Science.gov

Sample records for detector decoy quantum

  1. Detector-decoy quantum key distribution without monitoring signal disturbance

    NASA Astrophysics Data System (ADS)

    Yin, Hua-Lei; Fu, Yao; Mao, Yingqiu; Chen, Zeng-Bing

    2016-02-01

    The round-robin differential phase-shift quantum key distribution protocol provides a secure way to exchange private information without monitoring conventional disturbances and still maintains a high tolerance of noise, making it desirable for practical implementations of quantum key distribution. However, photon number resolving detectors are required to ensure that the detected signals are single photons in the original protocol. Here, we adopt the detector-decoy method and give the bounds to the fraction of detected events from single photons. Utilizing the advantages of the protocol, we provide a practical method of performing the protocol with desirable performances requiring only threshold single-photon detectors.

  2. Numerical analysis of decoy state quantum key distribution protocols

    SciTech Connect

    Harrington, Jim W; Rice, Patrick R

    2008-01-01

    Decoy state protocols are a useful tool for many quantum key distribution systems implemented with weak coherent pulses, allowing significantly better secret bit rates and longer maximum distances. In this paper we present a method to numerically find optimal three-level protocols, and we examine how the secret bit rate and the optimized parameters are dependent on various system properties, such as session length, transmission loss, and visibility. Additionally, we show how to modify the decoy state analysis to handle partially distinguishable decoy states as well as uncertainty in the prepared intensities.

  3. Passive decoy-state quantum key distribution with practical light sources

    SciTech Connect

    Curty, Marcos; Ma, Xiongfeng; Qi, Bing; Moroder, Tobias

    2010-02-15

    Decoy states have been proven to be a very useful method for significantly enhancing the performance of quantum key distribution systems with practical light sources. Although active modulation of the intensity of the laser pulses is an effective way of preparing decoy states in principle, in practice passive preparation might be desirable in some scenarios. Typical passive schemes involve parametric down-conversion. More recently, it has been shown that phase-randomized weak coherent pulses (WCP) can also be used for the same purpose [M. Curty et al., Opt. Lett. 34, 3238 (2009).] This proposal requires only linear optics together with a simple threshold photon detector, which shows the practical feasibility of the method. Most importantly, the resulting secret key rate is comparable to the one delivered by an active decoy-state setup with an infinite number of decoy settings. In this article we extend these results, now showing specifically the analysis for other practical scenarios with different light sources and photodetectors. In particular, we consider sources emitting thermal states, phase-randomized WCP, and strong coherent light in combination with several types of photodetectors, like, for instance, threshold photon detectors, photon number resolving detectors, and classical photodetectors. Our analysis includes as well the effect that detection inefficiencies and noise in the form of dark counts shown by current threshold detectors might have on the final secret key rate. Moreover, we provide estimations on the effects that statistical fluctuations due to a finite data size can have in practical implementations.

  4. Measurement-device-independent quantum key distribution with a passive decoy-state method

    NASA Astrophysics Data System (ADS)

    Shan, Yu-Zhu; Sun, Shi-Hai; Ma, Xiang-Chun; Jiang, Mu-Sheng; Zhou, Yan-Li; Liang, Lin-Mei

    2014-10-01

    Measurement-device-independent quantum key distribution (MDI-QKD) can remove all detector loopholes. When it is combined with the decoy-state method, the final key is unconditionally secure, even if Alice and Bob do not have strict single-photon sources. However, active modulation of source intensity, which is used to generate the decoy state, may leave side channels and leak additional information to Eve. In this paper, we consider the MDI-QKD with a passive decoy state, in which both Alice and Bob send pulses to an untrusted third party, Charlie. Then, in order to estimate the key generation rate, we derive two tight formulas to estimate the lower bound of the yield and the upper bound of the error rate that both Alice and Bob send a single-photon pulse to Charlie. Furthermore, the statistical fluctuation due to the finite length of data is also taken into account based on the standard statistical analysis.

  5. Decoy-state quantum key distribution with biased basis choice

    PubMed Central

    Wei, Zhengchao; Wang, Weilong; Zhang, Zhen; Gao, Ming; Ma, Zhi; Ma, Xiongfeng

    2013-01-01

    We propose a quantum key distribution scheme that combines a biased basis choice with the decoy-state method. In this scheme, Alice sends all signal states in the Z basis and decoy states in the X and Z basis with certain probabilities, and Bob measures received pulses with optimal basis choice. This scheme simplifies the system and reduces the random number consumption. From the simulation result taking into account of statistical fluctuations, we find that in a typical experimental setup, the proposed scheme can increase the key rate by at least 45% comparing to the standard decoy-state scheme. In the postprocessing, we also apply a rigorous method to upper bound the phase error rate of the single-photon components of signal states. PMID:23948999

  6. Experimental demonstration of passive-decoy-state quantum key distribution with two independent lasers

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Tang, Guang-Zhao; Li, Chun-Yan; Liang, Lin-Mei

    2016-09-01

    The decoy-state method could effectively enhance the performance of quantum key distribution (QKD) with a practical phase randomized weak coherent source. Although active modulation of the source intensity is effective and has been implemented in many experiments, passive preparation of decoy states is also an important addition to the family of decoy-state QKD protocols. In this paper, following the theory of Curty et al. [Phys. Rev. A 81, 022310 (2010), 10.1103/PhysRevA.81.022310], we experimentally demonstrate the phase-encoding passive-decoy-state QKD with only linear optical setups and threshold single-photon detectors. In our experiment, two homemade independent pulsed lasers, with visibility of Hong-Ou-Mandel interference 0.53 (±0.003 ) , have been implemented and used to passively generate the different decoy states. Finally, a secret key rate of 1.5 ×10-5 /pulse is obtained with 10-km commercial fiber between Alice and Bob.

  7. Implementation of decoy states in a subcarrier wave quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Gaidash, A.; Kozubov, A.; Egorov, V.; Gleim, A.

    2016-08-01

    Subcarrier wave quantum key distribution systems demonstrate promising capabilities for secure quantum networking. However for this class of devices no implementation of secure decoy states protocol was developed. It leaves them potentially vulnerable to photon-number splitting attacks on quantum channel and limiting the key distribution distance. We propose a practical solution to this problem by calculating the required parameters of light source and modulation indices for signal and decoy states in a subcarrier wave system and describing the corresponding experimental scheme.

  8. Practical issues in decoy-state quantum key distribution based on the central limit theorem

    NASA Astrophysics Data System (ADS)

    Trushechkin, A. S.; Kiktenko, E. O.; Fedorov, A. K.

    2017-08-01

    Decoy-state quantum key distribution (QKD) is a standard tool for long-distance quantum communications. An important issue in this field is processing the decoy-state statistics taking into account statistical fluctuations (or "finite-key effects"). In this work, we propose and analyze an option for decoy statistics processing, which is based on the central limit theorem. We discuss such practical issues as inclusion of the failure probability of the decoy-state statistical estimates in the total failure probability of a QKD protocol and also taking into account the deviations of the binomially distributed random variables used in the estimations from the Gaussian distribution. The results of numerical simulations show that the obtained estimations are quite tight. The proposed technique can be used as a part of post-processing procedures for industrial quantum key distribution systems.

  9. The enhanced measurement-device-independent quantum key distribution with two-intensity decoy states

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Rong; Zhu, Feng; Zhou, Xing-Yu; Wang, Qin

    2016-09-01

    We put forward a new scheme for implementing the measurement-device-independent quantum key distribution (QKD) with weak coherent source, while using only two different intensities. In the new scheme, we insert a beam splitter and a local detector at both Alice's and Bob's side, and then all the triggering and non-triggering signals could be employed to process parameter estimations, resulting in very precise estimations for the two-single-photon contributions. Besides, we compare its behavior with two other often used methods, i.e., the conventional standard three-intensity decoy-state measurement-device-independent QKD and the passive measurement-device-independent QKD. Through numerical simulations, we demonstrate that our new approach can exhibit outstanding characteristics not only in the secure transmission distance, but also in the final key generation rate.

  10. New passive decoy-state quantum key distribution with thermal distributed parametric down-conversion source

    NASA Astrophysics Data System (ADS)

    Wei, Jie; Zhang, Chun-Hui; Wang, Qin

    2017-02-01

    We present a new scheme on implementing the passive quantum key distribution with thermal distributed parametric down-conversion source. In this scheme, only one-intensity decoy state is employed, but we can achieve very precise estimation on the single-photon-pulse contribution by utilizing those built-in decoy states. Moreover, we compare the new scheme with other practical methods, i.e., the standard three-intensity decoy-state BB84 protocol using either weak coherent states or parametric down-conversion source. Through numerical simulations, we demonstrate that our new scheme can drastically improve both the secure transmission distance and the key generation rate.

  11. Passive decoy-state quantum key distribution using weak coherent pulses with modulator attenuation

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Bao, Wan-Su; Li, Hong-Wei; Zhou, Chun; Wang, Yang

    2015-11-01

    Passive decoy-state quantum key distribution is more desirable than the active one in some scenarios. It is also affected by the imperfections of the devices. In this paper, the influence of modulator attenuation on the passive decoy-state method is considered. We introduce and analyze the unbalanced Mach-Zehnder interferometer, briefly, and combining with the virtual source and imaginary unitary transformation, we characterize the passive decoy-state method using a weak coherent photon source with modulator attenuation. According to the attenuation parameter δ, the pass efficiencies are given. Then, the key generation rate can be acquired. From numerical simulations, it can be seen that modulator attenuation has a nonnegligible influence on the performance of passive-state QKD protocol. Based on the research, the analysis method of virtual source and imaginary unitary transformation are preferred in analyzing passive decoy state protocol, and the passive decoy-state method is better than the active one and is close to the active vacuum + weak decoy state under the condition of having the same modulator attenuation. Project supported by the National Natural Science Foundation of China (Grant No. 11304397).

  12. Making the decoy-state measurement-device-independent quantum key distribution practically useful

    NASA Astrophysics Data System (ADS)

    Zhou, Yi-Heng; Yu, Zong-Wen; Wang, Xiang-Bin

    2016-04-01

    The relatively low key rate seems to be the major barrier to its practical use for the decoy-state measurement-device-independent quantum key distribution (MDI-QKD). We present a four-intensity protocol for the decoy-state MDI-QKD that hugely raises the key rate, especially in the case in which the total data size is not large. Also, calculations show that our method makes it possible for secure private communication with fresh keys generated from MDI-QKD with a delay time of only a few seconds.

  13. Round-robin differential-phase-shift quantum key distribution with a passive decoy state method

    NASA Astrophysics Data System (ADS)

    Liu, Li; Guo, Fen-Zhuo; Qin, Su-Juan; Wen, Qiao-Yan

    2017-02-01

    Recently, a new type of protocol named Round-robin differential-phase-shift quantum key distribution (RRDPS QKD) was proposed, where the security can be guaranteed without monitoring conventional signal disturbances. The active decoy state method can be used in this protocol to overcome the imperfections of the source. But, it may lead to side channel attacks and break the security of QKD systems. In this paper, we apply the passive decoy state method to the RRDPS QKD protocol. Not only can the more environment disturbance be tolerated, but in addition it can overcome side channel attacks on the sources. Importantly, we derive a new key generation rate formula for our RRDPS protocol using passive decoy states and enhance the key generation rate. We also compare the performance of our RRDPS QKD to that using the active decoy state method and the original RRDPS QKD without any decoy states. From numerical simulations, the performance improvement of the RRDPS QKD by our new method can be seen.

  14. Round-robin differential-phase-shift quantum key distribution with a passive decoy state method

    PubMed Central

    Liu, Li; Guo, Fen-Zhuo; Qin, Su-Juan; Wen, Qiao-Yan

    2017-01-01

    Recently, a new type of protocol named Round-robin differential-phase-shift quantum key distribution (RRDPS QKD) was proposed, where the security can be guaranteed without monitoring conventional signal disturbances. The active decoy state method can be used in this protocol to overcome the imperfections of the source. But, it may lead to side channel attacks and break the security of QKD systems. In this paper, we apply the passive decoy state method to the RRDPS QKD protocol. Not only can the more environment disturbance be tolerated, but in addition it can overcome side channel attacks on the sources. Importantly, we derive a new key generation rate formula for our RRDPS protocol using passive decoy states and enhance the key generation rate. We also compare the performance of our RRDPS QKD to that using the active decoy state method and the original RRDPS QKD without any decoy states. From numerical simulations, the performance improvement of the RRDPS QKD by our new method can be seen. PMID:28198808

  15. Biased decoy-state measurement-device-independent quantum key distribution with finite resources

    NASA Astrophysics Data System (ADS)

    Zhou, Chun; Bao, Wan-Su; Zhang, Hai-long; Li, Hong-Wei; Wang, Yang; Li, Yuan; Wang, Xiang

    2015-02-01

    Measurement-device-independent quantum key distribution (MDI-QKD) can remove all the side-channel attacks from imperfections in the detection side. However, finite-size resources undoubtedly influence its performance and the achievable finite secret key rates of MDI-QKD are typically lower than that of standard decoy-state QKD. In this paper, we introduce the efficient decoy-state method with biased basis choice into the finite-key analysis and propose a decoy-state protocol for MDI-QKD. By applying vacuum + weak decoy-state method, we analytically derive concise formulas for estimating the lower bound of single-photon yield and the upper bound of phase error rate in the case of finite resources. The simulations show that proper basis choice combined with deliberate intensity choice can substantially enhance the performance of decoy-state MDI-QKD and, without a full optimization program, our protocol can bring a long-distance implementation (168 km on standard optical fiber) of MDI-QKD with a reasonable data size of total transmitting signals (N =1015 ).

  16. Round-robin differential-phase-shift quantum key distribution with a passive decoy state method.

    PubMed

    Liu, Li; Guo, Fen-Zhuo; Qin, Su-Juan; Wen, Qiao-Yan

    2017-02-13

    Recently, a new type of protocol named Round-robin differential-phase-shift quantum key distribution (RRDPS QKD) was proposed, where the security can be guaranteed without monitoring conventional signal disturbances. The active decoy state method can be used in this protocol to overcome the imperfections of the source. But, it may lead to side channel attacks and break the security of QKD systems. In this paper, we apply the passive decoy state method to the RRDPS QKD protocol. Not only can the more environment disturbance be tolerated, but in addition it can overcome side channel attacks on the sources. Importantly, we derive a new key generation rate formula for our RRDPS protocol using passive decoy states and enhance the key generation rate. We also compare the performance of our RRDPS QKD to that using the active decoy state method and the original RRDPS QKD without any decoy states. From numerical simulations, the performance improvement of the RRDPS QKD by our new method can be seen.

  17. Parameter optimization in biased decoy-state quantum key distribution with both source errors and statistical fluctuations

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Rong; Li, Jian; Zhang, Chun-Mei; Wang, Qin

    2017-10-01

    The decoy-state method has been widely used in commercial quantum key distribution (QKD) systems. In view of the practical decoy-state QKD with both source errors and statistical fluctuations, we propose a universal model of full parameter optimization in biased decoy-state QKD with phase-randomized sources. Besides, we adopt this model to carry out simulations of two widely used sources: weak coherent source (WCS) and heralded single-photon source (HSPS). Results show that full parameter optimization can significantly improve not only the secure transmission distance but also the final key generation rate. And when taking source errors and statistical fluctuations into account, the performance of decoy-state QKD using HSPS suffered less than that of decoy-state QKD using WCS.

  18. Field test of a practical secure communication network with decoy-state quantum cryptography.

    PubMed

    Chen, Teng-Yun; Liang, Hao; Liu, Yang; Cai, Wen-Qi; Ju, Lei; Liu, Wei-Yue; Wang, Jian; Yin, Hao; Chen, Kai; Chen, Zeng-Bing; Peng, Cheng-Zhi; Pan, Jian-Wei

    2009-04-13

    We present a secure network communication system that operated with decoy-state quantum cryptography in a real-world application scenario. The full key exchange and application protocols were performed in real time among three nodes, in which two adjacent nodes were connected by approximate 20 km of commercial telecom optical fiber. The generated quantum keys were immediately employed and demonstrated for communication applications, including unbreakable real-time voice telephone between any two of the three communication nodes, or a broadcast from one node to the other two nodes by using one-time pad encryption.

  19. Decoy-state quantum key distribution with a leaky source

    NASA Astrophysics Data System (ADS)

    Tamaki, Kiyoshi; Curty, Marcos; Lucamarini, Marco

    2016-06-01

    In recent years, there has been a great effort to prove the security of quantum key distribution (QKD) with a minimum number of assumptions. Besides its intrinsic theoretical interest, this would allow for larger tolerance against device imperfections in the actual implementations. However, even in this device-independent scenario, one assumption seems unavoidable, that is, the presence of a protected space devoid of any unwanted information leakage in which the legitimate parties can privately generate, process and store their classical data. In this paper we relax this unrealistic and hardly feasible assumption and introduce a general formalism to tackle the information leakage problem in most of existing QKD systems. More specifically, we prove the security of optical QKD systems using phase and intensity modulators in their transmitters, which leak the setting information in an arbitrary manner. We apply our security proof to cases of practical interest and show key rates similar to those obtained in a perfectly shielded environment. Our work constitutes a fundamental step forward in guaranteeing implementation security of quantum communication systems.

  20. Finite-key analysis of a practical decoy-state high-dimensional quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bao, Haize; Bao, Wansu; Wang, Yang; Zhou, Chun; Chen, Ruike

    2016-05-01

    Compared with two-level quantum key distribution (QKD), high-dimensional QKD enables two distant parties to share a secret key at a higher rate. We provide a finite-key security analysis for the recently proposed practical high-dimensional decoy-state QKD protocol based on time-energy entanglement. We employ two methods to estimate the statistical fluctuation of the postselection probability and give a tighter bound on the secure-key capacity. By numerical evaluation, we show the finite-key effect on the secure-key capacity in different conditions. Moreover, our approach could be used to optimize parameters in practical implementations of high-dimensional QKD.

  1. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km.

    PubMed

    Schmitt-Manderbach, Tobias; Weier, Henning; Fürst, Martin; Ursin, Rupert; Tiefenbacher, Felix; Scheidl, Thomas; Perdigues, Josep; Sodnik, Zoran; Kurtsiefer, Christian; Rarity, John G; Zeilinger, Anton; Weinfurter, Harald

    2007-01-05

    We report on the experimental implementation of a Bennett-Brassard 1984 (BB84) protocol type quantum key distribution over a 144 km free-space link using weak coherent laser pulses. Optimization of the link transmission was achieved with bidirectional active telescope tracking, and the security was ensured by employing decoy-state analysis. This enabled us to distribute a secure key at a rate of 12.8 bit/s at an attenuation of about 35 dB. Utilizing a simple transmitter setup and an optical ground station capable of tracking a spacecraft in low earth orbit, this outdoor experiment demonstrates the feasibility of global key distribution via satellites.

  2. Long-distance decoy-state quantum key distribution in optical fiber.

    PubMed

    Rosenberg, Danna; Harrington, Jim W; Rice, Patrick R; Hiskett, Philip A; Peterson, Charles G; Hughes, Richard J; Lita, Adriana E; Nam, Sae Woo; Nordholt, Jane E

    2007-01-05

    The theoretical existence of photon-number-splitting attacks creates a security loophole for most quantum key distribution (QKD) demonstrations that use a highly attenuated laser source. Using ultralow-noise, high-efficiency transition-edge sensor photodetectors, we have implemented the first version of a decoy-state protocol that incorporates finite statistics without the use of Gaussian approximations in a one-way QKD system, enabling the creation of secure keys immune to photon-number-splitting attacks and highly resistant to Trojan horse attacks over 107 km of optical fiber.

  3. Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144km

    NASA Astrophysics Data System (ADS)

    Schmitt-Manderbach, Tobias; Weier, Henning; Fürst, Martin; Ursin, Rupert; Tiefenbacher, Felix; Scheidl, Thomas; Perdigues, Josep; Sodnik, Zoran; Kurtsiefer, Christian; Rarity, John G.; Zeilinger, Anton; Weinfurter, Harald

    2007-01-01

    We report on the experimental implementation of a Bennett-Brassard 1984 (BB84) protocol type quantum key distribution over a 144 km free-space link using weak coherent laser pulses. Optimization of the link transmission was achieved with bidirectional active telescope tracking, and the security was ensured by employing decoy-state analysis. This enabled us to distribute a secure key at a rate of 12.8bit/s at an attenuation of about 35 dB. Utilizing a simple transmitter setup and an optical ground station capable of tracking a spacecraft in low earth orbit, this outdoor experiment demonstrates the feasibility of global key distribution via satellites.

  4. Source attack of decoy-state quantum key distribution using phase information

    NASA Astrophysics Data System (ADS)

    Tang, Yan-Lin; Yin, Hua-Lei; Ma, Xiongfeng; Fung, Chi-Hang Fred; Liu, Yang; Yong, Hai-Lin; Chen, Teng-Yun; Peng, Cheng-Zhi; Chen, Zeng-Bing; Pan, Jian-Wei

    2013-08-01

    Quantum key distribution (QKD) utilizes the laws of quantum mechanics to achieve information-theoretically secure key generation. This field is now approaching the stage of commercialization, but many practical QKD systems still suffer from security loopholes due to imperfect devices. In fact, practical attacks have successfully been demonstrated. Fortunately, most of them only exploit detection-side loopholes, which are now closed by the recent idea of measurement-device-independent QKD. On the other hand, little attention is paid to the source, which may still leave QKD systems insecure. In this work, we propose and demonstrate an attack that exploits a source-side loophole existing in qubit-based QKD systems using a weak coherent state source and decoy states. Specifically, by implementing a linear-optics unambiguous state discrimination measurement, we show that the security of a system without phase randomization—which is a step assumed in conventional security analyses but sometimes neglected in practice—can be compromised. We conclude that implementing phase randomization is essential to the security of decoy-state QKD systems under current security analyses.

  5. Trustworthiness of detectors in quantum key distribution with untrusted detectors

    DOE PAGES

    Qi, Bing

    2015-02-25

    Measurement-device-independent quantum key distribution (MDI-QKD) protocol has been demonstrated as a viable solution to detector side-channel attacks. One of the main advantages of MDI-QKD is that the security can be proved without making any assumptions about how the measurement device works. The price to pay is the relatively low secure key rate comparing with conventional quantum key distribution (QKD), such as the decoy-state BB84 protocol. Recently a new QKD protocol, aiming at bridging the strong security of MDI-QKD with the high e ciency of conventional QKD, has been proposed. In this protocol, the legitimate receiver employs a trusted linear opticsmore » network to encode information on photons received from an insecure quantum channel, and then performs a Bell state measurement (BSM) using untrusted detectors. One crucial assumption made in most of these studies is that the untrusted BSM located inside the receiver's laboratory cannot send any unwanted information to the outside. Here in this paper, we show that if the BSM is completely untrusted, a simple scheme would allow the BSM to send information to the outside. Combined with Trojan horse attacks, this scheme could allow Eve to gain information of the quantum key without being detected. Ultimately, to prevent the above attack, either countermeasures to Trojan horse attacks or some trustworthiness to the "untrusted" BSM device is required.« less

  6. Trustworthiness of detectors in quantum key distribution with untrusted detectors

    SciTech Connect

    Qi, Bing

    2015-02-25

    Measurement-device-independent quantum key distribution (MDI-QKD) protocol has been demonstrated as a viable solution to detector side-channel attacks. One of the main advantages of MDI-QKD is that the security can be proved without making any assumptions about how the measurement device works. The price to pay is the relatively low secure key rate comparing with conventional quantum key distribution (QKD), such as the decoy-state BB84 protocol. Recently a new QKD protocol, aiming at bridging the strong security of MDI-QKD with the high e ciency of conventional QKD, has been proposed. In this protocol, the legitimate receiver employs a trusted linear optics network to encode information on photons received from an insecure quantum channel, and then performs a Bell state measurement (BSM) using untrusted detectors. One crucial assumption made in most of these studies is that the untrusted BSM located inside the receiver's laboratory cannot send any unwanted information to the outside. Here in this paper, we show that if the BSM is completely untrusted, a simple scheme would allow the BSM to send information to the outside. Combined with Trojan horse attacks, this scheme could allow Eve to gain information of the quantum key without being detected. Ultimately, to prevent the above attack, either countermeasures to Trojan horse attacks or some trustworthiness to the "untrusted" BSM device is required.

  7. Hacking on decoy-state quantum key distribution system with partial phase randomization

    PubMed Central

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-01-01

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states. PMID:24755767

  8. Hacking on decoy-state quantum key distribution system with partial phase randomization

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-01

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  9. Hacking on decoy-state quantum key distribution system with partial phase randomization.

    PubMed

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-23

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  10. Improved key-rate bounds for practical decoy-state quantum-key-distribution systems

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Zhao, Qi; Razavi, Mohsen; Ma, Xiongfeng

    2017-01-01

    The decoy-state scheme is the most widely implemented quantum-key-distribution protocol in practice. In order to account for the finite-size key effects on the achievable secret key generation rate, a rigorous statistical fluctuation analysis is required. Originally, a heuristic Gaussian-approximation technique was used for this purpose, which, despite its analytical convenience, was not sufficiently rigorous. The fluctuation analysis has recently been made rigorous by using the Chernoff bound. There is a considerable gap, however, between the key-rate bounds obtained from these techniques and that obtained from the Gaussian assumption. Here we develop a tighter bound for the decoy-state method, which yields a smaller failure probability. This improvement results in a higher key rate and increases the maximum distance over which secure key exchange is possible. By optimizing the system parameters, our simulation results show that our method almost closes the gap between the two previously proposed techniques and achieves a performance similar to that of conventional Gaussian approximations.

  11. High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers

    NASA Astrophysics Data System (ADS)

    Cañas, G.; Vera, N.; Cariñe, J.; González, P.; Cardenas, J.; Connolly, P. W. R.; Przysiezna, A.; Gómez, E. S.; Figueroa, M.; Vallone, G.; Villoresi, P.; da Silva, T. Ferreira; Xavier, G. B.; Lima, G.

    2017-08-01

    Multiplexing is a strategy to augment the transmission capacity of a communication system. It consists of combining multiple signals over the same data channel and it has been very successful in classical communications. However, the use of enhanced channels has only reached limited practicality in quantum communications (QC) as it requires the manipulation of quantum systems of higher dimensions. Considerable effort is being made towards QC using high-dimensional quantum systems encoded into the transverse momentum of single photons, but so far no approach has been proven to be fully compatible with the existing telecommunication fibers. Here we overcome such a challenge and demonstrate a secure high-dimensional decoy-state quantum key distribution session over a 300-m-long multicore optical fiber. The high-dimensional quantum states are defined in terms of the transverse core modes available for the photon transmission over the fiber, and theoretical analyses show that positive secret key rates can be achieved through metropolitan distances.

  12. Decoy-state quantum key distribution with large random errors of light intensity

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-Bin

    2007-05-01

    We show how to do decoy-state quantum key distribution efficiently with large random errors in the intensity control. We present a theorem for efficiently calculating the lower bound of single-photon counts with many undetermined parameters. In the calculation of the single-photon counts of our protocol, the linear terms of the intensity fluctuation disappear and only the quadratic terms take effect. Given that the intensity fluctuation is upper bounded by ±5% , ±10% , and ±15% , the verified lower bound of the percentage of untagged bits from our protocol is as large as 99.7%, 99.0%, and 97.9% of that from an ideal protocol where the light intensity is exactly controlled.

  13. Space-bound optical source for satellite-ground decoy-state quantum key distribution.

    PubMed

    Li, Yang; Liao, Sheng-Kai; Chen, Xie-Le; Chen, Wei; Cheng, Kun; Cao, Yuan; Yong, Hai-Lin; Wang, Tao; Yang, Hua-Qiang; Liu, Wei-Yue; Yin, Juan; Liang, Hao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2014-11-03

    Satellite-ground quantum key distribution has embarked on the stage of engineering implementation, and a global quantum-secured network is imminent in the foreseeable future. As one payload of the quantum-science satellite which will be ready before the end of 2015, we report our recent work of the space-bound decoy-state optical source. Specialized 850 nm laser diodes have been manufactured and the integrated optical source has gotten accomplished based on these LDs. The weak coherent pulses produced by our optical source feature a high clock rate of 100 MHz, intensity stability of 99.5%, high polarization fidelity of 99.7% and phase randomization. A series of space environment tests have been conducted to verify the optical source's performance and the results are satisfactory. The emulated final secure keys are about 120 kbits during one usable pass of the low Earth orbit satellite. This work takes a significant step forward towards satellite-ground QKD and the global quantum-secured network.

  14. Tight finite-key analysis of a practical decoy-state quantum key distribution with unstable sources

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Bao, Wan-Su; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei

    2016-09-01

    The decoy-state quantum key distribution (QKD) protocol has been widely used in commercial QKD systems. Several QKD field networks show its practicability and commercial prospects. Importantly, practical decoy-state QKD systems should be characterized with device imperfections. In this paper, for the case without intensity fluctuations, we present the parameter estimation based on the Chernoff bound for a practical decoy-state QKD protocol and compare performances of that based on Hoeffding's inequality and the Chernoff bound, respectively. Taking intensity fluctuations into consideration, we present the finite-key analysis with composable security against general attacks based on Azuma's inequality. Our numerical results show that the finite-key analysis based on the Chernoff bound is tighter than Hoeffding's inequality when the total number of transmitting signals N <1 ×1012 . Moreover, the intensity fluctuations' influence is more obvious when the data size of total transmitting signals is small. Our results emphasize the importance of the stability of the intensity modulator as well as the accurate estimation of emitted pulse's intensity.

  15. Quantum Opportunities in Gravitational Wave Detectors

    SciTech Connect

    Mavalvala, Negris

    2012-03-14

    Direct observation of gravitational waves should open a new window into the Universe. Gravitational wave detectors are the most sensitive position meters ever constructed. The quantum limit in gravitational wave detectors opens up a whole new field of study. Quantum opportunities in gravitational wave detectors include applications of quantum optics techniques and new tools for quantum measurement on truly macroscopic (human) scales.

  16. Tunable quantum well infrared detector

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1990-01-01

    A novel infrared detector (20, 20', 20), is provided, which is characterized by photon-assisted resonant tunneling between adjacent quantum wells (22a, 22b) separated by barrier layers (28) in an intrinsic semiconductor layer (24) formed on an n.sup.+ substrate (26), wherein the resonance is electrically tunable over a wide band of wavelengths in the near to long infrared region. An n.sup.+ contacting layer (34) is formed over the intrinsic layer and the substrate is n.sup.+ doped to provide contact to the quantum wells. The detector permits fabrication of arrays (30) (one-dimensional and two-dimensional) for use in imaging and spectroscopy applications.

  17. How to implement decoy-state quantum key distribution for a satellite uplink with 50-dB channel loss

    SciTech Connect

    Meyer-Scott, Evan; Yan, Zhizhong; MacDonald, Allison; Bourgoin, Jean-Philippe; Huebel, Hannes; Jennewein, Thomas

    2011-12-15

    Quantum key distribution (QKD) takes advantage of fundamental properties of quantum physics to allow two distant parties to share a secret key; however, QKD is hampered by a distance limitation of a few hundred kilometers on Earth. The most immediate solution for global coverage is to use a satellite, which can receive separate QKD transmissions from two or more ground stations and act as a trusted node to link these ground stations. In this article we report on a system capable of performing QKD in the high loss regime expected in an uplink to a satellite using weak coherent pulses and decoy states. Such a scenario profits from the simplicity of its receiver payload, but has so far been considered to be infeasible due to very high transmission losses (40-50 dB). The high loss is overcome by implementing an innovative photon source and advanced timing analysis. Our system handles up to 57 dB photon loss in the infinite key limit, confirming the viability of the satellite uplink scenario. We emphasize that while this system was designed with a satellite uplink in mind, it could just as easily overcome high losses on any free space QKD link.

  18. Modeling, Simulation, and Analysis of a Decoy State Enabled Quantum Key Distribution System

    DTIC Science & Technology

    2015-03-26

    fundamental properties of quantum mechanics to generate and distribute shared secret keys and can be used in applications where high levels of secrecy are...and Bob, to generate a symmetric secret key for use in a cryptosystem. The nature of quantum mechanics enables the unique ability of a QKD system to...Engineers, Prentice Hall, 1989. [45] D. A. Miller, Quantum mechanics for scientists and engineers, Cambridge University Press, 2008. [46] R. G

  19. Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Wang, Le; Zhao, Sheng-Mei; Gong, Long-Yan; Cheng, Wei-Wen

    2015-12-01

    In this paper, we propose a measurement-device-independent quantum-key-distribution (MDI-QKD) protocol using orbital angular momentum (OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol, the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie’s successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover, the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence (AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271238 and 61475075), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123223110003), the Natural Science Research Foundation for Universities of Jiangsu Province of China (Grant No. 11KJA510002), the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, China (Grant No. NYKL2015011), and the

  20. Superlinear threshold detectors in quantum cryptography

    SciTech Connect

    Lydersen, Lars; Maroey, Oystein; Skaar, Johannes; Makarov, Vadim; Jain, Nitin; Wittmann, Christoffer; Marquardt, Christoph; Leuchs, Gerd

    2011-09-15

    We introduce the concept of a superlinear threshold detector, a detector that has a higher probability to detect multiple photons if it receives them simultaneously rather than at separate times. Highly superlinear threshold detectors in quantum key distribution systems allow eavesdropping the full secret key without being revealed. Here, we generalize the detector control attack, and analyze how it performs against quantum key distribution systems with moderately superlinear detectors. We quantify the superlinearity in superconducting single-photon detectors based on earlier published data, and gated avalanche photodiode detectors based on our own measurements. The analysis shows that quantum key distribution systems using detector(s) of either type can be vulnerable to eavesdropping. The avalanche photodiode detector becomes superlinear toward the end of the gate. For systems expecting substantial loss, or for systems not monitoring loss, this would allow eavesdropping using trigger pulses containing less than 120 photons per pulse. Such an attack would be virtually impossible to catch with an optical power meter at the receiver entrance.

  1. Security issues of quantum cryptographic systems with imperfect detectors

    NASA Astrophysics Data System (ADS)

    Burenkov, Viacheslav

    The laws of quantum physics can be used to secure communications between two distant parties in a scheme called quantum key distribution (QKD), even against a technologically unlimited eavesdropper. While the theoretical security of QKD has been proved rigorously, current implementations of QKD are generally insecure. In particular, mathematical models of devices, such as detectors, do not accurately describe their real-life behaviour. Such seemingly insignificant discrepancies can compromise the security of the entire scheme, especially as novel detector technologies are being developed with little regard for potential vulnerabilities. In this thesis, we study how detector imperfections can impact the security of QKD and how to overcome such technological limitations. We first analyze the security of a high-speed QKD system with finite detector dead time tau. We show that the previously reported sifting approaches are not guaranteed to be secure in this regime. More specifically, Eve can induce a basis-dependent detection efficiency at the receiver's end. Modified key sifting schemes that are basis-independent, and thus secure in the presence of dead time and an active eavesdropper, are discussed and compared. It is shown that the maximum key generation rate is 1/(2tau) for passive basis selection, and 1/tau for active basis selection. The security analysis is also extended to the decoy state BB84 protocol. We then study a relatively new type of single-photon detector called the superconducting nanowire single-photon detector (SNSPD), and discover some unexpected behaviour. We report an afterpulsing effect present when the SNSPD is operated in the high bias current regime. In our standard set-up, the afterpulsing is most likely to occur at around 180 ns following a detection event, for both real counts and dark counts. We characterize the afterpulsing behaviour and speculate that it is not due to the SNSPD itself but rather the associated read-out circuit. We also

  2. How noise affects quantum detector tomography

    SciTech Connect

    Wang, Q. Renema, J. J.; Exter, M. P.van; Dood, M. J. A. de; Gaggero, A.; Mattioli, F.; Leoni, R.

    2015-10-07

    We determine the full photon number response of a NbN superconducting nanowire single photon detector via quantum detector tomography, and the results show the separation of linear, effective absorption efficiency from the internal detection efficiencies. In addition, we demonstrate an error budget for the complete quantum characterization of the detector. We find that for short times, the dominant noise source is shot noise, while laser power fluctuations limit the accuracy for longer timescales. The combined standard uncertainty of the internal detection efficiency derived from our measurements is about 2%.

  3. Tunable-Quantum-Well Infrared Detector

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1990-01-01

    Proposed detector of infrared photons based on photon-assisted, resonant quantum-mechanical tunneling between adjacent energy wells in its semiconductor structure. Wavelength adjusted by changing applied voltage. Device contains alternating layers of different seminconductors which form double-quantum-well electron-energy structure. Tunable-quantum-well detectors made on single chip constitutes line imager. Many such devices stacked to form two-dimensional imaging device. Signal-processing circuitry integrated into chip at its lower end. Potential barriers and wells produced by alternating layers of different semiconductor materials. Steepness of slope proportional to applied electric field. Electric field and thicknesses and heights of barriers selected to favor photon-assisted, resonant quantum-mechanical tunneling at chosen photon frequency.

  4. Trustworthiness of detectors in quantum key distribution with untrusted detectors

    NASA Astrophysics Data System (ADS)

    Qi, Bing

    2015-02-01

    Measurement-device-independent quantum key distribution (MDI-QKD) protocol has been demonstrated as a viable solution to detector side-channel attacks. Recently, to bridge the strong security of MDI-QKD with the high efficiency of conventional QKD, the detector-device-independent (DDI) QKD has been proposed. One crucial assumption made in DDI-QKD is that the untrusted Bell state measurement (BSM) located inside the receiver's laboratory cannot send any unwanted information to the outside. Here, we show that if the BSM is completely untrusted, a simple scheme would allow the BSM to send information to the outside. Combined with Trojan horse attacks, this scheme could allow an eavesdropper to gain information of the quantum key without being detected. To prevent the above attack, either countermeasures to Trojan horse attacks or some trustworthiness to the "untrusted" BSM device is required.

  5. Photonic crystal slab quantum cascade detector

    SciTech Connect

    Reininger, Peter Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried

    2013-12-09

    In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.

  6. Photonic crystal slab quantum cascade detector

    NASA Astrophysics Data System (ADS)

    Reininger, Peter; Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried

    2013-12-01

    In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.

  7. Wavelength independent normal incident quantum cascade detectors.

    PubMed

    Ravikumar, Arvind P; Sivco, Deborah; Gmachl, Claire F

    2016-10-31

    We demonstrate a novel technique for normal-incident absorption in intersubband infrared detectors by taking advantage of light scattering from the side-walls of a wet-etched mesa. We fabricate 'spiral' and 'hairpin' shaped quantum cascade detector at a peak wavelength of 6.6 μm, and compare their performance with a standard rectangular mesa. We achieve a peak responsivity of 6 mA/W for the spiral and 12 mA/W for the hairpin detectors at normal incidence, comparable to the 8.8 mA/W obtained for the mesa at 45 degree incidence. We obtain a background limited detectivity of about 3×1010 cmHz/W for the spiral and hairpin detectors at 80 K, compared to 3×108 cmHz/W for the standard mesa. This method to achieve normal incidence absorption is wavelength independent, and does not involve complicated fabrication procedures, paving the way for widespread use of intersubband detectors in sensor applications.

  8. Detector dependency of diffusive quantum monitorings

    NASA Astrophysics Data System (ADS)

    Daryanoosh, Shakib; Wiseman, Howard M.; Gambetta, Jay M.

    2015-10-01

    Continuous measurements play a pivotal role in the study of dynamical open quantum systems. "Dyne" detections are among the most widespread and efficient measurement schemes, and give rise to quantum diffusion of the conditioned state. In this work we study under what conditions the detector dependency of the conditional state of a quantum system subject to diffusive monitoring can be demonstrated experimentally, in the sense of ruling out any detector-independent pure-state dynamical model for the system. We consider an arbitrary number L of environments to which the system is coupled, and an arbitrary number K of different types of dyne detections. We prove that nontrivial necessary conditions for such a demonstration can be determined efficiently by semidefinite programming. To determine sufficient conditions, different physical environmental couplings and Hamiltonians for a qubit and different sets of diffusive monitorings are scrutinized. We compare the threshold efficiencies that are sufficient in the various cases, as well as cases previously considered in the literature, to suggest the most feasible experimental options.

  9. Thermal contrast detected with a quantum detector

    NASA Astrophysics Data System (ADS)

    Páez, Gonzalo; Scholl, Marija Strojnik

    1999-08-01

    We evaluate the thermal contrast detected by a quantum detector in a focal plane of an infrared instrument. The detected thermal contrast is shown to consist of two terms. The term corresponding to the temperature dependence of emissivity, previously neglected, is evaluated and shown to be a significant contributing factor. For the case of a metal mirror as a source of stray light, ghost images, and narcissus, the error is estimated to be about 20%. The term in the detected contrast associated with the radiative emission is shown to be proportional to temperature to the power of 2, rather than 3, published previously.

  10. Very long wave infrared quantum cascade detectors

    NASA Astrophysics Data System (ADS)

    Liu, Jun-qi; Zhai, Shen-qiang; Liu, Feng-qi; Wang, Zhan-guo

    2014-11-01

    Quantum cascade detectors (QCDs) are photovoltaic devices: they have a built in asymmetric conduction band potential formed by energy band engineering design, which allows for biasless operation. In this work, we focus on the very long wave infrared (VLWIR) quantum cascade photodectors involving energy band engineering, material technology, and devices physics. Targeting the common applications, we demonstrate a series of VLWIR QCDs from 14 to 20μm. The dark current density under 1.1×10-11 Acm-2 and the detectivity above 1×1011 cmHz1/2W-1 is achieved. Many of them exhibit high performance and give a cheerful prospect for the practical application in the near future.

  11. Local mapping of detector response for reliable quantum state estimation.

    PubMed

    Cooper, Merlin; Karpiński, Michał; Smith, Brian J

    2014-07-14

    Improved measurement techniques are central to technological development and foundational scientific exploration. Quantum physics relies on detectors sensitive to non-classical features of systems, enabling precise tests of physical laws and quantum-enhanced technologies including precision measurement and secure communications. Accurate detector response calibration for quantum-scale inputs is key to future research and development in these cognate areas. To address this requirement, quantum detector tomography has been recently introduced. However, this technique becomes increasingly challenging as the complexity of the detector response and input space grow in a number of measurement outcomes and required probe states, leading to further demands on experiments and data analysis. Here we present an experimental implementation of a versatile, alternative characterization technique to address many-outcome quantum detectors that limits the input calibration region and does not involve numerical post processing. To demonstrate the applicability of this approach, the calibrated detector is subsequently used to estimate non-classical photon number states.

  12. Passive scheme with a photon-number-resolving detector for monitoring the untrusted source in a plug-and-play quantum-key-distribution system

    SciTech Connect

    Xu Bingjie; Peng Xiang; Guo Hong

    2010-10-15

    A passive scheme with a beam splitter and a photon-number-resolving (PNR) detector is proposed to verify the photon statistics of an untrusted source in a plug-and-play quantum-key-distribution system by applying a three-intensity decoy-state protocol. The practical issues due to statistical fluctuation and detection noise are analyzed. The simulation results show that the scheme can work efficiently when the total number of optical pulses sent from Alice to Bob is above 10{sup 8}, and the dark count rate of the PNR detector is below 0.5 counts/pulse, which is realizable with current techniques. Furthermore, we propose a practical realization of the PNR detector with a variable optical attenuator combined with a threshold detector.

  13. Quantum Efficient Detectors for Use in Absolute Calibration

    NASA Technical Reports Server (NTRS)

    Faust, Jessica; Eastwood, Michael; Pavri, Betina; Raney, James

    1998-01-01

    The trap or quantum efficient detector has a quantum efficiency of greater than 0.98 for the region from 450 to 900 nm. The region of flattest response is from 600 to 900 nm. The QED consists of three windowless Hamamatsu silicon detectors. The QED was mounted below AVIRIS to monitor the Spectralon panel for changes in radiance during radiometric calibration. The next step is to permanently mount the detector to AVIRIS and monitor the overall radiance of scenes along with calibration.

  14. Quantum Efficient Detectors for Use in Absolute Calibration

    NASA Technical Reports Server (NTRS)

    Faust, Jessica; Eastwood, Michael; Pavri, Betina; Raney, James

    1998-01-01

    The trap or quantum efficient detector has a quantum efficiency of greater than 0.98 for the region from 450 to 900 nm. The region of flattest response is from 600 to 900 nm. The QED consists of three windowless Hamamatsu silicon detectors. The QED was mounted below AVIRIS to monitor the Spectralon panel for changes in radiance during radiometric calibration. The next step is to permanently mount the detector to AVIRIS and monitor the overall radiance of scenes along with calibration.

  15. Integrated superconducting detectors on semiconductors for quantum optics applications

    NASA Astrophysics Data System (ADS)

    Kaniber, M.; Flassig, F.; Reithmaier, G.; Gross, R.; Finley, J. J.

    2016-05-01

    Semiconductor quantum photonic circuits can be used to efficiently generate, manipulate, route and exploit nonclassical states of light for distributed photon-based quantum information technologies. In this article, we review our recent achievements on the growth, nanofabrication and integration of high-quality, superconducting niobium nitride thin films on optically active, semiconducting GaAs substrates and their patterning to realize highly efficient and ultra-fast superconducting detectors on semiconductor nanomaterials containing quantum dots. Our state-of-the-art detectors reach external detection quantum efficiencies up to 20 % for ~4 nm thin films and single-photon timing resolutions <72 ps. We discuss the integration of such detectors into quantum dot-loaded, semiconductor ridge waveguides, resulting in the on-chip, time-resolved detection of quantum dot luminescence. Furthermore, a prototype quantum optical circuit is demonstrated that enabled the on-chip generation of resonance fluorescence from an individual InGaAs quantum dot, with a linewidth <15 μeV displaced by 1 mm from the superconducting detector on the very same semiconductor chip. Thus, all key components required for prototype quantum photonic circuits with sources, optical components and detectors on the same chip are reported.

  16. Quantum well photoconductors in infrared detector technology

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2003-04-01

    The paper compares the achievements of quantum well infrared photodetector (QWIP) technology with those of competitive technologies, with the emphasis on the material properties, device structure, and their impact on focal plane array (FPA) performance. Special attention is paid to two competitive technologies, QWIP and HgCdTe, in the long-wavelength IR (LWIR) and very-long-wavelength IR (VLWIR) spectral ranges. Because so far, the dialogue between the QWIP and HgCdTe communities is limited, the paper attempts to settle the main issues of both technologies. Such an approach, however, requires the presentation of fundamental limits to the different types of detectors, which is made at the beginning. To write the paper more clearly for readers, many details are included in the Appendix. In comparative studies both photon and thermal detectors are considered. Emphasis is placed on photon detectors. In this group one may distinguish HgCdTe photodiodes, InSb photodiodes, and doped silicon detectors. The potential performance of different materials as infrared detectors is examined utilizing the α/G ratio, where α is the absorption coefficient and G is the thermal generation rate. It is demonstrated that LWIR QWIP's cannot compete with HgCdTe photodiodes as single devices, especially at higher operating temperatures (>70 K). This is due to the fundamental limitations associated with intersubband transitions. The advantage of HgCdTe is, however, less distinct at temperatures lower than 50 K due to problems inherent in the HgCdTe material (p-type doping, Shockley-Read recombination, trap-assisted tunneling, surface and interface instabilities). Even though QWIP is a photoconductor, several of its properties, such as high impedance, fast response time, long integration time, and low power consumption, comply well with the requirements imposed on the fabrication of large FPA's. Due to a high material quality at low temperatures, QWIP has potential advantages over HgCdTe in

  17. Enhanced security for multi-detector quantum random number generators

    NASA Astrophysics Data System (ADS)

    Marangon, Davide G.; Vallone, Giuseppe; Zanforlin, Ugo; Villoresi, Paolo

    2016-11-01

    Quantum random number generators (QRNG) represent an advanced solution for randomness generation, which is essential in every cryptographic application. In this context, integrated arrays of single-photon detectors have promising applications as QRNGs based on the spatial detection of photons. For the employment of QRNGs in cryptography, it is necessary to have efficient methods to evaluate the so-called quantum min-entropy that corresponds to the amount of the true extractable quantum randomness from the QRNG. Here, we present an efficient method that allows the estimation of the quantum min-entropy for a multi-detector QRNG. In particular, we consider a scenario in which an attacker can control the efficiency of the detectors and knows the emitted number of photons. Eventually, we apply the method to a QRNG with 103 detectors.

  18. Quantum cascade detectors for very long wave infrared detection

    NASA Astrophysics Data System (ADS)

    Buffaz, A.; Carras, M.; Doyennette, L.; Nedelcu, A.; Marcadet, X.; Berger, V.

    2010-04-01

    A high responsivity GaAs/AlGaAs quantum cascade detector is demonstrated at a wavelength of 15 μm. The quantum design is optimized for negative bias operation, so that the capture of photoexcited electrons back to the fundamental level is minimized. The detectivity of the detector presented here reaches 1.1×1012 Jones at 25 K for an applied bias of -0.6 V.

  19. Versatile wideband balanced detector for quantum optical homodyne tomography

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Barrios, E.; MacRae, A.; Cairns, E.; Huntington, E. H.; Lvovsky, A. I.

    2012-11-01

    We present a comprehensive theory and an easy to follow method for the design and construction of a wideband homodyne detector for time-domain quantum measurements. We show how one can evaluate the performance of a detector in a specific time-domain experiment based on the electronic spectral characteristic of that detector. We then present and characterize a high-performance detector constructed using inexpensive, commercially available components such as low-noise high-speed operational amplifiers and high-bandwidth photodiodes. Our detector shows linear behavior up to a level of over 13 dB clearance between shot noise and electronic noise, in the range from DC to 100 MHz. The detector can be used for measuring quantum optical field quadratures both in the continuous-wave and pulsed regimes with standard commercial mode-locked lasers.

  20. Performance aspects of a quantum-well detector

    SciTech Connect

    Goossen, K.W.; Lyon, S.A.

    1988-05-15

    Calculations of the quantum efficiency and detectivity of an infrared detector based on photoemission from a quantum well are presented. The detector is most efficient when a resonant-extended state exists near the top of the well. The quantum efficiency also increases with increasing electron density. However, due to screening, the absorption peaks at a higher energy than the difference of the energies of the resonant-extended and the bound states by an amount which is proportional to the carrier density in the well. This causes the detectivity (D*) to have a maximum with respect to electron density. We have estimated the dark current and found that, for a GaAs quantum-well detector designed for 10-..mu..m operation, the optimal electron density was 2 x 10/sup 11/ cm/sup -2/ at 77 K. We have also performed calculations for a quantum-well detector for which the light coupling has been enhanced by incorporating a diffraction grating into the detector. For the stated electron density, we find a D* of 2.8 x 10/sup 11/ cm Hz/sup 12/W and a quantum efficiency of 23%. If the electron density is raised to 8 x 10/sup 11/ cm/sup -2/, the quantum efficiency rises to 61%, but D* falls to 1.9 x 10/sup 10/ cm Hz/sup 12/W.

  1. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  2. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  3. Determination of the Quantum Efficiency of a Light Detector

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2008-01-01

    The "quantum efficiency" (QE) is an important property of a light detector. This quantity can be determined in the undergraduate physics laboratory. The experimentally determined QE of a silicon photodiode appeared to be in reasonable agreement with expected values. The experiment confirms the quantum properties of light and seems to be a useful…

  4. Determination of the Quantum Efficiency of a Light Detector

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2008-01-01

    The "quantum efficiency" (QE) is an important property of a light detector. This quantity can be determined in the undergraduate physics laboratory. The experimentally determined QE of a silicon photodiode appeared to be in reasonable agreement with expected values. The experiment confirms the quantum properties of light and seems to be a useful…

  5. Local mapping of detector response for reliable quantum state estimation

    PubMed Central

    Cooper, Merlin; Karpiński, Michał; Smith, Brian J.

    2014-01-01

    Improved measurement techniques are central to technological development and foundational scientific exploration. Quantum physics relies on detectors sensitive to non-classical features of systems, enabling precise tests of physical laws and quantum-enhanced technologies including precision measurement and secure communications. Accurate detector response calibration for quantum-scale inputs is key to future research and development in these cognate areas. To address this requirement, quantum detector tomography has been recently introduced. However, this technique becomes increasingly challenging as the complexity of the detector response and input space grow in a number of measurement outcomes and required probe states, leading to further demands on experiments and data analysis. Here we present an experimental implementation of a versatile, alternative characterization technique to address many-outcome quantum detectors that limits the input calibration region and does not involve numerical post processing. To demonstrate the applicability of this approach, the calibrated detector is subsequently used to estimate non-classical photon number states. PMID:25019300

  6. Effect of interactions on quantum-limited detectors

    NASA Astrophysics Data System (ADS)

    Skorobagatko, Gleb; Bruch, Anton; Kusminskiy, Silvia Viola; Romito, Alessandro

    2017-05-01

    We consider the effect of electron-electron interactions on a voltage biased quantum point contact in the tunneling regime used as a detector of a nearby qubit. We model the leads of the quantum point contact as Luttinger liquids, incorporate the effects of finite temperature and analyze the detection-induced decoherence rate and the detector efficiency, Q . We find that interactions generically reduce the induced decoherence along with the detector's efficiency, and strongly affect the relative strength of the decoherence induced by tunneling and that induced by interactions with the local density. With increasing interaction strength, the regime of quantum-limited detection (Q →1 ) is shifted to increasingly lower temperatures or higher bias voltages respectively. For small to moderate interaction strengths, Q is a monotonously decreasing function of temperature as in the noninteracting case. Surprisingly, for sufficiently strong interactions we identify an intermediate temperature regime where the efficiency of the detector increases with rising temperature.

  7. Multiple-Quantum-Well Intersubband Infrared Detector

    NASA Technical Reports Server (NTRS)

    Borenstain, Shmuel I.

    1991-01-01

    Proposed multiple-quantum-well intersubband semiconductor device detects photons over broader range of wavelengths. Device is stack of substacks, each of which contains quantum-well layers sensitive to different narrow band of wavelengths. Bandwidth and detectivity increased.

  8. Plasmonic lens enhanced mid-infrared quantum cascade detector

    SciTech Connect

    Harrer, Andreas Schwarz, Benedikt; Gansch, Roman; Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried

    2014-10-27

    We demonstrate monolithic integrated quantum cascade detectors enhanced by plasmonic lenses. Surface normal incident mid-infrared radiation is coupled to surface plasmon polaritons guided to and detected by the active region of the detector. The lens extends the optical effective active area of the device up to a 5 times larger area than for standard mesa detectors or pixel devices while the electrical active region stays the same. The extended optical area increases the absorption efficiency of the presented device as well as the room temperature performance while it offers a flexible platform for various detector geometries. A photocurrent response increase at room temperature up to a factor of 6 was observed.

  9. Plasmonic lens enhanced mid-infrared quantum cascade detector

    NASA Astrophysics Data System (ADS)

    Harrer, Andreas; Schwarz, Benedikt; Gansch, Roman; Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried

    2014-10-01

    We demonstrate monolithic integrated quantum cascade detectors enhanced by plasmonic lenses. Surface normal incident mid-infrared radiation is coupled to surface plasmon polaritons guided to and detected by the active region of the detector. The lens extends the optical effective active area of the device up to a 5 times larger area than for standard mesa detectors or pixel devices while the electrical active region stays the same. The extended optical area increases the absorption efficiency of the presented device as well as the room temperature performance while it offers a flexible platform for various detector geometries. A photocurrent response increase at room temperature up to a factor of 6 was observed.

  10. General quantum constraints on detector noise in continuous linear measurements

    NASA Astrophysics Data System (ADS)

    Miao, Haixing

    2017-01-01

    In quantum sensing and metrology, an important class of measurement is the continuous linear measurement, in which the detector is coupled to the system of interest linearly and continuously in time. One key aspect involved is the quantum noise of the detector, arising from quantum fluctuations in the detector input and output. It determines how fast we acquire information about the system and also influences the system evolution in terms of measurement backaction. We therefore often categorize it as the so-called imprecision noise and quantum backaction noise. There is a general Heisenberg-like uncertainty relation that constrains the magnitude of and the correlation between these two types of quantum noise. The main result of this paper is to show that, when the detector becomes ideal, i.e., at the quantum limit with minimum uncertainty, not only does the uncertainty relation takes the equal sign as expected, but also there are two new equalities. This general result is illustrated by using the typical cavity QED setup with the system being either a qubit or a mechanical oscillator. Particularly, the dispersive readout of a qubit state, and the measurement of mechanical motional sideband asymmetry are considered.

  11. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors.

    PubMed

    Takemoto, Kazuya; Nambu, Yoshihiro; Miyazawa, Toshiyuki; Sakuma, Yoshiki; Yamamoto, Tsuyoshi; Yorozu, Shinichi; Arakawa, Yasuhiko

    2015-09-25

    Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks.

  12. Thermal blinding of gated detectors in quantum cryptography.

    PubMed

    Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim

    2010-12-20

    It has previously been shown that the gated detectors of two commercially available quantum key distribution (QKD) systems are blindable and controllable by an eavesdropper using continuous-wave illumination and short bright trigger pulses, manipulating voltages in the circuit [Nat. Photonics 4, 686 (2010)]. This allows for an attack eavesdropping the full raw and secret key without increasing the quantum bit error rate (QBER). Here we show how thermal effects in detectors under bright illumination can lead to the same outcome. We demonstrate that the detectors in a commercial QKD system Clavis2 can be blinded by heating the avalanche photo diodes (APDs) using bright illumination, so-called thermal blinding. Further, the detectors can be triggered using short bright pulses once they are blind. For systems with pauses between packet transmission such as the plug-and-play systems, thermal inertia enables Eve to apply the bright blinding illumination before eavesdropping, making her more difficult to catch.

  13. Detective quantum efficiency of electron area detectors in electron microscopy.

    PubMed

    McMullan, G; Chen, S; Henderson, R; Faruqi, A R

    2009-08-01

    Recent progress in detector design has created the need for a careful side-by-side comparison of the modulation transfer function (MTF) and resolution-dependent detective quantum efficiency (DQE) of existing electron detectors with those of detectors based on new technology. We present MTF and DQE measurements for four types of detector: Kodak SO-163 film, TVIPS 224 charge coupled device (CCD) detector, the Medipix2 hybrid pixel detector, and an experimental direct electron monolithic active pixel sensor (MAPS) detector. Film and CCD performance was measured at 120 and 300 keV, while results are presented for the Medipix2 at 120 keV and for the MAPS detector at 300 keV. In the case of film, the effects of electron backscattering from both the holder and the plastic support have been investigated. We also show that part of the response of the emulsion in film comes from light generated in the plastic support. Computer simulations of film and the MAPS detector have been carried out and show good agreement with experiment. The agreement enables us to conclude that the DQE of a backthinned direct electron MAPS detector is likely to be equal to, or better than, that of film at 300 keV.

  14. Detective quantum efficiency of electron area detectors in electron microscopy

    PubMed Central

    McMullan, G.; Chen, S.; Henderson, R.; Faruqi, A.R.

    2009-01-01

    Recent progress in detector design has created the need for a careful side-by-side comparison of the modulation transfer function (MTF) and resolution-dependent detective quantum efficiency (DQE) of existing electron detectors with those of detectors based on new technology. We present MTF and DQE measurements for four types of detector: Kodak SO-163 film, TVIPS 224 charge coupled device (CCD) detector, the Medipix2 hybrid pixel detector, and an experimental direct electron monolithic active pixel sensor (MAPS) detector. Film and CCD performance was measured at 120 and 300 keV, while results are presented for the Medipix2 at 120 keV and for the MAPS detector at 300 keV. In the case of film, the effects of electron backscattering from both the holder and the plastic support have been investigated. We also show that part of the response of the emulsion in film comes from light generated in the plastic support. Computer simulations of film and the MAPS detector have been carried out and show good agreement with experiment. The agreement enables us to conclude that the DQE of a backthinned direct electron MAPS detector is likely to be equal to, or better than, that of film at 300 keV. PMID:19497671

  15. Detector-Independent Verification of Quantum Light.

    PubMed

    Sperling, J; Clements, W R; Eckstein, A; Moore, M; Renema, J J; Kolthammer, W S; Nam, S W; Lita, A; Gerrits, T; Vogel, W; Agarwal, G S; Walmsley, I A

    2017-04-21

    We introduce a method for the verification of nonclassical light which is independent of the complex interaction between the generated light and the material of the detectors. This is accomplished by means of a multiplexing arrangement. Its theoretical description yields that the coincidence statistics of this measurement layout is a mixture of multinomial distributions for any classical light field and any type of detector. This allows us to formulate bounds on the statistical properties of classical states. We apply our directly accessible method to heralded multiphoton states which are detected with a single multiplexing step only and two detectors, which are in our work superconducting transition-edge sensors. The nonclassicality of the generated light is verified and characterized through the violation of the classical bounds without the need for characterizing the used detectors.

  16. Quantum Dot Infrared Detectors and Sources

    DTIC Science & Technology

    2002-01-01

    I NFRARED DETEC TORS AND SOURC ES P. BHATTACHARYA and A. D. STIFF-RO BERTS Solid State Electron ics Laborotory, Department of Elect rical...dotsi i nfrared detectors; inf rar&d sources; lntersu b- band devices. 1. Introduction Two hundred years have pa.ssed since 18 00, when Sir William...also crucial for an abundance of oth er applications. Infra red detectors are nec essary for military targeting and trackin g, law enforcement, m

  17. Quantum efficiency of a double quantum dot microwave photon detector

    NASA Astrophysics Data System (ADS)

    Wong, Clement; Vavilov, Maxim

    Motivated by recent interest in implementing circuit quantum electrodynamics with semiconducting quantum dots, we study charge transfer through a double quantum dot (DQD) capacitively coupled to a superconducting cavity subject to a microwave field. We analyze the DQD current response using input-output theory and determine the optimal parameter regime for complete absorption of radiation and efficient conversion of microwave photons to electric current. For experimentally available DQD systems, we show that the cavity-coupled DQD operates as a photon-to-charge converter with quantum efficiencies up to 80% C.W. acknowledges support by the Intelligence Community Postdoctoral Research Fellowship Program.

  18. Quantum Detectors in Generic Non Flat FLRW Space-Times

    NASA Astrophysics Data System (ADS)

    Rabochaya, Yevgeniya; Zerbini, Sergio

    2016-05-01

    We discuss a quantum field theoretical approach, in which a quantum probe is used to investigate the properties of generic non-flat FLRW space-times. The probe is identified with a conformally coupled massless scalar field defined on a space-time with horizon and the procedure to investigate the local properties is realized by the use of Unruh-DeWitt detector and by the evaluation of the regularized quantum fluctuations. In the case of de Sitter space, the coordinate independence of our results is checked, and the Gibbons-Hawking temperature is recovered. A possible generalization to the electromagnetic probe is also briefly indicated.

  19. Quantum Measurement Theory in Gravitational-Wave Detectors.

    PubMed

    Danilishin, Stefan L; Khalili, Farid Ya

    2012-01-01

    The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.

  20. Quantum Measurement Theory in Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Danilishin, Stefan L.; Khalili, Farid Ya.

    2012-12-01

    The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.

  1. Fundamental limits to performance of quantum well infrared detectors

    NASA Technical Reports Server (NTRS)

    Yariv, Amnon; Kinch, Michael; Borenstain, S.; Grave, I.

    1990-01-01

    Radiometric, density of states (material), and thermal considerations are used to obtain the figure of merit of the quantum-well GaAs/GaAlAs infrared detectors described by Smith et. al. The results are compared with HgCdTe, the present industry standard, as well as with recent experiments at other laboratories.

  2. InAs/AlAsSb based quantum cascade detector

    SciTech Connect

    Reininger, Peter Zederbauer, Tobias; Schwarz, Benedikt; MacFarland, Donald; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Detz, Hermann

    2015-08-24

    In this letter, we introduce the InAs/AlAsSb material system for quantum cascade detectors (QCDs). InAs/AlAsSb can be grown lattice matched to InAs and exhibits a conduction band offset of approximately 2.1 eV, enabling the design of very short wavelength quantum cascade detectors. Another benefit using this material system is the low effective mass of the well material that improves the total absorption of the detector and decreases the intersubband scattering rates, which increases the device resistance and thus enhances the noise behavior. We have designed, grown, and measured a QCD that detects at a wavelength of λ = 4.84 μm and shows a peak specific detectivity of approximately 2.7 × 10{sup 7 }Jones at T = 300 K.

