, H. O.; Barabash, A. S.; Boswell, M.; De Braeckeleer, L.; Brudanin, V. B.; Chan, Y.-D.; Egorov, V. G.; Elliott, S. R.; Gehman, V. M.; Hossbach, T. W.; Kephart, J. D.; Kidd, M. F.; Konovalov, S. I.; Lesko, K. T.; Li, Jingyi; Mei, D.-M.; Mikhailov, S.; Miley, H.; Radford, D. C.; Reeves, J.; Sandukovsky, V. G.; Umatov, V. I.; Underwood, T. A.; Tornow, W.; Wu, Y. K.; Young, A. R.
2014-01-01
We present data characterizing the performance of the first segmented, N-type Ge detector, isotopically enriched to 85% 76Ge. This detector, based on the Ortec PT6×2 design and referred to as SEGA (Segmented, Enriched Germanium Assembly), was developed as a possible prototype for neutrinoless double beta-decay measurements by the MAJORANA collaboration. We present some of the general characteristics (including bias potential, efficiency, leakage current, and integral cross-talk) for this detector in its temporary cryostat. We also present an analysis of the resolution of the detector, and demonstrate that for all but two segments there is at least one channel that reaches the MAJORANA resolution goal below 4 keV FWHM at 2039 keV, and all channels are below 4.5 keV FWHM.
Implementing a Java Based GUI for RICH Detector Analysis
NASA Astrophysics Data System (ADS)
Lendacky, Andrew; Voloshin, Andrew; Benmokhtar, Fatiha
2016-09-01
The CLAS12 detector at Thomas Jefferson National Accelerator Facility (TJNAF) is undergoing an upgrade. One of the improvements is the addition of a Ring Imaging Cherenkov (RICH) detector to improve particle identification in the 3-8 GeV/c momentum range. Approximately 400 multi anode photomultiplier tubes (MAPMTs) are going to be used to detect Cherenkov Radiation in the single photoelectron spectra (SPS). The SPS of each pixel of all MAPMTs have been fitted to a mathematical model of roughly 45 parameters for 4 HVs, 3 OD. Out of those parameters, 9 can be used to evaluate the PMTs performance and placement in the detector. To help analyze data when the RICH is operational, a GUI application was written in Java using Swing and detector packages from TJNAF. To store and retrieve the data, a MySQL database program was written in Java using the JDBC package. Using the database, the GUI pulls the values and produces histograms and graphs for a selected PMT at a specific HV and OD. The GUI will allow researchers to easily view a PMT's performance and efficiency to help with data analysis and ring reconstruction when the RICH is finished.
Stability of landsat-4 thematic mapper outgassing models
Micijevic, E.; Chander, G.
2006-01-01
Oscillations in radiometric gains of the short wave infrared (SWIR) bands in Landsat-4 (L4) and Landsat-5 (L5) Thematic Mappers (TMs) are observed through an analysis of detector responses to the Internal Calibrator (IC) pulses. The oscillations are believed to be caused by an interference effect due to a contaminant film buildup on the window of the cryogenically cooled dewar that houses these detectors. This process of contamination, referred to as outgassing effects, has been well characterized using an optical thin-film model that relates detector responses to the accumulated film thickness and its growth rate. The current models for L4 TM are based on average detector responses to the second brightest IC lamp and have been derived from three data sets acquired during different times throughout the instrument's lifetime. Unlike in L5 TM outgassing characterization, it was found that the L4 TM responses to all three IC lamps can be used to provide accurate characterization and correction for outgassing effects. The analysis of single detector responses revealed an up to five percent difference in the estimated oscillating periods and also indicated a gradual variation of contaminant growth rate over the focal plane.
Obstacle detectors for automated transit vehicles: A technoeconomic and market analysis
NASA Technical Reports Server (NTRS)
Lockerby, C. E.
1979-01-01
A search was conducted to identify the technical and economic characteristics of both NASA and nonNASA obstacle detectors. The findings, along with market information were compiled and analyzed for consideration by DOT and NASA in decisions about any future automated transit vehicle obstacle detector research, development, or applications project. Currently available obstacle detectors and systems under development are identified by type (sonic, capacitance, infrared/optical, guided radar, and probe contact) and compared with the three NASA devices selected as possible improvements or solutions to the problems in existing obstacle detection systems. Cost analyses and market forecasts individually for the AGT and AMTV markets are included.
Development of Γ-ray tracking detectors
Lieder, R. M.; Gast, W.; Jäger, H. M.; ...
2001-12-01
The next generation of 4π arrays for high-precision γ-ray spectroscopy AGATA will consist of γ-ray tracking detectors. They represent high-fold segmented Ge detectors and a front-end electronics, based on digital signal processing techniques, which allows to extract energy, timing and spatial information on the interactions of a γ-ray in the Ge detector by pulse shape analysis of its signals. Utilizing the information on the positions of the interaction points and the energies released at each point the tracks of the γ-rays in a Ge shell can be reconstructed in three dimensions on the basis of the Compton-scattering formula.
First results from the AMY detector at Tristan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imlay, R.
1987-08-01
Bhabha scattering and multi-hadronic e/sup +/e/sup -/ annihilation events have been observed in the AMY detector at ..sqrt..s = 500 GeV at the TRISTAN e/sup +/e/sup -/ storage ring. Here the authors report the results of a preliminary analysis of the properties of these events. Of particular note is one event that contains a high energy, isolated gamma ray together with a large amount of missing momentum that penetrates the fiducial volume of the detector.
2006-05-01
26 1.10.1 Radiation Isotope Detector Operation ...... 27 1.10.2 HEU Counts in Radioisotope with 1 kg HEU.. 27 1.10.3 Radiation Isotope ...REACTOR GRADE PLUTONIUM ........... 173 10.2 GAMMA EMITTING ISOTOPES IN CARGO MATERIAL ............. 177 10.3 MCNP ANALYSIS OF GAMMA TRANSPORT FROM A...experiment at USNA using a germanium detector .......................... 31 1-13 Counts in the radiation isotope detector versus counting time for 1
Characterization and Measurements from the Infrared Grazing Angle Reflectometer
2012-06-14
18 3. List of sample scatter pattern fitting values. All values were taken from Ngan’s paper ”Experimental Analysis of BRDF Models - Supplemental” [1...using a BRDF model , and the absorptance can be modeled using a Fresnel absorptance. After defining both of these values, we can calculate the power seen... BRDF model of the face of the detector. This paper will examine the case of a flat detector with some index of refraction n. This air-detector
NASA Astrophysics Data System (ADS)
de Mendonça, R. R. S.; Braga, C. R.; Echer, E.; Dal Lago, A.; Munakata, K.; Kuwabara, T.; Kozai, M.; Kato, C.; Rockenbach, M.; Schuch, N. J.; Jassar, H. K. Al; Sharma, M. M.; Tokumaru, M.; Duldig, M. L.; Humble, J. E.; Evenson, P.; Sabbah, I.
2016-10-01
The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticed that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.
Capacitor-type micrometeoroid detectors
NASA Technical Reports Server (NTRS)
Wortman, J. J.; Griffis, D. P.; Bryan, S. R.; Kinard, W.
1986-01-01
The metal oxide semiconductor (MOS) capacitor micrometeroid detector consists of a thin dielectric capacitor fabricated on a silicon wafer. In operation, the device is charged to a voltage level sufficiently near breakdown that micrometeoroid impacts will cause dielectric deformation or heating and subsequent arc-over at the point of impact. Each detector is capable of recording multiple impacts because of the self-healing characteristics of the device. Support instrumentation requirements consist of a voltage source and pulse counters that monitor the pulse of recharging current following every impact. An investigation has been conducted in which 0.5 to 5 micron diameter carbonized iron spheres traveling at velocities of 4 to 10 Km/sec were impacted on to detectors with either a dielectric thickness of 0.4 or 1.0 micron. This study demonstrated that an ion microprobe tuned to sufficiently high resolution can detect Fe remaining on the detector after the impact. Furthermore, it is also possible to resolve Fe ion images free of mass interferences from Si, for example, giving its spatial distribution after impact. Specifically this technique has shown that significant amounts of impacting particles remain in the crater and near it which can be analyzed for isotopic content. Further testing and calibration could lead to quantitive analysis. This study has shown that the capacitor type micrometeroid detector is capable of not only time and flux measurements but can also be used for isotopic analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Mendonça, R. R. S.; Braga, C. R.; Echer, E.
2016-10-20
The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticedmore » that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.« less
Morales, Arturo; Marmesat, Susana; Dobarganes, M Carmen; Márquez-Ruiz, Gloria; Velasco, Joaquín
2012-09-07
The use of an ELS detector in NP-HPLC for quantitative analysis of oxidation products in FAME obtained from oils is evaluated in this study. The results obtained have shown that the ELS detector enables the quantitative determination of the hydroperoxides of oleic and linoleic acid methyl esters as a whole, and connected in series with a UV detector makes it possible to determine both groups of compounds by difference, providing useful complementary information. The limits of detection (LOD) and quantification (LOQ) found for hydroperoxides were respectively 2.5 and 5.7 μg mL⁻¹ and precision of quantitation expressed as coefficient of variation was lower than 10%. Due to a low sensitivity the ELS detector shows limitations to determine the low contents of secondary oxidation products in the direct analysis of FAME oxidized at low or moderate temperature. Analysis of FAME samples obtained either from high linoleic sunflower oil (HLSO) or high oleic sunflower oil (HOSO) and oxidized at 80 °C showed that only ketodienes formed from methyl linoleate can be determined in samples with relatively high oxidation, being the LOD and LOQ 0.2 and 0.4 mg/g FAME, respectively, at the analytical conditions applied. The ELS detector also enabled the determination of methyl cis-9,10-epoxystearate and methyl trans-9,10-epoxystearate, which were resolved at the chromatographic conditions applied. Results showed that these compounds, which are formed from methyl oleate, were not detected in the high-linoleic sample, but occurred at non-negligible levels in the oxidized FAME obtained from HOSO. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Enrique Arrieta
2014-01-01
The NOνA is a long base-line neutrino oscillation experiment. It will study the oscillations between muon and electron neutrinos through the Earth. NOνA consists of two detectors separated by 810 km. Each detector will measure the electron neutrino content of the neutrino (NuMI) beam. Differences between the measurements will reveal details about the oscillation channel. The NOνA collaboration built a prototype detector on the surface at Fermilab in order to develop calibration, simulation, and reconstruction tools, using real data. This 220 ton detector is 110 mrad off the NuMI beam axis. This off-axis location allows the observation of neutrino interactionsmore » with energies around 2 GeV, where neutrinos come predominantly from charged kaon decays. During the period between October 2011 and April 2012, the prototype detector collected neutrino data from 1.67 × 10 20 protons on target delivered by the NuMI beam. This analysis selected a number of candidate charged current muon neutrino events from the prototype data, which is 30% lower than predicted by the NOνA Monte Carlo simulation. The analysis suggests that the discrepancy comes from an over estimation of the neutrino flux in the Monte Carlo simulation, and in particular, from neutrinos generated in charged kaon decays. The ratio of measured divided by the simulated flux of muon neutrinos coming from charged kaon decays is: 0.70 +0.108 -0.094. The NOνA collaboration may use the findings of this analysis to introduce a more accurate prediction of the neutrino flux produced by the NuMI beam in future Monte Carlo simulations.« less
Advancing the Fork detector for quantitative spent nuclear fuel verification
Vaccaro, S.; Gauld, I. C.; Hu, J.; ...
2018-01-31
The Fork detector is widely used by the safeguards inspectorate of the European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) to verify spent nuclear fuel. Fork measurements are routinely performed for safeguards prior to dry storage cask loading. Additionally, spent fuel verification will be required at the facilities where encapsulation is performed for acceptance in the final repositories planned in Sweden and Finland. The use of the Fork detector as a quantitative instrument has not been prevalent due to the complexity of correlating the measured neutron and gamma ray signals with fuel inventories and operator declarations.more » A spent fuel data analysis module based on the ORIGEN burnup code was recently implemented to provide automated real-time analysis of Fork detector data. This module allows quantitative predictions of expected neutron count rates and gamma units as measured by the Fork detectors using safeguards declarations and available reactor operating data. This study describes field testing of the Fork data analysis module using data acquired from 339 assemblies measured during routine dry cask loading inspection campaigns in Europe. Assemblies include both uranium oxide and mixed-oxide fuel assemblies. More recent measurements of 50 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel are also analyzed. An evaluation of uncertainties in the Fork measurement data is performed to quantify the ability of the data analysis module to verify operator declarations and to develop quantitative go/no-go criteria for safeguards verification measurements during cask loading or encapsulation operations. The goal of this approach is to provide safeguards inspectors with reliable real-time data analysis tools to rapidly identify discrepancies in operator declarations and to detect potential partial defects in spent fuel assemblies with improved reliability and minimal false positive alarms. Finally, the results are summarized, and sources and magnitudes of uncertainties are identified, and the impact of analysis uncertainties on the ability to confirm operator declarations is quantified.« less
Advancing the Fork detector for quantitative spent nuclear fuel verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaccaro, S.; Gauld, I. C.; Hu, J.
The Fork detector is widely used by the safeguards inspectorate of the European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) to verify spent nuclear fuel. Fork measurements are routinely performed for safeguards prior to dry storage cask loading. Additionally, spent fuel verification will be required at the facilities where encapsulation is performed for acceptance in the final repositories planned in Sweden and Finland. The use of the Fork detector as a quantitative instrument has not been prevalent due to the complexity of correlating the measured neutron and gamma ray signals with fuel inventories and operator declarations.more » A spent fuel data analysis module based on the ORIGEN burnup code was recently implemented to provide automated real-time analysis of Fork detector data. This module allows quantitative predictions of expected neutron count rates and gamma units as measured by the Fork detectors using safeguards declarations and available reactor operating data. This study describes field testing of the Fork data analysis module using data acquired from 339 assemblies measured during routine dry cask loading inspection campaigns in Europe. Assemblies include both uranium oxide and mixed-oxide fuel assemblies. More recent measurements of 50 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel are also analyzed. An evaluation of uncertainties in the Fork measurement data is performed to quantify the ability of the data analysis module to verify operator declarations and to develop quantitative go/no-go criteria for safeguards verification measurements during cask loading or encapsulation operations. The goal of this approach is to provide safeguards inspectors with reliable real-time data analysis tools to rapidly identify discrepancies in operator declarations and to detect potential partial defects in spent fuel assemblies with improved reliability and minimal false positive alarms. Finally, the results are summarized, and sources and magnitudes of uncertainties are identified, and the impact of analysis uncertainties on the ability to confirm operator declarations is quantified.« less
Advancing the Fork detector for quantitative spent nuclear fuel verification
NASA Astrophysics Data System (ADS)
Vaccaro, S.; Gauld, I. C.; Hu, J.; De Baere, P.; Peterson, J.; Schwalbach, P.; Smejkal, A.; Tomanin, A.; Sjöland, A.; Tobin, S.; Wiarda, D.
2018-04-01
The Fork detector is widely used by the safeguards inspectorate of the European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) to verify spent nuclear fuel. Fork measurements are routinely performed for safeguards prior to dry storage cask loading. Additionally, spent fuel verification will be required at the facilities where encapsulation is performed for acceptance in the final repositories planned in Sweden and Finland. The use of the Fork detector as a quantitative instrument has not been prevalent due to the complexity of correlating the measured neutron and gamma ray signals with fuel inventories and operator declarations. A spent fuel data analysis module based on the ORIGEN burnup code was recently implemented to provide automated real-time analysis of Fork detector data. This module allows quantitative predictions of expected neutron count rates and gamma units as measured by the Fork detectors using safeguards declarations and available reactor operating data. This paper describes field testing of the Fork data analysis module using data acquired from 339 assemblies measured during routine dry cask loading inspection campaigns in Europe. Assemblies include both uranium oxide and mixed-oxide fuel assemblies. More recent measurements of 50 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel are also analyzed. An evaluation of uncertainties in the Fork measurement data is performed to quantify the ability of the data analysis module to verify operator declarations and to develop quantitative go/no-go criteria for safeguards verification measurements during cask loading or encapsulation operations. The goal of this approach is to provide safeguards inspectors with reliable real-time data analysis tools to rapidly identify discrepancies in operator declarations and to detect potential partial defects in spent fuel assemblies with improved reliability and minimal false positive alarms. The results are summarized, and sources and magnitudes of uncertainties are identified, and the impact of analysis uncertainties on the ability to confirm operator declarations is quantified.
Analysis of biodiesel by high performance liquid chromatography using refractive index detector.
Syed, Mahin Basha
2017-01-01
High-performance liquid chromatography (HPLC) was used for the determination of compounds occurring during the production of biodiesel from karanja and jatropha oil. Methanol was used for fast monitoring of conversion of karanja and jatropha oil triacylglycerols to fatty acid methyl esters and for quantitation of residual triacylglycerols (TGs), in the final biodiesel product. The individual sample compounds were identified using HPLC. Analysis of fatty acid methyl esters (FAMES) in blends of biodiesel by HPLC using a refractive index and a UV detector at 238 nm. Individual triacylglycerols, diacylglycerols, monoacylglycerols and methyl esters of oleic, linoleic and linolenic acids and free fatty acids were separated within 40 min. Hence HPLC was found to be best for the analysis of biodiesel. Analysis of biodiesel by HPLC using RID detector. Estimation of amount of FAMES in biodiesel. Individual triacylglycerols, diacylglycerols, monoacylglycerols and methyl esters of oleic, linoleic and linolenic acids and free fatty acids were separated within 40 min.
NASA Astrophysics Data System (ADS)
Ström, Petter; Petersson, Per; Rubel, Marek; Possnert, Göran
2016-10-01
A dedicated detector system for heavy ion elastic recoil detection analysis at the Tandem Laboratory of Uppsala University is presented. Benefits of combining a time-of-flight measurement with a segmented anode gas ionization chamber are demonstrated. The capability of ion species identification is improved with the present system, compared to that obtained when using a single solid state silicon detector for the full ion energy signal. The system enables separation of light elements, up to Neon, based on atomic number while signals from heavy elements such as molybdenum and tungsten are separated based on mass, to a sample depth on the order of 1 μm. The performance of the system is discussed and a selection of material analysis applications is given. Plasma-facing materials from fusion experiments, in particular metal mirrors, are used as a main example for the discussion. Marker experiments using nitrogen-15 or oxygen-18 are specific cases for which the described improved species separation and sensitivity are required. Resilience to radiation damage and significantly improved energy resolution for heavy elements at low energies are additional benefits of the gas ionization chamber over a solid state detector based system.
Jumhawan, Udi; Putri, Sastia Prama; Yusianto; Bamba, Takeshi; Fukusaki, Eiichiro
2015-11-01
Development of authenticity screening for Asian palm civet coffee, the world-renowned priciest coffee, was previously reported using metabolite profiling through gas chromatography/mass spectrometry (GC/MS). However, a major drawback of this approach is the high cost of the instrument and maintenance. Therefore, an alternative method is needed for quality and authenticity evaluation of civet coffee. A rapid, reliable and cost-effective analysis employing a universal detector, GC coupled with flame ionization detector (FID), and metabolite fingerprinting has been established for discrimination analysis of 37 commercial and non-commercial coffee beans extracts. gas chromatography/flame ionization detector (GC/FID) provided higher sensitivity over a similar range of detected compounds than GC/MS. In combination with multivariate analysis, GC/FID could successfully reproduce quality prediction from GC/MS for differentiation of commercial civet coffee, regular coffee and coffee blend with 50 wt % civet coffee content without prior metabolite details. Our study demonstrated that GC/FID-based metabolite fingerprinting can be effectively actualized as an alternative method for coffee authenticity screening in industries. Copyright © 2015. Published by Elsevier B.V.
A simple apparatus for quick qualitative analysis of CR39 nuclear track detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gautier, D. C.; Kline, J. L.; Flippo, K. A.
2008-10-15
Quantifying the ion pits in Columbia Resin 39 (CR39) nuclear track detector from Thomson parabolas is a time consuming and tedious process using conventional microscope based techniques. A simple inventive apparatus for fast screening and qualitative analysis of CR39 detectors has been developed, enabling efficient selection of data for a more detailed analysis. The system consists simply of a green He-Ne laser and a high-resolution digital single-lens reflex camera. The laser illuminates the edge of the CR39 at grazing incidence and couples into the plastic, acting as a light pipe. Subsequently, the laser illuminates all ion tracks on the surface.more » A high-resolution digital camera is used to photograph the scattered light from the ion tracks, enabling one to quickly determine charge states and energies measured by the Thomson parabola.« less
Miniature Tunable Laser Spectrometer for Detection of a Trace Gas
NASA Technical Reports Server (NTRS)
Christensen, Lance E. (Inventor)
2017-01-01
An open-path laser spectrometer (OPLS) for measuring a concentration of a trace gas, the OPLS including an open-path multi-pass analysis region including a first mirror, a second mirror at a distance and orientation from the first mirror, and a support structure for locating the mirrors, a laser coupled to the analysis region and configured to emit light of a wavelength range and to enable a plurality of reflections of the emitted light between the mirrors, a detector coupled to the analysis region and configured to detect a portion of the emitted light impinging on the detector and to generate a corresponding signal, and an electronic system coupled to the laser and the detector, and configured to adjust the wavelength range of the emitted light from the laser based on the generated signal, and to measure the concentration of the trace gas based on the generated signal.
Test results of a new detector system for gamma ray isotopic measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malcom, J.E.; Bonner, C.A.; Hurd, J.R.
1993-08-01
A new type of gamma-ray detector system for isotopic measurements has been developed. This new system, a ``Duo detector`` array, consists of two intrinsic germanium detectors, a planar followed by a coaxial mounted on the same axis within a single cryostat assembly. This configuration allows the isotopic analysis system to take advantage of spectral data results that are collected simultaneously from different gamma-ray energy regimes. Princeton Gamma Tech (PGT) produced several prototypes of this Duo detector array which were then tested by Rocky Flats personnel until the design was optimized. An application for this detector design is in automated, roboticizedmore » NDA systems such as those being developed at the Los Alamos TA-55 Plutonium Facility. The Duo detector design reduces the space necessary for the isotopic instrument by a factor of two (only one liquid nitrogen dewar is needed), and also reduces the complexity of the mechanical systems and controlling software. Data will be presented on measurements of nuclear material with a Duo detector for a wide variety of matrices. Results indicate that the maximum count rate can be increased up to 100,000 counts per second yet maintaining excellent resolution and energy rate product.« less
New approach to calculate the true-coincidence effect of HpGe detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alnour, I. A., E-mail: aaibrahim3@live.utm.my, E-mail: ibrahim.elnour@yahoo.com; Wagiran, H.; Ibrahim, N.
The corrections for true-coincidence effects in HpGe detector are important, especially at low source-to-detector distances. This work established an approach to calculate the true-coincidence effects experimentally for HpGe detectors of type Canberra GC3018 and Ortec GEM25-76-XLB-C, which are in operation at neutron activation analysis lab in Malaysian Nuclear Agency (NM). The correction for true-coincidence effects was performed close to detector at distances 2 and 5 cm using {sup 57}Co, {sup 60}Co, {sup 133}Ba and {sup 137}Cs as standard point sources. The correction factors were ranged between 0.93-1.10 at 2 cm and 0.97-1.00 at 5 cm for Canberra HpGe detector; whereas for Ortec HpGemore » detector ranged between 0.92-1.13 and 0.95-100 at 2 and 5 cm respectively. The change in efficiency calibration curve of the detector at 2 and 5 cm after correction was found to be less than 1%. Moreover, the polynomial parameters functions were simulated through a computer program, MATLAB in order to find an accurate fit to the experimental data points.« less
Investigation of the Effect of Temperature and Light Emission from Silicon Photomultiplier Detectors
NASA Astrophysics Data System (ADS)
Ruiz Castruita, Daniel; Ramos, Daniel; Hernandez, Victor; Niduaza, Rommel; Konx, Adrian; Fan, Sewan; Fatuzzo, Laura; Ritt, Stefan
2015-04-01
The silicon photomultiplier (SiPM) is an extremely sensitive light detector capable of measuring very dim light and operates as a photon-number resolving detector. Its high gain comes from operating at slightly above the breakdown voltage, which is also accompanied by a high dark count rate. At this conference poster session we describe our investigation of using SiPMs, the multipixel photon counters (MPPC) from Hamamatsu, as readout detectors for development in a cosmic ray scintillating detector array. Our research includes implementation of a novel design that automatically adjusts for the bias voltage to the MPPC detectors to compensate for changes in the ambient temperature. Furthermore, we describe our investigations for the MPPC detector characteristics at different bias voltages, temperatures and light emission properties. To measure the faint light emitted from the MPPC we use a photomultiplier tube capable of detecting single photons. Our data acquisition setup consists of a 5 Giga sample/second waveform digitizer, the DRS4, triggered to capture the MPPC detector waveforms. Analysis of the digitized waveforms, using the CERN package PAW, would be discussed and presented. US Department of Education Title V Grant PO31S090007.
Online gas analysis and diagnosis for RPC detectors in the ATLAS experiment
NASA Astrophysics Data System (ADS)
de Asmundis, Riccardo
2007-03-01
Resistive Plate Counters (RPC) detectors need a very strict control of gas parameters: motivations for this statement come from both the request of stability in the detector working point, and chemical consideration concerning potentially aggressive materials generated during the ionization processes into the sensitive gap; the latter point can be relevant because of a possible damage to the internal surface of the detector that has to be avoided in order to ensure an high detection efficiency of the RPC during their ten years or more of operation in ATLAS. In order to understand these aspects, detailed studies on gas behavior have been carried on at the GIF-X5 at CERN (2002-2005), based on Gas Chromatographic and spectroscopy techniques. Main results of these analysis are presented here, together with the design of the online analyzer to be installed on ATLAS conceived to keep control of gas quality and to trigger maintenance interventions on the gas system, in particular on the purification subsystem.
The feasibility of well-logging measurements of arsenic levels using neutron-activation analysis
Oden, C.P.; Schweitzer, J.S.; McDowell, G.M.
2006-01-01
Arsenic is an extremely toxic metal, which poses a significant problem in many mining environments. Arsenic contamination is also a major problem in ground and surface waters. A feasibility study was conducted to determine if neutron-activation analysis is a practical method of measuring in situ arsenic levels. The response of hypothetical well-logging tools to arsenic was simulated using a readily available Monte Carlo simulation code (MCNP). Simulations were made for probes with both hyperpure germanium (HPGe) and bismuth germanate (BGO) detectors using accelerator and isotopic neutron sources. Both sources produce similar results; however, the BGO detector is much more susceptible to spectral interference than the HPGe detector. Spectral interference from copper can preclude low-level arsenic measurements when using the BGO detector. Results show that a borehole probe could be built that would measure arsenic concentrations of 100 ppm by weight to an uncertainty of 50 ppm in about 15 min. ?? 2006 Elsevier Ltd. All rights reserved.
Modeling of InGaAsSb-Based Avalanche Photodetectors for 2-Micron Wavelengths
NASA Technical Reports Server (NTRS)
Joshi, Ravindra P.; Abedin, M. Nurul (Technical Monitor)
2002-01-01
The main focus of this research is to study and evaluate the potential of InGaAsSb-AlGaAsSb based 2 micron avalanche photo-detectors. The photodetector contains a separate absorption and multiplication region (SAM) structure. The analysis has mainly been done to understand the electrical response characteristics of the devices existing at NASA, and to evaluate alternate structures proposed. Calculating the current flow for the existing detector structure, on the basis of its energy band diagram, is important. This analysis also helps to find shortcomings in the existing detector structure. It is shown that, unfortunately, the existing structure cannot lead to strong multiplication or voltage dependent gain. Two alternate structures are suggested, that could overcome the inherent flaws, and help achieve improved performance. These devices are obtained through modifications of the original structure, which include varying the doping levels, and changing the thicknesses of detector sub-regions. The results of our study are presented and discussed.
NASA Astrophysics Data System (ADS)
Reinherz-Aronis, Erez; Clifton, Alex; Das, Raj; Toki, Walter; Johnson, Robert; Marino, Alysia; Yuan, Tianlu
2013-04-01
νμ Charge-Current events are produced and collected by the Near Detectors (ND280) in the Tokai to Kamioka (T2K) experiment. This talk focuses on those interactions that are created in the Pi-Zero detector (PøD) and whose momentum is measured by the Time Projection Chambers (TPC). The description of the analysis event selection is presented which includes Data-Quality cuts, Beam Quality parameters, and Fiducial Volume boundaries which are applied on the beginning of the PøD track. In addition the matching procedure of a TPC track to a PøD track and the optimization of this procedure in presented.
