Science.gov

Sample records for detector dynamic range

  1. Large dynamic range radiation detector and methods thereof

    DOEpatents

    Marrs, Roscoe E [Livermore, CA; Madden, Norman W [Sparks, NV

    2012-02-14

    According to one embodiment, a radiation detector comprises a scintillator and a photodiode optically coupled to the scintillator. The radiation detector also includes a bias voltage source electrically coupled to the photodiode, a first detector operatively electrically coupled to the photodiode for generating a signal indicative of a level of a charge at an output of the photodiode, and a second detector operatively electrically coupled to the bias voltage source for generating a signal indicative of an amount of current flowing through the photodiode.

  2. High dynamic range CMOS-based mammography detector for FFDM and DBT

    NASA Astrophysics Data System (ADS)

    Peters, Inge M.; Smit, Chiel; Miller, James J.; Lomako, Andrey

    2016-03-01

    Digital Breast Tomosynthesis (DBT) requires excellent image quality in a dynamic mode at very low dose levels while Full Field Digital Mammography (FFDM) is a static imaging modality that requires high saturation dose levels. These opposing requirements can only be met by a dynamic detector with a high dynamic range. This paper will discuss a wafer-scale CMOS-based mammography detector with 49.5 μm pixels and a CsI scintillator. Excellent image quality is obtained for FFDM as well as DBT applications, comparing favorably with a-Se detectors that dominate the X-ray mammography market today. The typical dynamic range of a mammography detector is not high enough to accommodate both the low noise and the high saturation dose requirements for DBT and FFDM applications, respectively. An approach based on gain switching does not provide the signal-to-noise benefits in the low-dose DBT conditions. The solution to this is to add frame summing functionality to the detector. In one X-ray pulse several image frames will be acquired and summed. The requirements to implement this into a detector are low noise levels, high frame rates and low lag performance, all of which are unique characteristics of CMOS detectors. Results are presented to prove that excellent image quality is achieved, using a single detector for both DBT as well as FFDM dose conditions. This method of frame summing gave the opportunity to optimize the detector noise and saturation level for DBT applications, to achieve high DQE level at low dose, without compromising the FFDM performance.

  3. Investigation of the dynamic range of calorimeter scintillation detector for space gamma-ray telescope

    NASA Astrophysics Data System (ADS)

    Runtso, M. F.; Naumov, P. Yu; Naumov, P. P.; Solodovnikov, A. A.

    2016-02-01

    An arrangement of the GAMMA-400 space gamma-ray telescope that currently is under the ground testing, suggests implementation of fast two-layer calorimeter scintillation detector system S3 with large dynamic range for electromagnetic showers detection in the main operation mode of the device. The S3 constructive features are demonstrated. The experimental method and basic diagram of the ground prototype dynamic range investigation are described.

  4. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    PubMed Central

    Giewekemeyer, Klaus; Philipp, Hugh T.; Wilke, Robin N.; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W.; Shanks, Katherine S.; Zozulya, Alexey V.; Salditt, Tim; Gruner, Sol M.; Mancuso, Adrian P.

    2014-01-01

    Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 108 8-keV photons pixel−1 s−1, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 1010 photons µm−2 s−1 within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described. PMID:25178008

  5. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector.

    PubMed

    Giewekemeyer, Klaus; Philipp, Hugh T; Wilke, Robin N; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W; Shanks, Katherine S; Zozulya, Alexey V; Salditt, Tim; Gruner, Sol M; Mancuso, Adrian P

    2014-09-01

    Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 10(8) 8-keV photons pixel(-1) s(-1), and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 10(10) photons µm(-2) s(-1) within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while `still' images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described.