  3. Resonant infrared detector with substantially unit quantum efficiency

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam (Inventor); Mcmurray, Robert E., Jr. (Inventor)

    1994-01-01

    A resonant infrared detector includes an infrared-active layer which has first and second parallel faces and which absorbs radiation of a given wavelength. The detector also includes a first tuned reflective layer, disposed opposite the first face of the infrared-active layer, which reflects a specific portion of the radiation incident thereon and allows a specific portion of the incident radiation at the given wavelength to reach the infrared-active layer. A second reflective layer, disposed opposite the second face of the infrared-active layer, reflects back into the infrared-active layer substantially all of the radiation at the given wavelength which passes through the infrared-active layer. The reflective layers have the effect of increasing the quantum efficiency of the infrared detector relative to the quantum efficiency of the infrared-active layer alone.

  4. Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths.

    PubMed

    Natarajan, Chandra M; Zhang, Lijian; Coldenstrodt-Ronge, Hendrik; Donati, Gaia; Dorenbos, Sander N; Zwiller, Val; Walmsley, Ian A; Hadfield, Robert H

    2013-01-14

    Superconducting nanowire single-photon detectors (SNSPDs) are widely used in telecom wavelength optical quantum information science applications. Quantum detector tomography allows the positive-operator-valued measure (POVM) of a single-photon detector to be determined. We use an all-fiber telecom wavelength detector tomography test bed to measure detector characteristics with respect to photon flux and polarization, and hence determine the POVM. We study the SNSPD both as a binary detector and in an 8-bin, fiber based, Time-Multiplexed (TM) configuration at repetition rates up to 4 MHz. The corresponding POVMs provide an accurate picture of the photon number resolving capability of the TM-SNSPD.

  5. Carbon Nanotube Quantum Dots as THz Detectors

    DTIC Science & Technology

    2012-12-14

    devices that are viable for wafer -scale production. We recently started testing fabrication processes using epitaxial graphene on SiC in collaboration... laser sources at four different Fig. 4 Top: Drain current versus the gate voltage for different THz field intensities. Bottom: Temperature dependence...research. The first was the small coupling between the quantum dot and the powerful (10 mW) laser source. The second was the difficulty to reproduce the

  6. Quantum correlation measurements in interferometric gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Martynov, D. V.; Frolov, V. V.; Kandhasamy, S.; Izumi, K.; Miao, H.; Mavalvala, N.; Hall, E. D.; Lanza, R.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Anderson, S. B.; Ananyeva, A.; Appert, S.; Arai, K.; Aston, S. M.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bell, A. S.; Betzwieser, J.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blair, C. D.; Bork, R.; Brooks, A. F.; Ciani, G.; Clara, F.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Da Silva Costa, C. F.; Daw, E. J.; DeBra, D.; DeRosa, R. T.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Dwyer, S. E.; Effler, A.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fair, H.; Fernández Galiana, A.; Fisher, R. P.; Fritschel, P.; Fulda, P.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Goetz, E.; Goetz, R.; Gras, S.; Gray, C.; Grote, H.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hammond, G.; Hanks, J.; Hanson, J.; Hardwick, T.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Jones, R.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kijbunchoo, N.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Lockerbie, N. A.; Lormand, M.; Lundgren, A. P.; MacInnis, M.; Macleod, D. M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Mason, K.; Massinger, T. J.; Matichard, F.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McIntyre, G.; McIver, J.; Mendell, G.; Merilh, E. L.; Meyers, P. M.; Miller, J.; Mittleman, R.; Moreno, G.; Mueller, G.; Mullavey, A.; Munch, J.; Nuttall, L. K.; Oberling, J.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Paris, H. R.; Parker, W.; Pele, A.; Penn, S.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Raab, F. J.; Radkins, H.; Raffai, P.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Roma, V. J.; Romie, J. H.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sandberg, V.; Savage, R. L.; Schofield, R. M. S.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sigg, D.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Staley, A.; Strain, K. A.; Tanner, D. B.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Torrie, C. I.; Traylor, G.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Worden, J.; Wu, G.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zucker, M. E.; Zweizig, J.; LSC Instrument Authors

    2017-04-01

    Quantum fluctuations in the phase and amplitude quadratures of light set limitations on the sensitivity of modern optical instruments. The sensitivity of the interferometric gravitational-wave detectors, such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), is limited by quantum shot noise, quantum radiation pressure noise, and a set of classical noises. We show how the quantum properties of light can be used to distinguish these noises using correlation techniques. Particularly, in the first part of the paper we show estimations of the coating thermal noise and gas phase noise, hidden below the quantum shot noise in the Advanced LIGO sensitivity curve. We also make projections on the observatory sensitivity during the next science runs. In the second part of the paper we discuss the correlation technique that reveals the quantum radiation pressure noise from the background of classical noises and shot noise. We apply this technique to the Advanced LIGO data, collected during the first science run, and experimentally estimate the quantum correlations and quantum radiation pressure noise in the interferometer.

  7. Pure sources and efficient detectors for optical quantum information processing

    NASA Astrophysics Data System (ADS)

    Zielnicki, Kevin

    Over the last sixty years, classical information theory has revolutionized the understanding of the nature of information, and how it can be quantified and manipulated. Quantum information processing extends these lessons to quantum systems, where the properties of intrinsic uncertainty and entanglement fundamentally defy classical explanation. This growing field has many potential applications, including computing, cryptography, communication, and metrology. As inherently mobile quantum particles, photons are likely to play an important role in any mature large-scale quantum information processing system. However, the available methods for producing and detecting complex multi-photon states place practical limits on the feasibility of sophisticated optical quantum information processing experiments. In a typical quantum information protocol, a source first produces an interesting or useful quantum state (or set of states), perhaps involving superposition or entanglement. Then, some manipulations are performed on this state, perhaps involving quantum logic gates which further manipulate or entangle the intial state. Finally, the state must be detected, obtaining some desired measurement result, e.g., for secure communication or computationally efficient factoring. The work presented here concerns the first and last stages of this process as they relate to photons: sources and detectors. Our work on sources is based on the need for optimized non-classical states of light delivered at high rates, particularly of single photons in a pure quantum state. We seek to better understand the properties of spontaneous parameteric downconversion (SPDC) sources of photon pairs, and in doing so, produce such an optimized source. We report an SPDC source which produces pure heralded single photons with little or no spectral filtering, allowing a significant rate enhancement. Our work on detectors is based on the need to reliably measure single-photon states. We have focused on

  8. Monolithically Integrated Mid-Infrared Quantum Cascade Laser and Detector

    PubMed Central

    Schwarz, Benedikt; Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried

    2013-01-01

    We demonstrate the monolithic integration of a mid-infrared laser and detector utilizing a bi-functional quantum cascade active region. When biased, this active region provides optical gain, while it can be used as a detector at zero bias. With our novel approach we can measure the light intensity of the laser on the same chip without the need of external lenses or detectors. Based on a bound-to-continuum design, the bi-functional active region has an inherent broad electro-luminescence spectrum of 200 cm−1, which indicate sits use for single mode laser arrays. We have measured a peak signal of 191.5 mV at theon-chip detector, without any amplification. The room-temperature pulsed emission with an averaged power consumption of 4 mW and the high-speed detection makes these devices ideal for low-power sensors. The combination of the on-chip detection functionality, the broad emission spectrum and the low average power consumption indicates the potential of our bi-functional quantum cascade structures to build a mid-infrared lab-on-a-chip based on quantum cascade laser technology. PMID:23389348

  9. Monolithically integrated mid-infrared quantum cascade laser and detector.

    PubMed

    Schwarz, Benedikt; Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried

    2013-02-06

    We demonstrate the monolithic integration of a mid-infrared laser and detector utilizing a bi-functional quantum cascade active region. When biased, this active region provides optical gain, while it can be used as a detector at zero bias. With our novel approach we can measure the light intensity of the laser on the same chip without the need of external lenses or detectors. Based on a bound-to-continuum design, the bi-functional active region has an inherent broad electro-luminescence spectrum of 200 cm⁻¹, which indicates its use for single mode laser arrays. We have measured a peak signal of 191.5 mV at the on-chip detector, without any amplification. The room-temperature pulsed emission with an averaged power consumption of 4 mW and the high-speed detection makes these devices ideal for low-power sensors. The combination of the on-chip detection functionality, the broad emission spectrum and the low average power consumption indicates the potential of our bi-functional quantum cascade structures to build a mid-infrared lab-on-a-chip based on quantum cascade laser technology.

  10. High-performance bound-to-bound state QWIP detectors. [QWIP (quantum well infrared photoconductive detector)

    SciTech Connect

    Braddock, W.D. IV.

    1992-01-01

    The details of the design, growth, fabrication, and modeling of bound-to-bound state III-V quantum well infrared photoconductive (QWIP) detectors are described in this thesis. High performance is attainable in this class of QWIP for the first time. The steps necessary to realize the improved performance in this class of QWIP detector are discussed in detail. The materials growth of a detector with a relatively wide and high barrier is described. The material characterization issues important for high performance operation of these detectors are discussed. The dark current and photocurrent are examined from an experimental and theoretical point of view. The performance of these detectors is considered when the figures of merit of QWIP detectors are discussed. Electron scattering off of impurities in the wells is shown to affect both the dark current and the photocurrent. This scattering does not degrade the detectivity of these devices. A strong enhancement in the temperature dependence of the photocurrent is observed experimentally. The source of this enhancement is originates from electron scattering off of impurities in the quantum wells in bound-to-bound state QWIP detectors. A comprehensive model which includes the effects of this scattering is presented, and is shown to predict the voltage and temperature dependence of the dark current and the photocurrent. The consideration of the device performance of these detectors follows from the analysis of the dark current and photocurrent. The effect of elastic impurity scattering on the ultimate signal to noise ratio in this detector is of interest. The dark current and the noise is increased by this scattering. The enhancement in the signal compensates for noise. Record dark current limited detectivities at 50[degrees]K are observed. An adequate detectivity for many applications are attainable at temperatures as high as 90[degrees]K where the D[sub DL] exceed 1.8 [times] 10[sup 9] cm[radical]Hz/W.

  11. Interferometric Quantum-Nondemolition Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Kok, Peter; Lee, Hwang; Dowling, Jonathan

    2007-01-01

    Two interferometric quantum-nondemolition (QND) devices have been proposed: (1) a polarization-independent device and (2) a polarization-preserving device. The prolarization-independent device works on an input state of up to two photons, whereas the polarization-preserving device works on a superposition of vacuum and single- photon states. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode would also be populated by a single photon. Like other QND devices, the proposed devices are potentially useful for a variety of applications, including such areas of NASA interest as quantum computing, quantum communication, detection of gravity waves, as well as pedagogical demonstrations of the quantum nature of light. Many protocols in quantum computation and quantum communication require the possibility of detecting a photon without destroying it. The only prior single- photon-detecting QND device is based on quantum electrodynamics in a resonant cavity and, as such, it depends on the photon frequency. Moreover, the prior device can distinguish only between one photon and no photon. The proposed interferometric QND devices would not depend on frequency and could distinguish between (a) one photon and (b) zero or two photons. The first proposed device is depicted schematically in Figure 1. The input electromagnetic mode would be a superposition of a zero-, a one-, and a two-photon quantum state. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode also would be populated by a single photon.

  12. Resonant metamaterial detectors based on THz quantum-cascade structures

    PubMed Central

    Benz, A.; Krall, M.; Schwarz, S.; Dietze, D.; Detz, H.; Andrews, A. M.; Schrenk, W.; Strasser, G.; Unterrainer, K.

    2014-01-01

    We present the design, fabrication and characterisation of an intersubband detector employing a resonant metamaterial coupling structure. The semiconductor heterostructure relies on a conventional THz quantum-cascade laser design and is operated at zero bias for the detector operation. The same active region can be used to generate or detect light depending on the bias conditions and the vertical confinement. The metamaterial is processed directly into the top metal contact and is used to couple normal incidence radiation resonantly to the intersubband transitions. The device is capable of detecting light below and above the reststrahlenband of gallium-arsenide corresponding to the mid-infrared and THz spectral region. PMID:24608677

  13. Detector-device-independent quantum key distribution

    SciTech Connect

    Lim, Charles Ci Wen; Korzh, Boris; Martin, Anthony; Bussières, Félix; Thew, Rob; Zbinden, Hugo

    2014-12-01

    Recently, a quantum key distribution (QKD) scheme based on entanglement swapping, called measurement-device-independent QKD (mdiQKD), was proposed to bypass all measurement side-channel attacks. While mdiQKD is conceptually elegant and offers a supreme level of security, the experimental complexity is challenging for practical systems. For instance, it requires interference between two widely separated independent single-photon sources, and the secret key rates are dependent on detecting two photons—one from each source. Here, we demonstrate a proof-of-principle experiment of a QKD scheme that removes the need for a two-photon system and instead uses the idea of a two-qubit single-photon to significantly simplify the implementation and improve the efficiency of mdiQKD in several aspects.

  14. Investigation of the quantum efficiency of optical heterodyne detectors

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.

    1984-01-01

    The frequency response and quantum efficiency of optical photodetectors for heterodyne receivers is investigated. The measurements utilized two spectral lines from the output of two lasers as input to the photodetectors. These lines are easily measurable in power and frequency and hence serve as known inputs. By measuring the output current of the photodetector the quantum efficiency is determined as a function of frequency separation between the two input signals. An investigation of the theoretical basis and accuracy of this type of measurement relative to similar measurements utilizing risetime is undertaken. A theoretical study of the heterodyne process in photodetectors based on semiconductor physics is included so that higher bandwidth detectors may be designed. All measurements are made on commercially available detectors and manufacturers' specifications for normal photodetector operation are compared to the measured heterodyne characteristics.

  15. Feasible attack on detector-device-independent quantum key distribution.

    PubMed

    Wei, Kejin; Liu, Hongwei; Ma, Haiqiang; Yang, Xiuqing; Zhang, Yong; Sun, Yongmei; Xiao, Jinghua; Ji, Yuefeng

    2017-03-27

    Recently, to bridge the gap between security of Measurement-device-independent quantum key distribution (MDI-QKD) and a high key rate, a novel protocol, the so-called detector-device-independent QKD (DDI-QKD), has been independently proposed by several groups and has attracted great interest. A higher key rate is obtained, since a single photon bell state measurement (BSM) setup is applied to DDI-QKD. Subsequently, Qi has proposed two attacks for this protocol. However, the first attack, in which Bob's BSM setup is assumed to be completely a "black box", is easily prevented by using some additional monitoring devices or by specifically characterizing the BSM. The second attack, which combines the blinding attack and the detector wavelength-dependent efficiency, is not explicitly discussed, and its feasibility is not experimentally confirmed. Here, we show that the second attack is not technically viable because of an intrinsically wavelength-dependent property of a realistic beam splitter, which is an essential component in DDI-QKD. Moreover, we propose a feasible attack that combines a well-known attack-detector blinding attack with intrinsic imperfections of single-photon detectors. The experimental measurement and proof-of-principle test results confirm that our attack can allow Eve to get a copy of quantum keys without being detected and that it is feasible with current technology.

  16. Computed tomography using a terahertz quantum cascade laser and quantum well photo-detector

    NASA Astrophysics Data System (ADS)

    Gu, L.; Zhou, T.; Tan, Z. Y.; Cao, J. C.

    2013-10-01

    Terahertz computed tomographic imaging has been performed based on an imaging system which includes a terahertz quantum cascade laser as the light source and a terahertz quantum well photo-detector. The main reconstruction methods of filtered back projection, iterative analysis and the wavelet reconstruction technique are adopted and compared. The reconstructed quality has been discussed with respect to projection numbers, contrast and geometric preservation. We have applied parameter structural similarity to quantitatively analyze the image quality at the end.

  17. Terahertz single-photon detectors based on quantum wells

    NASA Astrophysics Data System (ADS)

    Kajihara, Yusuke; Nakajima, Takashi; Wang, Zhihai; Komiyama, Susumu

    2013-04-01

    Semiconductor charge-sensitive infrared phototransistors (CSIPs) based on quantum wells are described. They are the only detectors that are able to count single photons in the terahertz region at present. In terms of the noise equivalent power (NEP), the detectors show experimental values of 7 × 10-20 W/Hz1/2, while theoretically expected values are even much lower. These NEP values are by several orders of magnitude lower than any other state-of-the-art highly sensitive detectors. In addition to the outstanding sensitivity, the detectors are featured by strong advantage of huge current responsivity (>1 × 105 A/W) and low output impedance (<10 kΩ). This excellent performance in the above has been obtained for λ = 12-28 μm. By introducing a modified scheme of detection (called "lateral-escape") along with an improved coupler structure (bowtie antenna), we have achieved similar excellent performance for 45 μm. The CSIP provides extremely promising detectors for a variety of applications covering a wide spectral range of 12-100 μm.

  18. A real-time spectrum acquisition system design based on quantum dots-quantum well detector

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Guo, F. M.

    2016-01-01

    In this paper, we studied the structure characteristics of quantum dots-quantum well photodetector with response wavelength range from 400 nm to 1000 nm. It has the characteristics of high sensitivity, low dark current and the high conductance gain. According to the properties of the quantum dots-quantum well photodetectors, we designed a new type of capacitive transimpedence amplifier (CTIA) readout circuit structure with the advantages of adjustable gain, wide bandwidth and high driving ability. We have implemented the chip packaging between CTIA-CDS structure readout circuit and quantum dots detector and tested the readout response characteristics. According to the timing signals requirements of our readout circuit, we designed a real-time spectral data acquisition system based on FPGA and ARM. Parallel processing mode of programmable devices makes the system has high sensitivity and high transmission rate. In addition, we realized blind pixel compensation and smoothing filter algorithm processing to the real time spectrum data by using C++. Through the fluorescence spectrum measurement of carbon quantum dots and the signal acquisition system and computer software system to realize the collection of the spectrum signal processing and analysis, we verified the excellent characteristics of detector. It meets the design requirements of quantum dot spectrum acquisition system with the characteristics of short integration time, real-time and portability.

  19. High photoresponse in room temperature quantum cascade detector based on coupled quantum well design

    NASA Astrophysics Data System (ADS)

    Dougakiuchi, Tatsuo; Fujita, Kazuue; Hirohata, Toru; Ito, Akio; Hitaka, Masahiro; Edamura, Tadataka

    2016-12-01

    We report high photoresponse measured in a room temperature quantum cascade detector (QCD) based on a coupled quantum well design that operates with a peak response wavelength of 5.4 μm. The coupled quantum well design is expected to produce higher photocurrents when compared with device active regions that use a combination of simple quantum wells. The coupled quantum well QCD demonstrated high responsivity of 22 mA/W at room temperature with a commonly used 45° wedge-based light coupling configuration. Application of a waveguide configuration to the proposed QCD yielded an elevated responsivity of ˜130 mA/W and a specific detectivity (D*) of 1.1 × 108 cm W-1 Hz1/2 at room temperature.

  20. Porous Silicon-Based Quantum Dot Broad Spectrum Radiation Detector

    PubMed Central

    Urdaneta, M.; Stepanov, P.; Weinberg, I. N.; Pala, I. R.; Brock, S.

    2013-01-01

    Silicon is a convenient and inexpensive platform for radiation detection, but has low stopping power for x-rays and gamma-rays with high energy (e.g., 100 keV, as used in computed tomography and digital radiography, or 1 MeV, as desired for detection of nuclear materials). We have effectively increased the stopping power of silicon detectors by producing a layer of porous or micro-machined silicon, and infusing this layer with semiconductor quantum dots made of electron-dense materials. Results of prototype detectors show sensitivity to infrared, visible light, and x-rays, with dark current of less than 1 nA/mm2. PMID:24432047

  1. HiFi-MBQC High Fidelitiy Measurement-Based Quantum Computing using Superconducting Detectors

    DTIC Science & Technology

    2016-04-04

    computer. We exploit the conceptual framework of measurement - based quantum computation that enables a client to delegate a computation to a quantum...AFRL-AFOSR-UK-TR-2016-0006 HiFi-MBQC High Fidelitiy Measurement - Based Quantum Computing using Superconducting Detectors Philip Walther UNIVERSITT...HiFi-MBQC High Fidelitiy Measurement - Based Quantum Computing using Superconducting Detectors 5a. CONTRACT NUMBER FA8655-11-1-3004 5b. GRANT NUMBER

  2. Enhanced observability of quantum postexponential decay using distant detectors

    SciTech Connect

    Torrontegui, E.; Muga, J. G.; Martorell, J.; Sprung, D. W. L.

    2009-07-15

    We study the elusive transition from exponential to postexponential (algebraic) decay of the probability density of a quantum particle emitted by an exponentially decaying source in one dimension. The main finding is that the probability density at the transition time, and thus its observability, increases with the distance of the detector from the source up to a critical distance beyond which exponential decay is no longer observed. Solvable models provide explicit expressions for the dependence of the transition on resonance and observational parameters, facilitating the choice of optimal conditions.

  3. Optimised quantum hacking of superconducting nanowire single-photon detectors

    NASA Astrophysics Data System (ADS)

    Tanner, Michael G.; Makarov, Vadim; Hadfield, Robert H.

    2014-03-01

    We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack.

  4. Optimised quantum hacking of superconducting nanowire single-photon detectors.

    PubMed

    Tanner, Michael G; Makarov, Vadim; Hadfield, Robert H

    2014-03-24

    We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack.

  5. Local quantum thermometry using Unruh-DeWitt detectors

    NASA Astrophysics Data System (ADS)

    Robles, Sandra; Rodríguez-Laguna, Javier

    2017-03-01

    We propose an operational definition for the local temperature of a quantum field employing Unruh-DeWitt detectors, as used in the study of the Unruh and Hawking effects. With this definition, an inhomogeneous quantum system in equilibrium can have different local temperatures, in analogy with the Tolman-Ehrenfest theorem from general relativity. We study the local temperature distribution on the ground state of hopping fermionic systems on a curved background. The observed temperature tends to zero as the thermometer-system coupling g vanishes. Yet, for small but finite values of g, we show that the product of the observed local temperature and the logarithm of the local speed of light is approximately constant. Our predictions should be testable on ultracold atomic systems.

  6. Quantum wire as a charge-qubit detector

    NASA Astrophysics Data System (ADS)

    Kwapiński, Tomasz; Taranko, Ryszard

    2012-11-01

    We present a proposal for a qubit charge meter (detector) based on a linear wire of quantum dots placed between two electron reservoirs. A qubit formed by an excess electron in a double quantum dot is coupled electrostatically with a single wire site and the dynamics of this system is studied using the equation of motion for appropriate correlation functions and the evolution operator method. For the qubit-wire system, depending on the qubit position on the wire the readout current oscillates over a long time or the current oscillations decrease very rapidly. This effect cannot be explained in terms of different charges of the wire sites (the same occupancies of all sites are considered). We have found that the qubit's decoherence strongly depends on the structure of the local density of states of the site which is coupled with the qubit. Additionally, the period of the readout current oscillations changes with the wire-qubit electrostatic coupling.

  7. Gravitational wave radiation by LIGO-type detectors and its reciprocity relation with the detector's fundamental quantum limited sensitivity

    NASA Astrophysics Data System (ADS)

    Pang, Belinda; Ma, Yiqiu; Miao, Haixing; Chen, Yanbei

    2017-01-01

    We relate the radiation of gravitational waves (GW) by a light interferometer with cavity arms (such as LIGO) to its quantum limited sensitivity as a detector of GW's, thereby demonstrating a reciprocity relation between the interferometer's function as a detector and emitter. We derive the pairwise interactions among the cavity optical field, the cavity end mirror, and the gravitational perturbation from the action principle. We quantize these degrees of freedom to calculate the GW's generated by a quantum object. We find that the rate of gravitational wave generation is related to the so-called quantum Cramer Rao bound of the detector, which is a general result from linear measurement theory that gives the fundamental limit to a detector's sensitivity. We show that increasing the maximal sensitivity for the interferometer also increases its GW radiation. This finding may point towards a new paradigm for improving detector sensitivity by maximizing GW radiator.

  8. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors

    PubMed Central

    Takemoto, Kazuya; Nambu, Yoshihiro; Miyazawa, Toshiyuki; Sakuma, Yoshiki; Yamamoto, Tsuyoshi; Yorozu, Shinichi; Arakawa, Yasuhiko

    2015-01-01

    Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks. PMID:26404010

  9. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors

    NASA Astrophysics Data System (ADS)

    Takemoto, Kazuya; Nambu, Yoshihiro; Miyazawa, Toshiyuki; Sakuma, Yoshiki; Yamamoto, Tsuyoshi; Yorozu, Shinichi; Arakawa, Yasuhiko

    2015-09-01

    Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks.

  10. Virtual decoy sets for molecular docking benchmarks.

    PubMed

    Wallach, Izhar; Lilien, Ryan

    2011-02-28

    Virtual docking algorithms are often evaluated on their ability to separate active ligands from decoy molecules. The current state-of-the-art benchmark, the Directory of Useful Decoys (DUD), minimizes bias by including decoys from a library of synthetically feasible molecules that are physically similar yet chemically dissimilar to the active ligands. We show that by ignoring synthetic feasibility, we can compile a benchmark that is comparable to the DUD and less biased with respect to physical similarity.

  11. Quantum efficiency of a single microwave photon detector based on a semiconductor double quantum dot

    NASA Astrophysics Data System (ADS)

    Wong, Clement H.; Vavilov, Maxim G.

    2017-01-01

    Motivated by recent interest in implementing circuit quantum electrodynamics with semiconducting quantum dots, we consider a double quantum dot (DQD) capacitively coupled to a superconducting resonator that is driven by the microwave field of a superconducting transmission line. We analyze the DQD current response using input-output theory and show that the resonator-coupled DQD is a sensitive microwave single photon detector. Using currently available experimental parameters of DQD-resonator coupling and dissipation, including the effects of 1 /f charge noise and phonon noise, we determine the parameter regime for which incident photons are completely absorbed and near-unit ≳98 % efficiency can be achieved. We show that this regime can be reached by using very high quality resonators with quality factor Q ≃105 .

  12. Limitation of decoy-state Scarani-Acin-Ribordy-Gisin quantum-key-distribution protocols with a heralded single-photon source

    SciTech Connect

    Zhang Shengli; Zou Xubo; Li Ke; Guo Guangcan; Jin Chenhui

    2007-10-15

    For the Bennett-Brassard 1984 (BB84) quantum key distribution, longer distance and higher key generating rate is shown with a heralded single-photon source (HSPS) [Phys. Rev. A. 73, 032331 (2006)]. In this paper, the performance of the Scarani-Acin-Ribordy-Gisim (SARG) protocol utilizing the HSPS sources is considered and the numerical simulation turns out that still a significant improvement in secret key generating rate can also be observed. It is shown that the security distance for HSPS+SARG is 120 km. However, compared with the HSPS+BB84 protocols, the HSPS+SARG protocol has a lower secret key rate and a shorter distance. Thus we show the HSPS+BB84 implementation is a preferable protocol for long distance transmittance.

  13. Balanced homodyne readout for quantum limited gravitational wave detectors.

    PubMed

    Fritschel, Peter; Evans, Matthew; Frolov, Valery

    2014-02-24

    Balanced homodyne detection is typically used to measure quantum-noise-limited optical beams, including squeezed states of light, at audio-band frequencies. Current designs of advanced gravitational wave interferometers use some type of homodyne readout for signal detection, in part because of its compatibility with the use of squeezed light. The readout scheme used in Advanced LIGO, called DC readout, is however not a balanced detection scheme. Instead, the local oscillator field, generated from a dark fringe offset, co-propagates with the signal field at the anti-symmetric output of the beam splitter. This article examines the alternative of a true balanced homodyne detection for the readout of gravitational wave detectors such as Advanced LIGO. Several practical advantages of the balanced detection scheme are described.

  14. Study on the thermal imaging application of quantum cascade detectors

    NASA Astrophysics Data System (ADS)

    Zhai, Shen-Qiang; Liu, Jun-Qi; Wang, Xue-Jiao; Tan, Song; Liu, Feng-Qi; Wang, Zhan-Guo

    2014-03-01

    A 2D mechanical scanning setup was constructed, and was used to evaluate the potential of quantum cascade detector (QCD) for IR imaging. The peak responsivity of the studied QCD is 22.3 mA/W at 9.3 μm, and the Noise Equivalent Power (NEP) reaches 6.7×10-10W/Hz at temperature of 82 K. The Noise Equivalent Temperature Difference (NETD) for this imaging system is estimated to be 102.6 mK. With this experimental setup, thermal images of an operating electric soldering iron and a projection lamp at about 310 K are obtained. The image of the projection lamp demonstrates the feasibility of human body imaging with this QCD. Our research provides a proof-of-concept demonstration of thermal imaging with QCDs and displays that QCDs are potentially useful for thermal imaging applications.

  15. RADER: a RApid DEcoy Retriever to facilitate decoy based assessment of virtual screening.

    PubMed

    Wang, Ling; Pang, Xiaoqian; Li, Yecheng; Zhang, Ziying; Tan, Wen

    2017-04-15

    Evaluation of the capacity for separating actives from challenging decoys is a crucial metric of performance related to molecular docking or a virtual screening workflow. The Directory of Useful Decoys (DUD) and its enhanced version (DUD-E) provide a benchmark for molecular docking, although they only contain a limited set of decoys for limited targets. DecoyFinder was released to compensate the limitations of DUD or DUD-E for building target-specific decoy sets. However, desirable query template design, generation of multiple decoy sets of similar quality, and computational speed remain bottlenecks, particularly when the numbers of queried actives and retrieved decoys increases to hundreds or more. Here, we developed a program suite called RApid DEcoy Retriever (RADER) to facilitate the decoy-based assessment of virtual screening. This program adopts a novel database-management regime that supports rapid and large-scale retrieval of decoys, enables high portability of databases, and provides multifaceted options for designing initial query templates from a large number of active ligands and generating subtle decoy sets. RADER provides two operational modes: as a command-line tool and on a web server. Validation of the performance and efficiency of RADER was also conducted and is described. RADER web server and a local version are freely available at http://rcidm.org/rader/ . lingwang@scut.edu.cn or went@scut.edu.cn . Supplementary data are available at Bioinformatics online.

  16. Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors

    SciTech Connect

    Zhao, Jianhong; Xiang, Jinzhong; Tang, Libin Ji, Rongbin Yuan, Jun; Zhao, Jun; Yu, Ruiyun; Tai, Yunjian; Song, Liyuan

    2014-09-15

    Graphene quantum dots (GQDs) are becoming one of the hottest advanced functional materials because of the opening of the bandgap due to quantum confinement effect, which shows unique optical and electrical properties. The chlorine doped GQDs (Cl-GQDs) have been fabricated by chemical exfoliation of HCl treated carbon fibers (CFs), which were prepared from degreasing cotton through an annealing process at 1000 °C for 30 min. Raman study shows that both G and 2D peaks of GQDs may be redshifted (softened) by chlorine doping, leading to an n-type doping. The first vertical (Cl)-GQDs based photovoltaic detectors have been demonstrated, both the light absorbing and electron-accepting roles for (Cl)-GQDs in photodetection have been found, resulting in an exceptionally big ratio of photocurrent to dark current as high as ∼10{sup 5} at room temperature using a 405 nm laser irradiation under the reverse bias voltage. The study expands the application of (Cl)-GQDs to the important optoelectronic detection devices.

  17. Quantum structure based infrared detector research and development within Acreo’s centre of excellence IMAGIC

    NASA Astrophysics Data System (ADS)

    Andersson, J. Y.; Höglund, L.; Noharet, B.; Wang, Q.; Ericsson, P.; Wissmar, S.; Asplund, C.; Malm, H.; Martijn, H.; Hammar, M.; Gustafsson, O.; Hellström, S.; Radamson, H.; Holtz, P. O.

    2010-07-01

    Acreo has a long tradition of working with quantum structure based infrared (IR) detectors and arrays. This includes QWIP (quantum well infrared photodetector), QDIP (quantum dot infrared photodetector), and InAs/GaInSb based photon detectors of different structure and composition. It also covers R&D on uncooled microbolometers. The integrated thermistor material of such detectors is advantageously based on quantum structures that are optimised for high temperature coefficient and low noise. Especially the SiGe material system is preferred due to the compatibility with silicon technology. The R&D work on IR detectors is a prominent part of Acreo's centre of excellence "IMAGIC" on imaging detectors and systems for non-visible wavelengths. IMAGIC is a collaboration between Acreo, several industry partners and universities like the Royal Institute of Technology (KTH) and Linköping University.

  18. Characteristics of AlGaAs/GaAs multiple quantum well infrared detectors

    NASA Technical Reports Server (NTRS)

    Janousek, Bruce K.; Rosenbluth, Mary L.; Oloughlin, Michael J.; Bloss, Walter L.; Deluccia, Frank J.; Kanter, Helmut; Perry, L. Elaine; Daugherty, Michael J.

    1990-01-01

    Researchers fabricated and characterized several AlGaAs/GaAs multiple quantum well infrared detectors to evaluate the ultimate performance of these devices for low infrared background applications. The detectors were designed to have a single bound state in the quantum well and the first excited state in the continuum above the AlGaAs conduction band edge. The difference in energy between the two levels, as determined by the quantum well width and aluminum mole fraction in the barrier, was chosen such that peak absorption would occur near 8 microns. The initial structures studied comprised 50 periods with 40 A well widths and 300 A Al(0.28)Ga(0.72)As barriers. The performance of these detectors are summarized. To better interpret these results and design optimized detectors, researchers modeled both the detector noise and tunneling currents. The noise model correctly predicts that multiple quantum well detectors will, indeed, exhibit noise lower than full shot noise. The tunneling current model predicts the dark current versus bias for any choice of design parameters in a multiple quantum well detector. This model predicts a substantially reduced dark current (x 10(exp 04)) for samples with 400 A barriers. To evaluate structures with thicker barriers, researchers fabricated and characterized detectors with 400 A and 500 A barriers; a comparison of detector dark currents is shown. These results are consistent with the predictions of the dark current model.

  19. Complementary Barrier Infrared Detector (CBIRD) with Double Tunnel Junction Contact and Quantum Dot Barrier Infrared Detector (QD-BIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z.-Y; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Hoglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, Sir B.; Hill, Cory J.; hide

    2012-01-01

    The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from approximately 4.2 micrometers to 6 micrometers, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.

  20. Complementary Barrier Infrared Detector (CBIRD) with Double Tunnel Junction Contact and Quantum Dot Barrier Infrared Detector (QD-BIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z.-Y; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Hoglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, Sir B.; Hill, Cory J.; Gunapala, Sarath D.

    2012-01-01

    The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from approximately 4.2 micrometers to 6 micrometers, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.

  1. Security of decoy-state protocols for general photon-number-splitting attacks

    NASA Astrophysics Data System (ADS)

    Somma, Rolando D.; Hughes, Richard J.

    2013-06-01

    Decoy-state protocols provide a way to defeat photon-number-splitting attacks in quantum cryptography implemented with weak coherent pulses. We point out that previous security analyses of such protocols relied on assumptions about eavesdropping attacks that considered treating each pulse equally and independently. We give an example to demonstrate that, without such assumptions, the security parameters of previous decoy-state implementations could be worse than the ones claimed. Next we consider more general photon-number-splitting attacks, which correlate different pulses, and give an estimation procedure for the number of single-photon signals with rigorous security statements. The impact of our result is that previous analyses of the number of times a decoy-state quantum cryptographic system can be reused before it makes a weak key must be revised.

  2. Paired carriers as a way to reduce quantum noise of multicarrier gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Korobko, Mikhail; Voronchev, Nikita; Miao, Haixing; Khalili, Farid Ya.

    2015-02-01

    We explore new regimes of laser interferometric gravitational-wave detectors with multiple optical carriers which allow us to reduce the quantum noise of these detectors. In particular, we show that using two carriers with the opposite detunings, homodyne angles, and squeezing angles, but identical other parameters (the antisymmetric carriers), one can suppress the quantum noise in such a way that its spectrum follows the Standard Quantum Limit (SQL) at low frequencies. Relaxing this antisymmetry condition, it is also possible to slightly overcome the SQL in broadband. Combining several such pairs in the xylophone configuration, it is possible to shape the quantum noise spectrum flexibly.

  3. A bifunctional spin detector made of quantum anomalous Hall insulator

    NASA Astrophysics Data System (ADS)

    Shi, Zhangsheng; Wu, Jiansheng

    2016-10-01

    The spin selection of the topological boundary states (TBS) which are protected by the chiral-like symmetry in quantum anomalous Hall insulator (QAHI) can be used to construct a bifunctional spin detector (SD). Such device made of QAHIs in parallel with opposite chirality can divide an incoming spin-polarized current into two outgoing currents. The agreement between numerical and analytical calculation proves that the SD device functions as both spin filter and spin separator well in reflecting the spin polarization of source material from the ratio of two currents. The monotonic relation of spin polarization and current ratio suggests that using such kind of device, the spin polarization can be obtained directly. We also find that such device has a broad working energy region attributed by the TBS within the bulk gap. Combining with the result that the current ratio is barely dependent on the coupling between candidate materials and device, it is reasonable to apply this technique with a stable measuring accuracy. Furthermore, the features such as having simple geometry, being manipulated without external magnetic field, and the prospect of working at room temperature make this proposed device seem promising in developing future low-power-consumption spintronic device.

  4. PbSe/CdTe single quantum well infrared detectors

    NASA Astrophysics Data System (ADS)

    Chusnutdinow, S.; Szot, M.; Wojtowicz, T.; Karczewski, G.

    2017-03-01

    We report on the fabrication and characterization of a new type of mid-infrared photodetector. The infrared sensitive element of the detector is a PbSe single quantum well (SQW) embedded in an intrinsic region of a CdTe p-i-n diode. Electron-beam-induced current (EBIC) measurements confirm the location of the PbSe SQW near the middle of the intrinsic CdTe layer. The measured diffusion length of minority carriers of about 0.5 μm allows effective collecting of the photoexcited carriers in the highly doped regions of the diodes. The PbSe/CdTe heterostructures exhibit a strong photosensitivity in the mid-infrared spectral region. Photo-response measurements show abnormal temperature dependence of the photosensitivity. The photo-response signal increases with decreasing temperature reaching a maximum at about 170 K and upon a further decrease in temperature the signal weakens and vanishes at about 100 K. Current-voltage measurements demonstrate very good junction characteristics with a rectifying ratio of 585 at ± 0.5 V and an ideality factor of 1.05 at room temperature. Possible mechanisms of carrier transport trough the junction are discussed.

  5. The Decoy Effect Within Alcohol Purchasing Decisions.

    PubMed

    Monk, Rebecca L; Qureshi, Adam W; Leatherbarrow, Thomas; Hughes, Annalise

    2016-08-23

    The decoy effect is the phenomenon where the introduction of a third choice to a decision dyad changes the distribution of preferences between options. Examine whether this effect exists in alcohol purchasing decisions and whether testing context impacts this. Fifty-two participants tested in either a bar or library context and were asked to choose one of a series of beer and water deals presented for timed intervals. In some cases, two options were presented (with similar attractiveness) and in other cases a third, less preferable, decoy option was added. A basic decoy effect in both alcohol and water purchasing decisions. Specifically, there were reductions in the selection of both the original options when the decoy was added into choice dyads. A significant interaction demonstrated in the bar context there was a significant difference such that there was a slight increase in participants selecting the most cost effective option when the decoy was added, and a simultaneous decrease in those choosing the moderately cost effective option. There were no such differences observed in the library condition. The same product may be perceived differently across contexts and, as such, consumers in a pub environment may be particularly vulnerable to the decoy effect.

  6. Properties of multiple quantum wells and their use in high-speed detectors and modulators

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Pallab

    1988-01-01

    Quantum well systems lattice matched to GaAs and InP have emerged as important materials for use in long wavelength optoelectronic devices. Intrinsic problems associated with the growth of these quantum wells by molecular beam epitaxy are discussed and the luminescence properties of state-of-art quantum wells, using novel growth techniques are described. Finally, the properties of detectors, modulators and integrated devices made with these heterojunction materials are described and discussed.

  7. Quantum coherence in semiconductor nanostructures for improved lasers and detectors.

    SciTech Connect

    Chow, Weng Wah Dr.; Lyo, Sungkwun Kenneth; Cederberg, Jeffrey George; Modine, Normand Arthur; Biefeld, Robert Malcolm

    2006-02-01

    The potential for implementing quantum coherence in semiconductor self-assembled quantum dots has been investigated theoretically and experimentally. Theoretical modeling suggests that coherent dynamics should be possible in self-assembled quantum dots. Our experimental efforts have optimized InGaAs and InAs self-assembled quantum dots on GaAs for demonstrating coherent phenomena. Optical investigations have indicated the appropriate geometries for observing quantum coherence and the type of experiments for observing quantum coherence have been outlined. The optical investigation targeted electromagnetically induced transparency (EIT) in order to demonstrate an all optical delay line.

  8. Photon-number-resolving detectors and their role in quantifying quantum correlations

    NASA Astrophysics Data System (ADS)

    Tan, Si-Hui; Krivitsky, Leonid A.; Englert, Berthold-Georg

    2016-09-01

    Harnessing entanglement as a resource is the main workhorse of many quantum protocols, and establishing the degree of quantum correlations of quantum states is an important certification process that has to take place prior to any implementations of these quantum protocols. The emergence of photodetectors known as photon-number-resolving detectors (PNRDs) that allow for accounting of photon numbers simultaneously arriving at the detectors has led to the need for modeling accurately and applying them for use in the certification process. Here we study the variance of difference of photocounts (VDP) of two PNRDs, which is one measure of quantum correlations, under the effects of loss and saturation. We found that it would be possible to distinguish between the classical correlation of a two-mode coherent state and the quantum correlation of a twin-beam state within some photo count regime of the detector. We compare the behavior of two such PNRDs. The first for which the photocount statistics follow a binomial distribution accounting for losses, and the second is that of Agarwal, Vogel, and Sperling for which the incident beam is first split and then separately measured by ON/OFF detectors. In our calculations, analytical expressions are derived for the variance of difference where possible. In these cases, Gauss' hypergeometric function appears regularly, giving an insight to the type of quantum statistics the photon counting gives in these PNRDs. The different mechanisms of the two types of PNRDs leads to quantitative differences in their VDP.

  9. Quantum Dot Detector Enhancement for Narrow Band Multispectral Applications

    DTIC Science & Technology

    2013-12-01

    Report contains color. 14. ABSTRACT The underlying principle of a photodetector is converting the optical signal into electrical signal. Under...enhancement of quantum dot photodetectors was also investigated. 15. SUBJECT TERMS quantum dot, quantum well, photodetectors , plasmonics 16...1.0 Introduction – Photodetectors .............................................................................................. 1 1.1 Types of

  10. Room temperature absorption in laterally biased quantum infrared detectors fabricated by MBE regrowth

    NASA Astrophysics Data System (ADS)

    Guzmán, Álvaro; San-Román, Rocío; Hierro, Adrián

    2011-05-01

    In this paper, we show room temperature operation of a quantum well infrared photodetector (QWIP) using lateral conduction through ohmic contacts deposited at both sides of two n-doped quantum wells. To reduce the dark current due to direct conduction in the wells, we apply an electric field between the quantum wells and two pinch-off Schottky gates, in a fashion similar to a field effect device. Since the normal incidence absorption is strongly reduced in intersubband transitions in quantum wells, we first analyze the response of a detector based on quantum dots (QD). This QD device shows photocurrent signal up to 150 K when it is processed in conventional vertical detector. However, it is possible to observe room temperature signal when it is processed in a lateral structure. Finally, the room temperature photoresponse of the QWIP is demonstrated, and compared with theory. An excellent agreement between the estimated and measured characteristics of the device is found.

  11. Calibration of single-photon detectors using quantum statistics

    SciTech Connect

    Mogilevtsev, D.

    2010-08-15

    I show that calibration of the single-photon detector can be performed without knowledge of the signal parameters. Only partial information about the state statistics is sufficient for that. If one knows that the state is the squeezed one or the squeezed one mixed with the incoherent radiation, one can infer both the parameters of the state and the efficiency of the detector. For that one needs only to measure on/off statistics of detector clicks for the number of known absorbers placed before the detector. Thus, I suggest a scheme that performs a tomography of the signal and the measuring apparatus simultaneously.

  12. Barrier engineering in quantum dots in a well detector

    NASA Astrophysics Data System (ADS)

    Krishna, Sanjay

    2012-01-01

    Quantum dot infrared photodetectors have generated a lot of interest in the recent past due to their potential for low dark current and high operating temperature. We demonstrate the use of thin AlGaAs barrier layers in the quantum dots in a well (DWELL) heterostructure to enhance the quantum confinement of carriers in the excited energy level. By controlling the excited state energy of the DWELL structure between the confinement enhancing (CE) barriers and near the continuum level of the barrier between the stacks, high quantum confinement as well as high escape probability for the photoexcited carriers has been obtained. High responsivity and detectivity of 6.5x1010 cm.Hz1/2W-1 (77K, 0.6V, 7.5mm, f/2), a factor of 10 improvement over a control sample without the CE barriers has been measured. The effect of changing the quantum well thickness and quantum dot size is also reported.

  13. Development of techniques for quantum-enhanced laser-interferometric gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Goda, Keisuke

    2007-08-01

    A detailed theoretical and experimental study of techniques necessary for quantum-enhanced laser-interferometric gravitational wave (GW) detectors was carried out. The basic theory of GWs and laser-interferometric GW detectors, quantum noise in GW detectors, the theory of squeezed states including generation, degradation, detection, and control of squeezed states using sub- threshold optical parametric oscillators (OPOs) and homodyne detectors, experimental characterization of these techniques (using periodically poled KTiOPO 4 in an OPO at 1064 nm for the first time), key requirements for quantum-enhanced GW detectors, and the propagation of a squeezed state in a complex interferometer and its interaction with the interferometer field were studied. Finally, the experimental demonstration of quantum-enhancement in a prototype GW detector was performed. By injecting a squeezed vacuum field of 9.3 dB (inferred) or 7.4 ± 0.1 dB (measured) at frequencies above 3 kHz and a cutoff frequency for squeezing at 700 Hz into the antisymmetric port of the prototype GW detector in a signal-recycled Michelson interferometer configuration, the shot noise floor of the detector was reduced broadband from 7.0 × 10^-17 m/[Special characters omitted.] to 5.0 × 10^-17 m/[Special characters omitted.] while the strength of a simulated GW signal was retained, resulting in a 40% increase in signal-to-noise ratio or detector sensitivity, which is equivalent to a factor of 1.4 3 = 2.7 increase in GW detection rate for isotropically distributed GW sources that are confined to the frequency band in which squeezing was effective. This is the first implementation of quantum-enhancement in a prototype GW detector with suspended optics and readout and control schemes similar to those used in LIGO and Advanced LIGO. It is, therefore, a critical step toward implementation of quantum-enhancement in long baseline GW detectors. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge

  14. Development of novel decoy oligonucleotides: advantages of circular dumb-bell decoy.

    PubMed

    Tomita, Naruya; Tomita, Tetsuya; Yuyama, Kazuhiko; Tougan, Takahiro; Tajima, Tsuyoshi; Ogihara, Toshio; Morishita, Ryuichi

    2003-04-01

    The inhibition of specific transcription regulatory proteins is a novel approach to regulate gene expression. The transcriptional activities of DNA binding proteins can be inhibited by the use of double-stranded oligonucleotides (ODNs) that compete for binding to their specific target sequences in promoters and enhancers. Transfection of this cis-element double-stranded ODN, referred to as decoy ODN, has been reported to be a powerful tool that provides a new class of anti-gene strategies to gene therapy and permits examination of specific gene regulation. We have demonstrated the usefulness of this decoy ODN strategy in animal models of restenosis, myocardial infarction, glomerulonephritis and rheumatoid arthritis. However, one of the major limitations of decoy ODN technology is the rapid degradation of phosphodiester ODNs by intracellular nucleases. To date, several different types of double-stranded decoy ODNs have been developed to overcome this issue. Circular dumb-bell (CD) double-stranded decoy ODNs that were developed to resolve this issue have attracted a high level of interest. In this review, the applications of decoy ODN strategy and the advantages of modified CD double-stranded decoy ODNs will be discussed.

  15. Detector-induced backaction on the counting statistics of a double quantum dot

    PubMed Central

    Li, Zeng-Zhao; Lam, Chi-Hang; Yu, Ting; You, J. Q.

    2013-01-01

    Full counting statistics of electron transport is of fundamental importance for a deeper understanding of the underlying physical processes in quantum transport in nanoscale devices. The backaction effect from a detector on the nanoscale devices is also essential due to its inevitable presence in experiments. Here we investigate the backaction of a charge detector in the form of a quantum point contact (QPC) on the counting statistics of a biased double quantum dot (DQD). We show that this inevitable QPC-induced backaction can have profound effects on the counting statistics under certain conditions, e.g., changing the shot noise from being sub-Poissonian to super-Poissonian, and changing the skewness from being positive to negative. Also, we show that both Fano factor and skewness can be either enhanced or suppressed by increasing the energy difference between two single-dot levels of the DQD under the detector-induced backaction. PMID:24149587

  16. Causality issues of particle detector models in QFT and quantum optics

    NASA Astrophysics Data System (ADS)

    Martín-Martínez, Eduardo

    2015-11-01

    We analyze the constraints that causality imposes on some of the particle detector models employed in quantum field theory in general and, in particular, on those used in quantum optics (or superconducting circuits) to model atoms interacting with light. Namely, we show that disallowing faster-than-light communication can impose severe constraints on the applicability of particle detector models in three different common scenarios: (1) when the detectors are spatially smeared, (2) when a UV cutoff is introduced in the theory and (3) under one of the most typical approximations made in quantum optics: the rotating-wave approximation. We identify the scenarios in which the models' causal behavior can and cannot be cured.

  17. Quantum efficiency test set up performances for NIR detector characterization at ESTEC

    NASA Astrophysics Data System (ADS)

    Crouzet, P.-E.; Duvet, L.; De Wit, F.; Beaufort, T.; Blommaert, S.; Butler, B.; Van Duinkerken, G.; ter Haar, J.; Heijnen, J.; van der Luijt, K.; Smit, H.; Viale, T.

    2014-07-01

    The Payload Technology Validation Section (Future mission preparation Office) at ESTEC is in charge of specific mission oriented validation activities, for science and robotic exploration missions, aiming at reducing development risks in the implementation phase. These activities take place during the early mission phases or during the implementation itself. In this framework, a test set up to characterize the quantum efficiency of near infrared detectors has been developed. The first detector to be tested will an HAWAII-2RG detector with a 2.5μm cut off, it will be used as commissioning device in preparation to the tests of prototypes European detectors developed under ESA funding. The capability to compare on the same setup detectors from different manufacturers will be a unique asset for the future mission preparation office. This publication presents the performances of the quantum efficiency test bench to prepare measurements on the HAWAII-2RG detector. A SOFRADIR Saturn detector has been used as a preliminary test vehicle for the bench. A test set up with a lamp, chopper, monochromator, pinhole and off axis mirrors allows to create a spot of 1mm diameter between 700nm and 2.5μm.The shape of the beam has been measured to match the rms voltage read by the Merlin Lock -in amplifier and the amplitude of the incoming signal. The reference detectors have been inter-calibrated with an uncertainty up to 3 %. For the measurement with HAWAII-2RG detector, the existing cryostat [1] has been modified to adapt cold black baffling, a cold filter wheel and a sapphire window. An statistic uncertainty of +/-2.6% on the quantum efficiency on the detector under test measurement is expected.

  18. IR decoys modeling method based on particle system

    NASA Astrophysics Data System (ADS)

    Liu, Jun-yu; Wu, Kai-feng; Dong, Yan-bing

    2016-10-01

    Due to the complexity in combustion processes of IR decoys, it is difficult to describe its infrared radiation characteristics by deterministic model. In this work, the IR decoys simulation based on particle system was found. The measured date of the IR decoy is used to analyze the typical characteristic of the IR decoy. A semi-empirical model of the IR decoy motion law has been set up based on friction factors and a IR decoys simulation model has been build up based on particle system. The infrared imaging characteristic and time varying characteristic of the IR decoy were simulated by making use of the particle feature such as lifetime, speed and color. The dynamic IR decoys simulation is realized with the VC++6.0 and OpenGL.

  19. Absolute measurement of detector quantum efficiency using parametric downconversion.

    PubMed

    Rarity, J G; Ridley, K D; Tapster, P R

    1987-11-01

    We show that a parametric downconversion crystal emitting angle resolved coincident photon pairs can be used to measure the absolute quantum efficiency of a photon counting detection system. We have measured the quantum efficiency of a silicon avalanche photodiode, operated in Geiger mode, as a function of operating voltage and compare this to results obtained using a conventional method.

  20. Investigation of heterodyne performance of quantum-well detectors. Final report

    SciTech Connect

    Simpson, M.L.; Hutchinson, D.P.; Calabretta, J.

    1994-09-23

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Martin Marietta Energy Systems Inc., (Contractor) and Martin Marietta Electronic Missles (Participant) is the determination of the heterodyne characteristics of quantum-well detectors. The Participant has developed a quantum-well infrared imaging video detector with very low light level characteristics. A further improvement in low-level infrared detection could be achieved if this device can be operated in the coherent or heterodyne mode. A major program in the Physics Division of Oak Ridge National Laboratory (ORNL) presently uses individual heterodyne infrared detectors in a system under development for fusion diagnostics. An imaging infrared heterodyne detector would represent a major breakthrough in this area and would have major implications for other plasma diagnostic programs. The Participant is also studying the application of this device in the area of laser radar.

  1. Measurement of the Fluorescence Quantum Yield Using a Spectrometer With an Integrating Sphere Detector

    PubMed Central

    Gaigalas, Adolfas K.; Wang, Lili

    2008-01-01

    A method is proposed for measuring the fluorescence quantum yield (QY) using a commercial spectrophotometer with a 150 mm integrating sphere (IS) detector. The IS detector is equipped with an internal cuvette holder so that absorbance measurements can be performed with the cuvette inside the IS. In addition, the spectrophotometer has a cuvette holder outside the IS for performing conventional absorbance measurements. It is shown that the fluorescence quantum yield can be obtained from a combination of absorbance measurements of the buffer and the analyte solution inside and outside the IS detector. Due to the simultaneous detection of incident and fluorescent photons, the absorbance measurements inside the IS need to be adjusted for the wavelength dependence of the photomultiplier detector and the wavelength dependence of the IS magnification factor. An estimate of the fluorescence emission spectrum is needed for proper application of the wavelength-dependent adjustments. Results are presented for fluorescein, quinine sulfate, myoglobin, rhodamine B and erythrosin B. The QY of fluorescein in 0.1 mol/L NaOH was determined as 0.90±0.02 where the uncertainty is equal to the standard deviation of three independent measurements. The method provides a convenient and rapid estimate of the fluorescence quantum yield. Refinements of the measurement model and the characteristics of the IS detector can in principle yield an accurate value of the absolute fluorescence quantum yield. PMID:27096110

  2. Magnetotransport in very long wave infrared quantum cascade detectors: Analyzing the current with and without illumination

    SciTech Connect

    Jasnot, François-Régis; Maëro, Simon; Vaulchier, Louis-Anne de; Guldner, Yves; Carosella, Francesca; Ferreira, Robson; Delga, Alexandre; Doyennette, Laetitia; Berger, Vincent; Carras, Mathieu

    2013-12-04

    Current measurements of current have been performed on a very long wave infrared quantum cascade detector under magnetic field under both dark and light conditions. The analysis of dark current as a function of temperature highlights three regimes of transport. Under illumination, the model developed is in agreement with the oscillatory component of the experimental magnetophotocurrent. It allows to identify the key points controlling the electronic transport: crucial role of extraction, location of ionized impurities and scattering mechanisms involved in the structure. This work is valuable for the future conception of high-performance quantum cascade detectors in the infrared range.

  3. Performance of SEM scintillation detector evaluated by modulation transfer function and detective quantum efficiency function.

    PubMed

    Bok, Jan; Schauer, Petr

    2014-01-01

    In the paper, the SEM detector is evaluated by the modulation transfer function (MTF) which expresses the detector's influence on the SEM image contrast. This is a novel approach, since the MTF was used previously to describe only the area imaging detectors, or whole imaging systems. The measurement technique and calculation of the MTF for the SEM detector are presented. In addition, the measurement and calculation of the detective quantum efficiency (DQE) as a function of the spatial frequency for the SEM detector are described. In this technique, the time modulated e-beam is used in order to create well-defined input signal for the detector. The MTF and DQE measurements are demonstrated on the Everhart-Thornley scintillation detector. This detector was alternated using the YAG:Ce, YAP:Ce, and CRY18 single-crystal scintillators. The presented MTF and DQE characteristics show good imaging properties of the detectors with the YAP:Ce or CRY18 scintillator, especially for a specific type of the e-beam scan. The results demonstrate the great benefit of the description of SEM detectors using the MTF and DQE. In addition, point-by-point and continual-sweep e-beam scans in SEM were discussed and their influence on the image quality was revealed using the MTF. © 2013 Wiley Periodicals, Inc.

  4. Quantum Ring Intersubband Detectors for Terahertz Detection at High Temperatures

    DTIC Science & Technology

    2013-04-01

    detectors where a seven segment display and an incandescent light bulb filament were imaged in the 1-3 THz range. 15. SUBJECT TERMS 16...Detectors: We demonstrated imaging of an incandescent light bulb filament and of a seven segment display using the raster scan technique and...or hot. However in this experiment we choose to image an incandescent light bulb filament and a seven segment display because of the size

  5. Quantum efficiency performances of the NIR European Large Format Array detectors tested at ESTEC

    NASA Astrophysics Data System (ADS)

    Crouzet, P.-E.; Duvet, L.; de Wit, F.; Beaufort, T.; Blommaert, S.; Butler, B.; Van Duinkerken, G.; ter Haar, J.; Heijnen, J.; van der Luijt, K.; Smit, H.

    2015-10-01

    Publisher's Note: This paper, originally published on 10/12/2015, was replaced with a corrected/revised version on 10/23/2015. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. The Payload Technology Validation Section (SRE-FV) at ESTEC has the goal to validate new technology for future or on-going mission. In this framework, a test set up to characterize the quantum efficiency of near-infrared (NIR) detectors has been created. In the context of the NIR European Large Format Array ("LFA"), 3 deliverables detectors coming from SELEX-UK/ATC (UK) on one side, and CEA/LETI- CEA/IRFU-SOFRADIR (FR) on the other side were characterized. The quantum efficiency of an HAWAII-2RG detector from Teledyne was as well measured. The capability to compare on the same setup detectors from different manufacturers is a unique asset for the future mission preparation office. This publication will present the quantum efficiency results of a HAWAII-2RG detector from Teledyne with a 2.5um cut off compared to the LFA European detectors prototypes developed independently by SELEX-UK/ATC (UK) on one side, and CEA/LETI- CEA/IRFU-SOFRADIR (FR) on the other side.

  6. Quantum limits on the detection sensitivity of a linear detector with feedback

    NASA Astrophysics Data System (ADS)

    Gao, Yang

    2017-03-01

    We show that the detection sensitivity of a linear detector is lower bounded by some quantum limits. For the force sensitivity, which is relevant for atomic force microscopes, the lower bound is given by the so-called ultimate quantum limit (UQL). For the displacement sensitivity, which is relevant for detecting gravitational waves, a generalized lower bound that can overcome the usual UQL is obtained.

  7. Quantum parameter estimation in the Unruh–DeWitt detector model

    SciTech Connect

    Hao, Xiang; Wu, Yinzhong

    2016-09-15

    Relativistic effects on the precision of quantum metrology for particle detectors, such as two-level atoms are studied. The quantum Fisher information is used to estimate the phase sensitivity of atoms in non-inertial motions or in gravitational fields. The Unruh–DeWitt model is applicable to the investigation of the dynamics of a uniformly accelerated atom weakly coupled to a massless scalar vacuum field. When a measuring device is in the same relativistic motion as the atom, the dynamical behavior of quantum Fisher information as a function of Rindler proper time is obtained. It is found out that monotonic decrease in phase sensitivity is characteristic of dynamics of relativistic quantum estimation. The origin of the decay of quantum Fisher information is the thermal bath that the accelerated detector finds itself in due to the Unruh effect. To improve relativistic quantum metrology, we reasonably take into account two reflecting plane boundaries perpendicular to each other. The presence of the reflecting boundary can shield the detector from the thermal bath in some sense.

  8. Room temperature single-photon detectors for high bit rate quantum key distribution

    SciTech Connect

    Comandar, L. C.; Patel, K. A.; Fröhlich, B. Lucamarini, M.; Sharpe, A. W.; Dynes, J. F.; Yuan, Z. L.; Shields, A. J.; Penty, R. V.

    2014-01-13

    We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50 km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.

  9. The decoy matters! Hormonal and behavioural differences in the reaction of territorial European robins towards stuffed and live decoys.

    PubMed

    Scriba, Madeleine; Goymann, Wolfgang

    2008-02-01

    Simulated territorial intrusions (STIs) represent a commonly used experimental manipulation to test behavioural and hormonal responses of birds towards conspecific intruders. They are typically either conducted with live birds in a cage or with stuffed decoys. To our knowledge, nobody has tested whether these two different kinds of stimuli elicit the same kind of behavioural and hormonal response. We compared the reactions of European robins to STIs with stuffed and live decoys to see whether these stimuli are perceived in similar ways. We conducted STIs by placing a stuffed or a live decoy in a territory, played-back robin song and recorded the behaviour for at least 10min. Then, the focal bird was caught, and a blood sample was taken to measure hormone concentrations. Males challenged with a stuffed decoy responded with more threats and movements around the decoy than males that were exposed to a live decoy. Furthermore, males challenged with a stuffed decoy had significantly higher corticosterone levels than males challenged with a live decoy. Androgen levels did not differ between treatments. The differential behavioural and corticosterone response of robins to stuffed and live decoys suggests that robins may perceive stuffed decoys as more threatening than live decoys. Future investigations using STI experiments should be aware of the potential impact different kinds of decoys may have on the behavioural and hormonal response of birds during STIs.

  10. DecoyFinder: an easy-to-use python GUI application for building target-specific decoy sets.

    PubMed

    Cereto-Massagué, Adrià; Guasch, Laura; Valls, Cristina; Mulero, Miquel; Pujadas, Gerard; Garcia-Vallvé, Santiago

    2012-06-15

    Decoys are molecules that are presumed to be inactive against a target (i.e. will not likely bind to the target) and are used to validate the performance of molecular docking or a virtual screening workflow. The Directory of Useful Decoys database (http://dud.docking.org/) provides a free directory of decoys for use in virtual screening, though it only contains a limited set of decoys for 40 targets.To overcome this limitation, we have developed an application called DecoyFinder that selects, for a given collection of active ligands of a target, a set of decoys from a database of compounds. Decoys are selected if they are similar to active ligands according to five physical descriptors (molecular weight, number of rotational bonds, total hydrogen bond donors, total hydrogen bond acceptors and the octanol-water partition coefficient) without being chemically similar to any of the active ligands used as an input (according to the Tanimoto coefficient between MACCS fingerprints). To the best of our knowledge, DecoyFinder is the first application designed to build target-specific decoy sets. A complete description of the software is included on the application home page. A validation of DecoyFinder on 10 DUD targets is provided as Supplementary Table S1. DecoyFinder is freely available at http://URVnutrigenomica-CTNS.github.com/DecoyFinder.

  11. High Operating Temperature Midwave Quantum Dot Barrier Infrared Detector (QD-BIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-01-01

    The nBn or XBn barrier infrared detector has the advantage of reduced dark current resulting from suppressed Shockley-Read-Hall (SRH) recombination and surface leakage. High performance detectors and focal plane arrays (FPAs) based on InAsSb absorber lattice matched to GaSb substrate, with a matching AlAsSb unipolar electron barrier, have been demonstrated. The band gap of lattice-matched InAsSb yields a detector cutoff wavelength of approximately 4.2 ??m when operating at 150K. We report results on extending the cutoff wavelength of midwave barrier infrared detectors by incorporating self-assembled InSb quantum dots into the active area of the detector. Using this approach, we were able to extend the detector cutoff wavelength to 6 ?m, allowing the coverage of the full midwave infrared (MWIR) transmission window. The quantum dot barrier infrared detector (QD-BIRD) shows infrared response at temperatures up to 225 K.