NASA Astrophysics Data System (ADS)
Pastore, G.; Gruyer, D.; Ottanelli, P.; Le Neindre, N.; Pasquali, G.; Alba, R.; Barlini, S.; Bini, M.; Bonnet, E.; Borderie, B.; Bougault, R.; Bruno, M.; Casini, G.; Chbihi, A.; Dell'Aquila, D.; Dueñas, J. A.; Fabris, D.; Francalanza, L.; Frankland, J. D.; Gramegna, F.; Henri, M.; Kordyasz, A.; Kozik, T.; Lombardo, I.; Lopez, O.; Morelli, L.; Olmi, A.; Pârlog, M.; Piantelli, S.; Poggi, G.; Santonocito, D.; Stefanini, A. A.; Valdré, S.; Verde, G.; Vient, E.; Vigilante, M.; FAZIA Collaboration
2017-07-01
The FAZIA apparatus exploits Pulse Shape Analysis (PSA) to identify nuclear fragments stopped in the first layer of a Silicon-Silicon-CsI(Tl) detector telescope. In this work, for the first time, we show that the isotopes of fragments having atomic number as high as Z∼20 can be identified. Such a remarkable result has been obtained thanks to a careful construction of the Si detectors and to the use of low noise and high performance digitizing electronics. Moreover, optimized PSA algorithms are needed. This work deals with the choice of the best algorithm for PSA of current signals. A smoothing spline algorithm is demonstrated to give optimal results without requiring too much computational resources.
NASA Astrophysics Data System (ADS)
Cervantes, Omar; Reyes, Liliana; Hooks, Tyler; Perez, Luis; Ritt, Stefan
2016-03-01
To construct a cosmic detector array using 4 scintillation detectors, we investigated 2 recent light sensor technologies from Hamamatsu, as possible readout detectors. First, we investigated several homemade versions of the multipixel photon counter (MPPC) light sensors. These detectors were either biased with internal or external high voltage power supplies. We made extensive measurements to confirm for the coincidence of the MPPC devices. Each sensor is coupled to a wavelength shifting fiber (WSF) that is embedded along a plastic scintillator sheet (30cmx60cmx1/4''). Using energetic cosmic rays, we evaluated several of these homemade detector modules placed above one another in a light proof enclosure. Next, we assembled 2 miniaturized micro photomultiplier (micro PMT), a device recently marketed by Hamamatsu. These sensors showed very fast response times. With 3 WSF embedded in scintillator sheets, we performed coincidence experiments. The detector waveforms were captured using the 5GS/sec domino ring sampler, the DRS4 and our workflow using the CERN PAW package and data analysis results would be presented. Title V Grant.
NASA Astrophysics Data System (ADS)
Mukherjee, S.; Salazar, L.; Mittelstaedt, J.; Valdez, O.
2017-11-01
Supernovae in our universe are potential sources of gravitational waves (GW) that could be detected in a network of GW detectors like LIGO and Virgo. Core-collapse supernovae are rare, but the associated gravitational radiation is likely to carry profuse information about the underlying processes driving the supernovae. Calculations based on analytic models predict GW energies within the detection range of the Advanced LIGO detectors, out to tens of Mpc for certain types of signals e.g. coalescing binary neutron stars. For supernovae however, the corresponding distances are much less. Thus, methods that can improve the sensitivity of searches for GW signals from supernovae are desirable, especially in the advanced detector era. Several methods have been proposed based on various likelihood-based regulators that work on data from a network of detectors to detect burst-like signals (as is the case for signals from supernovae) from potential GW sources. To address this problem, we have developed an analysis pipeline based on a method of noise reduction known as the harmonic regeneration noise reduction (HRNR) algorithm. To demonstrate the method, sixteen supernova waveforms from the Murphy et al. 2009 catalog have been used in presence of LIGO science data. A comparative analysis is presented to show detection statistics for a standard network analysis as commonly used in GW pipelines and the same by implementing the new method in conjunction with the network. The result shows significant improvement in detection statistics.
Digital PCM bit synchronizer and detector
NASA Astrophysics Data System (ADS)
Moghazy, A. E.; Maral, G.; Blanchard, A.
1980-08-01
A theoretical analysis of a digital self-bit synchronizer and detector is presented and supported by the implementation of an experimental model that utilizes standard TTL logic circuits. This synchronizer is based on the generation of spectral line components by nonlinear filtering of the received bit stream, and extracting the line by a digital phase-locked loop (DPLL). The extracted reference signal instructs a digital matched filter (DMF) data detector. This realization features a short acquisition time and an all-digital structure.
Infrared Speckle Interferometry with 2-D Arrays
NASA Technical Reports Server (NTRS)
Harvey, P. M.; Balkum, S. L.; Monin, J. L.
1994-01-01
We describe results from a program of speckle interferometry with two-dimensional infrared array detectors. Analysis of observations of eta Carinae made with 58 x 62 InSb detector are discussed. The data have been analyzed with both the Labeyrie autocorrelation, a deconvolution of shift-and-add data, and a phase restoration process. Development of a new camera based on a much lower noise HgCdTe detector will lead to a significant improvement i limiting magnitude for IR speckle interferometry.
Study of pulse shape discrimination for a neutron phoswich detector
NASA Astrophysics Data System (ADS)
Hartman, Jessica; Barzilov, Alexander
2017-09-01
A portable phoswich detector capable of differentiating between fast neutrons and thermal neutrons, and photons was developed. The detector design is based on the use of two solid-state scintillators with dissimilar scintillation time properties coupled with a single optical sensor: a 6Li loaded glass and EJ-299-33A plastic. The on-the-fly digital pulse shape discrimination and the wavelet treatment of measured waveforms were employed in the data analysis. The instrument enabled neutron spectrum evaluation.
Test chamber for alpha spectrometry
Larsen, Robert P.
1977-01-01
Alpha emitters for low-level radiochemical analysis by measurement of alpha spectra are positioned precisely with respect to the location of a surface-barrier detector by means of a chamber having a removable threaded planchet holder. A pedestal on the planchet holder holds a specimen in fixed engagement close to the detector. Insertion of the planchet holder establishes an O-ring seal that permits the chamber to be pumped to a desired vacuum. The detector is protected against accidental contact and resulting damage.
Enke, Christie
2013-02-19
Methods and instruments for high dynamic range analysis of sample components are described. A sample is subjected to time-dependent separation, ionized, and the ions dispersed with a constant integration time across an array of detectors according to the ions m/z values. Each of the detectors in the array has a dynamically adjustable gain or a logarithmic response function, producing an instrument capable of detecting a ratio of responses or 4 or more orders of magnitude.
Lewis, Grace E. M.; Gross, Andrew J.; Kasprzyk‐Hordern, Barbara; Lubben, Anneke T.
2015-01-01
An electrochemical flow cell with a boron‐doped diamond dual‐plate microtrench electrode has been developed and demonstrated for hydroquinone flow injection electroanalysis in phosphate buffer pH 7. Using the electrochemical generator‐collector feedback detector improves the sensitivity by one order of magnitude (when compared to a single working electrode detector). The diffusion process is switched from an analyte consuming “external” process to an analyte regenerating “internal” process with benefits in selectivity and sensitivity. PMID:25735831
Application of an X-ray Fluorescence Instrument to Helicopter Wear Debris Analysis
2008-04-01
from magnesium (Mg) to uranium (U) using two X-ray detection sensors: a FOCUS 5+ detector AlX-ray tube X-ray Detector 1. Incident X-ray...zinc (Zn), whilst the PIN detector is used to detect elements from calcium (Ca) to uranium (U) [4]. Elements between calcium (Ca) to zinc (Zn) can be... carbide paper, however polishing is not a normal sample preparation requirement for the Twin-X (see Figure 16). The samples were placed polished side
Infrared diagnosis using liquid crystal detectors
NASA Technical Reports Server (NTRS)
Hugenschmidt, M.; Vollrath, K.
1986-01-01
The possible uses of pulsed carbon dioxide lasers for analysis of plasmas and flows need appropriate infrared image converters. Emphasis was placed on liquid crystal detectors and their operational modes. Performance characterstics and selection criteria, such as high sensitivity, short reaction time, and high spatial resolution are discussed.
NASA Technical Reports Server (NTRS)
1975-01-01
Papers are presented dealing with latest advances in the design of scintillation counters, semiconductor radiation detectors, gas and position sensitive radiation detectors, and the application of these detectors in biomedicine, satellite instrumentation, and environmental and reactor instrumentation. Some of the topics covered include entopistic scintillators, neutron spectrometry by diamond detector for nuclear radiation, the spherical drift chamber for X-ray imaging applications, CdTe detectors in radioimmunoassay analysis, CAMAC and NIM systems in the space program, a closed loop threshold calibrator for pulse height discriminators, an oriented graphite X-ray diffraction telescope, design of a continuous digital-output environmental radon monitor, and the optimization of nanosecond fission ion chambers for reactor physics. Individual items are announced in this issue.
Magnetic Microcalorimeter (MMC) Gamma Detectors with Ultra-High Energy Resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrich, Stephen
The goal of this LCP is to develop ultra-high resolution gamma detectors based on magnetic microcalorimeters (MMCs) for accurate non-destructive analysis (NDA) of nuclear materials. For highest energy resolution, we will introduce erbium-doped silver (Ag:Er) as a novel sensor material, and implement several geometry and design changes to improve the signal-to-noise ratio. The detector sensitivity will be increased by developing arrays of 32 Ag:Er pixels read out by 16 SQUID preamplifiers, and by developing a cryogenic Compton veto to reduce the spectral background. Since best MMC performance requires detector operation at ~10 mK, we will purchase a dilution refrigerator withmore » a base temperature <10 mK and adapt it for MMC operation. The detector performance will be tested with radioactive sources of interest to the safeguards community.« less
NASA Astrophysics Data System (ADS)
Muto, Ryotaro; Agari, Keizo; Aoki, Kazuya; Bessho, Kotaro; Hagiwara, Masayuki; Hirose, Erina; Ieiri, Masaharu; Iwasaki, Ruri; Katoh, Yohji; Kitagawa, Jun-ichi; Minakawa, Michifumi; Morino, Yuhei; Saito, Kiwamu; Sato, Yoshinori; Sawada, Shin'ya; Shirakabe, Yoshihisa; Suzuki, Yoshihiro; Takahashi, Hitoshi; Tanaka, Kazuhiro; Toyoda, Akihisa; Watanabe, Hiroaki; Yamanoi, Yutaka
2017-09-01
At the Hadron Experimental Facility in J-PARC, we inject a 30-GeV proton beam into a gold target to produce secondary particle beams required for various particle and nuclear physics experiments. The gold target is placed in a hermetic chamber, and helium gas is circulated in the chamber to monitor the soundness of the target. The radioactivity in helium gas is continuously monitored by gamma-ray detectors such as a germanium detector and a NaI(Tl) detector. Beam operations with those target-monitoring systems were successfully performed from April to June and October to December 2015, and from May to June 2016. In this paper, the details of the helium gas circulation system and gamma-ray detectors and the analysis results of the obtained gamma-ray spectra are reported.
NASA Astrophysics Data System (ADS)
Joshi, Tenzing H. Y.; Quiter, Brian J.; Maltz, Jonathan S.; Bandstra, Mark S.; Haefner, Andrew; Eikmeier, Nicole; Wagner, Eric; Luke, Tanushree; Malchow, Russell; McCall, Karen
2017-07-01
The Airborne Radiological Enhanced-sensor System (ARES) includes a prototype helicopter-borne CsI(Na) detector array that has been developed as part of the DHS Domestic Nuclear Detection Office Advanced Technology Demonstration. The detector system geometry comprises two pairs of 23-detector arrays designed to function as active masks, providing additional angular resolution of measured gamma rays in the roll dimension. Experimental measurements, using five radioisotopes (137Cs, 60Co, 241Am, 131I, and 99mTc), were performed to map the detector response in both roll and pitch dimensions. This paper describes the acquisition and analysis of these characterization measurements, calculation of the angular response of the ARES system, and how this response function is used to improve aerial detection and localization of radiological and nuclear threat sources.
Detection techniques for tenuous planetary atmospheres
NASA Technical Reports Server (NTRS)
Hoenig, S. A.; Summerton, J. E.; Kirchner, J. D.; Allred, J. B.
1974-01-01
The development of new types of detectors for analysis of planetary atmospheres is discussed. Initially, the interest was in detectors for use under partial vacuum conditions; recently, the program has been extended to include detectors for use at one atmosphere and adsorption systems for control and separation of gases. Results to date have included detector for O2 and H2 under partial vacuum conditions. Experiments on detectors for use at high pressures began in 1966; and systems for CO, H2, and O2 were reported in 1967 and 1968. In 1968 studies began on an electrically controlled adsorbent. It was demonstrated that under proper conditions a thin film of semiconductor material could be electrically cycled to absorb and desorb a specific gas. This work was extended to obtain quantitative data on the use of semiconductors as controllable adsorbents.
Analysis and Control of Carrier Transport in Unipolar Barrier Mid-Infrared (IR) Detectors
2017-01-03
Laboratory AFRL /RVSW Space Vehicles Directorate 3550 Aberdeen Ave., SE 11. SPONSOR/MONITOR’S REPORT Kirtland AFB, NM 87117-5776 NUMBER(S) AFRL -RV...22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVSW/David Cardimona 1 cy... AFRL -RV-PS- AFRL -RV-PS- TR-2016-0152 TR-2016-0152 ANALYSIS AND CONTROL OF CARRIER TRANSPORT IN UNIPOLAR BARRIER MID- INFRARED (IR) DETECTORS Gary W
RICH detectors: Analysis methods and their impact on physics
NASA Astrophysics Data System (ADS)
Križan, Peter
2017-12-01
The paper discusses the importance of particle identification in particle physics experiments, and reviews the impact of ring imaging Cherenkov (RICH) counters in experiments that are currently running, or are under construction. Several analysis methods are discussed that are needed to calibrate a RICH counter, and to align its components with the rest of the detector. Finally, methods are reviewed on how to employ the collected data to efficiently separate one particle species from the other.
Precision analysis of the photomultiplier response to ultra low signals
NASA Astrophysics Data System (ADS)
Degtiarenko, Pavel
2017-11-01
A new computational model for the description of the photon detector response functions measured in conditions of low light is presented, together with examples of the observed photomultiplier signal amplitude distributions, successfully described using the parameterized model equation. In extension to the previously known approximations, the new model describes the underlying discrete statistical behavior of the photoelectron cascade multiplication processes in photon detectors with complex non-uniform gain structure of the first dynode. Important features of the model include the ability to represent the true single-photoelectron spectra from different photomultipliers with a variety of parameterized shapes, reflecting the variability in the design and in the individual parameters of the detectors. The new software tool is available for evaluation of the detectors' performance, response, and efficiency parameters that may be used in various applications including the ultra low background experiments such as the searches for Dark Matter and rare decays, underground neutrino studies, optimizing operations of the Cherenkov light detectors, help in the detector selection procedures, and in the experiment simulations.
Track analysis of laser-illuminated etched track detectors using an opto-digital imaging system
NASA Astrophysics Data System (ADS)
Eghan, Moses J.; Buah-Bassuah, Paul K.; Oppon, Osborne C.
2007-11-01
An opto-digital imaging system for counting and analysing tracks on a LR-115 detector is described. One batch of LR-115 track detectors was irradiated with Am-241 for a determined period and distance for linearity test and another batch was exposed to radon gas. The laser-illuminated etched track detector area was imaged, digitized and analysed by the system. The tracks that were counted on the opto-digital system with the aid of media cybernetics software as well as spark gap counter showed comparable track density results ranging between 1500 and 2750 tracks cm-2 and 65 tracks cm-2 in the two different batch detector samples with 0.5% and 1% track counts, respectively. Track sizes of the incident alpha particles from the radon gas on the LR-115 detector demonstrating different track energies are statistically and graphically represented. The opto-digital imaging system counts and measures other track parameters at an average process time of 3-5 s.
NASA Technical Reports Server (NTRS)
Groza, Michael; Krawczynski, Henic; Garson, Alfred, III; Martin, Jerrad W.; Lee, Kuen; Li, Qiang; Beilicke, Matthias; Cui, Yunlong; Buliga, Vladimir; Guo, Mingsheng;
2010-01-01
The Pockels electro-optic effect can be used to investigate the internal electric field in cadmium zinc telluride (CZT) single crystals that are used to fabricate room temperature x and gamma radiation detectors. An agreement is found between the electric field mapping obtained from Pockels effect images and the measurements of charge transients generated by alpha particles. The Pockels effect images of a CZT detector along two mutually perpendicular directions are used to optimize the detector response in a dual anode configuration, a device in which the symmetry of the internal electric field with respect to the anode strips is of critical importance. The Pockels effect is also used to map the electric field in a CZT detector with dual anodes and an attempt is made to find a correlation with the simulated electric potential in such detectors. Finally, the stress-induced birefringence effects seen in the Pockels images are presented and discussed.
High-Sensitivity Fast Neutron Detector KNK-2-8M
NASA Astrophysics Data System (ADS)
Koshelev, A. S.; Dovbysh, L. Ye.; Ovchinnikov, M. A.; Pikulina, G. N.; Drozdov, Yu. M.; Chuklyaev, S. V.; Pepyolyshev, Yu. N.
2017-12-01
The design of the fast neutron detector KNK-2-8M is outlined. The results of he detector study in the pulse counting mode with pulses from 238U nuclei fission in the radiator of the neutron-sensitive section and in the current mode with separation of functional section currents are presented. The possibilities of determination of the effective number of 238U nuclei in the radiator of the neutron-sensitive section are considered. The diagnostic capabilities of the detector in the counting mode are demonstrated, as exemplified by the analysis of reference data on characteristics of neutron fields in the BR-1 reactor hall. The diagnostic capabilities of the detector in the current mode are demonstrated, as exemplified by the results of measurements of 238U fission intensity in the power startup of the BR-K1 reactor in the fission pulse generation mode with delayed neutrons and the detector placed in the reactor cavity in conditions of large-scale variation of the reactor radiation fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groza, Michael; Cui Yunlong; Buliga, Vladimir
2010-01-15
The Pockels electro-optic effect can be used to investigate the internal electric field in cadmium zinc telluride (CZT) single crystals that are used to fabricate room temperature x and gamma radiation detectors. An agreement is found between the electric field mapping obtained from Pockels effect images and the measurements of charge transients generated by alpha particles. The Pockels effect images of a CZT detector along two mutually perpendicular directions are used to optimize the detector response in a dual anode configuration, a device in which the symmetry of the internal electric field with respect to the anode strips is ofmore » critical importance. The Pockels effect is also used to map the electric field in a CZT detector with dual anodes and an attempt is made to find a correlation with the simulated electric potential in such detectors. Finally, the stress-induced birefringence effects seen in the Pockels images are presented and discussed.« less
Mitani, Yuji; Kubo, Mamoru; Muramoto, Ken-ichiro; Fukuma, Takeshi
2009-08-01
We have developed a wideband digital frequency detector for high-speed frequency modulation atomic force microscopy (FM-AFM). We used a subtraction-based phase comparator (PC) in a phase-locked loop circuit instead of a commonly used multiplication-based PC, which has enhanced the detection bandwidth to 100 kHz. The quantitative analysis of the noise performance revealed that the internal noise from the developed detector is small enough to provide the theoretically limited noise performance in FM-AFM experiments in liquid. FM-AFM imaging of mica in liquid was performed with the developed detector, showing its stability and applicability to true atomic-resolution imaging in liquid.
NASA Technical Reports Server (NTRS)
1975-01-01
A photometer is examined which combines several features from separate instruments into a single package. The design presented has both point and area photometry capability with provision for inserting filters to provide spectral discrimination. The electronics provide for photon counting mode for the point detectors and both photon counting and analog modes for the area detector. The area detector also serves as a target locating device for the point detectors. Topics discussed include: (1) electronic equipment requirements, (2) optical properties, (3) structural housing for the instrument, (4) motors and other mechanical components, (5) ground support equipment, and (6) environment control for the instrument. Engineering drawings and block diagrams are shown.
DANSS Neutrino Spectrometer: Detector Calibration, Response Stability, and Light Yield
NASA Astrophysics Data System (ADS)
Alekseev, I. G.; Belov, V. V.; Danilov, M. V.; Zhitnikov, I. V.; Kobyakin, A. S.; Kuznetsov, A. S.; Machikhiliyan, I. V.; Medvedev, D. V.; Rusinov, V. Yu.; Svirida, D. N.; Skrobova, N. A.; Starostin, A. S.; Tarkovsky, E. I.; Fomina, M. V.; Shevchik, E. A.; Shirchenko, M. V.
2018-05-01
Apart from monitoring nuclear reactor parameters, the DANSS neutrino experiment is aimed at searching for sterile neutrinos through a detailed analysis of the ratio of reactor antineutrino spectra measured at different distances from the reactor core. The light collection system of the detector is dual, comprising both the vacuum photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs). In this paper, the techniques developed to calibrate the responses of these photodetectors are discussed in detail. The long-term stability of the key parameters of the detector and their dependences on the ambient temperature are investigated. The results of detector light yield measurements, performed independently with PMTs and SiPMs are reported.
Ognibene, Ted; Bench, Graham; McCartt, Alan Daniel; Turteltaub, Kenneth; Rella, Chris W.; Tan, Sze; Hoffnagle, John A.; Crosson, Eric
2017-05-09
Optical spectrometer apparatus, systems, and methods for analysis of carbon-14 including a resonant optical cavity configured to accept a sample gas including carbon-14, an optical source configured to deliver optical radiation to the resonant optical cavity, an optical detector configured to detect optical radiation emitted from the resonant cavity and to provide a detector signal; and a processor configured to compute a carbon-14 concentration from the detector signal, wherein computing the carbon-14 concentration from the detector signal includes fitting a spectroscopic model to a measured spectrogram, wherein the spectroscopic model accounts for contributions from one or more interfering species that spectroscopically interfere with carbon-14.
A semiconductor radiation imaging pixel detector for space radiation dosimetry
NASA Astrophysics Data System (ADS)
Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence
2015-07-01
Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.
NASA Astrophysics Data System (ADS)
Hussien, Mohammad
Purpose: Quality assurance (QA) for intensity modulated radiotherapy (IMRT) has evolved substantially. In recent years, various ionization chamber or diode detector arrays have become commercially available, allowing pre-treatment absolute dose verification with near real-time results. This has led to a wide uptake of this technology to replace point dose and film dosimetry and to facilitate QA streamlining. However, arrays are limited by their spatial resolution giving rise to concerns about their response to clinically relevant deviations. The common factor in all commercial array systems is the reliance on the gamma index (γ) method to provide the quantitative evaluation of the measured dose distribution against the Treatment Planning System (TPS) calculated dose distribution. The mathematical definition of the gamma index presents computational challenges that can cause a variation in the calculation in different systems. The purpose of this thesis was to evaluate the suitability of detector array systems, combined with their implementation of the gamma index, in the verification and dosimetry audit of advanced IMRT. Method: The response of various commercial detector array systems (Delta4®, ArcCHECK®, and the PTW 2D-Array seven29™ and OCTAVIUS II™ phantom combination, Gafchromic® EBT2 and composite EPID measurements) to simulated deliberate changes in clinical IMRT and VMAT plans was evaluated. The variability of the gamma index calculation in the different systems was also evaluated by comparing against a bespoke Matlab-based gamma index analysis software. A novel methodology for using a commercial detector array in a dosimetry audit of rotational radiotherapy was then developed. Comparison was made between measurements using the detector array and those performed using ionization chambers, alanine and radiochromic film. The methodology was developed as part of the development of a national audit of rotational radiotherapy. Ten cancer centres were asked to create a rotational radiotherapy treatment plan for a three-dimensional treatment-planning-system (3DTPS) test and audited. Phantom measurements using a commercial 2D ionization chamber (IC) array were compared with measurements using 0.125cm3 ion chamber, Gafchromic film and alanine pellets in the same plane. Relative and absolute gamma index (γ) comparisons were made for Gafchromic film and 2D-Array planes respectively. A methodology for prospectively deriving appropriate gamma index acceptance criteria for detector array systems, via simulation of deliberate changes and receiver operator characteristic (ROC) analysis, has been developed. Results: In the event of clinically relevant delivery introduced changes, the detector array systems evaluated are able to detect some of these changes if suitable gamma index passing criteria, such as 2%/2mm, are used. Different computational approaches can produce variability in the calculation of the gamma index between different software implementations. For the same passing criteria, different devices and software combinations exhibit varying levels of agreement with the Matlab predicted gamma index analysis. This work has found that it is suitable to use a detector array in a dosimetry audit of rotational radiotherapy in place of standard systems of dosimetry such as ion chambers, alanine and film. Comparisons between individual detectors within the 2D-Array against the corresponding ion chamber and alanine measurement showed a statistically significant concordance correlation coefficient (ρc>0.998, p<0.001) with mean difference of -1.1%±1.1% and -0.8%±1.1%, respectively, in a high dose PTV. In the γ comparison between the 2D-Array and film it was found that the 2D-Array was more likely to fail in planes where there was a dose discrepancy due to the absolute analysis performed. A follow-up analysis of the library of measured data during the audit found that additional metrics such as the mean gamma index or dose differences over regions of interest can be gleaned from the measured dose distributions. Conclusions: It is important to understand the response and limitations of the gamma index analysis combined with the equipment and software in use. For the same pass-rate criteria, different devices and software combinations exhibit varying levels of agreement with the predicted γ analysis. It has been found that using a commercial detector array for a dosimetry audit of rotational radiotherapy is suitable in place of standard systems of dosimetry. A methodology for being able to prospectively ascertain appropriate gamma index acceptance criteria for the detector array system in use, via simulation of deliberate changes and ROC analysis, has been developed. It has been shown that setting appropriate tolerances can be achieved and should be performed as the methodology takes into account the configuration of the commercial system as well as the software implementation of the gamma index.
Low cost charged-coupled device (CCD) based detectors for Shiga toxins activity analysis
USDA-ARS?s Scientific Manuscript database
To improve food safety there is a need to develop simple, low-cost sensitive devices for detection of foodborne pathogens and their toxins. We describe a simple and relatively low-cost webcam-based detector which can be used for various optical detection modalities, including fluorescence, chemilumi...
NASA Astrophysics Data System (ADS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bersanetti, D.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deleeuw, E.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, D. Nanda; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J. J.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martini, G.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Postiglione, F.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, P. J.; Veitch, J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2015-01-01
Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a colocated detector pair is more sensitive to a gravitational-wave background than a noncolocated detector pair. However, colocated detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of colocated detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO's fifth science run. At low frequencies, 40-460 Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460-1000 Hz, these techniques are sufficient to set a 95% confidence level upper limit on the gravitational-wave energy density of Ω (f )<7.7 ×1 0-4(f /900 Hz )3 , which improves on the previous upper limit by a factor of ˜180 . In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.
NASA Technical Reports Server (NTRS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.;
2014-01-01
Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a co-located detector pair is more sensitive to a gravitational-wave background than a nonco- located detector pair. However, co-located detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of co-located detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO's fifth science run. At low frequencies, 40-460Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460 - 1000Hz, these techniques are sufficient to set a 95% confidence level (C.L.) upper limit on the gravitational-wave energy density of Omega(f) < 7.7 × 10(exp -4)(f/900Hz)(sup 3), which improves on the previous upper limit by a factor of approx. 180. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.
The next detectors for gravitational wave astronomy
NASA Astrophysics Data System (ADS)
Blair, David; Ju, Li; Zhao, ChunNong; Wen, LinQing; Miao, HaiXing; Cai, RongGen; Gao, JiangRui; Lin, XueChun; Liu, Dong; Wu, Ling-An; Zhu, ZongHong; Hammond, Giles; Paik, Ho Jung; Fafone, Viviana; Rocchi, Alessio; Blair, Carl; Ma, YiQiu; Qin, JiaYi; Page, Michael
2015-12-01
This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options.
Epileptic seizure onset detection based on EEG and ECG data fusion.
Qaraqe, Marwa; Ismail, Muhammad; Serpedin, Erchin; Zulfi, Haneef
2016-05-01
This paper presents a novel method for seizure onset detection using fused information extracted from multichannel electroencephalogram (EEG) and single-channel electrocardiogram (ECG). In existing seizure detectors, the analysis of the nonlinear and nonstationary ECG signal is limited to the time-domain or frequency-domain. In this work, heart rate variability (HRV) extracted from ECG is analyzed using a Matching-Pursuit (MP) and Wigner-Ville Distribution (WVD) algorithm in order to effectively extract meaningful HRV features representative of seizure and nonseizure states. The EEG analysis relies on a common spatial pattern (CSP) based feature enhancement stage that enables better discrimination between seizure and nonseizure features. The EEG-based detector uses logical operators to pool SVM seizure onset detections made independently across different EEG spectral bands. Two fusion systems are adopted. In the first system, EEG-based and ECG-based decisions are directly fused to obtain a final decision. The second fusion system adopts an override option that allows for the EEG-based decision to override the fusion-based decision in the event that the detector observes a string of EEG-based seizure decisions. The proposed detectors exhibit an improved performance, with respect to sensitivity and detection latency, compared with the state-of-the-art detectors. Experimental results demonstrate that the second detector achieves a sensitivity of 100%, detection latency of 2.6s, and a specificity of 99.91% for the MAJ fusion case. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Das, Rajarshi
2014-03-01
The Tokai to Kamioka (T2K) Experiment is a long-baseline neutrino oscillation experiment located in Japan with the primary goal to precisely measure multiple neutrino flavor oscillation parameters. An off-axis muon neutrino beam with an energy that peaks at 600 MeV is generated at the JPARC facility and directed towards the kiloton Super-Kamiokande (SK) water Cherenkov detector located 295 km away. The rates of electron neutrino and muon neutrino interactions are measured at SK and compared with expected model values. This yields a measurement of the neutrino oscillation parameters sinq and sinq. Measurements from a Near Detector that is 280 m downstream of the neutrino beam target are used to constrain uncertainties in the beam flux prediction and neutrino interaction rates. We present a measurement of inclusive charged current neutrino interactions on water. We used several sub-detectors in the ND280 complex, including a Pi-Zero detector (P0D) that has alternating planes of plastic scintillator and water bag layers, a time projection chamber (TPC) and fine-grained detector (FGD) to detect and reconstruct muons from neutrino charged current events. Finally, we describe a ``forward-fitting'' technique that is used to constrain the beam flux and cross section as an input for the neutrino oscillation analysis and also to extract a flux-averaged inclusive charged current cross section on water.