  6. Dual-exposure technique for extending the dynamic range of x-ray flat panel detectors.

    PubMed

    Sisniega, A; Abella, M; Desco, M; Vaquero, J J

    2014-01-20

    This work presents an approach to extend the dynamic range of x-ray flat panel detectors by combining two acquisitions of the same sample taken with two different x-ray photon flux levels and the same beam spectral configuration. In order to combine both datasets, the response of detector pixels was modelled in terms of mean and variance using a linear model. The model was extended to take into account the effect of pixel saturation. We estimated a joint probability density function (j-pdf) of the pixel values by assuming that each dataset follows an independent Gaussian distribution. This j-pdf was used for estimating the final pixel value of the high-dynamic-range dataset using a maximum likelihood method. The suitability of the pixel model for the representation of the detector signal was assessed using experimental data from a small-animal cone-beam micro-CT scanner equipped with a flat panel detector. The potential extension in dynamic range offered by our method was investigated for generic flat panel detectors using analytical expressions and simulations. The performance of the proposed dual-exposure approach in realistic imaging environments was compared with that of a regular single-exposure technique using experimental data from two different phantoms. Image quality was assessed in terms of signal-to-noise ratio, contrast, and analysis of profiles drawn on the images. The dynamic range, measured as the ratio between the exposure for saturation and the exposure equivalent to instrumentation noise, was increased from 76.9 to 166.7 when using our method. Dual-exposure results showed higher contrast-to-noise ratio and contrast resolution than the single-exposure acquisitions for the same x-ray dose. In addition, image artifacts were reduced in the combined dataset. This technique to extend the dynamic range of the detector without increasing the dose is particularly suited to image samples that contain both low and high attenuation regions.

  7. Dual-exposure technique for extending the dynamic range of x-ray flat panel detectors

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Abella, M.; Desco, M.; Vaquero, J. J.

    2014-01-01

    This work presents an approach to extend the dynamic range of x-ray flat panel detectors by combining two acquisitions of the same sample taken with two different x-ray photon flux levels and the same beam spectral configuration. In order to combine both datasets, the response of detector pixels was modelled in terms of mean and variance using a linear model. The model was extended to take into account the effect of pixel saturation. We estimated a joint probability density function (j-pdf) of the pixel values by assuming that each dataset follows an independent Gaussian distribution. This j-pdf was used for estimating the final pixel value of the high-dynamic-range dataset using a maximum likelihood method. The suitability of the pixel model for the representation of the detector signal was assessed using experimental data from a small-animal cone-beam micro-CT scanner equipped with a flat panel detector. The potential extension in dynamic range offered by our method was investigated for generic flat panel detectors using analytical expressions and simulations. The performance of the proposed dual-exposure approach in realistic imaging environments was compared with that of a regular single-exposure technique using experimental data from two different phantoms. Image quality was assessed in terms of signal-to-noise ratio, contrast, and analysis of profiles drawn on the images. The dynamic range, measured as the ratio between the exposure for saturation and the exposure equivalent to instrumentation noise, was increased from 76.9 to 166.7 when using our method. Dual-exposure results showed higher contrast-to-noise ratio and contrast resolution than the single-exposure acquisitions for the same x-ray dose. In addition, image artifacts were reduced in the combined dataset. This technique to extend the dynamic range of the detector without increasing the dose is particularly suited to image samples that contain both low and high attenuation regions.

  8. Resonant and resistive dual-mode uncooled infrared detectors toward expanded dynamic range and high linearity

    NASA Astrophysics Data System (ADS)

    Li, Xin; Liang, Ji; Zhang, Hongxiang; Yang, Xing; Zhang, Hao; Pang, Wei; Zhang, Menglun

    2017-06-01

    This paper reports an uncooled infrared (IR) detector based on a micromachined piezoelectric resonator operating in resonant and resistive dual-modes. The two sensing modes achieved IR responsivities of 2.5 Hz/nW and 900 μdB/nW, respectively. Compared with the single mode operation, the dual-mode measurement improves the limit of detection by two orders of magnitude and meanwhile maintains high linearity and responsivity in a higher IR intensity range. A combination of the two sensing modes compensates for its own shortcomings and provides a much larger dynamic range, and thus, a wider application field of the proposed detector is realized.

  9. High Dynamic Range X-Ray Detector Pixel Architectures Utilizing Charge Removal

    NASA Astrophysics Data System (ADS)

    Weiss, Joel T.; Shanks, Katherine S.; Philipp, Hugh T.; Becker, Julian; Chamberlain, Darol; Purohit, Prafull; Tate, Mark W.; Gruner, Sol M.

    2017-04-01

    Several charge integrating CMOS pixel front-ends utilizing charge removal techniques have been fabricated to extend dynamic range for x-ray diffraction applications at synchrotron sources and x-ray free electron lasers (XFELs). The pixels described herein build on the Mixed Mode Pixel Array Detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging. These new pixels boast several orders of magnitude improvement in maximum flux over the MM-PAD, which is capable of measuring a sustained flux in excess of 10$^{8}$ x-rays/pixel/second while maintaining sensitivity to smaller signals, down to single x-rays. To extend dynamic range, charge is removed from the integration node of the front-end amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is thereby shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a sustained flux >10$^{11}$ x-rays/pixel/second. Pixel front-end linearity was evaluated by direct current injection and results are presented. A small-scale readout ASIC utilizing these pixel architectures has been fabricated and the use of these architectures to increase single x-ray pulse dynamic range at XFELs is discussed briefly.