  12. High Operating Temperature Midwave Quantum Dot Barrier Infrared Detector (QD-BIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-01-01

    The nBn or XBn barrier infrared detector has the advantage of reduced dark current resulting from suppressed Shockley-Read-Hall (SRH) recombination and surface leakage. High performance detectors and focal plane arrays (FPAs) based on InAsSb absorber lattice matched to GaSb substrate, with a matching AlAsSb unipolar electron barrier, have been demonstrated. The band gap of lattice-matched InAsSb yields a detector cutoff wavelength of approximately 4.2 ??m when operating at 150K. We report results on extending the cutoff wavelength of midwave barrier infrared detectors by incorporating self-assembled InSb quantum dots into the active area of the detector. Using this approach, we were able to extend the detector cutoff wavelength to 6 ?m, allowing the coverage of the full midwave infrared (MWIR) transmission window. The quantum dot barrier infrared detector (QD-BIRD) shows infrared response at temperatures up to 225 K.

  13. A detector combining quantum and thermal primary radiometric standards in the same artefact

    NASA Astrophysics Data System (ADS)

    White, M.; Gran, J.; Tomlin, N.; Lehman, J.

    2014-12-01

    We present the concept of a dual-mode primary standard cryogenic detector, utilizing a predictable quantum efficient silicon photodiode, and demonstrate the behaviour of the detector from room temperature down to 30 K. The detector absorbs visible radiation generating either heat or photocurrent, dependent on the selected mode of operation. In effect, this detector links optical power to fundamental constants through the two different routes of operation in the one artefact. Forward biasing of the photodiode is used in lieu of resistive heating to provide the electrical substitution power. The detector has a thermal time constant of 50 s and a sensitivity of 1.39 K mW-1. Using an LED source, we measure equivalence between the two modes of operation of 1.5% at 50 K, limited principally by our knowledge of the wavelength of the emitted radiation of the source.

  14. Role of decoy molecules in neuronal ischemic preconditioning

    PubMed Central

    Panneerselvam, Mathivadhani; Patel, Piyush M.; Roth, David M.; Kidd, Michael W.; Chin-Lee, Blake; Head, Brian P.; Niesman, Ingrid R.; Inoue, Satoki; Patel, Hemal H.; Davis, Daniel P.

    2011-01-01

    Decoy receptors bind with TNF related apoptosis inducing ligands (TRAIL) but do not contain the cytoplasmic domains necessary to transduce apoptotic signals. We hypothesized that decoy receptors may confer neuronal protection against lethal ischemia after ischemic preconditioning (IPC). Mixed cortical neurons were exposed to IPC one day prior to TRAIL treatment or lethal ischemia. IPC increased decoy receptor but reduced death receptor expression compared to lethal ischemia. IPC-induced increase in decoy receptor expression was reduced by prior treatment with CAPE, a nuclear factor-kappa B inhibitor (NFκB). Expression of decoy molecules, dependent on NFκB, may mediate neuronal survival induced by IPC. PMID:21315738

  15. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking

    PubMed Central

    2012-01-01

    A key metric to assess molecular docking remains ligand enrichment against challenging decoys. Whereas the directory of useful decoys (DUD) has been widely used, clear areas for optimization have emerged. Here we describe an improved benchmarking set that includes more diverse targets such as GPCRs and ion channels, totaling 102 proteins with 22886 clustered ligands drawn from ChEMBL, each with 50 property-matched decoys drawn from ZINC. To ensure chemotype diversity, we cluster each target’s ligands by their Bemis–Murcko atomic frameworks. We add net charge to the matched physicochemical properties and include only the most dissimilar decoys, by topology, from the ligands. An online automated tool (http://decoys.docking.org) generates these improved matched decoys for user-supplied ligands. We test this data set by docking all 102 targets, using the results to improve the balance between ligand desolvation and electrostatics in DOCK 3.6. The complete DUD-E benchmarking set is freely available at http://dude.docking.org. PMID:22716043

  16. Qubit detection with a T-shaped double quantum dot detector

    NASA Astrophysics Data System (ADS)

    Luo, JunYan; Jiao, HuJun; Hu, Jing; He, Xiao-Ling; Lang, XiaoLi; Wang, Shi-Kuan

    2015-07-01

    We propose to continuously monitor a charge qubit by utilizing a T-shaped double quantum dot detector, in which the qubit and double dot are arranged in such a unique way that the detector turns out to be particularly susceptible to the charge states of the qubit. Special attention is paid to the regime where acquisition of qubit information and backaction upon the measured system exhibit nontrivial correlation. The intrinsic dynamics of the qubit gives rise to dynamical blockade of tunneling events through the detector, resulting in a super-Poissonian noise. However, such a pronounced enhancement of the detector's shot noise does not necessarily produce a rising dephasing rate. In contrast, an inhibition of dephasing is entailed by the reduction of information acquisition in the dynamically blockaded regimes. We further reveal the important impact of the charge fluctuations on the measurement characteristics. Noticeably, under the condition of symmetric junction capacitances the noise pedestal of the circuit current is completely suppressed, leading to a divergent signal-to-noise ratio, and eventually to a violation of the Korotkov-Averin bound in quantum measurement. Our study offers the possibility for a double dot detector to reach the quantum limited effectiveness in a transparent manner.

  17. Ultra-subwavelength resonators for high temperature high performance quantum detectors

    NASA Astrophysics Data System (ADS)

    Palaferri, Daniele; Todorov, Yanko; Mottaghizadeh, Alireza; Frucci, Giulia; Biasiol, Giorgio; Sirtori, Carlo

    2016-11-01

    In this article we have investigated two important properties of metallic nano-resonators which can substantially improve the temperature performances of infrared quantum detectors. The first is the antenna effect that increases the effective surface of photon collection and the second is the subwavelength metallic confinement that compresses radiation into very small volumes of interaction. To quantify our analysis we have defined and discussed two figures of merit, the collection area A coll and the focusing factor F. Both quantities depend solely on the geometrical parameters of the structure and can be applied to improve the performance of any detector active region. In the last part, we describe three-dimensional electronic nano-resonators that provide highly subwavelength confinement of the electromagnetic energy, beyond the microcavity limits and illustrate that these device architectures have a tremendous potential to increase the temperature of operation of infrared quantum detectors.

  18. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources.

    PubMed

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-10-16

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation.

  19. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources

    NASA Astrophysics Data System (ADS)

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-10-01

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation.

  20. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources

    PubMed Central

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-01-01

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation. PMID:26471947

  1. Quantum-state preparation and macroscopic entanglement in gravitational-wave detectors

    SciTech Connect

    Mueller-Ebhardt, Helge; Rehbein, Henning; Schnabel, Roman; Danzmann, Karsten; Li Chao; Mino, Yasushi; Chen Yanbei

    2009-10-15

    Long-baseline laser-interferometer gravitational-wave (GW) detectors are operating at a factor of {approx}10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band (in the sense that {delta}f{approx}f). Such a low-noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of {approx}200. This result, along with the prospect for further improvements, heralds the possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using GW detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum-state preparation and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses and the performance of the planned Advanced LIGO interferometers in quantum-state preparation.

  2. Quantum-state preparation and macroscopic entanglement in gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Müller-Ebhardt, Helge; Rehbein, Henning; Li, Chao; Mino, Yasushi; Somiya, Kentaro; Schnabel, Roman; Danzmann, Karsten; Chen, Yanbei

    2009-10-01

    Long-baseline laser-interferometer gravitational-wave (GW) detectors are operating at a factor of ˜10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band (in the sense that Δf˜f ). Such a low-noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of ˜200 . This result, along with the prospect for further improvements, heralds the possibility of experimentally probing macroscopic quantum mechanics (MQM)—quantum mechanical behavior of objects in the realm of everyday experience—using GW detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer’s classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum-state preparation and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses and the performance of the planned Advanced LIGO interferometers in quantum-state preparation.

  3. The role of nanostructures and quantum dots in detectors and solar cells for radiation hardened space applications

    NASA Astrophysics Data System (ADS)

    Taylor, Edward W.

    2006-08-01

    Highly efficient IR detectors and photo-voltaic solar cells that incorporate nanotechnology composed of nanostructures and nanoparticles (including quantum dots) will play an important role in advanced photonic space applications. While the development of Si-based solar cells has successfully evolved into an efficient and economical technology these devices are predicted to soon reach their theoretical 29% limit efficiency. Alternative organic/polymer solar cells and IR detectors incorporating quantum dots and various nanoparticle or nanostructure materials are emerging which are expected to eventually outperform current state-of-the-art detectors and solar cell devices. By tailoring the QD design wavelength-optimized detectors and detector arrays operating over the UV-IR range can be realized. Specific examples for achieving near-IR photovoltaic and photoconductive detectors with high quantum efficiencies are presented along with brief examples of empirical data reported for assessing the radiation resistance of QD nanocrystalline devices for application in space environments.

  4. Electronic-state-controlled reset operation in quantum dot resonant-tunneling single-photon detectors

    SciTech Connect

    Weng, Q. C.; Zhu, Z. Q.; An, Z. H.; Song, J. D.; Choi, W. J.

    2014-02-03

    The authors present a systematic study of an introduced reset operation on quantum dot (QD) single photon detectors operating at 77 K. The detectors are based on an AlAs/GaAs/AlAs double-barrier resonant tunneling diode with an adjacent layer of self-assembled InAs QDs. Sensitive single-photon detection in high (dI)/(dV) region with suppressed current fluctuations is achieved. The dynamic detection range is extended up to at least 10{sup 4} photons/s for sensitive imaging applications by keeping the device far from saturation by employing an appropriate reset frequency.

  5. High-speed, room-temperature quantum cascade detectors at 4.3 μm

    SciTech Connect

    Zhou, Yuhong; Zhai, Shenqiang; Wang, Fengjiao; Liu, Junqi E-mail: fqliu@red.semi.ac.cn; Liu, Fengqi E-mail: fqliu@red.semi.ac.cn; Liu, Shuman; Zhang, Jinchuan; Zhuo, Ning; Wang, Lijun; Wang, ZhanGuo

    2016-03-15

    We present high-speed, room-temperature operated 4.3 μm quantum cascade detectors. The devices are processed as square mesas with 50 Ω coplanar access line and air-bridge connector. The high frequency features are explored using microwave rectification technique and a RLC circuit model. The -3 dB cutoff frequency is experimentally 9 GHz and 4 GHz for 20×20 μm{sup 2} and 50×50 μm{sup 2} detectors, respectively. The equivalent circuit analysis shows that a second order filter feature governs the devices. Higher cutoff frequency can be achieved by eliminate the parasitics further.

  6. Towards Quantum Experiments with Human Eye Detectors Based on Cloning via Stimulated Emission ?

    NASA Astrophysics Data System (ADS)

    De Martini, Francesco

    2010-05-01

    In a recent theoretical paper published in Physical Review Letters, Sekatsky, Brunner, Branciard, Gisin, Simon report an extended investigation on some properties of the human eye that affect its behavior as a quantum detector. We believe that the content of this work, albeit appealing at fist sight, is highly questionable simply because the human eye cannot be adopted as a sensing device within any quantum measurement apparatus. Furthermore, the criticism raised by these Authors against a real experiment on Micro—Macro entanglement recently published in Physical Review Letters (100, 253601, 2008) is found misleading and misses its target.

  7. Quantum-well detector concept for hyperspectral coregistered full Stokes vector detection

    NASA Astrophysics Data System (ADS)

    Serna, Mario

    2002-09-01

    By layering quantum well stacks separated by partially transmissive linear gratings, similar to a multi-color QWIP, one may be able to detect the full Stokes vector at a single pixel. Such a detector would greatly aid polarization-based automated algorithms to detect targets from earth-gazing platforms. We report results from a theoretical calculation of normally incident infrared light absorbed by quantum wells in an eight-layer quantum-well/grating structure. The structure consists of four quantum-well stacks, of 50 quantum wells each, separated by contact layers and lamellar gratings. The gratings following the first three quantum well stacks are formed by perfectly conducting rectangular strips separated by a transparent dielectric that allows some light to be transmitted. The top grating, following the fourth quantum well stack, is completely reflective. Each of the four lamellar gratings is oriented at a different angle. Incident radiation is diffracted and reflected to different orders and at different angles at each of the four gratings. The model is based on a uniaxial-optics transfer-matrix technique. We calculate the energy absorbed by each of the layers. This in turn allows one to predict and compare which layers will respond for partially- and fully-polarized incident light of either linear or circular polarization.

  8. The sandwich InGaAs/GaAs quantum dot structure for IR photoelectric detectors

    SciTech Connect

    Moldavskaya, L. D. Vostokov, N. V.; Gaponova, D. M.; Danil'tsev, V. M.; Drozdov, M. N.; Drozdov, Yu. N.; Shashkin, V. I.

    2008-01-15

    A new possibility for growing InAs/GaAs quantum dot heterostructures for infrared photoelectric detectors by metal-organic vapor-phase epitaxy is discussed. The specific features of the technological process are the prolonged time of growth of quantum dots and the alternation of the low-and high-temperature modes of overgrowing the quantum dots with GaAs barrier layers. During overgrowth, large-sized quantum dots are partially dissolved, and the secondary InGaAs quantum well is formed of the material of the dissolved large islands. In this case, a sandwich structure is formed. In this structure, quantum dots are arranged between two thin layers with an increased content of indium, namely, between the wetting InAs layer and the secondary InGaAs layer. The height of the quantum dots depends on the thickness of the GaAs layer grown at a comparatively low temperature. The structures exhibit intraband photoconductivity at a wavelength around 4.5 {mu}m at temperatures up to 200 K. At 90 K, the photosensitivity is 0.5 A/W, and the detectivity is 3 Multiplication-Sign 10{sup 9} cm Hz{sup 1/2}W{sup -1}.

  9. The sandwich InGaAs/GaAs quantum dot structure for IR photoelectric detectors

    SciTech Connect

    Moldavskaya, L. D. Vostokov, N. V.; Gaponova, D. M.; Danil'tsev, V. M.; Drozdov, M. N.; Drozdov, Yu. N.; Shashkin, V. I.

    2008-01-15

    A new possibility for growing InAs/GaAs quantum dot heterostructures for infrared photoelectric detectors by metal-organic vapor-phase epitaxy is discussed. The specific features of the technological process are the prolonged time of growth of quantum dots and the alternation of the low-and high-temperature modes of overgrowing the quantum dots with GaAs barrier layers. During overgrowth, large-sized quantum dots are partially dissolved, and the secondary InGaAs quantum well is formed of the material of the dissolved large islands. In this case, a sandwich structure is formed. In this structure, quantum dots are arranged between two thin layers with an increased content of indium, namely, between the wetting InAs layer and the secondary InGaAs layer. The height of the quantum dots depends on the thickness of the GaAs layer grown at a comparatively low temperature. The structures exhibit intraband photoconductivity at a wavelength around 4.5 {mu}m at temperatures up to 200 K. At 90 K, the photosensitivity is 0.5 A/W, and the detectivity is 3 x 10{sup 9} cm Hz{sup 1/2}W{sup -1}.

  10. An Effectiveness Analysis of the Tactical Employment of Decoys

    DTIC Science & Technology

    1994-06-03

    counterfeiting a characteristic, a unit, z, an operation in order to distort or misrepresent own capabilities or intention." 14 NWP 34 professes that decoys are...tools of simulation. "Decoys may be physical objects with characteristics sinil to those of the evading units, or counterfeit presentations to enemy...buildings, lights, and fuel oil fires that were positioned five to ten miles from the towns which the decoys protected. 26 Although the units that operated

  11. Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths

    PubMed Central

    Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N.; Korneev, Alexander; Pernice, Wolfram H. P.

    2015-01-01

    Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10−19 W/Hz−1/2 range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms. PMID:26061283

  12. Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths.

    PubMed

    Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N; Korneev, Alexander; Pernice, Wolfram H P

    2015-06-10

    Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10(-19) W/Hz(-1/2) range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms.

  13. Electronic transport in a long wavelength infrared quantum cascade detector under dark condition

    NASA Astrophysics Data System (ADS)

    Li, L.; Zhou, X. H.; Lin, T.; Li, N.; Zhu, Z. Q.; Liu, F. Q.

    2016-09-01

    We present a joint experimental and theoretical investigation on a long wavelength infrared quantum cascade detector to reveal its dark current paths. The temperature dependence of the dark current is measured. It is shown that there are two different transport mechanisms, namely resonant tunneling at low temperatures and thermal excitation at higher temperature, dominate the carrier flow, respectively. Moreover, the experimental intersubband transition energies obtained by the magneto-transport measurements matches the theoretical predictions well. With the aid of the calculated band structures, we can explain the observed oscillation phenomena of the dark current under the magnetic field very well. The obtained results provide insight into the transport properties of quantum cascade detectors thus providing a useful tool for device optimization.

  14. Upper bound on the secret key rate distillable from effective quantum correlations with imperfect detectors

    SciTech Connect

    Moroder, Tobias; Curty, Marcos; Luetkenhaus, Norbert

    2006-01-15

    We provide a simple method to obtain an upper bound on the secret key rate that is particularly suited to analyze practical realizations of quantum key distribution protocols with imperfect devices. We consider the so-called trusted device scenario where Eve cannot modify the actual detection devices employed by Alice and Bob. The upper bound obtained is based on the available measurements results, but it includes the effect of the noise and losses present in the detectors of the legitimate users.

  15. Security of six-state quantum key distribution protocol with threshold detectors.

    PubMed

    Kato, Go; Tamaki, Kiyoshi

    2016-07-22

    The security of quantum key distribution (QKD) is established by a security proof, and the security proof puts some assumptions on the devices consisting of a QKD system. Among such assumptions, security proofs of the six-state protocol assume the use of photon number resolving (PNR) detector, and as a result the bit error rate threshold for secure key generation for the six-state protocol is higher than that for the BB84 protocol. Unfortunately, however, this type of detector is demanding in terms of technological level compared to the standard threshold detector, and removing the necessity of such a detector enhances the feasibility of the implementation of the six-state protocol. Here, we develop the security proof for the six-state protocol and show that we can use the threshold detector for the six-state protocol. Importantly, the bit error rate threshold for the key generation for the six-state protocol (12.611%) remains almost the same as the one (12.619%) that is derived from the existing security proofs assuming the use of PNR detectors. This clearly demonstrates feasibility of the six-state protocol with practical devices.

  16. Security of six-state quantum key distribution protocol with threshold detectors

    PubMed Central

    Kato, Go; Tamaki, Kiyoshi

    2016-01-01

    The security of quantum key distribution (QKD) is established by a security proof, and the security proof puts some assumptions on the devices consisting of a QKD system. Among such assumptions, security proofs of the six-state protocol assume the use of photon number resolving (PNR) detector, and as a result the bit error rate threshold for secure key generation for the six-state protocol is higher than that for the BB84 protocol. Unfortunately, however, this type of detector is demanding in terms of technological level compared to the standard threshold detector, and removing the necessity of such a detector enhances the feasibility of the implementation of the six-state protocol. Here, we develop the security proof for the six-state protocol and show that we can use the threshold detector for the six-state protocol. Importantly, the bit error rate threshold for the key generation for the six-state protocol (12.611%) remains almost the same as the one (12.619%) that is derived from the existing security proofs assuming the use of PNR detectors. This clearly demonstrates feasibility of the six-state protocol with practical devices. PMID:27443610

  17. Technical Note: Detective quantum efficiency simulation of a-Se imaging detectors using ARTEMIS.

    PubMed

    Fang, Yuan; Ito, Takaaki; Nariyuki, Fumito; Kuwabara, Takao; Badano, Aldo; Karim, Karim S

    2017-08-01

    This work studies the detective quantum efficiency (DQE) of a-Se-based solid state x-ray detectors for medical imaging applications using ARTEMIS, a Monte Carlo simulation tool for modeling x-ray photon, electron and charged carrier transport in semiconductors with the presence of applied electric field. ARTEMIS is used to model the signal formation process in a-Se. The simulation model includes x-ray photon and high-energy electron interactions, and detailed electron-hole pair transport with applied detector bias taking into account drift, diffusion, Coulomb interactions, recombination and trapping. For experimental validation, the DQE performance of prototype a-Se detectors is measured following IEC Testing Standard 62220-1-3. Comparison of simulated and experimental DQE results show reasonable agreement for RQA beam qualities. Experimental validation demonstrated within 5% percentage difference between simulation and experimental DQE results for spatial frequency above 0.25 cycles/mm using uniform applied electric field for RQA beam qualities (RQA5, RQA7 and RQA9). Results include two different prototype detectors with thicknesses of 240 μm and 1 mm. ARTEMIS can be used to model the DQE of a-Se detectors as a function of x-ray energy, detector thickness, and spatial frequency. The ARTEMIS model can be used to improve understanding of the physics of x-ray interactions in a-Se and in optimization studies for the development of novel medical imaging applications. © 2017 American Association of Physicists in Medicine.

  18. Neutron and Gamma-Ray Detectors Based on Quantum Dots

    SciTech Connect

    Dai, S.

    2000-06-01

    Through this funded project, our research group at the Oak Ridge National Laboratory has pioneered and been successful in preparing and evaluating the performance of prototypes of neutron, alpha, and gamma-ray detectors based on various types of nanoparticles. These include organic fluors [2,5-diphenyloxazole (PPO) and 1,4-bis-2-(5-phenyloxazolyl)-benzene (POPOP)]-doped polystyrene and polyvinyltoluene nanoparticles, highly crystalline inorganic ZnS-capped CdSe, ZnS, three-component CdSxSe1-x, Ce3+-doped Y2O3, and Ce3+-doped LaPO4 (LaPO4:Ce) nanocrystals (NCs) in polystyrene (PS) or polyvinyltoluene (PVT). Previously, this effort identified two strong candidate nanoparticles for neutron and gamma detection applications. These two NCs are LaPO4:Ce and CdSxSe1-x (Dai, S. et. al. manuscript in preparation; see Figures 1 and 2). Another key accomplishment of the previously funded project is the development of 6Li3PO4 nanoparticles as a neutron-absorbing material (Dai, S. et. al. manuscript in preparation). Because the size of these nanoparticles is well under the diffraction limit for visible light, the 6Li3PO4 nanoparticles can be utilized as a vehicle for doping large percentages of Li-6 into plastic scintillators for detection of thermal neutrons. Our preliminary results indicate that a transparent polymer composite containing as high as 16 wt% of the 6Li3PO4 nanoparticles can be fabricated. Figure 3 shows the pulse height spectra from thermal neutron detection of plastic scintillators made with 6Li3PO4 nanoparticles and organic fluors, PPO and POPOP. This result confirms the energy transfer from neutron capture reaction at Li-6 ions in the nanoparticles to the scintillation dyes. Polystyrene-based polymers were also proven to be good matrices for 6Li3PO4 and scintillators in neutron detection. This may be due to the fact that they are hydrogeneous matrices, which slow down neutrons and facilitate the neutron capture event. The fact that the plastic matrix has low Z

  19. On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors

    PubMed Central

    Reithmaier, G.; Lichtmannecker, S.; Reichert, T.; Hasch, P.; Müller, K.; Bichler, M.; Gross, R.; Finley, J. J.

    2013-01-01

    We report the routing of quantum light emitted by self-assembled InGaAs quantum dots (QDs) into the optical modes of a GaAs ridge waveguide and its efficient detection on-chip via evanescent coupling to NbN superconducting nanowire single photon detectors (SSPDs). The waveguide coupled SSPDs primarily detect QD luminescence, with scattered photons from the excitation laser onto the proximal detector being negligible by comparison. The SSPD detection efficiency from the evanescently coupled waveguide modes is shown to be two orders of magnitude larger when compared with operation under normal incidence illumination, due to the much longer optical interaction length. Furthermore, in-situ time resolved measurements performed using the integrated detector show an average QD spontaneous emission lifetime of 0.95 ns, measured with a timing jitter of only 72 ps. The performance metrics of the SSPD integrated directly onto GaAs nano-photonic hardware confirms the strong potential for on-chip few-photon quantum optics using such semiconductor-superconductor hybrid systems. PMID:23712624

  20. On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors.

    PubMed

    Reithmaier, G; Lichtmannecker, S; Reichert, T; Hasch, P; Müller, K; Bichler, M; Gross, R; Finley, J J

    2013-01-01

    We report the routing of quantum light emitted by self-assembled InGaAs quantum dots (QDs) into the optical modes of a GaAs ridge waveguide and its efficient detection on-chip via evanescent coupling to NbN superconducting nanowire single photon detectors (SSPDs). The waveguide coupled SSPDs primarily detect QD luminescence, with scattered photons from the excitation laser onto the proximal detector being negligible by comparison. The SSPD detection efficiency from the evanescently coupled waveguide modes is shown to be two orders of magnitude larger when compared with operation under normal incidence illumination, due to the much longer optical interaction length. Furthermore, in-situ time resolved measurements performed using the integrated detector show an average QD spontaneous emission lifetime of 0.95 ns, measured with a timing jitter of only 72 ps. The performance metrics of the SSPD integrated directly onto GaAs nano-photonic hardware confirms the strong potential for on-chip few-photon quantum optics using such semiconductor-superconductor hybrid systems.

  1. Polarization-dependent photocurrent enhancement in metamaterial-coupled quantum dots-in-a-well infrared detectors

    NASA Astrophysics Data System (ADS)

    Sharma, Yagya D.; Jun, Young Chul; Kim, Jun Oh; Brener, Igal; Krishna, Sanjay

    2014-02-01

    We demonstrate polarization-dependent photo-response enhancement in metamaterial-coupled quantum dots-in-a-well infrared detectors. A gold split-ring resonator metamaterial layer was patterned by electron-beam lithography in the detector aperture. In this integrated structure, the detector spectral response is given by the convolution of the metamaterial field enhancement and the original detector response. Our polarization-resolved measurement unambiguously shows that the spectral response can be strongly modified by metamaterial patterning. When the metamaterial resonance matches the QD absorption peak, we obtain a clear enhancement of generated photocurrent. Various metamaterial designs can be employed to implement multi-functional detector structures.

  2. Detective quantum efficiency model of single-X-ray-photon counting hybrid pixel detectors

    NASA Astrophysics Data System (ADS)

    Marchal, Julien; Medjoubi, Kadda

    2012-11-01

    A Detective Quantum Efficiency (DQE) model of single-X-ray-Photon Counting Hybrid Pixel Detectors (PC-HPDs) is presented. It applies to PC-HPDs based on semiconductor sensors such as silicon and CdTe pixel sensors. Charge-sharing effects are introduced in the expressions of imaging performance parameters such as large-area gain factor, presampling modulation transfer function and digital noise power spectrum, using the concept of threshold-dependent effective fill-factor. A simple X-ray induced charge distribution approximation is used to derive a practical formula for the threshold-dependent large-area gain factor, i.e. the integral X-ray spectrum which can be indirectly measured with a PC-HPD. This detector model was applied to standard synchrotron X-ray PC-HPDs: MEDIPIX3, PILATUS and XPAD detectors.

  3. Two-way deterministic quantum key distribution against detector-side-channel attacks

    NASA Astrophysics Data System (ADS)

    Lu, Hua; Fung, Chi-Hang Fred; Cai, Qing-yu

    2013-10-01

    In a two-way deterministic quantum key distribution (DQKD) protocol, Bob randomly prepares qubits in one of four states and sends them to Alice. To encode a bit, Alice performs an operation on each received qubit and returns it to Bob. Bob then measures the backward qubits to learn about Alice's operations and hence the key bits. Recently, we proved the unconditional security of the final key of this protocol in the ideal device setting. In this paper, we prove that two-way DQKD protocols are immune to all detector-side-channel attacks at Bob's side, while we assume ideal detectors at Alice's side for error testing. Our result represents a step forward in making DQKD protocols secure against general detector-side-channel attacks.

  4. Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications

    NASA Astrophysics Data System (ADS)

    Gol'Tsman, G. N.; Korneev, A.; Rubtsova, I.; Milostnaya, I.; Chulkova, G.; Minaeva, O.; Smirnov, K.; Voronov, B.; Sysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, Roman

    2005-03-01

    We present our progress on the research and development of NbN superconducting single-photon detectors (SSPD's) for ultrafast counting of near-infrared photons for secure quantum communications. Our SSPD's operate in the quantum detection mode based on the photon-induced hotspot formation and subsequent development of a transient resistive barrier across an ultrathin and submicron-width superconducting stripe. The devices are fabricated from 4-nm-thick NbN films and kept in the 4.2- to 2-K temperature range. The detector experimental quantum efficiency in the photon-counting mode reaches above 40% for the visible light and up to 30% in the 1.3- to 1.55-μm wavelength range with dark counts below 0.01 per second. The experimental real-time counting rate is above 2 GHz and is limited by our readout electronics. The SSPD's timing jitter is below 18 ps, and the best-measured value of the noise-equivalent power (NEP) is 5 × 10-21 W/Hz1/2 at 1.3 μm. In terms of quantum efficiency, timing jitter, and maximum counting rate, our NbN SSPD's significantly outperform semiconductor avalanche photodiodes and photomultipliers in the 1.3- to 1.55-μm range.

  5. Quantum variational measurement and the optical lever intracavity topology of gravitational-wave detectors

    SciTech Connect

    Khalili, F. Ya.

    2007-04-15

    The intracavity topologies of laser gravitational-wave detectors proposed several years ago are the promising way to obtain sensitivity of these devices significantly better than the Standard Quantum Limit (SQL). In essence, the intracavity detector is a two-stage device where the end mirrors displacement created by the gravitational wave is transferred to the displacement of an additional local mirror by means of the optical rigidity. The local mirror positions have to be monitored by an additional local meter. It is evident that the local meter precision defines the sensitivity of the detector. To overcome the SQL, the quantum variational measurement can be used in the local meter. In this method a frequency-dependent correlation between the meter backaction noise and measurement noise is introduced, which allows us to eliminate the backaction noise component from the meter output signal. This correlation is created by means of an additional filter cavity. In this article the sensitivity limitations of this scheme imposed by the optical losses both in the local meter itself and in the filter cavity are estimated. It is shown that the main sensitivity limitation stems from the filter cavity losses. In order to overcome it, it is necessary to increase the filter cavity length. In a preliminary prototype experiment, an approximate 10 m long filter cavity can be used to obtain sensitivity approximately 2-3 times better than the SQL. For future Quantum Non-Demolition (QND) gravitational-wave detectors with sensitivity about 10 times better than the SQL, the filter cavity length should be within kilometer range.

  6. Direct observation of bosonic quantum interference of surface plasmon polaritons using photon-number-resolving detectors

    NASA Astrophysics Data System (ADS)

    Fujii, Go; Fukuda, Daiji; Inoue, Shuichiro

    2014-08-01

    Quantum plasmonics is a field of research combining plasmonics with quantum optics and investigates interactions between photons and metallic nanostructures. So far, it has been proven that quantum properties of single photons to excite single surface plasmon polaritons (SPPs) are preserved in the process of photon-SPP-photon mode conversion in plasmonic nanostructures, which suggests the potential application of SPPs to the quantum information processing (QIP). Recently the Hong-Ou-Mandel (HOM) interference of single SPPs was observed in a plasmonic circuitry. However, the visibility was below the classical limit (50%) due to the simultaneous excitation of distinguishable SPP modes. We employed a directional coupler based on long-range surface-plasmon-polariton waveguides (LRSPP-DC) and superconducting photon-number-resolving detectors to directly observe the bosonic quantum interference of single SPPs beyond the classical limit. In addition, we demonstrated the indistinguishability of photons that excite single SPPs is well preserved in the process of photon-SPP mode conversion.

  7. Wavelength sensitive detector based on ICD in two coupled quantum wells

    NASA Astrophysics Data System (ADS)

    Goldzak, Tamar; Gilary, Ido; Moiseyev, Nimrod

    2014-05-01

    We design a wavelength sensitive detector based on inter coulombic decay (ICD) mechanism in a two-quantum well nano-structure. The two coupled quantum wells are designed to satisfy the specific conditions which allow the ICD to occur. In this setup, by absorbing light an electron in one well is excited. Its relaxation back to the ground state is a non-radiative process which transfers the excess energy to the ionization of the electron in the neighboring well into the continuum. Only radiation with a specific wavelength will be absorbed, when the wavelength matches the excitation energy in the quantum well. By applying a weak bias a current is obtained even when light with a very low intensity is absorbed. For the ICD to be dominant decay mechanism it must prevail over all other possible competitive decay processes. We have found that the lifetime of the ICD is on the timescale of picoseconds. Control over the ICD lifetime can be achieved by variation of different parameters in the two quantum well nano-structure. The most useful parameter is the distance between the two quantum wells. We show that as the distance decreases the decay rate of the ICD increases. Furthermore the distance can be tuned such that the emitted electron would be in a metastable state in the continuum (a resonance state); this causes the life time of the ICD to be an order of magnitude smaller, and improves the efficiency of the ICD.

  8. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  9. First demonstration of plasmonic GaN quantum cascade detectors with enhanced efficiency at normal incidence.

    PubMed

    Pesach, Asaf; Sakr, Salam; Giraud, Etienne; Sorias, Ofir; Gal, Lior; Tchernycheva, Maria; Orenstein, Meir; Grandjean, Nicolas; Julien, Francois H; Bahir, Gad

    2014-08-25

    We have designed, fabricated and measured the first plasmon-assisted normal incidence GaN/AlN quantum cascade detector (QCD) making use of the surface plasmon resonance of a two-dimensional nanohole Au array integrated on top of the detector absorption region. The spectral response of the detector at room temperature is peaked at the plasmon resonance of 1.82 μm. We show that the presence of the nanohole array induces an absolute enhancement of the responsivity by a factor of ~30 over that of the bare device at normal incidence and by a factor of 3 with respect to illumination by the 45° polished side facet. We show that this significant improvement arises from two phenomena, namely, the polarization rotation of the impinging light from tangential to normal induced by the plasmonic structure and from the enhancement of the absorption cross-section per quantum well due to the near-field optical intensity of the plasmonic wave.

  10. Development and application of InAsP/InP quantum well infrared detector

    SciTech Connect

    Geetanjali, Porwal, S.; Kumar, R.; Dixit, V. K.; Sharma, T. K.; Oak, S. M.

    2016-05-23

    InAs{sub x}P{sub 1-x}/InP quantum wells grown using metal organic vapor phase epitaxy are investigated for infrared detector applications. The structural parameters of the QWs are evaluated from high resolution x-ray diffraction. The electronic transition energies measured from surface photo voltage and photoconductivity confirms that these QWs can be used for fabricating IR detectors in the wide wavelength range, i.e. 0.9–1.46 µm by inter-band transitions and 7–18 µm by inter-sub-band transitions. Subsequently the functionality of one such fabricated InAs{sub x}P{sub 1-x}/InPQW detector is verified by measuring the photoluminescence of suitable semiconductor quantum well structure. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 24 June 2016. The original version supplied to AIP Publishing contained an error in the Figures 1 and 2 where the right side of the images were cutoff. The error has been corrected in the updated and re-published article.

  11. Development and application of InAsP/InP quantum well infrared detector

    NASA Astrophysics Data System (ADS)

    Geetanjali, Porwal, S.; Kumar, R.; Dixit, V. K.; Sharma, T. K.; Oak, S. M.

    2016-05-01

    InAsxP1-x/InP quantum wells grown using metal organic vapor phase epitaxy are investigated for infrared detector applications. The structural parameters of the QWs are evaluated from high resolution x-ray diffraction. The electronic transition energies measured from surface photo voltage and photoconductivity confirms that these QWs can be used for fabricating IR detectors in the wide wavelength range, i.e. 0.9-1.46 µm by inter-band transitions and 7-18 µm by inter-sub-band transitions. Subsequently the functionality of one such fabricated InAsxP1-x/InPQW detector is verified by measuring the photoluminescence of suitable semiconductor quantum well structure. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 24 June 2016. The original version supplied to AIP Publishing contained an error in the Figures 1 and 2 where the right side of the images were cutoff. The error has been corrected in the updated and re-published article.

  12. Quantum which-way information and fringe visibility when the detector is entangled with an ancilla

    NASA Astrophysics Data System (ADS)

    Prabhu Tej, J.; Devi, A. R. Usha; Karthik, H. S.; Sudha, Rajagopal, A. K.

    2014-06-01

    Quantum-mechanical wave-particle duality is quantified in terms of a trade-off relation between the fringe visibility and the which-way distinguishability in an interference experiment. This relation was recently generalized by Banaszek et al. [Nat. Commun. 4, 2594 (2013), 10.1038/ncomms3594] when the particle is equipped with an internal degree of freedom such as spin. Here, we extend the visibility-distinguishability trade-off relation to quantum interference of a particle possessing an internal degree of freedom, when the which-way detector state is entangled with an ancillary system. We introduce an extended which-way distinguishability DE and the associated extended fringe visibility VE, satisfying the inequality DE2+VE2≤1 in this scenario. We illustrate, with the help of three specific examples, that while the which-way information inferred solely from the detector state (without ancilla) vanishes, the extended distinguishability retrievable via measurements on the detector-ancilla entangled state is nonzero. Furthermore, in all the three examples, the extended visibility and the generalized visibility (which was introduced by Banaszek et al.) match identically with each other.

  13. Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications

    NASA Astrophysics Data System (ADS)

    Verevkin, A.; Pearlman, A.; Słysz, W.; Zhang, J.; Currie, M.; Korneev, A.; Chulkova, G.; Okunev, O.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'Tsman, G. N.; Sobolewski, Roman

    2004-09-01

    The paper reports progress on the design and development of niobium-nitride, superconducting single-photon detectors (SSPDs) for ultrafast counting of near-infrared photons for secure quantum communications. The SSPDs operate in the quantum detection mode, based on photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-width superconducting stripe. The devices are fabricated from 3.5 nm thick NbN films and kept at cryogenic (liquid helium) temperatures inside a cryostat. The detector experimental quantum efficiency in the photon-counting mode reaches above 20% in the visible radiation range and up to 10% at the 1.3-1.55 µm infrared range. The dark counts are below 0.01 per second. The measured real-time counting rate is above 2 GHz and is limited by readout electronics (the intrinsic response time is below 30 ps). The SSPD jitter is below 18 ps, and the best-measured value of the noise-equivalent power (NEP) is 2 × 10-18 W/Hz1/2 at 1.3 µm. In terms of photon-counting efficiency and speed, these NbN SSPDs significantly outperform semiconductor avalanche photodiodes and photomultipliers.

  14. Practical expressions describing detective quantum efficiency in flat-panel detectors

    NASA Astrophysics Data System (ADS)

    Kim, H. K.

    2011-11-01

    In radiology, image quality excellence is a balance between system performance and patient dose, hence x-ray systems must be designed to ensure the maximum image quality is obtained for the lowest consistent dose. The concept of detective quantum efficiency (DQE) is widely used to quantify, understand, measure, and predict the performance of x-ray detectors and imaging systems. Cascaded linear-systems theory can be used to estimate DQE based on the system design parameters and this theoretical DQE can be utilized for determining the impact of various physical processes, such as secondary quantum sinks, noise aliasing, reabsorption noise, and others. However, the prediction of DQE usually requires tremendous efforts to determine each parameter consisting of the cascaded linear-systems model. In this paper, practical DQE formalisms assessing both the photoconductor- and scintillator-based flat-panel detectors under quantum-noise-limited operation are described. The developed formalisms are experimentally validated and discussed for their limits. The formalisms described in this paper would be helpful for the rapid prediction of the DQE performances of developing systems as well as the optimal design of systems.

  15. Analysis of the detective quantum efficiency of a developmental detector for digital mammography.

    PubMed

    Williams, M B; Simoni, P U; Smilowitz, L; Stanton, M; Phillips, W; Stewart, A

    1999-11-01

    We are developing a modular detector for applications in full field digital mammography and for diagnostic breast imaging. The detector is based on a design that has been refined over the past decade for applications in x-ray crystallography [Kalata et al., Proc. SPIE 1345, 270-279 (1990); Phillips et al. ibid. 2009, 133-138 (1993), Phillips et al., Nucl. Instrum. Methods Phys. Rev. A 334, 621-630 (1993)]. The full field mammographic detector, currently undergoing clinical evaluation, is formed from a 19 cm x 28 cm phosphor screen, read out by a 2 x 3 array of butted charge-coupled device (CCD) modules. Each 2k x 2k CCD is optically coupled to the phosphor via a fiber optic taper with dimensions of 9.4 cm x 9.4cm at the phosphor. This paper describes the imaging performance of a two-module prototype, built using a similar design. In this paper we use cascaded linear systems analysis to develop a model for calculating the spatial frequency dependent noise power spectrum (NPS) and detective quantum efficiency (DQE) of the detector using the measured modulation transfer function (MTF). We compare results of the calculation with the measured NPS and DQE of the prototype. Calculated and measured DQEs are compared over a range of clinically relevant x-ray exposures and kVps. We find that for x-ray photon energies between 10 and 28 keV, the detector gain ranges between 2.5 and 3.7 CCD electrons per incident x-ray, or approximately 5-8 electrons per absorbed x ray. Using a Mo/Mo beam and acrylic phantom, over a detector entrance exposure range of approximately 10 to 80 mR, the volume under the measured 2-d NPS of the prototype detector is proportional to the x-ray exposure, indicating quantum limited performance. Substantial agreement between the calculated and measured values was obtained for the frequency and exposure dependent NPS and DQE over a range of tube voltage from 25 to 30 kVp.

  16. III-nitride quantum cascade detector grown by metal organic chemical vapor deposition

    SciTech Connect

    Song, Yu Huang, Tzu-Yung; Badami, Pranav; Gmachl, Claire; Bhat, Rajaram; Zah, Chung-En

    2014-11-03

    Quantum cascade (QC) detectors in the GaN/Al{sub x}Ga{sub 1−x}N material system grown by metal organic chemical vapor deposition are designed, fabricated, and characterized. Only two material compositions, i.e., GaN as wells and Al{sub 0.5}Ga{sub 0.5}N as barriers are used in the active layers. The QC detectors operates around 4 μm, with a peak responsivity of up to ∼100 μA/W and a detectivity of up to 10{sup 8} Jones at the background limited infrared performance temperature around 140 K.

  17. Detective quantum efficiency: a standard test to ensure optimal detector performance and low patient exposures

    NASA Astrophysics Data System (ADS)

    Escartin, Terenz R.; Nano, Tomi F.; Cunningham, Ian A.

    2016-03-01

    The detective quantum efficiency (DQE), expressed as a function of spatial frequency, describes the ability of an x-ray detector to produce high signal-to-noise ratio (SNR) images. While regulatory and scientific communities have used the DQE as a primary metric for optimizing detector design, the DQE is rarely used by end users to ensure high system performance is maintained. Of concern is that image quality varies across different systems for the same exposures with no current measures available to describe system performance. Therefore, here we conducted an initial DQE measurement survey of clinical x-ray systems using a DQE-testing instrument to identify their range of performance. Following laboratory validation, experiments revealed that the DQE of five different systems under the same exposure level (8.0 μGy) ranged from 0.36 to 0.75 at low spatial frequencies, and 0.02 to 0.4 at high spatial frequencies (3.5 cycles/mm). Furthermore, the DQE dropped substantially with decreasing detector exposure by a factor of up to 1.5x in the lowest spatial frequency, and a factor of 10x at 3.5 cycles/mm due to the effect of detector readout noise. It is concluded that DQE specifications in purchasing decisions, combined with periodic DQE testing, are important factors to ensure patients receive the health benefits of high-quality images for low x-ray exposures.

  18. A robust approach to measuring the detective quantum efficiency of radiographic detectors in a clinical setting

    NASA Astrophysics Data System (ADS)

    McDonald, Michael C.; Kim, H. K.; Henry, J. R.; Cunningham, I. A.

    2012-03-01

    The detective quantum efficiency (DQE) is widely accepted as a primary measure of x-ray detector performance in the scientific community. A standard method for measuring the DQE, based on IEC 62220-1, requires the system to have a linear response meaning that the detector output signals are proportional to the incident x-ray exposure. However, many systems have a non-linear response due to characteristics of the detector, or post processing of the detector signals, that cannot be disabled and may involve unknown algorithms considered proprietary by the manufacturer. For these reasons, the DQE has not been considered as a practical candidate for routine quality assurance testing in a clinical setting. In this article we described a method that can be used to measure the DQE of both linear and non-linear systems that employ only linear image processing algorithms. The method was validated on a Cesium Iodide based flat panel system that simultaneously stores a raw (linear) and processed (non-linear) image for each exposure. It was found that the resulting DQE was equivalent to a conventional standards-compliant DQE with measurement precision, and the gray-scale inversion and linear edge enhancement did not affect the DQE result. While not IEC 62220-1 compliant, it may be adequate for QA programs.

  19. A heuristic approach to the quantum measurement problem: How to distinguish particle detectors from ordinary objects

    NASA Astrophysics Data System (ADS)

    Merlin, R.

    2015-08-01

    Elementary particle detectors fall broadly into only two classes: phase-transformation devices, such as the bubble chamber, and charge-transfer devices like the Geiger-Müller tube. Quantum measurements are seen to involve transitions from a long-lived metastable state (e.g., superheated liquid or a gas of atoms between charged capacitor plates) to a thermodynamically stable condition. A detector is then a specially prepared object undergoing a metastable-to-stable transformation that is significantly enhanced by the presence of the measured particle, which behaves, in some sense, as the seed of a process of heterogeneous nucleation. Based on this understanding of the operation of a conventional detector, and using results of orthogonality-catastrophe theory, we argue that, in the thermodynamic limit, the pre-measurement Hamiltonian is not the same as that describing the detector during or after the interaction with a particle and, thus, that superpositions of pointer states (Schrödinger’s cats) are unphysical because their time evolution is ill defined. Examples of particle-induced changes in the Hamiltonian are also given for ordinary systems whose macroscopic parameters are susceptible to radiation damage, but are not modified by the interaction with a single particle.

  20. Detective quantum efficiency of photon-counting x-ray detectors.

    PubMed

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A

    2015-01-01

    Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfer through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20-45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.

  1. Detective quantum efficiency of photon-counting x-ray detectors

    SciTech Connect

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A.

    2015-01-15

    Purpose: Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. Methods: The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfer through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Results: Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20–45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. Conclusions: The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.

  2. Measurement of the excited-state position of bound-to-bound quantum-well infrared detectors

    SciTech Connect

    Zhou, L.; Chee, Y. H.; Karunasiri, G.

    2001-08-15

    The energy of the first excited state of quantum-well infrared detectors plays an important role in determining performance. The uncertainties in material and growth parameters make it difficult to design quantum-well detectors with a precise control of the location of energy states. Such uncertainties will cause detectors to be either bound to continuum or bound to bound. In this article, we present a technique to locate the excited-state position in bound-to-bound quantum-well infrared detectors by measuring the bias dependence of the photoresponse. We have employed an InGaAs/AlGaAs quantum-well detector operating near 5 {mu}m for this study. The photocurrent was found to have a strong bias dependence indicating the infrared transition in the quantum well is bound to bound in nature. The bias dependence of the photoresponse was compared with theoretical estimates including the tunneling of photoexcited electrons through the barrier. The results showed a good agreement and this allowed us to determine the location of the excited state from the barrier edge. {copyright} 2001 American Institute of Physics.

  3. Stochastic model for quantum noise analysis in flat-panel detectors for medical imaging applications.

    PubMed

    Yamada, Isao

    2016-12-01

    A one-dimensional stochastic model is proposed to analyze the characteristics of quantum noise in flat-panel detectors (FPD) for medical imaging applications. The number of x-ray photons is modeled as a Poisson process, and explicit expressions for the autocorrelation function and noise power spectrum density (NPSD) are obtained in terms of the exposure dose, blur shape in the capture element, and pixel size. The results from the proposed model are validated with numerical simulations, and it is shown that this model can be used for the analysis of the noise properties of the FPD. The influence of these three parameters on the NPSD is then investigated.

  4. A surface plasmonic coupled mid-long-infrared two-color quantum cascade detector

    NASA Astrophysics Data System (ADS)

    Li, Liang; Xiong, Dayuan; Wen, Jie; Li, Ning; Zhu, Ziqiang

    2016-11-01

    A novel mid-long-infrared two-color photodetector is proposed. It combines quantum cascade detector (QCD) and surface plasmonic coupling structure. The reflection spectrum and electric field are analyzed by algorithm of finite difference time domain method (FDTD). This QCD is sensitive to 4.4 μm and 9.0 μm infrared light. Mid-infrared and long-infrared pixels are interlaced arranged with specific plasmonic micro-cavity structures integrated. 7.1 and 7 times enhancement in optical absorption are obtained for mid-infrared and long-infrared pixels, respectively. Besides, a polarization-discriminating detection performance has been observed.

  5. Relationship between temperature-dependent emissivity and gray-body incidence detected with a quantum detector

    NASA Astrophysics Data System (ADS)

    Paez, Gonzalo; Strojnik, Marija

    1998-11-01

    We evaluate the thermal contrast detected by a quantum detector in a focal plane of an infrared instrument. The detected thermal contrast is shown to consist of two terms. The term corresponding to the temperature dependence of emissivity, previously neglected, is evaluated and shown to be a significant contributing factor. For the case of a metal mirror as a source of stray light, ghost images, and narcissus, the error is estimated to be about 20%. The term in the detected contrast associated with radiative emission is shown to be proportional to temperature to the power of 2, rather than 3, published previously.

  6. Quantum random-number generator based on a photon-number-resolving detector

    NASA Astrophysics Data System (ADS)

    Ren, Min; Wu, E.; Liang, Yan; Jian, Yi; Wu, Guang; Zeng, Heping

    2011-02-01

    We demonstrated a high-efficiency quantum random number generator which takes inherent advantage of the photon number distribution randomness of a coherent light source. This scheme was realized by comparing the photon flux of consecutive pulses with a photon number resolving detector. The random bit generation rate could reach 2.4 MHz with a system clock of 6.0 MHz, corresponding to a random bit generation efficiency as high as 40%. The random number files passed all the stringent statistical tests.

  7. Advances in HgTe Colloidal Quantum Dots for Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Buurma, Christopher; Ciani, Anthony J.; Pimpinella, Richard E.; Feldman, Jered S.; Grein, Christoph H.; Guyot-Sionnest, Philippe

    2017-08-01

    HgTe-based colloidal quantum dots (CQDs) fabricated between 10 nm and 20 nm in size readily lead to infrared cutoff wavelengths between 3 μm and 12 μm, due to their quantum confinement. In previous work, infrared photodetection using these films has been demonstrated to detect radiation out to a wavelength of 12 μm, and imaging in the mid-wave infrared region. In this work, a complete focal plane array and imager was fabricated and its performance measured for detecting radiation out to 12 μm. The photoconductive and optical properties of these HgTe CQD films are described, along with recent advancements in CQD detector technology. Anticipated improvements in the CQD synthesis and film deposition chemistries and techniques can raise the specific detectivity of these CQD films, bringing them closer to room-temperature operation.

  8. Mid/far-infrared photo-detectors based on graphene asymmetric quantum wells

    NASA Astrophysics Data System (ADS)

    Ben Salem, E.; Chaabani, R.; Jaziri, S.

    2016-09-01

    We conducted a theoretical study on the electronic properties of a single-layer graphene asymmetric quantum well. Quantification of energy levels is limited by electron-hole conversion at the barrier interfaces and free-electron continuum. Electron-hole conversion at the barrier interfaces can be controlled by introducing an asymmetry between barriers and taking into account the effect of the interactions of the graphene sheet with the substrate. The interaction with the substrate induces an effective mass to carriers, allowing observation of Fabry-Pérot resonances under normal incidence and extinction of Klein tunneling. The asymmetry, between barriers creates a transmission gap between confined states and free-electron continuum, allowing the large graphene asymmetric quantum well to be exploited as a photo-detector operating at mid- and far-infrared frequency regimes.

  9. Terahertz quantum well photo-detectors: grating versus 45° facet coupling

    NASA Astrophysics Data System (ADS)

    Gu, L. L.; Zhang, R.; Tan, Z. Y.; Wan, W. J.; Yin, R.; Guo, X. G.; Cao, J. C.

    2014-04-01

    We demonstrate two GaAs/AlGaAs-based terahertz (THz) quantum well photo-detectors (QWPs), with one-dimensional (1D) metal grating and 45° facet light coupling configurations. The two THz QWPs have the same multi-quantum well structure parameters. The different light coupling configurations do not affect the peak response frequency (5.85 THz). The background limited infrared performance temperatures and responsivities of the two devices are measured. The effects of different light coupling configurations on the main features of the devices are investigated in detail. The experimental results show that the performance of the THz QWP with 1D metal grating is a little better but there is still a lot of room for improvement.

  10. Universal Three-Qubit Entanglement Generation Based on Linear Optical Elements and Quantum Non-Demolition Detectors

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Chang

    2016-12-01

    Recently, entanglement plays an important role in quantum information science. Here we propose an efficient and applicable method which transforms arbitrary three-qubit unknown state to a maximally entangled Greenberger-Horne-Zeilinger state, and the proposed method could be further generalized to multi-qubit case. The proposed setup exploits only linear optical elements and quantum non-demolition detectors using cross-Kerr media. As the quantum non-demolition detection could reveal us the output state of the photons without destroying them. This property may make our proposed setup flexible and can be widely used in current quantum information science and technology.

  11. Universal Three-Qubit Entanglement Generation Based on Linear Optical Elements and Quantum Non-Demolition Detectors

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Chang

    2017-02-01

    Recently, entanglement plays an important role in quantum information science. Here we propose an efficient and applicable method which transforms arbitrary three-qubit unknown state to a maximally entangled Greenberger-Horne-Zeilinger state, and the proposed method could be further generalized to multi-qubit case. The proposed setup exploits only linear optical elements and quantum non-demolition detectors using cross-Kerr media. As the quantum non-demolition detection could reveal us the output state of the photons without destroying them. This property may make our proposed setup flexible and can be widely used in current quantum information science and technology.

  12. Dark current in GaAs/AlxGa1-xAs quantum well infrared detectors

    NASA Astrophysics Data System (ADS)

    Nathan, Vaidya

    2013-01-01

    It is not clear whether the tunneling current in QWIPs depends just on the energy corresponding to motion perpendicular to the plane of the quantum well or on the total energy. In order to get a quantitative assessment of the contribution of energy corresponding to motion in the plane of the quantum well to the dark current we use the following approach. We calculate the dark current in GaAs/AlxGa1-x s quantum well infrared detectors for both tunneling dependent only on Ez, and tunneling dependent on the total energy, and compare the results to experimental data. Comparison of theoretical results with experimental data at 40K shows that motion in the plane of the quantum well plays a significant role in determining the tunneling dark current. Corrections are made to Levine's original formula. Variation of the dark current with barrier width and doping density is systematically studied. It is shown that increasing the barrier width and/or decreasing the doping density in the well do not always reduce the dark current.

  13. The neural correlates of the decoy effect in decisions.

    PubMed

    Hu, Jianping; Yu, Rongjun

    2014-01-01

    Human choices are remarkably susceptible to the context in which options are presented. The introduction of an inferior option (a decoy) into the choice set can make one of the original options (the target) more attractive than and the other original option (the competitor). This so called "decoy effect" represents a striking violation of the "context-invariant" axiom, yet its underlying neural mechanisms are not well understood. Here, we used a novel gambling task in conjunction with functional magnetic resonance imaging (fMRI) to elucidate its neural basis. At both the stimulus and decision phases, choice sets with decoys activated the occipital gyrus and deactivated the inferior parietal gyrus. At the decision phase, choosing the targets vs. the competitors elicited stronger anterior insula activation, suggesting that perceptual salience drives heuristic decision making in the decoy effect. Moreover, across participants, activity in anterior cingulate cortex (ACC) predicted a reduced susceptibility to the decoy effect, indicating that resisting the tendency to make heuristic decisions is taxing. Our findings highlight the power of the decoy effect in laboratory settings and document the neural mechanisms underlying the decoy effect.

  14. Recent progress in InSb based quantum detectors in Israel

    NASA Astrophysics Data System (ADS)

    Klipstein, Philip; Aronov, Daniel; Ezra, Michael ben; Barkai, Itzik; Berkowicz, Eyal; Brumer, Maya; Fraenkel, Rami; Glozman, Alex; Grossman, Steve; Jacobsohn, Eli; Klin, Olga; Lukomsky, Inna; Shkedy, Lior; Shtrichman, Itay; Snapi, Noam; Yassen, Michael; Weiss, Eliezer

    2013-07-01

    InSb is a III-V binary semiconductor material with a bandgap wavelength of 5.4 μm at 77 K, well matched to the 3-5 μm MWIR atmospheric transmission window. When configured as a Focal Plane Array (FPA) detector, InSb photodiodes offer a large quantum efficiency, combined with excellent uniformity and high pixel operability. As such, InSb arrays exhibit good scalability and are an excellent choice for large format FPAs at a reasonable cost. The dark current is caused by Generation-Recombination (G-R) centres in the diode depletion region, and this leads to a typical operating temperature of ˜80 K in detectors with a planar implanted p-n junction. Over the last 15 years SCD has developed and manufactured a number of different 2-dimensional planar FPA formats, with pitches in the range of 15-30 μm. In recent years a new epi-InSb technology has been developed at SCD, in which the G-R contribution to the dark current is reduced. This enables InSb detector operation at 95-100 K, with equivalent performance to standard InSb at 80 K. In addition, using a new patented XBnn device architecture in which the G-R current is totally suppressed, epitaxial InAsSb detectors have been developed with a bandgap wavelength of 4.2 μm, which can operate in the 150-170 K range. In this short review of the past two decades, a number of key achievements in SCD's InSb based detector development program are described. These include High Operating Temperature (HOT) epi-InSb FPAs, large format megapixel FPAs with high functionality using a digital Read Out Integrated Circuit (ROIC), and ultra low Size, Weight and Power (SWaP) FPAs based on the HOT XBnn architecture.

  15. Maximizing the quantum efficiency of microchannel plate detectors - The collection of photoelectrons from the interchannel web using an electric field

    NASA Technical Reports Server (NTRS)

    Taylor, R. C.; Hettrick, M. C.; Malina, R. F.

    1983-01-01

    High quantum efficiency and two-dimensional imaging capabilities make the microchannel plate (MCP) a suitable detector for a sky survey instrument. The Extreme Ultraviolet Explorer satellite, to be launched in 1987, will use MCP detectors. A feature which limits MCP efficiency is related to the walls of individual channels. The walls are of finite thickness and thus form an interchannel web. Under normal circumstances, this web does not contribute to the detector's quantum efficiency. Panitz and Foesch (1976) have found that in the case of a bombardment with ions, electrons were ejected from the electrode material coating the web. By applying a small electric field, the electrons were returned to the MCP surface where they were detected. The present investigation is concerned with the enhancement of quantum efficiencies in the case of extreme UV wavelengths. Attention is given to a model and a computer simulation which quantitatively reproduce the experimental results.

  16. Maximizing the quantum efficiency of microchannel plate detectors - The collection of photoelectrons from the interchannel web using an electric field

    NASA Technical Reports Server (NTRS)

    Taylor, R. C.; Hettrick, M. C.; Malina, R. F.

    1983-01-01

    High quantum efficiency and two-dimensional imaging capabilities make the microchannel plate (MCP) a suitable detector for a sky survey instrument. The Extreme Ultraviolet Explorer satellite, to be launched in 1987, will use MCP detectors. A feature which limits MCP efficiency is related to the walls of individual channels. The walls are of finite thickness and thus form an interchannel web. Under normal circumstances, this web does not contribute to the detector's quantum efficiency. Panitz and Foesch (1976) have found that in the case of a bombardment with ions, electrons were ejected from the electrode material coating the web. By applying a small electric field, the electrons were returned to the MCP surface where they were detected. The present investigation is concerned with the enhancement of quantum efficiencies in the case of extreme UV wavelengths. Attention is given to a model and a computer simulation which quantitatively reproduce the experimental results.

  17. Decoherence effects of a charge detector on a nearby quantum dot

    NASA Astrophysics Data System (ADS)

    Ruiz-Tijerina, David; Vernek, Edson; Martins, George; Ulloa, Sergio

    2013-03-01

    We study the effects of a charge detector, implemented by a quantum point-contact (QPC), on the Kondo state of an adjacent spin-1/2 quantum dot (QD). The Coulomb interaction between electrons traversing the QPC and those within the QD contribute to charge fluctuations and decoherence of the Kondo state in the QD, which can be detected through conductance measurements. Modeling the QPC as two current leads coupled through a localized level near resonance with the Fermi level of the leads, one can explore different transport regimes of the detector: Coulomb blockade, ballistic resonant-transport, and a Kondo screening state (associated with the ``0.7 anomaly''). Transitions between different states are achieved by tuning the capacitive coupling u, or the local gates in the QPC. The transitions are studied using Varma-Yafet variational techniques, providing interesting insights into the different regimes. We employ numerical renormalization-group calculations to accurately evaluate the spectral densities and conductance behavior of the coupled QPC-QD system. We report the dependence of the Kondo temperatures of both subsystems on the capacitive coupling strength u, and describe the phases' signatures in the local spectral densities and the conductance profile of the QPC. Supported by NSF MWN/CIAM, NSF PIRE and CONACyT.

  18. Photoelectronic studies of an asymmetric step quantum-well middle wavelength infrared detector

    NASA Astrophysics Data System (ADS)

    Wu, Wen-Gang; Chen, Zhibin

    2001-10-01

    Photoelectronic characteristics of the fabricated InxGa1-xAs/AlyGa1- yAs/AlzGa1-zAs asymmetric step quantum-well middle wavelength (3 to approximately 5 micrometers ) infrared detectors are studied. The components display photovoltaic-type photocurrent response as well as the bias- controlled modulation of the peak wavelength of the main response, which is ascribed to the Stark shifts of the intersubband transitions from the local ground states to the extended first excited states in the quantum wells, at the 3 to approximately 5.3 micrometers infrared atmospheric transmission window. The blackbody detectivity (Dbb*) of the detectors reaches to about 1.0 X 1010 cm(DOT)Hz1/2/W at 77 K under bias of +/- 7 V. By expanding the electron wave function in terms of normalized plane wave basis withn the framwork of the effective-mass envelope-function theory, the linear Stark effects of the intersubband tansitions between the ground and first excited states in the asymmetric step well are calculated. The obtained results agree well with the corresponding experimental measurements.

  19. New technologies for broadband quantum key distribution: Sources, detectors, and systems

    NASA Astrophysics Data System (ADS)

    Rogers, Daniel J.

    In this thesis I describe three independent projects that advance the development of broadband quantum cryptography. While each project pertains to a different part of the QKD chain, together they provide key developments in implementing QKD at bit rates that are practical for use in the modern telecommunications infrastructure. The first project comprises the bulk of the thesis and involves developing a novel source of correlated photon pairs for use in free-space QKD. This source is based on a birefringent semiconductor optical waveguide as a Kerr medium. We demonstrate the feasibility of using birefringent phase-matched four-wave mixing to generate correlated photon pairs. We further propose that, by reversing the process and pumping with conjugate wavelengths, one can use the same effect to produce entangled photon pairs with the same device. These pairs can then be used for QKD to realize the most secure and efficient quantum cryptographic data links. The second project examines the implications of operating a BB84 QKD protocol at clock rates that are faster than the recovery time of the constituent detectors. We show that operating such systems under conventional protocols results in a security violation that allows an eavesdropper to learn significant information about the key and present a modification to the BB84 protocol that maintains key security at fast transmission rates. This modification to the protocol will become vital to QKD viability as links become faster and clock rates go into the tens of gigahertz. We also demonstrate, rather counterintuitively, that there exists an optimal transmission rate for a QKD system that exceeds the inverse of an individual detector's dead time. The final project describes a new design for a free-space QKD link that centers around faster silicon detectors. These detectors have a peak quantum efficiency in the visible range, requiring that the system operate at a wavelength that is more susceptible to solar

  20. Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient non-photon-number-resolving detectors

    SciTech Connect

    Gong Yanxiao; Zou Xubo; Guo Guangcan; Ralph, Timothy C.; Zhu Shining

    2010-05-15

    We propose a scheme for efficient cluster state quantum computation by using imperfect polarization-entangled photon-pair sources, linear optical elements, and inefficient non-photon-number-resolving detectors. The efficiency threshold for loss tolerance in our scheme requires the product of source and detector efficiencies should be >1/2, the best known figure. This figure applies to uncorrelated loss. We further find that the loss threshold is unaffected by correlated loss in the photon pair source. Our approach sheds new light on efficient linear optical quantum computation with imperfect experimental conditions.