Influence of infrared stimulation on spectroscopy characteristics of co-planar grid CdZnTe detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fjodorov, V.; Ivanov, V.; Loutchanski, A.
It was previously found that illumination with monochromatic infrared (IR) light with wavelengths close to the absorption edge of the CdZnTe exert significant positive influence on the spectrometric characteristics of quasi-hemispherical CdZnTe detectors at room temperature. In this paper, preliminary results of IR stimulation on the spectrometric characteristics of coplanar-grid CdZnTe detectors as well as results of further studies of planar and quasi-hemispherical detectors are presented. Coplanar-grid detectors of 10 mm x 10 mm x 10 mm from Redlen Technologies and commercial available IR LEDs with different wavelengths of 800-1000 nm were used in the experiments. Influence of intensity andmore » direction of IR illumination on the detector's characteristics was studied. Analysis of signals shapes from the preamplifiers outputs at registration of alpha particles showed that IR illumination leads to a change in the shapes of these signals. This may indicate changes in electric fields distributions. An improvement in energy resolution at gamma-energy of 662 keV was observed with quasi-hemispherical and co-planar detectors at the certain levels of IR illumination intensity. The most noticeable effect of IR stimulation was observed with quasi-hemispherical detectors. It is due with optimization of charge collection conditions in the quasi-hemispherical detectors under IT stimulation. (authors)« less
14C autoradiography with an energy-sensitive silicon pixel detector.
Esposito, M; Mettivier, G; Russo, P
2011-04-07
The first performance tests are presented of a carbon-14 ((14)C) beta-particle digital autoradiography system with an energy-sensitive hybrid silicon pixel detector based on the Timepix readout circuit. Timepix was developed by the Medipix2 Collaboration and it is similar to the photon-counting Medipix2 circuit, except for an added time-based synchronization logic which allows derivation of energy information from the time-over-threshold signal. This feature permits direct energy measurements in each pixel of the detector array. Timepix is bump-bonded to a 300 µm thick silicon detector with 256 × 256 pixels of 55 µm pitch. Since an energetic beta-particle could release its kinetic energy in more than one detector pixel as it slows down in the semiconductor detector, an off-line image analysis procedure was adopted in which the single-particle cluster of hit pixels is recognized; its total energy is calculated and the position of interaction on the detector surface is attributed to the centre of the charge cluster. Measurements reported are detector sensitivity, (4.11 ± 0.03) × 10(-3) cps mm(-2) kBq(-1) g, background level, (3.59 ± 0.01) × 10(-5) cps mm(-2), and minimum detectable activity, 0.0077 Bq. The spatial resolution is 76.9 µm full-width at half-maximum. These figures are compared with several digital imaging detectors for (14)C beta-particle digital autoradiography.
Charge Collection Efficiency in a segmented semiconductor detector interstrip region
NASA Astrophysics Data System (ADS)
Alarcon-Diez, V.; Vickridge, I.; Jakšić, M.; Grilj, V.; Schmidt, B.; Lange, H.
2017-09-01
Charged particle semiconductor detectors have been used in Ion Beam Analysis (IBA) for over four decades without great changes in either design or fabrication. However one area where improvement is desirable would be to increase the detector solid angle so as to improve spectrum statistics for a given incident beam fluence. This would allow the use of very low fluences opening the way, for example, to increase the time resolution in real-time RBS or for analysis of materials that are highly sensitive to beam damage. In order to achieve this goal without incurring the costs of degraded resolution due to kinematic broadening or large detector capacitance, a single-chip segmented detector (SEGDET) was designed and built within the SPIRIT EU infrastructure project. In this work we present the Charge Collection Efficiency (CCE) in the vicinity between two adjacent segments focusing on the interstrip zone. Microbeam Ion Beam Induced Charge (IBIC) measurements with different ion masses and energies were used to perform X-Y mapping of (CCE), as a function of detector operating conditions (bias voltage changes, detector housing possibilities and guard ring configuration). We show the (CCE) in the edge region of the active area and have also mapped the charge from the interstrip region, shared between adjacent segments. The results indicate that the electrical extent of the interstrip region is very close to the physical extent of the interstrip and guard ring structure with interstrip impacts contributing very little to the complete spectrum. The interstrip contributions to the spectra that do occur, can be substantially reduced by an offline anti-coincidence criterion applied to list mode data, which should also be easy to implement directly in the data acquisition software.
Racadio, John M.; Abruzzo, Todd A.; Johnson, Neil D.; Patel, Manish N.; Kukreja, Kamlesh U.; den Hartog, Mark. J. H.; Hoornaert, Bart P.A.; Nachabe, Rami A.
2015-01-01
The purpose of this study was to reduce pediatric doses while maintaining or improving image quality scores without removing the grid from X‐ray beam. This study was approved by the Institutional Animal Care and Use Committee. Three piglets (5, 14, and 20 kg) were imaged using six different selectable detector air kerma (Kair) per frame values (100%, 70%, 50%, 35%, 25%, 17.5%) with and without the grid. Number of distal branches visualized with diagnostic confidence relative to the injected vessel defined image quality score. Five pediatric interventional radiologists evaluated all images. Image quality score and piglet Kair were statistically compared using analysis of variance and receiver operating curve analysis to define the preferred dose setting and use of grid for a visibility of 2nd and 3rd order vessel branches. Grid removal reduced both dose to subject and imaging quality by 26%. Third order branches could only be visualized with the grid present; 100% detector Kair was required for smallest pig, while 70% detector Kair was adequate for the two larger pigs. Second order branches could be visualized with grid at 17.5% detector Kair for all three pig sizes. Without the grid, 50%, 35%, and 35% detector Kair were required for smallest to largest pig, respectively. Grid removal reduces both dose and image quality score. Image quality scores can be maintained with less dose to subject with the grid in the beam as opposed to removed. Smaller anatomy requires more dose to the detector to achieve the same image quality score. PACS numbers: 87.53.Bn, 87.57.N‐, 87.57.cj, 87.59.cf, 87.59.Dj PMID:26699297
Regional Cerebral Blood Flow In Dementia: Receiver-Operating-Characteristic Analysis
NASA Astrophysics Data System (ADS)
Zemcov, Alexander; Barclay, Laurie; Sansone, Joseph; Blass, John P.; Metz, Charles E.
1985-06-01
The coupling of mentation to regional cerebral blood flow (rCBF) has prompted the application of the Xe-133 inhalation method of measuring rCBF in the differential diagnosis of the two most common dementing diseases, Alzheimer's disease and multi-infarct dementia (MID). In this study receiver-operating-characteristic (ROC) curve analysis was used to assess the effectiveness of a 32 detector Xe-133 inhalation system in discriminating between patients with Alzheimer's disease and normal controls, MID patients and normal controls and between patients with Alzheimer's disease and MID. The populations were clinically evaluated as 1) normal (age 63.1 + 13.1, n=23), 2) Alzheimer's disease (age 72.7 + 7.0, n=82), 3) MID (age 76.4 + 7.6, n=27): The mean flow values for all detectors were lowest for the Alzheimer's disease group, larger for the MID group and largest for the normal controls. The dynamic relationship between the correct identifications (true posi-tives) versus incorrect identifications (false positives) per detector for any 2 pairs of clinical groups varies as the cutoff value of flow is changed over the range of experimental blood flow values. Therefore a quantitative characterization of the "decision" or ROC curve (TP vs FP) for each detector and for each pair of clinical groups provides a measure of the overall diagnostic efficacy of the detector. Detectors directed approximately toward the speech, auditory and association cortices were most effective in disciminatinq between each of the dementia groups and the controls. Frontal detectors were diagnostically inefficient. The Xe-133 inhalation system provided virtually no diagnostic power in discriminating between the two forms of dementia, however. Therefore this imaging technology is most useful when assessing the general diagnostic state of dementia (Alz-heimer's disease and MID) from normal cognitive function.
VIIRS Reflective Solar Band Radiometric and Stability Evaluation Using Deep Convective Clouds
NASA Technical Reports Server (NTRS)
Chang, Tiejun; Xiong, Xiaoxiong; Mu, Qiaozhen
2016-01-01
This work takes advantage of the stable distribution of deep convective cloud (DCC) reflectance measurements to assess the calibration stability and detector difference in Visible Infrared Imaging Radiometer Suite (VIIRS) reflective bands. VIIRS Sensor Data Records (SDRs) from February 2012 to June 2015 are utilized to analyze the long-term trending, detector difference, and half angle mirror (HAM) side difference. VIIRS has two thermal emissive bands with coverage crossing 11 microns for DCC pixel identification. The comparison of the results of these two processing bands is one of the indicators of analysis reliability. The long-term stability analysis shows downward trends (up to approximately 0.4 per year) for the visible and near-infrared bands and upward trends (up to 0.5per year) for the short- and mid-wave infrared bands. The detector difference for each band is calculated as the difference relative to the average reflectance overall detectors. Except for the slightly greater than 1 difference in the two bands at 1610 nm, the detector difference is less than1 for other solar reflective bands. The detector differences show increasing trends for some short-wave bands with center wavelengths from 400 to 600 nm and remain unchanged for the bands with longer center wavelengths. The HAM side difference is insignificant and stable. Those short-wave bands from 400 to 600 nm also have relatively larger HAM side difference, up to 0.25.Comparing the striped images from SDR and the smooth images after the correction validates the analyses of detector difference and HAM side difference. These analyses are very helpful for VIIRS calibration improvement and thus enhance product quality
Modeling and stress analysis of large format InSb focal plane arrays detector under thermal shock
NASA Astrophysics Data System (ADS)
Zhang, Li-Wen; Meng, Qing-Duan; Zhang, Xiao-Ling; Yu, Qian; Lv, Yan-Qiu; Si, Jun-Jie
2013-09-01
Higher fracture probability, appearing in large format InSb infrared focal plane arrays detector under thermal shock loadings, limits its applicability and suitability for large format equipment, and has been an urgent problem to be solved. In order to understand the fracture mechanism and improve the reliability, three dimensional modeling and stress analysis of large format InSb detector is necessary. However, there are few reports on three dimensional modeling and simulation of large format InSb detector, due to huge meshing numbers and time-consuming operation to solve. To solve the problems, basing on the thermal mismatch displacement formula, an equivalent modeling method is proposed in this paper. With the proposed equivalent modeling method, employing the ANSYS software, three dimensional large format InSb detector is modeled, and the maximum Von Mises stress appearing in InSb chip dependent on array format is researched. According to the maximum Von Mises stress location shift and stress increasing tendency, the adaptability range of the proposed equivalent method is also derived, that is, for 16 × 16, 32 × 32 and 64 × 64 format, its adaptability ranges are not larger than 64 × 64, 256 × 256 and 1024 × 1024 format, respectively. Taking 1024 × 1024 InSb detector as an example, the Von Mises stress distribution appearing in InSb chip, Si readout integrated circuits and indium bump arrays are described, and the causes are discussed in detail. All these will provide a feasible research plan to identify the fracture origins of InSb chip and reduce fracture probability for large format InSb detector.
Development of a new type of germanium detector for dark matter searches
NASA Astrophysics Data System (ADS)
Wei, Wenzhao
Monte Carlo simulation is an important tool used to develop a better understanding of important physical processes. This thesis describes three Monte Carlo simulations used to understand germanium detector response to low energy nuclear recoils and radiogenic backgrounds for direct dark matter searches. The first simulation is the verification of Barker-Mei model, a theoretical model for calculating the ionization efficiency for germanium detector for the energy range of 1 - 100 keV. Utilizing the shape analysis, a bin-to-bin comparison between simulation and experimental data was performed for verifying the accuracy of the Barker-Mei model. A percentage difference within 4% was achieved between data and simulation, which showed the validity of the Barker-Mei model. The second simulation is the study of a new type of germanium detector for n/gamma discrimination at 77 K with plasma time difference in pulse shape. Due to the poor time resolution, conventional P-type Point Contact (PPC) and coaxial germanium detectors are not capable of discriminating nuclear recoils from electron recoils. In this thesis, a new idea of using great detector granularity and plasma time difference in pulse shape to discriminate nuclear recoils from electron recoils with planar germanium detectors in strings was discussed. The anticipated sensitivity of this new detector array is shown for detecting dark matter. The last simulation is a study of a new type of germanium-detector array serving as a PMT screening facility for ultra-low background dark matter experiments using noble liquid xenon as detector material such LUX/LZ and XENON100/XENON1T. A well-shaped germanium detector array and a PMT were simulated to study the detector response to the signal and background for a better understanding of the radiogenic gamma rays from PMTs. The detector efficiency and other detector performance were presented in this work.
NASA Technical Reports Server (NTRS)
McClanahan, Timothy P.; Mitrofanov, I. G.; Boynton, W. V.; Sagdeev, R.; Trombka, J. I.; Starr, R. D.; Evans, L. G.; Litvak, M. L.; Chin, G.; Garvin, J.;
2010-01-01
The Lunar Reconnaissance Orbiter's (LRO), Lunar Exploration Neutron Detector (LEND) was developed to refine the lunar surface hydrogen (H) measurements generated by the Lunar Prospector Neutron Spectrometer. LPNS measurements indicated a approx.4,6% decrease in polar epithermal fluxes equivalent to (1.5+/-0,8)% H concentration and are direct geochemical evidence indicating water /high H at the poles. Given the similar operational and instrumental objectives of the LEND and LPNS systems, an important science analysis step for LEND is to test correlation with existing research including LPNS measurements. In this analysis, we compare corrected low altitude epithermal rate data from LPNS available via NASA's Planetary Data System (PDS) with calibrated LEND epithermal maps using a cross-correlation technique
NASA Astrophysics Data System (ADS)
Mohammadian-Behbahani, Mohammad-Reza; Saramad, Shahyar; Mohammadi, Mohammad
2017-05-01
A combination of Finite Difference Time Domain (FDTD) and Monte Carlo (MC) methods is proposed for simulation and analysis of ZnO microscintillators grown in polycarbonate membrane. A planar 10 keV X-ray source irradiating the detector is simulated by MC method, which provides the amount of absorbed X-ray energy in the assembly. The transport of generated UV scintillation light and its propagation in the detector was studied by the FDTD method. Detector responses to different probable scintillation sites and under different energies of X-ray source from 10 to 25 keV are reported. Finally, the tapered geometry for the scintillators is proposed, which shows enhanced spatial resolution in comparison to cylindrical geometry for imaging applications.
GET electronics samples data analysis
NASA Astrophysics Data System (ADS)
Giovinazzo, J.; Goigoux, T.; Anvar, S.; Baron, P.; Blank, B.; Delagnes, E.; Grinyer, G. F.; Pancin, J.; Pedroza, J. L.; Pibernat, J.; Pollacco, E.; Rebii, A.; Roger, T.; Sizun, P.
2016-12-01
The General Electronics for TPCs (GET) has been developed to equip a generation of time projection chamber detectors for nuclear physics, and may also be used for a wider range of detector types. The goal of this paper is to propose first analysis procedures to be applied on raw data samples from the GET system, in order to correct for systematic effects observed on test measurements. We also present a method to estimate the response function of the GET system channels. The response function is required in analysis where the input signal needs to be reconstructed, in terms of time distribution, from the registered output samples.
High throughput reconfigurable data analysis system
NASA Technical Reports Server (NTRS)
Bearman, Greg (Inventor); Pelletier, Michael J. (Inventor); Seshadri, Suresh (Inventor); Pain, Bedabrata (Inventor)
2008-01-01
The present invention relates to a system and method for performing rapid and programmable analysis of data. The present invention relates to a reconfigurable detector comprising at least one array of a plurality of pixels, where each of the plurality of pixels can be selected to receive and read-out an input. The pixel array is divided into at least one pixel group for conducting a common predefined analysis. Each of the pixels has a programmable circuitry programmed with a dynamically configurable user-defined function to modify the input. The present detector also comprises a summing circuit designed to sum the modified input.
Proportional crosstalk correction for the segmented clover at iThemba LABS
NASA Astrophysics Data System (ADS)
Bucher, T. D.; Noncolela, S. P.; Lawrie, E. A.; Dinoko, T. R. S.; Easton, J. L.; Erasmus, N.; Lawrie, J. J.; Mthembu, S. H.; Mtshali, W. X.; Shirinda, O.; Orce, J. N.
2017-11-01
Reaching new depths in nuclear structure investigations requires new experimental equipment and new techniques of data analysis. The modern γ-ray spectrometers, like AGATA and GRETINA are now built of new-generation segmented germanium detectors. These most advanced detectors are able to reconstruct the trajectory of a γ-ray inside the detector. These are powerful detectors, but they need careful characterization, since their output signals are more complex. For instance for each γ-ray interaction that occurs in a segment of such a detector additional output signals (called proportional crosstalk), falsely appearing as an independent (often negative) energy depositions, are registered on the non-interacting segments. A failure to implement crosstalk correction results in incorrectly measured energies on the segments for two- and higher-fold events. It affects all experiments which rely on the recorded segment energies. Furthermore incorrectly recorded energies on the segments cause a failure to reconstruct the γ-ray trajectories using Compton scattering analysis. The proportional crosstalk for the iThemba LABS segmented clover was measured and a crosstalk correction was successfully implemented. The measured crosstalk-corrected energies show good agreement with the true γ-ray energies independent on the number of hit segments and an improved energy resolution for the segment sum energy was obtained.
NASA Astrophysics Data System (ADS)
Nano, Tomi; Escartin, Terenz; Karim, Karim S.; Cunningham, Ian A.
2016-03-01
The ability to improve visualization of structural information in digital radiography without increasing radiation exposures requires improved image quality across all spatial frequencies, especially at high frequencies. The detective quantum efficiency (DQE) as a function of spatial frequency quantifies image quality given by an x-ray detector. We present a method of increasing DQE at high spatial frequencies by improving the modulation transfer function (MTF) and reducing noise aliasing. The Apodized Aperature Pixel (AAP) design uses a detector with micro-elements to synthesize desired pixels and provide higher DQE than conventional detector designs. A cascaded system analysis (CSA) that incorporates x-ray interactions is used for comparison of the theoretical MTF, noise power spectrum (NPS), and DQE. Signal and noise transfer through the converter material is shown to consist of correlated an uncorrelated terms. The AAP design was shown to improve the DQE of both material types that have predominantly correlated transfer (such as CsI) and predominantly uncorrelated transfer (such as Se). Improvement in the MTF by 50% and the DQE by 100% at the sampling cut-off frequency is obtained when uncorrelated transfer is prevalent through the converter material. Optimizing high-frequency DQE results in improved image contrast and visualization of small structures and fine-detail.
NASA Astrophysics Data System (ADS)
Tsuchiya, H.; Harada, H.; Koizumi, M.; Kitatani, F.; Takamine, J.; Kureta, M.; Iimura, H.
2013-11-01
Neutron resonance densitometry (NRD) has been proposed to quantify nuclear materials in melted fuel (MF) that will be removed from the Fukushima Daiichi nuclear power plant. The problem is complex due to the expected presence of strong neutron absorbing impurities such as 10B and high radiation field that is mainly caused by 137Cs. To identify the impurities under the high radiation field, NRD is based on a combination of neutron resonance transmission analysis (NRTA) and neutron resonance capture analysis (NRCA). We investigated with Geant4 the performance of a gamma-ray detector for NRCA in NRD. The gamma-ray detector has a well shape, consisting of cylindrical and tube type LaBr3 scintillators. We show how it measures 478 keV gamma rays derived from 10B(n, αγ) reaction in MF under a high 137Cs-radiation environment. It was found that the gamma-ray detector was able to well suppress the Compton edge of 662-keV gamma rays of 137Cs and had a high peak-to-Compton continuum ratio, by using the tube type scintillator as a back-catcher detector. Then, we demonstrate that with this ability, detection of 478-keV gamma rays from 10B is accomplished in realistic measuring time.
Improved plutonium identification and characterization results with NaI(Tl) detector using ASEDRA
NASA Astrophysics Data System (ADS)
Detwiler, R.; Sjoden, G.; Baciak, J.; LaVigne, E.
2008-04-01
The ASEDRA algorithm (Advanced Synthetically Enhanced Detector Resolution Algorithm) is a tool developed at the University of Florida to synthetically enhance the resolved photopeaks derived from a characteristically poor resolution spectra collected at room temperature from scintillator crystal-photomultiplier detector, such as a NaI(Tl) system. This work reports on analysis of a side-by-side test comparing the identification capabilities of ASEDRA applied to a NaI(Tl) detector with HPGe results for a Plutonium Beryllium (PuBe) source containing approximately 47 year old weapons-grade plutonium (WGPu), a test case of real-world interest with a complex spectra including plutonium isotopes and 241Am decay products. The analysis included a comparison of photopeaks identified and photopeak energies between the ASEDRA and HPGe detector systems, and the known energies of the plutonium isotopes. ASEDRA's performance in peak area accuracy, also important in isotope identification as well as plutonium quality and age determination, was evaluated for key energy lines by comparing the observed relative ratios of peak areas, adjusted for efficiency and attenuation due to source shielding, to the predicted ratios from known energy line branching and source isotopics. The results show that ASEDRA has identified over 20 lines also found by the HPGe and directly correlated to WGPu energies.
Charge-sensitive front-end electronics with operational amplifiers for CdZnTe detectors
NASA Astrophysics Data System (ADS)
Födisch, P.; Berthel, M.; Lange, B.; Kirschke, T.; Enghardt, W.; Kaever, P.
2016-09-01
Cadmium zinc telluride (CdZnTe, CZT) radiation detectors are suitable for a variety of applications, due to their high spatial resolution and spectroscopic energy performance at room temperature. However, state-of-the-art detector systems require high-performance readout electronics. Though an application-specific integrated circuit (ASIC) is an adequate solution for the readout, requirements of high dynamic range and high throughput are not available in any commercial circuit. Consequently, the present study develops the analog front-end electronics with operational amplifiers for an 8×8 pixelated CZT detector. For this purpose, we modeled an electrical equivalent circuit of the CZT detector with the associated charge-sensitive amplifier (CSA). Based on a detailed network analysis, the circuit design is completed by numerical values for various features such as ballistic deficit, charge-to-voltage gain, rise time, and noise level. A verification of the performance is carried out by synthetic detector signals and a pixel detector. The experimental results with the pixel detector assembly and a 22Na radioactive source emphasize the depth dependence of the measured energy. After pulse processing with depth correction based on the fit of the weighting potential, the energy resolution is 2.2% (FWHM) for the 511 keV photopeak.
NASA Astrophysics Data System (ADS)
Krantz, C.; Novotný, O.; Becker, A.; George, S.; Grieser, M.; Hahn, R. von; Meyer, C.; Schippers, S.; Spruck, K.; Vogel, S.; Wolf, A.
2017-04-01
We have used a single-particle detector system, based on secondary electron emission, for counting low-energetic (∼keV/u) massive products originating from atomic and molecular ion reactions in the electrostatic Cryogenic Storage Ring (CSR). The detector is movable within the cryogenic vacuum chamber of CSR, and was used to measure production rates of a variety of charged and neutral daughter particles. In operation at a temperature of ∼ 6 K , the detector is characterised by a high dynamic range, combining a low dark event rate with good high-rate particle counting capability. On-line measurement of the pulse height distributions proved to be an important monitor of the detector response at low temperature. Statistical pulse-height analysis allows to infer the particle detection efficiency of the detector, which has been found to be close to unity also in cryogenic operation at 6 K.
The IceCube Neutrino Observatory: instrumentation and online systems
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auer, R.; Auffenberg, J.; Axani, S.; Baccus, J.; Bai, X.; Barnet, S.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Bendfelt, T.; BenZvi, S.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Boersma, D.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bouchta, A.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Burreson, C.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Descamps, F.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Edwards, W. R.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Frère, M.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glowacki, D.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Gustafsson, L.; Haack, C.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Haugen, J.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Heller, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoshina, K.; Huang, F.; Huber, M.; Hulth, P. O.; Hultqvist, K.; In, S.; Inaba, M.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, A.; Jones, B. J. P.; Joseph, J.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kitamura, N.; Kittler, T.; Klein, S. R.; Kleinfelder, S.; Kleist, M.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Laundrie, A.; Lennarz, D.; Leich, H.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Ludwig, J.; Lünemann, J.; Mackenzie, C.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H.; Maunu, R.; McNally, F.; McParland, C. P.; Meade, P.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Minor, R. H.; Montaruli, T.; Moulai, M.; Murray, T.; Nahnhauer, R.; Naumann, U.; Neer, G.; Newcomb, M.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Patton, S.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pettersen, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Roucelle, C.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sandstrom, P.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schukraft, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Solarz, M.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sulanke, K.-H.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Thollander, L.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Wahl, D.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Wharton, D.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wisniewski, P.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.
2017-03-01
The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.
First Results from the DUNE 35-ton Prototype using Cosmics
NASA Astrophysics Data System (ADS)
Insler, Jonathan; DUNE Collaboration
2016-03-01
The 35-ton prototype for the Deep Underground Neutrino Experiment (DUNE) Far Detector is a single-phase liquid argon time projection chamber (LAr-TPC) integrated detector that will take cosmics data for a two month run beginning in February 2016. The 35-ton prototype will characterize DUNE's Far Detector technology performance and provide a sample of real data for DUNE reconstruction algorithms. The 35-ton prototype has two drift volumes of lengths 2.23 m and 0.23 m on either side of its anode plane assembly (APA) and makes use of wire planes with wrapped wires and a photon detection system (PDS) utilizing photon detection panels read out by silicon photomultipliers (SiPMs). Data from the 35-ton LAr detector are expected to provide rich information on scintillation light and charged particle tracks. We present a preliminary analysis of cosmics data taken with the 35-ton detector with a focus on stopping muons.
Development of CANDLES low background HPGe detector and half-life measurement of 180Tam
NASA Astrophysics Data System (ADS)
Chan, W. M.; Kishimoto, T.; Umehara, S.; Matsuoka, K.; Suzuki, K.; Yoshida, S.; Nakajima, K.; Iida, T.; Fushimi, K.; Nomachi, M.; Ogawa, I.; Tamagawa, Y.; Hazama, R.; Takemoto, Y.; Nakatani, N.; Takihira, Y.; Tozawa, M.; Kakubata, H.; Trang, V. T. T.; Ohata, T.; Tetsuno, K.; Maeda, T.; Khai, B. T.; Li, X. L.; Batpurev, T.
2018-01-01
A low background HPGe detector system was developed at CANDLES Experimental Hall for multipurpose use. Various low background techniques were employed, including hermatic shield design, radon gas suppression, and background reduction analysis. A new pulse shape discrimination (PSD) method was specially created for coaxial Ge detector. Using this PSD method, microphonics noise and background event at low energy region less than 200 keV can be rejected effectively. Monte Carlo simulation by GEANT4 was performed to acquire the detection efficiency and study the interaction of gamma-rays with detector system. For rare decay measurement, the detector was utilized to detect the nature's most stable isomer tantalum-180m (180Tam) decay. Two phases of tantalum physics run were completed with total livetime of 358.2 days, which Phase II has upgraded shield configuration. The world most stringent half-life limit of 180Tam has been successfully achieved.
NASA Astrophysics Data System (ADS)
Habermann, T.; Didierjean, F.; Duchêne, G.; Filliger, M.; Gerl, J.; Kojouharov, I.; Li, G.; Pietralla, N.; Schaffner, H.; Sigward, M.-H.
2017-11-01
A device to characterize position-sensitive germanium detectors has been implemented at GSI. The main component of this so called scanning table is a gamma camera that is capable of producing online 2D images of the scanned detector by means of a PET technique. To calibrate the gamma camera Compton imaging is employed. The 2D data can be processed further offline to obtain depth information. Of main interest is the response of the scanned detector in terms of the digitized pulse shapes from the preamplifier. This is an important input for pulse-shape analysis algorithms as they are in use for gamma tracking arrays in gamma spectroscopy. To validate the scanning table, a comparison of its results with a second scanning table implemented at the IPHC Strasbourg is envisaged. For this purpose a pixelated germanium detector has been scanned.
Advanced Code-Division Multiplexers for Superconducting Detector Arrays
NASA Astrophysics Data System (ADS)
Irwin, K. D.; Cho, H. M.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Niemack, M. D.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Vale, L. R.