  10. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.

    PubMed

    Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2016-02-01

    We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams.

  11. The high dynamic range pixel array detector (HDR-PAD): Concept and design

    SciTech Connect

    Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.; Becker, Julian; Tate, Mark W.; Gruner, Sol M.

    2016-07-27

    Experiments at storage ring light sources as well as at next-generation light sources increasingly require detectors capable of high dynamic range operation, combining low-noise detection of single photons with large pixel well depth. XFEL sources in particular provide pulse intensities sufficiently high that a purely photon-counting approach is impractical. The High Dynamic Range Pixel Array Detector (HDR-PAD) project aims to provide a dynamic range extending from single-photon sensitivity to 10{sup 6} photons/pixel in a single XFEL pulse while maintaining the ability to tolerate a sustained flux of 10{sup 11} ph/s/pixel at a storage ring source. Achieving these goals involves the development of fast pixel front-end electronics as well as, in the XFEL case, leveraging the delayed charge collection due to plasma effects in the sensor. A first prototype of essential electronic components of the HDR-PAD readout ASIC, exploring different options for the pixel front-end, has been fabricated. Here, the HDR-PAD concept and preliminary design will be described.

  12. Dynamic range considerations for EUV MAMA detectors. [Extreme UV Multianode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Illing, Rainer M. E.; Bybee, Richard L.; Timothy, J. G.

    1990-01-01

    The multianode microchannel array (MAMA) has been chosen as the detector for two instruments on the ESA/NASA Solar Heliospheric Observatory. The response of the MAMA to the two extreme types of solar spectra, disk and corona, have been modeled with a view toward evaluating dynamic range effects present. The method of MAMA operation is discussed, with emphasis given to modeling the effect of electron cloud charge spreading to several detector anodes and amplifiers (n-fold events). Representative synthetic EUV spectra have been created. The detector response to these spectra is modeled by dissecting the input photon radiation field across the detector array into contributions to the various amplifier channels. The results of this dissection are shown for spectral regions across the entire wavelength region of interest. These results are used to identify regions in which total array photon counting rate or individual amplifier rate may exceed the design limits. This allows the design or operational modes to be tailored to eliminate the problem areas.

  13. Dynamic range considerations for EUV MAMA detectors. [Extreme UV Multianode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Illing, Rainer M. E.; Bybee, Richard L.; Timothy, J. G.

    1990-01-01

    The multianode microchannel array (MAMA) has been chosen as the detector for two instruments on the ESA/NASA Solar Heliospheric Observatory. The response of the MAMA to the two extreme types of solar spectra, disk and corona, have been modeled with a view toward evaluating dynamic range effects present. The method of MAMA operation is discussed, with emphasis given to modeling the effect of electron cloud charge spreading to several detector anodes and amplifiers (n-fold events). Representative synthetic EUV spectra have been created. The detector response to these spectra is modeled by dissecting the input photon radiation field across the detector array into contributions to the various amplifier channels. The results of this dissection are shown for spectral regions across the entire wavelength region of interest. These results are used to identify regions in which total array photon counting rate or individual amplifier rate may exceed the design limits. This allows the design or operational modes to be tailored to eliminate the problem areas.

  14. Large dynamic range 64-channel ASIC for CZT or CdTe detectors

    NASA Astrophysics Data System (ADS)

    Glasser, F.; Villard, P.; Rostaing, J. P.; Accensi, M.; Baffert, N.; Girard, J. L.