  1. Detector-device-independent quantum key distribution: Security analysis and fast implementation

    SciTech Connect

    Boaron, Alberto; Korzh, Boris; Houlmann, Raphael; Boso, Gianluca; Lim, Charles Ci Wen; Martin, Anthony; Zbinden, Hugo

    2016-08-09

    One of the most pressing issues in quantum key distribution (QKD) is the problem of detector side-channel attacks. To overcome this problem, researchers proposed an elegant “time-reversal” QKD protocol called measurement-device-independent QKD (MDI-QKD), which is based on time-reversed entanglement swapping. But, MDI-QKD is more challenging to implement than standard point-to-point QKD. Recently, we proposed an intermediary QKD protocol called detector-device-independent QKD (DDI-QKD) in order to overcome the drawbacks of MDI-QKD, with the hope that it would eventually lead to a more efficient detector side-channel-free QKD system. We analyze the security of DDI-QKD and elucidate its security assumptions. We find that DDI-QKD is not equivalent to MDI-QKD, but its security can be demonstrated with reasonable assumptions. On the more practical side, we consider the feasibility of DDI-QKD and present a fast experimental demonstration (clocked at 625 MHz), capable of secret key exchange up to more than 90 km.

  2. Detector-device-independent quantum key distribution: Security analysis and fast implementation

    SciTech Connect

    Boaron, Alberto; Korzh, Boris; Boso, Gianluca; Martin, Anthony Zbinden, Hugo; Houlmann, Raphael; Lim, Charles Ci Wen

    2016-08-14

    One of the most pressing issues in quantum key distribution (QKD) is the problem of detector side-channel attacks. To overcome this problem, researchers proposed an elegant “time-reversal” QKD protocol called measurement-device-independent QKD (MDI-QKD), which is based on time-reversed entanglement swapping. However, MDI-QKD is more challenging to implement than standard point-to-point QKD. Recently, an intermediary QKD protocol called detector-device-independent QKD (DDI-QKD) has been proposed to overcome the drawbacks of MDI-QKD, with the hope that it would eventually lead to a more efficient detector side-channel-free QKD system. Here, we analyze the security of DDI-QKD and elucidate its security assumptions. We find that DDI-QKD is not equivalent to MDI-QKD, but its security can be demonstrated with reasonable assumptions. On the more practical side, we consider the feasibility of DDI-QKD and present a fast experimental demonstration (clocked at 625 MHz), capable of secret key exchange up to more than 90 km.

  3. Detector-device-independent quantum key distribution: Security analysis and fast implementation

    SciTech Connect

    Boaron, Alberto; Korzh, Boris; Houlmann, Raphael; Boso, Gianluca; Lim, Charles Ci Wen; Martin, Anthony; Zbinden, Hugo

    2016-08-09

    One of the most pressing issues in quantum key distribution (QKD) is the problem of detector side-channel attacks. To overcome this problem, researchers proposed an elegant “time-reversal” QKD protocol called measurement-device-independent QKD (MDI-QKD), which is based on time-reversed entanglement swapping. But, MDI-QKD is more challenging to implement than standard point-to-point QKD. Recently, we proposed an intermediary QKD protocol called detector-device-independent QKD (DDI-QKD) in order to overcome the drawbacks of MDI-QKD, with the hope that it would eventually lead to a more efficient detector side-channel-free QKD system. We analyze the security of DDI-QKD and elucidate its security assumptions. We find that DDI-QKD is not equivalent to MDI-QKD, but its security can be demonstrated with reasonable assumptions. On the more practical side, we consider the feasibility of DDI-QKD and present a fast experimental demonstration (clocked at 625 MHz), capable of secret key exchange up to more than 90 km.

  4. Detector-device-independent quantum key distribution: Security analysis and fast implementation

    DOE PAGES

    Boaron, Alberto; Korzh, Boris; Houlmann, Raphael; ...

    2016-08-09

    One of the most pressing issues in quantum key distribution (QKD) is the problem of detector side-channel attacks. To overcome this problem, researchers proposed an elegant “time-reversal” QKD protocol called measurement-device-independent QKD (MDI-QKD), which is based on time-reversed entanglement swapping. But, MDI-QKD is more challenging to implement than standard point-to-point QKD. Recently, we proposed an intermediary QKD protocol called detector-device-independent QKD (DDI-QKD) in order to overcome the drawbacks of MDI-QKD, with the hope that it would eventually lead to a more efficient detector side-channel-free QKD system. We analyze the security of DDI-QKD and elucidate its security assumptions. We find thatmore » DDI-QKD is not equivalent to MDI-QKD, but its security can be demonstrated with reasonable assumptions. On the more practical side, we consider the feasibility of DDI-QKD and present a fast experimental demonstration (clocked at 625 MHz), capable of secret key exchange up to more than 90 km.« less

  5. Exact expressions for thermal contrast detected with thermal and quantum detectors

    NASA Astrophysics Data System (ADS)

    Stewart, Seán. M.; Johnson, R. Barry

    2014-10-01

    The detected thermal contrast is a recently defined figure of merit introduced to describe the overall performance of a detector detecting radiation from a thermal source. We examine the detected thermal contrast for the case where the target emissivity can be assumed to be a function of the temperature and independent of the wavelength within a narrow wavelength interval of interest. Exact expressions are developed to evaluate the thermal contrast detected by both thermal and quantum detectors for focal-plane radiation detecting instruments. Expressions for the thermal contrast of a blackbody, an intrinsic radiative quantity of a body independent of the detection process, and simplified expressions for the detected thermal contrast for target emissivities which are well approximated by the grey body approximation are also given. It is found the contribution in the detected thermal contrast consists of two terms. The first results from changes occurring in the emissivity of a target with temperature while the second results from purely radiative processes. The size of the detected thermal contrast is found to be similar for the two detector types within typical infrared wavelength intervals of interest, contradicting a result previously reported in the literature. The exact results are presented in terms of a polylogarithmic formulation of the problem and extend a number of approximation schemes that have been proposed and developed in the past.

  6. Up-conversion detectors at 1550 nm for quantum communication: review and recent advances

    NASA Astrophysics Data System (ADS)

    Tournier, M.; Alibart, O.; Doutre, F.; Tascu, S.; de Micheli, M. P.; Ostrowsky, D. B.; Thyagarajan, K.; Tanzilli, S.

    Up-conversion, or hybrid, detectors have been investigated in quantum communication experiments to replace Indium-Gallium-Arsenide avalanche photodiodes (InGaAs-APD) for the detection of infrared and telecom single photons. Those detectors are based on the supposedly noise-free process of frequency up-conversion, also called sum-frequency generation (SFG), using a second order (χ^2) non-linear crystal. Powered by an intense pump laser, this process permits transposing with a certain probability the single photons at telecom wavelengths to the visible range where silicon APDs (Si-APD) operate with a much better performance than InGaAs detectors. To date, the literature reports up-conversion detectors having efficiency and noise figures comparable to that of the best commercially available IngaAs-APDs. However, in all of these previous realizations, a pump-induced noise is always observed which was initially expected to be as low as the dark count level of the Si-APDs. Although this additional noise represents a problem for the detection, up-conversion detectors have advantageously replaced InGaAs-APDs in various long-distance quantum cryptography schemes since they offer a continuous regime operation mode instead of a gated mode necessary for InGaAs-APDs, and the possibility of much higher counting rates. Despite attempted explanations, no detailed nor conclusive study of this noise has been reported. The aim of this paper is to offer a definitive explanation for this noise. We first give a review of the state of the art by describing already demonstrated up-conversion detectors. We discuss these realizations especially regarding the choices made for the material, in bulk or guided configurations, the single photon wavelengths, and the pump scheme. Then we describe an original device made of waveguides integrated on periodically poled lithium niobate (PPLN)or on single-domain lithium niobate aimed at investigating the origin of the additional pump-induced noise

  7. Position sensitive photon detectors using epitaxial InGaAs/InAlAs quantum wells

    NASA Astrophysics Data System (ADS)

    Ganbold, T.; Antonelli, M.; Biasiol, G.; Cautero, G.; Jark, H.; Eichert, D. M.; Cucini, R.; Menk, R. H.

    2014-12-01

    This work deals with the investigation of novel position-sensitive devices based on InGaAs/InAlAs quantum wells, which could be applied to several applications of either synchrotron or conventional light sources. Such devices may be used as fast and efficient detectors due to the direct, low-energy band gap and high electron mobility at room temperature. Metamorphic In0.75Ga0.25As/In0.75Al0.25As quantum wells containing a two-dimensional electron gas were grown by molecular beam epitaxy. Two devices with size of 5 × 5 mm2 were prepared by using optical lithography. In the first, the active layers were segmented into four electrically insulated quadrants. Indium ohmic contacts were realized on the corner of each quadrant (for readout) and on the back surface (for bias). In the second, the quantum well was left unsegmented and covered by 400 nm of Al providing a single bias electrode, while four readout electrodes were fabricated on the back side by depositing and segmenting a Ni/Ge/Au layer. Photo-generated carriers can be collected at the readout electrodes by biasing from either the QW side or the back side of the devices during beam exposure. Individual currents obtained from each electrode allow monitoring of both the position and the intensity of the impinging beam for photon energies ranging from visible to hard X-ray. Such detector prototypes were tested with synchrotron radiation. Moreover, the position of the beam can be estimated with a precision of 800 nm in the segmented QW. A lower precision of 10 μm was recorded in the unsegmented QW due to the charge diffusion through the 500-μm-thick wafer, with however a lower electronic noise due to the better uniformity of the contacts.

  8. Equilibrium charge fluctuations of a charge detector and its effect on a nearby quantum dot

    NASA Astrophysics Data System (ADS)

    Ruiz-Tijerina, David; Vernek, Edson; Ulloa, Sergio

    2014-03-01

    We study the Kondo state of a spin-1/2 quantum dot (QD), in close proximity to a quantum point contact (QPC) charge detector near the conductance regime of the 0.7 anomaly. The electrostatic coupling between the QD and QPC introduces a remote gate on the QD level, which varies with the QPC gate voltage. Furthermore, models for the 0.7 anomaly [Y. Meir et al., PRL 89,196802(2002)] suggest that the QPC lodges a Kondo-screened level with charge-correlated hybridization, which may be also affected by capacitive coupling to the QD, giving rise to a competition between the two Kondo ground states. We model the QD-QPC system as two capacitively-coupled Kondo impurities, and explore the zero-bias transport of both the QD and the QPC for different local gate voltages and coupling strengths, using the numerical renormalization group and variational methods. We find that the capacitive coupling produces a remote gating effect, non-monotonic in the gate voltages, which reduces the gate voltage window for Kondo screening in either impurity, and which can also drive a quantum phase transition out of the Kondo regime. Our study is carried out for intermediate coupling strengths, and as such is highly relevant to experiments; particularly, to recent studies of decoherence effects on QDs. Supported by MWN/CIAM and NSF PIRE.

  9. The enhanced photo absorption and carrier transportation of InGaN/GaN Quantum Wells for photodiode detector applications.

    PubMed

    Yang, Haojun; Ma, Ziguang; Jiang, Yang; Wu, Haiyan; Zuo, Peng; Zhao, Bin; Jia, Haiqiang; Chen, Hong

    2017-02-27

    We have conducted a series of measurements of resonantly excited photoluminescence, photocurrent and photovoltage on InGaN/GaN quantum wells with and without a p-n junction under reverse bias condition. The results indicate that most of the resonantly excited photo-generated carriers are extracted from the quantum wells when a p-n junction exists, and the photon absorption of quantum wells is enhanced by the p-n junction. Additionally, the carrier extraction becomes more distinct under a reverse bias. Our finding brings better understanding of the physical characteristics of quantum wells with p-n junction, which also suggests that the quantum well is suitable for photodiode detectors applications when a p-n junction is used.

  10. The enhanced photo absorption and carrier transportation of InGaN/GaN Quantum Wells for photodiode detector applications

    PubMed Central

    Yang, Haojun; Ma, Ziguang; Jiang, Yang; Wu, Haiyan; Zuo, Peng; Zhao, Bin; Jia, Haiqiang; Chen, Hong

    2017-01-01

    We have conducted a series of measurements of resonantly excited photoluminescence, photocurrent and photovoltage on InGaN/GaN quantum wells with and without a p-n junction under reverse bias condition. The results indicate that most of the resonantly excited photo-generated carriers are extracted from the quantum wells when a p-n junction exists, and the photon absorption of quantum wells is enhanced by the p-n junction. Additionally, the carrier extraction becomes more distinct under a reverse bias. Our finding brings better understanding of the physical characteristics of quantum wells with p-n junction, which also suggests that the quantum well is suitable for photodiode detectors applications when a p-n junction is used. PMID:28240254

  11. The enhanced photo absorption and carrier transportation of InGaN/GaN Quantum Wells for photodiode detector applications

    NASA Astrophysics Data System (ADS)

    Yang, Haojun; Ma, Ziguang; Jiang, Yang; Wu, Haiyan; Zuo, Peng; Zhao, Bin; Jia, Haiqiang; Chen, Hong

    2017-02-01

    We have conducted a series of measurements of resonantly excited photoluminescence, photocurrent and photovoltage on InGaN/GaN quantum wells with and without a p-n junction under reverse bias condition. The results indicate that most of the resonantly excited photo-generated carriers are extracted from the quantum wells when a p-n junction exists, and the photon absorption of quantum wells is enhanced by the p-n junction. Additionally, the carrier extraction becomes more distinct under a reverse bias. Our finding brings better understanding of the physical characteristics of quantum wells with p-n junction, which also suggests that the quantum well is suitable for photodiode detectors applications when a p-n junction is used.

  12. Assessment of semiempirical enthalpy of formation in solution as an effective energy function to discriminate native-like structures in protein decoy sets.

    PubMed

    Urquiza-Carvalho, Gabriel Aires; Fragoso, Wallace Duarte; Rocha, Gerd Bruno

    2016-08-05

    In this work, we tested the PM6, PM6-DH+, PM6-D3, and PM7 enthalpies of formation in aqueous solution as scoring functions across 33 decoy sets to discriminate native structures or good models in a decoy set. In each set these semiempirical quantum chemistry methods were compared according to enthalpic and geometric criteria. Enthalpically, we compared the methods according to how much lower was the enthalpy of each native, when compared with the mean enthalpy of its set. Geometrically, we compared the methods according to the fraction of native contacts (Q), which is a measure of geometric closeness between an arbitrary structure and the native. For each set and method, the Q of the best decoy was compared with the Q0 , which is the Q of the decoy closest to the native in the set. It was shown that the PM7 method is able to assign larger energy differences between the native structure and the decoys in a set, arguably because of a better description of dispersion interactions, however PM6-DH+ was slightly better than the rest at selecting geometrically good models in the absence of a native structure in the set. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. A Polarization-Dependent Normal Incident Quantum Cascade Detector Enhanced Via Metamaterial Resonators.

    PubMed

    Wang, Lei; Zhai, Shen-Qiang; Wang, Feng-Jiao; Liu, Jun-Qi; Liu, Shu-Man; Zhuo, Ning; Zhang, Chuan-Jin; Wang, Li-Jun; Liu, Feng-Qi; Wang, Zhan-Guo

    2016-12-01

    The design, fabrication, and characterization of a polarization-dependent normal incident quantum cascade detector coupled via complementary split-ring metamaterial resonators in the infrared regime are presented. The metamaterial structure is designed through three-dimensional finite-difference time-domain method and fabricated on the top metal contact, which forms a double-metal waveguide together with the metallic ground plane. With normal incidence, significant enhancements of photocurrent response are obtained at the metamaterial resonances compared with the 45° polished edge coupling device. The photocurrent response enhancements exhibit clearly polarization dependence, and the largest response enhancement factor of 165% is gained for the incident light polarized parallel to the split-ring gap.

  14. A Polarization-Dependent Normal Incident Quantum Cascade Detector Enhanced Via Metamaterial Resonators

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zhai, Shen-Qiang; Wang, Feng-Jiao; Liu, Jun-Qi; Liu, Shu-Man; Zhuo, Ning; Zhang, Chuan-Jin; Wang, Li-Jun; Liu, Feng-Qi; Wang, Zhan-Guo

    2016-12-01

    The design, fabrication, and characterization of a polarization-dependent normal incident quantum cascade detector coupled via complementary split-ring metamaterial resonators in the infrared regime are presented. The metamaterial structure is designed through three-dimensional finite-difference time-domain method and fabricated on the top metal contact, which forms a double-metal waveguide together with the metallic ground plane. With normal incidence, significant enhancements of photocurrent response are obtained at the metamaterial resonances compared with the 45° polished edge coupling device. The photocurrent response enhancements exhibit clearly polarization dependence, and the largest response enhancement factor of 165% is gained for the incident light polarized parallel to the split-ring gap.

  15. Low-jitter single flux quantum signal readout from superconducting single photon detector.

    PubMed

    Terai, Hirotaka; Yamashita, Taro; Miki, Shigehito; Makise, Kazumasa; Wang, Zhen

    2012-08-27

    We developed a single-flux-quantum (SFQ) readout technology for superconducting single-photon detectors (SSPDs) to achieve low-jitter signal readout. By optimizing circuit parameters of the SFQ readout circuit, the input current sensitivity was improved below 10 μA, which is smaller than a typical critical current of SSPD. The experiment using a pulse-pattern generator as an input pulse source revealed that the measured jitter of the SFQ readout circuit is well below the system jitter of our measurement setup for the input current level above 15 μA. The measured jitter of the SSPD connected to the SFQ readout circuit was 37 ps full width at half maximum (FWHM) for an SSPD bias current of around 18 μA, which is a significant improvement on 67 ps FWHM jitter observed in conventional readout without an SFQ readout circuit.

  16. Description of transport mechanisms in a very long wave infrared quantum cascade detector under strong magnetic field

    NASA Astrophysics Data System (ADS)

    Jasnot, François-Régis; Maëro, Simon; Péré-Laperne, Nicolas; de Vaulchier, Louis-Anne; Guldner, Yves; Carosella, Francesca; Ferreira, Robson; Delga, Alexandre; Doyennette, Laetitia; Berger, Vincent; Trinité, Virginie; Carras, Mathieu

    2012-12-01

    Measurements of current have been performed on a very long wave infrared quantum cascade detector under strong magnetic field applied parallel to the growth axis, both under dark and light conditions. The analysis of dark current as a function of temperature highlights three regimes of transport involving the different energy levels of the structure. For photocurrent analysis, we developed a model based on a rate equation approach taking into account all the electronic levels of the structure. This model is in agreement with the oscillatory component of the experimental magnetophotocurrent. It allows to identify the key points controlling the electronic transport such as extraction from the upper level of the optically active quantum well, location of ionized impurities, and scattering mechanisms involved in the structure. This work is valuable for the future conception of high-performance quantum cascade detectors in infrared and far infrared range.

  17. Spectral function of InAs /InGaAs quantum dots in a well detector using Green's function

    NASA Astrophysics Data System (ADS)

    Naser, M. A.; Deen, M. J.; Thompson, D. A.

    2006-11-01

    Theoretical modeling of an InAs /InGaAs quantum dot-in-a well (DWELL) detector is reported. The DWELL structure consists of pyramidal-shaped InAs quantum dots with dimensions of 11nm (base) and 6.5nm (height) placed on the top half of an InGaAs quantum well of 11nm width, which is buried in a GaAs matrix. The Green's function method is used to calculate the spectral function and the density of states of the DWELL. The kinetic equation that governs Green's functions is solved numerically using the method of finite differences. From the information obtained from the density of states, the responsivity of the DWELL can be estimated. The calculated energy eigenvalues are compared with the experimentally measured responsivity of a DWELL detector.

  18. Experimental evaluation of the pile-up trigger method in a revised quantum-counting CT detector

    NASA Astrophysics Data System (ADS)

    Kraft, E.; Glasser, F.; Kappler, S.; Niederloehner, D.; Villard, P.

    2012-03-01

    The application of quantum-counting detectors in clinical Computed Tomography (CT) is challenged by very large Xray photon fluxes present in modern systems. Situations with sub-optimal patient positioning or scanning of small objects can cause unattenuated exposure of parts of the detector. The typical pulse durations in CdTe/CdZnTe sensor range in the order of several nanoseconds, even if the detector design is optimized for high-rate applications by using high sensor depletion voltages and small pixel sizes. This can lead to severe pile-up of the pulses, resulting in count efficiency degradation or even ambiguous detector signals. The recently introduced pile-up trigger method solves this problem by combining the signal of a photon counting channel with a signal indicative of the level of pile-up. Latter is obtained with a photon-counting channel operated at threshold energies beyond the maximum energy of the incident photon spectrum so that its signal arises purely from pulse pile-up. We present an experimental evaluation of the pile-up trigger method in a revised quantum-counting CT detector and compare our results to simulations of the method with idealized detector properties.

  19. Integrated semiconductor quantum dot scintillation detector: Ultimate limit for speed and light yield

    DOE PAGES

    Oktyabrsky, Serge; Yakimov, Michael; Tokranov, Vadim; ...

    2016-03-30

    Here, a picosecond-range timing of charged particles and photons is a long-standing challenge for many high-energy physics, biophysics, medical and security applications. We present a design, technological pathway and challenges, and some properties important for realization of an ultrafast high-efficient room-temperature semiconductor scintillator based on self-assembled InAs quantum dots (QD) embedded in a GaAs matrix. Low QD density (<; 1015 cm-3), fast (~5 ps) electron capture, luminescence peak redshifted by 0.2-0.3 eV from GaAs absorption edge with fast decay time (0.5-1 ns) along with the efficient energy transfer in the GaAs matrix (4.2 eV/pair) allows for fabrication of a semiconductormore » scintillator with the unsurpassed performance parameters. The major technological challenge is fabrication of a large volume (> 1 cm3 ) of epitaxial QD medium. This requires multiple film separation and bonding, likely using separate epitaxial films as waveguides for improved light coupling. Compared to traditional inorganic scintillators, the semiconductor-QD based scintillators could have about 5x higher light yield and 20x faster decay time, opening a way to gamma detectors with the energy resolution better than 1% and sustaining counting rates MHz. Picosecond-scale timing requires segmented low-capacitance photodiodes integrated with the scintillator. For photons, the proposed detector inherently provides the depth-of-interaction information.« less

  20. Integrated semiconductor quantum dot scintillation detector: Ultimate limit for speed and light yield

    SciTech Connect

    Oktyabrsky, Serge; Yakimov, Michael; Tokranov, Vadim; Murat, Pavel

    2016-03-30

    Here, a picosecond-range timing of charged particles and photons is a long-standing challenge for many high-energy physics, biophysics, medical and security applications. We present a design, technological pathway and challenges, and some properties important for realization of an ultrafast high-efficient room-temperature semiconductor scintillator based on self-assembled InAs quantum dots (QD) embedded in a GaAs matrix. Low QD density (<; 1015 cm-3), fast (~5 ps) electron capture, luminescence peak redshifted by 0.2-0.3 eV from GaAs absorption edge with fast decay time (0.5-1 ns) along with the efficient energy transfer in the GaAs matrix (4.2 eV/pair) allows for fabrication of a semiconductor scintillator with the unsurpassed performance parameters. The major technological challenge is fabrication of a large volume (> 1 cm3 ) of epitaxial QD medium. This requires multiple film separation and bonding, likely using separate epitaxial films as waveguides for improved light coupling. Compared to traditional inorganic scintillators, the semiconductor-QD based scintillators could have about 5x higher light yield and 20x faster decay time, opening a way to gamma detectors with the energy resolution better than 1% and sustaining counting rates MHz. Picosecond-scale timing requires segmented low-capacitance photodiodes integrated with the scintillator. For photons, the proposed detector inherently provides the depth-of-interaction information.

  1. Intercomparison of a correlated-photon-based method to measure detector quantum efficiency.

    PubMed

    Migdall, Alan; Castelletto, Stefania; Degiovanni, Ivo Pietro; Rastello, Maria Luisa

    2002-05-20

    We report on the absolute calibration of photodetector quantum efficiency by using correlated photon sources, performed independently at two laboratories, the National Institute of Standards and Technology and the Istituto Elettrotecnico Nazionale (IEN). The goal is to use an interlaboratory comparison to demonstrate the inherent absoluteness of the photon correlation technique by showing its independence from the particular experimental setup. We find that detector nonuniformity limited this comparison rather than uncertainty inherent in the method itself. The ultimate goal of these investigations is development of a robust measurement protocol that allows the uncertainties of individual measurements to be determined experimentally and verified operationally. Furthermore, to demonstrate the generality of the procedure, the IEN measurement setup was also used to calibrate a fiber-coupled avalanche photodiode module. Uncertainties are evaluated for the detector both with and without fiber coupling and differences are discussed. The current IEN setup using a thinner and higher transmittance nonlinear crystal for the generation of correlated photons shows a significant improvement in overall accuracy with respect to previously reported results from IEN [Metrologia 32, 501-503 (1996)].

  2. The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector

    SciTech Connect

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; Barrett, Harrison H.; Barber, Bradford H.; Furenlid, Lars R.

    2014-06-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier and then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.

  3. The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector

    DOE PAGES

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; ...

    2014-06-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier andmore » then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.« less

  4. The iQID camera: An ionizing-radiation quantum imaging detector.

    PubMed

    Miller, Brian W; Gregory, Stephanie J; Fuller, Erin S; Barrett, Harrison H; Barber, H Bradford; Furenlid, Lars R

    2014-12-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detector's response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The confirmed response to this broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated by particle interactions is optically amplified by the intensifier and then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. The spatial location and energy of individual particles are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, excellent detection efficiency for charged particles, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discriminate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is real-time, single-particle digital autoradiography. We present the latest results and discuss potential applications.

  5. The iQID camera: An ionizing-radiation quantum imaging detector

    NASA Astrophysics Data System (ADS)

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; Barrett, Harrison H.; Bradford Barber, H.; Furenlid, Lars R.

    2014-12-01

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detector's response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The confirmed response to this broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated by particle interactions is optically amplified by the intensifier and then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. The spatial location and energy of individual particles are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, excellent detection efficiency for charged particles, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discriminate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is real-time, single-particle digital autoradiography. We present the latest results and discuss potential applications.

  6. Quantum efficiency measurement of the Transiting Exoplanet Survey Satellite (TESS) CCD detectors

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, A.; Villasenor, J.; Thayer, C.; Kissel, S.; Ricker, G.; Seager, S.; Lyle, R.; Deline, A.; Morgan, E.; Sauerwein, T.; Vanderspek, R.

    2016-07-01

    Very precise on-ground characterization and calibration of TESS CCD detectors will significantly assist in the analysis of the science data from the mission. An accurate optical test bench with very high photometric stability has been developed to perform precise measurements of the absolute quantum efficiency. The setup consists of a vacuum dewar with a single MIT Lincoln Lab CCID-80 device mounted on a cold plate with the calibrated reference photodiode mounted next to the CCD. A very stable laser-driven light source is integrated with a closed-loop intensity stabilization unit to control variations of the light source down to a few parts-per-million when averaged over 60 s. Light from the stabilization unit enters a 20 inch integrating sphere. The output light from the sphere produces near-uniform illumination on the cold CCD and on the calibrated reference photodiode inside the dewar. The ratio of the CCD and photodiode signals provides the absolute quantum efficiency measurement. The design, key features, error analysis, and results from the test campaign are presented.

  7. Quantum noise limits in white-light-cavity-enhanced gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Zhou, Minchuan; Zhou, Zifan; Shahriar, Selim M.

    2015-10-01

    Previously, we had proposed a gravitational wave detector that incorporates the white-light-cavity (WLC) effect using a compound cavity for signal recycling (CC-SR). Here, we first use an idealized model for the negative dispersion medium (NDM) and use the so-called Caves model for a phase-insensitive linear amplifier to account for the quantum noise (QN) contributed by the NDM, in order to determine the upper bound of the enhancement in the sensitivity-bandwidth product. We calculate the quantum noise limited sensitivity curves for the CC-SR design, and find that the broadening of sensitivity predicted by the classical analysis is also present in these curves, but is somewhat reduced. Furthermore, we find that the curves always stay above the standard quantum limit. To circumvent this limitation, we modify the dispersion to compensate the nonlinear phase variation produced by the optomechanical resonance effects. We find that the upper bound of the factor by which the sensitivity-bandwidth product is increased, compared to the highest-sensitivity result predicted by Bunanno and Chen [Phys. Rev. D 64, 042006 (2001)], is ˜14 . We also present a simpler scheme (WLC-SR), where a dispersion medium is inserted into the SR cavity. For this scheme, we found the upper bound of the enhancement factor to be ˜18 . We then consider an explicit system for realizing the NDM, which makes use of five energy levels in M configuration to produce gain, accompanied by electromagnetically induced transparency (the GEIT system). For this explicit system, we employ the rigorous approach based on Master Equation to compute the QN contributed by the NDM, thus enabling us to determine the enhancement in the sensitivity-bandwidth product definitively rather than the upper bound thereof. Specifically, we identify a set of parameters for which the sensitivity-bandwidth product is enhanced by a factor of 17.66.

  8. Graphene Quantum Dot-Sensitized ZnO Nanorod/Polymer Schottky Junction UV Detector with Superior External Quantum Efficiency, Detectivity, and Responsivity.

    PubMed

    Dhar, Saurab; Majumder, Tanmoy; Mondal, Suvra Prakash

    2016-11-23

    Graphene quantum dot (GQD)-sensitized ZnO nanorods/poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) Schottky junction has been fabricated for visible-blind ultraviolet (UV) photodetector applications. Schottky diode parameters such as ideality factor, effective work function, and series resistance have been studied for GQD-modified and pristine ZnO nanorod-based devices. Under illumination of broadband light of intensity 80 mW/cm(2), GQD-sensitized samples showed 11 times higher photocurrent value compared to pristine ZnO at -0.75 V external bias. GQD-modified detector demonstrated maximum photocurrent at UV region (wavelength ∼340 nm) for all reverse bias voltages. ZnO nanorods/polymer Schottky junction UV detectors revealed high external quantum efficiency (EQE) more than 100%. Interestingly, GQD sensitized nanorod-based device demonstrated high EQE value of 13,161% at -1 V bias (wavelength ∼340 nm), which is eight times higher than pristine ZnO NR-based detector. GQD-modified detectors also showed superior responsivity (36 A/W), detectivity (1.3 × 10(12) Hz(1/2)/W) at -1 V bias under incident of light of wavelength 340 nm. Even at very low intensity of UV light (0.07 mW/cm(2)), GQD-modified UV detectors showed high photocurrent (∼7.0 mA/cm(2)).

  9. Airborne target tracking algorithm against oppressive decoys in infrared imagery

    NASA Astrophysics Data System (ADS)

    Sun, Xiechang; Zhang, Tianxu

    2009-10-01

    This paper presents an approach for tracking airborne target against oppressive infrared decoys. Oppressive decoy lures infrared guided missile by its high infrared radiation. Traditional tracking algorithms have degraded stability even come to tracking failure when airborne target continuously throw out many decoys. The proposed approach first determines an adaptive tracking window. The center of the tracking window is set at a predicted target position which is computed based on uniform motion model. Different strategies are applied for determination of tracking window size according to target state. The image within tracking window is segmented and multi features of candidate targets are extracted. The most similar candidate target is associated to the tracking target by using a decision function, which calculates a weighted sum of normalized feature differences between two comparable targets. Integrated intensity ratio of association target and tracking target, and target centroid are examined to estimate target state in the presence of decoys. The tracking ability and robustness of proposed approach has been validated by processing available real-world and simulated infrared image sequences containing airborne targets and oppressive decoys.

  10. Infrared decoy and obscurant modelling and simulation for ship protection

    NASA Astrophysics Data System (ADS)

    Butters, Brian; Nicholls, Edgar; Walmsley, Roy; Ayling, Richard

    2011-11-01

    Imaging seekers used in modern Anti Ship Missiles (ASMs) use a variety of counter countermeasure (CCM) techniques including guard gates and aspect ratio assessment in order to counter the use of IR decoys. In order to improve the performance of EO/IR countermeasures it is necessary to accurately configure and place the decoys using a launcher that is trainable in azimuth and elevation. Control of the launcher, decoy firing times and burst sequences requires the development of algorithms based on multi-dimensional solvers. The modelling and simulation used to derive the launcher algorithms is described including the countermeasure, threat, launcher and ship models. The launcher model incorporates realistic azimuth and elevation rates with limits on azimuth and elevation arcs of fire. A Navier Stokes based model of the IR decoy includes thermal buoyancy, cooling of the IR smoke and its extinction properties. All of these factors affect the developing size, shape and radiance of the decoy. The hot smoke also influences the performance of any co-located chaff or other obscurant material. Typical simulations are described against generic imaging ASM seekers using shape discrimination or a guard gate.

  11. Study of infrared point source simulator for generating the multi-decoy

    NASA Astrophysics Data System (ADS)

    Zeng, Chang-e.; Yang, Di; Su, Jian-gang; Huang, Yan-jun; Wang, Zhi-sheng

    2013-08-01

    The hardware-in-loop test system for infrared point-type guide missile was introduced;The decoy irradiation and motion characteristics were analyzed; multi-decoy generation mode and principle were studied.

  12. Effectiveness of spinning-wing decoys varies among dabbling duck species and locations

    USGS Publications Warehouse

    Ackerman, J.T.; Eadie, J.M.; Szymanski, M.L.; Caswell, J.H.; Vrtiska, Mark P.; Raedeke, Andrew H.; Checkett, J.M.; Afton, A.D.; Moore, T.G.; Caswell, F.D.; Walters, R.A.; Humburg, D.D.; Yee, J.L.

    2006-01-01

    Spinning-wing decoys are strong attractants to ducks and inc rease kill rates over traditional decoying methods. However, it is unknown whether all duck species are attracted similarly to spinning-wing decoys and whether the effectiveness of these decoys changes with latitude. We examined the effectiveness of spinning-wing decoys for 9 species of dabbling ducks during 545 experimental hunts in California (1999-2000), Minnesota (2002), Manitoba (2001-2002), Nebraska (2000-2002), Missouri (2000-2001), and Arkansas (2001-2003). During each experimental hunt, we systematically alternated between 2 paired decoy treatments every 15-30 min (depending on study site): traditional decoys only and traditional decoys with a spinning-wing decoy. Overall, 70.2% (n=1,925) of dabbling ducks were harvested (shot and retrieved) when spinning-wing decoys were turned on, ranging from 63.6% (n=187) in Missouri to 76.4% (n=356) in Minnesota. Effectiveness of spinning-wing decoys increased with latitude of study sites. Proportions of ducks shot when spinning-wing decoys were turned on differed among species, from a low of 50.0% (n=8) for cinnamon teal (Anas cyanoptera) to a high of 79.0% (n=119) for American wigeon (A. americana). The probability of being shot when spinning-wing decoys were turned on increased with annual survival rates among species; for example, spinning-wing decoys were more effective for American wigeon and mallard (A. platyrhynchos) than they were for cinnamon teal and American green-winged teal (A. crecca). Effectiveness of spinning-wing decoys did not differ consistently by age or sex of harvested ducks. Our results indicate that the effectiveness of spinning-wing decoys differs among duck species and changes with latitude; thus, consideration of these effects may be warranted when setting harvest regulations and methods of take.

  13. Quantum key distribution over a 72 dB channel loss using ultralow dark count superconducting single-photon detectors.

    PubMed

    Shibata, Hiroyuki; Honjo, Toshimori; Shimizu, Kaoru

    2014-09-01

    We report the first quantum key distribution (QKD) experiment over a 72 dB channel loss using superconducting nanowire single-photon detectors (SSPD, SNSPD) with the dark count rate (DCR) of 0.01 cps. The DCR of the SSPD, which is dominated by the blackbody radiation at room temperature, is blocked by introducing cold optical bandpass filter. We employ the differential phase shift QKD (DPS-QKD) scheme with a 1 GHz system clock rate. The quantum bit error rate (QBER) below 3% is achieved when the length of the dispersion shifted fiber (DSF) is 336 km (72 dB loss), which is low enough to generate secure keys.

  14. Development of a Quantum Cascade Laser-Based Detector for Ammonia and Nitric Acid

    SciTech Connect

    Zahniser, Mark S.; Nelson, David D.; McManus, J. Barry; Shorter, Joanne H.; Herndon, Scott C.; Jimenez, Rodrigo

    2005-12-31

    We have developed a compact, robust, atmospheric trace gas detector based on mid-infrared absorption spectroscopy using pulsed quantum cascade (QC) lasers. The spectrometer is suitable for airborne measurements of ammonia, nitric acid, formaldehyde, formic acid, methane, nitrous oxide, carbon monoxide, nitrogen dioxide and other gases that have line-resolved absorption spectra in the mid-infrared spectral region. The QC laser light source operates near room temperature with thermal electric cooling instead of liquid nitrogen which has been previously required for semiconductor lasers in the mid-infrared spectral region. The QC lasers have sufficient output power so that thermal electric cooled detectors may be used in many applications with lower precision requirements. The instrument developed in this program has been used in several field campaigns from both the Aerodyne Mobile Laboratory and from the NOAA WP3 aircraft. The Phase II program has resulted in more than 10 archival publications describing the technology and its applications. Over 12 instruments based on this design have been sold to research groups in Europe and the United States making the program both a commercial as well as a technological success. Anticipated Benefits The development of a sensitive, cryogen-free, mid-infrared absorption method for atmospheric trace gas detection will have wide benefits for atmospheric and environmental research and broader potential commercial applications in areas such as medical diagnostic and industrial process monitoring of gaseous compounds. Examples include air pollution monitoring, breath analysis, combustion exhaust diagnostics, and plasma diagnostics for semi-conductor fabrication. The substitution of near-room temperature QC lasers for cryogenic lead salt TDLs and the resulting simplifications in instrument design and operation will greatly expand the range of applications.

  15. The iQID camera: An ionizing-radiation quantum imaging detector

    PubMed Central

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; Barrett, Harrison H.; Barber, H. Bradford; Furenlid, Lars R.

    2015-01-01

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detector’s response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The confirmed response to this broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated by particle interactions is optically amplified by the intensifier and then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. The spatial location and energy of individual particles are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, excellent detection efficiency for charged particles, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discriminate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is real-time, single-particle digital autoradiography. We present the latest results and discuss potential applications. PMID:26166921

  16. The design of hybrid x-ray detector using quantum size effect

    NASA Astrophysics Data System (ADS)

    Kim, J. N.; Shin, J. W.; Oh, K. M.; Park, S. K.; Lee, R. N.; Nam, S. H.

    2011-11-01

    Group 2-6 compounds (e.g., CdTe, CdS, CdSe) are utilized as photoconductors at the bulk level but manufactured as phosphors at the nano-level. Each of these uses has strengths and weaknesses. Here we attempted to fuse the two uses to maximize the strengths of each by using only one compound. We invented an X-ray detector that could function at two different levels -as a photoconductor in the bulk state and as a phosphor at the nano-scale- by hybridizing two different kinds of layer from one compound. This system operates as follows. First, an X-ray is converted to light on the luminescence layer, after which the light is received on the photoconductor layer. This light has the exact wavelength range required on the photoconductor. The quantum size effect refers to the impact of changes in the electronic energy level density according to the size of the crystal in a nano-particle on its optical and electrical characteristics. On account of this effect, two different kinds of layer from one compound can be used by regulating its size. Thus, by controlling the particle size and changing the emission wavelength, the most appropriate absorption wavelength for a photoconductor in the bulk state can be emitted from the nano-phosphor. The conversion efficiency in the hybrid structure is apparently superior to that in the bulk-state single layer. In conclusion, the electrical and optical characteristics of the proposed hybrid structure are superior to those of a conventional structure. These findings confirm the feasibility of a hybrid structure based on the quantum size effect.

  17. Fiber-coupled quantum-communications receiver based on two NbN superconducting single-photon detectors

    NASA Astrophysics Data System (ADS)

    Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Latta, C.; Zwiller, V.; Pearlman, A.; Cross, A.; Korneev, A.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G.; Verevkin, A.; Currie, M.; Sobolewski, R.

    2005-09-01

    We present the design and performance of a novel, two-channel single-photon receiver, based on two fiber-coupled NbN superconducting single-photon detectors (SSPDs). The SSPDs are nanostructured superconducting meanders covering an area of 100 μm2 and are known for ultrafast and efficient counting of single, visible-to-infrared photons. Their operation has been explained within a phenomenological hot-electron photoresponse model. Our receiver is intended for fiber-based quantum cryptography and communication systems, operational at near-infrared (NIR) telecommunication wavelengths, λ = 1.3 μm and λ = 1.55 μm. Coupling between the NbN detector and a single-mode optical fiber was achieved using a specially designed, micromechanical photoresist ring, positioned directly over the SSPD active area. The positioning accuracy of the ring was below 1 μm. The receiver with SSPDs was placed (immersed) in a standard liquid-helium transport Dewar and kept without interruption for over two months at 4.2 K. At the same time, the optical fiber inputs and electrical outputs were kept at room temperature. Our best system reached a system quantum efficiency of up to 0.3 % in the NIR radiation range, with the detector coupling efficiency of about 30 %. The response time was measured to be about 250 ps and was limited by our read-out electronics. The measured jitter was close to 35 ps. The presented performance parameters show that our NIR single photon detectors are suitable for practical quantum cryptography and for applications in quantum-correlation experiments.

  18. Electron-phonon interaction in three-barrier nanosystems as active elements of quantum cascade detectors

    SciTech Connect

    Tkach, N. V. Seti, Ju. A.; Grynyshyn, Yu. B.

    2015-04-15

    The theory of electron tunneling through an open nanostructure as an active element of a quantum cascade detector is developed, which takes into account the interaction of electrons with confined and interface phonons. Using the method of finite-temperature Green’s functions and the electron-phonon Hamiltonian in the representation of second quantization over all system variables, the temperature shifts and electron-level widths are calculated and the contributions of different electron-phonon-interaction mechanisms to renormalization of the spectral parameters are analyzed depending on the geometrical configuration of the nanosystem. Due to weak electron-phonon coupling in a GaAs/Al{sub 0.34}Ga{sub 0.66}As-based resonant tunneling nanostructure, the temperature shift and rf field absorption peak width are not very sensitive to the electron-phonon interaction and result from a decrease in potential barrier heights caused by a difference in the temperature dependences of the well and barrier band gaps.

  19. High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared.

    PubMed

    Le Jeannic, Hanna; Verma, Varun B; Cavaillès, Adrien; Marsili, Francesco; Shaw, Matthew D; Huang, Kun; Morin, Olivier; Nam, Sae Woo; Laurat, Julien

    2016-11-15

    We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous tungsten silicide and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark noise of a few counts per second. Combined with cavity-enhanced spontaneous parametric downconversion, this fiber-coupled detector enabled us to generate narrowband single photons with a heralding efficiency greater than 90% and a high spectral brightness of 0.6×104 photons/(s·mW·MHz). Beyond single-photon generation at large rate, such high-efficiency detectors open the path to efficient multiple-photon heralding and complex quantum state engineering.

  20. Five-band bias-selectable integrated quantum well detector in an n-p-n architecture

    NASA Astrophysics Data System (ADS)

    Ariyawansa, G.; Aytac, Y.; Perera, A. G. U.; Matsik, S. G.; Buchanan, M.; Wasilewski, Z. R.; Liu, H. C.

    2010-12-01

    A detector with five bands covering visible to long-wave infrared is demonstrated using a GaAs-based n-p-n-architecture. The major elements are two back-to-back connected p-i-n photodiodes with InGaAs/GaAs and GaAs/AlGaAs-based quantum wells integrated within the n-regions. At 80 K, a preliminary detector shows two combinations of bands, each responding in three bands, covering the 0.6-0.8, 3-4, and 4-8 μm ranges and the 0.8-0.9, 0.9-1.0, and 9-13 μm ranges. A good selection of these two combinations based on the bias voltage polarity is observed. A similar four-band detector without any cross-talk between the bands is proposed using In0.53Ga0.47As/InP material system.

  1. High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared

    NASA Astrophysics Data System (ADS)

    Le Jeannic, Hanna; Verma, Varun B.; Cavaillès, Adrien; Marsili, Francesco; Shaw, Matthew D.; Huang, Kun; Morin, Olivier; Nam, Sae Woo; Laurat, Julien

    2016-11-01

    We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous WSi and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark noise of a few counts per second. Combined with cavity-enhanced spontaneous parametric down-conversion, this fiber-coupled detector enabled us to generate narrowband single photons with a heralding efficiency greater than 90% and a high spectral brightness of $0.6\\times10^4$ photons/(s$\\cdot$mW$\\cdot$MHz). Beyond single-photon generation at large rate, such high-efficiency detectors open the path to efficient multiple-photon heralding and complex quantum state engineering.

  2. The Use of Decoy Sentences to Measure Auditory Training Gains.

    ERIC Educational Resources Information Center

    Mapes, Frances M.; Moreau, Roberta

    1980-01-01

    To investigate students' ability to generalize auditory skills, precourse to postcourse measures were compared for an auditory training group (N=42) and a control group (N=7) on three auditory discimination measures: (1) the training sentences, (2) related but nontrained sentences (decoy sentences), and (3) a modified rhyme test. (Author/PHR)

  3. Teleportation of a general two-mode coherent-state superposition via attenuated quantum channels with ideal and/or threshold detectors

    NASA Astrophysics Data System (ADS)

    An, Nguyen Ba

    2009-04-01

    Three novel probabilistic yet conclusive schemes are proposed to teleport a general two-mode coherent-state superposition via attenuated quantum channels with ideal and/or threshold detectors. The calculated total success probability is highest (lowest) when only ideal (threshold) detectors are used.

  4. [Analysis of factors affecting the results of estimation of the detective quantum efficiency of digital X-ray detectors within high and low spatial frequency ranges].

    PubMed

    Zelikman, M I; Kabanov, S P; Kruchinin, S A; Lobov, D P

    2007-01-01

    Factors affecting the results of estimation of the detective quantum efficiency of digital X-ray detectors within high and low spatial frequency ranges are studied. These factors include energy dispersion and loss in the conversion channel, nonuniformity of the X-ray detector irradiation field, and the internal noise of the system.

  5. Rhesus Macaques (Macaca mulatta) Exhibit the Decoy Effect in a Perceptual Discrimination Task

    PubMed Central

    Parrish, Audrey E.; Evans, Theodore A.; Beran, Michael J.

    2015-01-01

    The asymmetric dominance effect (or decoy effect) is a form of context-dependent choice bias in which the probability of choosing one of two options is impacted by the introduction of a third option, also known as the decoy. Decoy effects are documented widely within the human consumer choice literature and even extend to preference testing within nonhuman animals. Here, we extended this line of research to a perceptual discrimination task with rhesus monkeys to determine whether decoy stimuli would impact size judgments of rectangular stimuli. In a computerized task, monkeys attempted to choose the larger of two rectangles that varied in their size and orientation (horizontally or vertically oriented). In probe trials, a third stimulus (the decoy) was presented that was smaller than the other two rectangles but matched the orientation of one of them. Half of the probe trials presented a decoy that matched the orientation of the larger stimulus, and the other half presented a decoy that matched the orientation of the smaller stimulus. Monkeys rarely selected the decoy stimulus. However, their performance (selection of the largest rectangle) increased relative to the baseline trials (with only two choices) when the decoy was congruent in its orientation with the largest rectangle, but decreased relative to baseline when the decoy was incongruent with the largest rectangle. Thus, a decoy stimulus impacted monkeys’ perceptual choice behavior even when it was not a viable choice option itself. These results are explained with regard to comparative evaluation mechanisms. PMID:25832189

  6. Rhesus macaques (Macaca mulatta) exhibit the decoy effect in a perceptual discrimination task.

    PubMed

    Parrish, Audrey E; Evans, Theodore A; Beran, Michael J

    2015-07-01

    The asymmetric dominance effect (or decoy effect) is a form of context-dependent choice bias in which the probability of choosing one of two options is impacted by the introduction of a third option, also known as the decoy. Decoy effects are documented widely within the human consumer choice literature, and even extend to preference testing within nonhuman animals. Here, we extended this line of research to a perceptual discrimination task with rhesus monkeys to determine whether decoy stimuli would impact size judgments of rectangular stimuli. In a computerized task, monkeys attempted to choose the larger of two rectangles that varied in size and orientation (horizontally or vertically oriented). In probe trials, a third stimulus (the decoy) was presented that was smaller than the other two rectangles but matched the orientation of one of them. On half of the probe trials, the presented decoy matched the orientation of the larger stimulus, and on the other half, the decoy matched the orientation of the smaller stimulus. Monkeys rarely selected the decoy stimulus. However, their performance (selection of the largest rectangle) increased relative to the baseline trials (with only two choices) when the decoy was congruent in its orientation with the largest rectangle, but decreased relative to baseline when the decoy was incongruent with the largest rectangle. Thus, a decoy stimulus impacted monkeys' perceptual choice behavior even when it was not a viable choice option itself. These results are explained with regard to comparative evaluation mechanisms.

  7. High quantum efficiency megavoltage imaging with thick scintillator detectors for image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Gopal, Arun

    In image guided radiation therapy (IGRT), imaging devices serve as guidance systems to aid patient set-up and tumor volume localization. Traditionally, 2-D megavoltage x-ray imagers, referred to as electronic portal imaging devices (EPIDs), have been used for planar target localization, and have recently been extended to perform 3-D volumetric reconstruction via cone-beam computed tomography (CBCT). However, current EPIDs utilize thin and inefficient phosphor screen detectors and are subsequently limited by poor soft tissue visualization, which limits their use for CBCT. Therefore, the use of thick scintillation media as megavoltage x-ray detectors for greater x-ray sensitivity and enhanced image quality has recently been of significant interest. In this research, two candidates for thick scintillators: CsI(Tl) and terbium doped scintillation glass were investigated in separate imaging configurations. In the first configuration, a thick scintillation crystal (TSC) consisting of a thick, monolithic slab of CsI(Tl) was coupled to a mirror-lens-camera system. The second configuration is based on a fiber-optic scintillation glass array (FOSGA), wherein the scintillation glass is drawn into long fiber-optic conduits, inserted into a grid-type housing constructed out of polymer-tungsten alloy, and coupled to an array of photodiodes for digital read-out. The imaging prototypes were characterized using theoretical studies and imaging measurements to obtain fundamental metrics of imaging performance. Spatial resolution was measured based on a modulation transfer function (MTF), noise was evaluated in terms of a noise power spectrum (NPS), and overall contrast was characterized in the form of detective quantum efficiency (DQE). The imaging studies were used to optimize the TSC and FOSGA imagers and propose prototype configurations for order-of-magnitude improvements in overall image quality. In addition, a fast and simple technique was developed to measure the MTF, NPS, and

  8. Simulation and analysis of grating-integrated quantum dot infrared detectors for spectral response control and performance enhancement

    NASA Astrophysics Data System (ADS)

    Oh Kim, Jun; Ku, Zahyun; Krishna, Sanjay; Kang, Sang-Woo; Jun Lee, Sang; Chul Jun, Young; Urbas, Augustine

    2014-04-01

    We propose and analyze a novel detector structure for pixel-level multispectral infrared imaging. More specifically, we investigate the device performance of a grating-integrated quantum dots-in-a-well photodetector under backside illumination. Our design uses 1-dimensional grating patterns fabricated directly on a semiconductor contact layer and, thus, adds a minimal amount of additional effort to conventional detector fabrication flows. We show that we can gain wide-range control of spectral response as well as large overall detection enhancement by adjusting grating parameters. For small grating periods, the spectral responsivity gradually changes with parameters. We explain this spectral tuning using the Fabry-Perot resonance and effective medium theory. For larger grating periods, the responsivity spectra get complicated due to increased diffraction into the active region, but we find that we can obtain large enhancement of the overall detector performance. In our design, the spectral tuning range can be larger than 1 μm, and, compared to the unpatterned detector, the detection enhancement can be greater than 92% and 148% for parallel and perpendicular polarizations. Our work can pave the way for practical, easy-to-fabricate detectors, which are highly useful for many infrared imaging applications.

  9. Simulation and analysis of grating-integrated quantum dot infrared detectors for spectral response control and performance enhancement

    SciTech Connect

    Oh Kim, Jun; Ku, Zahyun; Urbas, Augustine E-mail: Augustine.Urbas@wpafb.af.mil; Krishna, Sanjay; Kang, Sang-Woo; Jun Lee, Sang; Chul Jun, Young E-mail: Augustine.Urbas@wpafb.af.mil

    2014-04-28

    We propose and analyze a novel detector structure for pixel-level multispectral infrared imaging. More specifically, we investigate the device performance of a grating-integrated quantum dots-in-a-well photodetector under backside illumination. Our design uses 1-dimensional grating patterns fabricated directly on a semiconductor contact layer and, thus, adds a minimal amount of additional effort to conventional detector fabrication flows. We show that we can gain wide-range control of spectral response as well as large overall detection enhancement by adjusting grating parameters. For small grating periods, the spectral responsivity gradually changes with parameters. We explain this spectral tuning using the Fabry–Perot resonance and effective medium theory. For larger grating periods, the responsivity spectra get complicated due to increased diffraction into the active region, but we find that we can obtain large enhancement of the overall detector performance. In our design, the spectral tuning range can be larger than 1 μm, and, compared to the unpatterned detector, the detection enhancement can be greater than 92% and 148% for parallel and perpendicular polarizations. Our work can pave the way for practical, easy-to-fabricate detectors, which are highly useful for many infrared imaging applications.

  10. Role of interface roughness scattering, temperature, and structural parameters on the performance characteristics of III-nitride quantum cascade detectors

    NASA Astrophysics Data System (ADS)

    Saha, S.; Kumar, J.

    2017-02-01

    A III-nitride quantum cascade detector (QCD) for the fiber optic communication wavelength (˜1.5 μm) has been designed, and the effect of intersubband scattering processes such as longitudinal-optical phonon scattering, ionized impurity scattering, and more importantly interface roughness scattering on responsivity performance has been analyzed. Carrier transport in the detector is modeled using a simplified rate equation approach. It is observed that inclusion of interface roughness scattering in the carrier transport model significantly enhances the responsivity performance of the detector. The effects of roughness conditions for instance mean roughness height and correlation length on responsivity have been examined. The responsivity of the designed detector drops by 2.16 mA/W at 400 K compared to its low temperature value at 50 K and the detection wavelength change with temperature is insignificant, which are very helpful for the stable detection of the radiation for a wide range of operating temperatures and show the thermal stability of III-nitride QCDs. The effects of active well widths, extractor barrier widths, and extractor well widths have been further investigated. A higher responsivity performance is observed for narrower barrier widths. It is noticed that change in the active well width significantly modifies the responsivity of the detector and the wavelength gets red shifted for larger active well widths.

  11. Experimental Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S.; Fejer, M. M.; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-01

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  12. Realizing the measure-device-independent quantum-key-distribution with passive heralded-single photon sources

    PubMed Central

    Wang, Qin; Zhou, Xing-Yu; Guo, Guang-Can

    2016-01-01

    In this paper, we put forward a new approach towards realizing measurement-device-independent quantum key distribution with passive heralded single-photon sources. In this approach, both Alice and Bob prepare the parametric down-conversion source, where the heralding photons are labeled according to different types of clicks from the local detectors, and the heralded ones can correspondingly be marked with different tags at the receiver’s side. Then one can obtain four sets of data through using only one-intensity of pump light by observing different kinds of clicks of local detectors. By employing the newest formulae to do parameter estimation, we could achieve very precise prediction for the two-single-photon pulse contribution. Furthermore, by carrying out corresponding numerical simulations, we compare the new method with other practical schemes of measurement-device-independent quantum key distribution. We demonstrate that our new proposed passive scheme can exhibit remarkable improvement over the conventional three-intensity decoy-state measurement-device-independent quantum key distribution with either heralded single-photon sources or weak coherent sources. Besides, it does not need intensity modulation and can thus diminish source-error defects existing in several other active decoy-state methods. Therefore, if taking intensity modulating errors into account, our new method will show even more brilliant performance. PMID:27759085

  13. Realizing the measure-device-independent quantum-key-distribution with passive heralded-single photon sources

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Zhou, Xing-Yu; Guo, Guang-Can

    2016-10-01

    In this paper, we put forward a new approach towards realizing measurement-device-independent quantum key distribution with passive heralded single-photon sources. In this approach, both Alice and Bob prepare the parametric down-conversion source, where the heralding photons are labeled according to different types of clicks from the local detectors, and the heralded ones can correspondingly be marked with different tags at the receiver’s side. Then one can obtain four sets of data through using only one-intensity of pump light by observing different kinds of clicks of local detectors. By employing the newest formulae to do parameter estimation, we could achieve very precise prediction for the two-single-photon pulse contribution. Furthermore, by carrying out corresponding numerical simulations, we compare the new method with other practical schemes of measurement-device-independent quantum key distribution. We demonstrate that our new proposed passive scheme can exhibit remarkable improvement over the conventional three-intensity decoy-state measurement-device-independent quantum key distribution with either heralded single-photon sources or weak coherent sources. Besides, it does not need intensity modulation and can thus diminish source-error defects existing in several other active decoy-state methods. Therefore, if taking intensity modulating errors into account, our new method will show even more brilliant performance.

  14. Comparative investigation of the detective quantum efficiency of direct and indirect conversion detector technologies in dedicated breast CT.

    PubMed

    Kuttig, Jan D; Steiding, Christian; Kolditz, Daniel; Hupfer, Martin; Karolczak, Marek; Kalender, Willi A

    2015-06-01

    To investigate the dose saving potential of direct-converting CdTe photon-counting detector technology for dedicated breast CT. We analyzed the modulation transfer function (MTF), the noise power spectrum (NPS) and the detective quantum efficiency (DQE) of two detector technologies, suitable for breast CT (BCT): a flat-panel energy-integrating detector with a 70 μm and a 208 μm thick gadolinium oxysulfide (GOS) and a 150 μm thick cesium iodide (CsI) scintillator and a photon-counting detector with a 1000 μm thick CdTe sensor. The measurements for GOS scintillator thicknesses of 70 μm and 208 μm delivered 10% pre-sampled MTF values of 6.6 mm(-1) and 3.2 mm(-1), and DQE(0) values of 23% and 61%. The 10% pre-sampled MTF value for the 150 μm thick CsI scintillator 6.9 mm(-1), and the DQE(0) value was 49%. The CdTe sensor reached a 10% pre-sampled MTF value of 8.5 mm(-1) and a DQE(0) value of 85%. The photon-counting CdTe detector technology allows for significant dose reduction compared to the energy-integrating scintillation detector technology used in BCT today. Our comparative evaluation indicates that a high potential dose saving may be possible for BCT by using CdTe detectors, without loss of spatial resolution. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Spectral broadening and electron-photon coupling in III-V infrared detectors of low dimensional quantum confined system

    NASA Astrophysics Data System (ADS)

    Joy, Soumitra R.; Mohammedy, Farseem M.

    2016-05-01

    Present work explores the mid-IR photodetection mechanism in III-V quantum confined system in twofold ways. Firstly, it models the extent of spectral linewidth broadening of photo-detector. Secondly, it investigates whether a strong perturbation of light can modulate the electronic bandstructure. Photo-absorption mechanism in the detector correlated to reduced carrier lifetime in ground state leading to homogeneous spectral widening is calculated. Besides, contribution of non-uniform size and composition of quantum dots towards spectral broadening is modeled in order to get the envelop of inhomogeneously broadened photocurrent spectrum. Our model generates photocurrent spectrum with 1.4 μm broadening centered at 3.5 μm at 77 K for a DWELL-IP, which agrees with the experimental result. The calculated photocurrent spectral width of 1.3 μm for GaAs/AlGaAs Quantum Well (QW) centered at 8.31 μm at 77 K also supports experimental data. In addition, our calculation reveals the emergence of a broad resonant peak in the spectrum of QW-IP in far infrared region (20-50 μm) as the photon volume density increases up to 0.1% of carrier density inside the active region. We introduce a hybrid density-of-states for strongly coupled electron-photon system to explain both mid and far IR peak.

  16. The detective quantum efficiency of photon-counting x-ray detectors using cascaded-systems analyses.

    PubMed

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A

    2013-04-01

    Single-photon counting (SPC) x-ray imaging has the potential to improve image quality and enable new advanced energy-dependent methods. The purpose of this study is to extend cascaded-systems analyses (CSA) to the description of image quality and the detective quantum efficiency (DQE) of SPC systems. Point-process theory is used to develop a method of propagating the mean signal and Wiener noise-power spectrum through a thresholding stage (required to identify x-ray interaction events). The new transfer relationships are used to describe the zero-frequency DQE of a hypothetical SPC detector including the effects of stochastic conversion of incident photons to secondary quanta, secondary quantum sinks, additive noise, and threshold level. Theoretical results are compared with Monte Carlo calculations assuming the same detector model. Under certain conditions, the CSA approach can be applied to SPC systems with the additional requirement of propagating the probability density function describing the total number of image-forming quanta through each stage of a cascaded model. Theoretical results including DQE show excellent agreement with Monte Carlo calculations under all conditions considered. Application of the CSA method shows that false counts due to additive electronic noise results in both a nonlinear image signal and increased image noise. There is a window of allowable threshold values to achieve a high DQE that depends on conversion gain, secondary quantum sinks, and additive noise.

  17. The detective quantum efficiency of photon-counting x-ray detectors using cascaded-systems analyses

    SciTech Connect

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A.

    2013-04-15

    Purpose: Single-photon counting (SPC) x-ray imaging has the potential to improve image quality and enable new advanced energy-dependent methods. The purpose of this study is to extend cascaded-systems analyses (CSA) to the description of image quality and the detective quantum efficiency (DQE) of SPC systems. Methods: Point-process theory is used to develop a method of propagating the mean signal and Wiener noise-power spectrum through a thresholding stage (required to identify x-ray interaction events). The new transfer relationships are used to describe the zero-frequency DQE of a hypothetical SPC detector including the effects of stochastic conversion of incident photons to secondary quanta, secondary quantum sinks, additive noise, and threshold level. Theoretical results are compared with Monte Carlo calculations assuming the same detector model. Results: Under certain conditions, the CSA approach can be applied to SPC systems with the additional requirement of propagating the probability density function describing the total number of image-forming quanta through each stage of a cascaded model. Theoretical results including DQE show excellent agreement with Monte Carlo calculations under all conditions considered. Conclusions: Application of the CSA method shows that false counts due to additive electronic noise results in both a nonlinear image signal and increased image noise. There is a window of allowable threshold values to achieve a high DQE that depends on conversion gain, secondary quantum sinks, and additive noise.

  18. Development of a portable instrument for automated measurements of the detective quantum efficiency of x-ray detectors

    NASA Astrophysics Data System (ADS)

    Cunningham, I. A.; Lazarev, S.; Sattarivand, M.; Jankovic, N. D.

    2007-03-01

    The scientific community has generally adopted use of the modulation transfer function (MTF) and detective quantum efficiency (DQE) as primary measures of performance of radiographic detectors. However, measurement of these parameters is generally restricted to experts in laboratory environments due to the required x-ray physics knowledge, specialized instrumentation and computational analyses. We have developed a prototype instrument that automates both the physical measurement and subsequent image analysis to determine the MTF, noise power spectrum (NPS) and DQE of radiographic and mammographic systems. The instrument is placed in the x-ray path directly in front of the detector. A series of images are acquired, saved in "raw" DICOM format and then used to determine the MTF (using the slanted-edge method) and NPS. The number of incident quanta is calculated from measurements of the incident exposure including corrections for air temperature and pressure and ionization chamber spectral response. The primary sources of error are backscatter from the detector and scatter generated within the instrument. These have been minimized to achieve an incident exposure measurement within 2% of a calibrated electrometer and chamber in free space. The MTF and DQE of a commercial CsI-based flat-panel detector were measured over a range of incident exposures from 20 uR to 20 mR per image. Results agreed with both our own laboratory measurements and previously published measurements performed elsewhere with a similar detector within 2% for the MTF and 5% for the DQE. A complete DQE analysis of a clinical digital flat-panel detector is completed in 30 minutes and requires no system modifications.

  19. Improving the sensitivity of indirect-type organic X-ray detector by blending with CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Kim, B.; Lee, J.; Kang, J.