2012-06-01
Multiplexers based on the modulation of superconducting quantum interference devices are now regularly used in multi-kilopixel arrays of superconducting detectors for astrophysics, cosmology, and materials analysis. Over the next decade, much larger arrays will be needed. These larger arrays require new modulation techniques and compact multiplexer elements that fit within each pixel. We present a new in-focal-plane code-division multiplexer that provides multiplexing elements with the required scalability. This code-division multiplexer uses compact lithographic modulation elements that simultaneously multiplex both signal outputs and superconducting transition-edge sensor (TES) detector bias voltages. It eliminates the shunt resistor used to voltage bias TES detectors, greatly reduces power dissipation, allows different dc bias voltages for each TES, and makes all elements sufficiently compact to fit inside the detector pixel area. These in-focal plane code-division multiplexers can be combined with multi-GHz readout based on superconducting microresonators to scale to even larger arrays.
Fusion neutron detector for time-of-flight measurements in z-pinch and plasma focus experiments.
Klir, D; Kravarik, J; Kubes, P; Rezac, K; Litseva, E; Tomaszewski, K; Karpinski, L; Paduch, M; Scholz, M
2011-03-01
We have developed and tested sensitive neutron detectors for neutron time-of-flight measurements in z-pinch and plasma focus experiments with neutron emission times in tens of nanoseconds and with neutron yields between 10(6) and 10(12) per one shot. The neutron detectors are composed of a BC-408 fast plastic scintillator and Hamamatsu H1949-51 photomultiplier tube (PMT). During the calibration procedure, a PMT delay was determined for various operating voltages. The temporal resolution of the neutron detector was measured for the most commonly used PMT voltage of 1.4 kV. At the PF-1000 plasma focus, a novel method of the acquisition of a pulse height distribution has been used. This pulse height analysis enabled to determine the single neutron sensitivity for various neutron energies and to calibrate the neutron detector for absolute neutron yields at about 2.45 MeV.
Costas loop lock detection in the advanced receiver
NASA Technical Reports Server (NTRS)
Mileant, A.; Hinedi, S.
1989-01-01
The advanced receiver currently being developed uses a Costas digital loop to demodulate the subcarrier. Previous analyses of lock detector algorithms for Costas loops have ignored the effects of the inherent correlation between the samples of the phase-error process. Accounting for this correlation is necessary to achieve the desired lock-detection probability for a given false-alarm rate. Both analysis and simulations are used to quantify the effects of phase correlation on lock detection for the square-law and the absolute-value type detectors. Results are obtained which depict the lock-detection probability as a function of loop signal-to-noise ratio for a given false-alarm rate. The mathematical model and computer simulation show that the square-law detector experiences less degradation due to phase jitter than the absolute-value detector and that the degradation in detector signal-to-noise ratio is more pronounced for square-wave than for sine-wave signals.
NASA Astrophysics Data System (ADS)
Grams, Guilherme; Schuch, Nelson Jorge; Braga, Carlos Roberto; Purushottam Kane, Rajaram; Echer, Ezequiel; Ronan Coelho Stekel, Tardelli
Cosmic ray are charged particles, at the most time protons, that reach the earth's magne-tosphere from interplanetary space with velocities greater than the solar wind. When these impinge the atmosphere, they interact with atmosphere constituents and decay into sub-particles forming an atmospheric shower. The muons are the sub-particles which normally maintain the originated direction of the primary cosmic ray. A multi-directional muon detec-tor (MMD) was installed in 2001 and upgraded in 2005, through an international cooperation between Brazil, Japan and USA, and operated since then at the Southern Space Observatory -SSO/CRS/CCR/INPE -MCT, (29,4° S, 53,8° W, 480m a.s.l.), São Martinho da Serra, RS, a Brazil. The main objetive of this work is to present a statistical analysis of the intensity of muons, with energy between 50 and 170 GeV, in differents directions, measured by the SSO's multi-directional muon detector. The analysis was performed with data from 2006 and 2007 collected by the SSO's MMD. The MMD consists of two layers of 4x7 detectors with a total observation area of 28 m2 . The counting of muons in each directional channel is made by a coincidence of pulses pair, one from a detector in the upper layer and the other from a detector in the lower layer. The SSO's MMD is equipped with 119 directional channels for muon count rate measurement and is capable of detecting muons incident with zenithal angle between 0° and 75,53° . A statistical analysis was made with the MMD muon count rate for all the di-rectional channels. The average and the standard deviation of the muon count rate in each directional component were calculated. The results show lower cont rate for the channels with larger zenith, and higher cont rate with smaller zenith, as expected from the production and propagation of muons in the atmosphere. It is also possible to identify the Stormer cone. The SSO's MMD is also a detector component of the Global Muon Detector Network (GMDN), which has been developed in an international collaboration lead by Shinshu University, Japan.
Analysis of Measurements for Solid State Lidar Development
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin
1996-01-01
A Detector Characterization Facility (DCF), capable of measuring 2-micron detection devices and evaluating heterodyne receivers, was developed at the Marshall Space Flight Center. The DCF is capable of providing all the necessary detection parameters for design, development, and calibration of coherent and incoherent solid state laser radar (lidar) systems. The coherent lidars in particular require an accurate knowledge of detector heterodyne quantum efficient, nonlinearity properties, and voltage-current relationship as a function of applied optical power. At present, no detector manufacturer provides these qualities or adequately characterizes their detectors for heterodyne detection operation. In addition, the detector characterization facility measures the detectors DC and AC quantum efficiencies noise equivalent power and frequency response up to several GHz. The DCF is also capable of evaluating various heterodyne detection schemes such as balanced detectors and fiber optic interferometers. The design and analyses of measurements for the DCF were preformed over the previous year and a detailed description of its design and capabilities was provided in the NASA report NAS8-38609/DO77. It should also be noted that the DCF design was further improved to allow for the characterization of diffractive andholographical optical elements and other critical components of coherent lidar systems.
Analytical modeling and numerical simulation of the short-wave infrared electron-injection detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Movassaghi, Yashar; Fathipour, Morteza; Fathipour, Vala
2016-03-21
This paper describes comprehensive analytical and simulation models for the design and optimization of the electron-injection based detectors. The electron-injection detectors evaluated here operate in the short-wave infrared range and utilize a type-II band alignment in InP/GaAsSb/InGaAs material system. The unique geometry of detectors along with an inherent negative-feedback mechanism in the device allows for achieving high internal avalanche-free amplifications without any excess noise. Physics-based closed-form analytical models are derived for the detector rise time and dark current. Our optical gain model takes into account the drop in the optical gain at high optical power levels. Furthermore, numerical simulation studiesmore » of the electrical characteristics of the device show good agreement with our analytical models as well experimental data. Performance comparison between devices with different injector sizes shows that enhancement in the gain and speed is anticipated by reducing the injector size. Sensitivity analysis for the key detector parameters shows the relative importance of each parameter. The results of this study may provide useful information and guidelines for development of future electron-injection based detectors as well as other heterojunction photodetectors.« less
Zhang, Yingying; Li, Changkai; Liu, Dongyan; Zhang, Ying; Liu, Yan
2015-04-01
To develop in situ NaI(Tl) detector for radioactivity measurement in the marine environment, the Monte Carlo N-Particle (MCNP) Transport Code was utilized to simulate the measurement of NaI(Tl) detector immersed in seawater, taking into account the material and geometry of the detector, and the interactions between the photons with the atoms of the seawater and the detector. The simulation results of the marine detection efficiency and distance were deduced and analyzed. In order to test their reliability, the field measurement was made at open sea and the experimental value of the marine detection efficiency was deduced and seems to be in good agreement with the simulated one. The minimum detectable activity for (137)Cs in the seawater of NaI(Tl) detector developed was determined mathematically at last. The simulation method and results in the paper can be used for the better design and quantitative calculation of in situ NaI(Tl) detector for radioactivity measurement in the marine environment, and also for some applications such as the installation on the marine monitoring platform and the quantitative analysis of radionuclides. Copyright © 2015 Elsevier Ltd. All rights reserved.
Segmented Ge detector rejection of internal beta activity produced by neutron irradiation
NASA Technical Reports Server (NTRS)
Varnell, L. S.; Callas, J. L.; Mahoney, W. A.; Pehl, R. H.; Landis, D. A.
1991-01-01
Future Ge spectrometers flown in space to observe cosmic gamma-ray sources will incorporate segmented detectors to reduce the background from radioactivity produced by energetic particle reactions. To demonstrate the effectiveness of a segmented Ge detector in rejecting background events due to the beta decay of internal radioactivity, a laboratory experiment has been carried out in which radioactivity was produced in the detector by neutron irradiation. A Cf-252 source of neutrons was used to produce, by neutron capture on Ge-74 (36.5 percent of natural Ge) in the detector itself, Ge-75 (t sub 1/2 = 82.78 min), which decays by beta emission with a maximum electron kinetic energy of 1188 keV. By requiring that an ionizing event deposit energy in two or more of the five segments of the detector, each about 1-cm thick, the beta particles, which have a range of about 1-mm, are rejected, while most external gamma rays incident on the detector are counted. Analysis of this experiment indicates that over 85 percent of the beta events from the decay of Ge-75 are rejected, which is in good agreement with Monte Carlo calculations.
NASA Astrophysics Data System (ADS)
Apel, Daniel; Meixner, Matthias; Liehr, Alexander; Klaus, Manuela; Degener, Sebastian; Wagener, Guido; Franz, Christian; Zinn, Wolfgang; Genzel, Christoph; Scholtes, Berthold
2018-01-01
A new goniometer setup for energy-dispersive X-ray diffraction is introduced which is based on simultaneous data acquisition with two detectors D1 and D2, both of them freely movable in a horizontal as well as in a vertical plane. From the multitude of measurement configurations that can be realised with this setup, we figured out three efficient concepts which aim at the fast analysis of residual stress depth profiles by combining the diffraction data gathered with the two detectors. The characteristic feature of the first two configurations consists in the vertical (horizontal) positioning of the first (second) detector, which results in a diffraction geometry where the two scattering vectors span a plane that coincides with the X-circle used for sample tilt. Because each detector does see the sample under another viewing angle, both the positive and the negative ψ-branch are covered by just one χ-tilt between 0°and 90°(configuration 1) and 0°and 60°(configuration 2), thus allowing for the simultaneous analysis of the in- and out-of-plane residual stress depth gradients σii(τ) and σi3(τ) (i = 1 , 2), respectively, from data sets dD1hkl(χ) and dD2hkl(χ). The third configuration introduced in this paper is based on a ϕ-rotation of the sample under a constant tilt angle χ and enables a fast and reliable tracing of shear stress fields σi3(τ) (i = 1, 2).
Automatic analysis with thermometric detection.
McLean, W R; Penketh, G E
1968-11-01
The construction of a cell and associated Wheatstone bridge detector circuitry is described for a thermometric detector suitable for attachment to a Technicon Autoanalyzer. The detector produces a d.c. mV signal linearly proportional to the concentration (0.005-0.1M) of the thermally reactive component in the sample stream when it is mixed in the cell with the reagent stream. The influence of various pertinent parameters such as ambient temperature, thermistor voltage, heats of reaction and sensitivity are discussed together with interference effects arising through chemistry, ionic strength effects and heat of dilution.
Wearable sweat detector device design for health monitoring and clinical diagnosis
NASA Astrophysics Data System (ADS)
Wu, Qiuchen; Zhang, Xiaodong; Tian, Bihao; Zhang, Hongyan; Yu, Yang; Wang, Ming
2017-06-01
Miniaturized sensor is necessary part for wearable detector for biomedical applications. Wearable detector device is indispensable for online health care. This paper presents a concept of an wearable digital health monitoring device design for sweat analysis. The flexible sensor is developed to quantify the amount of hydrogen ions in sweat and skin temperature in real time. The detection system includes pH sensor, temperature sensor, signal processing module, power source, microprocessor, display module and so on. The sweat monitoring device is designed for sport monitoring or clinical diagnosis.
Earth radiation budget measurement from a spinning satellite: Conceptual design of detectors
NASA Technical Reports Server (NTRS)
Sromovsky, L. A.; Revercomb, H. E.; Suomi, V. E.
1975-01-01
The conceptual design, sensor characteristics, sensor performance and accuracy, and spacecraft and orbital requirements for a spinning wide-field-of-view earth energy budget detector were investigated. The scientific requirements for measurement of the earth's radiative energy budget are presented. Other topics discussed include the observing system concept, solar constant radiometer design, plane flux wide FOV sensor design, fast active cavity theory, fast active cavity design and error analysis, thermopile detectors as an alternative, pre-flight and in-flight calibration plane, system error summary, and interface requirements.
The background in a balloon-borne fluorescence-gated proportional counter
NASA Technical Reports Server (NTRS)
Ramsey, B. D.; Bower, C. R.; Dietz, K. L.; Weisskopf, M. C.
1990-01-01
The results of an analysis of the background in a fluorescence-gated proportional counter operating over the energy range 3-150 keV are presented. It is found that the dominant background component is that produced by high energy qamma-rays that penetrate the shields and undergo multiple scattering in the detector body, resulting in photoelectric absorption in the detector gas. A careful choice of materials and thickness can move the peak of this emission outside of the detector sensitive range, thereby dramatically reducing the residual background.
Image plane detector spectrophotometer - Application to O2 atmospheric band nightglow
NASA Technical Reports Server (NTRS)
Luo, Mingzhao; Yee, Jeng-Hwa; Hays, Paul B.
1988-01-01
A new variety of low resolution spectrometer is described. This device, an image plane detector spectrophotometer, has high sensitivity and modest resolution sufficient to determine the rotational temperature and brightness of molecular band emissions. It uses an interference filter as a dispersive element and a multichannel image plane detector as the photon collecting device. The data analysis technqiue used to recover the temperature of the emitter and the emission brightness is presented. The atmospheric band of molecular oxygen is used to illustrate the use of the device.
MIND performance and prototyping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervera-Villanueva, A.
2008-02-21
The performance of MIND (Magnetised Iron Neutrino Detector) at a neutrino factory has been revisited in a new analysis. In particular, the low neutrino energy region is studied, obtaining an efficiency plateau around 5 GeV for a background level below 10{sup -3}. A first look has been given into the detector optimisation and prototyping.
Whole-rock uranium analysis by fission track activation
NASA Technical Reports Server (NTRS)
Weiss, J. R.; Haines, E. L.
1974-01-01
We report a whole-rock uranium method in which the polished sample and track detector are separated in a vacuum chamber. Irradiation with thermal neutrons induces uranium fission in the sample, and the detector records the integrated fission track density. Detection efficiency and geometric factors are calculated and compared with calibration experiments.
Assessing bat detectability and occupancy with multiple automated echolocation detectors
Marcos P. Gorresen; Adam C. Miles; Christopher M. Todd; Frank J. Bonaccorso; Theodore J. Weller
2008-01-01
Occupancy analysis and its ability to account for differential detection probabilities is important for studies in which detecting echolocation calls is used as a measure of bat occurrence and activity. We examined the feasibility of remotely acquiring bat encounter histories to estimate detection probability and occupancy. We used echolocation detectors coupled o...
An Iatroscan thin-layer chromatorgraphy-flame ionization detector has been utilized to quantify lipid classes in marine samples. This method was evaluated relative to established quality assurance (QA) procedures used for the gas chromatographic analysis of PCBs. A method for ext...
21 CFR 882.1935 - Near Infrared (NIR) Brain Hematoma Detector.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Near Infrared (NIR) Brain Hematoma Detector. 882.1935 Section 882.1935 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... and the clinical training needed for the safe use of this device; (3) Appropriate analysis/testing...
Monopole track characteristics in plastic detectors
NASA Technical Reports Server (NTRS)
Ahlen, S. P.
1975-01-01
Total and restricted energy loss rates were calculated for magnetic monopoles of charge g = 137 e in Lexan polycarbonate. Range-energy curves are also presented. The restricted energy loss model is used to estimate the appearance of a monopole track in plastic detectors. These results should be useful for the design and analysis of monopole experiments.
Proof of concept demonstration for coherent beam pattern measurements of KID detectors
NASA Astrophysics Data System (ADS)
Davis, Kristina K.; Baryshev, Andrey M.; Jellema, Willem; Yates, Stephen J. C.; Ferrari, Lorenza; Baselmans, Jochem J. A.
2016-07-01
Here we summarize the initial results from a complex field radiation pattern measurement of a kinetic inductance detector instrument. These detectors are phase insensitive and have thus been limited to scalar, or amplitude-only, beam measurements. Vector beam scans, of both amplitude and phase, double the information received in comparison to scalar beam scans. Scalar beam measurements require multiple scans at varying distances along the optical path of the receiver to fully constrain the divergence angle of the optical system and locate the primary focus. Vector scans provide this information with a single scan, reducing the total measurement time required for new systems and also limiting the influence of system instabilities. The vector scan can be taken at any point along the optical axis of the system including the near-field, which makes beam measurements possible for large systems at high frequencies where these measurements may be inconceivable to be tested in-situ. Therefore, the methodology presented here should enable common heterodyne analysis for direct detector instruments. In principle, this coherent measurement strategy allows phase dependent analysis to be performed on any direct-detect receiver instrument.
Improved neutron-gamma discrimination for a 3He neutron detector using subspace learning methods
Wang, C. L.; Funk, L. L.; Riedel, R. A.; ...
2017-02-10
3He gas based neutron linear-position-sensitive detectors (LPSDs) have been applied for many neutron scattering instruments. Traditional Pulse-Height Analysis (PHA) for Neutron-Gamma Discrimination (NGD) resulted in the neutron-gamma efficiency ratio on the orders of 10 5-10 6. The NGD ratios of 3He detectors need to be improved for even better scientific results from neutron scattering. Digital Signal Processing (DSP) analyses of waveforms were proposed for obtaining better NGD ratios, based on features extracted from rise-time, pulse amplitude, charge integration, a simplified Wiener filter, and the cross-correlation between individual and template waveforms of neutron and gamma events. Fisher linear discriminant analysis (FLDA)more » and three multivariate analyses (MVAs) of the features were performed. The NGD ratios are improved by about 10 2-10 3 times compared with the traditional PHA method. Finally, our results indicate the NGD capabilities of 3He tube detectors can be significantly improved with subspace-learning based methods, which may result in a reduced data-collection time and better data quality for further data reduction.« less
Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heeger, Karsten M.
2014-09-13
This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zeromore » $$\\theta_{13}$$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.« less
Micrometeoroids and debris on LDEF
NASA Technical Reports Server (NTRS)
Mandeville, Jean-Claude
1992-01-01
Part of the LDEF tray allocated to French Experiments (FRECOPA) was devoted to the study of dust particles. The tray was located on the face of LDEF directly opposed to the velocity vector. Two passive experiments were flown: a set of glass and metallic samples; and multilayer thin foil detectors. Crater size distribution made possible the evaluation of the incident microparticle flux in the near environment. Comparisons are made with measurements obtained on the other faces of LDEF and with results from similar experiments on the MIR. Of interest was the study of impact features on stacked thin foil detectors. The top foil acted as a shield, fragmenting the projectiles and spreading the fragments over the surface of the thick plate located underneath. EDS analysis has provided evidence of impactor fragments. Detectors consisting of a thin shield and thick bottom plate appear to offer a significantly higher return of data concerning chemical analysis of impactor residues than single plate detectors. The samples of various materials offer a unique opportunity for the study of the many processes involved upon hypervelocity impact phenomena.
Radioisotope measurement of selected parameters of liquid-gas flow using single detector system
NASA Astrophysics Data System (ADS)
Zych, Marcin; Hanus, Robert; Jaszczur, Marek; Mosorov, Volodymyr; Świsulski, Dariusz
2018-06-01
To determine the parameters of two-phase flows using radioisotopes, usually two detectors are used. Knowing the distance between them, the velocity of the dispersed phase is calculated based on time delay estimation. Such a measurement system requires the use of two gamma-ray sealed sources. But in some situations it is also possible to determine velocity of dispersed phase using only one scintillation probe and one gamma-ray source. However, this requires proper signal analysis and prior calibration. This may also cause larger measurement errors. On the other hand, it allows measurements in hard to reach areas where there is often no place for the second detector. Additionally, by performing a previous calibration, it is possible to determine the void fraction or concentration of the selected phase. In this work an autocorrelation function was used to analyze the signal from the scintillation detector, which allowed for the determination of air velocities in slug and plug flows with an accuracy of 8.5%. Based on the analysis of the same signal, a void fraction with error of 15% was determined.
Pixel Stability in the Hubble Space Telescope WFC3/UVIS Detector
NASA Astrophysics Data System (ADS)
Bourque, Matthew; Baggett, Sylvia M.; Borncamp, David; Desjardins, Tyler D.; Grogin, Norman A.; Wide Field Camera 3 Team
2018-06-01
The Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Ultraviolet-Visible (UVIS) detector has acquired roughly 12,000 dark images since the installation of WFC3 in 2009, as part of a daily monitoring program to measure the instrinsic dark current of the detector. These images have been reconfigured into 'pixel history' images in which detector columns are extracted from each dark and placed into a new time-ordered array, allowing for efficient analysis of a given pixel's behavior over time. We discuss how we measure each pixel's stability, as well as plans for a new Data Quality (DQ) flag to be introduced in a future release of the WFC3 calibration pipeline (CALWF3) for flagging pixels that are deemed unstable.
Preliminary measurements of neutrons from the D-D reaction in the COMPASS tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dankowski, J., E-mail: jan.dankowski@ifj.edu.pl; Kurowski, A.; Twarog, D.
Recent results of measured fast neutrons created in the D-D reaction on the COMPASS tokamak during ohmic discharges are presented in this paper. Two different type detectors were used during experiment. He-3 detectors and bubble detectors as a support. The measurements are an introduction for neutron diagnostic on tokamak COMPASS and monitoring neutrons during discharges with Neutral Beam Injection (NBI). The He-3 counters and bubble detectors were located in two positions near tokamak vacuum chamber at a distance less than 40 cm to the centre of plasma. The neutrons flux was observed in ohmic discharges. However, analysis of our resultsmore » does not indicate any clear source of neutrons production during ohmic discharges.« less
An update on the analysis of the Princeton 19Ne beta asymmetry measurement
NASA Astrophysics Data System (ADS)
Combs, Dustin; Calaprice, Frank; Jones, Gordon; Pattie, Robert; Young, Albert
2013-10-01
We report on the progress of a new analysis of the 1994 19Ne beta asymmetry measurement conducted at Princeton University. In this experiment, a beam of 19Ne atoms were polarized with a Stern-Gerlach magnet and then entered a thin-walled mylar cell through a slit fabricated from a piece of micro channel plate. A pair of Si(Li) detectors at either end of the apparatus were aligned with the direction of spin polarization (one parallel and one anti-parallel to the spin of the 19Ne) and detected positrons from the decays. The difference in the rate in the two detectors was used to calculate the asymmetry. A new analysis procedure has been undertaken using the Monte Carlo package PENELOPE with the goal of determining the systematic uncertainty due to positrons scattering from the face of the detectors causing the incorrect reconstruction of the initial direction of the positron momentum. This was a leading cause of systematic uncertainty in the experiment in 1994.
Zhao, Jiaduo; Gong, Weiguo; Tang, Yuzhen; Li, Weihong
2016-01-20
In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR) signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD)-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector's false alarms.
Tracking and imaging humans on heterogeneous infrared sensor arrays for law enforcement applications
NASA Astrophysics Data System (ADS)
Feller, Steven D.; Zheng, Y.; Cull, Evan; Brady, David J.
2002-08-01
We present a plan for the integration of geometric constraints in the source, sensor and analysis levels of sensor networks. The goal of geometric analysis is to reduce the dimensionality and complexity of distributed sensor data analysis so as to achieve real-time recognition and response to significant events. Application scenarios include biometric tracking of individuals, counting and analysis of individuals in groups of humans and distributed sentient environments. We are particularly interested in using this approach to provide networks of low cost point detectors, such as infrared motion detectors, with complex imaging capabilities. By extending the capabilities of simple sensors, we expect to reduce the cost of perimeter and site security applications.
HVI-Test Setup for Debris Detector Verification
NASA Astrophysics Data System (ADS)
Bauer, Waldemar; Romberg, Oliver; Wiedemann, Carsten; Putzar, Robin; Drolshagen, Gerhard; Vorsmann, Peter
2013-08-01
Risk assessment concerning impacting space debris or micrometeoroids with spacecraft or payloads can be performed by using environmental models such as MASTER (ESA) or ORDEM (NASA). The validation of such models is performed by comparison of simulated results with measured data. Such data can be obtained from ground-based or space-based radars or telescopes, or by analysis of space hardware (e.g. Hubble Space Telescope, Space Shuttle Windows), which are retrieved from orbit. An additional data source is in-situ impact detectors, which are purposed for the collection of space debris and micrometeoroids impact data. In comparison to the impact data gained by analysis of the retrieved surfaces, the detected data contains additional information regarding impact time and orbit. In the past, many such in-situ detectors have been developed, with different measurement methods for the identification and classification of impacting objects. However, existing detectors have a drawback in terms of data acquisition. Generally the detection area is small, limiting the collected data as the number of recorded impacts has a linear dependence to the exposed area. An innovative impact detector concept is currently under development at the German Aerospace Centre (DLR) in Bremen, in order to increase the surface area while preserving the advantages offered by dedicated in-situ impact detectors. The Solar Generator based Impact Detector (SOLID) is not an add-on component on the spacecraft, making it different to all previous impact detectors. SOLID utilises existing subsystems of the spacecraft and adapts them for impact detection purposes. Solar generators require large panel surfaces in order to provide the spacecraft with sufficient energy. Therefore, the spacecraft solar panels provide a perfect opportunity for application as impact detectors. Employment of the SOLID method in several spacecraft in various orbits would serve to significantly increase the spatial coverage concerning space debris and micrometeoroids. In this way, the SOLID method will allow the generation of a large amount of impact data for environmental model validation. The ground verification of the SOLID method was performed at Fraunhofer EMI. For this purpose, a test model was developed. This paper focuses on the test methodology and development of the Hypervelocity Impact (HVI) test setup, including pretesting at the German Aerospace Centre (DLR), Bremen. Foreseen hardware and software for the automatic damage assessment of the detector after the impact are also presented.
Ohno, Yoshiharu; Koyama, Hisanobu; Kono, Astushi; Terada, Mari; Inokawa, Hiroyasu; Matsumoto, Sumiaki; Sugimura, Kazuro
2007-12-01
The purpose of the present study was to determine the influence of detector collimation and beam pitch for identification and image quality of ground-glass attenuation (GGA) and nodules on 16- and 64-detector row CTs, by using a commercially available chest phantom. A chest CT phantom including simulated GGAs and nodules was scanned with different detector collimations, beam pitches and tube currents. The probability and image quality of each simulated abnormality was visually assessed with a five-point scoring system. ROC-analysis and ANOVA were then performed to compare the identification and image quality of either protocol with standard values. Detection rates of low-dose CTs were significantly reduced when tube currents were set at 40mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32mmx1.0mm for low pitch, and at 100mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32mmx1.0mm for high pitch (p<0.05). Image qualities of low-dose CTs deteriorated significantly when tube current was set at 100mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32x1.0mm for low pitch, and at 150mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32x1.0mm for high pitch (p<0.05). Detector collimation and beam pitch were important factors for the image quality and identification of GGA and nodules by 16- and 64-detector row CT.
Multi-Grid detector for neutron spectroscopy: results obtained on time-of-flight spectrometer CNCS
NASA Astrophysics Data System (ADS)
Anastasopoulos, M.; Bebb, R.; Berry, K.; Birch, J.; Bryś, T.; Buffet, J.-C.; Clergeau, J.-F.; Deen, P. P.; Ehlers, G.; van Esch, P.; Everett, S. M.; Guerard, B.; Hall-Wilton, R.; Herwig, K.; Hultman, L.; Höglund, C.; Iruretagoiena, I.; Issa, F.; Jensen, J.; Khaplanov, A.; Kirstein, O.; Lopez Higuera, I.; Piscitelli, F.; Robinson, L.; Schmidt, S.; Stefanescu, I.
2017-04-01
The Multi-Grid detector technology has evolved from the proof-of-principle and characterisation stages. Here we report on the performance of the Multi-Grid detector, the MG.CNCS prototype, which has been installed and tested at the Cold Neutron Chopper Spectrometer, CNCS at SNS. This has allowed a side-by-side comparison to the performance of 3He detectors on an operational instrument. The demonstrator has an active area of 0.2 m2. It is specifically tailored to the specifications of CNCS. The detector was installed in June 2016 and has operated since then, collecting neutron scattering data in parallel to the He-3 detectors of CNCS. In this paper, we present a comprehensive analysis of this data, in particular on instrument energy resolution, rate capability, background and relative efficiency. Stability, gamma-ray and fast neutron sensitivity have also been investigated. The effect of scattering in the detector components has been measured and provides input to comparison for Monte Carlo simulations. All data is presented in comparison to that measured by the 3He detectors simultaneously, showing that all features recorded by one detector are also recorded by the other. The energy resolution matches closely. We find that the Multi-Grid is able to match the data collected by 3He, and see an indication of a considerable advantage in the count rate capability. Based on these results, we are confident that the Multi-Grid detector will be capable of producing high quality scientific data on chopper spectrometers utilising the unprecedented neutron flux of the ESS.
Geomega: MEGAlib's Uniform Geometry and Detector Description Tool for Geant3, MGGPOD, and Geant4
NASA Astrophysics Data System (ADS)
Zoglauer, Andreas C.; Andritschke, R.; Schopper, F.; Wunderer, C. B.