    2003-08-01

    We present a customized 64-channel ASIC, named ALIX, developed in a 0.8 μm CMOS technology. This circuit is dedicated to measure charges from semi-conductor X-ray detectors like Cadmium Zinc Telluride (CZT) or Cadmium Telluride CdTe. The specificity of ALIX is to be able to measure charges over a very large dynamic range (from 10 fC to 3 nC), and to store eight measurements in a very short time (from every 250 ns to a few ms). Up to eight images are stored inside the ASIC and each image can be read out in 64 μs. A new acquisition sequence can then be started. Two analog readouts are available, one for the X-ray signal and one for the offset and afterglow measurement in case of pulsed X-rays. The outputs are converted into digital values by two off-chip 14 bits Analog-to-Digital Converters (ADC). A first version of ALIX has been tested with CZT and CdTe detectors under high-energy pulsed X-ray photons (20 MeV, 60 ns pulses every 250 ns). We will present the different results of linearity and signal-to-noise ratio. A second version of ALIX has been designed with some corrections. Electrical tests performed on 85 ASICS showed that the corrections were successful. We are now able to integrate them behind a 64×32 pixels 1 mm pitch CZT detector. Such an ASIC could also be used for strip detectors where a large dynamic range and a fast response are necessary.

  15. Evaluation of detector dynamic range in the x-ray exposure domain in mammography: a comparison between film-screen and flat panel detector systems.

    PubMed

    Cooper, Virgil N; Oshiro, Thomas; Cagnon, Christopher H; Bassett, Lawrence W; McLeod-Stockmann, Tyler M; Bezrukiy, Nikita V

    2003-10-01

    Digital detectors in mammography have wide dynamic range in addition to the benefit of decoupled acquisition and display. How wide the dynamic range is and how it compares to film-screen systems in the clinical x-ray exposure domain are unclear. In this work, we compare the effective dynamic ranges of film-screen and flat panel mammography systems, along with the dynamic ranges of their component image receptors in the clinical x-ray exposure domain. An ACR mammography phantom was imaged using variable mAs (exposure) values for both systems. The dynamic range of the contrast-limited film-screen system was defined as that ratio of mAs (exposure) values for a 26 kVp Mo/Mo (HVL=0.34 mm Al) beam that yielded passing phantom scores. The same approach was done for the noise-limited digital system. Data from three independent observers delineated a useful phantom background optical density range of 1.27 to 2.63, which corresponded to a dynamic range of 2.3 +/- 0.53. The digital system had a dynamic range of 9.9 +/- 1.8, which was wider than the film-screen system (p<0.02). The dynamic range of the film-screen system was limited by the dynamic range of the film. The digital detector, on the other hand, had an estimated dynamic range of 42, which was wider than the dynamic range of the digital system in its entirety by a factor of 4. The generator/tube combination was the limiting factor in determining the digital system's dynamic range.

  16. Extension of the dynamic range of large photocathode PMTs for a UHECR detector

    NASA Astrophysics Data System (ADS)

    Aglietta, M.; Castellina, A.; Maldera, S.; Morello, C.

    2013-06-01

    Ground arrays for UHECR shower detection based on traditional counters, water Cerenkov tanks or scintillator modules, are unavoidably limited by the saturation suffered by the counters nearest to the shower axis. Reducing to a negligible level the amount of events recorded with saturated counters should be mandatory in a future UHECR ground array. The use of the signals extracted from the internal dynodes of the used photomultipliers can offer an elegant and inexpensive way to increase the dynamic range of such detectors. The viability of this technique has been explored studying in laboratory the performances of a sample of 3 Hamamatsu R5912-MOD photomultipliers. Exploiting the signal from the fifth dynode, a linear response up to an equivalent anodic peak current larger than 1A (at gain G = 2 ṡ 105) has been measured for all the studied PMTs. The feasibility of this technique in the frame of a new ground array for UHECR studies should be verified with a larger sample of photomultipliers.

  17. Flat panel X-ray detector with reduced internal scattering for improved attenuation accuracy and dynamic range

    DOEpatents

    Smith, Peter D.; Claytor, Thomas N.; Berry, Phillip C.; Hills, Charles R.

    2010-10-12

    An x-ray detector is disclosed that has had all unnecessary material removed from the x-ray beam path, and all of the remaining material in the beam path made as light and as low in atomic number as possible. The resulting detector is essentially transparent to x-rays and, thus, has greatly reduced internal scatter. The result of this is that x-ray attenuation data measured for the object under examination are much more accurate and have an increased dynamic range. The benefits of this improvement are that beam hardening corrections can be made accurately, that computed tomography reconstructions can be used for quantitative determination of material properties including density and atomic number, and that lower exposures may be possible as a result of the increased dynamic range.

  18. Imaging X-ray detector front-end with high dynamic range: IDeF-X HD

    NASA Astrophysics Data System (ADS)

    Gevin, O.; Lemaire, O.; Lugiez, F.; Michalowska, A.; Baron, P.; Limousin, O.; Delagnes, E.