    2017-01-01

    In this study, The blending effect of CdSe quantum dots (QDs) dispersed in a poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) active layer was investigated to improve the sensitivity of indirect-type X-ray detectors. 3 different sizes of CdSe QDs (5, 7, and 9 nm) were blended in P3HT:PCBM (weight ratio of 1:1) layers. The 5 nm-QD blended condition showed relatively high short circuit current density (Jsc), power conversion efficiency (PCE), and sensitivity. The optimal amount of 5nm-QDs in the P3HT:PCBM layer was also investigated in the range of 0 to 4 mg. As the final outcome, the detector fabricated with 3 mg of 5 nm-QDs in the active layer showed the highest sensitivity of 220.08 nC/mR·cm2, which was 28% higher than the sensitivity of the pristine P3HT:PCBM detector. Through the addition of the optimal amount of CdSe QDs to the P3HT:PCBM layer, the sensitivity of the X-ray detector was enhanced due to the increment of photon-absorption and charge transport.

  20. Scanning near-field optical microscope working with a CdSe /ZnS quantum dot based optical detector

    NASA Astrophysics Data System (ADS)

    Aigouy, L.; Samson, B.; Julié, G.; Mathet, V.; Lequeux, N.; Nı. Allen, C.; Diaf, H.; Dubertret, B.

    2006-06-01

    We have developed a scanning near-field optical microscope that uses a subwavelength-sized silica sphere covered with CdSe /ZnS quantum dots as a fluorescent optical detector. Due to the good photostability of these semiconducting particles, we are routinely able to perform several successive scans without a noticeable decrease of fluorescence signals. As an example, we will show some images of the light immediately transmitted through 300nm wide slits made in a thin gold film. We will also discuss the advantages of such fluorescent probes compared to other near-field optical techniques.

  1. Design of monocrystalline Si/SiGe multi-quantum well microbolometer detector for infrared imaging systems

    NASA Astrophysics Data System (ADS)

    Shafique, Atia; Durmaz, Emre C.; Cetindogan, Barbaros; Yazici, Melik; Kaynak, Mehmet; Kaynak, Canan B.; Gurbuz, Yasar

    2016-05-01

    This paper presents the design, modelling and simulation results of silicon/silicon-germanium (Si/SiGe) multi-quantum well based bolometer detector for uncooled infrared imaging system. The microbolometer is designed to detect light in the long wave length infrared (LWIR) range from 8 to 14 μm with pixel size of 25 x 25 μm. The design optimization strategy leads to achieve the temperature coefficient of resistance (TCR) 4.5%/K with maximum germanium (Ge) concentration of 50%. The design of microbolometer entirely relies on standard CMOS and MEMS processes which makes it suitable candidate for commercial infrared imaging systems.

  2. Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch

    NASA Astrophysics Data System (ADS)

    Sajeed, Shihan; Chaiwongkhot, Poompong; Bourgoin, Jean-Philippe; Jennewein, Thomas; Lütkenhaus, Norbert; Makarov, Vadim

    2015-06-01

    In free-space quantum key distribution (QKD), the sensitivity of the receiver's detector channels may depend differently on the spatial mode of incoming photons. Consequently, an attacker can control the spatial mode to break security. We experimentally investigate a standard polarization QKD receiver and identify sources of efficiency mismatch in its optical scheme. We model a practical intercept-and-resend attack and show that it would break security in most situations. We show experimentally that adding an appropriately chosen spatial filter at the receiver's entrance may be an effective countermeasure.

  3. Enhanced quantum efficiency of high-purity silicon imaging detectors by ultralow temperature surface modification using Sb doping

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana; Hoenk, Michael E.; Elliott, S. Tom; Holland, Stephen E.; Nikzad, Shouleh

    2005-01-01

    A low temperature process for Sb doping of silicon has been developed as a backsurface treatment for high-purity n-type imaging detectors. Molecular beam epitaxy (MBE) is used to achieve very high dopant incorporation in a thin, surface-confined layer. The growth temperature is kept below 450 (deg)C for compatibility with Al-metallized devices. Imaging with MBE-modified 1kx1k charge coupled devices (CCDs) operated in full depletion has been demonstrated. Dark current is comparable to the state-of-the-art process, which requires a high temperature step. Quantum efficiency is improved, especially in the UV, for thin doped layers placed closer to the backsurface. Near 100% internal quantum efficiency has been demonstrated in the ultraviolet for a CCD with a 1.5 nm silicon cap layer.

  4. Evolution of the photoresponse time of the GaAs/AlGaAs cyclotron resonance quantum Hall effect detector

    SciTech Connect

    Antonov, A. V.; Gavrilenko, V. I.; Kuritsyn, D. I.; Morozov, S. V.; Spirin, K. E. Kawaguchi, Y.; Komiyama, S.

    2009-02-15

    The photoresponse time of the cyclotron resonance detector to terahertz radiation under integer quantum Hall effect conditions in the GaAs/AlGaAs heterostructure is shown to have a deep minimum at the Hall plateau center and two sharp maxima at the plateau edges. The minimum at the plateau center is associated with the fundamental property of vanishing of the random impurity potential screening under quantum Hall effect conditions. The decrease in the response time outside the plateau is related to the equilibrium population of the Landau level above (under) the Fermi level by electrons (holes), respectively, which increases the probability of photoexcited carrier recombination. It is shown that, under conditions of background radiation (300 K), relaxation times decrease by two orders of magnitude while retaining the characteristic magnetic field dependence.

  5. Enhanced quantum efficiency of high-purity silicon imaging detectors by ultralow temperature surface modification using Sb doping

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana; Hoenk, Michael E.; Elliott, S. Tom; Holland, Stephen E.; Nikzad, Shouleh

    2005-01-01

    A low temperature process for Sb doping of silicon has been developed as a backsurface treatment for high-purity n-type imaging detectors. Molecular beam epitaxy (MBE) is used to achieve very high dopant incorporation in a thin, surface-confined layer. The growth temperature is kept below 450 (deg)C for compatibility with Al-metallized devices. Imaging with MBE-modified 1kx1k charge coupled devices (CCDs) operated in full depletion has been demonstrated. Dark current is comparable to the state-of-the-art process, which requires a high temperature step. Quantum efficiency is improved, especially in the UV, for thin doped layers placed closer to the backsurface. Near 100% internal quantum efficiency has been demonstrated in the ultraviolet for a CCD with a 1.5 nm silicon cap layer.

  6. Antineoplastic effect of decoy oligonucleotide derived from MGMT enhancer.

    PubMed

    Canello, Tamar; Ovadia, Haim; Refael, Miri; Zrihan, Daniel; Siegal, Tali; Lavon, Iris

    2014-01-01

    Silencing of O(6)-methylguanine-DNA-methyltransferase (MGMT) in tumors, mainly through promoter methylation, correlates with a better therapeutic response and with increased survival. Therefore, it is conceivable to consider MGMT as a potential therapeutic target for the treatment of cancers. Our previous results demonstrated the pivotal role of NF-kappaB in MGMT expression, mediated mainly through p65/NF-kappaB homodimers. Here we show that the non-canonical NF-KappaB motif (MGMT-kappaB1) within MGMT enhancer is probably the major inducer of MGMT expression following NF-kappaB activation. Thus, in an attempt to attenuate the transcription activity of MGMT in tumors we designed locked nucleic acids (LNA) modified decoy oligonucleotides corresponding to the specific sequence of MGMT-kappaB1 (MGMT-kB1-LODN). Following confirmation of the ability of MGMT-kB1-LODN to interfere with the binding of p65/NF-kappaB to the NF-KappaB motif within MGMT enhancer, the efficacy of the decoy was studied in-vitro and in-vivo. The results of these experiments show that the decoy MGMT-kB1-LODN have a substantial antineoplastic effect when used either in combination with temozolomide or as monotherapy. Our results suggest that MGMT-kB1-LODN may provide a novel strategy for cancer therapy.

  7. Development of components for cost effective terahertz measurement system: terahertz quantum cascade laser and terahertz quantum well infrared photo-detector

    NASA Astrophysics Data System (ADS)

    Hosako, Iwao; Sekine, Norihiko; Patrashin, Mikhail; Yasuda, Hiroaki

    2007-09-01

    Terahertz imaging and spectroscopy have attracted a lot of attention in recent years, because monocycle terahertz radiation can be generated using an ultra-short pulse laser and semiconductor device technologies. The availability of monocycle terahertz radiation sources has encouraged innovative research and development activities worldwide in an extremely wide range of applications, from security to medical systems. However, the fundamental device technology, namely the semiconductor emitter, amplifier, modulator, focal plane array detector, and optical thin film among others, in the terahertz frequencies has not yet been fully established. Therefore, a measurement system in the terahertz range remains a costly alternative. We report in this paper our recent developments of a terahertz quantum cascade laser (THz-QCL) and a terahertz quantum well photo-detector (THz-QWIP). We believe that the combination of a semiconductor emitter (THz-QCL) and a semiconductor detector array (THz-QWIP) is a good choice for developing a cost-effective measurement system for a given terahertz range (from 1.5 THz to 5.0 THz), because both of these items are based on mass-production semiconductor fabrication techniques. We fabricated the THz-QCLs using a resonant longitudinal-optical phonon depopulation (RPD) scheme, which is made up of both a GaAs/AlGaAs material system and a GaSb/AlGaSb material system. The GaAs/AlGaAs THz-QCL has already successfully demonstrated a high peak power (about 30 milliwatts in pulsed operation) operation at 3.1 THz and a high operating temperature (123K). On the other hand, we have fabricated a THz-QWIP structure consisting of 20 periods of GaAs/Al 0.02Ga 0.98As quantum wells with a grating coupler on the top of detector devices, and successfully operated it at 3 THz with a responsivity of 13mA/W. We now believe we are ready to make a cost-effective measurement system, although both of the devices still require cryogenic coolers.

  8. A decoy trap for breeding-season mallards in North Dakota

    USGS Publications Warehouse

    Sharp, D.E.; Lokemoen, J.T.

    1987-01-01

    A modified decoy trap was effective for capturing wild adult male and female mallards (Anas platyrhynchos) during the 1980-81 breeding seasons in North Dakota. Key features contributing to the trap's success included a central decoy cylinder, large capture compartments with spring-door openings, an adjustable trigger mechanism with a balanced door attachment that was resistant to trap movement, and the use of F1, wild-stock or game-farm female decoys.

  9. Measurements of the modulation transfer function, normalized noise power spectrum and detective quantum efficiency for two flat panel detectors: a fluoroscopic and a cone beam computer tomography flat panel detectors.

    PubMed

    Benítez, Ricardo Betancourt; Ning, Ruola; Conover, David; Liu, Shaohua

    2009-01-01

    The physical performance of two Flat Panel Detectors has been evaluated. The first Flat Panel Detector is for Fluoroscopic applications, Varian PaxScan 2520, and the second is for Cone Beam Computer Tomography applications, Varian PaxScan 4030CB. First, the spectrum of the X-ray source was measured. Second, the linearity of the detectors was investigated by using an ionization chamber and the average ADU values of the detectors. Third, the temporal resolution was characterized by evaluating their image lag. Fourth, their spatial resolution was characterized by the pre-sampling Modulation Transfer Function. Fifth, the Normalized Noise Power Spectrum was calculated for various exposures levels. Finally, the Detective Quantum Efficiency was obtained as a function of spatial frequency and entrance exposure. The results illustrate that the physical performance in Detective Quantum Efficiency and Normalized Noise Power Spectrum of the Cone Beam Computer Tomography detector is superior to that of the fluoroscopic detector whereas the latter detector has a higher spatial resolution as demonstrated by larger values of its Modulation Transfer Function at large spatial frequencies.

  10. Spectrum-based method to generate good decoy libraries for spectral library searching in peptide identifications.

    PubMed

    Cheng, Chia-Ying; Tsai, Chia-Feng; Chen, Yu-Ju; Sung, Ting-Yi; Hsu, Wen-Lian

    2013-05-03

    As spectral library searching has received increasing attention for peptide identification, constructing good decoy spectra from the target spectra is the key to correctly estimating the false discovery rate in searching against the concatenated target-decoy spectral library. Several methods have been proposed to construct decoy spectral libraries. Most of them construct decoy peptide sequences and then generate theoretical spectra accordingly. In this paper, we propose a method, called precursor-swap, which directly constructs decoy spectral libraries directly at the "spectrum level" without generating decoy peptide sequences by swapping the precursors of two spectra selected according to a very simple rule. Our spectrum-based method does not require additional efforts to deal with ion types (e.g., a, b or c ions), fragment mechanism (e.g., CID, or ETD), or unannotated peaks, but preserves many spectral properties. The precursor-swap method is evaluated on different spectral libraries and the results of obtained decoy ratios show that it is comparable to other methods. Notably, it is efficient in time and memory usage for constructing decoy libraries. A software tool called Precursor-Swap-Decoy-Generation (PSDG) is publicly available for download at http://ms.iis.sinica.edu.tw/PSDG/.

  11. Effectiveness Evaluation Method of Anti-Radiation Missile against Active Decoy

    NASA Astrophysics Data System (ADS)

    Tang, Junyao; Cao, Fei; Li, Sijia

    2017-06-01

    In the problem of anti-radiation missile against active decoy, whether the ARM can effectively kill the target radiation source and bait is an important index for evaluating the operational effectiveness of the missile. Aiming at this problem, this paper proposes a method to evaluate the effect of ARM against active decoy. Based on the calculation of ARM’s ability to resist the decoy, the paper proposes a method to evaluate the decoy resistance based on the key components of the hitting radar. The method has the advantages of scientific and reliability.

  12. Quantum efficiencies of imaging detectors with alkali halide photocathodes. I - Microchannel plates with separate and integral CsI photocathodes

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1987-01-01

    Measurements and comparisons have been made of the quantum efficiencies of microchannel plate (MCP) detectors in the far-UV (below 2000-A) wavelength range using CsI photocathodes (a) deposited on the front surfaces of microchannel plates and (b) deposited on solid substrates as opaque photocathodes with the resulting photoelectrons input to microchannel plates. The efficiences were measured in both pulse-counting and photodiode modes of operation. Typical efficiencies are about 15 percent at 1216 A for a CsI-coated MCP compared with 65 percent for an opaque CsI photocathode MCP detector. Special processing has yielded an efficiency as high as 20 percent for a CsI-coated MCP. This may possibly be further improved by optimization of the tilt angle of the MCP channels relative to the front face of the MCP and incident radiation. However, at present there still remains a factor of at least 3 quantum efficiency advantage in the separate opaque CsI photocathode configuration.

  13. Three Temperature Regimes in Superconducting Photon Detectors: Quantum, Thermal and Multiple Phase-Slips as Generators of Dark Counts

    PubMed Central

    Murphy, Andrew; Semenov, Alexander; Korneev, Alexander; Korneeva, Yulia; Gol’tsman, Gregory; Bezryadin, Alexey

    2015-01-01

    We perform measurements of the switching current distributions of three w ≈ 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijärvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced. PMID:25988591

  14. Three temperature regimes in superconducting photon detectors: quantum, thermal and multiple phase-slips as generators of dark counts.

    PubMed

    Murphy, Andrew; Semenov, Alexander; Korneev, Alexander; Korneeva, Yulia; Gol'tsman, Gregory; Bezryadin, Alexey

    2015-05-19

    We perform measurements of the switching current distributions of three w ≈ 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijärvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced.

  15. Quantum efficiencies of imaging detectors with alkali halide photocathodes. I - Microchannel plates with separate and integral CsI photocathodes

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1987-01-01

    Measurements and comparisons have been made of the quantum efficiencies of microchannel plate (MCP) detectors in the far-UV (below 2000-A) wavelength range using CsI photocathodes (a) deposited on the front surfaces of microchannel plates and (b) deposited on solid substrates as opaque photocathodes with the resulting photoelectrons input to microchannel plates. The efficiences were measured in both pulse-counting and photodiode modes of operation. Typical efficiencies are about 15 percent at 1216 A for a CsI-coated MCP compared with 65 percent for an opaque CsI photocathode MCP detector. Special processing has yielded an efficiency as high as 20 percent for a CsI-coated MCP. This may possibly be further improved by optimization of the tilt angle of the MCP channels relative to the front face of the MCP and incident radiation. However, at present there still remains a factor of at least 3 quantum efficiency advantage in the separate opaque CsI photocathode configuration.

  16. Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7 μm

    NASA Astrophysics Data System (ADS)

    Sakr, S.; Giraud, E.; Dussaigne, A.; Tchernycheva, M.; Grandjean, N.; Julien, F. H.

    2012-04-01

    A two-color GaN-based quantum cascade detector is demonstrated. This photodetector operates simultaneously at a peak wavelength of 1.7 and 1 μm at room temperature without any external voltage. These peaks correspond, respectively, to the e1e2 and e1e3 intersubband absorption of the active GaN quantum well. The extractor has been designed to allow for efficient transfer of electrons from both the e2 and e3 states to the next period. The 1 μm detected wavelength is the shortest value reported for an intersubband semiconductor based detector.

  17. An optical test bench for the precision characterization of absolute quantum efficiency for the TESS CCD detectors

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, A.; Villasenor, J.; Kissel, S.; Ricker, G.; Vanderspek, R.

    2017-05-01

    The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright stars with Ic lesssim 13. TESS has been selected by NASA for launch in 2018 as an Astrophysics Explorer mission, and is expected to discover a thousand or more planets that are smaller in size than Neptune. TESS will employ four wide-field optical charge-coupled device (CCD) cameras with a band-pass of 650 nm-1050 nm to detect temporary drops in brightness of stars due to planetary transits. The 1050 nm limit is set by the quantum efficiency (QE) of the CCDs. The detector assembly consists of four back-illuminated MIT Lincoln Laboratory CCID-80 devices. Each CCID-80 device consists of 2048×2048 imaging array and 2048×2048 frame store regions. Very precise on-ground calibration and characterization of CCD detectors will significantly assist in the analysis of the science data obtained in space. The characterization of the absolute QE of the CCD detectors is a crucial part of the characterization process because QE affects the performance of the CCD significantly over the redder wavelengths at which TESS will be operating. An optical test bench with significantly high photometric stability has been developed to perform precise QE measurements. The design of the test setup along with key hardware, methodology, and results from the test campaign are presented.

  18. Gate Tuning of Förster Resonance Energy Transfer in a Graphene - Quantum Dot FET Photo-Detector.

    PubMed

    Li, Ruifeng; Schneider, Lorenz Maximilian; Heimbrodt, Wolfram; Wu, Huizhen; Koch, Martin; Rahimi-Iman, Arash

    2016-06-20

    Graphene photo-detectors functionalized by colloidal quantum dots (cQDs) have been demonstrated to show effective photo-detection. Although the transfer of charge carriers or energy from the cQDs to graphene is not sufficiently understood, it is clear that the mechanism and efficiency of the transfer depends on the morphology of the interface between cQDs and graphene, which is determined by the shell of the cQDs in combination with its ligands. Here, we present a study of a graphene field-effect transistor (FET), which is functionalized by long-ligand CdSe/ZnS core/shell cQDs. Time-resolved photo-luminescence from the cQDs as a function of the applied gate voltage has been investigated in order to probe transfer dynamics in this system. Thereby, a clear modification of the photo-luminescence lifetime has been observed, indicating a change of the decay channels. Furthermore, we provide responsivities under a Förster-like energy transfer model as a function of the gate voltage in support of our findings. The model shows that by applying a back-gate voltage to the photo-detector, the absorption can be tuned with respect to the photo-luminescence of the cQDs. This leads to a tunable energy transfer rate across the interface of the photo-detector, which offers an opportunity to optimize the photo-detection.

  19. Gate Tuning of Förster Resonance Energy Transfer in a Graphene - Quantum Dot FET Photo-Detector

    PubMed Central

    Li, Ruifeng; Schneider, Lorenz Maximilian; Heimbrodt, Wolfram; Wu, Huizhen; Koch, Martin; Rahimi-Iman, Arash

    2016-01-01

    Graphene photo-detectors functionalized by colloidal quantum dots (cQDs) have been demonstrated to show effective photo-detection. Although the transfer of charge carriers or energy from the cQDs to graphene is not sufficiently understood, it is clear that the mechanism and efficiency of the transfer depends on the morphology of the interface between cQDs and graphene, which is determined by the shell of the cQDs in combination with its ligands. Here, we present a study of a graphene field-effect transistor (FET), which is functionalized by long-ligand CdSe/ZnS core/shell cQDs. Time-resolved photo-luminescence from the cQDs as a function of the applied gate voltage has been investigated in order to probe transfer dynamics in this system. Thereby, a clear modification of the photo-luminescence lifetime has been observed, indicating a change of the decay channels. Furthermore, we provide responsivities under a Förster-like energy transfer model as a function of the gate voltage in support of our findings. The model shows that by applying a back-gate voltage to the photo-detector, the absorption can be tuned with respect to the photo-luminescence of the cQDs. This leads to a tunable energy transfer rate across the interface of the photo-detector, which offers an opportunity to optimize the photo-detection. PMID:27320182

  20. Coupled quantum wires as a detector of many-body states below the last conductance plateau.

    SciTech Connect

    Sasaki, T.; Lilly, Michael Patrick; Bird, J. P.; Shailos, A.; Reno, John Louis; Ochiai, Y.; Aoki, N.; Iwase, Y.; Morimoto, T.; Simmons, Jerry Alvon

    2004-03-01

    We demonstrate the presence of a resonant interaction between a pair of coupled quantum wires, which are realized in the ultra-high mobility two-dimensional electron gas of a GaAs/AlGaAs quantum well. Measuring the conductance of one wire, as the width of the other is varied, we observe a resonant peak in its conductance that is correlated with the point at which the swept wire pinches off. We discuss this behavior in terms of recent theoretical predictions concerning local spin-moment formation in quantum wires.

  1. Experimental Demonstration of Polarization Encoding Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Tang, Zhiyuan; Liao, Zhongfa; Xu, Feihu; Qi, Bing; Qian, Li; Lo, Hoi-Kwong

    2014-05-01

    We demonstrate the first implementation of polarization encoding measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks. Active phase randomization of each individual pulse is implemented to protect against attacks on imperfect sources. By optimizing the parameters in the decoy state protocol, we show that it is feasible to implement polarization encoding MDI-QKD with commercial off-the-shelf devices. A rigorous finite key analysis is applied to estimate the secure key rate. Our work paves the way for the realization of a MDI-QKD network, in which the users only need compact and low-cost state-preparation devices and can share complicated and expensive detectors provided by an untrusted network server.

  2. Confinement enhancing barriers for high performance quantum dots-in-a-well infrared detectors

    NASA Astrophysics Data System (ADS)

    Barve, A. V.; Sengupta, S.; Kim, J. O.; Sharma, Y. D.; Adhikary, S.; Rotter, T. J.; Lee, S. J.; Kim, Y. H.; Krishna, S.

    2011-11-01

    We demonstrate the use of thin AlGaAs barrier layers in the quantum dots in a well heterostructure to enhance the quantum confinement of carriers in the excited energy level, while maintaining high escape probability. This is achieved by controlling the excited state energy between the confinement enhancing (CE) barriers and the continuum level. Responsivity of ˜0.1 A/W, detectivity of 6.5 × 1010 cmHz1/2 W-1 (77 K, 0.6 V, 7.5 µm, f/2), and a factor of 10 improvement over a control sample without the CE barriers have been measured. The effect of changing the quantum well thickness and quantum dot size is also reported.

  3. Molecular Beam Epitaxy growth and characterization of silicon - Doped InAs dot in a well quantum dot infrared photo detector (DWELL-QDIP)

    NASA Astrophysics Data System (ADS)

    Srinivasan, T.; Mishra, P.; Jangir, S. K.; Raman, R.; Sridhara Rao, D. V.; Rawal, D. S.; Muralidharan, R.

    2015-05-01

    We report the growth by Molecular Beam Epitaxy (MBE), fabrication and characterization of silicon doped 20 layer InAs dot in a well quantum dot infrared photo detector (DWELL-QDIP) device structures. Two structures with InAs dots of vertical heights of 50 Å and 40 Å were compared. A 2-8 μm band normal incidence photo response of the detector with polarization and bias dependence was obtained at 77 K. The specific peak detectivity D∗ be 0.8 × 109 Jones for one of the detectors.

  4. Search and decoy: the automatic identification of mass spectra.

    PubMed

    Eisenacher, Martin; Kohl, Michael; Turewicz, Michael; Koch, Markus-Hermann; Uszkoreit, Julian; Stephan, Christian

    2012-01-01

    In recent years, the generation and interpretation of MS/MS spectra for the identification of peptides and proteins has matured to a frequently used automatic workflow in Proteomics. Several software solutions for the automated analysis of MS/MS spectra allow for high-throughput/high-performance analyses of complex samples. Related to MS/MS searches, target-decoy approaches have gained more and more popularity: in a "decoy" part of the search database nonexistent sequences mimic real sequences (the "target" sequences). With their help, the number of falsely identified peptides/proteins can be estimated after a search and the resulting protein list can be cut at a specified false discovery rate (FDR). This is an essential prerequisite for all quantitative approaches, as they rely on correct identifications. Especially the label-free approach "spectral counting"-gaining more and more popularity due to low costs and simplicity-depends directly on the correctness of peptide-spectrum matches (PSMs). This work's aim is to describe five popular search engines-especially their general properties regarding protein identification, but also their quantification abilities, if those go beyond spectral counting. By doing so, Proteomics researchers are enabled to compare their features and to choose an appropriate solution for their specific question. Furthermore, the search engines are applied to a spectrum data set generated from a complex sample with a Thermo LTQ Velos OrbiTrap (Thermo Fisher Scientific, Waltham, MA, USA). The results of the search engines are compared, e.g., regarding time requirements, peptides and proteins found, and the search engines' behavior using the decoy approach.

  5. Continuous-variable quantum identity authentication based on quantum teleportation

    NASA Astrophysics Data System (ADS)

    Ma, Hongxin; Huang, Peng; Bao, Wansu; Zeng, Guihua

    2016-06-01

    A continuous-variable quantum identity authentication protocol, which is based on quantum teleportation, is presented by employing two-mode squeezed vacuum state and coherent state. The proposed protocol can verify user's identity efficiently with a new defined fidelity parameter. Update of authentication key can also be implemented in our protocol. Moreover, the analysis shows its feasibility and security under the general Gaussian-cloner attack on authentication key, which is guaranteed by quantum entanglement, insertion of decoy state and random displacement.

  6. Charge carrier localization effects on the quantum efficiency and operating temperature range of InAsxP1-x/InP quantum well detectors

    NASA Astrophysics Data System (ADS)

    Vashisht, Geetanjali; Dixit, V. K.; Porwal, S.; Kumar, R.; Sharma, T. K.; Oak, S. M.

    2016-03-01

    The effect of charge carrier localization resulting in "S-shaped" temperature dependence of the photoluminescence peak energy of InAsxP1-x/InP quantum wells (QWs) is distinctly revealed by the temperature dependent surface photo voltage (SPV) and photoconductivity (PC) processes. It is observed that the escape efficiency of carriers from QWs depends on the localization energy, where the carriers are unable to contribute in SPV/PC signal below a critical temperature. Below the critical temperature, carriers are strongly trapped in the localized states and are therefore unable to escape from the QW. Further, the critical temperature increases with the magnitude of localization energy of carriers. Carrier localization thus plays a pivotal role in defining the operating temperature range of InAsxP1-x/InP QW detectors.

  7. Quantum noise in digital x-ray image detectors with optically coupled scintillators

    SciTech Connect

    Flynn, M.J.; Hames, S.M. |; Wilderman, S.J.; Ciarelli, J.J.

    1996-08-01

    Digital x-ray imaging detectors designed to soft x-ray (1 to 50 keV) are significant for medical mammography, dental radiography, microradiography, and microtomography. Detector designs involve either direct absorption of x-rays in solid state devices or thin scintillator screens optically coupled to solid state sensors. Well designed scintillator systems produce 10 or more electrons per detected x-ray and, used with charge coupled devices (CCD), detect 100,000 x-rays per pixel before saturation. However, if the scintillator is directly coupled to the detector, radiation can penetrate to the semiconductor detector with a small number of events producing large charge and noise. The authors have investigated the degradation of image noise by these direct absorption events using numerical models for a laboratory detector system consisting of a 60 {micro}m CsI scintillator optically coupled to a scientific CCD. Monte Carlo methods were used to estimate the charge deposition signal and noise for both the CsI and the semiconductor. Without a fiber optic coupler, direct absorptions dominate the signal and increase the signal variance by a factor of about 30 at energies above 10 keV. With a 3 mm fiber optic coupler, no significant degradation is observed for input energies below 45 keV.

  8. Towards Quantum Experiments with Human Eyes as Detectors Based on Cloning via Stimulated Emission

    NASA Astrophysics Data System (ADS)

    Sekatski, Pavel; Brunner, Nicolas; Branciard, Cyril; Gisin, Nicolas; Simon, Christoph

    2009-09-01

    We show theoretically that a large Bell inequality violation can be obtained with human eyes as detectors, in a “micro-macro” experiment where one photon from an entangled pair is greatly amplified via stimulated emission. The violation is robust under photon loss. This leads to an apparent paradox, which we resolve by noting that the violation proves the existence of entanglement before the amplification. The same is true for the micro-macro experiments performed so far with conventional detectors. However, we also prove that there is genuine micro-macro entanglement even for high loss.

  9. Nanostructured LaF{sub 3}:Ce Quantum Dot Nuclear Radiation Detector

    SciTech Connect

    Guss, P., Guise, R., Reed, M., Mukhopadhyay, S., Yuan, D.

    2010-11-01

    Many radioactive isotopes have low energy X-rays and high energy gamma rays of interest for detection. The goal of the work presented was to demonstrate the possibility of measuring both low-energy X-rays and relatively high-energy gamma rays simultaneously using the nano-structured lanthanum bromide, lanthanum fluoride, or cerium bromide. The key accomplishments of the project was the building and acquisition of the LaF3:Ce nanocomposite detectors. Nanocomposite detectors are sensitive to {gamma}’s as well as n’s and X-rays.

  10. Attacks exploiting deviation of mean photon number in quantum key distribution and coin tossing

    NASA Astrophysics Data System (ADS)

    Sajeed, Shihan; Radchenko, Igor; Kaiser, Sarah; Bourgoin, Jean-Philippe; Pappa, Anna; Monat, Laurent; Legré, Matthieu; Makarov, Vadim

    2015-03-01

    The security of quantum communication using a weak coherent source requires an accurate knowledge of the source's mean photon number. Finite calibration precision or an active manipulation by an attacker may cause the actual emitted photon number to deviate from the known value. We model effects of this deviation on the security of three quantum communication protocols: the Bennett-Brassard 1984 (BB84) quantum key distribution (QKD) protocol without decoy states, Scarani-Acín-Ribordy-Gisin 2004 (SARG04) QKD protocol, and a coin-tossing protocol. For QKD we model both a strong attack using technology possible in principle and a realistic attack bounded by today's technology. To maintain the mean photon number in two-way systems, such as plug-and-play and relativistic quantum cryptography schemes, bright pulse energy incoming from the communication channel must be monitored. Implementation of a monitoring detector has largely been ignored so far, except for ID Quantique's commercial QKD system Clavis2. We scrutinize this implementation for security problems and show that designing a hack-proof pulse-energy-measuring detector is far from trivial. Indeed, the first implementation has three serious flaws confirmed experimentally, each of which may be exploited in a cleverly constructed Trojan-horse attack. We discuss requirements for a loophole-free implementation of the monitoring detector.

  11. Femto-second electron transit time characterization in GaN/AlGaN quantum cascade detector at 1.5 micron

    NASA Astrophysics Data System (ADS)

    Vardi, A.; Sakr, S.; Mangeney, J.; Kandaswamy, P. K.; Monroy, E.; Tchernycheva, M.; Schacham, S. E.; Julien, F. H.; Bahir, G.

    2011-11-01

    The ultra fast carrier dynamic in GaN/AlGaN quantum cascade detector was investigated using a time-resolved bias-lead monitoring technique. It is demonstrated that the intrinsic speed limitation, governed by the carrier transit time, is smaller than 1 ps, corresponding to a frequency cut off above 200 GHz.

  12. Evaluation of a novel virtual screening strategy using receptor decoy binding sites.

    PubMed

    Patel, Hershna; Kukol, Andreas

    2016-08-23

    Virtual screening is used in biomedical research to predict the binding affinity of a large set of small organic molecules to protein receptor targets. This report shows the development and evaluation of a novel yet straightforward attempt to improve this ranking in receptor-based molecular docking using a receptor-decoy strategy. This strategy includes defining a decoy binding site on the receptor and adjusting the ranking of the true binding-site virtual screen based on the decoy-site screen. The results show that by docking against a receptor-decoy site with Autodock Vina, improved Receiver Operator Characteristic Enrichment (ROCE) was achieved for 5 out of fifteen receptor targets investigated, when up to 15 % of a decoy site rank list was considered. No improved enrichment was seen for 7 targets, while for 3 targets the ROCE was reduced. The extent to which this strategy can effectively improve ligand prediction is dependent on the target receptor investigated.

  13. Adaptation of Decoy Fusion Strategy for Existing Multi-Stage Search Workflows

    NASA Astrophysics Data System (ADS)

    Ivanov, Mark V.; Levitsky, Lev I.; Gorshkov, Mikhail V.

    2016-09-01

    A number of proteomic database search engines implement multi-stage strategies aiming at increasing the sensitivity of proteome analysis. These approaches often employ a subset of the original database for the secondary stage of analysis. However, if target-decoy approach (TDA) is used for false discovery rate (FDR) estimation, the multi-stage strategies may violate the underlying assumption of TDA that false matches are distributed uniformly across the target and decoy databases. This violation occurs if the numbers of target and decoy proteins selected for the second search are not equal. Here, we propose a method of decoy database generation based on the previously reported decoy fusion strategy. This method allows unbiased TDA-based FDR estimation in multi-stage searches and can be easily integrated into existing workflows utilizing popular search engines and post-search algorithms.

  14. Effect of finite detector-element width on the spatial-frequency-dependent detective quantum efficiency

    NASA Astrophysics Data System (ADS)

    Cunningham, Ian A.; Westmore, Michael S.; Fenster, Aaron

    1995-05-01

    Image blur in digital imaging systems results from both the spatial spreading of quanta representing the image in the detector system and from the integration of quanta over the finite detector element width. Linear-systems theory has often been used to describe these blurring mechanisms as a convolution, implying the existence of a corresponding modulation transfer function (MTF) in the spatial-frequency domain. This also implies that the resulting noise- power spectrum (NPS) is modified by the square of the blurring MTF. This deterministic approach correctly describes the effect of each blurring mechanism on the overall system MTF, but does not correctly describe image noise characteristics. This is because the convolution is a deterministic calculation, and neglects the statistical properties of the image quanta. Rabbani et al. developed an expression for the NPS following a stochastic spreading mechanism that correctly accounts for these statistical properties. Use of their results requires a modification in how we should interpret the convolution theorem. We suggest the use of a `stochastic' convolution operator, that uses the Rabbani equation for the NPS rather than the deterministic result. This approach unifies the description of both image blur and image noise into a single linear-systems framework. This method is then used to develop expressions for the signal, NPS, DQE, and pixel SNR for a hypothetical digital detector design that includes the effects of conversion to secondary quanta, stochastic spreading of the secondary quanta, and a finite detector-element width.

  15. Two-Dimensional Target Decoy Strategy for Shotgun Proteomics

    PubMed Central

    Bern, Marshall W.; Kil, Yong J.

    2011-01-01

    The target-decoy approach to estimating and controlling false discovery rate (FDR) has become a de facto standard in shotgun proteomics, and it has been applied at both the peptide-to-spectrum match (PSM) and protein levels. Current bioinformatics methods control either the PSM- or the protein-level FDR, but not both. In order to obtain the most reliable information from their data, users must employ one method when the number of tandem mass spectra exceeds the number of proteins in the database and another method when the reverse is true. Here we propose a simple variation of the standard target-decoy strategy that estimates and controls PSM and protein FDRs simultaneously, regardless of the relative numbers of spectra and proteins. We demonstrate that even if the final goal is a list of PSMs with a fixed low FDR and not a list of protein identifications, the proposed two-dimensional strategy offers advantages over a pure PSM-level strategy. PMID:22010998

  16. Two-dimensional target decoy strategy for shotgun proteomics.

    PubMed

    Bern, Marshall W; Kil, Yong J

    2011-12-02

    The target-decoy approach to estimating and controlling false discovery rate (FDR) has become a de facto standard in shotgun proteomics, and it has been applied at both the peptide-to-spectrum match (PSM) and protein levels. Current bioinformatics methods control either the PSM- or the protein-level FDR, but not both. In order to obtain the most reliable information from their data, users must employ one method when the number of tandem mass spectra exceeds the number of proteins in the database and another method when the reverse is true. Here we propose a simple variation of the standard target-decoy strategy that estimates and controls PSM and protein FDRs simultaneously, regardless of the relative numbers of spectra and proteins. We demonstrate that even if the final goal is a list of PSMs with a fixed low FDR and not a list of protein identifications, the proposed two-dimensional strategy offers advantages over a pure PSM-level strategy.

  17. Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems

    NASA Astrophysics Data System (ADS)

    Jiang, Mu-Sheng; Sun, Shi-Hai; Tang, Guang-Zhao; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2013-12-01

    Thanks to the high-speed self-differencing single-photon detector (SD-SPD), the secret key rate of quantum key distribution (QKD), which can, in principle, offer unconditionally secure private communications between two users (Alice and Bob), can exceed 1 Mbit/s. However, the SD-SPD may contain loopholes, which can be exploited by an eavesdropper (Eve) to hack into the unconditional security of the high-speed QKD systems. In this paper, we analyze the fact that the SD-SPD can be remotely controlled by Eve in order to spy on full information without being discovered, then proof-of-principle experiments are demonstrated. Here, we point out that this loophole is introduced directly by the operating principle of the SD-SPD, thus, it cannot be removed, except for the fact that some active countermeasures are applied by the legitimate parties.

  18. High quantum efficiency N-structure type-II superlattice mid-wavelength infrared detector with resonant cavity enhanced design

    NASA Astrophysics Data System (ADS)

    Wu, Haoyue; Xu, Yun; Li, Jian; Jiang, Yu; Bai, Lin; Yu, Hailong; Fu, Dong; Zhu, Haijun; Song, Guofeng

    2017-05-01

    We propose a resonant cavity enhanced (RCE) N-structure type-II superlattice (T2SL) mid-wavelength infrared (MWIR) photodetector which can be used for the detection of methane gas at 3.3 μm. The theoretical analysis of quantum efficiency (QE) shows that the peak QE can be enhanced from 0.45 to 0.80 at 3.3 μm after 12 period AlAs0.09Sb0.91/GaSb DBR is introduced to the N-structure T2SL detector and QE exhibits the narrow bandwidth characteristic near the target wavelength. By analyzing the refractive indices of different materials and the reflectance of different DBRs, we also discuss how to determine the component materials of quarter-wavelength DBR reflectors.

  19. The quantum limit for gravitational-wave detectors and methods of circumventing it

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Caves, C. M.; Sandberg, V. D.; Zimmermann, M.; Drever, R. W. P.

    1979-01-01

    The Heisenberg uncertainty principle prevents the monitoring of the complex amplitude of a mechanical oscillator more accurately than a certain limit value. This 'quantum limit' is a serious obstacle to the achievement of a 10 to the -21st gravitational-wave detection sensitivity. This paper examines the principles of the back-action evasion technique and finds that this technique may be able to overcome the problem of the quantum limit. Back-action evasion does not solve, however, other problems of detection, such as weak coupling, large amplifier noise, and large Nyquist noise.

  20. Mid-IR colloidal quantum dot detectors enhanced by optical nano-antennas

    NASA Astrophysics Data System (ADS)

    Yifat, Yuval; Ackerman, Matthew; Guyot-Sionnest, Philippe

    2017-01-01

    We report the fabrication of a colloidal quantum dot based photodetector designed for the 3-5 μm mid infrared wavelength range incorporated with optical nano-antenna arrays to enhance the photocurrent. The fabricated arrays exhibit a resonant behavior dependent on the length of the nano-antenna rods, in good agreement with numerical simulation. The device exhibits a three-fold increase in the spectral photoresponse compared to a photodetector device without antennas, and the resonance is polarized parallel to the antenna orientation. We numerically estimate the device quantum efficiency and investigate its bias dependence.

  1. Magnetic-field tunable THz detectors based on GaAs/AlGaAs and CdTe/CdMgTe quantum wells

    NASA Astrophysics Data System (ADS)

    Łusakowski, J.; Białek, M.; Grigelionis, I.; Adamus, Z.; Wróbel, J.; Umansky, V.; Karczewski, G.; Wojtowicz, T.; Grynberg, M.

    2014-09-01

    Magnetic-field tunable semiconductor detectors are used in THz spectroscopy due to their sensitivity and possibility to respond to photons in a broad frequency range. We compare THz detectors processed on high electron mobility GaAs/GaAlAs and CdTe/CdMgTe quantum wells. Transmission, photocurrent and photovoltage measurements were carried out as a function of the magnetic field at a constant energy of incident THz photons from a THz laser. The samples investigated were grid-gated and grid-free. The spectra show features resulting from excitation of the cyclotron resonance and magnetoplasmons. Theoretical models allow to analyze quantitatively the frequency of observed excitations and determine plasmon dispersion relations. This study allows to point at advantages and disadvantages of THz cyclotron-resonance and plasmonic detectors fabricated on GaAs- and CdTe-based quantum wells as well as to compare these two types of devices.

  2. Photocurrent spectrum study of a quantum dot single-photon detector based on resonant tunneling effect with near-infrared response

    SciTech Connect

    Weng, Q. C.; An, Z. H. E-mail: luwei@mail.sitp.ac.cn; Xiong, D. Y.; Zhu, Z. Q.; Zhang, B.; Chen, P. P.; Li, T. X.; Lu, W. E-mail: luwei@mail.sitp.ac.cn

    2014-07-21

    We present the photocurrent spectrum study of a quantum dot (QD) single-photon detector using a reset technique which eliminates the QD's “memory effect.” By applying a proper reset frequency and keeping the detector in linear-response region, the detector's responses to different monochromatic light are resolved which reflects different detection efficiencies. We find the reset photocurrent tails up to 1.3 μm wavelength and near-infrared (∼1100 nm) single-photon sensitivity is demonstrated due to interband transition of electrons in QDs, indicating the device a promising candidate both in quantum information applications and highly sensitive imaging applications operating in relative high temperatures (>80 K).

  3. High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors

    SciTech Connect

    Jafari Salim, A. Eftekharian, A.; Hamed Majedi, A.

    2014-02-07

    In this paper, we theoretically show that a multi-layer superconducting nanowire single-photon detector (SNSPD) is capable of approaching characteristics of an ideal SNSPD in terms of the quantum efficiency, dark count, and band-width. A multi-layer structure improves the performance in two ways. First, the potential barrier for thermally activated vortex crossing, which is the major source of dark counts and the reduction of the critical current in SNSPDs is elevated. In a multi-layer SNSPD, a vortex is made of 2D-pancake vortices that form a stack. It will be shown that the stack of pancake vortices effectively experiences a larger potential barrier compared to a vortex in a single-layer SNSPD. This leads to an increase in the experimental critical current as well as significant decrease in the dark count rate. In consequence, an increase in the quantum efficiency for photons of the same energy or an increase in the sensitivity to photons of lower energy is achieved. Second, a multi-layer structure improves the efficiency of single-photon absorption by increasing the effective optical thickness without compromising the single-photon sensitivity.

  4. Quantum Key Distribution with High-Speed Superconducting Single-Photon Detectors

    DTIC Science & Technology

    2007-05-01

    based QKD [2,3], with high detection efficiency (~40 % at 850 nm) and low dark counts (~100 Hz). For near - infrared wavelengths such as the standard...to near - infrared ,” Appl. Phys. Lett. 80, 4687 (2002). [7] R. H. Hadfield et al. “Single photon source characterization with a superconducting single...efficiency at the wavelength of interest. At wavelengths below 1000 nm Silicon Avalanche Photodiodes (Si APDs) are the detector of choice for fiber

  5. Photon-number resolving detectors

    NASA Astrophysics Data System (ADS)

    Haderka, O.; Peřina, J., Jr.; Hamar, M.; Michálek, V.; Černoch, A.; Soubusta, J.

    2010-12-01

    An overview of current commercial and emerging approaches to single-photon-sensitive detection is given. Special attention is devoted to the detectors providing photon-number resolution with respect to their application in quantum optics and quantum information. Besides detectors offering photon-number resolution intrinsically, also multiplexing detectors are treated. A comparison of the detector technologies is presented.

  6. Space charge mediated negative differential resistance in terahertz quantum well detectors

    NASA Astrophysics Data System (ADS)

    Delga, A.; Doyennette, L.; Buffaz, A.; Berger, V.; Jasnot, F. R.; de Vaulchier, L. A.; Péré-Laperne, N.; Liu, H. C.

    2011-07-01

    In terahertz quantum well infrared photodetectors, a built-in-charge-mediated regime transition of the electronic transport is thoroughly investigated. The very strong current discontinuity and negative differential resistivity behavior are explained in terms of band structure reorganizations. The analysis of bias versus current measurements reveals that the transition occurs when the first two wells of the structure become partially drained, and the second well enters the ionized regime before the first one. Both many-body effects and a careful model of the contact have to be considered to account for these features. The source of the built-in charge is identified as intersubband impact ionization. The regime transition is one of its few experimental proofs, and provides an original approach to investigate hot electron kinetics in multi-quantum-well structures.

  7. Fabrication of multi-layered absorption structure for high quantum efficiency photon detectors

    SciTech Connect

    Fujii, Go; Fukuda, Daiji; Numata, Takayuki; Yoshizawa, Akio; Tsuchida, Hidemi; Fujino, Hidetoshi; Ishii, Hiroyuki; Itatani, Taro; Zama, Tatsuya; Inoue, Shuichiro

    2009-12-16

    We report on some efforts to improve a quantum efficiency of titanium-based optical superconducting transition edge sensors using the multi-layered absorption structure for maximizing photon absorption in the Ti layer. Using complex refractive index values of each film measured by a Spectroscopic Ellipsometry, we designed and optimized by a simulation code. An absorption measurement of fabricated structure was in good agreement with the design and was higher than 99% at optimized wavelength of 1550 nm.

  8. Fine-scale features on bioreplicated decoys of the emerald ash borer provide necessary visual verisimilitude

    NASA Astrophysics Data System (ADS)

    Domingue, Michael J.; Pulsifer, Drew P.; Narkhede, Mahesh S.; Engel, Leland G.; Martín-Palma, Raúl J.; Kumar, Jayant; Baker, Thomas C.; Lakhtakia, Akhlesh

    2014-03-01

    The emerald ash borer (EAB), Agrilus planipennis, is an invasive tree-killing pest in North America. Like other buprestid beetles, it has an iridescent coloring, produced by a periodically layered cuticle whose reflectance peaks at 540 nm wavelength. The males perform a visually mediated ritualistic mating flight directly onto females poised on sunlit leaves. We attempted to evoke this behavior using artificial visual decoys of three types. To fabricate decoys of the first type, a polymer sheet coated with a Bragg-stack reflector was loosely stamped by a bioreplicating die. For decoys of the second type, a polymer sheet coated with a Bragg-stack reflector was heavily stamped by the same die and then painted green. Every decoy of these two types had an underlying black absorber layer. Decoys of the third type were produced by a rapid prototyping machine and painted green. Fine-scale features were absent on the third type. Experiments were performed in an American ash forest infested with EAB, and a European oak forest home to a similar pest, the two-spotted oak borer (TSOB), Agrilus biguttatus. When pinned to leaves, dead EAB females, dead TSOB females, and bioreplicated decoys of both types often evoked the complete ritualized flight behavior. Males also initiated approaches to the rapidly prototyped decoy, but would divert elsewhere without making contact. The attraction of the bioreplicated decoys was also demonstrated by providing a high dc voltage across the decoys that stunned and killed approaching beetles. Thus, true bioreplication with fine-scale features is necessary to fully evoke ritualized visual responses in insects, and provides an opportunity for developing insecttrapping technologies.

  9. Quantum Calorimeter Gamma-ray Detectors: New Tools for Non-proliferation

    NASA Astrophysics Data System (ADS)

    Zink, Barry

    2007-03-01

    High resolution γ-ray spectroscopy is an important tool for non-destructive analysis of nuclear materials and is often used by safeguards inspectors to help verify the inventories of nuclear materials held around the world. The energy spectrum of photons emitted from isotopes of uranium or plutonium in the 40-1000 keV energy range give unique signatures that, if accurately measured, give inspectors important information about the age and enrichment of the material and therefore its intended purpose. In this talk I will describe recent work by a team of researchers from the Unversity of Denver, the National Institute of Standards and Technology, and Los Alamos National Laboratory on γ-ray spectrometers with more than an order of magnitude improvement in energy resolution over standard techniques. The heart of this improved tool for non-proliferation is a microcalorimeter γ-ray detector that combines a micromachined thermal isolation structure with a bulk absorber and a highly sensitive superconducting transition-edge thermometer optimized for operation well below 1 K. In the last several months, we have assembled and tested arrays of these microcalorimeters, with many detector pixels on a single chip. When read out with SQUID multiplexers, these arrays dramatically increase the speed of data collection, allowing ultra-high resolution γ-ray spectra to be acquired in roughly the same time needed for traditional detector technologies. In addition to presenting high-resolution γ-ray spectra of nuclear materials such as plutonium, I will describe the physics of the microcalorimeter, which ranges from the lifetime of quasiparticles in bulk superconductors to the thermal properties of glue.

  10. In search of decoy/guardee to R genes

    PubMed Central

    Gupta, Sumanti; Chakraborti, Dipankar; Basu, Debabrata

    2010-01-01

    Plant responses are coordinately controlled by both external and internal signals. Apt perception of pathogen attack and its appropriate conversion to internal signals ultimately determine the outcome of innate immunity. The present review predicts the involvement of unconventional ‘guard/decoy model’ in chickpea-Fusarium encounter. Rapid alkalinization factor is predicted to act as initial ‘Gatekeeper decoy’ counteracting fungal entry. Phospholipases and cystatins probably function as ‘Guardees’ being shielded by R gene(s). Serine Threonine Kinases decodes external pathogenic signals to in planta defense alarms. 14.3.3 provides clues to the wilt mechanism. The versatile sugars serve as signal generators and transmitters maintaining intra and inter cellular connectivity during stress. PMID:20855953

  11. Subversion of cytokine networks by virally encoded decoy receptors

    PubMed Central

    Epperson, Megan L.; Lee, Chung A.; Fremont, Daved H.

    2012-01-01

    Summary During the course of evolution, viruses have captured or created a diverse array of open reading frames that encode for proteins that serve to evade and sabotage the host innate and adaptive immune responses, which would otherwise lead to their elimination. These viral genomes are some of the best textbooks of immunology ever written. The established arsenal of immunomodulatory proteins encoded by viruses is large and growing and includes specificities for virtually all known inflammatory pathways and targets. The focus of this review is on herpes and poxvirus-encoded cytokine and chemokine binding proteins that serve to undermine the coordination of host immune surveillance. Structural and mechanistic studies of these decoy receptors have provided a wealth of information, not only about viral pathogenesis but also about the inner workings of cytokine signaling networks. PMID:23046131

  12. Influence of decoys on the noise and dynamics of gene expression

    NASA Astrophysics Data System (ADS)

    Burger, Anat; Walczak, Aleksandra M.; Wolynes, Peter G.

    2012-10-01

    Many transcription factors bind to DNA with a remarkable lack of specificity, so that regulatory binding sites compete with an enormous number of nonregulatory “decoy” sites. For an autoregulated gene, we show decoy sites decrease noise in the number of unbound proteins to a Poisson limit that results from binding and unbinding. This noise buffering is optimized for a given protein concentration when decoys have a 1/2 probability of being occupied. Decoys linearly increase the time to approach steady state and exponentially increase the time to switch epigenetically between bistable states.

  13. Molecular decoys: ligand-binding recombinant proteins protect mice from curarimimetic neurotoxins.

    PubMed Central

    Gershoni, J M; Aronheim, A

    1988-01-01

    Mimic ligand-binding sites of the nicotinic acetylcholine receptor bind d-tubocurarine and alpha-bungarotoxin in vitro. Injection of such binding sites into mice could act as molecular decoys in vivo, providing protection against toxic ligands. This hypothesis of molecular "decoyance" has been tested in greater than 250 mice. Bacterially produced cholinergic binding sites provided a 2-fold increase in the survival rate of animals challenged with curarimimetic neurotoxins. Possible considerations for decoy designs and their applications are discussed. Images PMID:3375254

  14. Optical communication with two-photon coherent states. III - Quantum measurements realizable with photoemissive detectors

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.; Shapiro, J. H.

    1980-01-01

    Homodyne detection is shown to achieve the same signal-to-noise ratio as the quantum field quadrature measurement, thus providing a receiver which realizes linear modulation TCS performance gain. The full equivalence of homodyne detection and single-quadrature field measurement is established. A heterodyne configuration which uses a TCS image-band oscillator in addition to the usual coherent state local oscillator is studied. Results are obtained by means of a representation theorem which shows that photoemissive detection realizes the photon flux density measurement.

  15. Triangular-barrier quantum rod photodiodes: Their fabrication and detector characteristics

    SciTech Connect

    Ohmori, M.; Kobayashi, Y.; Vitushinskiy, P.; Nakamura, S.; Kojima, T.; Sakaki, H.

    2014-02-24

    We have fabricated a GaAs-based triangular-barrier photodiode, in which self-assembled InGaAs quantum rods (Q-rods) are embedded in its barrier region. Transport study at 100 K has shown that electrons start to flow mainly through Q-rods when a bias is set above a threshold. Upon illumination, photo-generated holes are found to accumulate in the middle portion of Q-rods and efficiently lower the local barrier height, yielding the responsivity as high as 10{sup 5} A/W at the incident light of 1 fW.

  16. High Throughput, High Yield Fabrication of High Quantum Efficiency Back-Illuminated Photon Counting, Far UV, UV, and Visible Detector Arrays

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.

    2013-01-01

    In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).

  17. High Throughput, High Yield Fabrication of High Quantum Efficiency Back-Illuminated Photon Counting, Far UV, UV, and Visible Detector Arrays

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.

    2013-01-01

    In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).

  18. Cascaded-systems analyses and the detective quantum efficiency of single-Z x-ray detectors including photoelectric, coherent and incoherent interactions.

    PubMed

    Yun, Seungman; Tanguay, Jesse; Kim, Ho Kyung; Cunningham, Ian A

    2013-04-01

    Theoretical models of the detective quantum efficiency (DQE) of x-ray detectors are an important step in new detector development by providing an understanding of performance limitations and benchmarks. Previous cascaded-systems analysis (CSA) models accounted for photoelectric interactions only. This paper describes an extension of the CSA approach to incorporate coherent and incoherent interactions, important for low-Z detectors such as silicon and selenium. A parallel-cascade approach is used to describe the three types of x-ray interactions. The description of incoherent scatter required developing expressions for signal and noise transfer through an "energy-labeled reabsorption" process where the parameters describing reabsorption are random functions of the scatter photon energy. The description of coherent scatter requires the use of scatter form factors that may not be accurate for some crystalline detector materials. The model includes the effects of scatter reabsorption and escape, charge collection, secondary quantum sinks, noise aliasing, and additive noise. Model results are validated by Monte Carlo calculations for Si and Se detectors assuming free-atom atomic form factors. The new signal and noise transfer expressions were validated by showing agreement with Monte Carlo results. Coherent and incoherent scatter can degrade the DQE of Si and sometimes Se detectors depending on detector thickness and incident-photon energy. Incoherent scatter can produce a substantial low-frequency drop in the modulation transfer function and DQE. A generally useful CSA model of the DQE is described that is believed valid for any single-Z material up to 10 cycles/mm at both mammographic and radiographic energies within the limitations of Fourier-based linear-systems models and the use of coherent-scatter form factors. The model describes a substantial low-frequency drop in the DQE of Si systems due to incoherent scatter above 20-40 keV.

  19. Cascaded-systems analyses and the detective quantum efficiency of single-Z x-ray detectors including photoelectric, coherent and incoherent interactions

    SciTech Connect

    Yun, Seungman; Tanguay, Jesse; Cunningham, Ian A.; Kim, Ho Kyung

    2013-04-15

    Purpose: Theoretical models of the detective quantum efficiency (DQE) of x-ray detectors are an important step in new detector development by providing an understanding of performance limitations and benchmarks. Previous cascaded-systems analysis (CSA) models accounted for photoelectric interactions only. This paper describes an extension of the CSA approach to incorporate coherent and incoherent interactions, important for low-Z detectors such as silicon and selenium. Methods: A parallel-cascade approach is used to describe the three types of x-ray interactions. The description of incoherent scatter required developing expressions for signal and noise transfer through an 'energy-labeled reabsorption' process where the parameters describing reabsorption are random functions of the scatter photon energy. The description of coherent scatter requires the use of scatter form factors that may not be accurate for some crystalline detector materials. The model includes the effects of scatter reabsorption and escape, charge collection, secondary quantum sinks, noise aliasing, and additive noise. Model results are validated by Monte Carlo calculations for Si and Se detectors assuming free-atom atomic form factors. Results: The new signal and noise transfer expressions were validated by showing agreement with Monte Carlo results. Coherent and incoherent scatter can degrade the DQE of Si and sometimes Se detectors depending on detector thickness and incident-photon energy. Incoherent scatter can produce a substantial low-frequency drop in the modulation transfer function and DQE. Conclusions: A generally useful CSA model of the DQE is described that is believed valid for any single-Z material up to 10 cycles/mm at both mammographic and radiographic energies within the limitations of Fourier-based linear-systems models and the use of coherent-scatter form factors. The model describes a substantial low-frequency drop in the DQE of Si systems due to incoherent scatter above 20

  20. Scalable quantum information processing with photons and atoms

    NASA Astrophysics Data System (ADS)

    Pan, Jian-Wei

    Over the past three decades, the promises of super-fast quantum computing and secure quantum cryptography have spurred a world-wide interest in quantum information, generating fascinating quantum technologies for coherent manipulation of individual quantum systems. However, the distance of fiber-based quantum communications is limited due to intrinsic fiber loss and decreasing of entanglement quality. Moreover, probabilistic single-photon source and entanglement source demand exponentially increased overheads for scalable quantum information processing. To overcome these problems, we are taking two paths in parallel: quantum repeaters and through satellite. We used the decoy-state QKD protocol to close the loophole of imperfect photon source, and used the measurement-device-independent QKD protocol to close the loophole of imperfect photon detectors--two main loopholes in quantum cryptograph. Based on these techniques, we are now building world's biggest quantum secure communication backbone, from Beijing to Shanghai, with a distance exceeding 2000 km. Meanwhile, we are developing practically useful quantum repeaters that combine entanglement swapping, entanglement purification, and quantum memory for the ultra-long distance quantum communication. The second line is satellite-based global quantum communication, taking advantage of the negligible photon loss and decoherence in the atmosphere. We realized teleportation and entanglement distribution over 100 km, and later on a rapidly moving platform. We are also making efforts toward the generation of multiphoton entanglement and its use in teleportation of multiple properties of a single quantum particle, topological error correction, quantum algorithms for solving systems of linear equations and machine learning. Finally, I will talk about our recent experiments on quantum simulations on ultracold atoms. On the one hand, by applying an optical Raman lattice technique, we realized a two-dimensional spin-obit (SO

  1. Measurement of the detective quantum efficiency (DQE) of digital X-ray detectors according to the novel standard IEC 62220-1.

    PubMed

    Illers, Hartmut; Buhr, Egbert; Hoeschen, Christoph

    2005-01-01

    A mobile measurement facility which complies with IEC 62220-1 has been set up to determine the detective quantum efficiency (DQE) of digital X-ray detector systems. Exemplary measurements were performed for two similar CR detector systems, a CsI-based indirect detector and an Se-based direct detector. The standardised radiation quality RQA 5 was applied for measurement and for three of these systems RQA 9 was also applied. A pronounced dependence of DQE on radiation quality was observed for the direct detector, where the DQEs for RQA 5 and RQA 9 differ by a factor of approximately 2. The uncertainty (95% confidence interval) associated with the measured DQE values is within 0.01 and 0.04 depending on, for example, the spatial frequency. Thus, it has been demonstrated that the DQE can be measured accurately and reliably with the accuracy required by the international standard IEC 62220-1. It is now possible to objectively measure and compare DQE values of digital X-ray detector systems.

  2. Decoy trapping and rocket-netting for northern pintails in spring

    USGS Publications Warehouse

    Grand, James B.; Fondell, Thomas F.

    1994-01-01

    Decoy traps and rocket-nets were compared for capturing Northern Pintails (Anas acuta: hereafter pintails) during May 1991 on the Yukon Flats, Alaska. Males were captured at similar rates using both methods (1.38 vs. 1.07 males/trap d, respectively), but baited rocket-nets were more efficient than decoy traps for capturing females (0.52 vs. 0.12 females/trap d). There were no significant differences in masses of pintails captured by each method.

  3. Implementation of an information system for the traceability of live decoy birds.

    PubMed

    Bortolotti, Laura; Rizzo, Simone; Favero, Laura; Bonfanti, Lebana; Comin, Arianna; Marangon, Stefano

    2012-12-01

    In the Veneto region (northern Italy), some geographic areas in the Po Valley have a large concentration of industrial poultry farms and are located close to wet areas with high populations of wild waterfowl. Live decoy birds belonging to the orders of Anseriformes and Charadriiformes can constitute a "bridge" for avian influenza (AI) viruses between the wild reservoir and the rural holdings where live decoy birds are usually kept, sometimes together with poultry. Thus, the use of live decoy birds during bird hunting could increase the risk of exposure of poultry farms to AI viruses. Since 2008, this kind of hunting has been strictly regulated with regard to the detection and use of live decoy birds. In order to guarantee the application of appropriate AI risk-modulating and monitoring measures in the management of the live decoys according to the European Union (EU) provisions, a solid and well-structured information system has been created. The Regional Data Bank (RDB) of farms and livestock, which has been operating since 1997, also contains data on farms and poultry movements. Therefore, the RDB management software was updated to collect data from the hunters who keep live decoy birds, and specific functions were integrated to ensure the traceability of these birds. Each live decoy bird has been identified by an irremovable ring. The individual code of each ring is recorded in the RDB and linked to both the holder's code and the hunting area. Transfers and death/slaughtering of the registered birds are recorded, too. The activation of a computerized data collection system has proven to be a prerequisite for the implementation of a control system for live decoy birds and provides an essential tool for the management of AI emergencies.

  4. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals.

    PubMed

    Nederlof, Igor; van Genderen, Eric; Li, Yao Wang; Abrahams, Jan Pieter

    2013-07-01

    When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespective of the diffraction technique used. Here, it is shown that at a very low electron dose (at most 0.1 e(-) Å(-2)), a Medipix2 quantum area detector is sufficiently sensitive to allow the collection of a 30-frame rotation series of 200 keV electron-diffraction data from a single ∼100 nm thick protein crystal. A highly parallel 200 keV electron beam (λ = 0.025 Å) allowed observation of the curvature of the Ewald sphere at low resolution, indicating a combined mosaic spread/beam divergence of at most 0.4°. This result shows that volumes of crystal with low mosaicity can be pinpointed in electron diffraction. It is also shown that strategies and data-analysis software (MOSFLM and SCALA) from X-ray protein crystallography can be used in principle for analysing electron-diffraction data from three-dimensional nanocrystals of proteins.

  5. Modulation transfer function and detective quantum efficiency of electron bombarded charge coupled device detector for low energy electrons

    SciTech Connect

    Horacek, Miroslav

    2005-09-15

    The use of a thinned back-side illuminated charge coupled device chip as two-dimensional sensor working in direct electron bombarded mode at optimum energy of the incident signal electrons is demonstrated and the measurements of the modulation transfer function (MTF) and detective quantum efficiency (DQE) are described. The MTF was measured for energy of electrons 4 keV using an edge projection method and a stripe projection method. The decrease of the MTF for a maximum spatial frequency of 20.8 cycles/mm, corresponding to the pixel size 24x24 {mu}m, is 0.75{approx_equal}-2.5 dB, and it is approximately the same for both horizontal and vertical directions. DQE was measured using an empty image and the mixing factor method. Empty images were acquired for energies of electrons from 2 to 5 keV and for various doses, ranging from nearly dark image to a nearly saturated one. DQE increases with increasing energy of bombarded electrons and reaches 0.92 for electron energy of 5 keV. For this energy the detector will be used for the angle- and energy-selective detection of signal electrons in the scanning low energy electron microscope.