2006-09-01
The Medium Energy Gamma-ray Astronomy library MEGAlib is a set of software tools for the analysis of low to medium energy gamma-ray telescopes, especially Compton telescopes. It comprises all necessary data analysis steps from simulation/measurements via event reconstruction to image reconstruction and enables detailed performance assessments. In the energy range of Compton telescopes (with energy deposits from a few keV up to hundreds of MeV), the Geant Monte-Carlo software packages (Geant3 with its MGGPOD extension as well as Geant4) are widely used. Since each tool has its unique advantages, MEGAlib contains a geometry and detector description library, called Geomega, which allows to use those tools in a uniform way. It incorporates the versatile 3D display facilities available within the ROOT libraries. The same geometry, material, trigger, and detector description can be used for all simulation tools as well as for the later event analysis in the MEGAlib framework. This is done by converting the MEGAlib geometry into the Geant3 or MGGPOD format or directly linking the Geomega library into Geant4. The geometry description can handle most (and can be extended to handle all) volumes common to Geant3, Geant4 and ROOT. In Geomega a list of features is implemented which are especially useful for optimizing detector geometries: It allows to define constants, can handle mathematical operations, enables volume scaling, checks for overlaps of detector volumes, does mass calculations, etc. Used in combination with MEGAlib, Geomega enables discretization, application of detector noise, thresholds, various trigger conditions, defective pixels, etc. The highly modular and completely object-oriented library is written in C++ and based on ROOT. It has been originally developed for the tracking Compton scattering and Pair creation telescope MEGA and has been successfully applied to a wide variety of telescopes, such as ACT, NuSTAR, or GRI.
Phasor imaging with a widefield photon-counting detector
Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Weiss, Shimon
2012-01-01
Abstract. Fluorescence lifetime can be used as a contrast mechanism to distinguish fluorophores for localization or tracking, for studying molecular interactions, binding, assembly, and aggregation, or for observing conformational changes via Förster resonance energy transfer (FRET) between donor and acceptor molecules. Fluorescence lifetime imaging microscopy (FLIM) is thus a powerful technique but its widespread use has been hampered by demanding hardware and software requirements. FLIM data is often analyzed in terms of multicomponent fluorescence lifetime decays, which requires large signals for a good signal-to-noise ratio. This confines the approach to very low frame rates and limits the number of frames which can be acquired before bleaching the sample. Recently, a computationally efficient and intuitive graphical representation, the phasor approach, has been proposed as an alternative method for FLIM data analysis at the ensemble and single-molecule level. In this article, we illustrate the advantages of combining phasor analysis with a widefield time-resolved single photon-counting detector (the H33D detector) for FLIM applications. In particular we show that phasor analysis allows real-time subsecond identification of species by their lifetimes and rapid representation of their spatial distribution, thanks to the parallel acquisition of FLIM information over a wide field of view by the H33D detector. We also discuss possible improvements of the H33D detector’s performance made possible by the simplicity of phasor analysis and its relaxed timing accuracy requirements compared to standard time-correlated single-photon counting (TCSPC) methods. PMID:22352658
The impact of photon flight path on S1 pulse shape analysis in liquid xenon two-phase detectors
NASA Astrophysics Data System (ADS)
Moongweluwan, M.
2016-02-01
The LUX dark matter search experiment is a 350 kg dual-phase xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. The success of two-phase xenon detectors for dark matter searches relies on their ability to distinguish electron recoil (ER) background events from nuclear recoil (NR) signal events. Typically, the NR-ER discrimination is obtained from the ratio of the electroluminescence light (S2) to the prompt scintillation light (S1). Analysis of the S1 pulse shape is an additional discrimination technique that can be used to distinguish NR from ER. Pulse-shape NR-ER discrimination can be achieved based on the ratio of the de-excitation processes from singlet and triplet states that generate the S1. The NR S1 is dominated by the de-excitation process from singlet states with a time constant of about 3 ns while the ER S1 is dominated by the de-excitation process from triplet states with a time constant of about 24 ns. As the size of the detectors increases, the variation in the S1 photon flight path can become comparable to these decay constants, reducing the utility of pulse-shape analysis to separate NR from ER. The effect of path length variations in the LUX detector has been studied using the results of simulations and the impact on the S1 pulse shape analysis is discussed.
NASA Astrophysics Data System (ADS)
Ahmed, Hytham M.; Ebeid, Wael B.
2015-05-01
Complex samples analysis is a challenge in pharmaceutical and biopharmaceutical analysis. In this work, tobramycin (TOB) analysis in human urine samples and recombinant human erythropoietin (rhEPO) analysis in the presence of similar protein were selected as representative examples of such samples analysis. Assays of TOB in urine samples are difficult because of poor detectability. Therefore laser induced fluorescence detector (LIF) was combined with a separation technique, micellar electrokinetic chromatography (MEKC), to determine TOB through derivatization with fluorescein isothiocyanate (FITC). Borate was used as background electrolyte (BGE) with negative-charged mixed micelles as additive. The method was successively applied to urine samples. The LOD and LOQ for Tobramycin in urine were 90 and 200 ng/ml respectively and recovery was >98% (n = 5). All urine samples were analyzed by direct injection without sample pre-treatment. Another use of hyphenated analytical technique, capillary zone electrophoresis (CZE) connected to ultraviolet (UV) detector was also used for sensitive analysis of rhEPO at low levels (2000 IU) in the presence of large amount of human serum albumin (HSA). Analysis of rhEPO was achieved by the use of the electrokinetic injection (EI) with discontinuous buffers. Phosphate buffer was used as BGE with metal ions as additive. The proposed method can be used for the estimation of large number of quality control rhEPO samples in a short period.
Performance characterization of the EarthCARE BBR Detectors
NASA Astrophysics Data System (ADS)
Proulx, C.; Allard, M.; Pope, T.; Tremblay, B.; Williamson, F.; Julien, C.; Larouche, C.; Delderfield, J.; Parker, D.
2017-11-01
The Broadband Radiometer (BBR) is an instrument being developed for the ESA EarthCARE satellite. The BBR instrument objective is to provide measurements of the reflected short-wave (0.25-4.0 μm) and emitted long-wave (4.0-50 μm) top of the atmosphere (TOA) radiance over three along-track views (forward, nadir and backward). The instrument has three fixed telescopes, one for each view, each containing a broadband detector. The BBR instrument is led by SEA in the UK with RAL responsible for the BBR optics unit (OU) while EADS Astrium is the EarthCARE prime contractor. A detailed description of the instrument is provided in [1]. The BBR detectors consist in three dedicated assemblies under the responsibility of INO. The detectors development started in 2008 and led to the design and implementation of a new gold black deposition facility at INO [2], in parallel with the preliminary and detailed design phases of the detector assemblies. As of today, two breadboard models and one engineering model have been delivered to RAL. In the BBR OU each detector mechanically interfaces with the telescope and electrically with the front-end electronics (FEE). The detectors' development is now at the Critical Design Review (CDR) level. This paper first provides a description of the detector design along with its principles of operation. It further presents and discusses measurement and analysis results for the performance characterization of the engineering model in the context of the applicable requirements. Detector-level qualification planning is finally discussed.
Ren, Guo-Ping; Yan, Jia-Qing; Yu, Zhi-Xin; Wang, Dan; Li, Xiao-Nan; Mei, Shan-Shan; Dai, Jin-Dong; Li, Xiao-Li; Li, Yun-Lin; Wang, Xiao-Fei; Yang, Xiao-Feng
2018-02-01
High frequency oscillations (HFOs) are considered as biomarker for epileptogenicity. Reliable automation of HFOs detection is necessary for rapid and objective analysis, and is determined by accurate computation of the baseline. Although most existing automated detectors measure baseline accurately in channels with rare HFOs, they lose accuracy in channels with frequent HFOs. Here, we proposed a novel algorithm using the maximum distributed peak points method to improve baseline determination accuracy in channels with wide HFOs activity ranges and calculate a dynamic baseline. Interictal ripples (80-200[Formula: see text]Hz), fast ripples (FRs, 200-500[Formula: see text]Hz) and baselines in intracerebral EEGs from seven patients with intractable epilepsy were identified by experienced reviewers and by our computer-automated program, and the results were compared. We also compared the performance of our detector to four well-known detectors integrated in RIPPLELAB. The sensitivity and specificity of our detector were, respectively, 71% and 75% for ripples and 66% and 84% for FRs. Spearman's rank correlation coefficient comparing automated and manual detection was [Formula: see text] for ripples and [Formula: see text] for FRs ([Formula: see text]). In comparison to other detectors, our detector had a relatively higher sensitivity and specificity. In conclusion, our automated detector is able to accurately calculate a dynamic iEEG baseline in different HFO activity channels using the maximum distributed peak points method, resulting in higher sensitivity and specificity than other available HFO detectors.
Analysis of Alpha Backgrounds in DarkSide-50
NASA Astrophysics Data System (ADS)
Monte, Alissa; DarkSide Collaboration
2017-01-01
DarkSide-50 is the current phase of the DarkSide direct dark matter search program, operating underground at the Laboratori Nazionali del Gran Sasso in Italy. The detector is a dual-phase argon Time Projection Chamber (TPC), designed for direct detection of Weakly Interacting Massive Particles, and housed within an active veto system of liquid scintillator and water Cherenkov detectors. Since switching to a target of low radioactivity argon extracted from underground sources in April, 2016, the background is no longer dominated by naturally occurring 39Ar. However, alpha backgrounds from radon and its daughters remain, both from the liquid argon bulk and internal detector surfaces. I will present details of the analysis used to understand and quantify alpha backgrounds, as well as to understand other types of radon contamination that may be present, and our sensitivity to them.
NASA Astrophysics Data System (ADS)
Graham, Eleanor; Cuore Collaboration
2017-09-01
The CUORE experiment is a large-scale bolometric detector seeking to observe the never-before-seen process of neutrinoless double beta decay. Predictions for CUORE's sensitivity to neutrinoless double beta decay allow for an understanding of the half-life ranges that the detector can probe, and also to evaluate the relative importance of different detector parameters. Currently, CUORE uses a Bayesian analysis based in BAT, which uses Metropolis-Hastings Markov Chain Monte Carlo, for its sensitivity studies. My work evaluates the viability and potential improvements of switching the Bayesian analysis to Hamiltonian Monte Carlo, realized through the program Stan and its Morpho interface. I demonstrate that the BAT study can be successfully recreated in Stan, and perform a detailed comparison between the results and computation times of the two methods.
New modes of electron microscopy for materials science enabled by fast direct electron detectors
NASA Astrophysics Data System (ADS)
Minor, Andrew
There is an ongoing revolution in the development of electron detector technology that has enabled modes of electron microscopy imaging that had only before been theorized. The age of electron microscopy as a tool for imaging is quickly giving way to a new frontier of multidimensional datasets to be mined. These improvements in electron detection have enabled cryo-electron microscopy to resolve the three-dimensional structures of non-crystalized proteins, revolutionizing structural biology. In the physical sciences direct electron detectors has enabled four-dimensional reciprocal space maps of materials at atomic resolution, providing all the structural information about nanoscale materials in one experiment. This talk will highlight the impact of direct electron detectors for materials science, including a new method of scanning nanobeam diffraction. With faster detectors we can take a series of 2D diffraction patterns at each position in a 2D STEM raster scan resulting in a four-dimensional data set. For thin film analysis, direct electron detectors hold the potential to enable strain, polarization, composition and electrical field mapping over relatively large fields of view, all from a single experiment.
Modulate chopper technique used in pyroelectric uncooled focal plane array thermal imager
NASA Astrophysics Data System (ADS)
He, Yuqing; Jin, Weiqi; Liu, Guangrong; Gao, Zhiyun; Wang, Xia; Wang, Lingxue
2002-09-01
Pyroelectric uncooled focal plane array (FPA) thermal imager has the advantages of low cost, small size, high responsibility and can work under room temperature, so it has great progress in recent years. As a matched technique, the modulate chopper has become one of the key techniques in uncooled FPA thermal imaging system. Now the Archimedes spiral cord chopper technique is mostly used. When it works, the chopper pushing scans the detector's pixel array, thus makes the pixels being exposed continuously. This paper simulates the shape of this kind of chopper, analyses the exposure time of the detector's every pixel, and also analyses the whole detector pixels' exposure sequence. From the analysis we can get the results: the parameter of Archimedes spiral cord, the detector's thermal time constant, the detector's geometrical dimension, the relative position of the detector to the chopper's spiral cord are the system's important parameters, they will affect the chopper's exposure efficiency and uniformity. We should design the chopper's relevant parameter according to the practical request to achieve the chopper's appropriate structure.
Designing a new type of neutron detector for neutron and gamma-ray discrimination via GEANT4.
Shan, Qing; Chu, Shengnan; Ling, Yongsheng; Cai, Pingkun; Jia, Wenbao
2016-04-01
Design of a new type of neutron detector, consisting of a fast neutron converter, plastic scintillator, and Cherenkov detector, to discriminate 14-MeV fast neutrons and gamma rays in a pulsed n-γ mixed field and monitor their neutron fluxes is reported in this study. Both neutrons and gamma rays can produce fluorescence in the scintillator when they are incident on the detector. However, only the secondary charged particles of the gamma rays can produce Cherenkov light in the Cherenkov detector. The neutron and gamma-ray fluxes can be calculated by measuring the fluorescence and Cherenkov light. The GEANT4 Monte Carlo simulation toolkit is used to simulate the whole process occurring in the detector, whose optimum parameters are known. Analysis of the simulation results leads to a calculation method of neutron flux. This method is verified by calculating the neutron fluxes using pulsed n-γ mixed fields with different n/γ ratios, and the results show that the relative errors of all calculations are <5%. Copyright © 2016 Elsevier Ltd. All rights reserved.
High-sensitivity fast neutron detector KNK-2-7M
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koshelev, A. S., E-mail: alexsander.coshelev@yandex.ru; Dovbysh, L. Ye.; Ovchinnikov, M. A.
2015-12-15
The construction of the fast neutron detector KNK-2-7M is briefly described. The results of the study of the detector in the pulse-counting mode are given for the fissions of {sup 237}Np nuclei in the radiator of the neutron-sensitive section and in the current mode with the separation of sectional currents of functional sections. The possibilities of determining the effective number of {sup 237}Np nuclei in the radiator of the neutronsensitive section are considered. The diagnostic possibilities of the detector in the counting mode are shown by example of the analysis of the reference data from the neutron-field characteristics in themore » working hall of the BR-K1 reactor. The diagnostic possibilities of the detector in the current operating mode are shown by example of the results of measuring the {sup 237}Np-fission intensity in the BR-K1 reactor power start-ups implemented in the mode of fission-pulse generation on delayed neutrons at the detector arrangement inside the reactor core cavity under conditions of a wide variation of the reactor radiation field.« less
NASA Astrophysics Data System (ADS)
Civitani, Marta
2009-08-01
Focusing X-ray telescopes with imaging capabilities, like SIMBOL-X, HEXISAT and IXO, are characterized by very long focal lengths, greater than 10m. The constraints posed by the launchers on the maximum dimensions of a payload, make necessary using alternatives to monolithic telescopes. One possibility is that the mirror and the detectors are carried by two separate spacecrafts that fly in formation. Another is placing the detector module on a bench that will be extended once in final orbit. In both the case the system will be subjected to deformation due the relative movement of the mirrors with respect to detectors. In one case the deformation will be due to the correction on the position and attitude of the detector spacecraft to maintain the formation with the mirror spacecraft, while in the other to oscillations of the detectors on the top of the bench. The aim of this work is to compare the behavior of the system in the two different configurations and to evaluate the performances of the on board metrology systems needed not to degrade the telescope angular resolution.
NASA Astrophysics Data System (ADS)
Natal da Luz, H.; Souza, F. A.; Moralles, M.; Carlin, N.; Oliveira, R. A. N.; Bregant, M.; Suaide, A. A. P.; Chubaci, J. F. D.; Matsuoka, M.; Silva, T. F.; Moro, M. V.; Rodrigues, C. L.; Munhoz, M. G.
2018-02-01
Boron-based thermal neutron detectors have recently regained some attention from the instrumentation community as a strong alternative to helium-3 detectors. From the existing concepts exploiting boron layers in position sensitive detectors, the Cascade [
Kamal, Atif; Gulfraz, Mohammad; Anwar, Mohammad Asad; Malik, Riffat Naseem
2015-01-01
1-hydroxypyrene is an important biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs), which appears in the urine of exposed human subjects. In developing countries, where advanced instruments are not available, the importance of this biomarker demands convenient and sensitive methods for determination purposes. This study aimed at developing a methodology to quantify 1-hydroxypyrene (a biomarker of PAHs exposure) based on the UV-visible detector in the reverse phase high pressure liquid chromatography (HPLC). A 20 μl injection of sample was used for manual injection into the HPLC Shimadzu, equipped with the SPD-20 A UV-visible detector, the LC-20AT pump and the DGU-20A5 degasser. The C-18 column was used for the purpose of the analysis. The method showed a good linearity (the range: R2 = 0.979-0.989), and high detectability up to the nmol level. The average retention was 6.37, with the accuracy of 2%, and the percentage of recovery remained 108%. The overall performance of this method was comparable (in terms of detection sensitivity) and relatively better than previously reported studies using the HPLC system equipped with the UV-detector. This method is suitable and reliable for the detection/quantification of the 1-OHP in human urine samples, using the UV-detector, however, it is less sensitive as compared to the results of a florescence detector. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Kumemura, Momoko; Odake, Tamao; Korenaga, Takashi
2005-06-01
A laser-induced fluorescence microscopic system based on optical parametric oscillation has been constructed as a tunable detector for microchip analysis. The detection limit of sulforhodamine B (Ex. 520 nm, Em. 570 nm) was 0.2 mumol, which was approximately eight orders of magnitude better than with a conventional fluorophotometer. The system was applied to the determination of fluorescence-labeled DNA (Ex. 494 nm, Em. 519 nm) in a microchannel and the detection limit reached a single molecule. These results showed the feasibility of this system as a highly sensitive and tunable fluorescence detector for microchip analysis.
Chen, Tao; Fan, Jun; Gao, Ruiqi; Wang, Tai; Yu, Ying; Zhang, Weiguang
2016-10-07
Chiral stationary phase-high performance liquid chromatography coupled with various detectors has been one of most commonly used methods for analysis and separation of chiral compounds over the past decades. Various detectors exhibit different characteristics in qualitative and quantitative studies under different chromatographic conditions. Herein, a comparative evaluation of HPLC coupled with ultraviolet, optical rotation, refractive index, and evaporative light scattering detectors has been conducted for qualitative and quantitative analyses of metalaxyl racemate. Effects of separation conditions on the peak area ratio between two enantiomers, including sample concentration, column temperature, mobile phase composition, as well as flow rate, have been investigated in detail. In addition, the limits of detection, the limits of quantitation, quantitative range and precision for these two enantiomers by using four detectors have been also studied. As indicated, the chromatographic separation conditions have been slight effects on ultraviolet and refractive index detections and the peak area ratio between two enantiomers remains almost unchanged, but the evaporative light scattering detection has been significantly affected by the above-mentioned chromatographic conditions and the corresponding peak area ratios varied greatly. Moreover, the limits of detection, the limits of quantitation, and the quantitative ranges of two enantiomers with UV detection were remarkably lower by 1-2 magnitudes than the others. Copyright © 2016 Elsevier B.V. All rights reserved.
Detection and Analysis of X Ray Emission from the Princeton-Field-Reversed Configuration (PFRC-2)
NASA Astrophysics Data System (ADS)
Bosh, Alexandra; Swanson, Charles; Jandovitz, Peter; Cohen, Samuel
2016-10-01
The PFRC is an odd-parity rotating-magnetic-field-driven field-reversed-configuration magnetic confinement experiment. Studying X rays produced via electron Bremsstrahlung with neutral particles is crucial to the further understanding of the energy and particle confinement of the PFRC. The data on the x rays are collected using a detector system comprised of two, spatially scannable Amptek XR-100 CR detectors and a Amptek XR-100 SDD detector that view the plasma column at two axial locations, one in the divertor and one near the axial midplane. These provide X-ray energy and arrival-time information. (Data analysis requires measurement of each detector's efficiency, a parameter that is modified by window transmission. Detector calibrations were performed with a custom-made X-ray tube that impinged 1-microamp 1-5 kV electron beams onto a carbon target.) From the analyzed data, the average electron energy, effective temperature, and electron density can be extracted. Spatial scans then allow the FRC's internal energy to be measured. We present recent measurements of the Bremsstrahlung spectrum from 0.8 to 6 keV and the inferred electron temperature in the PFRC device as functions of heating power, magnetic field and fill gas pressure. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.
NASA Technical Reports Server (NTRS)
Bernstein, R.; Lotspiech, J. B.
1985-01-01
The MSS and TM sensor performances were evaluated by studying both the sensors and the characteristics of the data. Information content analysis, image statistics, band-to-band registration, the presence of failed or failing detectors, and sensor resolution are discussed. The TM data were explored from the point of view of adequacy of the ground processing and improvements that could be made to compensate for sensor problems and deficiencies. Radiometric correction processing, compensation for a failed detector, and geometric correction processing are also considered.
Performance Study of an aSi Flat Panel Detector for Fast Neutron Imaging of Nuclear Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumann, M.; Mauerhofer, E.; Engels, R.
Radioactive waste must be characterized to check its conformance for intermediate storage and final disposal according to national regulations. For the determination of radio-toxic and chemo-toxic contents of radioactive waste packages non-destructive analytical techniques are preferentially used. Fast neutron imaging is a promising technique to assay large and dense items providing, in complementarity to photon imaging, additional information on the presence of structures in radioactive waste packages. Therefore the feasibility of a compact Neutron Imaging System for Radioactive waste Analysis (NISRA) using 14 MeV neutrons is studied in a cooperation framework of Forschungszentrum Juelich GmbH, RWTH Aachen University and Siemensmore » AG. However due to the low neutron emission of neutron generators in comparison to research reactors the challenging task resides in the development of an imaging detector with a high efficiency, a low sensitivity to gamma radiation and a resolution sufficient for the purpose. The setup is composed of a commercial D-T neutron generator (Genie16GT, Sodern) with a surrounding shielding made of polyethylene, which acts as a collimator and an amorphous silicon flat panel detector (aSi, 40 x 40 cm{sup 2}, XRD-1642, Perkin Elmer). Neutron detection is achieved using a general propose plastic scintillator (EJ-260, Eljen Technology) linked to the detector. The thermal noise of the photodiodes is reduced by employing an entrance window made of aluminium. Optimal gain and integration time for data acquisition are set by measuring the response of the detector to the radiation of a 500 MBq {sup 241}Am-source. Detector performance was studied by recording neutron radiography images of materials with various, but well known, chemical compositions, densities and dimensions (Al, C, Fe, Pb, W, concrete, polyethylene, 5 x 8 x 10 cm{sup 3}). To simulate gamma-ray emitting waste radiographs in presence of a gamma-ray sources ({sup 60}Co, {sup 137}Cs, {sup 241}Am) were performed. A homemade algorithm was developed to determine a value which is related to the neutron absorption of the sample with the analysis of the raw detector data. The detector was placed 42 cm away from the neutron source. Distance between detector and the samples was 0.5 cm. At the sample position the fast neutron flux was estimated to 9x10{sup 3} n cm{sup -2} s{sup -1} for a neutron emission of 10{sup 8} n s{sup -1}. The acquisition time was 15 minutes. First neutron radiographs were successfully recorded despite the low detector efficiency and low neutron emission. Analysis of the data shows a correlation between the measured signal and determined neutron absorption. Thus discrimination between different materials of same thicknesses may be achieved. The measurements and results will be presented and discussed in details.« less
Real-time edge-enhanced optical correlator
NASA Astrophysics Data System (ADS)
Shihabi, Mazen M.; Hinedi, Sami M.; Shah, Biren N.
1992-08-01
The performance of five symbol lock detectors are compared. They are the square-law detector with overlapping (SQOD) and non-overlapping (SQNOD) integrators, the absolute value detectors with overlapping and non-overlapping (AVNOD) integrators and the signal power estimator detector (SPED). The analysis considers various scenarios when the observation interval is much larger or equal to the symbol synchronizer loop bandwidth, which has not been considered in previous analyses. Also, the case of threshold setting in the absence of signal is considered. It is shown that the SQOD outperforms all others when the threshold is set in the presence of signal, independent of the relationship between loop bandwidth and observation period. On the other hand, the SPED outperforms all others when the threshold is set in the presence of noise only.
Astigmatism correction of a non-imaging double spectrometer fitted with a 2D array detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaney, P.P.; Ernst, S.L.; Blackshire, J.
1992-12-01
A SPEX 1401 double spectrometer was adapted for a liquid nitrogen cooled CCD detector to permit both spectral and spatial analysis of ceramic specimens in a laser Raman microprobe system. The exit image of the spectrometer suffers from astigmatism due to off-axis spherical mirrors. A cylindrical lens was added before the CCD to correct for the astigmatism. The spectrometer and several lenses were modeled using an optical ray tracing program to characterize the astigmatism and to optimize the locations of the lens and the detector. The astigmatism and the spot pattern sizes determined by the model were in good agreementmore » with he observed performance of the modified spectrometer-detector system. Typical spot patterns fell within the 23 {mu}m square pixel size.« less
Real-time edge-enhanced optical correlator
NASA Technical Reports Server (NTRS)
Shihabi, Mazen M. (Inventor); Hinedi, Sami M. (Inventor); Shah, Biren N. (Inventor)
1992-01-01
The performance of five symbol lock detectors are compared. They are the square-law detector with overlapping (SQOD) and non-overlapping (SQNOD) integrators, the absolute value detectors with overlapping and non-overlapping (AVNOD) integrators and the signal power estimator detector (SPED). The analysis considers various scenarios when the observation interval is much larger or equal to the symbol synchronizer loop bandwidth, which has not been considered in previous analyses. Also, the case of threshold setting in the absence of signal is considered. It is shown that the SQOD outperforms all others when the threshold is set in the presence of signal, independent of the relationship between loop bandwidth and observation period. On the other hand, the SPED outperforms all others when the threshold is set in the presence of noise only.
The Litho-Density tool calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, D.; Flaum, C.; Marienbach, E.
1983-10-01
The Litho-Density tool (LDT) uses a gamma ray source and two NaI scintillator detectors for borehole measurement of electron density, p/SUB e/, and a quantity, P/SUB e/, which is related to the photoelectric cross section at 60 keV and therefore to the lithology of the formation. An active stabilization system controls the gains of the two detectors which permits selective gamma-ray detection. Spectral analysis is performed in the near detector (2 energy windows) and in the detector farther away from the source (3 energy windows). This paper describes the results of laboratory measurements undertaken to define the basic tool response.more » The tool is shown to provide reliable measurements of formation density and lithology under a variety of environmental conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Eric Y.; Flory, Adam E.; Lamarche, Brian L.
2014-06-01
The Juvenile Salmon Acoustic Telemetry System (JSATS) Detector is a software and hardware system that captures JSATS Acoustic Micro Transmitter (AMT) signals. The system uses hydrophones to capture acoustic signals in the water. This analog signal is then amplified and processed by the Analog to Digital Converter (ADC) and Digital Signal Processor (DSP) board in the computer. This board digitizes and processes the acoustic signal to determine if a possible JSATS tag is present. With this detection, the data will be saved to the computer for further analysis. This document details the features and functionality of the JSATS Detector software.more » The document covers how to install the software, setup and run the detector software. The document will also go over the raw binary waveform file format and CSV files containing RMS values« less
FastSim: A Fast Simulation for the SuperB Detector
NASA Astrophysics Data System (ADS)
Andreassen, R.; Arnaud, N.; Brown, D. N.; Burmistrov, L.; Carlson, J.; Cheng, C.-h.; Di Simone, A.; Gaponenko, I.; Manoni, E.; Perez, A.; Rama, M.; Roberts, D.; Rotondo, M.; Simi, G.; Sokoloff, M.; Suzuki, A.; Walsh, J.
2011-12-01
We have developed a parameterized (fast) simulation for detector optimization and physics reach studies of the proposed SuperB Flavor Factory in Italy. Detector components are modeled as thin sections of planes, cylinders, disks or cones. Particle-material interactions are modeled using simplified cross-sections and formulas. Active detectors are modeled using parameterized response functions. Geometry and response parameters are configured using xml files with a custom-designed schema. Reconstruction algorithms adapted from BaBar are used to build tracks and clusters. Multiple sources of background signals can be merged with primary signals. Pattern recognition errors are modeled statistically by randomly misassigning nearby tracking hits. Standard BaBar analysis tuples are used as an event output. Hadronic B meson pair events can be simulated at roughly 10Hz.
Discriminating cosmic muons and X-rays based on rise time using a GEM detector
NASA Astrophysics Data System (ADS)
Wu, Hui-Yin; Zhao, Sheng-Ying; Wang, Xiao-Dong; Zhang, Xian-Ming; Qi, Hui-Rong; Zhang, Wei; Wu, Ke-Yan; Hu, Bi-Tao; Zhang, Yi
2016-08-01
Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × 10 cm is developed, and a method of discriminating between cosmic muons and X-rays based on rise time is tested. The energy resolution of the GEM detector is tested by 55Fe ray source to prove the GEM detector has a good performance. Analysis of the complete signal-cycles allows us to get the rise time and pulse heights. The experiment result indicates that cosmic muons and X-rays can be discriminated with an appropriate rise time threshold. Supported by National Natural Science Foundation of China (11135002, 11275235, 11405077, 11575073)
Interferometric direction finding with a metamaterial detector
NASA Astrophysics Data System (ADS)
Venkatesh, Suresh; Shrekenhamer, David; Xu, Wangren; Sonkusale, Sameer; Padilla, Willie; Schurig, David
2013-12-01
We present measurements and analysis demonstrating useful direction finding of sources in the S band (2-4 GHz) using a metamaterial detector. An augmented metamaterial absorber that supports magnitude and phase measurement of the incident electric field, within each unit cell, is described. The metamaterial is implemented in a commercial printed circuit board process with off-board back-end electronics. We also discuss on-board back-end implementation strategies. Direction finding performance is analyzed for the fabricated metamaterial detector using simulated data and the standard algorithm, MUtiple SIgnal Classification. The performance of this complete system is characterized by its angular resolution as a function of radiation density at the detector. Sources with power outputs typical of mobile communication devices can be resolved at kilometer distances with sub-degree resolution and high frame rates.
A semiconductor radiation imaging pixel detector for space radiation dosimetry.
Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence
2015-07-01
Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.
Identification of stopping ions in a silicon Timepix detector
NASA Astrophysics Data System (ADS)
Stoffle, Nicholas; Pinsky, Lawrence
2018-02-01
Timepix detectors are increasingly used in space-based applications. Such detectors are low power, low mass, and provide a wealth of information necessary for characterizing the ionizing radiation environment in space for both humans and hardware. Stopping ions are shown to contribute to the energy loss spectrum in a thin, pixelated, Timepix detector, and this energy loss is shown to contribute to the LET spectrum near 14 keV/micron. Bulk data also indicates the presence of Hydrogen isotopes in the energy loss spectra. Individual track analysis can be used to identify the stopping ions and the related energy and isotope through comparison with theoretical energy loss curves. While this calculation is specific to the Timepix, the impact of stopping ions on other instruments can be estimated using the insight gained from this approach.
A Compact Imaging Detector of Polarization and Spectral Content
NASA Technical Reports Server (NTRS)
Rust, D. M.; Kumar, A.; Thompson, K. E.
1993-01-01
A new type of image detector will simultaneously analyze the polarization of light at all picture elements in a scene. The integrated Dual Imaging Detector (IDID) consists of a polarizing beam splitter bonded to a charge-coupled device (CCD), with signal-analysis circuitry and analog-to-digital converters, all integrated on a silicon chip. The polarizing beam splitter can be either a Ronchi ruling, or an array of cylindrical lenslets, bonded to a birefringent wafer. The wafer, in turn, is bonded to the CCD so that light in the two orthogonal planes of polarization falls on adjacent pairs of pixels. The use of a high-index birefringent material, e.g., rutile, allows the IDID to operate at f-numbers as high as f/3.5. Other aspects of the detector are discussed.
Commissioning of the ATLAS Muon Spectrometer with cosmic rays
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Dos Santos Pedrosa, F. Baltasar; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C.; Begel, M.; Harpaz, S. Behar; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M. I.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodet, E.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Almenar, C. Cuenca; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A. R.; Dawson, I.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A.; Doyle, A. T.; Drasal, Z.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Martin, T. Fonseca; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; Navarro, J. E. García; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gautard, V.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Fajardo, L. S. Gomez; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Silva, M. L. Gonzalez; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Eschrich, I. Gough; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hernández Jiménez, Y.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E. W.; Hughes, G.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Belenguer, M. Jimenez; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jorge, P. M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kostka, P.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kwee, R.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Vine, M.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Leyton, M.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J. N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S. C.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Miguens, J. Machado; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A. J.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Dit Latour, B. Martin; Martinez, M.; Outschoorn, V. Martinez; Martini, A.; Martyniuk, A. C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T. M.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C. M.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Herrera, C. Mora; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Garcia, R. Murillo; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A. G.; Oliveira, M.; Damazio, D. Oliveira; Oliver, J.; Garcia, E. Oliver; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Ottersbach, J. P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parker, S. I.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L. S.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Codina, E. Perez; Pérez García-Estañ, M. T.; Reale, V. Perez; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Ponsot, P.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R. A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Dos Santos, D. Roda; Rodriguez, D.; Garcia, Y. Rodriguez; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosselet, L.; Rossetti, V.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M. S.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjoelin, J.; Sjursen, T. B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strube, J.; Stugu, B.; Soh, D. A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X. H.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, T.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, R. P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Tennenbaum-Katan, Y. D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tuggle, J. M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasilyeva, L.; Vassilakopoulos, V. I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Della Porta, G. Zevi; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.
2010-12-01
The ATLAS detector at the Large Hadron Collider has collected several hundred million cosmic ray events during 2008 and 2009. These data were used to commission the Muon Spectrometer and to study the performance of the trigger and tracking chambers, their alignment, the detector control system, the data acquisition and the analysis programs. We present the performance in the relevant parameters that determine the quality of the muon measurement. We discuss the single element efficiency, resolution and noise rates, the calibration method of the detector response and of the alignment system, the track reconstruction efficiency and the momentum measurement. The results show that the detector is close to the design performance and that the Muon Spectrometer is ready to detect muons produced in high energy proton-proton collisions.
High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Wei; Shabbir, Faizan; Gong, Chao
2015-04-13
We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processingmore » units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.« less
FPGA Based Wavelet Trigger in Radio Detection of Cosmic Rays
NASA Astrophysics Data System (ADS)
Szadkowski, Zbigniew; Szadkowska, Anna
2014-12-01
Experiments which show coherent radio emission from extensive air showers induced by ultra-high-energy cosmic rays are designed for a detailed study of the development of the electromagnetic part of air showers. Radio detectors can operate with 100 % up time as, e.g., surface detectors based on water-Cherenkov tanks. They are being developed for ground-based experiments (e.g., the Pierre Auger Observatory) as another type of air-shower detector in addition to fluorescence detectors, which operate with only ˜10 % of duty on dark nights. The radio signals from air showers are caused by coherent emission from geomagnetic radiation and charge-excess processes. The self-triggers in radio detectors currently in use often generate a dense stream of data, which is analyzed afterwards. Huge amounts of registered data require significant manpower for off-line analysis. Improvement of trigger efficiency is a relevant factor. The wavelet trigger, which investigates on-line the power of radio signals (˜ V2/ R), is promising; however, it requires some improvements with respect to current designs. In this work, Morlet wavelets with various scaling factors were used for an analysis of real data from the Auger Engineering Radio Array and for optimization of the utilization of the resources in an FPGA. The wavelet analysis showed that the power of events is concentrated mostly in a limited range of the frequency spectrum (consistent with a range imposed by the input analog band-pass filter). However, we found several events with suspicious spectral characteristics, where the signal power is spread over the full band-width sampled by a 200 MHz digitizer with significant contribution of very high and very low frequencies. These events may not originate from cosmic ray showers but could be the result of human contamination. The engine of the wavelet analysis can be implemented in the modern powerful FPGAs and can remove suspicious events on-line to reduce the trigger rate.
NASA Astrophysics Data System (ADS)
Khrustalev, K.
2016-12-01
Current process for the calibration of the beta-gamma detectors used for radioxenon isotope measurements for CTBT purposes is laborious and time consuming. It uses a combination of point sources and gaseous sources resulting in differences between energy and resolution calibrations. The emergence of high resolution SiPIN based electron detectors allows improvements in the calibration and analysis process to be made. Thanks to high electron resolution of SiPIN detectors ( 8-9 keV@129 keV) compared to plastic scintillators ( 35 keV@129keV) there are a lot more CE peaks (from radioxenon and radon progenies) can be resolved and used for energy and resolution calibration in the energy range of the CTBT-relevant radioxenon isotopes. The long term stability of the SiPIN energy calibration allows one to significantly reduce the time of the QC measurements needed for checking the stability of the E/R calibration. The currently used second order polynomials for the E/R calibration fitting are unphysical and shall be replaced by a linear energy calibration for NaI and SiPIN, owing to high linearity and dynamic range of the modern digital DAQ systems, and resolution calibration functions shall be modified to reflect the underlying physical processes. Alternatively, one can completely abandon the use of fitting functions and use only point-values of E/R (similar to the efficiency calibration currently used) at the energies relevant for the isotopes of interest (ROI - Regions Of Interest ). Current analysis considers the detector as a set of single channel analysers, with an established set of coefficients relating the positions of ROIs with the positions of the QC peaks. The analysis of the spectra can be made more robust using peak and background fitting in the ROIs with a single free parameter (peak area) of the potential peaks from the known isotopes and a fixed E/R calibration values set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, R.P.; Lewis, J.M.; Murer, D.
Previous work has measured the neutron response of pressurized {sup 4}He scintillation detectors, however these studies only examine the response as a function of incident neutron energy. Since the detection mechanism in {sup 4}He detectors is elastic scattering, and the interacting neutron will only deposit a fraction of its incident kinetic energy in the detector gas, an examination of the response of the detector output to deposited energy is necessary to transform these detectors into instruments for neutron spectrometry. Using a combined time-of-flight (TOF) and coincidence scattering method, this paper further characterizes the {sup 4}He light response to fast neutronsmore » by examining the scintillation light yield as a function of deposited energy, measuring the light response up to 5 MeV. These {sup 4}He detectors are simple in design, and are manufactured by Arktis Radiation Detectors in several sizes. The specific model used in this experiment had an active volume 20 cm long with an inner diameter of 4.4 cm, giving a total active volume of 304 cm{sup 3}. The key components include the active volume, filled with 150 bar of helium-4 gas, and photomultiplier tubes (PMTs) mounted at either end of the active volume. The detector body is made of stainless steel. The detector response was experimentally measured using a two-detector coincidence arrangement with a {sup 252}Cf source. Two {sup 4}He detectors were vertically mounted, and the source was placed at a horizontal distance from the center of the bottom detector, forming a right angle. By requiring coincidence between the two detectors, it was confirmed that each neutron interacting in the second (top) detector must first have undergone a scattering interaction in the first (bottom) detector, and the time-of-flight (TOF) technique could then be used to determine the energy of the neutron as it traveled between the two detectors by the difference in time between the two detector events. More importantly, with the scattering angle known, the amount of energy deposited by the neutron in the bottom detector (ER) was also calculated using kinematic scattering equations. This deposited recoil energy was then compared to the corresponding light output for each event to form a deposited energy scintillation light response matrix. Similarly, the system's insensitivity to gammas and its ability to reject gammas by pulse shape discrimination (PSD) are often cited as an important advantage, although a detailed analysis of these capabilities has not yet been performed. This work therefore quantified these parameters in order to further characterize these detectors for future mixed radiation field measurements. Gamma sources were measured spanning a range of gamma-ray energies from 0.122 MeV to 1.332 MeV, including {sup 57}Co, {sup 137}Cs, {sup 54}Mn, and {sup 60}Co. Each source was counted by the {sup 4}He detector and the background subtracted. Taking the ratio of the number of events detected during the experimental source measurement to the number of gammas predicted by MCNPX to pass through the detector volume yields the detector's intrinsic gamma efficiency. The difference between this fraction and unity is therefore a measure of the detector's ability to ignore interfering gamma rays, defined as its inherent gamma rejection rate. The ability of post-processing PSD algorithms to further reduce the number of gammas is also investigated and quantified. Finally, it has been noted that the scintillation signal from a single neutron event can be separated in time into two components: the fast component is a sharp peak that exists on the order of nanoseconds; the slow component is a series of smaller pulses, stretched out over four microseconds. Whereas previous research has exclusively focused on the energy information contained in the slow component, this work demonstrates that the fast component is also sensitive to neutron energy, and the entire scintillation signal can therefore be used. In conclusion, the relationship of fast neutron {sup 4}He scintillation detectors to deposited neutron energy was explored, and will be combined with previous works that measured the scintillation response to incident neutron energy in order to develop a neutron spectrometer. Similarly, the ability of these {sup 4}He detectors to reject interfering gamma rays was also quantified, and so will enable this spectrometer to be deployed in mixed radiation field measurements. Finally, while previous works with these detectors have focused on an analysis of the slow scintillation component, it was demonstrated in this work that the fast component also contains significant energy information.« less
The veto system of the DarkSide-50 experiment
Agnes, P.
2016-03-16
Here, nuclear recoil events produced by neutron scatters form one of the most important classes of background in WIMP direct detection experiments, as they may produce nuclear recoils that look exactly like WIMP interactions. In DarkSide-50, we both actively suppress and measure the rate of neutron-induced background events using our neutron veto, composed of a boron-loaded liquid scintillator detector within a water Cherenkov detector. This paper is devoted to the description of the neutron veto system of DarkSide-50, including the detector structure, the fundamentals of event reconstruction and data analysis, and basic performance parameters.
Data processing and analysis for 2D imaging GEM detector system
NASA Astrophysics Data System (ADS)
Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Byszuk, A.; Juszczyk, B.; Kolasinski, P.; Linczuk, M.; Wojenski, A.; Zabolotny, W.; Zienkiewicz, P.
2014-11-01
The Triple Gas Electron Multiplier (T-GEM) is presented as soft X-ray (SXR) energy and position sensitive detector for high-resolution X-ray diagnostics of magnetic confinement fusion plasmas [1]. Multi-channel measurement system and essential data processing for X-ray energy and position recognition is consider. Several modes of data acquisition are introduced depending on processing division for hardware and software components. Typical measuring issues aredeliberated for enhancement of data quality. Fundamental output characteristics are presented for one and two dimensional detector structure. Representative results for reference X-ray source and tokamak plasma are demonstrated.
GEM detectors for WEST and potential application for heavy impurity transport studies
NASA Astrophysics Data System (ADS)
Mazon, D.; Jardin, A.; Coston, C.; Faisse, F.; Chernyshova, M.; Czarski, T.; Kasprowicz, G.; Wojenski, A.
2016-08-01
In tokamaks equipped with metallic walls and in particular tungsten, the interplay between particle transport and MagnetoHydroDynamic (MHD) activity might lead to impurities accumulation and finally to sudden plasma termination called disruption. Studying such transport phenomena is thus essential if stationary discharges are to be achieved. On WEST a new SXR diagnostic is developed in collaboration with IPPLM (Poland) and the Warsaw University of Technology, based on a triple Gas Electron Multiplier (GEM) detector. Potential application of the WEST GEM detectors for tomographic reconstruction and subsequent transport analysis is presented.
Characterization of TlBrxCl1-x Crystals for Radiation Detectors
NASA Astrophysics Data System (ADS)
Onodera, Toshiyuki; Hitomi, Keitaro; Onodera, Chikara; Shoji, Tadayoshi; Mochizuki, Katsumi
2012-08-01
Thallium bromide chloride TlBrxCl1-x crystals have been evaluated as a material used for fabrication of room temperature radiation detectors. In this study, TlBrxCl1-x crystals with various chlorine (Cl) concentrations were grown by the travelling molten zone method and the detectors were fabricated from the crystals. The optical properties of the crystals were evaluated by measuring the transmittances. The charge transport properties were characterized by the Hecht analysis. The band gap energy of the crystals proportionally increased with Cl concentration. Mobility-lifetime products (μτ) of the crystals decreased with increasing Cl concentration.
Cosmic dosimetry using TLD aboard spacecrafts of the "Cosmos" series
NASA Astrophysics Data System (ADS)
Hübner, K.; Schmidt, P.; Fellinger, J.
Thermoluminescent (TL) detectors were used for dosimetric investigations on the outer surface as well as inside Soviet spacecrafts of the "Cosmos" series. At the outer surface, ultrathin TL detectors, based on CaF 2-PTFE and LiF, were arranged in special stacks and exposed to unshielded cosmic radiation. The strong decrease of dose within a few mg/cm 2 demonstrates that weakly penetrating radiation is dominating in the radiation field under investigation. On the basis of glow curve analysis of LiF thermoluminescent detectors it could be shown, that the high doses are caused by electrons.
Cosmic dosimetry using TLD aboard spacecrafts of the "Cosmos" series.
Hubner, K; Schmidt, P; Fellinger, J
1994-11-01
Thermoluminescent (TL) detectors were used for dosimetric investigations on the outer surface as well as inside Soviet spacecrafts of the "Cosmos" series. At the outer surface, ultrathin TL detectors, based on CaF2-PTFE and LiF, were arranged in special stacks and exposed to unshielded cosmic radiation. The strong decrease of dose within a few mg/cm2 demonstrates that weakly penetrating radiation is dominating in the radiation field under investigation. On the basis of glow curve analysis of LiF thermoluminescent detectors it could be shown, that the high doses are caused by electrons.
The veto system of the DarkSide-50 experiment
NASA Astrophysics Data System (ADS)
Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Ianni, Aldo; Ianni, Andrea; James, I.; Johnson, T.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.
2016-03-01
Nuclear recoil events produced by neutron scatters form one of the most important classes of background in WIMP direct detection experiments, as they may produce nuclear recoils that look exactly like WIMP interactions. In DarkSide-50, we both actively suppress and measure the rate of neutron-induced background events using our neutron veto, composed of a boron-loaded liquid scintillator detector within a water Cherenkov detector. This paper is devoted to the description of the neutron veto system of DarkSide-50, including the detector structure, the fundamentals of event reconstruction and data analysis, and basic performance parameters.
Array Detector Modules for Spent Fuel Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolotnikov, Aleksey
Brookhaven National Laboratory (BNL) proposes to evaluate the arrays of position-sensitive virtual Frisch-grid (VFG) detectors for passive gamma-ray emission tomography (ET) to verify the spent fuel in storage casks before storing them in geo-repositories. Our primary objective is to conduct a preliminary analysis of the arrays capabilities and to perform field measurements to validate the effectiveness of the proposed array modules. The outcome of this proposal will consist of baseline designs for the future ET system which can ultimately be used together with neutrons detectors. This will demonstrate the usage of this technology in spent fuel storage casks.
CMS Data Processing Workflows during an Extended Cosmic Ray Run
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2009-11-01
The CMS Collaboration conducted a month-long data taking exercise, the Cosmic Run At Four Tesla, during October-November 2008, with the goal of commissioning the experiment for extended operation. With all installed detector systems participating, CMS recorded 270 million cosmic ray events with the solenoid at a magnetic field strength of 3.8 T. This paper describes the data flow from the detector through the various online and offline computing systems, as well as the workflows used for recording the data, for aligning and calibrating the detector, and for analysis of the data.
Spectral Analysis of the Primary Flight Focal Plane Arrays for the Thermal Infrared Sensor
NASA Technical Reports Server (NTRS)
Montanaro, Matthew; Reuter, Dennis C.; Markham, Brian L.; Thome, Kurtis J.; Lunsford, Allen W.; Jhabvala, Murzy D.; Rohrbach, Scott O.; Gerace, Aaron D.
2011-01-01
Thermal Infrared Sensor (TIRS) is a (1) New longwave infrared (10 - 12 micron) sensor for the Landsat Data Continuity Mission, (2) 185 km ground swath; 100 meter pixel size on ground, (3) Pushbroom sensor configuration. Issue of Calibration are: (1) Single detector -- only one calibration, (2) Multiple detectors - unique calibration for each detector -- leads to pixel-to-pixel artifacts. Objectives are: (1) Predict extent of residual striping when viewing a uniform blackbody target through various atmospheres, (2) Determine how different spectral shapes affect the derived surface temperature in a realistic synthetic scene.
NASA Technical Reports Server (NTRS)
Wise, Stephanie A.; Buckley, John D.; Randolf, Henry W.; Verbelyi, Darren; Haertling, Gene H.; Hooker, Matthew W.; Selim, Raouf; Caton, Randall
1992-01-01
Thick films of superconductive material on low thermal conductivity substrates (e.g., yttria-stabilized zirconia and fused silica) are considered as a replacement for the existing electrical connections between the detector array and data acquisition and storage electronics in the cryogenic detector systems being developed by NASA. The paper describes some of the design constraints on the superconducting device and presents results of a preliminary analysis of the effects of vibration, gamma irradiation, and long-term exposure to high vacuum and liquid nitrogen encountered in operating such a device in space.
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abu-Zayyad, T.; Amman, J. F.; Archbold, G. C.; Bellido, J. A.; Belov, K.; Belz, J. W.; Bergman, D. R.; Cao, Z.; Clay, R. W.; Cooper, M. D.; Dai, H.; Dawson, B. R.; Everett, A. A.; Girard, J. H. V.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hüntemeyer, P.; Jones, B. F.; Jui, C. C. H.; Kieda, D. B.; Kim, K.; Kirn, M. A.; Loh, E. C.; Manago, N.; Marek, L. J.; Martens, K.; Martin, G.; Manago, N.; Matthews, J. A. J.; Matthews, J. N.; Meyer, J. R.; Moore, S. A.; Morrison, P.; Moosman, A. N.; Mumford, J. R.; Munro, M. W.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M.; Sarracino, J. S.; Schnetzer, S.; Shen, P.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Thomas, S. B.; Thompson, T. N.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; VanderVeen, T. D.; Zech, A.; Zhang, X.
2005-03-01
We have measured the spectrum of UHE cosmic rays using the Flash ADC (FADC) detector (called HiRes-II) of the High Resolution Fly's Eye experiment running in monocular mode. We describe in detail the data analysis, development of the Monte Carlo simulation program, and results. We also describe the results of the HiRes-I detector. We present our measured spectra and compare them with a model incorporating galactic and extragalactic cosmic rays. Our combined spectra provide strong evidence for the existence of the spectral feature known as the "ankle."
Observation of the ankle and evidence for a high-energy break in the cosmic ray spectrum
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abuzayyad, T.; Amman, J.; Archbold, G.; Atkins, R.; Bellido, J.; Belov, K.; Belz, J.; Benzvi, S.; Bergman, D.
2005-07-01
We have measured the cosmic ray spectrum at energies above $10^{17}$ eV using the two air fluorescence detectors of the High Resolution Fly's Eye experiment operating in monocular mode. We describe the detector, PMT and atmospheric calibrations, and the analysis techniques for the two detectors. We fit the spectrum to models describing galactic and extragalactic sources. Our measured spectrum gives an observation of a feature known as the ``ankle'' near $3\\times 10^{18}$ eV, and strong evidence for a suppression near $6\\times 10^{19}$ eV.
The ground support equipment for the LAUE project
NASA Astrophysics Data System (ADS)
Caroli, E.; Auricchio, N.; Basili, A.; Carassiti, V.; Cassese, F.; Del Sordo, S.; Frontera, F.; Pecora, M.; Recanatesi, L.; Schiavone, F.; Silvestri, S.; Squerzanti, S.; Stephen, J. B.; Virgilli, E.
2013-09-01
The development of wide band Laue lens imaging technology is challenging, but has important potential applications in hard X- and γ-ray space instrumentation for the coming decades. The Italian Space Agency has funded a project dedicated to the development of a reliable technology to assemble a wide band Laue lens for use in space. The ground support equipment (GSE) for this project was fundamental to its eventual success... The GSE was implemented in a hard X-ray beam line built at the University of Ferrara and had the main purpose of controlling the assembly of crystals onto the Laue lens petal and to verify its final performance. The GSE incorporates the management and control of all the movements of the beam line mechanical subsystems and of the precision positioner (based on a Hexapod tool) of crystals on the petal, as well as the acquisition, storing and analysis of data obtained from the focal plane detectors (an HPGe spectrometer and an X-ray flat panel imager). The GSE is based on two PC's connected through a local network: one, placed inside the beam line, to which all the movement subsystems and the detector I/O interface and on which all the management and acquisition S/W runs, the other in the control room allows the remote control and implements the offline analysis S/W of the data obtained from the detectors. Herein we report on the GSE structure with its interface with the beam line mechanical system, with the fine crystal positioner and with the focal plane detector. Furthermore we describe the SW developed for the handling of the mechanical movement subsystems and for the analysis of the detector data with the procedure adopted for the correct orientation of the crystals before their bonding on the lens petal support.
NASA Technical Reports Server (NTRS)
Hubbard, Dorthy (Technical Monitor); Lorenzini, E. C.; Shapiro, I. I.; Cosmo, M. L.; Ashenberg, J.; Parzianello, G.; Iafolla, V.; Nozzoli, S.
2003-01-01
We discuss specific, recent advances in the analysis of an experiment to test the Equivalence Principle (EP) in free fall. A differential accelerometer detector with two proof masses of different materials free falls inside an evacuated capsule previously released from a stratospheric balloon. The detector spins slowly about its horizontal axis during the fall. An EP violation signal (if present) will manifest itself at the rotational frequency of the detector. The detector operates in a quiet environment as it slowly moves with respect to the co-moving capsule. There are, however, gravitational and dynamical noise contributions that need to be evaluated in order to define key requirements for this experiment. Specifically, higher-order mass moments of the capsule contribute errors to the differential acceleration output with components at the spin frequency which need to be minimized. The dynamics of the free falling detector (in its present design) has been simulated in order to estimate the tolerable errors at release which, in turn, define the release mechanism requirements. Moreover, the study of the higher-order mass moments for a worst-case position of the detector package relative to the cryostat has led to the definition of requirements on the shape and size of the proof masses.
NASA Astrophysics Data System (ADS)
Zang, A.; Anton, G.; Ballabriga, R.; Bisello, F.; Campbell, M.; Celi, J. C.; Fauler, A.; Fiederle, M.; Jensch, M.; Kochanski, N.; Llopart, X.; Michel, N.; Mollenhauer, U.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W.; Michel, T.
2015-04-01
The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation was carried out to use the Dosepix detector as a kVp-meter, that means to determine the applied acceleration voltage from measured X-ray tubes spectra.
Baby MIND: A Magnetized Segmented Neutrino Detector for the WAGASCI Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonova, M.; et al.
T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280 m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295 km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) hasmore » been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper.« less
Predictive modeling of infrared detectors and material systems
NASA Astrophysics Data System (ADS)
Pinkie, Benjamin
Detectors sensitive to thermal and reflected infrared radiation are widely used for night-vision, communications, thermography, and object tracking among other military, industrial, and commercial applications. System requirements for the next generation of ultra-high-performance infrared detectors call for increased functionality such as large formats (> 4K HD) with wide field-of-view, multispectral sensitivity, and on-chip processing. Due to the low yield of infrared material processing, the development of these next-generation technologies has become prohibitively costly and time consuming. In this work, it will be shown that physics-based numerical models can be applied to predictively simulate infrared detector arrays of current technological interest. The models can be used to a priori estimate detector characteristics, intelligently design detector architectures, and assist in the analysis and interpretation of existing systems. This dissertation develops a multi-scale simulation model which evaluates the physics of infrared systems from the atomic (material properties and electronic structure) to systems level (modulation transfer function, dense array effects). The framework is used to determine the electronic structure of several infrared materials, optimize the design of a two-color back-to-back HgCdTe photodiode, investigate a predicted failure mechanism for next-generation arrays, and predict the systems-level measurables of a number of detector architectures.
Baby MIND: a magnetized segmented neutrino detector for the WAGASCI experiment
NASA Astrophysics Data System (ADS)
Antonova, M.; Asfandiyarov, R.; Bayes, R.; Benoit, P.; Blondel, A.; Bogomilov, M.; Bross, A.; Cadoux, F.; Cervera, A.; Chikuma, N.; Dudarev, A.; Ekelöf, T.; Favre, Y.; Fedotov, S.; Hallsjö, S.-P.; Izmaylov, A.; Karadzhov, Y.; Khabibullin, M.; Khotyantsev, A.; Kleymenova, A.; Koga, T.; Kostin, A.; Kudenko, Y.; Likhacheva, V.; Martinez, B.; Matev, R.; Medvedeva, M.; Mefodiev, A.; Minamino, A.; Mineev, O.; Nessi, M.; Nicola, L.; Noah, E.; Ovsiannikova, T.; Pais Da Silva, H.; Parsa, S.; Rayner, M.; Rolando, G.; Shaykhiev, A.; Simion, P.; Soler, F. J. P.; Suvorov, S.; Tsenov, R.; Ten Kate, H.; Vankova-Kirilova, G.; Yershov, N.
2017-07-01
T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280 m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295 km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) has been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper.
Frink, Lillian A; Armstrong, Daniel W
2016-08-15
A headspace gas chromatography (HSGC) method was developed for the determination of water content in honey. This method was shown to work with five different honey varieties which had a range of water from 14-16%. It also utilised two different detectors, the thermal conductivity detector (TCD) and the barrier discharge ionisation detector (BID). This method needs no heating pretreatment step as in the current leading method, (i.e. the measurement of refractive index). The solvent-free procedure negates the possibility of solvent-compound interactions as well as solubility limitations, as is common with Karl Fischer titrations. It was also apparent that the classic loss on drying method consistently and substantially produced results that were lower than the correct values. This approach is shown to be rapid, with an analysis time of 4 min when using the TCD detector and under 3 min when utilising the BID detector. HSGC is feasible for the determination of water due to the new PEG-linked geminal dicationic ionic-liquid-coated GC capillary column. In addition it provides accurate and precise determinations of the water content in honey. When using the sensitive BID detector, other trace volatile compounds are observed as well. Copyright © 2016 Elsevier Ltd. All rights reserved.