  6. Artificial decoy spectral libraries for false discovery rate estimation in spectral library searching in proteomics.

    PubMed

    Lam, Henry; Deutsch, Eric W; Aebersold, Ruedi

    2010-01-01

    The challenge of estimating false discovery rates (FDR) in peptide identification from MS/MS spectra has received increased attention in proteomics. The simple approach of target-decoy searching has become popular with traditional sequence (database) searching methods, but has yet to be practiced in spectral (library) searching, an emerging alternative to sequence searching. We extended this target-decoy searching approach to spectral searching by developing and validating a robust method to generate realistic, but unnatural, decoy spectra. Our method involves randomly shuffling the peptide identification of each reference spectrum in the library, and repositioning each fragment ion peak along the m/z axis to match the fragment ions expected from the shuffled sequence. We show that this method produces decoy spectra that are sufficiently realistic, such that incorrect identifications are equally likely to match real and decoy spectra, a key assumption necessary for decoy counting. This approach has been implemented in the open-source library building software, SpectraST.

  7. NFkappaB decoy oligodeoxynucleotides ameliorates osteoporosis through inhibition of activation and differentiation of osteoclasts.

    PubMed

    Shimizu, H; Nakagami, H; Tsukamoto, I; Morita, S; Kunugiza, Y; Tomita, T; Yoshikawa, H; Kaneda, Y; Ogihara, T; Morishita, R

    2006-06-01

    The transcription factor, nuclear factor-kappa B (NFkappaB), is believed to play a pivotal role in osteoclast formation. In this study, we focused on NFkappaB decoy oligodeoxynucleotides (ODN) as a new therapeutic strategy to attenuate osteoporosis. Tartrate-resistant acid phosphatase (TRAP)-positive multinuclear osteoclasts formed in mononuclear cells including osteoclast precursors from neonatal rabbit bone marrow were increased in the presence of 1,25-dihydroxyvitamin D3, whereas transfection of NFkappaB decoy ODN decreased the number of TRAP-positive cells and attenuated RANKL and M-CSF-induced osteoclast formation. NFkappaB decoy ODN also inhibited the activity of osteoclasts, as assessed by pit formation. In rat ovariectomized model of estrogen deficiency, continuous administration of NFkappaB decoy ODN attenuated the increase of TRAP activity, accompanied by a significant increase in calcium concentration in tibia and femur and decrease in urinary deoxypyridinoline. In additional osteoporosis model using vitamin C-deficient rat, inhibition of NFkappaB by decoy ODN dramatically improved the bone length, weight, density as assessed by dual-energy X-ray absorptiometry. Overall, inhibition of NFkappaB by decoy strategy prevented osteoporosis through the inhibition of bone resorption. Targeting of NFkappaB might be potential therapy in various bone metabolic diseases.

  8. The development of the asymmetrically dominated decoy effect in young children

    PubMed Central

    Zhen, Shanshan; Yu, Rongjun

    2016-01-01

    One classic example of context-independent violations is the asymmetrically dominated decoy effect, in which adding a decoy option (inferior option) to a set of original options often increases the individual’s preference for one option over the other original option. Despite the prevalence of this effect, little is known about its developmental origins. Moreover, it remains contentious whether the decoy effect is a result of biological evolution or is learned from social experience. Here, we investigated the decoy effect in 3- to 7-year-old children (n = 175) and young adults (n = 52) using a simple perceptual task. Results showed that older children (5-year-olds and 7-year-olds), but not younger children (3-year-olds), exhibited a decoy effect. Nevertheless, children as young as age 5 exhibited a decoy effect that was not significantly different from that shown by young adults. These findings suggest that humans start to appreciate the relative values of options at around age 5. PMID:26935899

  9. Inhibition of androgen receptor by decoy molecules delays progression to castration-recurrent prostate cancer

    PubMed Central

    Myung, Jae-Kyung; Wang, Gang; Chiu, Helen H. L.; Wang, Jun; Mawji, Nasrin R.; Sadar, Marianne D.

    2017-01-01

    Androgen receptor (AR) is a member of the steroid receptor family and a therapeutic target for all stages of prostate cancer. AR is activated by ligand binding within its C-terminus ligand-binding domain (LBD). Here we show that overexpression of the AR NTD to generate decoy molecules inhibited both the growth and progression of prostate cancer in castrated hosts. Specifically, it was shown that lentivirus delivery of decoys delayed hormonal progression in castrated hosts as indicated by increased doubling time of tumor volume, prolonged time to achieve pre-castrate levels of serum prostate-specific antigen (PSA) and PSA nadir. These clinical parameters are indicative of delayed hormonal progression and improved therapeutic response and prognosis. Decoys reduced the expression of androgen-regulated genes that correlated with reduced in situ interaction of the AR with androgen response elements. Decoys did not reduce levels of AR protein or prevent nuclear localization of the AR. Nor did decoys interact directly with the AR. Thus decoys did not inhibit AR transactivation by a dominant negative mechanism. This work provides evidence that the AR NTD plays an important role in the hormonal progression of prostate cancer and supports the development of AR antagonists that target the AR NTD. PMID:28306720

  10. NF-κB Decoy Oligodeoxynucleotide Enhanced Osteogenesis in Mesenchymal Stem Cells Exposed to Polyethylene Particle

    PubMed Central

    Lin, Tzu-Hua; Sato, Taishi; Barcay, Katherine R.; Waters, Heather; Loi, Florence; Zhang, Ruth; Pajarinen, Jukka; Egashira, Kensuke; Yao, Zhenyu

    2015-01-01

    Excessive generation of wear particles after total joint replacement may lead to local inflammation and periprosthetic osteolysis. Modulation of the key transcription factor NF-κB in immune cells could potentially mitigate the osteolytic process. We previously showed that local delivery of ultrahigh-molecular-weight polyethylene (UHMWPE) particles recruited osteoprogenitor cells and reduced osteolysis. However, the biological effects of modulating the NF-κB signaling pathway on osteoprogenitor/mesenchymal stem cells (MSCs) remain unclear. Here we showed that decoy oligodeoxynucleotide (ODN) increased cell viability when primary murine MSCs were exposed to UHMWPE particles, but had no effects on cellular apoptosis. Decoy ODN increased transforming growth factor-beta 1 (TGF-β1) and osteoprotegerin (OPG) in MSCs exposed to UHMWPE particles. Mechanistic studies showed that decoy ODN upregulated OPG expression through a TGF-β1-dependent pathway. By measuring the alkaline phosphatase activity, osteocalcin levels, Runx2 and osteopontin expression, and performing a bone mineralization assay, we found that decoy ODN increased MSC osteogenic ability when the cells were exposed to UHMWPE particles. Furthermore, the cellular response to decoy ODN and UHMWPE particles with regard to cell phenotype, cell viability, and osteogenic ability was confirmed using primary human MSCs. Our results suggest that modulation of wear particle-induced inflammation by NF-κB decoy ODN had no adverse effects on MSCs and may potentially further mitigate periprosthetic osteolysis by protecting MSC viability and osteogenic ability. PMID:25518013

  11. Intersubband transitions in strained indium gallium arsenide quantum wells for multi-color infrared detector applications

    NASA Astrophysics Data System (ADS)

    Workman, Clayton Lee

    Intersubband transitions in InxGa1- xAs/AlGaAs multiple quantum wells (MQWs) grown by molecular beam epitaxy (MBE) were studied. The conduction band offset for this material system is larger than that of the well-known GaAs/AlGaAs system, thus making it possible to design, grow and fabricate quantum well infrared photodetectors operational in the 5--8 mum and 10--14 mum spectral regions with minimal dark current. InxGa 1-xAs/AlGaAs MQWs were grown by MBE with indium compositions ranging from x = 0.10 to 0.15 verified by in situ RHEED oscillations and high-resolution X-ray diffraction. Band-to-band transitions were verified by photoluminescence measurements, and intersubband transitions were measured using Fourier transform infrared (FTIR) spectroscopy in both the Brewster's angle and waveguide configuration. Due to the high strain and introduction of dislocations associated with the high indium content, wells with indium compositions above ˜12% did not result in intersubband transitions at silicon doping levels of 2 x 10 18 cm-3. New structures were grown, with a thick linear graded InxGa1- xAs buffer below the MQW structures to reduce the strain and resulting dislocations. Intersubband transitions were measured in In xGa1-xAs wells with indium compositions of x = .20 when grown on top of the linear graded buffer (LGB). Three-color device structures consisting of InxGa1-xAs triple-coupled MQWs were grown with and without the LGB. FTIR measurements revealed that without the LGB, intersubband transitions were not present in the three-color structure. However, with the LGB intersubband transitions were measured. Only one intersubband peak was observed in the three-color structures in the Brewster angle configuration---possibly due to nonuniformity in the sample growth. In the waveguide configuration, an additional higher energy peak was observed which other groups have attributed to multiple internal reflections off the many layers in the structure. One three

  12. Development of high quantum efficiency, flat panel, thick detectors for megavoltage x-ray imaging: an experimental study of a single-pixel prototype.

    PubMed

    Mei, X; Pang, G

    2005-11-01

    Our overall goal is to develop a new generation of electronic portal imaging devices (EPIDs) with a quantum efficiency (QE) more than an order of magnitude higher and a spatial resolution equivalent to that of EPIDs currently used for portal imaging. A novel design of such a high QE flat-panel based EPID was introduced recently and its feasibility was investigated theoretically [see Pang and Rowlands, Med. Phys. 31, 3004 (2004)]. In this work, we constructed a prototype single-pixel detector based on the novel design. Some fundamental imaging properties including the QE, spatial resolution, and sensitivity of the prototype detector were measured with a 6 MV beam. It has been shown that the experimental results agree well with theoretical predictions and further development based on the novel design including the construction of a prototype area detector is warranted.

  13. Decoy Plasminogen Receptor Containing a Selective Kunitz-Inhibitory Domain

    PubMed Central

    2015-01-01

    Kunitz domain 1 (KD1) of tissue factor pathway inhibitor-2 in which P2′ residue Leu17 (bovine pancreatic trypsin inhibitor numbering) is mutated to Arg selectively inhibits the active site of plasmin with ∼5-fold improved affinity. Thrombin cleavage (24 h extended incubation at a 1:50 enzyme-to-substrate ratio) of the KD1 mutant (Leu17Arg) yielded a smaller molecule containing the intact Kunitz domain with no detectable change in the active-site inhibitory function. The N-terminal sequencing and MALDI-TOF/ESI data revealed that the starting molecule has a C-terminal valine (KD1L17R-VT), whereas the smaller molecule has a C-terminal lysine (KD1L17R-KT). Because KD1L17R-KT has C-terminal lysine, we examined whether it could serve as a decoy receptor for plasminogen/plasmin. Such a molecule might inhibit plasminogen activation as well as the active site of generated plasmin. In surface plasmon resonance experiments, tissue plasminogen activator (tPA) and Glu-plasminogen bound to KD1L17R-KT (Kd ∼ 0.2 to 0.3 μM) but not to KD1L17R-VT. Furthermore, KD1L17R-KT inhibited tPA-induced plasma clot fibrinolysis more efficiently than KD1L17R-VT. Additionally, compared to ε-aminocaproic acid KD1L17R-KT was more effective in reducing blood loss in a mouse liver-laceration injury model, where the fibrinolytic system is activated. In further experiments, the micro(μ)-plasmin–KD1L17R-KT complex inhibited urokinase-induced plasminogen activation on phorbol-12-myristate-13-acetate-stimulated U937 monocyte-like cells, whereas the μ-plasmin–KD1L17R-VT complex failed to inhibit this process. In conclusion, KD1L17R-KT inhibits the active site of plasmin as well as acts as a decoy receptor for the kringle domain(s) of plasminogen/plasmin; hence, it limits both plasmin generation and activity. With its dual function, KD1L17R-KT could serve as a preferred agent for controlling plasminogen activation in pathological processes. PMID:24383758

  14. Efficient Detection of 3 THz Radiation from Quantum Cascade Laser Using Silicon CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Ikamas, Kęstutis; Lisauskas, Alvydas; Boppel, Sebastian; Hu, Qing; Roskos, Hartmut G.

    2017-10-01

    In this paper, we report on efficient detection of the radiation emitted by a THz quantum cascade laser (QCL) using an antenna-coupled field effect transistor (TeraFET). In the limiting case when all radiated power would be collected, the investigated TeraFET can show up to 230 V/W responsivity with the noise equivalent power being as low as 85 pW/√ { {Hz}} at 3.1 THz, which is several times lower than that of the typical Golay cell. A combination of the QCL and a set of off-axis parabolic mirrors with 3-inch and 2-inch focal lengths was used to measure the signal-to-noise ratio (SNR) of the TeraFET. The practically achieved SNR was five times lower than that of the Golay cell and two orders of magnitude lower than a bolometer's. However, TeraFETs are much faster and do not need a signal modulation, thus can be used both in a continuous mode for power monitoring or for investigation of transient processes on a sub-microsecond time scale.

  15. Growth of HgTe Quantum Wells for IR to THz Detectors

    NASA Astrophysics Data System (ADS)

    Dvoretsky, S.; Mikhailov, N.; Sidorov, Yu.; Shvets, V.; Danilov, S.; Wittman, B.; Ganichev, S.

    2010-07-01

    We zone-engineered HgCdTe/HgTe/HgCdTe quantum wells (QWs) using the molecular-beam epitaxy (MBE) method with in situ high-precision ellipsometric control of composition and thickness. The variations of ellipsometric parameters in the ψ-Δ plane were represented by smooth broken curves during HgTe QW growth with abrupt composition changes. The form of the spiral fragments and their extensions from fracture to fracture revealed the growing layer composition and its thickness. Single and multiple (up to 30) Cd x Hg1- x Te/HgTe/Cd x Hg1- x Te QWs with abrupt changes of composition were grown reproducibly on (013) GaAs substrates. HgTe thickness was in the range of 16 nm to 22 nm, with the central portion of Cd x Hg1- x Te spacers doped by In to a concentration of 1014 cm-3 to 1017 cm-3. Based on this research, high-quality (013)-grown HgTe QW structures can be used for all-electric detection of radiation ellipticity in a wide spectral range, from far-infrared (terahertz radiation) to mid-infrared wavelengths. Detection was demonstrated for various low-power continuous-wave (CW) lasers and high-power THz pulsed laser systems.

  16. Nanocrystal quantum dot-conjugated anti-myeloperoxidase antibody as the detector of activated neutrophils.

    PubMed

    Hoshino, Akiyoshi; Nagao, Tomokazu; Nakasuga, Akira; Ishida-Okawara, Akiko; Suzuki, Kazuo; Yasuhara, Masato; Yamamoto, Kenji

    2007-12-01

    Fluorescent nanocrystal quantum dots (QDs) have been applied to a wide range of biological studies by taking advantage of their fluorescence properties. Here we show that QDs conjugated with antibody against neutrophil peroxidase, myeloperoxidase (MPO). We designed a novel method to conjugate QDs to antibody without losing any antibody function including their antigen recognizing and Fc-receptor binding activities. When we applied anti-MPO antibody (Ab) with conventional organic probes in the case of immunostaining of living cells, the antibodies lost their fluorescence because of MPO enzymic activity to produce reactive oxygen species. Our QD-conjugated anti-MPO (alpha-MPO-QDs) can detect MPO on the surface of activated neutrophils. In addition, anti-MPO-QDs did not react to the inactivated neutrophils. In conclusion, we demonstrated that antibody visualized the expression of MPO on the neutrophil surface after stimulation with proinflammatory cytokines. Taken together, these techniques have the possibility that QDs can reveal the activation of neutrophils by immunostaining and flow cytometric analysis as a powerful tool for diagnosis of the neutrophil activation in vitro.

  17. Using decoy effects to influence an online brand choice: the role of price-quality trade-offs.

    PubMed

    Hsu, Huei-Chen; Liu, Wen-Liang

    2011-04-01

    This research aims to investigate decoy effects on online brand choices. To assess the influence of decoys, we test decoy effects on three constructs-product involvement, judgment conditions, and decoy conditions-within an online experiment. A survey of 635 Internet users and a 2 × 2 × 3 ANOVA between-subjects experimental design is used to guide the research design and the systematic analysis procedure. A major finding of this study is that a standard decoy seems to have a significant effect on an advertised (target) brand for high-involvement products; from the survey, it is also apparent that competitors can also use inferior decoys to increase brand preference for low-involvement products.

  18. [Research on Spectrum Radiation Characteristics of a New Type Infrared/ Ultraviolet Dual Color Decoy].

    PubMed

    Chen, Chun-sheng; Dai, Meng-yan; Liu, Hai-feng; Xie, Chang-you; Zhang, Tong; Fang, Guo-feng

    2015-07-01

    The advantage of traditional MTV infrared decoys which are mainly consist of magnesium, Teflon and VITON is that it emits high radiant energy, so it is an effective countermeasure to traditional seekers which seek the target by heat source. The spectral radiant intensity which generated from high temperature combustion of MTV infrared decoys in near infrared region and ultraviolet band is very high, and that in Mid-IR region is relative lower, however the radiant intensity of real jet fighter in ultraviolet band is low and the infrared radiant intensity ratio of Mid-IR to near IR band is greater than 1. Thus, the traditional MTV infrared decoys are hardly able to counter the seekers equipped with dual color combined guidance system. Based on the spectral matching principle, we designed and prepared a new infrared/ultraviolet dual color decoy which is mainly consist of oxidant (wt% 45-75), fuel (wt% 10-25), energetic binder (wt% 25-50) and additives. We conducted theoretical calculations on combustion products of the reagent combinations using CEA (Chemic equilibrium & Application) software and initially determined the content of each component of the decoy formulation on the basis of the calculations results, then investigated the infrared radiation characteristics of decoys employing SR5000 spectrum radiometer and remote sensing interferometer spectrometer Tensor37 and analyzed the possible reasons for test results difference of the two systems separately from the test principle and calculation method, the testing environment, stability of testing results and other aspects. We studied the ultraviolet radiation characteristics of decoys using S2000 fiber optical spectrometer and the test results were consistent with the fighter ultraviolet radiant intensity which gained from theoretical calculation. We researched on the temperature characteristics of decoys by Imager IR 8325 mid-infrared thermal imager and it turned out that the dual color decoy is similar to the

  19. MANPADS protection for civil aircraft using an expendable decoy

    NASA Astrophysics Data System (ADS)

    Walmsley, Roy H.; Friede, Johan; Millwood, Nicolas; Butters, Brian

    2009-09-01

    With the ever present threat of MANPADS throughout the world the protection of civil aircraft is a desirable capability that has special requirements in terms of certification, safety, logistics, affordability, environmental impact and exportability. The Civil Aircraft Missile Protection System (CAMPS), which includes the CIV-IR (infrared) leaf-based pyrophoric (not pyrotechnic) expendable countermeasure, is a system designed to meet these requirements. This paper presents the operating aspects of the decoy, including discussion of design features necessary to ensure safety both on the ground and in flight and assure successful deployment. The characteristics of the CIV-IR have been measured, both on static single leaves in the laboratory and on deployed packs in field tests and aircraft trials. These measured properties have been used in engagement modelling and simulation to assess the level of protection that can be afforded to commercial airliners against generation 1 and 2 MANPADS threats. Aircraft flight trials with ground based seekers have also been carried out to validate the modelling work. These combine to define the deployment patterns necessary for a successful seduction of the MANPAD.

  20. Bioreplicated visual features of nanofabricated buprestid beetle decoys evoke stereotypical male mating flights

    PubMed Central

    Domingue, Michael J.; Lakhtakia, Akhlesh; Pulsifer, Drew P.; Hall, Loyal P.; Badding, John V.; Bischof, Jesse L.; Martín-Palma, Raúl J.; Imrei, Zoltán; Janik, Gergely; Mastro, Victor C.; Hazen, Missy; Baker, Thomas C.

    2014-01-01

    Recent advances in nanoscale bioreplication processes present the potential for novel basic and applied research into organismal behavioral processes. Insect behavior potentially could be affected by physical features existing at the nanoscale level. We used nano-bioreplicated visual decoys of female emerald ash borer beetles (Agrilus planipennis) to evoke stereotypical mate-finding behavior, whereby males fly to and alight on the decoys as they would on real females. Using an industrially scalable nanomolding process, we replicated and evaluated the importance of two features of the outer cuticular surface of the beetle’s wings: structural interference coloration of the elytra by multilayering of the epicuticle and fine-scale surface features consisting of spicules and spines that scatter light into intense strands. Two types of decoys that lacked one or both of these elements were fabricated, one type nano-bioreplicated and the other 3D-printed with no bioreplicated surface nanostructural elements. Both types were colored with green paint. The light-scattering properties of the nano-bioreplicated surfaces were verified by shining a white laser on the decoys in a dark room and projecting the scattering pattern onto a white surface. Regardless of the coloration mechanism, the nano-bioreplicated decoys evoked the complete attraction and landing sequence of Agrilus males. In contrast, males made brief flying approaches toward the decoys without nanostructured features, but diverted away before alighting on them. The nano-bioreplicated decoys were also electroconductive, a feature used on traps such that beetles alighting onto them were stunned, killed, and collected. PMID:25225359

  1. Bioreplicated visual features of nanofabricated buprestid beetle decoys evoke stereotypical male mating flights.

    PubMed

    Domingue, Michael J; Lakhtakia, Akhlesh; Pulsifer, Drew P; Hall, Loyal P; Badding, John V; Bischof, Jesse L; Martín-Palma, Raúl J; Imrei, Zoltán; Janik, Gergely; Mastro, Victor C; Hazen, Missy; Baker, Thomas C

    2014-09-30

    Recent advances in nanoscale bioreplication processes present the potential for novel basic and applied research into organismal behavioral processes. Insect behavior potentially could be affected by physical features existing at the nanoscale level. We used nano-bioreplicated visual decoys of female emerald ash borer beetles (Agrilus planipennis) to evoke stereotypical mate-finding behavior, whereby males fly to and alight on the decoys as they would on real females. Using an industrially scalable nanomolding process, we replicated and evaluated the importance of two features of the outer cuticular surface of the beetle's wings: structural interference coloration of the elytra by multilayering of the epicuticle and fine-scale surface features consisting of spicules and spines that scatter light into intense strands. Two types of decoys that lacked one or both of these elements were fabricated, one type nano-bioreplicated and the other 3D-printed with no bioreplicated surface nanostructural elements. Both types were colored with green paint. The light-scattering properties of the nano-bioreplicated surfaces were verified by shining a white laser on the decoys in a dark room and projecting the scattering pattern onto a white surface. Regardless of the coloration mechanism, the nano-bioreplicated decoys evoked the complete attraction and landing sequence of Agrilus males. In contrast, males made brief flying approaches toward the decoys without nanostructured features, but diverted away before alighting on them. The nano-bioreplicated decoys were also electroconductive, a feature used on traps such that beetles alighting onto them were stunned, killed, and collected.

  2. Quantum

    NASA Astrophysics Data System (ADS)

    Elbaz, Edgard

    This book gives a new insight into the interpretation of quantum mechanics (stochastic, integral paths, decoherence), a completely new treatment of angular momentum (graphical spin algebra) and an introduction to Fermion fields (Dirac equation) and Boson fields (e.m. and Higgs) as well as an introduction to QED (quantum electrodynamics), supersymmetry and quantum cosmology.

  3. Potent microRNA suppression by RNA Pol II-transcribed 'Tough Decoy' inhibitors.

    PubMed

    Bak, Rasmus O; Hollensen, Anne Kruse; Primo, Maria Nascimento; Sørensen, Camilla Darum; Mikkelsen, Jacob Giehm

    2013-02-01

    MicroRNAs (miRNAs) are key regulators of gene expression and modulators of diverse biological pathways. Analyses of miRNA function as well as therapeutic managing of miRNAs rely on cellular administration of miRNA inhibitors which may be achieved by the use of viral vehicles. This study explores the miRNA-suppressive capacity of inhibitors expressed intracellularly from lentivirus-derived gene vectors. Superior activity of two decoy-type inhibitors, a "Bulged Sponge" with eight miRNA recognition sites and a hairpin-shaped "Tough Decoy" containing two miRNA recognition sites, is demonstrated in a side-by-side comparison of seven types of miRNA inhibitors transcribed as short RNAs from an RNA Pol III promoter. We find that lentiviral vectors expressing Tough Decoy inhibitors are less vulnerable than Bulged Sponge-encoding vectors to targeting by the cognate miRNA and less prone, therefore, to reductions in transfer efficiency. Importantly, it is demonstrated that Tough Decoy inhibitors retain their miRNA suppression capacity in the context of longer RNA transcripts expressed from an RNA Pol II promoter. Such RNA Pol II-transcribed Tough Decoy inhibitors are new tools in managing of miRNAs and may have potential for temporal and spatial regulation of miRNA activity as well as for therapeutic targeting of miRNAs that are aberrantly expressed in human disease.

  4. Transfection of NF-κB decoy oligodeoxynucleotide suppresses pulmonary metastasis by murine osteosarcoma.

    PubMed

    Nishimura, A; Akeda, K; Matsubara, T; Kusuzaki, K; Matsumine, A; Masuda, K; Gemba, T; Uchida, A; Sudo, A

    2011-04-01

    Nuclear factor-kappa B (NF-κB) has a pivotal role in the progression and distant metastasis of cancers, including malignant bone tumors. To inhibit NF-κB activation, a new molecular therapy using synthetic double-stranded oligodeoxynucleotide (ODN) as a 'decoy' cis element against NF-κB has been developed. To determine whether pulmonary metastasis of osteosarcoma is reduced by inhibiting the action of NF-κB, NF-κB decoy ODN was transfected into the nuclei of murine osteosarcoma cells with high pulmonary metastatic potential, the LM8 cell line, using a three-dimensional alginate spheroid culture model. An in vitro study demonstrated the successful transfection of LM8 cells cultured in alginate beads by 'naked' NF-κB decoy ODN and that the activation of NF-κB signaling was significantly suppressed. Tumor growth was not affected by transfection of NF-κB decoy ODN, however, the expression of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule 1 (ICAM-1) mRNA was markedly decreased. Furthermore, the transfection of 'naked' NF-κB decoy ODN effectively suppressed pulmonary metastasis in an in vivo alginate bead transplantation model. Our results suggest that NF-κB has a central and specific role in the regulation of tumor metastasis and could be a molecular target for development of anti-metastatic treatments for osteosarcoma.

  5. Theoretical investigation of very high quantum efficiency, segmented, crystalline detectors for low-contrast visualization in megavoltage cone-beam CT

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Antonuk, Larry E.; El-Mohri, Youcef; Sawant, Amit; Zhao, Qihua; Du, Hong; Li, Yixin

    2006-03-01

    Megavoltage cone-beam computed tomography (CBCT) using active matrix flat-panel imagers (AMFPIs) is a promising candidate for providing image guidance in radiation therapy. Unfortunately, the practical clinical implementation of this technique is limited by the relatively low detective quantum efficiency (DQE) of conventional megavoltage AMFPIs. This limitation is due to the modest thickness of the phosphor screen employed to convert incident x-rays to optical photons and the trade-off that exists between phosphor thickness and spatial resolution. Recently, our group has begun pursuing the development of thick crystalline segmented scintillating detectors as x-ray converters for AMFPIs so as to circumvent this limitation. In order to examine the potential of such detectors for providing soft-tissue visualization by means of CBCT at megavoltage energies, a Monte Carlo-based method was used to simulate the acquisition of projection images of a contrast phantom. These images were used to perform CT reconstructions by means of a Feldkamp-based algorithm. In this study, various detector configurations involving CsI and BGO scintillators at thicknesses of 10 mm and 40 mm were evaluated. In addition, since the simulations only considered energy deposition, and did not include optical phenomena, both segmented and non-segmented (continuous) detector configurations were evaluated. For the segmented CsI detectors, septal wall materials with densities lower, equivalent and higher than that of the scintillator were considered. Performance was quantified in terms of the contrast-to-noise ratio obtained for lowcontrast, soft-tissue-equivalent objects (i.e., liver, brain, and breast) embedded in the phantom. The results obtained from these early studies suggest that such segmented converters can provide visualization of soft-tissue contrast in tomographic images at clinically practical doses. It is anticipated that the realization of optimized segmented detector designs will lead

  6. Fluctuations of Internal Transmittance in Security of Measurement-Device-Independent Quantum Key Distribution with an Untrusted Source*

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Bao, Wan-Su; Chen, Rui-Ke; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei

    2017-08-01

    Measurement-device-independent quantum key distribution (MDI-QKD) is immune to detector side channel attacks, which is a crucial security loophole problem in traditional QKD. In order to relax a key assumption that the sources are trusted in MDI-QKD, an MDI-QKD protocol with an untrusted source has been proposed. For the security of MDI-QKD with an untrusted source, imperfections in the practical experiment should also be taken into account. In this paper, we analyze the effects of fluctuations of internal transmittance on the security of a decoy-state MDI-QKD protocol with an untrusted source. Our numerical results show that both the secret key rate and the maximum secure transmission distance decrease when taken fluctuations of internal transmittance into consideration. Especially, they are more sensitive when Charlie’s mean photon number per pulse is smaller. Our results emphasize that the stability of correlative optical devices is important for practical implementations.

  7. A long-distance quantum key distribution scheme based on pre-detection of optical pulse with auxiliary state

    NASA Astrophysics Data System (ADS)

    Quan, Dong-Xiao; Zhu, Chang-Hua; Liu, Shi-Quan; Pei, Chang-Xing

    2015-05-01

    We construct a circuit based on PBS and CNOT gates, which can be used to determine whether the input pulse is empty or not according to the detection result of the auxiliary state, while the input state will not be changed. The circuit can be treated as a pre-detection device. Equipping the pre-detection device in the front of the receiver of the quantum key distribution (QKD) can reduce the influence of the dark count of the detector, hence increasing the secure communication distance significantly. Simulation results show that the secure communication distance can reach 516 km and 479 km for QKD with perfect single photon source and decoy-state QKD with weak coherent photon source, respectively. Project supported by the National Natural Science Foundation of China (Grant No. 61372076), the Programme of Introducing Talents of Discipline to Universities, China (Grant No. B08038), and the Fundamental Research Funds for the Central Universities, China (Grant No. K5051201021).

  8. Salmonella typhimurium A1-R and Cell-Cycle Decoy Therapy of Cancer.

    PubMed

    Hoffman, Robert M; Yano, Shuya

    2016-01-01

    Cancer cells in G0/G1 are resistant to cytotoxic chemotherapy agents which kill only cycling cancer cells. Salmonella typhimurium A1-R (S. typhimurium A1-R) decoyed cancer cells in monolayer culture and in tumor spheres to cycle from G0/G1 to S/G2/M, as demonstrated by fluorescence ubiquitination-based cell cycle indicator (FUCCI) imaging. S. typhimurium A1-R targeted FUCCI-expressing subcutaneous tumors, and tumors growing on the liver, growing in nude mice and also decoyed quiescent cancer cells, which were the majority of the cells in the tumors, to cycle from G0/G1 to S/G2/M. The S. typhimurium A1-R-decoyed cancer cells became sensitive to cytotoxic agents.

  9. An engineered Axl 'decoy receptor' effectively silences the Gas6-Axl signaling axis

    SciTech Connect

    Kariolis, Mihalis S.; Miao, Yu Rebecca; Jones, Douglas S.; Kapur, Shiven; Mathews, Irimpan I.; Giaccia, Amato J.; Cochran, Jennifer R.

    2014-09-21

    Aberrant signaling through the Axl receptor tyrosine kinase has been associated with a myriad of human diseases, most notably metastatic cancer, identifying Axl and its ligand Gas6 as important therapeutic targets. Using rational and combinatorial approaches, we engineered an Axl ‘decoy receptor’ that binds Gas6 with high affinity and inhibits its function, offering an alternative approach from drug discovery efforts that directly target Axl. Four mutations within this high affinity Axl variant caused structural alterations in side chains across the Gas6/Axl binding interface, stabilizing a conformational change on Gas6. When reformatted as an Fc-fusion, the engineered decoy receptor bound to Gas6 with femtomolar affinity, an 80-fold improvement compared to the wild-type Axl receptor, allowing effective sequestration of Gas6 and specific abrogation of Axl signaling. Additionally, increased Gas6 binding affinity was critical and correlative with the ability of decoy receptors to potently inhibit metastasis and disease progression in vivo.

  10. When target-decoy false discovery rate estimations are inaccurate and how to spot instances.

    PubMed

    Chalkley, Robert J

    2013-02-01

    To address problems with estimating the reliability of proteomic search engine results from mass spectrometry fragmentation data, the use of target-decoy database searching has become the de facto approach for estimating a false discovery rate. Several articles have been written about the effects of different ways of creating the decoy database, effects of the search engine scoring, or effects of search parameters on whether this approach provides an accurate estimate, not all agreeing with each other's conclusions. Hence, there may be some confusion about how effective this approach is and how broadly it can be applied. Although it is generally very effective, in this article I will try to emphasize some of the pitfalls and dangers of using the target-decoy approach and will indicate tell-tale signs that something may be amiss. This information will hopefully help researchers become more astute in their assessment of search results.

  11. Development of the experimental setup for investigation of latching of superconducting single-photon detector caused by blinding attack on the quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Elezov, M. S.; Ozhegov, R. V.; Goltsman, G. N.; Makarov, V.

    2016-12-01

    Recently bright-light control of the SSPD has been demonstrated. This attack employed a "backdoor" in the detector biasing scheme. Under bright-light illumination, SSPD becomes resistive and remains "latched" in the resistive state even when the light is switched off. While the SSPD is latched, Eve can simulate SSPD single-photon response by sending strong light pulses, thus deceiving Bob. We developed the experimental setup for investigation of a dependence on latching threshold of SSPD on optical pulse length and peak power. By knowing latching threshold it is possible to understand essential requirements for development countermeasures against blinding attack on quantum key distribution system with SSPDs.

  12. Development of the experimental setup for investigation of latching of superconducting single-photon detector caused by blinding attack on the quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Elezov, M. S.; Ozhegov, R. V.; Goltsman, G. N.; Makarov, V.

    2017-01-01

    Recently bright-light control of the SSPD has been demonstrated. This attack employed a "backdoor" in the detector biasing scheme. Under bright-light illumination, SSPD becomes resistive and remains "latched" in the resistive state even when the light is switched off. While the SSPD is latched, Eve can simulate SSPD single-photon response by sending strong light pulses, thus deceiving Bob. We developed the experimental setup for investigation of a dependence on latching threshold of SSPD on optical pulse length and peak power. By knowing latching threshold it is possible to understand essential requirements for development countermeasures against blinding attack on quantum key distribution system with SSPDs.

  13. Study on temperature effect on properties of ZnO/MgZnO based quantum cascade detector in mid-infrared region

    NASA Astrophysics Data System (ADS)

    He, Jingfang; Wang, Ping; Chen, Hongyan; Guo, Xinlu; Guo, Lixin; Yang, Yintang

    2017-01-01

    The effect of temperature on a ZnO/Mg0.3Zn0.7O quantum cascade detector (QCD) in the mid-infrared region is investigated with consideration of bound-to-bound electronic-transport processes in the dark and under illumination. The temperature-dependent band structures of the QCD system, which comprises four quantum wells and five barriers in one period, are numerically calculated. The electronic transition is obtained with a standard electron-optical phonon Hamiltonian, and the photon absorption is described by the two-dimensional absorption coefficient. The responsivity of the ZnO/Mg0.3Zn0.7O QCD shows a good temperature stability without an obvious redshift, and the peak responsivity decreases by only 14% when the temperature increases from 50 to 300 K.

  14. Reduced tolerance of immature renal tubules to anoxia by HSF-1 decoy.

    PubMed

    Sreedharan, Rajasree; Riordan, Michael; Wang, Shirley; Thulin, Gunilla; Kashgarian, Michael; Siegel, Norman J

    2005-02-01

    Immature animals demonstrate an amplified heat shock response following a variety of insults compared with that seen in mature animals (M). The potential role of the heat shock response in modulating immature tolerance to injury was compared between rat pups, 10 postnatal days of age (P10), and M. Baseline levels of the heat shock transcription factor (HSF-1) were substantially elevated in P10 compared with M animals. In uninjured P10 pups, HSF-1 level was comparable to that of M animals subjected to 45 min of ischemia. As anticipated, the integrity of suspensions of tubules exposed to anoxia was preserved in P10 animals (23% LDH release) compared with M (40%), P < 0.01. The effect of targeted inhibition of HSF-1 on tubular integrity was studied using a cyclic oligonucleotide decoy. The HSF-1 decoy increased the severity of anoxic injury in P10 pups to a level comparable with M animals. LDH release was 33% in decoy-treated P10 tubules compared with 40% in M. When P10 tubules were treated with scrambled decoy, resistance to anoxia remained intact (24%). The increased vulnerability of the tubular suspension to injury was specific to the HSF-1 decoy and proportional to the dose of decoy applied. This study demonstrates maturation in the abundance of HSF-1 in the immature rat kidney. The loss of resistance of immature tubules to anoxia with specific inhibition of HSF-1 may be due to its effect on the heat shock response or other signaling pathways of critical pathobiological importance in renal cell injury.

  15. Sialylneolacto-N-tetraose c (LSTc)-bearing liposomal decoys capture influenza A virus.

    PubMed

    Hendricks, Gabriel L; Weirich, Kim L; Viswanathan, Karthik; Li, Jing; Shriver, Zachary H; Ashour, Joseph; Ploegh, Hidde L; Kurt-Jones, Evelyn A; Fygenson, Deborah K; Finberg, Robert W; Comolli, James C; Wang, Jennifer P

    2013-03-22

    Influenza is a severe disease in humans and animals with few effective therapies available. All strains of influenza virus are prone to developing drug resistance due to the high mutation rate in the viral genome. A therapeutic agent that targets a highly conserved region of the virus could bypass resistance and also be effective against multiple strains of influenza. Influenza uses many individually weak ligand binding interactions for a high avidity multivalent attachment to sialic acid-bearing cells. Polymerized sialic acid analogs can form multivalent interactions with influenza but are not ideal therapeutics due to solubility and toxicity issues. We used liposomes as a novel means for delivery of the glycan sialylneolacto-N-tetraose c (LSTc). LSTc-bearing decoy liposomes form multivalent, polymer-like interactions with influenza virus. Decoy liposomes competitively bind influenza virus in hemagglutination inhibition assays and inhibit infection of target cells in a dose-dependent manner. Inhibition is specific for influenza virus, as inhibition of Sendai virus and respiratory syncytial virus is not observed. In contrast, monovalent LSTc does not bind influenza virus or inhibit infectivity. LSTc decoy liposomes prevent the spread of influenza virus during multiple rounds of replication in vitro and extend survival of mice challenged with a lethal dose of virus. LSTc decoy liposomes co-localize with fluorescently tagged influenza virus, whereas control liposomes do not. Considering the conservation of the hemagglutinin binding pocket and the ability of decoy liposomes to form high avidity interactions with influenza hemagglutinin, our decoy liposomes have potential as a new therapeutic agent against emerging influenza strains.

  16. Sialylneolacto-N-tetraose c (LSTc)-bearing Liposomal Decoys Capture Influenza A Virus*

    PubMed Central

    Hendricks, Gabriel L.; Weirich, Kim L.; Viswanathan, Karthik; Li, Jing; Shriver, Zachary H.; Ashour, Joseph; Ploegh, Hidde L.; Kurt-Jones, Evelyn A.; Fygenson, Deborah K.; Finberg, Robert W.; Comolli, James C.; Wang, Jennifer P.

    2013-01-01

    Influenza is a severe disease in humans and animals with few effective therapies available. All strains of influenza virus are prone to developing drug resistance due to the high mutation rate in the viral genome. A therapeutic agent that targets a highly conserved region of the virus could bypass resistance and also be effective against multiple strains of influenza. Influenza uses many individually weak ligand binding interactions for a high avidity multivalent attachment to sialic acid-bearing cells. Polymerized sialic acid analogs can form multivalent interactions with influenza but are not ideal therapeutics due to solubility and toxicity issues. We used liposomes as a novel means for delivery of the glycan sialylneolacto-N-tetraose c (LSTc). LSTc-bearing decoy liposomes form multivalent, polymer-like interactions with influenza virus. Decoy liposomes competitively bind influenza virus in hemagglutination inhibition assays and inhibit infection of target cells in a dose-dependent manner. Inhibition is specific for influenza virus, as inhibition of Sendai virus and respiratory syncytial virus is not observed. In contrast, monovalent LSTc does not bind influenza virus or inhibit infectivity. LSTc decoy liposomes prevent the spread of influenza virus during multiple rounds of replication in vitro and extend survival of mice challenged with a lethal dose of virus. LSTc decoy liposomes co-localize with fluorescently tagged influenza virus, whereas control liposomes do not. Considering the conservation of the hemagglutinin binding pocket and the ability of decoy liposomes to form high avidity interactions with influenza hemagglutinin, our decoy liposomes have potential as a new therapeutic agent against emerging influenza strains. PMID:23362274

  17. Multispectral Superconducting Quantum Detectors

    DTIC Science & Technology

    1995-08-01

    Molybdenum 894 SS316 2770 Iron Fe 1890 SS304 2790 Beryllium 1300 Titanium 1700 Aluminum 3910 Poly-Alumina 791 Table 3.6. Total thermal contraction...is the electron two spin density of states and p is the density of the material. This constant describes coupling of electrons with thermal phonons...antiferromagnetic spin fluctuations . Due to the presence of node lines, the low temperature behavior of a superconductor is quite sensitive to the

  18. The use of decoys to attract Least Terns (Sterna antillarum) to abandoned colony sites in New Jersey

    USGS Publications Warehouse

    Kotliar, Natasha B.; Burger, Joanna

    1984-01-01

    The number of Least Tern colony sites in New Jersey has declined in recent years. Decoys were used at two recently abandoned Least Tern colony sites in New Jersey to encourage nesting. The sites were chosen because of their apparent suitability as colony sites and the relative ease of protecting them from human disturbance and predators. Least Terns were observed flying over and landing at both sites, although nesting occurred at only one site. The effect of decoys was statically significant at the colony site used for nesting. At this site, 44.5% of the landings occurred in the plot containing decoys and only 10.6% o the landings were in the control plot. Nesting was initiated among the decoys. These results indicate that decoys can be used to attract Least Terns to abandoned colony sites and may be useful for managing Least Terns and other colonial nesting birds.

  19. Efficient quantum dialogue without information leakage

    NASA Astrophysics Data System (ADS)

    Yin, Ai-Han; Tang, Zhi-Hui; Chen, Dong

    2015-02-01

    A two-step quantum dialogue scheme is put forward with a class of three-qubit W state and quantum dense coding. Each W state can carry three bits of secret information and the measurement result is encrypted without information leakage. Furthermore, we utilize the entangle properties of W state and decoy photon checking technique to realize three-time channel detection, which can improve the efficiency and security of the scheme.

  20. Monte Carlo simulation of a quantum noise limited Čerenkov detector based on air-spaced light guiding taper for megavoltage x-ray imaging

    SciTech Connect

    Teymurazyan, A.; Rowlands, J. A.; Pang, G.

    2014-04-15

    Purpose: Electronic Portal Imaging Devices (EPIDs) have been widely used in radiation therapy and are still needed on linear accelerators (Linacs) equipped with kilovoltage cone beam CT (kV-CBCT) or MRI systems. Our aim is to develop a new high quantum efficiency (QE) Čerenkov Portal Imaging Device (CPID) that is quantum noise limited at dose levels corresponding to a single Linac pulse. Methods: Recently a new concept of CPID for MV x-ray imaging in radiation therapy was introduced. It relies on Čerenkov effect for x-ray detection. The proposed design consisted of a matrix of optical fibers aligned with the incident x-rays and coupled to an active matrix flat panel imager (AMFPI) for image readout. A weakness of such design is that too few Čerenkov light photons reach the AMFPI for each incident x-ray and an AMFPI with an avalanche gain is required in order to overcome the readout noise for portal imaging application. In this work the authors propose to replace the optical fibers in the CPID with light guides without a cladding layer that are suspended in air. The air between the light guides takes on the role of the cladding layer found in a regular optical fiber. Since air has a significantly lower refractive index (∼1 versus 1.38 in a typical cladding layer), a much superior light collection efficiency is achieved. Results: A Monte Carlo simulation of the new design has been conducted to investigate its feasibility. Detector quantities such as quantum efficiency (QE), spatial resolution (MTF), and frequency dependent detective quantum efficiency (DQE) have been evaluated. The detector signal and the quantum noise have been compared to the readout noise. Conclusions: Our studies show that the modified new CPID has a QE and DQE more than an order of magnitude greater than that of current clinical systems and yet a spatial resolution similar to that of current low-QE flat-panel based EPIDs. Furthermore it was demonstrated that the new CPID does not require an

  1. InxGa1-xAs/AlyGa1-yAs/AlzGa1-zAs asymmetric step quantum-well middle wavelength infrared detectors

    NASA Astrophysics Data System (ADS)

    Wu, W. G.; Chang, K.; Jiang, D. S.; Li, Y. X.; Zheng, H. Z.; Liu, H. C.

    2001-10-01

    InxGa1-xAs/AlyGa1-yAs/AlzGa1-zAs asymmetric step quantum-well middle wavelength (3-5 μm) infrared detectors are fabricated. The components display photovoltaic-type photocurrent response as well as the bias-controlled modulation of the peak wavelength of the main response, which is ascribed to the Stark shifts of the intersubband transitions from the local ground states to the extended first excited states in the quantum wells, at the 3-5.3 μm infrared atmospheric transmission window. The blackbody detectivity (Dbb*) of the detectors reaches to about 1.0×1010cm Hz1/2/W at 77 K under bias of ±7 V. By expanding the electron wave function in terms of normalized plane wave basis within the framework of the effective-mass envelope-function theory, the linear Stark effects of the intersubband transitions between the ground and first excited states in the asymmetric step well are calculated. The obtained results agree well with the corresponding experimental measurements.

  2. Detective Quantum Efficiency of a CsI-CMOS X-ray Detector for Breast Tomosynthesis Operating in High Dynamic Range and High Sensitivity Modes

    PubMed Central

    Patel, Tushita; Klanian, Kelly; Gong, Zongyi; Williams, Mark B.

    2017-01-01

    The spatial frequency dependent detective quantum efficiency (DQE) of a CsI-CMOS x-ray detector was measured in two operating modes: a high dynamic range (HDR) mode and a high sensitivity (HS) mode. DQE calculations were performed using the IEC-62220-1-2 Standard. For detector entrance air kerma values between ~7 µGy and 60 µGy the DQE is similar in either HDR mode or HS mode, with a value of ~0.7 at low frequency and ~ 0.15 – 0.20 at the Nyquist frequency fN = 6.7 mm−1. In HDR mode the DQE remains virtually constant for operation with Ka values between ~7 µGy and 119 µGy but decreases for Ka levels below ~ 7 µGy. In HS mode the DQE is approximately constant over the full range of entrance air kerma tested between 1.7 µGy and 60 µGy but kerma values above ~75 µGy produce hard saturation. Quantum limited operation in HS mode for entrance kerma as small as 1.7 µGy makes it possible to use a large number of low dose views to improve angular sampling and decrease acquisition time. PMID:28856340

  3. Detective Quantum Efficiency of a CsI-CMOS X-ray Detector for Breast Tomosynthesis Operating in High Dynamic Range and High Sensitivity Modes.

    PubMed

    Patel, Tushita; Klanian, Kelly; Gong, Zongyi; Williams, Mark B

    2012-07-01

    The spatial frequency dependent detective quantum efficiency (DQE) of a CsI-CMOS x-ray detector was measured in two operating modes: a high dynamic range (HDR) mode and a high sensitivity (HS) mode. DQE calculations were performed using the IEC-62220-1-2 Standard. For detector entrance air kerma values between ~7 µGy and 60 µGy the DQE is similar in either HDR mode or HS mode, with a value of ~0.7 at low frequency and ~ 0.15 - 0.20 at the Nyquist frequency fN = 6.7 mm(-1). In HDR mode the DQE remains virtually constant for operation with Ka values between ~7 µGy and 119 µGy but decreases for Ka levels below ~ 7 µGy. In HS mode the DQE is approximately constant over the full range of entrance air kerma tested between 1.7 µGy and 60 µGy but kerma values above ~75 µGy produce hard saturation. Quantum limited operation in HS mode for entrance kerma as small as 1.7 µGy makes it possible to use a large number of low dose views to improve angular sampling and decrease acquisition time.

  4. Quantum dosimetry and online visualization of X-ray and charged particle radiation in commercial aircraft at operational flight altitudes with the pixel detector Timepix

    NASA Astrophysics Data System (ADS)

    Granja, Carlos; Pospisil, Stanislav

    2014-07-01

    We investigate the application of the hybrid semiconductor pixel detector Timepix for precise characterization, quantum sensitivity dosimetry and visualization of the charged particle radiation and X-ray field inside commercial aircraft at operational flight altitudes. The quantum counting capability and granularity of Timepix provides the composition and spectral-characteristics of the X-ray and charged-particle field with high sensitivity, wide dynamic range, high spatial resolution and particle type resolving power. For energetic charged particles the direction of trajectory and linear energy transfer can be measured. The detector is operated by the integrated readout interface FITPix for power, control and data acquisition together with the software package Pixelman for online visualization and real-time data processing. The compact and portable radiation camera can be deployed remotely being controlled simply by a laptop computer. The device performs continuous monitoring and accurate time-dependent measurements in wide dynamic range of particle fluxes, deposited energy, absorbed dose and equivalent dose rates. Results are presented for in-flight measurements at altitudes up to 12 km in various flights selected in the period 2006-2013.

  5. Simulation study of PET detector configuration with thick light guide and GAPD array having large-area microcells for high effective quantum efficiency.

    PubMed

    Kang, Jihoon; Choi, Yong

    2016-07-01

    Light sharing PET detector configuration coupled with thick light guide and Geiger-mode avalanche photodiode (GAPD) with large-area microcells was proposed to overcome the energy non-linearity problem and to obtain high light collection efficiency (LCE). A Monte-Carlo simulation was conducted for the three types of LSO block, 4 × 4 array of 3 × 3 × 20 mm(3) discrete crystals, 6 × 6 array of 2 × 2 × 20 mm(3) discrete crystals, and 12 × 12 array of 1 × 1 × 20 mm(3) discrete crystals, to investigate the scintillation light distribution after conversion of the γ-rays in LSO. The incident photons were read out by three types of 4 × 4 array photosensors, which were PSPMT of 25% quantum efficiency (QE), GAPD1 with 50 × 50 µm(2) microcells of 30% photon detection efficiency (PDE) and GAPD2 with 100 × 100 µm(2) of 45% PDE. The number of counted photons in each photosensor was analytically calculated. The LCE, linearity and flood histogram were examined for each PET detector module having 99 different configurations as a function of light guide thickness ranging from 0 to 10 mm. The performance of PET detector modules based on GAPDs was considerably improved by using the thick light guide. The LCE was increased from 24 to 30% and from 14 to 41%, and the linearity was also improved from 0.97 to 0.99 and from 0.75 to 0.99, for GAPD1 and GAPD2, respectively. As expected, the performance of PSPMT based detector did not change. The flood histogram of 12 × 12 array PET detector modules using 3 mm light guide coupled with GAPDs was obtained by simulation, and all crystals of 1 × 1 × 20 mm(3) size were clearly identified. PET detector module coupled with thick light guide and GAPD array with large-area microcells was proposed to obtain high QE and high spatial resolution, and its feasibility was verified. This study demonstrated that the overall PET performance of the proposed design was

  6. The problem with peptide presumption and the downfall of target-decoy false discovery rates

    USDA-ARS?s Scientific Manuscript database

    In proteomics, peptide-tandem mass spectrum match scores and target-decoy database derived false discovery rates (FDR) are confidence indicators describing the quality of individual and sets of tandem mass spectrum matches. A user can impose a standard by prescribing a limit to these values, equival...

  7. Genetic diversity and antimicrobial resistance of Campylobacter and Salmonella strains isolated from decoys and raptors.

    PubMed

    Jurado-Tarifa, E; Torralbo, A; Borge, C; Cerdà-Cuéllar, M; Ayats, T; Carbonero, A; García-Bocanegra, I

    2016-10-01

    Infections caused by thermotolerant Campylobacter spp. and Salmonella spp. are the leading causes of human gastroenteritis worldwide. Wild birds can act as reservoirs of both pathogens. A survey was carried out to determine the prevalence, genetic diversity and antimicrobial resistance of thermotolerant Campylobacter and Salmonella in waterfowl used as decoys and wild raptors in Andalusia (Southern Spain). The overall prevalence detected for Campylobacter was 5.9% (18/306; CI95%: 3.25-8.52) in decoys and 2.3% (9/387; CI95%: 0.82-3.83) in wild raptors. Isolates were identified as C. jejuni, C. coli and C. lari in both bird groups. Salmonella was isolated in 3.3% (10/306; CI95%: 2.3-4.3) and 4.6% (18/394; CI95%: 3.5-5.6) of the decoys and raptors, respectively. Salmonella Enteritidis and Typhimurium were the most frequently identified serovars, although Salmonella serovars Anatum, Bredeney, London and Mikawasima were also isolated. Pulsed-field gel electrophoresis analysis of isolates showed higher genetic diversity within Campylobacter species compared to Salmonella serovars. Campylobacter isolates showed resistance to gentamicin, ciprofloxacin and tetracycline, while resistance to erythromycin and tetracycline was found in Salmonella isolates. The results indicate that both decoys and raptors can act as natural carriers of Campylobacter and Salmonella in Spain, which may have important implications for public and animal health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Fast synchrotron and FEL beam monitors based on single-crystal diamond detectors and InGaAs/InAlAs quantum well devices

    NASA Astrophysics Data System (ADS)

    Antonelli, M.; Di Fraia, M.; Carrato, S.; Cautero, G.; Menk, R. H.; Jark, W. H.; Ganbold, T.; Biasiol, G.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2013-12-01

    Simultaneous photon-beam position and intensity monitoring is becoming of increasing importance for new-generation synchrotron radiation sources and free-electron lasers (FEL). Thus, novel concepts of beam diagnostics are required in order to keep such beams under control. From this perspective diamond is a promising material for the production of semitransparent in situ photon beam monitors, which can withstand the high dose rates occurring in such radiation facilities. Here, we report on the development of freestanding, single-crystal chemical-vapor-deposited diamond detectors with segmented electrodes. Due to their direct, low-energy band gap, InGaAs quantum well devices operated at room temperature may also be used as fast detectors for photons ranging from visible to X-ray. These features are valuable in low-energy and time-resolved FEL applications. In particular, a novel segmented InGaAs/InAlAs device has been developed and will be discussed. Dedicated measurements carried out on both these devices at the Elettra Synchrotron show their capability to monitor the position and the intensity of the photon beam with bunch-by-bunch temporal performances. Furthermore, preliminary tests have been performed on diamond detectors at the Fermi FEL, extracting quantitative intensity and position information for 100-fs-wide FEL pulses with a photon energy of 28.8 eV.

  9. Watt-Level Continuous-Wave Emission from a Bi-Functional Quantum Cascade Laser/Detector

    DTIC Science & Technology

    2017-04-18

    seas.harvard.edu Abstract Bi-functional active regions , capable of light generation and detection at the same wavelength, allow a straightforward realization of...to build lasers, detectors as well as modulators. Moving to longer wavelength, e.g. the mid-infrared ngerprint region , active optical components...such as lasers and detectors, are increasingly dicult to realize, especially when aiming for room-temperature operation The mid-infrared region is

  10. Practical round-robin differential phase-shift quantum key distribution.

    PubMed

    Zhang, Ying-Ying; Bao, Wan-Su; Zhou, Chun; Li, Hong-Wei; Wang, Yang; Jiang, Mu-Sheng

    2016-09-05

    Recently, a novel protocol named round-robin differential phase-shift (RRDPS) quantum key distribution [Nature 509, 475(2014)] has been proposed. It can estimate information leakage without monitoring bit error rate. In this paper, we study the performance of RRDPS using heralded single photon source (HSPS) without and with decoy-state method, then compare it with the performance of weak coherent pulses (WCPs). From numerical simulation, we can see that HSPS performs better especially for shorter packet and higher bit error rate. Moreover, we propose a general theory of decoy-state method for RRDPS protocol based on only three decoy states and one signal state. Taking WCPs as an example, the three-intensity decoy-state protocol can distribute secret keys over a distance of 128 km when the length of pulses packet is 32, which confirms great practical interest of our method.

  11. Decoy Methods for Assessing False Positives and False Discovery Rates in Shotgun Proteomics

    PubMed Central

    Wang, Guanghui; Wu, Wells W.; Zhang, Zheng; Masilamani, Shyama; Shen, Rong-Fong

    2008-01-01

    The potential of getting a significant number of false positives (FPs) in peptide-spectrum matches (PSMs) obtained by proteomic database search has been well-recognized. Among the attempts to assess FPs, the concomitant use of target and decoy databases is widely practiced. By adjusting filtering criteria, FPs and false discovery rate (FDR) can be controlled at a desired level. Although the target-decoy approach is gaining in popularity, subtle differences in decoy construction (e.g., reversing vs. stochastic methods), rate calculation (e.g., total vs. unique PSMs), or searching (separate vs. composite) do exist among various implementations. In the present study, we evaluated the effects of these differences on FP and FDR estimations using a rat kidney protein sample and the SEQUEST search engine as an example. On the effects of decoy construction, we found that, when a single scoring filter (XCorr) was used, stochastic methods generated a higher estimation of FPs and FDR than sequence reversing methods, likely due to an increase in unique peptides. This higher estimation could largely be attenuated by creating decoy databases similar in effective size, but not by a simple normalization with a unique-peptide coefficient. When multiple filters were applied, the differences seen between reversing and stochastic methods significantly diminished, suggesting multiple filterings reduce the dependency on how a decoy is constructed. For a fixed set of filtering criteria, FDR and FPs estimated by using unique PSMs were almost twice those using total PSMs. The higher estimation seemed to be dependent on data acquisition setup. As to the differences between performing separate or composite searches, in general, FDR estimated from separate search was about three times that from composite search. The degree of difference gradually decreased as the filtering criteria became more stringent. Paradoxically, the estimated true positives in separate search were higher when multiple

  12. Decoy methods for assessing false positives and false discovery rates in shotgun proteomics.

    PubMed

    Wang, Guanghui; Wu, Wells W; Zhang, Zheng; Masilamani, Shyama; Shen, Rong-Fong

    2009-01-01

    The potential of getting a significant number of false positives (FPs) in peptide-spectrum matches (PSMs) obtained by proteomic database search has been well-recognized. Among the attempts to assess FPs, the concomitant use of target and decoy databases is widely practiced. By adjusting filtering criteria, FPs and false discovery rate (FDR) can be controlled at a desired level. Although the target-decoy approach is gaining in popularity, subtle differences in decoy construction (e.g., reversing vs stochastic methods), rate calculation (e.g., total vs unique PSMs), or searching (separate vs composite) do exist among various implementations. In the present study, we evaluated the effects of these differences on FP and FDR estimations using a rat kidney protein sample and the SEQUEST search engine as an example. On the effects of decoy construction, we found that, when a single scoring filter (XCorr) was used, stochastic methods generated a higher estimation of FPs and FDR than sequence reversing methods, likely due to an increase in unique peptides. This higher estimation could largely be attenuated by creating decoy databases similar in effective size but not by a simple normalization with a unique-peptide coefficient. When multiple filters were applied, the differences seen between reversing and stochastic methods significantly diminished, suggesting multiple filterings reduce the dependency on how a decoy is constructed. For a fixed set of filtering criteria, FDR and FPs estimated by using unique PSMs were almost twice those using total PSMs. The higher estimation seemed to be dependent on data acquisition setup. As to the differences between performing separate or composite searches, in general, FDR estimated from the separate search was about three times that from the composite search. The degree of difference gradually decreased as the filtering criteria became more stringent. Paradoxically, the estimated true positives in separate search were higher when

  13. High-Efficient Arbitrated Quantum Signature Scheme Based on Cluster States

    NASA Astrophysics Data System (ADS)

    Fatahi, Negin; Naseri, Mosayeb; Gong, Li-Hua; Liao, Qing-Hong

    2017-02-01

    The arbitrated quantum signature characteristics including the security and the efficiency are investigated and a new efficient and secure arbitrated quantum signature is proposed. It is shown that the proposed scheme exhibits an efficiency of 64 %. Furthermore, to gain a higher security, the decoy photons security checking is employed.

  14. Advanced UV Detectors and Detector Arrays

    NASA Technical Reports Server (NTRS)

    Pankove, Jacques I.; Torvik, John

    1998-01-01

    Gallium Nitride (GaN) with its wide energy bandgap of 3.4 eV holds excellent promise for solar blind UV detectors. We have successfully designed, fabricated and tested GaN p-i-n detectors and detector arrays. The detectors have a peak responsivity of 0.14A/W at 363 nm (3.42 eV) at room temperature. This corresponds to an internal quantum efficiency of 56%. The responsivity decreases by several orders of magnitude to 0.008 A/W at 400 nm (3.10 eV) giving the excellent visible rejection ratio needed for solar-blind applications.

  15. STAT3 Decoy Oligodeoxynucleotides-Loaded Solid Lipid Nanoparticles Induce Cell Death and Inhibit Invasion in Ovarian Cancer Cells

    PubMed Central

    Ma, Yanhui; Zhang, Xiaolei; Xu, Xiaoxuan; Shen, Liang; Yao, Yao; Yang, Ziyan; Liu, Peishu

    2015-01-01

    Recent advances in the synthesis of multi-functional nanoparticles have opened up tremendous opportunities for the targeted delivery of genes of interest. Cationic solid lipid nanoparticles (SLN) can efficiently bind nucleic acid molecules and transfect genes in vitro. Few reports have combined SLN with therapy using decoy oligodeoxynucleotides (ODN). In the present study, we prepared SLN to encapsulate STAT3 decoy ODN; then, the properties and in vitro behavior of SLN-STAT3 decoy ODN complexes were investigated. SLN-STAT3 decoy ODN complexes were efficiently taken up by human ovarian cancer cells and significantly suppressed cell growth. Blockage of the STAT3 pathway by SLN-STAT3 decoy ODN complexes resulted in an evident induction of cell death, including apoptotic and autophagic death. The mechanism involved the increased expression of cleaved caspase 3, Bax, Beclin-1 and LC3-II and reduced expression of Bcl-2, pro-caspase 3, Survivin, p-Akt and p-mTOR. In addition, SLN-STAT3 decoy ODN complexes inhibited cell invasion by up-regulating E-cadherin expression and down-regulating Snail and MMP-9 expression. These findings confirmed that SLN as STAT3 decoy ODN carriers can induce cell death and inhibit invasion of ovarian cancer cells. We propose that SLN represent a potential approach for targeted gene delivery in cancer therapy. PMID:25923701

  16. Structure refinement of protein model decoys requires accurate side-chain placement.

    PubMed

    Olson, Mark A; Lee, Michael S

    2013-03-01

    In this study, the application of temperature-based replica-exchange (T-ReX) simulations for structure refinement of decoys taken from the I-TASSER dataset was examined. A set of eight nonredundant proteins was investigated using self-guided Langevin dynamics (SGLD) with a generalized Born implicit solvent model to sample conformational space. For two of the protein test cases, a comparison of the SGLD/T-ReX method with that of a hybrid explicit/implicit solvent molecular dynamics T-ReX simulation model is provided. Additionally, the effect of side-chain placement among the starting decoy structures, using alternative rotamer conformations taken from the SCWRL4 modeling program, was investigated. The simulation results showed that, despite having near-native backbone conformations among the starting decoys, the determinant of their refinement is side-chain packing to a level that satisfies a minimum threshold of native contacts to allow efficient excursions toward the downhill refinement regime on the energy landscape. By repacking using SCWRL4 and by applying the RWplus statistical potential for structure identification, the SGLD/T-ReX simulations achieved refinement to an average of 38% increase in the number of native contacts relative to the original I-TASSER decoy sets and a 25% reduction in values of C(α) root-mean-square deviation. The hybrid model succeeded in obtaining a sharper funnel to low-energy states for a modeled target than the implicit solvent SGLD model; yet, structure identification remained roughly the same. Without meeting a threshold of near-native packing of side chains, the T-ReX simulations degrade the accuracy of the decoys, and subsequently, refinement becomes tantamount to the protein folding problem. Published 2012 Wiley Periodicals, Inc.