MCNP-REN - A Monte Carlo Tool for Neutron Detector Design Without Using the Point Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhold, M.E.; Baker, M.C.
1999-07-25
The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo N-Particle code (MCNP) was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP - Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program (TAP) predict neutron detector response without using the pointmore » reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of MOX fresh fuel made using the Underwater Coincidence Counter (UWCC) as well as measurements of HEU reactor fuel using the active neutron Research Reactor Fuel Counter (RRFC) are compared with calculations. The method used in MCNP-REN is demonstrated to be fundamentally sound and shown to eliminate the need to use the point model for detector performance predictions.« less
New measurement of antineutrino oscillation with the full detector configuration at Daya Bay
An, F. P.; Balantekin, A. B.; Band, H. R.; ...
2015-09-11
We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×10 5 GW th ton days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six 241Am- 13C radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest frommore » the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of 2sin2θ 13 and |Δm 2 ee| were halved as a result of these improvements. An analysis of the relative antineutrino rates and energy spectra between detectors gave 2sin2θ 13=0.084±0.005 and |Δm 2 ee|=(2.42±0.11)×10 –3 eV 2 in the three-neutrino framework.« less
Electrical properties study under radiation of the 3D-open-shell-electrode detector
NASA Astrophysics Data System (ADS)
Liu, Manwen; Li, Zheng
2018-05-01
Since the 3D-Open-Shell-Electrode Detector (3DOSED) is proposed and the structure is optimized, it is important to study 3DOSED's electrical properties to determine the detector's working performance, especially in the heavy radiation environments, like the Large Hadron Collider (LHC) and it's upgrade, the High Luminosity (HL-LHC) at CERN. In this work, full 3D technology computer-aided design (TCAD) simulations have been done on this novel silicon detector structure. Simulated detector properties include the electric field distribution, the electric potential distribution, current-voltage (I-V) characteristics, capacitance-voltage (C-V) characteristics, charge collection property, and full depletion voltage. Through the analysis of calculations and simulation results, we find that the 3DOSED's electric field and potential distributions are very uniform, even in the tiny region near the shell openings with little perturbations. The novel detector fits the designing purpose of collecting charges generated by particle/light in a good fashion with a well defined funnel shape of electric potential distribution that makes these charges drifting towards the center collection electrode. Furthermore, by analyzing the I-V, C-V, charge collection property and full depletion voltage, we can expect that the novel detector will perform well, even in the heavy radiation environments.
NASA Astrophysics Data System (ADS)
Dayanga, Waduthanthree Thilina
Albert Einstein's general theory of relativity predicts the existence of gravitational waves (GWs). Direct detection of GWs will provide enormous amount of new information about physics, astronomy and cosmology. Scientists around the world are currently working towards the first direct detection of GWs. The global network of ground-based GW detectors are currently preparing for their first advanced detector Science runs. In this thesis we focus on detection of GWs from compact binary coalescence (CBC) systems. Ability to accurately model CBC GW waveforms makes them the most promising source for the first direct detection of GWs. In this thesis we try to address several challenges associated with detecting CBC signals buried in ground-based GW detector data for past and future searches. Data analysis techniques we employ to detect GW signals assume detector noise is Gaussian and stationary. However, in reality, detector data is neither Gaussian nor stationary. To estimate the performance loss due to these features, we compare the efficiencies of detecting CBC signals in simulated Gaussian and real data. Additionally, we also demonstrate the effectiveness of multi-detector signal based consistency tests such ad null-stream. Despite, non-Gaussian and non-stationary features of real detector data, with effective data quality studies and signal-based vetoes we can approach the performance of Gaussian and stationary data. As we are moving towards advanced detector era, it is important to be prepared for future CBC searches. In this thesis we investigate the performances of non-spinning binary black hole (BBH) searches in simulated Gaussian using advanced detector noise curves predicted for 2015--2016. In the same study, we analyze the GW detection probabilities of latest pN-NR hybrid waveforms submitted to second version of Numerical Injection Analysis (NINJA-2) project. The main motivation for this study is to understand the ability to detect realistic BBH signals of currently available template waveforms in LIGO Algorithms Libraries (LAL) such as EOBNR waveform family. Results of the analysis demonstrates, although the detection efficiency is least affected, parameter estimation can be challenging in future searches. Many authors suggested and demonstrated coherent searches are the most sensitive in detecting GW signals using network of multiple detectors. Owing to computational expenses in recent Science data searches of LIGO and Virgo we did not employ coherent search methods. In this thesis we demonstrate how to employ coherent searches for current CBC searches in computational feasible way. As a solution, we thoroughly investigate many aspects of coherent searches using a all-sky blind hierarchical coherent pipeline. Most importantly we presents some powerful insights extracted by running coherent hierarchical pipeline on LIGO and Virgo data. This also includes the challenges we need to address before moving to all-sky all-time fully coherent searches. Estimating GW background play critical role in data analysis. We are still exploring the best way to estimate background of a CBC GW search when one or more signal present in data. In this thesis we try to address this to certain extend through NINJA-2 mock data challenge. However, due to limitations of methods and computer power, for triple coincident GW candidates we only consider loudest two interferometers for background estimation purposes.
Optimization of 6LiF:ZnS(Ag) scintillator light yield using GEANT4
NASA Astrophysics Data System (ADS)
Yehuda-Zada, Y.; Pritchard, K.; Ziegler, J. B.; Cooksey, C.; Siebein, K.; Jackson, M.; Hurlbut, C.; Kadmon, Y.; Cohen, Y.; Ibberson, R. M.; Majkrzak, C. F.; Maliszewskyj, N. C.; Orion, I.; Osovizky, A.
2018-06-01
A new cold neutron detector has been developed at the NIST Center for Neutron Research (NCNR) for the CANDoR (Chromatic Analysis Neutron Diffractometer or Reflectometer) project. Geometric and performance constraints dictate that this detector be exceptionally thin (∼ 2 mm). For this reason, the design of the detector consists of a 6LiF:ZnS(Ag) scintillator with embedded wavelength shifting (WLS) fibers. We used the GEANT4 package to simulate neutron capture and light transport in the detector to optimize the composition and arrangement of materials to satisfy the competing requirements of high neutron capture probability and light production and transport. In the process, we have developed a method for predicting light collection and total neutron detection efficiency for different detector configurations. The simulation was performed by adjusting crucial parameters such as the scintillator stoichiometry, light yield, component grain size, WLS fiber geometry, and reflectors at the outside edges of the scintillator volume. Three different detector configurations were fabricated and their test results were correlated with the simulations. Through this correlation we have managed to find a common photon threshold for the different detector configurations which was then used to simulate and predict the efficiencies for many other detector configurations. New detectors that have been fabricated based on simulation results yielding the desired sensitivity of 90% for 3.27 meV (5 Å) cold neutrons. The simulation has proven to be a useful tool by dramatically reducing the development period and the required number of detector prototypes. It can be used to test new designs with different thicknesses and different target neutron energies.
Zhao, Na; Qin, Honglei; Sun, Kewen; Ji, Yuanfa
2017-01-01
Frequency-locked detector (FLD) has been widely utilized in tracking loops of Global Positioning System (GPS) receivers to indicate their locking status. The relation between FLD and lock status has been seldom discussed. The traditional PLL experience is not suitable for FLL. In this paper, the threshold setting criteria for frequency-locked detector in the GPS receiver has been proposed by analyzing statistical characteristic of FLD output. The approximate probability distribution of frequency-locked detector is theoretically derived by using a statistical approach, which reveals the relationship between probabilities of frequency-locked detector and the carrier-to-noise ratio (C/N0) of the received GPS signal. The relationship among mean-time-to-lose-lock (MTLL), detection threshold and lock probability related to C/N0 can be further discovered by utilizing this probability. Therefore, a theoretical basis for threshold setting criteria in frequency locked loops for GPS receivers is provided based on mean-time-to-lose-lock analysis. PMID:29207546
Background levels in the Borexino detector
NASA Astrophysics Data System (ADS)
D'Angelo, Davide; Wurm, Michael; Borexino Collaboration
2008-11-01
The Borexino detector, designed and constructed for sub-MeV solar neutrino spectroscopy, is taking data at the Gran Sasso Laboratory, Italy; since May 2007. The main physics objective of Borexino, based on elastic scattering of neutrinos in organic liquid scintillator, is the real time flux measurement of the 862keV mono-energetic neutrinos from 7Be, which set extremely severe radio-purity requirements in the detector's design and handling. The first year of continous data taking provide now evidence of the extremely low background levels achieved in the construction of the detector and in the purification of the target mass. Several pieces of analysis sense the presence of radioisotopes of the 238U and 232Th chains, of 85Kr and of 210Po out of equilibrium from other Radon daughters. Particular emphasis is given to the detection of the cosmic muon background whose angular distributions have been obtained with the outer detector tracking algorithm and to the possibility of tagging the muon-induced neutron background in the scintillator with the recently enhanced electronics setup.
Performance of a Facility for Measuring Scintillator Non-Proportionality
NASA Astrophysics Data System (ADS)
Choong, Woon-Seng; Hull, Giulia; Moses, William W.; Vetter, Kai M.; Payne, Stephen A.; Cherepy, Nerine J.; Valentine, John D.
2008-06-01
We have constructed a second-generation Compton coincidence instrument, known as the Scintillator Light Yield Non-proportionality Characterization Instrument (SLYNCI), to characterize the electron response of scintillating materials. While the SLYNCI design includes more and higher efficiency HPGe detectors than the original apparatus (five 25%-30% detectors versus one 10% detector), the most novel feature is that no collimator is placed in front of the HPGe detectors. Because of these improvements, the SLYNCI data collection rate is over 30 times higher than the original instrument. In this paper, we present a validation study of this instrument, reporting on the hardware implementation, calibration, and performance. We discuss the analysis method and present measurements of the electron response of two different NaI:Tl samples. We also discuss the systematic errors of the measurement, especially those that are unique to SLYNCI. We find that the apparatus is very stable, but that careful attention must be paid to the energy calibration of the HPGe detectors.
Jin, Tian; Yuan, Heliang; Zhao, Na; Qin, Honglei; Sun, Kewen; Ji, Yuanfa
2017-12-04
Frequency-locked detector (FLD) has been widely utilized in tracking loops of Global Positioning System (GPS) receivers to indicate their locking status. The relation between FLD and lock status has been seldom discussed. The traditional PLL experience is not suitable for FLL. In this paper, the threshold setting criteria for frequency-locked detector in the GPS receiver has been proposed by analyzing statistical characteristic of FLD output. The approximate probability distribution of frequency-locked detector is theoretically derived by using a statistical approach, which reveals the relationship between probabilities of frequency-locked detector and the carrier-to-noise ratio ( C / N ₀) of the received GPS signal. The relationship among mean-time-to-lose-lock (MTLL), detection threshold and lock probability related to C / N ₀ can be further discovered by utilizing this probability. Therefore, a theoretical basis for threshold setting criteria in frequency locked loops for GPS receivers is provided based on mean-time-to-lose-lock analysis.
Analysis of MCNP simulated gamma spectra of CdTe detectors for boron neutron capture therapy.
Winkler, Alexander; Koivunoro, Hanna; Savolainen, Sauli
2017-06-01
The next step in the boron neutron capture therapy (BNCT) is the real time imaging of the boron concentration in healthy and tumor tissue. Monte Carlo simulations are employed to predict the detector response required to realize single-photon emission computed tomography in BNCT, but have failed to correctly resemble measured data for cadmium telluride detectors. In this study we have tested the gamma production cross-section data tables of commonly used libraries in the Monte Carlo code MCNP in comparison to measurements. The cross section data table TENDL-2008-ACE is reproducing measured data best, whilst the commonly used ENDL92 and other studied libraries do not include correct tables for the gamma production from the cadmium neutron capture reaction that is occurring inside the detector. Furthermore, we have discussed the size of the annihilation peaks of spectra obtained by cadmium telluride and germanium detectors. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Preliminary Analysis of LANDSAT-4 Thematic Mapper Radiometric Performance
NASA Technical Reports Server (NTRS)
Justice, C.; Fusco, L.; Mehl, W.
1985-01-01
The NASA raw (BT) product, the radiometrically corrected (AT) product, and the radiometrically and geometrically corrected (PT) product of a TM scene were analyzed examine the frequency distribution of the digital data; the statistical correlation between the bands; and the variability between the detectors within a band. The analyses were performed on a series of image subsets from the full scence. Results are presented from one 1024 c 1024 pixel subset of Realfoot Lake, Tennessee which displayed a representative range of ground conditions and cover types occurring within the full frame image. From this cursory examination of one of the first seven channel TM data sets, it would appear that the radiometric performance of the system is most satisfactory and largely meets pre-launch specifications. Problems were noted with Band 5 Detector 3 and Band 2 Detector 4. Differences were observed between forward and reverse scan detector responses both for the BT and AT products. No systematic variations were observed between odd and even detectors.
Feasibility of in situ beta ray measurements in underwater environment.
Park, Hye Min; Park, Ki Hyun; Kang, Sung Won; Joo, Koan Sik
2017-09-01
We describe an attempt at the development of an in situ detector for beta ray measurements in underwater environment. The prototype of the in situ detector is based on a CaF2: Eu scintillator using crystal light guide and Si photomultiplier. Tests were conducted using various reference sources for evaluating the linearity and stability of the detector in underwater environment. The system is simple and stable for long-term monitoring, and consumes low power. We show here an effective detection distance of 7 mm and a 2.273 MeV end-point energy spectrum of 90 Sr/ 90 Y when using the system underwater. The results demonstrate the feasibility of in situ beta ray measurements in underwater environment and can be applied for designing an in situ detector for radioactivity measurement in underwater environment. The in situ detector can also have other applications such as installation on the marine monitoring platform and quantitative analysis of radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluation of light detector surface area for functional Near Infrared Spectroscopy.
Wang, Lei; Ayaz, Hasan; Izzetoglu, Meltem; Onaral, Banu
2017-10-01
Functional Near Infrared Spectroscopy (fNIRS) is an emerging neuroimaging technique that utilizes near infrared light to detect cortical concentration changes of oxy-hemoglobin and deoxy-hemoglobin non-invasively. Using light sources and detectors over the scalp, multi-wavelength light intensities are recorded as time series and converted to concentration changes of hemoglobin via modified Beer-Lambert law. Here, we describe a potential source for systematic error in the calculation of hemoglobin changes and light intensity measurements. Previous system characterization and analysis studies looked into various fNIRS parameters such as type of light source, number and selection of wavelengths, distance between light source and detector. In this study, we have analyzed the contribution of light detector surface area to the overall outcome. Results from Monte Carlo based digital phantoms indicated that selection of detector area is a critical system parameter in minimizing the error in concentration calculations. The findings here can guide the design of future fNIRS sensors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Principal Components Analysis of a JWST NIRSpec Detector Subsystem
NASA Technical Reports Server (NTRS)
Arendt, Richard G.; Fixsen, D. J.; Greenhouse, Matthew A.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Mott, D. Brent; Rauscher, Bernard J.; Wen, Yiting;
2013-01-01
We present principal component analysis (PCA) of a flight-representative James Webb Space Telescope NearInfrared Spectrograph (NIRSpec) Detector Subsystem. Although our results are specific to NIRSpec and its T - 40 K SIDECAR ASICs and 5 m cutoff H2RG detector arrays, the underlying technical approach is more general. We describe how we measured the systems response to small environmental perturbations by modulating a set of bias voltages and temperature. We used this information to compute the systems principal noise components. Together with information from the astronomical scene, we show how the zeroth principal component can be used to calibrate out the effects of small thermal and electrical instabilities to produce cosmetically cleaner images with significantly less correlated noise. Alternatively, if one were designing a new instrument, one could use a similar PCA approach to inform a set of environmental requirements (temperature stability, electrical stability, etc.) that enabled the planned instrument to meet performance requirements
Detector Development for the MARE Neutrino Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galeazzi, M.; Bogorin, D.; Molina, R.
2009-12-16
The MARE experiment is designed to measure the mass of the neutrino with sub-eV sensitivity by measuring the beta decay of {sup 187}Re with cryogenic microcalorimeters. A preliminary analysis shows that, to achieve the necessary statistics, between 10,000 and 50,000 detectors are likely necessary. We have fabricated and characterized Iridium transition edge sensors with high reproducibility and uniformity for such a large scale experiment. We have also started a full scale simulation of the experimental setup for MARE, including thermalization in the absorber, detector response, and optimum filter analysis, to understand the issues related to reaching a sub-eV sensitivity andmore » to optimize the design of the MARE experiment. We present our characterization of the Ir devices, including reproducibility, uniformity, and sensitivity, and we discuss the implementation and capabilities of our full scale simulation.« less
Theoretical Noise Analysis on a Position-sensitive Metallic Magnetic Calorimeter
NASA Technical Reports Server (NTRS)
Smith, Stephen J.
2007-01-01
We report on the theoretical noise analysis for a position-sensitive Metallic Magnetic Calorimeter (MMC), consisting of MMC read-out at both ends of a large X-ray absorber. Such devices are under consideration as alternatives to other cryogenic technologies for future X-ray astronomy missions. We use a finite-element model (FEM) to numerically calculate the signal and noise response at the detector outputs and investigate the correlations between the noise measured at each MMC coupled by the absorber. We then calculate, using the optimal filter concept, the theoretical energy and position resolution across the detector and discuss the trade-offs involved in optimizing the detector design for energy resolution, position resolution and count rate. The results show, theoretically, the position-sensitive MMC concept offers impressive spectral and spatial resolving capabilities compared to pixel arrays and similar position-sensitive cryogenic technologies using Transition Edge Sensor (TES) read-out.
NASA Astrophysics Data System (ADS)
Streli, C.; Pepponi, G.; Wobrauschek, P.; Jokubonis, C.; Falkenberg, G.; Záray, G.; Broekaert, J.; Fittschen, U.; Peschel, B.
2006-11-01
At the Hamburger Synchrotronstrahlungslabor (HASYLAB), Beamline L, a vacuum chamber for synchrotron radiation-induced total reflection X-ray fluorescence analysis, is now available which can easily be installed using the adjustment components for microanalysis present at this beamline. The detector is now in the final version of a Vortex silicon drift detector with 50-mm 2 active area from Radiant Detector Technologies. With the Ni/C multilayer monochromator set to 17 keV extrapolated detection limits of 8 fg were obtained using the 50-mm 2 silicon drift detector with 1000 s live time on a sample containing 100 pg of Ni. Various applications are presented, especially of samples which are available in very small amounts: As synchrotron radiation-induced total reflection X-ray fluorescence analysis is much more sensitive than tube-excited total reflection X-ray fluorescence analysis, the sampling time of aerosol samples can be diminished, resulting in a more precise time resolution of atmospheric events. Aerosols, directly sampled on Si reflectors in an impactor were investigated. A further application was the determination of contamination elements in a slurry of high-purity Al 2O 3. No digestion is required; the sample is pipetted and dried before analysis. A comparison with laboratory total reflection X-ray fluorescence analysis showed the higher sensitivity of synchrotron radiation-induced total reflection X-ray fluorescence analysis, more contamination elements could be detected. Using the Si-111 crystal monochromator also available at beamline L, XANES measurements to determine the chemical state were performed. This is only possible with lower sensitivity as the flux transmitted by the crystal monochromator is about a factor of 100 lower than that transmitted by the multilayer monochromator. Preliminary results of X-ray absorption near-edge structure measurements for As in xylem sap from cucumber plants fed with As(III) and As(V) are reported. Detection limits of 170 ng/l of As in xylem sap were achieved.
NASA Astrophysics Data System (ADS)
Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; Del Peral, L.; Deligny, O.; Dembinski, H.; Denkiewicz, A.; di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kampert, K. H.; Karhan, P.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; PeĶala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rivera, H.; Riviére, C.; Rizi, V.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Taşcău, O.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.
2011-04-01
The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs “radio-hybrid” measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.
NASA Astrophysics Data System (ADS)
Silva, A. L. M.; Figueroa, R.; Jaramillo, A.; Carvalho, M. L.; Veloso, J. F. C. A.
2013-08-01
Energy dispersive X-ray fluorescence (EDXRF) imaging systems are of great interest in many applications of different areas, once they allow us to get images of the spatial elemental distribution in the samples. The detector system used in this study is based on a micro patterned gas detector, named Micro-Hole and Strip Plate. The full field of view system, with an active area of 28 × 28 mm2 presents some important features for EDXRF imaging applications, such as a position resolution below 125 μm, an intrinsic energy resolution of about 14% full width at half maximum for 5.9 keV X-rays, and a counting rate capability of 0.5 MHz. In this work, analysis of human teeth treated by dental amalgam was performed by using the EDXRF imaging system mentioned above. The goal of the analysis is to evaluate the system capabilities in the biomedical field by measuring the drift of the major constituents of a dental amalgam, Zn and Hg, throughout the tooth structures. The elemental distribution pattern of these elements obtained during the analysis suggests diffusion of these elements from the amalgam to teeth tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M. G.; Ackermann, M.; Adams, J.
Here we present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrinomore » flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that has not been previously accessed by spectral measurements.« less
Aartsen, M. G.; Ackermann, M.; Adams, J.; ...
2015-03-11
Here we present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrinomore » flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that has not been previously accessed by spectral measurements.« less
Tane, Shinya; Ohno, Yoshiharu; Hokka, Daisuke; Ogawa, Hiroyuki; Tauchi, Shunsuke; Nishio, Wataru; Yoshimura, Masahiro; Okita, Yutaka; Maniwa, Yoshimasa
2013-12-01
The purpose of this study was to compare the efficacy of 320-detector row computed tomography (CT) with that of 64-detector row CT for three-dimensional assessment of pulmonary vasculature of candidates for pulmonary segmentectomy. We included 32 patients who underwent both 320- and 64-detector CT before pulmonary segmentectomy, which was performed by cutting the pulmonary artery and bronchi of the affected segment followed by dissection of the intersegmental plane along the intersegmental vein. Before the operation, three-dimensional pulmonary vasculature images were obtained for each patient, and the arteries and intersegmental veins of the affected segments were identified. Two thoracic surgeons independently assessed the vessels with visual scoring systems, and kappa analysis was used to determine interobserver agreement. The Wilcoxon signed-rank test was used to compare the visual scores for the assessment of the visualization capabilities of the two methods. In addition, the final determination of pulmonary vasculature at a given site was made by consensus from thoracic surgeons during operation, and receiver operating characteristic analysis was performed to compare their efficacy of pulmonary vasculature assessment. Sensitivity, specificity and accuracy of either method were also compared by means of McNemar's test. Of the 32 cases, there were no operative complications, but 1 patient died of postoperative idiopathic interstitial pneumonia. Visualization scores for the pulmonary vessels were significantly higher for 320- than those for 64-detector CT (P < 0.0001 for the affected arteries and P < 0.0001 for the intersegmental veins). As for pulmonary vasculature assessment, the areas under the curve showed no statistically significant differences in between the two methods, while the specificity and accuracy of intersegemental vein assessment were significantly better for 320- than those for 64-detector row CT (P < 0.05). Interobserver agreement for the assessment yielded by either method was almost perfect for all cases. Three hundred and twenty-detector row CT is more useful than conventional 64-detector row CT for preoperative three-dimensional assessment of pulmonary vasculature, especially when we identify the intersegmental veins, in candidates for pulmonary segmentectomy.
Goenka, Ajit H; Herts, Brian R; Dong, Frank; Obuchowski, Nancy A; Primak, Andrew N; Karim, Wadih; Baker, Mark E
2016-08-01
Purpose To assess image noise, contrast-to-noise ratio (CNR) and detectability of low-contrast, low-attenuation liver lesions in a semianthropomorphic phantom by using either a discrete circuit (DC) detector and filtered back projection (FBP) or an integrated circuit (IC) detector and iterative reconstruction (IR) with changes in radiation exposure and phantom size. Materials and Methods An anthropomorphic phantom without or with a 5-cm-thick fat-mimicking ring (widths, 30 and 40 cm) containing liver inserts with four spherical lesions was scanned with five exposure settings on each of two computed tomography scanners, one equipped with a DC detector and the other with an IC detector. Images from the DC and IC detector scanners were reconstructed with FBP and IR, respectively. Image noise and lesion CNR were measured. Four radiologists evaluated lesion presence on a five-point diagnostic confidence scale. Data analyses included receiver operating characteristic (ROC) curve analysis and noninferiority analysis. Results The combination of IC and IR significantly reduced image noise (P < .001) (with the greatest reduction in the 40-cm phantom and at lower exposures) and improved lesion CNR (P < .001). There was no significant difference in area under the ROC curve between detector-reconstruction combinations at fixed exposure for either phantom. Reader accuracy with IC-IR was noninferior at 50% (100 mAs [effective]) and 25% (300 mAs [effective]) exposure reduction for the 30- and 40-cm phantoms, respectively (adjusted P < .001 and .04 respectively). IC-IR improved readers' confidence in the presence of a lesion (P = .029) independent of phantom size or exposure level. Conclusion IC-IR improved objective image quality and lesion detection confidence but did not result in superior diagnostic accuracy when compared with DC-FBP. Moderate exposure reductions maintained comparable diagnostic accuracy for both detector-reconstruction combinations. Lesion detection in the 40-cm phantom was inferior at smaller exposure reduction than in the 30-cm phantom. (©) RSNA, 2016 Online supplemental material is available for this article.
A superconducting nanowire can be modeled by using SPICE
NASA Astrophysics Data System (ADS)
Berggren, Karl K.; Zhao, Qing-Yuan; Abebe, Nathnael; Chen, Minjie; Ravindran, Prasana; McCaughan, Adam; Bardin, Joseph C.
2018-05-01
Modeling of superconducting nanowire single-photon detectors typically requires custom simulations or finite-element analysis in one or two dimensions. Here, we demonstrate two simplified one-dimensional SPICE models of a superconducting nanowire that can quickly and efficiently describe the electrical characteristics of a superconducting nanowire. These models may be of particular use in understanding alternative architectures for nanowire detectors and readouts.
Plastic scintillation detectors for dose monitoring in digital breast tomosynthesis
NASA Astrophysics Data System (ADS)
Antunes, J.; Machado, J.; Peralta, L.; Matela, N.
2018-01-01
Plastic scintillators detectors (PSDs) have been studied as dosimeters, since they provide a cost-effective alternative to conventional ionization chambers. Measurement and analysis of energy dependency were performed on a Siemens Mammomat tomograph for two different peak kilovoltages: 26 kV and 35 kV. Both PSD displayed good linearity for each energy considered and almost no energy dependence.
Denton, M Bonner [Tucson, AZ; Sperline, Roger , Koppenaal, David W. , Barinaga, Charles J. , Hieftje, Gary , Barnes, IV, James H.; Atlas, Eugene [Irvine, CA
2009-03-03
A charged particle detector and method are disclosed providing for simultaneous detection and measurement of charged particles at one or more levels of particle flux in a measurement cycle. The detector provides multiple and independently selectable levels of integration and/or gain in a fully addressable readout manner.
2νββ decay of 76Ge into excited states with GERDA phase I
NASA Astrophysics Data System (ADS)
GERDA Collaboration; Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Mi, Y.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schneider, B.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Schönert, S.; Schütz, A.-K.; Selivanenko, O.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.
2015-11-01
Two neutrino double beta decay of {}76{Ge} to excited states of {}76{Se} has been studied using data from Phase I of the GERDA experiment. An array composed of up to 14 germanium detectors including detectors that have been isotopically enriched in {}76{Ge} was deployed in liquid argon. The analysis of various possible transitions to excited final states is based on coincidence events between pairs of detectors where a de-excitation γ ray is detected in one detector and the two electrons in the other. No signal has been observed and an event counting profile likelihood analysis has been used to determine Frequentist 90% C.L. bounds for three transitions: {0}{{g}.{{s}}.}+-{2}1+: {T}1/22ν \\gt 1.6× {10}23 yr, {0}{{g}.{{s}}.}+-{0}1+: {T}1/22ν \\gt 3.7× {10}23 yr and {0}{{g}.{{s}}.}+-{2}2+: {T}1/22ν \\gt 2.3× {10}23 yr. These bounds are more than two orders of magnitude larger than those reported previously. Bayesian 90% credibility bounds were extracted and used to exclude several models for the {0}{{g}.{{s}}.}+-{0}1+ transition.
Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, Patrick R.
2010-01-07
Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current ormore » leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.« less
Schilling, Gregory D; Shelley, Jacob T; Barnes, James H; Sperline, Roger P; Denton, M Bonner; Barinaga, Charles J; Koppenaal, David W; Hieftje, Gary M
2010-01-01
An ambient desorption/ionization (ADI) source, known as the flowing atmospheric pressure afterglow (FAPA), has been coupled to a Mattauch-Herzog mass spectrograph (MHMS) equipped with a focal plane camera (FPC) array detector. The FAPA ionization source enables direct mass spectral analysis of solids, liquids, and gases through either positive or negative ionization modes. In either case, spectra are generally simple with dominant peaks being the molecular ions or protonated molecular ions. Use of the FAPA source with the MHMS allows the FPC detector to be characterized for the determination of molecular species, whereas previously only atomic mass spectrometry (MS) has been demonstrated. Furthermore, the FPC is shown to be sensitive to negative ions without the need to change any detector parameters. The analysis of solid, liquid, and gaseous samples through positive and negative ionization is demonstrated with detection limits (1-25 fmol/s, approximately 0.3-10 pg of analyte per mL of helium) surpassing those obtained with the FAPA source coupled to a time-of-flight mass analyzer. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.
Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit
McQuaid, James H.; Lavietes, Anthony D.
1998-05-29
A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radio nuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components.
Ritchie, Nicholas W M; Newbury, Dale E; Lindstrom, Abigail P
2011-12-01
Artifacts are the nemesis of trace element analysis in electron-excited energy dispersive X-ray spectrometry. Peaks that result from nonideal behavior in the detector or sample can fool even an experienced microanalyst into believing that they have trace amounts of an element that is not present. Many artifacts, such as the Si escape peak, absorption edges, and coincidence peaks, can be traced to the detector. Others, such as secondary fluorescence peaks and scatter peaks, can be traced to the sample. We have identified a new sample-dependent artifact that we attribute to Compton scattering of energetic X-rays generated in a small feature and subsequently scattered from a low atomic number matrix. It seems likely that this artifact has not previously been reported because it only occurs under specific conditions and represents a relatively small signal. However, with the advent of silicon drift detectors and their utility for trace element analysis, we anticipate that more people will observe it and possibly misidentify it. Though small, the artifact is not inconsequential. Under some conditions, it is possible to mistakenly identify the Compton scatter artifact as approximately 1% of an element that is not present.
NASA Astrophysics Data System (ADS)
Ayyad, Yassid; Mittig, Wolfgang; Bazin, Daniel; Cortesi, Marco
2017-07-01
The Active Target Time Projection Chamber (AT-TPC) project at the NSCL (National Superconducting Cyclotron Laboratory, Michigan State University) is a novel active target detector tailored for low-energy nuclear reactions in inverse kinematics with radioactive ion beams. The AT-TPC allows for a full three dimensional reconstruction of the reaction and provides high luminosity without degradation of resolution by the thickness of the target. Since all the particles (and also the reaction vertex) are tracked inside the detector, the AT-TPC has full 4π efficiency. The AT-TPC can operate under a magnetic field (2 T) that improves the identification of the particles and the energy resolution through the measurement of the magnetic rigidity. Another important characteristic of the AT-TPC is the high-gain operation achieved by the hybrid thick Gas Electron Multipliers (THGEM)-Micromegas pad plane, that allow operation also in pure elemental gas. These two features make the AT-TPC a unique high resolution spectrometer with full acceptance for nuclear physics reactions. This work presents an overview of the project, focused on the data analysis and the development of new micro-pattern gas detectors.
LANDSAT-4/5 image data quality analysis
NASA Technical Reports Server (NTRS)
Malaret, E.; Bartolucci, L. A.; Lozano, D. F.; Anuta, P. E.; Mcgillem, C. D.
1984-01-01
A LANDSAT Thematic Mapper (TM) quality evaluation study was conducted to identify geometric and radiometric sensor errors in the post-launch environment. The study began with the launch of LANDSAT-4. Several error conditions were found, including band-to-band misregistration and detector-to detector radiometric calibration errors. Similar analysis was made for the LANDSAT-5 Thematic Mapper and compared with results for LANDSAT-4. Remaining band-to-band misregistration was found to be within tolerances and detector-to-detector calibration errors were not severe. More coherent noise signals were observed in TM-5 than in TM-4, although the amplitude was generally less. The scan direction differences observed in TM-4 were still evident in TM-5. The largest effect was in Band 4 where nearly a one digital count difference was observed. Resolution estimation was carried out using roads in TM-5 for the primary focal plane bands rather than field edges as in TM-4. Estimates using roads gave better resolution. Thermal IR band calibration studies were conducted and new nonlinear calibration procedures were defined for TM-5. The overall conclusion is that there are no first order errors in TM-5 and any remaining problems are second or third order.
de la Fuente, R; de Celis, B; del Canto, V; Lumbreras, J M; de Celis Alonso, B; Martín-Martín, A; Gutierrez-Villanueva, J L
2008-10-01
A new system has been developed for the detection of low radioactivity levels of fission products and actinides using coincidence techniques. The device combines a phoswich detector for alpha/beta/gamma-ray recognition with a fast digital card for electronic pulse analysis. The phoswich can be used in a coincident mode by identifying the composed signal produced by the simultaneous detection of alpha/beta particles and X-rays/gamma particles. The technique of coincidences with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty (NTBT) which established the necessity of monitoring low levels of gaseous fission products produced by underground nuclear explosions. With the device proposed here it is possible to identify the coincidence events and determine the energy and type of coincident particles. The sensitivity of the system has been improved by employing liquid scintillators and a high resolution low energy germanium detector. In this case it is possible to identify simultaneously by alpha/gamma coincidence transuranic nuclides present in environmental samples without necessity of performing radiochemical separation. The minimum detectable activity was estimated to be 0.01 Bq kg(-1) for 0.1 kg of soil and 1000 min counting.
Range Finding with a Plenoptic Camera
2014-03-27
92 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Simulated Camera Analysis...Varying Lens Diameter . . . . . . . . . . . . . . . . 95 Simulated Camera Analysis: Varying Detector Size . . . . . . . . . . . . . . . . . 98 Simulated ...Matching Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 37 Simulated Camera Performance with SIFT
Test apparatus to monitor time-domain signals from semiconductor-detector pixel arrays
NASA Astrophysics Data System (ADS)
Haston, Kyle; Barber, H. Bradford; Furenlid, Lars R.; Salçin, Esen; Bora, Vaibhav
2011-10-01
Pixellated semiconductor detectors, such as CdZnTe, CdTe, or TlBr, are used for gamma-ray imaging in medicine and astronomy. Data analysis for these detectors typically estimates the position (x, y, z) and energy (E) of each interacting gamma ray from a set of detector signals {Si} corresponding to completed charge transport on the hit pixel and any of its neighbors that take part in charge sharing, plus the cathode. However, it is clear from an analysis of signal induction, that there are transient signal on all pixel electrodes during the charge transport and, when there is charge trapping, small negative residual signals on all electrodes. If we wish to optimally obtain the event parameters, we should take all these signals into account. We wish to estimate x,y,z and E from the set of all electrode signals, {Si(t)}, including time dependence, using maximum-likelihood techniques[1]. To do this, we need to determine the probability of the electrode signals, given the event parameters {x, y, z, E}, i.e. Pr( {Si(t)} | {x, y, z, E} ). Thus we need to map the detector response of all pixels, {Si(t)}, for a large number of events with known x,y,z and E.In this paper we demonstrate the existence of the transient signals and residual signals and determine their magnitudes. They are typically 50-100 times smaller than the hit-pixel signals. We then describe development of an apparatus to measure the response of a 16-pixel semiconductor detector and show some preliminary results. We also discuss techniques for measuring the event parameters for individual gamma-ray interactions, a requirement for determining Pr( {Si(t)} | {x, y, z, E}).
NASA Astrophysics Data System (ADS)
An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J.-H.; Cheng, J.; Cheng, Y. P.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, X. H.; Guo, Y. H.; Guo, Z.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Jones, D.; Joshi, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, J. L.; Liu, J. C.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Lv, Z.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Mooney, M.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration
2017-04-01
A measurement of electron antineutrino oscillation by the Daya Bay Reactor Neutrino Experiment is described in detail. Six 2.9-GWth nuclear power reactors of the Daya Bay and Ling Ao nuclear power facilities served as intense sources of ν¯ e 's. Comparison of the ν¯e rate and energy spectrum measured by antineutrino detectors far from the nuclear reactors (˜1500 - 1950 m ) relative to detectors near the reactors (˜350 - 600 m ) allowed a precise measurement of ν¯e disappearance. More than 2.5 million ν¯e inverse beta-decay interactions were observed, based on the combination of 217 days of operation of six antineutrino detectors (December, 2011-July, 2012) with a subsequent 1013 days using the complete configuration of eight detectors (October, 2012-July, 2015). The ν¯e rate observed at the far detectors relative to the near detectors showed a significant deficit, R =0.949 ±0.002 (stat )±0.002 (syst ) . The energy dependence of ν¯e disappearance showed the distinct variation predicted by neutrino oscillation. Analysis using an approximation for the three-flavor oscillation probability yielded the flavor-mixing angle sin22 θ13=0.0841 ±0.0027 (stat )±0.0019 (syst ) and the effective neutrino mass-squared difference of |Δ mee2| =(2.50 ±0.06 (stat )±0.06 (syst ))×10-3 eV2 . Analysis using the exact three-flavor probability found Δ m322=(2.45 ±0.06 (stat )±0.06 (syst ))×10-3 eV2 assuming the normal neutrino mass hierarchy and Δ m322=(-2.56 ±0.06 (stat )±0.06 (syst ))×10-3 eV2 for the inverted hierarchy.
ISO Key Project: Exploring the full range of QUASAR/AGN properties
NASA Technical Reports Server (NTRS)
Wilkes, B.
1998-01-01
The PIA (PHOT Interactive Analysis) software was upgraded as new releases were made available by VILSPA. We have continued to analyze our data but, given the large number of still outstanding problems with the calibration and analysis (listed below), we remain unable to move forward on our scientific program. We have concentrated on observations with long (256 sec) exposure times to avoid the most extreme detector responsivity drift problems which occur with a change in observed flux level, ie. as one begins to observe a new target. There remain a significant number of problems with analyzing these data including: (1) the default calibration source (FCS) observations early in the mission were too short and affected by strong detector responsivity drifts; (2) the calibration of the FCS sources is not yet well-understood, particularly for chopped observations (which includes most of ours); (3) the detector responsivity drift is not well-understood and models are only now becoming available for fitting chopped data; (4) charged particle hits on the detector cause transient responsivity drifts which need to be corrected; (5) the "flat-field" calibration of the long-wavelength (array) detectors: C1OO, C200 leaves significant residual structure and so needs to be improved;(6) the vignetting correction, which affects detected flux levels in the array detectors, is not yet available; (7) the intra-filter calibrations are not yet available; and (8) the background above 60 microns has a significant gradient which results in spurious positive and negative "detections" in chopped observations. ISO Observation planning, conferences and talks, ground based observing and other grant related activities are also briefly discussed.
Ahmed, Hytham M; Ebeid, Wael B
2015-05-15
Complex samples analysis is a challenge in pharmaceutical and biopharmaceutical analysis. In this work, tobramycin (TOB) analysis in human urine samples and recombinant human erythropoietin (rhEPO) analysis in the presence of similar protein were selected as representative examples of such samples analysis. Assays of TOB in urine samples are difficult because of poor detectability. Therefore laser induced fluorescence detector (LIF) was combined with a separation technique, micellar electrokinetic chromatography (MEKC), to determine TOB through derivatization with fluorescein isothiocyanate (FITC). Borate was used as background electrolyte (BGE) with negative-charged mixed micelles as additive. The method was successively applied to urine samples. The LOD and LOQ for Tobramycin in urine were 90 and 200ng/ml respectively and recovery was >98% (n=5). All urine samples were analyzed by direct injection without sample pre-treatment. Another use of hyphenated analytical technique, capillary zone electrophoresis (CZE) connected to ultraviolet (UV) detector was also used for sensitive analysis of rhEPO at low levels (2000IU) in the presence of large amount of human serum albumin (HSA). Analysis of rhEPO was achieved by the use of the electrokinetic injection (EI) with discontinuous buffers. Phosphate buffer was used as BGE with metal ions as additive. The proposed method can be used for the estimation of large number of quality control rhEPO samples in a short period. Copyright © 2015 Elsevier B.V. All rights reserved.
Architecture and Implementation of OpenPET Firmware and Embedded Software
Abu-Nimeh, Faisal T.; Ito, Jennifer; Moses, William W.; Peng, Qiyu; Choong, Woon-Seng
2016-01-01
OpenPET is an open source, modular, extendible, and high-performance platform suitable for multi-channel data acquisition and analysis. Due to the flexibility of the hardware, firmware, and software architectures, the platform is capable of interfacing with a wide variety of detector modules not only in medical imaging but also in homeland security applications. Analog signals from radiation detectors share similar characteristics – a pulse whose area is proportional to the deposited energy and whose leading edge is used to extract a timing signal. As a result, a generic design method of the platform is adopted for the hardware, firmware, and software architectures and implementations. The analog front-end is hosted on a module called a Detector Board, where each board can filter, combine, timestamp, and process multiple channels independently. The processed data is formatted and sent through a backplane bus to a module called Support Board, where 1 Support Board can host up to eight Detector Board modules. The data in the Support Board, coming from 8 Detector Board modules, can be aggregated or correlated (if needed) depending on the algorithm implemented or runtime mode selected. It is then sent out to a computer workstation for further processing. The number of channels (detector modules), to be processed, mandates the overall OpenPET System Configuration, which is designed to handle up to 1,024 channels using 16-channel Detector Boards in the Standard System Configuration and 16,384 channels using 32-channel Detector Boards in the Large System Configuration. PMID:27110034
NASA Technical Reports Server (NTRS)
Gregory, J. C.
1986-01-01
Instrument design and data analysis expertise was provided in support of several space radiation monitoring programs. The Verification of Flight Instrumentation (VFI) program at NASA included both the Active Radiation Detector (ARD) and the Nuclear Radiation Monitor (NRM). Design, partial fabrication, calibration and partial data analysis capability to the ARD program was provided, as well as detector head design and fabrication, software development and partial data analysis capability to the NRM program. The ARD flew on Spacelab-1 in 1983, performed flawlessly and was returned to MSFC after flight with unchanged calibration factors. The NRM, flown on Spacelab-2 in 1985, also performed without fault, not only recording the ambient gamma ray background on the Spacelab, but also recording radiation events of astrophysical significance.
NASA Technical Reports Server (NTRS)
Behbehani, K.
1980-01-01
A new sensor/actuator failure analysis technique for turbofan jet engines was developed. Three phases of failure analysis, namely detection, isolation, and accommodation are considered. Failure detection and isolation techniques are developed by utilizing the concept of Generalized Likelihood Ratio (GLR) tests. These techniques are applicable to both time varying and time invariant systems. Three GLR detectors are developed for: (1) hard-over sensor failure; (2) hard-over actuator failure; and (3) brief disturbances in the actuators. The probability distribution of the GLR detectors and the detectability of sensor/actuator failures are established. Failure type is determined by the maximum of the GLR detectors. Failure accommodation is accomplished by extending the Multivariable Nyquest Array (MNA) control design techniques to nonsquare system designs. The performance and effectiveness of the failure analysis technique are studied by applying the technique to a turbofan jet engine, namely the Quiet Clean Short Haul Experimental Engine (QCSEE). Single and multiple sensor/actuator failures in the QCSEE are simulated and analyzed and the effects of model degradation are studied.
NASA Astrophysics Data System (ADS)
Giacometti, Paolo; Diamond, Solomon G.
Diffuse optical tomography (DOT) is a functional brain imaging technique that measures cerebral blood oxygenation and blood volume changes. This technique is particularly useful in human neuroimaging measurements because of the coupling between neural and hemodynamic activity in the brain. DOT is a multichannel imaging extension of near-infrared spectroscopy (NIRS). NIRS uses laser sources and light detectors on the scalp to obtain noninvasive hemodynamic measurements from spectroscopic analysis of the remitted light. This review explains how NIRS data analysis is performed using a combination of the modified Beer-Lambert law (MBLL) and the diffusion approximation to the radiative transport equation (RTE). Laser diodes, photodiode detectors, and optical terminals that contact the scalp are the main components in most NIRS systems. Placing multiple sources and detectors over the surface of the scalp allows for tomographic reconstructions that extend the individual measurements of NIRS into DOT. Mathematically arranging the DOT measurements into a linear system of equations that can be inverted provides a way to obtain tomographic reconstructions of hemodynamics in the brain.
Gas chromatography-vacuum ultraviolet spectroscopy for analysis of fatty acid methyl esters.
Fan, Hui; Smuts, Jonathan; Bai, Ling; Walsh, Phillip; Armstrong, Daniel W; Schug, Kevin A
2016-03-01
A new vacuum ultraviolet (VUV) detector for gas chromatography was recently developed and applied to fatty acid methyl ester (FAME) analysis. VUV detection features full spectral acquisition in a wavelength range of 115-240nm, where virtually all chemical species absorb. VUV absorption spectra of 37 FAMEs, including saturated, monounsaturated, and polyunsaturated types were recorded. Unsaturated FAMEs show significantly different gas phase absorption profiles than saturated ones, and these classes can be easily distinguished with the VUV detector. Another advantage includes differentiating cis/trans-isomeric FAMEs (e.g. oleic acid methyl ester and linoleic acid methyl ester isomers) and the ability to use VUV data analysis software for deconvolution of co-eluting signals. As a universal detector, VUV also provides high specificity, sensitivity, and a fast data acquisition rate, making it a powerful tool for fatty acid screening when combined with gas chromatography. The fatty acid profile of several food oil samples (olive, canola, vegetable, corn, sunflower and peanut oils) were analyzed in this study to demonstrate applicability to real world samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Muon Conditions Data Management:. Database Architecture and Software Infrastructure
NASA Astrophysics Data System (ADS)
Verducci, Monica
2010-04-01
The management of the Muon Conditions Database will be one of the most challenging applications for Muon System, both in terms of data volumes and rates, but also in terms of the variety of data stored and their analysis. The Muon conditions database is responsible for almost all of the 'non-event' data and detector quality flags storage needed for debugging of the detector operations and for performing the reconstruction and the analysis. In particular for the early data, the knowledge of the detector performance, the corrections in term of efficiency and calibration will be extremely important for the correct reconstruction of the events. In this work, an overview of the entire Muon conditions database architecture is given, in particular the different sources of the data and the storage model used, including the database technology associated. Particular emphasis is given to the Data Quality chain: the flow of the data, the analysis and the final results are described. In addition, the description of the software interfaces used to access to the conditions data are reported, in particular, in the ATLAS Offline Reconstruction framework ATHENA environment.
The MGDO software library for data analysis in Ge neutrinoless double-beta decay experiments
NASA Astrophysics Data System (ADS)
Agostini, M.; Detwiler, J. A.; Finnerty, P.; Kröninger, K.; Lenz, D.; Liu, J.; Marino, M. G.; Martin, R.; Nguyen, K. D.; Pandola, L.; Schubert, A. G.; Volynets, O.; Zavarise, P.
2012-07-01
The Gerda and Majorana experiments will search for neutrinoless double-beta decay of 76Ge using isotopically enriched high-purity germanium detectors. Although the experiments differ in conceptual design, they share many aspects in common, and in particular will employ similar data analysis techniques. The collaborations are jointly developing a C++ software library, MGDO, which contains a set of data objects and interfaces to encapsulate, store and manage physical quantities of interest, such as waveforms and high-purity germanium detector geometries. These data objects define a common format for persistent data, whether it is generated by Monte Carlo simulations or an experimental apparatus, to reduce code duplication and to ease the exchange of information between detector systems. MGDO also includes general-purpose analysis tools that can be used for the processing of measured or simulated digital signals. The MGDO design is based on the Object-Oriented programming paradigm and is very flexible, allowing for easy extension and customization of the components. The tools provided by the MGDO libraries are used by both Gerda and Majorana.
Radon backgrounds in the DEAP-1 liquid-argon-based Dark Matter detector
NASA Astrophysics Data System (ADS)
Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Boudjemline, K.; Boulay, M. G.; Cai, B.; Caldwell, T.; Chen, M.; Chouinard, R.; Cleveland, B. T.; Contreras, D.; Dering, K.; Duncan, F.; Ford, R.; Gagnon, R.; Giuliani, F.; Gold, M.; Golovko, V. V.; Gorel, P.; Graham, K.; Grant, D. R.; Hakobyan, R.; Hallin, A. L.; Harvey, P.; Hearns, C.; Jillings, C. J.; Kuźniak, M.; Lawson, I.; Li, O.; Lidgard, J.; Liimatainen, P.; Lippincott, W. H.; Mathew, R.; McDonald, A. B.; McElroy, T.; McFarlane, K.; McKinsey, D.; Muir, A.; Nantais, C.; Nicolics, K.; Nikkel, J.; Noble, T.; O'Dwyer, E.; Olsen, K. S.; Ouellet, C.; Pasuthip, P.; Pollmann, T.; Rau, W.; Retiere, F.; Ronquest, M.; Skensved, P.; Sonley, T.; Tang, J.; Vázquez-Jáuregui, E.; Veloce, L.; Ward, M.
2015-03-01
The DEAP-1 7 kg single phase liquid argon scintillation detector was operated underground at SNOLAB in order to test the techniques and measure the backgrounds inherent to single phase detection, in support of the DEAP-3600 Dark Matter detector. Backgrounds in DEAP are controlled through material selection, construction techniques, pulse shape discrimination, and event reconstruction. This report details the analysis of background events observed in three iterations of the DEAP-1 detector, and the measures taken to reduce them. The 222 Rn decay rate in the liquid argon was measured to be between 16 and 26 μBq kg-1. We found that the background spectrum near the region of interest for Dark Matter detection in the DEAP-1 detector can be described considering events from three sources: radon daughters decaying on the surface of the active volume, the expected rate of electromagnetic events misidentified as nuclear recoils due to inefficiencies in the pulse shape discrimination, and leakage of events from outside the fiducial volume due to imperfect position reconstruction. These backgrounds statistically account for all observed events, and they will be strongly reduced in the DEAP-3600 detector due to its higher light yield and simpler geometry.
Unruh effect under non-equilibrium conditions: oscillatory motion of an Unruh-DeWitt detector
NASA Astrophysics Data System (ADS)
Doukas, Jason; Lin, Shih-Yuin; Hu, B. L.; Mann, Robert B.
2013-11-01
The Unruh effect refers to the thermal fluctuations a detector experiences while undergoing linear motion with uniform acceleration in a Minkowski vacuum. This thermality can be demonstrated by tracing the vacuum state of the field over the modes beyond the accelerated detector's event horizon. However, the event horizon is well-defined only if the detector moves with eternal uniform linear acceleration. This idealized condition cannot be fulfilled in realistic situations when the motion unavoidably involves periods of non-uniform acceleration. Many experimental proposals to test the Unruh effect are of this nature. Often circular or oscillatory motion, which lacks an obvious geometric description, is considered in such proposals. The proper perspective for theoretically going beyond, or experimentally testing, the Unruh-Hawking effect in these more general conditions has to be offered by concepts and techniques in non-equilibrium quantum field theory. In this paper we provide a detailed analysis of how an Unruh-DeWitt detector undergoing oscillatory motion responds to the fluctuations of a quantum field. Numerical results for the late-time temperatures of the oscillating detector are presented. We comment on the digressions of these results from what one would obtain from a naive application of Unruh's result.
A dual-wavelength light-emitting diode based detector for flow-injection analysis process analysers.
Huang, J; Liu, H; Tan, A; Xu, J; Zhao, X
1992-06-01
In this paper, a small dual-wavelength light-emitting diode (LED) based detector for FIA process analysers is designed. The detector's optical parts include a flow cell, a dual-wavelength LED and a photodiode. Neither mirrors nor lenses are used. The optical paths for the different light beams are almost the same, distinguishing it from previously reported LED based detectors. The detector's electronic components, including a signal amplifier, an A/D and D/A converter, and an Intel 8031 single-chip microcomputer, are integrated on one small board. In order to obtain response signals of approximate intensity for the two colours, the D/A converter and a multiplexer are used to adjust the emission intensity of the two colours respectively. Under microcomputer control, light beams are rapidly electronically modulated. Therefore, dark current and intensity of the light beams are measured almost simultaneously; as a result, the effect of drift is negligible. While a solution of absorbance 0.875 was measured repeatedly, an RSD (relative standard deviation) of 0.24% could be reached. Furthermore, such a detector with a red/yellow LED has been coupled with the FIA technique for the determination of 10(-6)M levels of cobalt.
Autoradiography imaging in targeted alpha therapy with Timepix detector.
A L Darwish, Ruqaya; Staudacher, Alexander Hugo; Bezak, Eva; Brown, Michael Paul
2015-01-01
There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB), with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy.
Autoradiography Imaging in Targeted Alpha Therapy with Timepix Detector
AL Darwish, Ruqaya; Staudacher, Alexander Hugo; Bezak, Eva; Brown, Michael Paul
2015-01-01
There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB), with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy. PMID:25688285
A Detailed FLUKA-2005 Monte Carlo Simulation for the ATIC Detector
NASA Technical Reports Server (NTRS)
Gunasingha, R. M.; Fazely, A. R.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Ganel, O.; Guzik, T. G.
2006-01-01
We have performed a detailed Monte Carlo (MC) calculation for the Advanced thin Ionization Calorimeter (ATIC) detector using the MC code FLUKA-2005 which is capable of simulating particles up to 10 PeV. The ATIC detector has completed two successful balloon flights from McMurdo, Antarctica lasting a total of more than 35 days. ATIC is designed as a multiple, long duration balloon Bight, investigation of the cosmic ray spectra from below 50 GeV to near 100 TeV total energy; using a fully active Bismuth Germanate @GO) calorimeter. It is equipped with a large mosaic of silicon detector pixels capable of charge identification and as a particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the middle and below a 0.75 nuclear interaction length graphite target. Our calculations are part of an analysis package of both A- and energy-dependences of different nuclei interacting with the ATIC detector. The MC simulates the responses of different components of the detector such as the Simatrix, the scintillator hodoscopes and the BGO calorimeter to various nuclei. We also show comparisons of the FLUKA-2005 MC calculations with a GEANT calculation and data for protons, He and CNO.
Characterization and development of an event-driven hybrid CMOS x-ray detector
NASA Astrophysics Data System (ADS)
Griffith, Christopher
2015-06-01
Hybrid CMOS detectors (HCD) have provided great benefit to the infrared and optical fields of astronomy, and they are poised to do the same for X-ray astronomy. Infrared HCDs have already flown on the Hubble Space Telescope and the Wide-Field Infrared Survey Explorer (WISE) mission and are slated to fly on the James Webb Space Telescope (JWST). Hybrid CMOS X-ray detectors offer low susceptibility to radiation damage, low power consumption, and fast readout time to avoid pile-up. The fast readout time is necessary for future high throughput X-ray missions. The Speedster-EXD X-ray HCD presented in this dissertation offers new in-pixel features and reduces known noise sources seen on previous generation HCDs. The Speedster-EXD detector makes a great step forward in the development of these detectors for future space missions. This dissertation begins with an overview of future X-ray space mission concepts and their detector requirements. The background on the physics of semiconductor devices and an explanation of the detection of X-rays with these devices will be discussed followed by a discussion on CCDs and CMOS detectors. Next, hybrid CMOS X-ray detectors will be explained including their advantages and disadvantages. The Speedster-EXD detector and its new features will be outlined including its ability to only read out pixels which contain X-ray events. Test stand design and construction for the Speedster-EXD detector is outlined and the characterization of each parameter on two Speedster-EXD detectors is detailed including read noise, dark current, interpixel capacitance crosstalk (IPC), and energy resolution. Gain variation is also characterized, and a Monte Carlo simulation of its impact on energy resolution is described. This analysis shows that its effect can be successfully nullified with proper calibration, which would be important for a flight mission. Appendix B contains a study of the extreme tidal disruption event, Swift J1644+57, to search for periodicities in its X-ray light curve. iii.
Performance tests of a large volume cerium tribromide (CeBr3) scintillation detector.
Naqvi, A A; Khiari, F Z; Liadi, F A; Khateeb-Ur-Rehman; Isab, A A
2016-08-01
The response of a large cylindrical 76mm×76mm (height×diameter) cerium tribromide (CeBr3) detector was measured for prompt gamma rays. The total intrinsic activity of the CeBr3 detector, which was measured over 0.33-3.33MeV range, was found to be 0.022±0.001 counts/s/cm(3). The partial intrinsic activity ( due to (227)Ac contamination), was measured over a energy range of 1.22-2.20MeV energy, was found to be 0.007±0.001 counts/s/cm(3). Compared to intrinsic activities of LaBr3:Ce and LaCl3:Ce detectors of equivalent volume, the CeBr3 detector has 7-8 times less total intrinsic activity. The detector response for low energy prompt gamma rays was measured over 0.3-0.6MeVgamma energy range using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. The experimental yield of boron, cadmium and mercury prompt gamma-rays was measured from water samples contaminated with 0.75-2.5wt% mercury, 0.31-2.50wt% boron, and 0.0625-0.500wt% cadmium, respectively. An excellent agreement has been observed between the calculated and experimental yields of the gamma rays. Also minimum detection limit (MDC) of the CeBr3 detector was measured for boron, cadmium and mercury samples. The CeBr3 detector has 23% smaller value of MDCB and 18% larger value of MDCCd than those of a LaBr3:Ce detector of equivalent size. This study has shown that CeBr3 detector has an excellent response for the low energy prompt gamma-rays with almost an order of magnitude low intrinsic activity as compared to LaCl3:Ce and LaBr3:Ce detectors of equivalent volume. Copyright © 2016 Elsevier Ltd. All rights reserved.