  17. How Intrusion Detection Can Improve Software Decoy Applications

    DTIC Science & Technology

    2003-03-01

    processes and uses a security kernel. Additionally, LIDS has a built-in portscan detector, which can be used to alert users to the warning signs of a...several useful ways, such as in IP defragmentation, TCP stream assembly, portscan detection, and web-traffic normalization. The preprocessor can...HIDS can see a portscan , but a NIDS can see the similar attacks on other sites that happened first. 22 SNORT LIDS NIDS AlarmsLog Files HIDS

  18. Suppression of cell proliferation and collagen production in cultured human hypertrophic scar fibroblasts by Sp1 decoy oligodeoxynucleotide.

    PubMed

    Deng, Chenliang; Zheng, Jianghong; Wan, Weidong; Zhang, Shixin; Ding, Zhi; Mao, Guangyu; Yang, Songlin

    2013-03-01

    Hypertrophic scars are characterized by the abnormal proliferation of fibroblasts and an overproduction of collagen. The Sp1 transcription factor is involved in the stimulation of collagen synthesis. A decoy oligonucleotide (ODN) targeting Sp1 was designed and transfected into hypertrophic scar fibroblasts (HSFs) cells using cationic liposomes. The transfection efficiency was determined by flow cytometry and was observed to be 85±7% (n=5). Specific binding of the Sp1 decoy ODN was monitored with an electrophoretic mobility shift assay (EMSA). Following transfection with the decoy ODN to Sp1, cell viability and cell proliferation, which were examined by the cell counting kit WST‑8, were decreased by 80% compared with untreated cells. Transforming growth factor‑β (TGF‑β) mRNA and collagen mRNA expression were also reduced by 48% in the transfection decoy ODN group. The cell viability of HSFs after 48 h of transfection with 25, 50, 100 and 150 nM Sp1 decoy ODN was 0.9331±0.0203, 0.7479±0.0868, 0.577±0.0347 and 0.4703±0.0147, respectively. The 100 nM dose of the Sp1 decoy ODN inhibited the expression of types I and III collagen by 32 and 28%, respectively (both P<0.01). TGF‑β mRNA expression was also effectively suppressed by the 100 nM Sp1 decoy ODN (P<0.01). The Sp1 decoy ODN inhibited cell proliferation and the expression of types I and III collagen. Therefore, Sp1 decoy ODNs may be a promising tool for developing and testing novel therapeutic applications for treating hypertrophic scars.

  19. Similarity Mapplet: Interactive Visualization of the Directory of Useful Decoys and ChEMBL in High Dimensional Chemical Spaces.

    PubMed

    Awale, Mahendra; Reymond, Jean-Louis

    2015-08-24

    An Internet portal accessible at www.gdb.unibe.ch has been set up to automatically generate color-coded similarity maps of the ChEMBL database in relation to up to two sets of active compounds taken from the enhanced Directory of Useful Decoys (eDUD), a random set of molecules, or up to two sets of user-defined reference molecules. These maps visualize the relationships between the selected compounds and ChEMBL in six different high dimensional chemical spaces, namely MQN (42-D molecular quantum numbers), SMIfp (34-D SMILES fingerprint), APfp (20-D shape fingerprint), Xfp (55-D pharmacophore fingerprint), Sfp (1024-bit substructure fingerprint), and ECfp4 (1024-bit extended connectivity fingerprint). The maps are supplied in form of Java based desktop applications called "similarity mapplets" allowing interactive content browsing and linked to a "Multifingerprint Browser for ChEMBL" (also accessible directly at www.gdb.unibe.ch ) to perform nearest neighbor searches. One can obtain six similarity mapplets of ChEMBL relative to random reference compounds, 606 similarity mapplets relative to single eDUD active sets, 30,300 similarity mapplets relative to pairs of eDUD active sets, and any number of similarity mapplets relative to user-defined reference sets to help visualize the structural diversity of compound series in drug optimization projects and their relationship to other known bioactive compounds.

  20. Photon detectors

    SciTech Connect

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  1. ZnCdMgSe as a Materials Platform for Advanced Photonic Devices: Broadband Quantum Cascade Detectors and Green Semiconductor Disk Lasers

    NASA Astrophysics Data System (ADS)

    De Jesus, Joel

    The ZnCdMgSe family of II-VI materials has unique and promising characteristics that may be useful in practical applications. For example they can be grown lattice matched to InP substrates with lattice matched bandgaps that span from 2.1 to 3.5 eV, they can be successfully doped n-type, have a large conduction band offset (CBO) with no intervalley scattering present when strained, they have lower average phonon energies, and the InP lattice constant lies in the middle of the ZnSe and CdSe binaries compounds giving room to experiment with tensile and compressive stress. However they have not been studied in detail for use in practical devices. Here we have identified two types of devices that are being currently developed that benefit from the ZnCdMgSe-based material properties. These are the intersubband (ISB) quantum cascade (QC) detectors and optically pumped semiconductor lasers that emit in the visible range. The paucity for semiconductor lasers operating in the green-orange portion of the visible spectrum can be easily overcome with the ZnCdMgSe materials system developed in our research. The non-strain limited, large CBO available allows to expand the operating wavelength of ISB devices providing shorter and longer wavelengths than the currently commercially available devices. This property can also be exploited to develop broadband room temperature operation ISB detectors. The work presented here focused first on using the ZnCdMgSe-based material properties and parameter to understand and predict the interband and intersubband transitions of its heterostructures. We did this by studying an active region of a QC device by contactless electroreflectance, photoluminescence, FTIR transmittance and correlating the measurements to the quantum well structure by transfer matrix modeling. Then we worked on optimizing the ZnCdMgSe material heterostructures quality by studying the effects of growth interruptions on their optical and optoelectronic properties of

  2. Cascaded Kerr photon-blockade soruces and applications in quantum key distribution.

    PubMed

    Li, Ao; Zhou, Yiheng; Wang, Xiang-Bin

    2017-08-04

    To raise the repetition rate, a single-photon source based on Kerr quantum blockade in a cascaded quantum system is studied. Using the quantum trajectory method, we calculate and simulate the photon number distributions out of a two-cavity system. A high quality single-photon source can be achieved through optimizing parameters. The designed photon source is further applied to the decoy state quantum key distribution (QKD). With and without statistical fluctuation, the key rate can be both raised drastically.

  3. EDITORIAL: Focus on Quantum Cryptography: Theory and Practice FOCUS ON QUANTUM CRYPTOGRAPHY: THEORY AND PRACTICE

    NASA Astrophysics Data System (ADS)

    Lütkenhaus, N.; Shields, A. J.

    2009-04-01

    superconducting single-photon detectors Lijun Ma, S Nam, Hai Xu, B Baek, Tiejun Chang, O Slattery, A Mink and Xiao Tang Practical gigahertz quantum key distribution based on avalanche photodiodes Z L Yuan, A R Dixon, J F Dynes, A W Sharpe and A J Shields Simple security proof of quantum key distribution based on complementarity M Koashi Feasibility of satellite quantum key distribution C Bonato, A Tomaello, V Da Deppo, G Naletto and P Villoresi Programmable instrumentation and gigahertz signaling for single-photon quantum communication systems Alan Mink, Joshua C Bienfang, Robert Carpenter, Lijun Ma, Barry Hershman, Alessandro Restelli and Xiao Tang Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation G B Xavier, N Walenta, G Vilela de Faria, G P Temporão, N Gisin, H Zbinden and J P von der Weid Feasibility of free space quantum key distribution with coherent polarization states D Elser, T Bartley, B Heim, Ch Wittmann, D Sych and G Leuchs A fully automated entanglement-based quantum cryptography system for telecom fiber networks Alexander Treiber, Andreas Poppe, Michael Hentschel, Daniele Ferrini, Thomas Lorünser, Edwin Querasser, Thomas Matyus, Hannes Hübel and Anton Zeilinger Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments N A Peters, P Toliver, T E Chapuran, R J Runser, S R McNown, C G Peterson, D Rosenberg, N Dallmann, R J Hughes, K P McCabe, J E Nordholt and K T Tyagi Clock synchronization by remote detection of correlated photon pairs Caleb Ho, Antía Lamas-Linares and Christian Kurtsiefer Megabits secure key rate quantum key distribution Q Zhang, H Takesue, T Honjo, K Wen, T Hirohata, M Suyama, Y Takiguchi, H Kamada, Y Tokura, O Tadanaga, Y Nishida, M Asobe and Y Yamamoto Practical long-distance quantum key distribution system using decoy levels D Rosenberg, C G Peterson, J W Harrington, P R Rice, N Dallmann, K T Tyagi, K P

  4. Experimental demonstration of counteracting imperfect sources in a practical one-way quantum-key-distribution system

    SciTech Connect

    Xu Fangxing; Zhang Yang; Zhou Zheng; Chen Wei; Han Zhengfu; Guo Guangcan

    2009-12-15

    In a practical quantum-key-distribution system, photon source and small operational errors cause intensity fluctuations inevitably, which cannot be ignored for a precise estimation on the single-photon fraction. In this paper, we demonstrated an efficient three-intensity decoy method scheme on top of the one-way Faraday-Michelson Interferometric system, combining an active monitoring with existing commercial apparatus to inspect fluctuations instantly. With this faithful detection for the upper bound of the fluctuation, the secure quantum key distribution is unconditionally realized with whatever type of intensity errors, which declares the utility and potential of decoy theory and active monitoring for quantum key distribution in practical use.

  5. Demonstration of Bias-Controlled Algorithmic Tuning of Quantum Dots in a Well (DWELL) MidIR Detectors

    DTIC Science & Technology

    2009-06-01

    DWELL) MidIR Detectors Woo-Yong Jang, Majeed M. Hayat, Senior Member, IEEE, J . Scott Tyo, Senior Member, IEEE, Ram S. Attaluri, Thomas E. Vandervelde...a member of the International Society for Optical Engineers (SPIE) and the Optical Society of America (OSA). J . Scott Tyo (S’96–M’97–SM’06) received

  6. Optimization of the configuration of a symmetric three-barrier resonant-tunneling structure as an active element of a quantum cascade detector

    SciTech Connect

    Tkach, N. V. Seti, Ju. A.

    2011-03-15

    On the basis of a model of rectangular potentials and different electron effective masses in wells and barriers of an open resonant-tunneling structure with identical outer barriers, a theory has been developed and the dynamic conductance caused by the interaction of the electromagnetic field with electrons passing through the structure has been calculated. Using the example of the three-barrier resonant-tunneling structure with In{sub 0.53}Ga{sub 0.47}As wells and In{sub 0.52}Al{sub 0.48}As barriers, it is shown that, independently of the geometrical sizes of potential wells and barriers, there exist three geometrical configurations (positions of the inner barrier with respect to outer ones) at which the nanosystem, as an active element, provides optimum operating conditions of the quantum cascade detector.

  7. High efficiency optical coupling in long wavelength quantum cascade infrared detector via quasi-one-dimensional grating plasmonic micro-cavity

    NASA Astrophysics Data System (ADS)

    Li, L.; Xiong, D. Y.; Tang, Z.; Wen, J.; Li, N.; Chen, P. P.; Zhu, Z. Q.

    2017-02-01

    A combination of quasi-one-dimensional grating and plasmonic micro-cavity is proposed as a normal-illuminated optical coupler for a long wavelength quantum cascade infrared detector. A finite difference time-domain method is used to numerically simulate the reflection spectra and the field distributions of the optical coupler. The average |Ez|2 in the active layer reaches 4.1 (V/m)2 under the 13.5 μm infrared normal illumination with a strength of 1 (V/m)2. A mixed state of localized surface plasmon and surface plasmonic polariton is observed. The results confirm that the quasi-one-dimensional grating plasmonic micro-cavity structure could generate more plasma excitation source, and as a consequence, a high optical coupling efficiency of 410% in the active region is obtained. Moreover, an excellent polarization-discriminating performance is observed.

  8. Segmented crystalline scintillators: empirical and theoretical investigation of a high quantum efficiency EPID based on an initial engineering prototype CsI(TI) detector.

    PubMed

    Sawant, Amit; Antonuk, Larry E; El-Mohri, Youcef; Zhao, Qihua; Wang, Yi; Li, Yixin; Du, Hong; Perna, Louis

    2006-04-01

    Modern-day radiotherapy relies on highly sophisticated forms of image guidance in order to implement increasingly conformal treatment plans and achieve precise dose delivery. One of the most important goals of such image guidance is to delineate the clinical target volume from surrounding normal tissue during patient setup and dose delivery, thereby avoiding dependence on surrogates such as bony landmarks. In order to achieve this goal, it is necessary to integrate highly efficient imaging technology, capable of resolving soft-tissue contrast at very low doses, within the treatment setup. In this paper we report on the development of one such modality, which comprises a nonoptimized, prototype electronic portal imaging device (EPID) based on a 40 mm thick, segmented crystalline CsI(Tl) detector incorporated into an indirect-detection active matrix flat panel imager (AMFPI). The segmented detector consists of a matrix of 160 x 160 optically isolated, crystalline CsI(Tl) elements spaced at 1016 microm pitch. The detector was coupled to an indirect detection-based active matrix array having a pixel pitch of 508 microm, with each detector element registered to 2 x 2 array pixels. The performance of the prototype imager was evaluated under very low-dose radiotherapy conditions and compared to that of a conventional megavoltage AMFPI based on a Lanex Fast-B phosphor screen. Detailed quantitative measurements were performed in order to determine the x-ray sensitivity, modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE). In addition, images of a contrast-detail phantom and an anthropomorphic head phantom were also acquired. The prototype imager exhibited approximately 22 times higher zero-frequency DQE (approximately 22%) compared to that of the conventional AMFPI (approximately 1%). The measured zero-frequency DQE was found to be lower than theoretical upper limits (approximately 27%) calculated from Monte Carlo simulations, which

  9. In vivo transfection of nuclear factor κB decoy protects pulmonary function against acute lung contusion in rabbits.

    PubMed

    Wan, Li; Huang, Huansen; Fang, Danqing; Yu, Tao

    2012-10-01

    The transcription factor nuclear factor κB (NF-κB) regulates the expression of numerous proinflammatory factors that may exacerbate the response to acute injury. We investigated the effect of an inhibitory NF-κB decoy oligodeoxynucleotide on proinflammatory factor expression and pulmonary function after acute lung contusion in rabbits. Thirty-minutes after acute lung contusion, the NF-κB decoy or a scrambled control oligodeoxynucleotide was injected via the jugular vein. Blood samples were collected for blood gas analysis and plasma tumor necrosis factor α, interleukin 1β (IL-1β), IL-13, and IL-10 were measured by enzyme-linked immunosorbent assay at 1, 2, 3, and 4 hours after contusion. In addition, NF-κB protein expression in lung tissue was detected by Western blot analysis. The blood PO2 decreased immediately after lung contusion, whereas PAO2 increased significantly, indicative of disrupted respiratory function. Respiratory function improved after sense NF-κB decoy injection but not after injection of the inactive scrambled form. Injection of NF-κB decoy resulted in significant inhibition of NF-κB protein expression in lung tissue and a reduction in the serum concentrations of proinflammatory cytokines tumor necrosis factor α and IL-1β compared with those of control rabbits injected with the scrambled decoy. In contrast, serum levels of the anti-inflammatory cytokines IL-10 and IL-13 increased after decoy injection compared with those of control animals and rabbits injected with the scrambled decoy. The sense NF-κB decoy protected respiratory function and reduced serum proinflammatory factor secretion after acute lung contusion. Inhibition of NF-κB may allow for preservation of pulmonary function for patients with acute lung injury.

  10. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector

    SciTech Connect

    Genderen, E. van; Clabbers, M. T. B.; Das, P. P.; Stewart, A.; Nederlof, I.; Barentsen, K. C.; Portillo, Q.; Pannu, N. S.; Nicolopoulos, S.; Gruene, T.; Abrahams, J. P.

    2016-02-05

    A specialized quantum area detector for electron diffraction studies makes it possible to solve the structure of small organic compound nanocrystals in non-cryo conditions by direct methods. Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e{sup −} Å{sup −2} s{sup −1}) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014)

  11. Developing robust fabrication of silicon/silicon-germanium quantum dots with integrated RF-SET charge detectors

    NASA Astrophysics Data System (ADS)

    Gilheart, Timothy John

    Solid-state approaches to quantum computing include quantum dot qubit implementations based on the Loss-DiVincenzo proposal. Prior work in GaAs two-dimensional electron gas (2DEG) materials serves as a proving ground for device designs that can be ported to Si/SiGe 2DEG systems, where the coherence time of quantum information is longer due to a combination of physical effects unique to strained Si quantum wells. In spite of the promise of Si/SiGe quantum dot qubits, several materials issues can reduce successful device yield. This work presents results from the exploration of two of these issues: the reliability of ohmic contacts to the 2DEG and the leakage current from the metallic Schottky gates used to form the quantum dots. For the ohmic contacts, growth recipes with yields approaching 100% based on two different metallizations, Au/Sb and Ag/Sb, are presented in the context of a known model for diffusion and alloying in Si. Addressing the issue of leakage currents, experiments on devices fabricated at Dartmouth strongly suggest that the major source of current leakage arises from the region near the etched mesa sidewall, where the photolithographically created metallic Schottky gate leads cover the edge of the device mesa. The solution presented here involves the deposition of SiO2 as a barrier oxide between the gate metallization and the underlying etched region to block whatever current paths might exist between the edge of the mesa and the 2DEG. Two variations on this theme are discussed: the deposition of oxide beneath the large gate leads only and the deposition of oxide immediately after etching to partially backfill the etched region with insulator. Results suggest that the latter method holds the most promise and may work even better with more robust insulators. Finally, the results of several successful devices are presented, including an radio-frequency single-electron transistor on Si/SiGe 2DEG material and a quantum dot formed in a Si/SiGe 2DEG

  12. Bunch by bunch beam monitoring in 3rd and 4th generation light sources by means of single crystal diamond detectors and quantum well devices

    NASA Astrophysics Data System (ADS)

    Antonelli, M.; Di Fraia, M.; Tallaire, A.; Achard, J.; Carrato, S.; Menk, R. H.; Cautero, G.; Giuressi, D.; Jark, W. H.; Biasiol, G.; Ganbold, T.; Oliver, K.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2012-10-01

    New generation Synchrotron Radiation (SR) sources and Free Electron Lasers (FEL) require novel concepts of beam diagnostics to keep photon beams under surveillance, asking for simultaneous position and intensity monitoring. To deal with high power load and short time pulses provided by these sources, novel materials and methods are needed for the next generation BPMs. Diamond is a promising material for the production of semitransparent in situ X-ray BPMs withstanding the high dose rates of SR rings and high energy FELs. We report on the development of freestanding, single crystal CVD diamond detectors. Performances in both low and radio frequency SR beam monitoring are presented. For the former, sensitivity deviation was found to be approximately 2%; a 0.05% relative precision in the intensity measurements and a 0.1-μm precision in the position encoding have been estimated. For the latter, single-shot characterizations revealed sub-nanosecond rise-times and spatial precisions below 6 μm, which allowed bunch-by-bunch monitoring in multi-bunch operation. Preliminary measurements at the Fermi FEL have been performed with this detector, extracting quantitative intensity and position information for FEL pulses (~ 100 fs, energy 12 ÷ 60 eV), with a long-term spatial precision of about 85 μm results on FEL radiation damages are also reported. Due to their direct, low-energy band gap, InGaAs quantum well devices too may be used as fast detectors for photons ranging from visible to X-ray. Results are reported which show the capability of a novel InGaAs/InAlAs device to detect intensity and position of 100-fs-wide laser pulses.

  13. Fast broad-band photon detector based on quantum well devices and charge-integrating electronics for non-invasive FEL monitoring

    SciTech Connect

    Antonelli, M. Cautero, G.; Sergo, R.; Castellaro, C.; Menk, R. H.; Ganbold, T.; Biasiol, G.

    2016-07-27

    The recent evolution of free-electron lasers has not been matched by the development of adequate beam-monitoring instrumentation. However, for both experimental and diagnostics purposes, it is crucial to keep such photon beams under control, avoiding at the same time the absorption of the beam and the possible destruction of the detector. These requirements can be fulfilled by utilizing fast and non-invasive photon detectors operated in situ, upstream from the experimental station. From this perspective, sensors based on Quantum Well (QW) devices can be the key to detecting ultra-short light pulses. In fact, owing to their high electron mobility, InGaAs/InAlAs QW devices operated at room temperature exhibit sub-nanosecond response times. Their direct, low-energy band gap renders them capable of detecting photons ranging from visible to X-ray. Furthermore, the 2D electron gas forming inside the QW is responsible for a charge amplification mechanism, which increases the charge collection efficiency of these devices. In order to acquire the signals produced by these QW sensors, a novel readout electronics has been developed. It is based on a high-speed charge integrator, which allows short, low-intensity current pulses to be read within a 50-ns window. The integrated signal is acquired through an ADC and the entire process can be performed at a 10-MHz repetition rate. This work provides a detailed description of the development of the QW detectors and the acquisition electronics, as well as reporting the main experimental results, which show how these tools are well suited for the realization of fast, broad-band beam monitors.

  14. Enhancement in device performance of hepta-layer coupled InGaAs quantum dot infrared detector by AuGe surface plasmons

    NASA Astrophysics Data System (ADS)

    Pandey, Sushil Kumar; Tyagi, Lavi; Ghadi, Hemant; Rawool, Harshal; Chakrabarti, Subhananda

    2016-09-01

    In this work, we have studied the effect of AuGe alloy nanoparticles deposition on properties of molecular beam epitaxy grown heptalayer coupled InGaAs 5.25 mono-layer quantum-dots (QDs) samples. AuGe 12 nm film was deposited using electron beam evaporator on these samples which were later annealed at 300 °C to create AuGe nanoparticles. SEM measurement confirms formation of AuGe nanoparticles which support surface Plasmon modes. The PL spectra at 20K confirms maximum enhancement of 53% in intensity of peak at ̴̴ 1123 nm for 300 °C annealed sample in comparison to as-grown (without nanoparticle) sample. Single pixel detectors were fabricated from asgrown and 300°C annealed nanoparticle sample using two level lithography and wet etching process. We have observed two-order and one-order augmentation in responsivity and detectivity from device having nanoparticles compared to the as-grown respectively at 80K. Peak detectivity of 4.2×107cm.Hz 1/2/W at 80K was observed for device having nanoparticles. Around 30% increment in spectral response having peak around 5μm at -1V bias for device having AuGe nanoparticles compared to the as-grown device was observed. The observed enhancement is due to increase light trapping or light scattering into the device by nanoparticles. Demonstration of this plasmonic-based detector will move forward the development of high-performance infrared QDs detectors.

  15. Beating the photon-number-splitting attack in practical quantum cryptography.

    PubMed

    Wang, Xiang-Bin

    2005-06-17

    We propose an efficient method to verify the upper bound of the fraction of counts caused by multiphoton pulses in practical quantum key distribution using weak coherent light, given whatever type of Eve's action. The protocol simply uses two coherent states for the signal pulses and vacuum for the decoy pulse. Our verified upper bound is sufficiently tight for quantum key distribution with a very lossy channel, in both the asymptotic and nonasymptotic case. So far our protocol is the only decoy-state protocol that works efficiently for currently existing setups.

  16. Protection against inflammation- and autoantibody-caused fetal loss by the chemokine decoy receptor D6

    PubMed Central

    Martinez de la Torre, Yeny; Buracchi, Chiara; Borroni, Elena M.; Dupor, Jana; Bonecchi, Raffaella; Nebuloni, Manuela; Pasqualini, Fabio; Doni, Andrea; Lauri, Eleonora; Agostinis, Chiara; Bulla, Roberta; Cook, Donald N.; Haribabu, Bodduluri; Meroni, Pierluigi; Rukavina, Daniel; Vago, Luca; Tedesco, Francesco; Vecchi, Annunciata; Lira, Sergio A.; Locati, Massimo; Mantovani, Alberto

    2007-01-01

    Fetal loss in animals and humans is frequently associated with inflammatory conditions. D6 is a promiscuous chemokine receptor with decoy function, expressed in lymphatic endothelium, that recognizes and targets to degradation most inflammatory CC chemokines. Here, we report that D6 is expressed in placenta on invading extravillous trophoblasts and on the apical side of syncytiotrophoblast cells, at the very interface between maternal blood and fetus. Exposure of D6−/− pregnant mice to LPS or antiphospholipid autoantibodies results in higher levels of inflammatory CC chemokines and increased leukocyte infiltrate in placenta, causing an increased rate of fetal loss, which is prevented by blocking inflammatory chemokines. Thus, the promiscuous decoy receptor for inflammatory CC chemokines D6 plays a nonredundant role in the protection against fetal loss caused by systemic inflammation and antiphospholipid antibodies. PMID:17283337

  17. Toward pest control via mass production of realistic decoys of insects

    NASA Astrophysics Data System (ADS)

    Pulsifer, Drew P.; Lakhtakia, Akhlesh; Kumar, Jayant; Baker, Thomas C.; Martín-Palma, Raúl J.

    2012-04-01

    The emerald ash borer (EAB), Agrilus planipennis, is an invasive species of beetles threatening the ash trees of North America. The species exhibits a mating behavior in which a flying male will first spot a stationary female at rest and then execute a pouncing maneuver to dive sharply onto her. The pouncing behavior appears to be cued by some visual signal from the top surface of the female's body. We have adopted bioreplication techniques to fabricate artificial visual decoys that could be used to detect, monitor, and slow the spread of EAB populations across North America. Using a negative die made of nickel and a positive die made of a hard polymer, we have stamped a polymer sheet to produce these decoys. Our bioreplication procedure is industrially scalable.

  18. Dual GPCR and GAG mimicry by the M3 chemokine decoy receptor

    SciTech Connect

    Alexander-Brett, Jennifer M.; Fremont, Daved H.

    2008-09-23

    Viruses have evolved a myriad of evasion strategies focused on undermining chemokine-mediated immune surveillance, exemplified by the mouse {gamma}-herpesvirus 68 M3 decoy receptor. Crystal structures of M3 in complex with C chemokine ligand 1/lymphotactin and CC chemokine ligand 2/monocyte chemoattractant protein 1 reveal that invariant chemokine features associated with G protein-coupled receptor binding are primarily recognized by the decoy C-terminal domain, whereas the N-terminal domain (NTD) reconfigures to engage divergent basic residue clusters on the surface of chemokines. Favorable electrostatic forces dramatically enhance the association kinetics of chemokine binding by M3, with a primary role ascribed to acidic NTD regions that effectively mimic glycosaminoglycan interactions. Thus, M3 employs two distinct mechanisms of chemical imitation to potently sequester chemokines, thereby inhibiting chemokine receptor binding events as well as the formation of chemotactic gradients necessary for directed leukocyte trafficking.

  19. Surface states characterization and simulation of Type-II In(Ga)Sb quantum dot structures for processing optimization of LWIR detectors

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Rajabi, Mina; Karim, Amir; Almqvist, Susanne; Bakowski, Mietek; Savage, Susan; Andersson, Jan Y.; Göthelid, Mats; Yu, Shun; Gustafsson, Oscar; Hammar, Mattias; Asplund, Carl

    2013-06-01

    Quantum structures base on type-II In(Ga)Sb quantum dots (QDs) embedded in an InAs matrix were used as active material for achieving long-wavelength infrared (LWIR) photodetectors in this work. Both InAs and In(Ga)Sb are narrow band semiconductor materials and known to possess a large number of surface states, which apparently play significant impact for the detector's electrical and optical performance. These surface states are caused not only by material or device processing induced defects but also by surface dangling bonds, oxides, roughness and contaminants. To experimentally analyze the surface states of the QD structures treated by different device fabrication steps, atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) measurements were performed. The results were used to optimize the fabrication process of the LWIR photodetectors in our ongoing project. The dark current and its temperature dependence of the fabricated IR photodetectors were characterized in temperature range 10 K to 300 K, and the experiment results were analyzed by a theoretic modeling obtained using simulation tool MEDICI.

  20. Radial shock waves effectively introduced NF-kappa B decoy into rat achilles tendon cells in vitro.

    PubMed

    Sugioka, Kaori; Nakagawa, Koichi; Murata, Ryo; Ochiai, Nobuyasu; Sasho, Takahisa; Arai, Momoko; Tsuruoka, Hiroaki; Ohtori, Seiji; Saisu, Takashi; Gemba, Takefumi; Takahashi, Kazuhisa

    2010-08-01

    The purpose of this study was to test if radial shock waves could enhance the introduction of nuclear factor-kappa B (NF-kappaB) decoy oligodeoxynucleotides, which is reported to markedly inhibit NF-kappaB activation and suppress pro-inflammatory cytokine gene expression, using rat Achilles tendon cells. In the presence of NF-kappaB decoy labeled with or without fluorescein isothiocyanate (FITC) in culture media, radial shock waves were applied to the tendon cells in variable conditions and cultivated for 24 h. The transfection rate was assessed by counting FITC-positive cells, and IL-1-induced NF-kappaB activation in the cells was assessed. Radial shock waves significantly enhanced introduction of NF-kappaB decoy-FITC into the tendon cells. IL-1-induced NF-kappaB activation was significantly inhibited by pretreatment of the cells with NF-kappaB decoy combined with radial shock wave exposure. The present study demonstrated the effectiveness of radial shock waves on introduction of NF-kappaB decoy into tendon cells. Radial shock wave treatment combined with local NF-kappaB decoy administration could be a novel therapeutic strategy for chronic tendinopathy.

  1. Genesis of Infrared Decoy Flares: The Early Years from 1950 into the 1970s. First Edition

    DTIC Science & Technology

    2009-01-26

    thermodynamic search of fluorides, phosphides, sulphides , carbides, nitrides, nitrates, borides, silicides, chlorides, oxides, peroxides, chlorates...Corporation put a 1000 cubic foot vacuum chamber into operation to support the decoy flare research. It could be evacuated to 500 µm of mercury and could...by a special patented mercury amalgam process. The particle size of the zirconium required careful control for reproducible results. However, the

  2. Are predefined decoy sets of ligand poses able to quantify scoring function accuracy?

    NASA Astrophysics Data System (ADS)

    Korb, Oliver; ten Brink, Tim; Victor Paul Raj, Fredrick Robin Devadoss; Keil, Matthias; Exner, Thomas E.

    2012-02-01

    Due to the large number of different docking programs and scoring functions available, researchers are faced with the problem of selecting the most suitable one when starting a structure-based drug discovery project. To guide the decision process, several studies comparing different docking and scoring approaches have been published. In the context of comparing scoring function performance, it is common practice to use a predefined, computer-generated set of ligand poses (decoys) and to reevaluate their score using the set of scoring functions to be compared. But are predefined decoy sets able to unambiguously evaluate and rank different scoring functions with respect to pose prediction performance? This question arose when the pose prediction performance of our piecewise linear potential derived scoring functions (Korb et al. in J Chem Inf Model 49:84-96, 2009) was assessed on a standard decoy set (Cheng et al. in J Chem Inf Model 49:1079-1093, 2009). While they showed excellent pose identification performance when they were used for rescoring of the predefined decoy conformations, a pronounced degradation in performance could be observed when they were directly applied in docking calculations using the same test set. This implies that on a discrete set of ligand poses only the rescoring performance can be evaluated. For comparing the pose prediction performance in a more rigorous manner, the search space of each scoring function has to be sampled extensively as done in the docking calculations performed here. We were able to identify relative strengths and weaknesses of three scoring functions (ChemPLP, GoldScore, and Astex Statistical Potential) by analyzing the performance for subsets of the complexes grouped by different properties of the active site. However, reasons for the overall poor performance of all three functions on this test set compared to other test sets of similar size could not be identified.

  3. Surveillance of Influenza Viruses in Waterfowl Used As Decoys in Andalusia, Spain

    PubMed Central

    Jurado-Tarifa, Estefanía; Napp, Sebastian; Gómez-Pacheco, Juan Manuel; Fernández-Morente, Manuel; Jaén-Téllez, Juan Antonio; Arenas, Antonio; García-Bocanegra, Ignacio

    2014-01-01

    A longitudinal study was carried out to determine the seroprevalence of avian influenza viruses (AIVs) in waterfowl used as decoys in Andalusia, southern Spain. A total of 2319 aquatic birds from 193 flocks were analyzed before and after the hunting season 2011–2012. In the first sampling, 403 out of 2319 (18.0%, CI95%: 15.8–19.0) decoys showed antibodies against AIVs by ELISA. The AI seroprevalence was significantly higher in geese (21.0%) than in ducks (11.7%) (P<0.001). Besides, the spatial distribution of AIVs was not homogeneous as significant differences among regions were observed. The prevalence of antibodies against AIVs subtypes H5 and H7 were 1.1% and 0.3%, respectively, using hemagglutination inhibition test (HI). The overall and H5 seroprevalences slightly increased after the hunting period (to 19.2% and 1.4%, respectively), while the H7 seroprevalence remained at the same level (0.3%). The proportion of flocks infected by AIVs was 65.3%, while 11.2% and 4.9% of flocks were positive for H5 and H7, respectively. Viral shedding was not detected in any of the 47 samples positive by both ELISA and HI, tested by RRT-PCR. The individual incidence after the hunting season was 3.4%. The fact that 57 animals seroconverted, 15 of which were confirmed by HI (12 H5 and 3 H7), was indication of contact with AIVs during the hunting period. The results indicate that waterfowl used as decoys are frequently exposed to AIVs and may be potentially useful as sentinels for AIVs monitoring. The seroprevalence detected and the seropositivity against AIVs H5 and H7, suggest that decoys can act as reservoirs of AIVs, which may be of animal and public health concern. PMID:24901946

  4. Surveillance of influenza viruses in waterfowl used as decoys in Andalusia, Spain.

    PubMed

    Jurado-Tarifa, Estefanía; Napp, Sebastian; Gómez-Pacheco, Juan Manuel; Fernández-Morente, Manuel; Jaén-Téllez, Juan Antonio; Arenas, Antonio; García-Bocanegra, Ignacio

    2014-01-01

    A longitudinal study was carried out to determine the seroprevalence of avian influenza viruses (AIVs) in waterfowl used as decoys in Andalusia, southern Spain. A total of 2319 aquatic birds from 193 flocks were analyzed before and after the hunting season 2011-2012. In the first sampling, 403 out of 2319 (18.0%, CI95%: 15.8-19.0) decoys showed antibodies against AIVs by ELISA. The AI seroprevalence was significantly higher in geese (21.0%) than in ducks (11.7%) (P<0.001). Besides, the spatial distribution of AIVs was not homogeneous as significant differences among regions were observed. The prevalence of antibodies against AIVs subtypes H5 and H7 were 1.1% and 0.3%, respectively, using hemagglutination inhibition test (HI). The overall and H5 seroprevalences slightly increased after the hunting period (to 19.2% and 1.4%, respectively), while the H7 seroprevalence remained at the same level (0.3%). The proportion of flocks infected by AIVs was 65.3%, while 11.2% and 4.9% of flocks were positive for H5 and H7, respectively. Viral shedding was not detected in any of the 47 samples positive by both ELISA and HI, tested by RRT-PCR. The individual incidence after the hunting season was 3.4%. The fact that 57 animals seroconverted, 15 of which were confirmed by HI (12 H5 and 3 H7), was indication of contact with AIVs during the hunting period. The results indicate that waterfowl used as decoys are frequently exposed to AIVs and may be potentially useful as sentinels for AIVs monitoring. The seroprevalence detected and the seropositivity against AIVs H5 and H7, suggest that decoys can act as reservoirs of AIVs, which may be of animal and public health concern.

  5. An engineered Axl 'decoy receptor' effectively silences the Gas6-Axl signaling axis

    DOE PAGES

    Kariolis, Mihalis S.; Miao, Yu Rebecca; Jones, Douglas S.; ...

    2014-09-21

    Aberrant signaling through the Axl receptor tyrosine kinase has been associated with a myriad of human diseases, most notably metastatic cancer, identifying Axl and its ligand Gas6 as important therapeutic targets. Using rational and combinatorial approaches, we engineered an Axl ‘decoy receptor’ that binds Gas6 with high affinity and inhibits its function, offering an alternative approach from drug discovery efforts that directly target Axl. Four mutations within this high affinity Axl variant caused structural alterations in side chains across the Gas6/Axl binding interface, stabilizing a conformational change on Gas6. When reformatted as an Fc-fusion, the engineered decoy receptor bound tomore » Gas6 with femtomolar affinity, an 80-fold improvement compared to the wild-type Axl receptor, allowing effective sequestration of Gas6 and specific abrogation of Axl signaling. Additionally, increased Gas6 binding affinity was critical and correlative with the ability of decoy receptors to potently inhibit metastasis and disease progression in vivo.« less

  6. Reduced Cβ statistical potentials can outperform all-atom potentials in decoy identification

    PubMed Central

    Fitzgerald, James E.; Jha, Abhishek K.; Colubri, Andres; Sosnick, Tobin R.; Freed, Karl F.

    2007-01-01

    We developed a series of statistical potentials to recognize the native protein from decoys, particularly when using only a reduced representation in which each side chain is treated as a single Cβ atom. Beginning with a highly successful all-atom statistical potential, the Discrete Optimized Protein Energy function (DOPE), we considered the implications of including additional information in the all-atom statistical potential and subsequently reducing to the Cβ representation. One of the potentials includes interaction energies conditional on backbone geometries. A second potential separates sequence local from sequence nonlocal interactions and introduces a novel reference state for the sequence local interactions. The resultant potentials perform better than the original DOPE statistical potential in decoy identification. Moreover, even upon passing to a reduced Cβ representation, these statistical potentials outscore the original (all-atom) DOPE potential in identifying native states for sets of decoys. Interestingly, the backbone-dependent statistical potential is shown to retain nearly all of the information content of the all-atom representation in the Cβ representation. In addition, these new statistical potentials are combined with existing potentials to model hydrogen bonding, torsion energies, and solvation energies to produce even better performing potentials. The ability of the Cβ statistical potentials to accurately represent protein interactions bodes well for computational efficiency in protein folding calculations using reduced backbone representations, while the extensions to DOPE illustrate general principles for improving knowledge-based potentials. PMID:17893359

  7. Toll-like receptor 4 decoy, TOY, attenuates gram-negative bacterial sepsis.

    PubMed

    Jung, Keehoon; Lee, Jung-Eun; Kim, Hak-Zoo; Kim, Ho Min; Park, Beom Seok; Hwang, Seong-Ik; Lee, Jie-Oh; Kim, Sun Chang; Koh, Gou Young

    2009-10-09

    Lipopolysaccharide (LPS), the Gram-negative bacterial outer membrane glycolipid, induces sepsis through its interaction with myeloid differentiation protein-2 (MD-2) and Toll-like receptor 4 (TLR4). To block interaction between LPS/MD-2 complex and TLR4, we designed and generated soluble fusion proteins capable of binding MD-2, dubbed TLR4 decoy receptor (TOY) using 'the Hybrid leucine-rich repeats (LRR) technique'. TOY contains the MD-2 binding ectodomain of TLR4, the LRR motif of hagfish variable lymphocyte receptor (VLR), and the Fc domain of IgG1 to make it soluble, productive, and functional. TOY exhibited strong binding to MD-2, but not to the extracellular matrix (ECM), resulting in a favorable pharmacokinetic profile in vivo. TOY significantly extended the lifespan, when administered in either preventive or therapeutic manners, in both the LPS- and cecal ligation/puncture-induced sepsis models in mice. TOY markedly attenuated LPS-triggered NF-kappaB activation, secretion of proinflammatory cytokines, and thrombus formation in multiple organs. Taken together, the targeting strategy for sequestration of LPS/MD-2 complex using the decoy receptor TOY is effective in treating LPS- and bacteria-induced sepsis; furthermore, the strategy used in TOY development can be applied to the generation of other novel decoy receptor proteins.

  8. Double-stranded RNA transcribed from vector-based oligodeoxynucleotide acts as transcription factor decoy

    SciTech Connect

    Xiao, Xiao; Gang, Yi; Wang, Honghong; Wang, Jiayin; Zhao, Lina; Xu, Li; Liu, Zhiguo

    2015-02-06

    Highlights: • A shRNA vector based transcription factor decoy, VB-ODN, was designed. • VB-ODN for NF-κB inhibited cell viability in HEK293 cells. • VB-ODN inhibited expression of downstream genes of target transcription factors. • VB-ODN may enhance nuclear entry ratio for its feasibility of virus production. - Abstract: In this study, we designed a short hairpin RNA vector-based oligodeoxynucleotide (VB-ODN) carrying transcription factor (TF) consensus sequence which could function as a decoy to block TF activity. Specifically, VB-ODN for Nuclear factor-κB (NF-κB) could inhibit cell viability and decrease downstream gene expression in HEK293 cells without affecting expression of NF-κB itself. The specific binding between VB-ODN produced double-stranded RNA and NF-κB was evidenced by electrophoretic mobility shift assay. Moreover, similar VB-ODNs designed for three other TFs also inhibit their downstream gene expression but not that of themselves. Our study provides a new design of decoy for blocking TF activity.

  9. Use of Decoys to Optimize an All-Atom Force Field Including Hydration

    PubMed Central

    Arnautova, Yelena A.; Scheraga, Harold A.

    2008-01-01

    A novel method of parameter optimization is proposed. It makes use of large sets of decoys generated for six nonhomologous proteins with different architecture. Parameter optimization is achieved by creating a free energy gap between sets of nativelike and nonnative conformations. The method is applied to optimize the parameters of a physics-based scoring function consisting of the all-atom ECEPP05 force field coupled with an implicit solvent model (a solvent-accessible surface area model). The optimized force field is able to discriminate near-native from nonnative conformations of the six training proteins when used either for local energy minimization or for short Monte Carlo simulated annealing runs after local energy minimization. The resulting force field is validated with an independent set of six nonhomologous proteins, and appears to be transferable to proteins not included in the optimization; i.e., for five out of the six test proteins, decoys with 1.7- to 4.0-Å all-heavy-atom root mean-square deviations emerge as those with the lowest energy. In addition, we examined the set of misfolded structures created by Park and Levitt using a four-state reduced model. The results from these additional calculations confirm the good discriminative ability of the optimized force field obtained with our decoy sets. PMID:18502794

  10. A small circular TAR RNA decoy specifically inhibits Tat-activated HIV-1 transcription.

    PubMed Central

    Bohjanen, P R; Colvin, R A; Puttaraju, M; Been, M D; Garcia-Blanco, M A

    1996-01-01

    Linear TAR RNA has previously been used as a decoy to inhibit HIV-1 transcription in vitro and HIV-1 replication in vivo. A 48 nucleotide circular RNA containing the stem, bulge and loop of the HIV-1 TAR element was synthesized using the self-splicing activity of a group I permuted intron-exon and was tested for its ability to function as a TAR decoy in vitro. This small circular TAR molecule was exceptionally stable in HeLa nuclear extracts, whereas a similar linear TAR molecule was rapidly degraded. The TAR circle bound specifically to Tfr38, a peptide containing the TAR-binding region of Tat. The ability of Tat to trans-activate transcription from the HIV-1 promoter in vitro was efficiently inhibited by circular TAR RNA but not by TAR circles that contained either bulge or loop mutations. TAR circles did not inhibit transactivation exclusively by binding to Tat since this inhibition was not reversed by adding excess Tat to the transcription reaction. Together, these data suggest that TAR circles act as decoys that inhibit transactivation by binding to Tat and at least one cellular factor. These data also demonstrate the utility of small circular RNA molecules as tools for biochemical studies. PMID:8871552

  11. Manipulating lek size and composition using decoys: an experimental investigation of lek evolution models.

    PubMed

    Jiguet, Frédéric; Bretagnolle, Vincent

    2006-12-01

    Four theoretical models have been proposed to account for the origin and maintenance of leks: hotspot, female preference, hotshot, and black hole models. Each has been validated in particular cases, and most are not mutually exclusive; therefore, it has been difficult to contrast and separate them, empirically and experimentally. By using decoys to mimic natural leks in the little bustard, artificial leks attracted wild birds. Then, by manipulating artificial lek size and structure (sex ratio, male phenotype), the study of responses of wild males and females allowed us to test specific predictions derived from the four classical models of lek evolution. The hotspot model was not supported because female decoys did not attract wild males. Conversely, hotshot males do exist in this species (attracting both wild females and males), as does a female preference for a particular lek size (four males). Finally, males aggressive toward decoys attracted fewer females, consistent with one of the mechanisms by which the black hole model may work. Therefore, three models of lek evolution were partly or fully supported by our experimental results: hotshot, female preference, and black hole models. We suggest that these models actually fit within each other, ensuring the evolution, functioning, and long-term maintenance of leks.

  12. Autocrine ligand binding to cell receptors. Mathematical analysis of competition by solution "decoys".

    PubMed Central

    Forsten, K E; Lauffenburger, D A

    1992-01-01

    Autocrine ligands have been demonstrated to regulate cell proliferation, cell adhesion, and cell migration in a number of different systems and are believed to be one of the underlying causes of malignant cell transformation. Binding of these ligands to their cellular receptors can be compromised by diffusive transport of ligand away from the secreting cell. Exogenous addition of antibodies or solution receptors capable of competing with cellular receptors for these autocrine ligands has been proposed as a means of inhibiting autocrine-stimulated cell behavioral responses. Such "decoys" complicate cellular binding by offering alternative binding targets, which may also be capable of aiding or abating transport of the ligand away from the cell surface. We present a mathematical model incorporating autocrine ligand production and the presence of competing cellular and solution receptors. We elucidate effects of key system parameters including ligand diffusion rate, binding rate constants, cell density, and secretion rate on the ability of solution receptors to inhibit cellular receptor binding. Both plated and suspension cell systems are considered. An approximate analytical expression relating the key parameters to the critical concentration of solution "decoys" required for inhibition is derived and compared to the numerical calculations. We find that in order to achieve essentially complete inhibition of surface receptor binding, the concentration of decoys may need to be as much as four to eight orders of magnitude greater than the equilibrium disociation constant for ligand binding to surface receptors. PMID:1312367

  13. Modeling of normal incidence absorption in p-type GaAs/AlGaAs quantum well infrared detectors

    NASA Astrophysics Data System (ADS)

    Brown, Gail J.; Szmulowicz, Frank

    1995-04-01

    The absorption of infrared radiation at normal incidence in p-type GaAs/AlGaAs quantum wells, unlike in n-type, is fundamentally allowed. We have measured and theoretically modeled the bound-to-continuum absorption in these p-type materials. The infrared absorption coefficient was calculated are based on the electronic structure, wave functions and optical matrix elements obtained from an 8 X 8 envelope-function approximation (EFA) calculation. The 8 X 8 EFA Hamiltonian incorporates the coupling between the heavy, light, spin-orbit, and conduction bands. In calculating the continuum states for bound-to- continuum intersubband absorption, we do not enclose the well in an artificial box with infinite walls. A comparison of the theoretical absorption and measured photoresponse results verified the accuracy of our model and provided a basis for optimizing the design of p-type quantum wells for infrared detection.

  14. Technical Note: Impact on detective quantum efficiency of edge angle determination method by International Electrotechnical Commission methodology for cardiac x-ray image detectors

    SciTech Connect

    Gislason-Lee, Amber J. Tunstall, Clare M.; Kengyelics, Stephen K.; Cowen, Arnold R.; Davies, Andrew G.

    2015-08-15

    Purpose: Cardiac x-ray detectors are used to acquire moving images in real-time for angiography and interventional procedures. Detective quantum efficiency (DQE) is not generally measured on these dynamic detectors; the required “for processing” image data and control of x-ray settings have not been accessible. By 2016, USA hospital physicists will have the ability to measure DQE and will likely utilize the International Electrotechnical Commission (IEC) standard for measuring DQE of dynamic x-ray imaging devices. The current IEC standard requires an image of a tilted tungsten edge test object to obtain modulation transfer function (MTF) for DQE calculation. It specifies the range of edge angles to use; however, it does not specify a preferred method to determine this angle for image analysis. The study aimed to answer the question “will my choice in method impact my results?” Four different established edge angle determination methods were compared to investigate the impact on DQE. Methods: Following the IEC standard, edge and flat field images were acquired on a cardiac flat-panel detector to calculate MTF and noise power spectrum, respectively, to determine DQE. Accuracy of the methods in determining the correct angle was ascertained using a simulated edge image with known angulations. Precision of the methods was ascertained using variability of MTF and DQE, calculated via bootstrapping. Results: Three methods provided near equal angles and the same MTF while the fourth, with an angular difference of 6%, had a MTF lower by 3% at 1.5 mm{sup −1} spatial frequency and 8% at 2.5 mm{sup −1}; corresponding DQE differences were 6% at 1.5 mm{sup −1} and 17% at 2.5 mm{sup −1}; differences were greater than standard deviations in the measurements. Conclusions: DQE measurements may vary by a significant amount, depending on the method used to determine the edge angle when following the IEC standard methodology for a cardiac x-ray detector. The most

  15. Technical Note: Impact on detective quantum efficiency of edge angle determination method by International Electrotechnical Commission methodology for cardiac x-ray image detectors.

    PubMed

    Gislason-Lee, Amber J; Tunstall, Clare M; Kengyelics, Stephen K; Cowen, Arnold R; Davies, Andrew G

    2015-08-01

    Cardiac x-ray detectors are used to acquire moving images in real-time for angiography and interventional procedures. Detective quantum efficiency (DQE) is not generally measured on these dynamic detectors; the required "for processing" image data and control of x-ray settings have not been accessible. By 2016, USA hospital physicists will have the ability to measure DQE and will likely utilize the International Electrotechnical Commission (IEC) standard for measuring DQE of dynamic x-ray imaging devices. The current IEC standard requires an image of a tilted tungsten edge test object to obtain modulation transfer function (MTF) for DQE calculation. It specifies the range of edge angles to use; however, it does not specify a preferred method to determine this angle for image analysis. The study aimed to answer the question "will my choice in method impact my results?" Four different established edge angle determination methods were compared to investigate the impact on DQE. Following the IEC standard, edge and flat field images were acquired on a cardiac flat-panel detector to calculate MTF and noise power spectrum, respectively, to determine DQE. Accuracy of the methods in determining the correct angle was ascertained using a simulated edge image with known angulations. Precision of the methods was ascertained using variability of MTF and DQE, calculated via bootstrapping. Three methods provided near equal angles and the same MTF while the fourth, with an angular difference of 6%, had a MTF lower by 3% at 1.5 mm(-1) spatial frequency and 8% at 2.5 mm(-1); corresponding DQE differences were 6% at 1.5 mm(-1) and 17% at 2.5 mm(-1); differences were greater than standard deviations in the measurements. DQE measurements may vary by a significant amount, depending on the method used to determine the edge angle when following the IEC standard methodology for a cardiac x-ray detector. The most accurate and precise methods are recommended for absolute assessments and

  16. Experimental quantum key distribution with source flaws

    NASA Astrophysics Data System (ADS)

    Xu, Feihu; Wei, Kejin; Sajeed, Shihan; Kaiser, Sarah; Sun, Shihai; Tang, Zhiyuan; Qian, Li; Makarov, Vadim; Lo, Hoi-Kwong

    2015-09-01

    Decoy-state quantum key distribution (QKD) is a standard technique in current quantum cryptographic implementations. Unfortunately, existing experiments have two important drawbacks: the state preparation is assumed to be perfect without errors and the employed security proofs do not fully consider the finite-key effects for general attacks. These two drawbacks mean that existing experiments are not guaranteed to be proven to be secure in practice. Here, we perform an experiment that shows secure QKD with imperfect state preparations over long distances and achieves rigorous finite-key security bounds for decoy-state QKD against coherent attacks in the universally composable framework. We quantify the source flaws experimentally and demonstrate a QKD implementation that is tolerant to channel loss despite the source flaws. Our implementation considers more real-world problems than most previous experiments, and our theory can be applied to general discrete-variable QKD systems. These features constitute a step towards secure QKD with imperfect devices.

  17. Decoy State Quantum Key Distribution via Beam-Wandering Modeled Atmosphere Channel

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng-Li; Jin, Chen-Hui; Guo, Jian-Sheng; Shi, Jian-Hong; Zou, Xu-Bo; Guo, Guang-Can

    2016-12-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11574400, U1304613, 11204197, 11204379 and 11074244, the National Basic Research Program of China under Grant No 2011CBA00200, and the Doctor Foundation of the Ministry of Education of China under Grant No 20113402110059.

  18. Application of Quantum 1/F Noise Theory to Hg(1-x)Cd(x)Te Infrared Detectors

    DTIC Science & Technology

    1988-06-25

    the basis of the Guantum i/f Noise appoach. The cuantum 1/f theory predicts both a proccrtionality of i/f noise to the reciprocal lifetime / of the...noise, in infrared detector junctions. The cuantum i/f theory predicts higher I/f ncise in the surface recombination current than in the bulk...fluctuations in the cuantum 1/f theory. Also the ,reer! function of the difZJsir ecuation was not included in the earlier .leiren... model. -ur first

  19. Long wavelength infrared detector

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1993-01-01

    Long wavelength infrared detection is achieved by a detector made with layers of quantum well material bounded on each side by barrier material to form paired quantum wells, each quantum well having a single energy level. The width and depth of the paired quantum wells, and the spacing therebetween, are selected to split the single energy level with an upper energy level near the top of the energy wells. The spacing is selected for splitting the single energy level into two energy levels with a difference between levels sufficiently small for detection of infrared radiation of a desired wavelength.

  20. Position-sensitive multi-wavelength photon detectors based on epitaxial InGaAs/InAlAs quantum wells

    NASA Astrophysics Data System (ADS)

    Ganbold, T.; Antonelli, M.; Cautero, G.; Menk, R. H.; Cucini, R.; Biasiol, G.

    2015-09-01

    Beam monitoring in synchrotron radiation or free electron laser facilities is extremely important for calibration and diagnostic issues. Here we propose an in-situ detector showing fast response and homogeneity for both diagnostics and calibration purposes. The devices are based on In0.75Ga0.25As/In0.75Al0.25As QWs, which offer several advantages due to their direct, low-energy band gap and high electron mobility at room temperature. A pixelation structure with 4 quadrants was developed on the back surface of the device, in order to fit commercially available readout chips. The QW devices have been tested with collimated monochromatic X-ray beams from synchrotron radiation. A rise in the current noise with positive bias was observed, which could be due to deep traps for hole carriers. Therefore, an optimized negative bias was chosen to minimize dark currents and noise. A decrease in charge collection efficiency was experienced as the beam penetrates into deeper layers, where a dislocation network is present. The prototype samples showed that individual currents obtained from each quadrant allow the position of the beam to be monitored for all the utilized energies. These detectors have a potential to estimate the position of the beam with a precision of about 10 μm.

  1. Experimental Physics Investigations using Colliding Beam Detectors at Fermilab and the LHC & Nonperturbative Quantum Field Theory: Final Report

    SciTech Connect

    Skubic, P.; Abbott, B.; Gutierrez, P.; Strauss, M.; Kalbfleisch, G.; Kao, C.; Milton, K. A.

    2004-07-01

    Task A: during the past three years, the D collaboration has gone from a period that has concentrated on the analysis of Run I data and the construction of the Run II detector, to the commissioning of the Run II detector and the start of Run II analysis with ≈214 pb₋1 data recorded so far. During the coming years, we expect to collect a factor of 30 to 60 times more data than we did during Run I. This data will be used to test the limits of the standard model (SM), search for new phenomena, and possibly see hints of the Higgs boson. Task B: A major thrust for the past eight years has been based on our experimental project to search for magnetic monopoles produced at Fermilab. Although the experiment has now been concluded, with a nal paper submitted to Physical Review D, theoretically much work remains to be done. A proper interpretation of the experimental results requires improved calculations, both relativistic and nonrelativistic, of the binding of monopoles to atomic nuclei through the anomalous magnetic moment interaction. Improved calculations of the production of monopoles through the Drell-Yan process are also being carried out.

  2. Nuclear quadrupole double resonance spectrometer with magnetic property measurement system direct current superconducting quantum interference device detector and automatic tuning.

    PubMed

    Shroyer, Mark H; Day, Edmund P

    2011-05-01

    A new nuclear quadrupole double resonance spectrometer based on a commercial superconducting quantum interference device (SQUID) setup (a Magnetic Property Measurement System (MPMS) from Quantum Design) is described. The experiment involves the indirect detection of pure quadrupole resonances (PQR) of a dilute spin system via the direct SQUID detected NMR of an abundant spin system. The experiment is conducted at low (3-20 K) temperatures and the magnetic field is cycled between a high (5.5 T) polarizing field, to an intermediate (0.1 T) detection field, to zero field where the sample is irradiated with a modulated search RF and back to the detection field. Loss of the NMR signal indicates the detection of a PQR. The RF circuit used for both the NMR and zero field irradiation is digitally controlled. Use of the External Device Control allows for the complete automation of the system. Test measurements on diphenyl ether are in good agreement with previously reported results. Pure (17)O quadrupole resonances were detected for spin systems with concentrations as low as 120 μM.

  3. Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Dong, Dongdong; He, Jungang; Qiao, Keke; Cao, Furong; Li, Min; Liu, Huan; Cheng, Yibing; Tang, Jiang; Song, Haisheng

    2014-10-01

    Wearable and sensitive photodetectors (PDs) have been demonstrated based on a blend film of PbS quantum dots (QDs) and QDs modified multiwalled carbon nanotubes (MWCNTs). Owing to the synergetic effect from high light sensitivity of PbS QDs and excellent conductive and mechanical properties of MWCNTs, the blend PDs show high sensitivity and flexibility performance: device responsivity and detectivity reach 583 mA/W and 3.25 × 1012 Jones, respectively, and could stand large number (at least 10 000 cycles) and wide angle (up to 80°) bending. Furthermore, the wearable and sensitive PDs have been applied to measure the heart rate in both red and near infrared (NIR) ranges. The presented PDs are expected to work as sensor candidates in integrated electronic skin.

  4. Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film

    SciTech Connect

    Gao, Liang; Dong, Dongdong; Qiao, Keke; Cheng, Yibing; Tang, Jiang E-mail: songhs-wnlo@mail.hust.edu.cn; Song, Haisheng E-mail: songhs-wnlo@mail.hust.edu.cn; He, Jungang; Li, Min; Liu, Huan; Cao, Furong

    2014-10-13

    Wearable and sensitive photodetectors (PDs) have been demonstrated based on a blend film of PbS quantum dots (QDs) and QDs modified multiwalled carbon nanotubes (MWCNTs). Owing to the synergetic effect from high light sensitivity of PbS QDs and excellent conductive and mechanical properties of MWCNTs, the blend PDs show high sensitivity and flexibility performance: device responsivity and detectivity reach 583 mA/W and 3.25 × 10{sup 12 }Jones, respectively, and could stand large number (at least 10 000 cycles) and wide angle (up to 80°) bending. Furthermore, the wearable and sensitive PDs have been applied to measure the heart rate in both red and near infrared (NIR) ranges. The presented PDs are expected to work as sensor candidates in integrated electronic skin.

  5. Self-normalizing method to measure the detective quantum efficiency of a wide range of x-ray detectors.

    PubMed

    Stierstorfer, K; Spahn, M

    1999-07-01

    The detective quantum efficiency (DQE) is widely accepted as the most relevant parameter to characterize the image quality of medical x-ray systems. In this article we describe a solid method to measure the DQE. The strength of the method lies in the fact that it is self-normalizing so measurements at very low spatial frequencies are not needed. Furthermore, it works on any system with a response function which is linear in the small-signal approximation. We decompose the DQE into several easily accessible quantities and discuss in detail how they can be measured. At the end we lead the interested reader through an example. Noise equivalent quanta and normalized contrast values are tabulated for standard radiation qualities.

  6. Devices based on InGaN/GaN multiple quantum well for scintillator and detector applications

    NASA Astrophysics Data System (ADS)

    Hospodková, Alice; Pangrác, Jiří; Kuldová, Karla; Nikl, Martin; Pacherová, Oliva; Oswald, Jiří; Hubáček, Tomáš; Zíková, Markéta; Brůža, Petr; Pánek, Dalibor; Blažek, Karel; Ledoux, Gilles; Dujardin, Christophe; Heuken, Michael; Hulicius, Eduard

    2016-02-01

    Fast scintillators are necessary for electron microscopes, as well as in many other application fields like medical diagnostics and therapy and fundamental science. InGaN/GaN multiple quantum well structures (QW) are perspective candidates due to strong exciton binding energy, high quantum efficiency, short decay time in order of ns and good radiation resistance. The aim of our work is to prepare scintillator structure with fast luminescence response and high intensity of light. InGaN/GaN multiple QW structures described here were prepared by metal-organic vapour phase epitaxy and characterized by high resolution X-ray diffraction measurements. We demonstrate structure suitability for scintillator application including a unique measurement of wavelength-resolved scintillation response under nanosecond pulse soft X-ray source in extended dynamical and time scales. The photo-, radio- and cathodo-luminescence (PL, RL, CL) were measured. We observed double peak luminescence governed by different recombination mechanisms: i) exciton in QW and ii) related to defects. We have shown that for obtaining fast and intensive luminescence response proper structure design is required. The radioluminescence decay time of QW exciton maximum decreased 4 times from 16 ns to 4 ns when the QW thickness was decreased from 2.4 nm to 2 nm. We have proved suitability of InGaN/GaN structures for fast scintillator application for electron or other particle radiation detection. For x-ray detection the fast scintillation response would be hard to achieve due to the dominant slow defect luminescence maximum.

  7. Detector or system? Extending the concept of detective quantum efficiency to characterize the performance of digital radiographic imaging systems.

    PubMed

    Samei, Ehsan; Ranger, Nicole T; MacKenzie, Alistair; Honey, Ian D; Dobbins, James T; Ravin, Carl E

    2008-12-01

    To develop an experimental method for measuring the effective detective quantum efficiency (eDQE) of digital radiographic imaging systems and evaluate its use in select imaging systems. A geometric phantom emulating the attenuation and scatter properties of the adult human thorax was employed to assess eight imaging systems in a total of nine configurations. The noise power spectrum (NPS) was derived from images of the phantom acquired at three exposure levels spanning the operating range of the system. The modulation transfer function (MTF) was measured by using an edge device positioned at the anterior surface of the phantom. Scatter measurements were made by using a beam-stop technique. All measurements, including those of phantom attenuation and estimates of x-ray flux, were used to compute the eDQE. The MTF results showed notable degradation owing to focal spot blur. Scatter fractions ranged between 11% and 56%, depending on the system. The eDQE(0) results ranged from 1%-17%, indicating a reduction of up to one order of magnitude and different rank ordering and performance among systems, compared with that implied in reported conventional detective quantum efficiency results from the same systems. The eDQE method was easy to implement, yielded reproducible results, and provided a meaningful reflection of system performance by quantifying image quality in a clinically relevant context. The difference in the magnitude of the measured eDQE and the ideal eDQE of 100% provides a great opportunity for improving the image quality of radiographic and mammographic systems while reducing patient dose. RSNA, 2008

  8. Detector or System? Extending the Concept of Detective Quantum Efficiency to Characterize the Performance of Digital Radiographic Imaging Systems

    PubMed Central

    Samei, Ehsan; Ranger, Nicole T.; MacKenzie, Alistair; Honey, Ian D.; Dobbins, James T.; Ravin, Carl E.

    2008-01-01

    Purpose: To develop an experimental method for measuring the effective detective quantum efficiency (eDQE) of digital radiographic imaging systems and evaluate its use in select imaging systems. Materials and Methods: A geometric phantom emulating the attenuation and scatter properties of the adult human thorax was employed to assess eight imaging systems in a total of nine configurations. The noise power spectrum (NPS) was derived from images of the phantom acquired at three exposure levels spanning the operating range of the system. The modulation transfer function (MTF) was measured by using an edge device positioned at the anterior surface of the phantom. Scatter measurements were made by using a beam-stop technique. All measurements, including those of phantom attenuation and estimates of x-ray flux, were used to compute the eDQE. Results: The MTF results showed notable degradation owing to focal spot blur. Scatter fractions ranged between 11% and 56%, depending on the system. The eDQE(0) results ranged from 1%–17%, indicating a reduction of up to one order of magnitude and different rank ordering and performance among systems, compared with that implied in reported conventional detective quantum efficiency results from the same systems. Conclusion: The eDQE method was easy to implement, yielded reproducible results, and provided a meaningful reflection of system performance by quantifying image quality in a clinically relevant context. The difference in the magnitude of the measured eDQE and the ideal eDQE of 100% provides a great opportunity for improving the image quality of radiographic and mammographic systems while reducing patient dose. © RSNA, 2008 PMID:19011189

  9. Accurate Assignment of Significance to Neuropeptide Identifications Using Monte Carlo K-Permuted Decoy Databases

    PubMed Central

    Andrén, Per E.; Sweedler, Jonathan V.; Rodriguez-Zas, Sandra L.

    2014-01-01

    In support of accurate neuropeptide identification in mass spectrometry experiments, novel Monte Carlo permutation testing was used to compute significance values. Testing was based on k-permuted decoy databases, where k denotes the number of permutations. These databases were integrated with a range of peptide identification indicators from three popular open-source database search software (OMSSA, Crux, and X! Tandem) to assess the statistical significance of neuropeptide spectra matches. Significance p-values were computed as the fraction of the sequences in the database with match indicator value better than or equal to the true target spectra. When applied to a test-bed of all known manually annotated mouse neuropeptides, permutation tests with k-permuted decoy databases identified up to 100% of the neuropeptides at p-value < 10−5. The permutation test p-values using hyperscore (X! Tandem), E-value (OMSSA) and Sp score (Crux) match indicators outperformed all other match indicators. The robust performance to detect peptides of the intuitive indicator “number of matched ions between the experimental and theoretical spectra” highlights the importance of considering this indicator when the p-value was borderline significant. Our findings suggest permutation decoy databases of size 1×105 are adequate to accurately detect neuropeptides and this can be exploited to increase the speed of the search. The straightforward Monte Carlo permutation testing (comparable to a zero order Markov model) can be easily combined with existing peptide identification software to enable accurate and effective neuropeptide detection. The source code is available at http://stagbeetle.animal.uiuc.edu/pepshop/MSMSpermutationtesting. PMID:25329667

  10. Photovoltaic Ge/Si quantum dot detectors operating in the mid-wave atmospheric window (3 to 5 μm)

    PubMed Central

    2012-01-01

    Ge/Si quantum dots fabricated by molecular-beam epitaxy at 500°C are overgrown with Si at different temperatures Tcap, and effect of boron delta doping of Si barriers on the mid-infrared photoresponse was investigated. The photocurrent maximum shifts from 2.3 to 3.9 μm with increasing Tcapfrom 300°C to 750°C. Within the sample set, we examined devices with different positions of the δ-doping layer with respect to the dot plane, different distances between the δ-doping layer and the dot plane d, and different doping densities pB. All detectors show pronounced photovoltaic behavior implying the presence of an internal inversion asymmetry due to the placing dopants in the barriers. The best performance was achieved for the device with Tcap = 600°C, pB = 12 × 1011cm−2, and d = 5 nm in a photovoltaic regime. At a sample temperature of 90 K and no applied bias, a responsivity of 0.83 mA/W and detectivity of 8 × 1010 cm Hz1/2/W at λ = 3.4 μm were measured under normal incidence infrared radiation. PMID:22938028

  11. Approach jamming effectiveness evaluation for surface-type infrared decoy in network centric warship formation

    NASA Astrophysics Data System (ADS)

    Lv, Mingshan

    2015-10-01

    The passive and photoelectrical jamming to anti-ship missile in the condition of network centric warship formation is an important research issue of fleet EW operation. An approach jamming method of shipborne surface-type infrared decoy countering the infrared image guided anti-ship missile is put forward. By analyzing the countering process the jamming effectiveness evaluation model is constructed. By simulation the method is proved t reasonable and effective. This method breaks through the traditional restrict that the passive and photoelectricity jamming measure can only be used in the end self-defence and provides a new method for network centric worship formation to support each other.

  12. Decoys and Regulatory “Receptors” of the IL-1/Toll-Like Receptor Superfamily

    PubMed Central

    Garlanda, Cecilia; Riva, Federica; Bonavita, Eduardo; Gentile, Stefania; Mantovani, Alberto

    2013-01-01

    Members of the IL-1 family play a key role in innate and adaptive immunity and in the pathogenesis of diverse diseases. Members of IL-1R like receptor (ILR) family include signaling molecules and negative regulators. The latter include decoy receptors (IL-1RII; IL-18BP) and “receptors” with regulatory function (TIR8/SIGIRR; IL-1RAcPb; DIGIRR). Structural considerations suggest that also TIGIRR-1 and IL-1RAPL may have regulatory function. The presence of multiple pathways of negative regulation of members of the IL-1/IL-1R family emphasizes the need for a tight control of members of this fundamental system. PMID:23847621

  13. Long-distance measurement-device-independent multiparty quantum communication.

    PubMed

    Fu, Yao; Yin, Hua-Lei; Chen, Teng-Yun; Chen, Zeng-Bing

    2015-03-06

    The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and fragility of the GHZ entanglement source in current conditions have made the practical applications of these multiparty tasks an experimental challenge. Here we propose a feasible scheme for practically distributing the postselected GHZ entanglement over a distance of more than 100 km for experimentally accessible parameter regimes. Combining the decoy-state and measurement-device-independent protocols for quantum key distribution, we anticipate that our proposal suggests an important avenue for practical multiparty quantum communication.

  14. Long-Distance Measurement-Device-Independent Multiparty Quantum Communication

    NASA Astrophysics Data System (ADS)

    Fu, Yao; Yin, Hua-Lei; Chen, Teng-Yun; Chen, Zeng-Bing

    2015-03-01

    The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and fragility of the GHZ entanglement source in current conditions have made the practical applications of these multiparty tasks an experimental challenge. Here we propose a feasible scheme for practically distributing the postselected GHZ entanglement over a distance of more than 100 km for experimentally accessible parameter regimes. Combining the decoy-state and measurement-device-independent protocols for quantum key distribution, we anticipate that our proposal suggests an important avenue for practical multiparty quantum communication.

  15. Aptamer-Mediated Codelivery of Doxorubicin and NF-κB Decoy Enhances Chemosensitivity of Pancreatic Tumor Cells

    PubMed Central

    Porciani, David; Tedeschi, Lorena; Marchetti, Laura; Citti, Lorenzo; Piazza, Vincenzo; Beltram, Fabio; Signore, Giovanni

    2015-01-01

    Aptamers able to bind efficiently cell-surface receptors differentially expressed in tumor and in healthy cells are emerging as powerful tools to perform targeted anticancer therapy. Here, we present a novel oligonucleotide chimera, composed by an RNA aptamer and a DNA decoy. Our assembly is able to (i) target tumor cells via an antitransferrin receptor RNA aptamer and (ii) perform selective codelivery of a chemotherapeutic drug (Doxorubicin) and of an inhibitor of a cell-survival factor, the nuclear factor κB decoy oligonucleotide. Both payloads are released under conditions found in endolysosomal compartments (low pH and reductive environment). Targeting and cytotoxicity of the oligonucleotidic chimera were assessed by confocal microscopy, cell viability, and Western blot analysis. These data indicated that the nuclear factor κB decoy does inhibit nuclear factor κB activity and ultimately leads to an increased therapeutic efficacy of Doxorubicin selectively in tumor cells. PMID:25919089

  16. Modeling of Metal-Insulator-Semiconductor Dualband Si/SiO2 Multi-Quantum Well UV Detectors

    NASA Astrophysics Data System (ADS)

    Rostami, A.; Leilaeioun, M.; Golmohammadi, S.; Rasooli Saghai, H.

    2012-11-01

    This article intends to propose a self-consistent theoretical model for Metal-Insulator-Semiconductor (MIS) dualband Si/SiO2 multi-quantum well (MQW) UV photodetector. Employing this model, general characteristics of MIS UV photodetectors such as dark and photocurrent density-voltage (J-V) curves are simulated. The results reveal that the proposed structure reduces dark current since first the resonant tunneling multi-barrier is designed such that the electron tunneling probability is unity at energies coincident with the peak detection wavelength, and secondly, tunneling significantly decreases at energies which are smaller than this optimum value and accordingly, transport of carriers contributing to the dark current, which have broad energy distribution at high temperatures, is inhibited. Moreover, the article demonstrates that the proposed structure can detect two individual x wavelengths in the UV range, simultaneously. The related absorption and responsivity curves are obtained and depicted. Defects in the SiO2 barriers are simulated indirectly by varying the electron effective tunneling mass in SiO2. Reductions in the SiO2 electron effective tunneling mass lead to an increase in dark current of the device.

  17. Lipid-modified G4-decoy oligonucleotide anchored to nanoparticles: delivery and bioactivity in pancreatic cancer cells

    PubMed Central

    Cogoi, S.; Jakobsen, U.; Pedersen, E. B.; Vogel, S.; Xodo, L. E.

    2016-01-01

    KRAS is mutated in >90% of pancreatic ductal adenocarcinomas. As its inactivation leads to tumour regression, mutant KRAS is considered an attractive target for anticancer drugs. In this study we report a new delivery strategy for a G4-decoy oligonucleotide that sequesters MAZ, a transcription factor essential for KRAS transcription. It is based on the use of palmitoyl-oleyl-phosphatidylcholine (POPC) liposomes functionalized with lipid-modified G4-decoy oligonucleotides and a lipid-modified cell penetrating TAT peptide. The potency of the strategy in pancreatic cancer cells is demonstrated by cell cytometry, confocal microscopy, clonogenic and qRT-PCR assays. PMID:27929127

  18. Extracellular and intracellular decoys in the tuning of inflammatory cytokines and Toll-like receptors: the new entry TIR8/SIGIRR.

    PubMed

    Mantovani, Alberto; Locati, Massimo; Polentarutti, Nadia; Vecchi, Annunciata; Garlanda, Cecilia

    2004-05-01

    Following the identification of the interleukin (IL)-1 type II receptor as a prototypic decoy receptor, nonsignaling receptors with decoy functions have been identified for members of the IL-1/IL-18, tumor necrosis factor, IL-10, and IL-13 receptor families. Moreover, the silent receptor D6 is a promiscuous decoy and scavenger receptor of inflammatory chemokines. The type II IL-1 decoy receptor also acts as a dominant-negative molecule. Intracellular pathways of inhibition of IL-1 and Toll-like receptor (TLR) signaling have been identified. In particular, recent results suggest that the Toll/IL-1 receptor (TIR) family member TIR8, also known as single immunoglobulin IL-1-related receptor (SIGIRR), is a negative regulator of IL-1 and TLR signaling. Thus, extracellular and intracellular decoys tune the activation of members of the IL-1/TLR receptor family.

  19. Structural basis of GM-CSF and IL-2 sequestration by the viral decoy receptor GIF

    PubMed Central

    Felix, Jan; Kandiah, Eaazhisai; De Munck, Steven; Bloch, Yehudi; van Zundert, Gydo C.P.; Pauwels, Kris; Dansercoer, Ann; Novanska, Katka; Read, Randy J.; Bonvin, Alexandre M.J.J.; Vergauwen, Bjorn; Verstraete, Kenneth; Gutsche, Irina; Savvides, Savvas N.

    2016-01-01

    Subversion of the host immune system by viruses is often mediated by molecular decoys that sequester host proteins pivotal to mounting effective immune responses. The widespread mammalian pathogen parapox Orf virus deploys GIF, a member of the poxvirus immune evasion superfamily, to antagonize GM-CSF (granulocyte macrophage colony-stimulating factor) and IL-2 (interleukin-2), two pleiotropic cytokines of the mammalian immune system. However, structural and mechanistic insights into the unprecedented functional duality of GIF have remained elusive. Here we reveal that GIF employs a dimeric binding platform that sequesters two copies of its target cytokines with high affinity and slow dissociation kinetics to yield distinct complexes featuring mutually exclusive interaction footprints. We illustrate how GIF serves as a competitive decoy receptor by leveraging binding hotspots underlying the cognate receptor interactions of GM-CSF and IL-2, without sharing any structural similarity with the cytokine receptors. Our findings contribute to the tracing of novel molecular mimicry mechanisms employed by pathogenic viruses. PMID:27819269

  20. Structural basis of GM-CSF and IL-2 sequestration by the viral decoy receptor GIF.

    PubMed

    Felix, Jan; Kandiah, Eaazhisai; De Munck, Steven; Bloch, Yehudi; van Zundert, Gydo C P; Pauwels, Kris; Dansercoer, Ann; Novanska, Katka; Read, Randy J; Bonvin, Alexandre M J J; Vergauwen, Bjorn; Verstraete, Kenneth; Gutsche, Irina; Savvides, Savvas N

    2016-11-07

    Subversion of the host immune system by viruses is often mediated by molecular decoys that sequester host proteins pivotal to mounting effective immune responses. The widespread mammalian pathogen parapox Orf virus deploys GIF, a member of the poxvirus immune evasion superfamily, to antagonize GM-CSF (granulocyte macrophage colony-stimulating factor) and IL-2 (interleukin-2), two pleiotropic cytokines of the mammalian immune system. However, structural and mechanistic insights into the unprecedented functional duality of GIF have remained elusive. Here we reveal that GIF employs a dimeric binding platform that sequesters two copies of its target cytokines with high affinity and slow dissociation kinetics to yield distinct complexes featuring mutually exclusive interaction footprints. We illustrate how GIF serves as a competitive decoy receptor by leveraging binding hotspots underlying the cognate receptor interactions of GM-CSF and IL-2, without sharing any structural similarity with the cytokine receptors. Our findings contribute to the tracing of novel molecular mimicry mechanisms employed by pathogenic viruses.

  1. Interrupting autocrine ligand-receptor binding: comparison between receptor blockers and ligand decoys.

    PubMed Central

    Forsten, K E; Lauffenburger, D A

    1992-01-01

    Stimulation of cell behavioral functions by ligand/receptor binding can be accomplished in autocrine fashion, where cells secrete ligand capable of binding to receptors on their own surfaces. This proximal secretion of autocrine ligands near the surface receptors on the secreting cell suggests that control of these systems by inhibitors of receptor/ligand binding may be more difficult than for systems involving exogenous ligands. Hence, it is of interest to predict the conditions under which successful inhibition of cell receptor binding by the autocrine ligand can be expected. Previous theoretical work using a compartmentalized model for autocrine cells has elucidated the conditions under which addition of solution decoys for the autocrine ligand can interrupt cell receptor/ligand binding via competitive binding of the secreted molecules (Forsten, K. E., and D. A. Lauffenburger. 1992. Biophys. J. 61:1-12.) We now apply a similar modeling approach to examine the addition of solution blockers targeted against the cell receptor. Comparison of the two alternative inhibition strategies reveals that a significantly lower concentration of receptor blockers, compared to ligand decoys, will obtain a high degree of inhibition. The more direct interruption scheme characteristic of the receptor blockers may make them a preferred strategy when feasible. PMID:1330038

  2. Managing MicroRNAs with Vector-Encoded Decoy-Type Inhibitors

    PubMed Central

    Bak, Rasmus O; Hollensen, Anne Kruse; Mikkelsen, Jacob Giehm

    2013-01-01

    A rapidly growing understanding of the complex circuitry of microRNA (miRNA)-mediated gene regulation is attracting attention to miRNAs as new drug targets. Targeted miRNA suppression is achieved in a sequence-specific manner by antisense RNA “decoy” molecules. Such synthetic miRNA inhibitors have reached the clinic with remarkable pace and may soon appear as new therapeutic modalities in several diseases. Shortcomings, however, include high production costs, the requirement for repeated administration, and difficulty achieving tissue-specific delivery. With the many recent landmark achievements in clinical gene therapy, new and refined vector-encoded miRNA suppression technologies are attractive for many applications, not least as tools in innumerable daily studies of miRNA biology in laboratories worldwide. Here, we provide an overview of the strategies that have been used to adapt vector-encoded inhibitors for miRNA suppression and discuss advantages related to spatiotemporal and long-term miRNA attenuation. With the remarkable new discovery of miRNA management by naturally occurring circular RNAs, RNA circles generated by trans-splicing mechanisms may prove to be well-suited carriers of decoy-type miRNA inhibitors. The community will aspire to combine circles with high-affinity miRNA decoy methodologies, and such “vectorized” RNA circles may represent new solid ways to deliver miRNA inhibitors, perhaps even with therapeutic applications. PMID:23752312

  3. DECOY: Documenting Experiences with Cigarettes and Other Tobacco in Young Adults

    PubMed Central

    Berg, Carla J.; Haardörfer, Regine; Lewis, Michael; Getachew, Betelihem; Lloyd, Steven A.; Thomas, Sarah Fretti; Lanier, Angela; Trepanier, Kelleigh; Johnston, Teresa; Grimsley, Linda; Foster, Bruce; Benson, Stephanie; Smith, Alicia; Barr, Dana Boyd; Windle, Michael

    2016-01-01

    Objectives We examined psychographic characteristics associated with tobacco use among Project DECOY participants. Methods Project DECOY is a 2-year longitudinal mixed-methods study examining risk for tobacco use among 3418 young adults across 7 Georgia colleges/universities. Baseline measures included sociodemographics, tobacco use, and psychographics using the Values, Attitudes, and Lifestyle Scale. Bivariate and multivariable analyses were conducted to identify correlates of tobacco use. Results Past 30-day use prevalence was: 13.3% cigarettes; 11.3% little cigars/cigarillos (LCCs); 3.6% smokeless tobacco; 10.9% e-cigarettes; and 12.2% hookah. Controlling for sociodemographics, correlates of cigarette use included greater novelty seeking (p < .001) and intellectual curiosity (p = .010) and less interest in tangible creation (p = .002) and social conservatism (p < .001). Correlates of LCC use included greater novelty seeking (p < .001) and greater fashion orientation (p = .007). Correlates of smokeless tobacco use included greater novelty seeking (p = .006) and less intellectual curiosity (p < .001). Correlates of e-cigarette use included greater novelty seeking (p < .001) and less social conservatism (p = .002). Correlates of hookah use included greater novelty seeking (p < .001), fashion orientation (p = .044), and self-focused thinking (p = .002), and less social conservatism (p < .001). Conclusions Psychographic characteristics distinguish users of different tobacco products. PMID:27103410

  4. Robust EPR-pairs-based quantum secure communication with authentication resisting collective noise

    NASA Astrophysics Data System (ADS)

    Chang, Yan; Zhang, ShiBin; Li, Jian; Yan, LiLi

    2014-10-01

    This work presents two robust quantum secure communication schemes with authentication based on Einstein-Podolsky-Rosen (EPR) pairs, which can withstand collective noises. Two users previously share an identity string representing their identities. The identity string is encoded as decoherence-free states (termed logical qubits), respectively, over the two collective noisy channels, which are used as decoy photons. By using the decoy photons, both the authentication of two users and the detection of eavesdropping were implemented. The use of logical qubits not only guaranteed the high fidelity of exchanged secret message, but also prevented the eavesdroppers to eavesdrop beneath a mask of noise.

  5. Enhancing the secure key rate in a quantum-key-distribution system using discrete-variable, high-dimensional, time-frequency states

    NASA Astrophysics Data System (ADS)

    Islam, Nurul T.; Cahall, Clinton; Aragoneses, Andrés.; Lim, Charles Ci Wen; Allman, Michael S.; Verma, Varun; Nam, Sae Woo; Kim, Jungsang; Gauthier, Daniel J.

    2016-10-01

    High-dimensional (dimension d > 2) quantum key distribution (QKD) protocols that encode information in the temporal degree of freedom promise to overcome some of the challenges of qubit-based (d = 2) QKD systems. In particular, the long recovery time of single-photon detectors and large channel noise at long distance both limit the rate at which a final secure key can be generated in a low-dimension QKD system. We propose and demonstrate a practical discrete-variable time-frequency protocol with d = 4 at a wavelength of 1550 nm, where the temporal states are secured by transmitting and detecting their dual states under Fourier transformation, known as the frequency-basis states, augmented by a decoy-state protocol. We show that the discrete temporal and frequency states can be generated and detected using commercially-available equipment with high timing and spectral efficiency. In our initial experiments, we only have access to detectors that have low efficiency (1%) at 1550 nm. Together with other component losses, our system is equivalent to a QKD system with ideal components and a 50-km-long optical-fiber quantum channel. We find that our system maintains a spectral visibility of over 99.0% with a quantum bit error rate of 2.3%, which is largely due to the finite extinction ratio of the intensity modulators used in the transmitter. The estimated secure key rate of this system is 7.7×104 KHz, which should improve drastically when we use detectors optimized for 1550 nm.

  6. Detective quantum efficiency for photon-counting hybrid pixel detectors in the tender X-ray domain: application to Medipix3RX.

    PubMed

    Rinkel, Jean; Magalhães, Debora; Wagner, Franz; Meneau, Florian; Cesar Vicentin, Flavio

    2016-01-01

    Synchrotron-radiation-based X-ray imaging techniques using tender X-rays are facing a growing demand, in particular to probe the K absorption edges of low-Z elements. Here, a mathematical model has been developed for estimating the detective quantum efficiency (DQE) at zero spatial frequency in the tender X-ray energy range for photon-counting detectors by taking into account the influence of electronic noise. The experiments were carried out with a Medipix3RX ASIC bump-bonded to a 300 µm silicon sensor at the Soft X-ray Spectroscopy beamline (D04A-SXS) of the Brazilian Synchrotron Light Laboratory (LNLS, Campinas, Brazil). The results show that Medipix3RX can be used to develop new imaging modalities in the tender X-ray range for energies down to 2 keV. The efficiency and optimal DQE depend on the energy and flux of the photons. The optimal DQE values were found in the 7.9-8.6 keV photon energy range. The DQE deterioration for higher energies due to the lower absorption efficiency of the sensor and for lower energies due to the electronic noise has been quantified. The DQE for 3 keV photons and 1 × 10(4) photons pixel(-1) s(-1) is similar to that obtained with 19 keV photons. Based on our model, the use of Medipix3RX could be extended down to 2 keV which is crucial for coming applications in imaging techniques at modern synchrotron sources.

  7. Intrinsic quantum correlations of weak coherent states for quantum communication

    SciTech Connect

    Sua Yongmeng; Scanlon, Erin; Beaulieu, Travis; Bollen, Viktor; Lee, Kim Fook

    2011-03-15

    Intrinsic quantum correlations of weak coherent states are observed between two parties through a novel detection scheme, which can be used as a supplement to the existence decoy-state Bennett-Brassard 1984 protocol and the differential phase-shift quantum key distribution (DPS-QKD) protocol. In a proof-of-principle experiment, we generate bipartite correlations of weak coherent states using weak local oscillator fields in two spatially separated balanced homodyne detections. We employ a nonlinearity of postmeasurement method to obtain the bipartite correlations from two single-field interferences at individual homodyne measurements. This scheme is then used to demonstrate bits correlations between two parties over a distance of 10 km through a transmission fiber. We believe that the scheme can add another physical layer of security to these protocols for quantum key distribution.

  8. Search for quantum black hole production in high-invariant-mass lepton+jet final states using pp collisions at √s=8  TeV and the ATLAS detector.

    PubMed

    Aad, G; Abajyan, T; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; Abouzeid, O S; Abramowicz, H; Abreu, H; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Adomeit, S; Adye, T; Aefsky, S; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmad, A; Ahmadov, F; Aielli, G; Akesson, T P A; Akimoto, G; Akimov, A V; Alam, M A; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, F; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Ammosov, V V; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Arguin, J-F; Argyropoulos, S; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ask, S; Asman, B; Asquith, L; Assamagan, K; Astalos, R; Astbury, A; Atkinson, M; Atlay, N B; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Azuelos, G; Azuma, Y; Baak, M A; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, S; Balek, P; Balli, F; Banas, E; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bartsch, V; Bassalat, A; Basye, A; Bates, R L; Batkova, L; Batley, J R; Battistin, M; Bauer, F; Bawa, H S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belloni, A; Beloborodova, O L; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernard, C; Bernat, P; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertolucci, F; Besana, M I; Besjes, G J; Bessidskaia, O; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Bittner, B; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boek, T T; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bolnet, N M; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Branchini, P; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Brendlinger, K; Brennan, A J; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, G; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bundock, A C; Bunse, M; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Buttinger, W; Buzatu, A; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camacho Toro, R; Camarri, P; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canelli, F; Canepa, A; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, K; Chang, P; Chapleau, B; Chapman, J D; Charfeddine, D; Charlton, D G; Chavda, V; Chavez Barajas, C A; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiefari, G; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Chouridou, S; Chow, B K B; Christidi, I A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, B; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Coggeshall, J; Cole, B; Cole, S; Colijn, A P; Collins-Tooth, C; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costa Batalha Pedro, R; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Crispin Ortuzar, M; Cristinziani, M; Crosetti, G; Cuciuc, C-M; Cuenca Almenar, C; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dallaire, F; Dallapiccola, C; Dam, M; Daniells, A C; Dano Hoffmann, M; Dao, V; Darbo, G; Darlea, G L; Darmora, S; Dassoulas, J A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, A R; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Taille, C; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Degenhardt, J; Deigaard, I; Del Peso, J; Del Prete, T; Delemontex, T; Deliot, F; Deliyergiyev, M; Dell'acqua, A; Dell'asta, L; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demilly, A; Demirkoz, B; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dimitrievska, A; Dindar Yagci, K; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobos, D; Dobson, E; Doglioni, C; Doherty, T; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudziak, F; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Dwuznik, M; Ebke, J; Edson, W; Edwards, C A; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernandez Perez, S; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, J; Fisher, M J; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franklin, M; Franz, S; Fraternali, M; Fratina, S; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gandrajula, R P; Gao, J; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gillman, A R; Gingrich, D M; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giuliani, C; Giunta, M; Gjelsten, B K; Gkialas, I; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glonti, G L; Goblirsch-Kolb, M; Goddard, J R; Godfrey, J; Godlewski, J; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Groth-Jensen, J; Grout, Z J; Grybel, K; Guan, L; Guescini, F; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Gunther, J; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guttman, N; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haefner, P; Hageboeck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Hard, A S; Harenberg, T; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Harrison, P F; Hartjes, F; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Heisterkamp, S; Hejbal, J; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hofmann, J I; Hohlfeld, M; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S-C; Hu, D; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huettmann, A; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Janus, M; Jarlskog, G; Jeanty, L; Jeng, G-Y; Jen-La Plante, I; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Jha, M K; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansson, K E; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jungst, R M; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kama, S; Kanaya, N; Kaneda, M; Kaneti, S; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karastathis, N; Karnevskiy, M; Karpov, S N; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Keller, J S; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitamura, T; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klinkby, E B; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koenig, S; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, S; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretzschmar, J; Kreutzfeldt, K; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; La Rosa, A; La Rotonda, L; Labarga, L; Lablak, S; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laier, H; Laisne, E; Lambourne, L; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larner, A; Lassnig, M; Laurelli, P; Lavorini, V; Lavrijsen, W; Laycock, P; Le, B T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; Lecompte, T; Ledroit-Guillon, F; Lee, C A; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leonhardt, K; Leontsinis, S; Leroy, C; Lester, C G; Lester, C M; Levêque, J; Levin, D; Levinson, L J; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, S; Li, X; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Limper, M; Lin, S C; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, J D; Long, R E; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, D; Ludwig, I; Luehring, F; Lukas, W; Luminari, L; Lundberg, J; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Maček, B; Machado Miguens, J; Macina, D; Mackeprang, R; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Magnoni, L; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marino, C P; Marques, C N; Marroquim, F; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, J P; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Matsunaga, H; Matsushita, T; Mättig, P; Mättig, S; Mattmann, J; Mattravers, C; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; McFayden, J A; McHedlidze, G; McLaughlan, T; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meehan, S; Meera-Lebbai, R; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mendoza Navas, L; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Miller, D W; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano Moya, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Mitsui, S; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Moeller, V; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Mora Herrera, C; Moraes, A; Morange, N; Morel, J; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S G; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Mueller, T; Muenstermann, D; Munwes, Y; Murillo Quijada, J A; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Napier, A; Narayan, R; Nash, M; Nattermann, T; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neusiedl, A; Neves, R M; Nevski, P; Newcomer, F M; Newman, P R; Nguyen, D H; Nguyen Thi Hong, V; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novakova, J; Nozaki, M; Nozka, L; Ntekas, K; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, S; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, M; Pedraza Lopez, S; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petteni, M; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Piec, S M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pizio, C; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospelov, G E; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Prabhu, R; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Prudent, X; Przybycien, M; Przysiezniak, H; Psoroulas, S; Ptacek, E; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Quadt, A; Quarrie, D R; Quayle, W B; Quilty, D; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rammes, M; Randle-Conde, A S; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reinsch, A; Reisin, H; Relich, M; Rembser, C; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richter, R; Ridel, M; Rieck, P; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Rodrigues, L; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romeo, G; Romero Adam, E; Rompotis, N; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, A; Rose, M; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ruzicka, P; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sacerdoti, S; Saddique, A; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarkisyan-Grinbaum, E; Sarrazin, B; Sartisohn, G; Sasaki, O; Sasaki, Y; Satsounkevitch, I; Sauvage, G; Sauvan, E; Sauvan, J B; Savard, P; Savu, D O; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaelicke, A; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schramm, S; Schreyer, M; Schroeder, C; Schroer, N; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaw, K; Sherwood, P; Shimizu, S; Shimmin, C O; Shimojima, M; Shin, T; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skottowe, H P; Skovpen, K Yu; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snow, J; Snyder, S; Sobie, R; Socher, F; Sodomka, J; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Solovyev, V; Soni, N; Sood, A; Sopko, V; Sopko, B; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spighi, R; Spigo, G; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoerig, K; Stoicea, G; Stonjek, S; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Stucci, S A; Stugu, B; Stumer, I; Stupak, J; Styles, N A; Su, D; Su, J; Subramania, Hs; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tamsett, M C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tani, K; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thoma, S; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tic, T; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Triplett, N; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Urbaniec, D; Urquijo, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vitells, O; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, W; Wagner, P; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, C; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watanabe, I; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weigell, P; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; White, A; White, M J; White, R; White, S; Whiteson, D; Whittington, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilkens, H G; Will, J Z; Williams, H H; Williams, S; Willocq, S; Wilson, J A; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wraight, K; Wright, M; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wyatt, T R; Wynne, B M; Xella, S; Xiao, M; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, U K; Yang, Y; Yanush, S; Yao, L; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yen, A L; Yildirim, E; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Zabinski, B; Zaidan, R; Zaitsev, A M; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zaytsev, A; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Zeniš, T; Zerwas, D; Zevi Della Porta, G; Zhang, D; Zhang, H; Zhang, J; Zhang, L; Zhang, X; Zhang, Z; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zibell, A; Zieminska, D; Zimin, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zitoun, R; Zivković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zutshi, V; Zwalinski, L

    2014-03-07

    This Letter presents a search for quantum black-hole production using 20.3 fb-1 of data collected with the ATLAS detector in pp collisions at the LHC at √s = 8 TeV. The quantum black holes are assumed to decay into a final state characterized by a lepton (electron or muon) and a jet. In either channel, no event with a lepton-jet invariant mass of 3.5 TeV or more is observed, consistent with the expected background. Limits are set on the product of cross sections and branching fractions for the lepton+jet final states of quantum black holes produced in a search region for invariant masses above 1 TeV. The combined 95% confidence level upper limit on this product for quantum black holes with threshold mass above 3.5 TeV is 0.18 fb. This limit constrains the threshold quantum black-hole mass to be above 5.3 TeV in the model considered.

  9. High-dimensional quantum key distribution with the entangled single-photon-added coherent state

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Bao, Wan-Su; Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei

    2017-04-01

    High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious.

  10. Discriminating of ATP competitive Src kinase inhibitors and decoys using self-organizing map and support vector machine.

    PubMed

    Yan, Aixia; Hu, Xiaoying; Wang, Kai; Sun, Jing

    2013-02-01

    A data set containing 686 Src kinase inhibitors and 1,941 Src kinase non-binding decoys was collected and used to build two classification models to distinguish inhibitors from decoys. The data set was randomly split into a training set (458 inhibitors and 972 decoys) and a test set (228 inhibitors and 969 decoys). Each molecule was represented by five global molecular descriptors and 18 2D property autocorrelation descriptors calculated using the program ADRIANA.Code. Two machine learning methods, a Kohonen's self-organizing map (SOM) and a support vector machine (SVM), were utilized for the training and classification. For the test set, classification accuracy (ACC) of 99.92% and Matthews correlation coefficient (MCC) of 0.98 were achieved for the SOM model; ACC of 99.33% and MCC of 0.98 were obtained for the SVM model. Some molecular properties, such as molecular weight, number of atoms in a molecule, hydrogen bond properties, polarizabilities, electronegativities, and hydrophobicities, were found to be important for the inhibition of Src kinase.

  11. Optimal visual simulation of the self-tracking combustion of the infrared decoy based on the particle system

    NASA Astrophysics Data System (ADS)

    Hu, Qi; Duan, Jin; Wang, LiNing; Zhai, Di

    2016-09-01

    The high-efficiency simulation test of military weapons has a very important effect on the high cost of the actual combat test and the very demanding operational efficiency. Especially among the simulative emulation methods of the explosive smoke, the simulation method based on the particle system has generated much attention. In order to further improve the traditional simulative emulation degree of the movement process of the infrared decoy during the real combustion cycle, this paper, adopting the virtual simulation platform of OpenGL and Vega Prime and according to their own radiation characteristics and the aerodynamic characteristics of the infrared decoy, has simulated the dynamic fuzzy characteristics of the infrared decoy during the real combustion cycle by using particle system based on the double depth peeling algorithm and has solved key issues such as the interface, coordinate conversion and the retention and recovery of the Vega Prime's status. The simulation experiment has basically reached the expected improvement purpose, effectively improved the simulation fidelity and provided theoretical support for improving the performance of the infrared decoy.

  12. An improved proposal on the practical quantum key distribution with biased basis

    NASA Astrophysics Data System (ADS)

    Mao, Chen-Chen; Li, Jian; Zhu, Jian-Rong; Zhang, Chun-Mei; Wang, Qin

    2017-10-01

    In this manuscript, we propose an improved scheme on the decoy-state quantum key distribution (QKD) under practical experimental conditions with biased basis. Compared with the standard decoy-state method with biased basis (prepare signal pulses in both X and Z basis with certain probabilities, and weak decoy pulses as well), the difference here is, we prepare signal pulses in both X and Z basis, but the weak decoy state in only X basis. In the follow-up, we adopt this scheme to conducting numerical simulations on the QKD with the mostly often used source, i.e., weak coherent source by taking statistical fluctuations into account. Furthermore, we carry out full parameter optimization on it. Numerical simulation results demonstrate that our new scheme can present a higher key generation rate and a longer transmission distance compared with standard three-intensity decoy-state method with biased basis. Moreover, it shows drastically improved performance by conducting full parameter optimization in our new scheme compared with partial optimization.

  13. Metrology with Unknown Detectors.

    PubMed

    Altorio, Matteo; Genoni, Marco G; Somma, Fabrizia; Barbieri, Marco

    2016-03-11

    The best possible precision is one of the key figures in metrology, but this is established by the exact response of the detection apparatus, which is often unknown. There exist techniques for detector characterization that have been introduced in the context of quantum technologies but apply as well for ordinary classical coherence; these techniques, though, rely on intense data processing. Here, we show that one can make use of the simpler approach of data fitting patterns in order to obtain an estimate of the Cramér-Rao bound allowed by an unknown detector, and we present applications in polarimetry. Further, we show how this formalism provides a useful calculation tool in an estimation problem involving a continuous-variable quantum state, i.e., a quantum harmonic oscillator.

  14. Construction and evaluation of rats' tolerogenic dendritic cells (DC) induced by NF-κB Decoy method.

    PubMed

    Jiang, HongMei; Zhang, YaLi; Yin, XiangFei; Hu, HengGui; Hu, XiaoLei; Fei, Ying; Tu, Yanyang; Zhang, Yongsheng

    2014-09-01

    To construct and evaluate rats' tolerogenic dendritic cells (DC) through induction by NF-κB Decoy method. GM-CSF and IL-4 were used to transform rats's monocytes into DC, and DC were stimulated with LPS, NF-κB Decoy ODN, and loaded with Bovine Type II Collagen. The following methods were employed to phenotype DC: 1) Observation of cell morphology; 2) Evaluation of cell viability using trypan blue staining; 3) Purity determination of DC through detection of specific markers OX-62; 4) Evaluation of mature state of DC via the determination of the expression of CD80 and CD86; 5) Determination of stimulation capability towards the proliferation of lymphocyte and the secretion of INF-r and IL-10. The activity of DC was more than 92%, and the expression of OX-62 was more than 70%. Most of DC exhibited the phenotype of CD80(+)/CD86(-). Compared with control group and LPS-stimulation group, the less mature adhered cells and hairlike DC were observed in NF-κB decoy group. Significant reduction (p < 0.05) was observed for the positive expression and extension of CD80 and CD86 in cell surface. After loaded with calf type II collagen, the low expression of CD80 and CD86 remains to be existed. The stimulation capability of DC towards lymphocyte in NF-κB decoy group was lower than that in control group (p<0.05) and LPS stimulation group (p < 0.05). NF-κB Decoy ODN method can be successfully applied for construct rats' tolerogenic dendritic cells (DC) with stable morphology and phenotype. The tolerogenic DC exhibited immature immune phenotype, and low capability to stimulate lymphocytes.

  15. Effects of decoy molecules targeting NF-kappaB transcription factors in Cystic fibrosis IB3–1 cells

    PubMed Central

    Finotti, Alessia; Borgatti, Monica; Bezzerri, Valentino; Nicolis, Elena; Lampronti, Ilaria; Dechecchi, Maria; Mancini, Irene; Cabrini, Giulio; Saviano, Michele; Avitabile, Concetta; Romanelli, Alessandra; Gambari, Roberto

    2012-01-01

    One of the clinical features of cystic fibrosis (CF) is a deep inflammatory process, which is characterized by production and release of cytokines and chemokines, among which interleukin 8 (IL-8) represents one of the most important. Accordingly, there is a growing interest in developing therapies against CF to reduce the excessive inflammatory response in the airways of CF patients. Since transcription factor NF-kappaB plays a critical role in IL-8 expression, the transcription factor decoy (TFD) strategy might be of interest. In order to demonstrate that TFD against NF-kappaB interferes with the NF-kappaB pathway we proved, by chromatin immunoprecipitation (ChIP) that treatment with TFD oligodeoxyribonucleotides of cystic fibrosis IB3–1 cells infected with Pseudomonas aeruginosa leads to a decrease occupancy of the Il-8 gene promoter by NF-kappaB factors. In order to develop more stable therapeutic molecules, peptide nucleic acids (PNAs) based agents were considered. In this respect PNA-DNA-PNA (PDP) chimeras are molecules of great interest from several points of view: (1) they can be complexed with liposomes and microspheres; (2) they are resistant to DNases, serum and cytoplasmic extracts; (3) they are potent decoy molecules. By using electrophoretic mobility shift assay and RT-PCR analysis we have demonstrated that (1) the effects of PDP/PDP NF-kappaB decoy chimera on accumulation of pro-inflammatory mRNAs in P.aeruginosa infected IB3–1 cells reproduce that of decoy oligonucleotides; in particular (2) the PDP/PDP chimera is a strong inhibitor of IL-8 gene expression; (3) the effect of PDP/PDP chimeras, unlike those of ODN-based decoys, are observed even in the absence of protection with lipofectamine. These informations are of great impact, in our opinion, for the development of stable molecules to be used in non-viral gene therapy of cystic fibrosis. PMID:22772035

  16. Denosumab mimics the natural decoy receptor osteoprotegerin by interacting with its major binding site on RANKL.

    PubMed

    Schieferdecker, Aneta; Voigt, Mareike; Riecken, Kristoffer; Braig, Friederike; Schinke, Thorsten; Loges, Sonja; Bokemeyer, Carsten; Fehse, Boris; Binder, Mascha

    2014-08-30

    Bone homeostasis critically relies on the RANKL-RANK-OPG axis which can be targeted by the fully human monoclonal antibody denosumab in conditions with increased bone resporption such as bone metastases. The binding site and therefore the molecular mechanism by which this antibody inhibits RANKL has not been characterized so far. Here, we used random peptide phage display library screenings to identify the denosumab epitope on RANKL. Alignments of phage derived peptide sequences with RANKL suggested that this antibody recognized a linear epitope between position T233 and Y241. Mutational analysis confirmed the core residues as critical for this interaction. The spatial localization of this epitope on a 3-dimensional model of RANKL showed that it overlapped with the major binding sites of OPG and RANK on RANKL. We conclude that denosumab inhibits RANKL by both functional and molecular mimicry of the natural decoy receptor OPG.

  17. Sharks shape the geometry of a selfish seal herd: experimental evidence from seal decoys

    PubMed Central

    De Vos, Alta; O'Riain, M. Justin

    2010-01-01

    Many animals respond to predation risk by forming groups. Evolutionary explanations for group formation in previously ungrouped, but loosely associated prey have typically evoked the selfish herd hypothesis. However, despite over 600 studies across a diverse array of taxa, the critical assumptions of this hypothesis have remained collectively untested, owing to several confounding problems in real predator–prey systems. To solve this, we manipulated the domains of danger of Cape fur seal (Arctocephalus pusillus pusillus) decoys to provide evidence that a selfish reduction in a seals' domain of danger results in a proportional reduction in its predation risk from ambush shark attacks. This behaviour confers a survival advantage to individual seals within a group and explains the evolution of selfish herds in a prey species. These findings empirically elevate Hamilton's selfish herd hypothesis to more than a ‘theoretical curiosity’. PMID:19793737

  18. Expression and regulation of the decoy bone morphogenetic protein receptor BAMBI in the developing avian face.

    PubMed

    Higashihori, Norihisa; Song, Yiping; Richman, Joy M

    2008-05-01

    Here, we examine the expression and regulation of the gene BAMBI, a kinase-deficient decoy receptor capable of interacting with type I bone morphogenetic protein (BMP) receptors in avian embryos. Initially, expression was limited to the endoderm during neurula and pharyngula stages. From embryonic day 3.5 (stage 20) and onward, BAMBI expression almost perfectly overlapped with known expression patterns for BMP4, particularly in the face and limbs. We performed bead implant experiments in the face to see which signals could be repressing or promoting expression of BAMBI. Our data point to retinoids and BMPs as being major positive regulators of BAMBI expression; however, fibroblast growth factor 2 acts to repress BAMBI. Furthermore, retinoic acid is likely to act directly on BAMBI as induction occurs in the presence of cycloheximide. The data suggested that BAMBI could be used to regulate Bmp signaling during tissue interactions that are an integral part of facial morphogenesis.

  19. TU-F-18A-08: Effect of Quantum Detection Efficiency and Energy Bin Selection On Contrast-To-Noise-Ratio for Energy-Resolved Photon-Counting Detectors

    SciTech Connect

    Lam Ng, A; Ding, H; Cho, H; Molloi, S

    2014-06-15

    Purpose: Energy-resolved photon-counting detectors have the capability to discriminate photons according to their energies. By using optimal energy weighting factors, the contrast-to-noise-ratio (CNR) of the reconstructed image can be improved. In this work, we investigate how quantum detection efficiency (QDE) affects the determination of the optimal energy threshold bins, and therefore the CNR improvement of photon-counting detectors. Methods: In this simulation study a photon-counting detector, based on Silicon (Si), was investigated. A task-oriented algorithm was used to determine the optimal energy bin setting in order to maximize CNR. Projection-based and Image-based energy weighting techniques were implemented. A 13 mm PMMA phantom with two contrast materials, hydroxyapatite (HA) and iodine (I), at different concentrations (100, 200, and 300 mg/mL for HA and 2, 4, and 8 mg/mL for I) was used. TASMIP algorithm was used to generate the spectrum with 2.7 mm Al filter. Different tube voltages, number of energy bins, and bin widths were investigated. Different thicknesses of Si were also investigated to determine the QDE effect on CNR. Results: CNR increased as the detector material thickness increased until it reached 30 mm for Si thickness such that the CNR value was near to the value predicted by an ideal detector. Also, the results indicated that the improvement of CNR due to the QDE is task-dependent when comparing weighted images to photon-counting images. For hydroxyapatite the improvement is approximately 20%, whereas for iodine it is less than 10%. Conclusion: The results showed that the improvement of CNR for an energy-resolved photon-counting detector is highly task-dependent when QDE is taken into account.

  20. Comparative Biochemical and Functional Analysis of Viral and Human Secreted Tumor Necrosis Factor (TNF) Decoy Receptors*

    PubMed Central

    Pontejo, Sergio M.; Alejo, Ali; Alcami, Antonio

    2015-01-01

    The blockade of tumor necrosis factor (TNF) by etanercept, a soluble version of the human TNF receptor 2 (hTNFR2), is a well established strategy to inhibit adverse TNF-mediated inflammatory responses in the clinic. A similar strategy is employed by poxviruses, encoding four viral TNF decoy receptor homologues (vTNFRs) named cytokine response modifier B (CrmB), CrmC, CrmD, and CrmE. These vTNFRs are differentially expressed by poxviral species, suggesting distinct immunomodulatory properties. Whereas the human variola virus and mouse ectromelia virus encode one vTNFR, the broad host range cowpox virus encodes all vTNFRs. We report the first comprehensive study of the functional and binding properties of these four vTNFRs, providing an explanation for their expression profile among different poxviruses. In addition, the vTNFRs activities were compared with the hTNFR2 used in the clinic. Interestingly, CrmB from variola virus, the causative agent of smallpox, is the most potent TNFR of those tested here including hTNFR2. Furthermore, we demonstrate a new immunomodulatory activity of vTNFRs, showing that CrmB and CrmD also inhibit the activity of lymphotoxin β. Similarly, we report for the first time that the hTNFR2 blocks the biological activity of lymphotoxin β. The characterization of vTNFRs optimized during virus-host evolution to modulate the host immune response provides relevant information about their potential role in pathogenesis and may be used to improve anti-inflammatory therapies based on soluble decoy TNFRs. PMID:25940088

  1. Seaworthy Quantum Key Distribution Design and Validation (SEAKEY)

    DTIC Science & Technology

    2015-02-06

    atmospheric absorption and scattering (a numerical model taken from MODTRAN), while employing a single spatial mode. 3. A quantitative trade study of...using multiple spatial modes and finding up to how many spatial modes may yield a perceivable key rate benefit. 4. Development of a quantum-secure...decoy states, CV-QKD), the encoding and modulation format (e.g. polarization, phase, time-bin, spatial , including high-order modulations), the

  2. Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1 W Gifford-McMahon cryocooler.

    PubMed

    Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Makise, Kazumasa; Wang, Zhen

    2012-07-15

    We demonstrate the successful operation of a multielement superconducting nanowire single-photon detector (SSPD) array integrated with a single-flux-quantum (SFQ) readout circuit in a compact 0.1 W Gifford-McMahon cryocooler. A time-resolved readout technique, where output signals from each element enter the SFQ readout circuit with finite time intervals, revealed crosstalk-free operation of the four-element SSPD array connected with the SFQ readout circuit. The timing jitter and the system detection efficiency were measured to be 50 ps and 11.4%, respectively, which were comparable to the performance of practical single-pixel SSPD systems.

  3. Mid-infrared pulse generation and application in high speed measurement of a GaAs/Al{sub 0.2}Ga{sub 0.8}As quantum well infrared detector

    SciTech Connect

    Becker, P.C.; Barros, M.R.X. de; Jedju, T.M.; Miranda, R.S.; West, L.C.; Dunkel, J.; Roberts, C.W.; Stayt, J.W. Jr.; Swaminathan, V.

    1994-12-31

    Short infrared pulses have been generated by nonlinear mixing of the wavelengths from a two color femtosecond modelocked Ti:Sapphire laser. The pulses can be tuned from 7 to 12 {micro}m and are used to perform a direct measurement of the speed of a GaAs/Al{sub 0.2}Ga{sub 0.8}As quantum well infrared photodetector. The electrical response of detector has rise and decay times of less than 95 ps and the FWHM is 115 ps.

  4. Entanglement-Based Quantum Cryptography and Quantum Communication

    NASA Astrophysics Data System (ADS)

    Zeilinger, Anton

    2007-03-01

    Quantum entanglement, to Erwin Schroedinger the essential feature of quantum mechanics, has become a central resource in various quantum communication protocols including quantum cryptography and quantum teleportation. From a fundamental point of view what is exploited in these experiments is the very fact which led Schroedinger to his statement namely that in entangled states joint properties of the entangled systems may be well defined while the individual subsystems may carry no information at all. In entanglement-based quantum cryptography it leads to the most elegant possible solution of the classic key distribution problem. It implies that the key comes into existence at spatially distant location at the same time and does not need to be transported. A number recent developments include for example highly efficient, robust and stable sources of entangled photons with a broad bandwidth of desired features. Also, entanglement-based quantum cryptography is successfully joining other methods in the work towards demonstrating quantum key distribution networks. Along that line recently decoy-state quantum cryptography over a distance of 144 km between two Canary Islands was demonstrated successfully. Such experiments also open up the possibility of quantum communication on a really large scale using LEO satellites. Another important possible future branch of quantum communication involves quantum repeaters in order to cover larger distances with entangled states. Recently the connection of two fully independent lasers in an entanglement swapping experiment did demonstrate that the timing control of such systems on a femtosecond time scale is possible. A related development includes recent demonstrations of all-optical one-way quantum computation schemes with the extremely short cycle time of only 100 nanoseconds.

  5. Measurement of the detective quantum efficiency in digital detectors consistent with the IEC 62220-1 standard: Practical considerations regarding the choice of filter material

    SciTech Connect

    Ranger, Nicole T.; Samei, Ehsan; Dobbins, James T. III; Ravin, Carl E.

    2005-07-15

    As part of a larger evaluation we attempted to measure the detective quantum efficiency (DQE) of an amorphous silicon flat-panel detector using the method described in the International Electrotechnical Commission standard 62220-1 published in October 2003. To achieve the radiographic beam conditions specified in the standard, we purchased scientific-grade ultrahigh purity aluminum (99.999% purity, type-11999 alloy) filters in thicknesses ranging from 0.1 through 10.0 mm from a well-known, specialty metals supplier. Qualitative evaluation of flat field images acquired at 71 kV (RQA5 beam quality) with 21 mm of ultrahigh purity aluminum filtration demonstrated a low frequency mottle that was reproducible and was not observed when the measurement was repeated at 74 kV (RQA5 beam quality) with 21 mm of lower-purity aluminum (99.0% purity, type-1100 alloy) filtration. This finding was ultimately attributed to the larger grain size (approximately 1-2 mm) of high purity aluminum metal, which is a well-known characteristic, particularly in thicknesses greater than 1 mm. The impact of this low frequency mottle is to significantly overestimate the noise power spectrum (NPS) at spatial frequencies {<=}0.2 mm{sup -1}, which in turn would cause an underestimation of the DQE in this range. A subsequent evaluation of ultrahigh purity aluminum, purchased from a second source, suggests, that reduced grain size can be achieved by the process of annealing. Images acquired with this sample demonstrated vertical striated nonuniformities that are attributed to the manufacturing method and which do not appear to appreciably impact the NPS at spatial frequencies {>=}0.5 mm{sup -1}, but do result in an asymmetry in the x- and y-NPS at spatial frequencies {<=}0.2 mm{sup -1}. Our observations of markedly visible nonuniformities in images acquired with high purity aluminum filtration suggest that the uniformity of filter materials should be carefully evaluated and taken into consideration

  6. Detectors for Tomorrow's Instruments

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  7. Detectors for Tomorrow's Instruments

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  8. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  9. Nuclear factor-kappa B decoy suppresses nerve injury and improves mechanical allodynia and thermal hyperalgesia in a rat lumbar disc herniation model.

    PubMed

    Suzuki, Munetaka; Inoue, Gen; Gemba, Takefumi; Watanabe, Tomoko; Ito, Toshinori; Koshi, Takana; Yamauchi, Kazuyo; Yamashita, Masaomi; Orita, Sumihisa; Eguchi, Yawara; Ochiai, Nobuyasu; Kishida, Shunji; Takaso, Masashi; Aoki, Yasuchika; Takahashi, Kazuhisa; Ohtori, Seiji

    2009-07-01

    Nuclear factor-kappa B (NF-kappaB) is a gene transcriptional regulator of inflammatory cytokines. We investigated the transduction efficiency of NF-kappaB decoy to dorsal root ganglion (DRG), as well as the decrease in nerve injury, mechanical allodynia, and thermal hyperalgesia in a rat lumbar disc herniation model. Forty rats were used in this study. NF-kappaB decoy-fluorescein isothiocyanate (FITC) was injected intrathecally at the L5 level in five rats, and its transduction efficiency into DRG measured. In another 30 rats, mechanical pressure was placed on the DRG at the L5 level and nucleus pulposus harvested from the rat coccygeal disc was transplanted on the DRG. Rats were classified into three groups of ten animals each: a herniation + decoy group, a herniation + oligo group, and a herniation only group. For behavioral testing, mechanical allodynia and thermal hyperalgesia were evaluated. In 15 of the herniation rats, their left L5 DRGs were resected, and the expression of activating transcription factor 3 (ATF-3) and calcitonin gene-related peptide (CGRP) was evaluated immunohistochemically compared to five controls. The total transduction efficiency of NF-kappaB decoy-FITC in DRG neurons was 10.8% in vivo. The expression of CGRP and ATF-3 was significantly lower in the herniation + decoy group than in the other herniation groups. Mechanical allodynia and thermal hyperalgesia were significantly suppressed in the herniation + decoy group. NF-kappaB decoy was transduced into DRGs in vivo. NF-kappaB decoy may be useful as a target for clarifying the mechanism of sciatica caused by lumbar disc herniation.

  10. Quantum Enhanced Imaging by Entangled States

    DTIC Science & Technology

    2009-07-01

    multiple photon detectors based on coupled quantum wells as well as tri-photon sources based on aperiodic gratings. Experimentally, we have made what we... Detectors and Electronics ................................................................................ 35 4.2 Experimental Issues...47 6.2 Asymmetric Coupled Quantum Well Absorption Structure ................................. 48 6.3 Proposed Semiconductor Quantum-Well

  11. Suppression of chronic inflammation with engineered nanomaterials delivering nuclear factor κB transcription factor decoy oligodeoxynucleotides.

    PubMed

    Farahmand, Leila; Darvishi, Behrad; Majidzadeh-A, Keivan

    2017-11-01

    As a prototypical pro-inflammatory transcription factor, constitutive activation of NF-κB signaling pathway has been reported in several chronic inflammatory disorders including inflammatory bowel disease, cystic fibrosis, rheumatoid arthritis and cancer. Application of decoy oligodeoxynucleotides (ODNs) against NF-κB, as an effective molecular therapy approach, has brought about several promising outcomes in treatment of chronic inflammatory disorders. However, systematic administration of these genetic constructs is mostly hampered due to their instability, rapid degradation by nucleases and poor cellular uptake. Both chemical modification and application of delivery systems have shown to effectively overcome some of these limitations. Among different administered delivery systems, nanomaterials have gained much attention for delivering NF-κB decoy ODNs owing to their high loading capacity, targeted delivery and ease of synthesis. In this review, we highlight some of the most recently developed nanomaterial-based delivery systems for overcoming limitations associated with clinical application of these genetic constructs.

  12. P-selectin suppresses hepatic inflammation and fibrosis in mice by regulating interferon gamma and the IL-13 decoy receptor.

    PubMed

    Wynn, Thomas A; Hesse, Matthias; Sandler, Netanya G; Kaviratne, Mallika; Hoffmann, Karl F; Chiaramonte, Monica G; Reiman, Rachael; Cheever, Allen W; Sypek, Joseph P; Mentink-Kane, Margaret M

    2004-03-01

    The selectin family of cell adhesion molecules is widely thought to promote inflammatory reactions by facilitating leukocyte recruitment. However, it was unexpectedly found that mice with targeted deletion of the P-selectin gene (PsKO mice) developed unpolarized type 1/type 2 cytokine responses and severely aggravated liver pathology following infection with the type 2-promoting pathogen Schistosoma mansoni. In fact, liver fibrosis, which is dependent on interleukin 13 (IL-13), increased by a factor of more than 6, despite simultaneous induction of the antifibrotic cytokine interferon gamma (IFN-gamma). Inflammation, as measured by granuloma size, also increased significantly in the absence of P-selectin. When infected PsKO mice were treated with neutralizing anti-IFN-gamma monoclonal antibodies, however, granuloma size was restored to wild-type levels; this finding revealed the potent proinflammatory role of IFN-gamma when expressed concomitantly with IL-13. Untreated PsKO mice also exhibited a significant (sixfold) reduction in decoy IL-13 receptor (IL-13 receptor alpha-2) expression when compared with infected wild-type animals. It is noteworthy, however, that when decoy receptor activity was restored in PsKO mice by treatment with soluble IL-13 receptor alpha-2-Fc, the exacerbated fibrotic response was completely inhibited. Thus, reduced expression of the decoy IL-13 receptor mediated by the elevated type 1 cytokine response probably accounts for the enhanced activity of IL-13 in PsKO mice and for the resultant increase in collagen deposition. In conclusion, the current study has revealed the critical role of P-selectin in the progression of chronic liver disease caused by schistosome parasites. By suppressing IFN-gamma and up-regulating the decoy IL-13 receptor, P-selectin dramatically inhibits the pathologic tissue remodeling that results from chronic type 2 cytokine-mediated inflammation.

  13. A selective decoy-doxorubicin complex for targeted co-delivery, STAT3 probing and synergistic anti-cancer effect.

    PubMed

    Wang, Shao-Jen; Hou, Yung-Te; Chen, Lin-Chi

    2015-09-04

    A novel selective decoy oligodeoxynucleotide (dODN)-doxorubicin (DOX) complex is reported for cancer theranostics. It eliminates the use of a ligand or carrier for targeted delivery and disassembles into therapeutic dODN and DOX upon encountering over-activated STAT3 in cancer cells. Hence, in situ STAT3 probing and synergistic anti-cancer effect are attained at the same time.

  14. Discriminating the native structure from decoys using scoring functions based on the residue packing in globular proteins.

    PubMed

    Bahadur, Ranjit Prasad; Chakrabarti, Pinak

    2009-12-28

    Setting the rules for the identification of a stable conformation of a protein is of utmost importance for the efficient generation of structures in computer simulation. For structure prediction, a considerable number of possible models are generated from which the best model has to be selected. Two scoring functions, Rs and Rp, based on the consideration of packing of residues, which indicate if the conformation of an amino acid sequence is native-like, are presented. These are defined using the solvent accessible surface area (ASA) and the partner number (PN) (other residues that are within 4.5 A) of a particular residue. The two functions evaluate the deviation from the average packing properties (ASA or PN) of all residues in a polypeptide chain corresponding to a model of its three-dimensional structure. While simple in concept and computationally less intensive, both the functions are at least as efficient as any other energy functions in discriminating the native structure from decoys in a large number of standard decoy sets, as well as on models submitted for the targets of CASP7. Rs appears to be slightly more effective than Rp, as determined by the number of times the native structure possesses the minimum value for the function and its separation from the average value for the decoys. Two parameters, Rs and Rp, are discussed that can very efficiently recognize the native fold for a sequence from an ensemble of decoy structures. Unlike many other algorithms that rely on the use of composite scoring function, these are based on a single parameter, viz., the accessible surface area (or the number of residues in contact), but still able to capture the essential attribute of the native fold.

  15. Purification of noisy quantum measurements

    SciTech Connect

    Dall'Arno, Michele; D'Ariano, Giacomo Mauro; Sacchi, Massimiliano F.

    2010-10-15

    We consider the problem of improving noisy quantum measurements by suitable preprocessing strategies making many noisy detectors equivalent to a single ideal detector. For observables pertaining to finite-dimensional systems (e.g., qubits or spins) we consider preprocessing strategies that are reminiscent of quantum error correction procedures and allow one to perfectly measure an observable on a single quantum system for increasing number of inefficient detectors. For measurements of observables with an unbounded spectrum (e.g., photon number and homodyne and heterodyne detection), the purification of noisy quantum measurements can be achieved by preamplification as suggested by Yuen [Opt. Lett. 12, 789 (1987)].

  16. G4-DNA Formation in the HRAS Promoter and Rational Design of Decoy Oligonucleotides for Cancer Therapy

    PubMed Central

    Membrino, Alexandro; Cogoi, Susanna; Pedersen, Erik B.; Xodo, Luigi E.

    2011-01-01

    HRAS is a proto-oncogene involved in the tumorigenesis of urinary bladder cancer. In the HRAS promoter we identified two G-rich elements, hras-1 and hras-2, that fold, respectively, into an antiparallel and a parallel quadruplex (qhras-1, qhras-2). When we introduced in sequence hras-1 or hras-2 two point mutations that block quadruplex formation, transcription increased 5-fold, but when we stabilized the G-quadruplexes by guanidinium phthalocyanines, transcription decreased to 20% of control. By ChIP we found that sequence hras-1 is bound only by MAZ, while hras-2 is bound by MAZ and Sp1: two transcription factors recognizing guanine boxes. We also discovered by EMSA that recombinant MAZ-GST binds to both HRAS quadruplexes, while Sp1-GST only binds to qhras-1. The over-expression of MAZ and Sp1 synergistically activates HRAS transcription, while silencing each gene by RNAi results in a strong down-regulation of transcription. All these data indicate that the HRAS G-quadruplexes behave as transcription repressors. Finally, we designed decoy oligonucleotides mimicking the HRAS quadruplexes, bearing (R)-1-O-[4-(1-Pyrenylethynyl) phenylmethyl] glycerol and LNA modifications to increase their stability and nuclease resistance (G4-decoys). The G4-decoys repressed HRAS transcription and caused a strong antiproliferative effect, mediated by apoptosis, in T24 bladder cancer cells where HRAS is mutated. PMID:21931711

  17. Protein Copy Number Distributions for a Self-Regulating Gene in the Presence of Decoy Binding Sites

    PubMed Central

    Bokes, Pavol; Singh, Abhyudai

    2015-01-01

    A single transcription factor may interact with a multitude of targets on the genome, some of which are at gene promoters, others being part of DNA repeat elements. Being sequestered at binding sites, protein molecules can be prevented from partaking in other pathways, specifically, from regulating the expression of the very gene that encodes them. Acting as decoys at the expense of the autoregulatory loop, the binding sites can have a profound impact on protein abundance—on its mean as well as on its cell-to-cell variability. In order to quantify this impact, we study in this paper a mathematical model for pulsatile expression of a transcription factor that autoregulates its expression and interacts with decoys. We determine the exact stationary distribution for protein abundance at the single-cell level, showing that in the case of non-cooperative positive autoregulation, the distribution can be bimodal, possessing a basal expression mode and a distinct, up-regulated, mode. Bimodal protein distributions are more feasible if the rate of degradation is the same irrespective of whether protein is bound or not. Contrastingly, the presence of decoy binding sites which protect the protein from degradation reduces the availability of the bimodal scenario. PMID:25811868

  18. Selective detection of luminescence from semiconductor quantum dots by nanosecond time-gated imaging with a colour-masked CCD detector.

    PubMed

    Mitchell, A C; Dad, S; Morgan, C G

    2008-05-01

    Quantum dots are of considerable interest as highly detectable labels with broad absorption, narrow spectral emission and good quantum yields. The luminescence emission has a longer decay time than that of the most common fluorophores, leading to facile rejection of much background emission (such as autofluorescence from biological samples) by means of gated detection. Here, it is shown that a new technique, true-colour nanosecond time-gated luminescence imaging, can be used for selective detection of quantum dot luminescence and should prove valuable for multiplexed detection on the basis of both spectral emission profile and luminescence decay time.

  19. RADIATION DETECTOR

    DOEpatents

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  20. Target-decoy approach and false discovery rate: when things may go wrong.

    PubMed

    Gupta, Nitin; Bandeira, Nuno; Keich, Uri; Pevzner, Pavel A

    2011-07-01

    The target-decoy approach (TDA) has done the field of proteomics a great service by filling in the need to estimate the false discovery rates (FDR) of peptide identifications. While TDA is often viewed as a universal solution to the problem of FDR evaluation, we argue that the time has come to critically re-examine TDA and to acknowledge not only its merits but also its demerits. We demonstrate that some popular MS/MS search tools are not TDA-compliant and that it is easy to develop a non-TDA compliant tool that outperforms all TDA-compliant tools. Since the distinction between TDA-compliant and non-TDA compliant tools remains elusive, we are concerned about a possible proliferation of non-TDA-compliant tools in the future (developed with the best intentions). We are also concerned that estimation of the FDR by TDA awkwardly depends on a virtual coin toss and argue that it is important to take the coin toss factor out of our estimation of the FDR. Since computing FDR via TDA suffers from various restrictions, we argue that TDA is not needed when accurate p-values of individual Peptide-Spectrum Matches are available.