    2012-12-01

    Presented circuit, IDeF-X HD (Imaging Detector Front-end) is a member of the IDeF-X ASICs family for space applications. It has been optimized for a half millimeter pitch CdTe or CdZnTe pixelated detector arranged in 16×16 array. It is aimed to operate in the hard X-ray range from few keV up to 250 keV or more. The ASIC has been realized in AMS 0.35 μm CMOS process. The IDeF-X HD is a 32 channel analog front-end with self-triggering capability. The architecture of the analog channel includes a chain of charge sensitive amplifier with continuous reset system and non-stationary noise suppressor, adjustable gain stage, pole-zero cancellation stage, adjustable shaping time low pass filter, baseline holder and peak detector with discriminator. The power consumption of the IDeF-X HD is 800 μW per channel. With the in-channel variable gain stage the nominal 250 keV dynamic range of the ASIC can be extended up to 1 MeV anticipating future applications using thick sensors. Measuring the noise performance without a detector at the input with minimized leakage current (programmable) at the input, we achieved ENC of 33 electrons rms at 10.7 μs peak time. Measurements with CdTe detector show good energy resolution FWHM of 1.1 keV at 60 keV and 4.3 keV at 662 keV with detection threshold below 4 keV. In addition, an absolute temperature sensor has been integrated with resolution of 1.5 °C.

  19. A terahertz EO detector with large dynamical range, high modulation depth and signal-noise ratio

    NASA Astrophysics Data System (ADS)

    Pan, Xinjian; Cai, Yi; Zeng, Xuanke; Zheng, Shuiqin; Li, Jingzhen; Xu, Shixiang

    2017-05-01

    The paper presents a novel design for terahertz (THz) free-space time domain electro-optic (EO) detection where the static birefringent phases of the two balanced arms are set close to zero but opposite to each other. Our theoretical and numerical analyses show this design has much stronger ability to cancel the optical background noise than both THz ellipsometer and traditional crossed polarizer geometry (CPG). Its optical modulation depth is about twice as high as that of traditional CPG, but about ten times as high as that of THz ellipsometer. As for the dynamical range, our improved design is comparable to the THz ellipsometer but obviously larger than the traditional CPG. Some experiments for comparing our improved CPG with traditional CPG agree well with the corresponding theoretical predictions. Our experiments also show that the splitting ratio of the used non-polarization beam splitter is critical for the performance of our design.

  20. Novel image detail enhancement technology for high dynamic range infrared detector

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Zhu, Caigao

    2014-11-01

    In this paper, we propose a novel image detail enhancement technology which is well solved the problem of how to suppress the noise and enhance the detail at the same time of the infrared image. This technology is based on the layer separation idea. In nowadays, this idea is studied by many researchers, and many detail enhancement algorithms have been come up through this idea such as the bilateral filter for detail enhancement. According to our research, these algorithms although have the advantages of enhancing the detail without enhancing the noise, they also have the disadvantages of massive calculation, low speed and the worst is the gradient flipping effect which cause the enhanced image distorted. Our solution is based on the Guided Image Filter (GIF) to deal the separated detail layer of an image. The gradient flipping effect will be greatly suppressed with the priority that the GIF is a linear filter. Which means that the processed image will become much closer to the original image. We determine an adaptive weighting coefficient as the filter kernel. After that, we compress the base component into the display range by our modified histogram projection and enhance the detail component using the gain mask of the filter weighting coefficient. At last, we recombine the two parts and quantize the result to 8-bit domain. Experimental verification and detailed realization have been provided in this paper. We also have done significant comparison between our method and the proposed algorithm to show the superiority of our algorithm.

  1. A low-noise wide-dynamic-range event-driven detector using SOI pixel technology for high-energy particle imaging

    NASA Astrophysics Data System (ADS)

    Shrestha, Sumeet; Kamehama, Hiroki; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Takeda, Ayaki; Tsuru, Takeshi Go; Arai, Yasuo

    2015-08-01

    This paper presents a low-noise wide-dynamic-range pixel design for a high-energy particle detector in astronomical applications. A silicon on insulator (SOI) based detector is used for the detection of wide energy range of high energy particles (mainly for X-ray). The sensor has a thin layer of SOI CMOS readout circuitry and a thick layer of high-resistivity detector vertically stacked in a single chip. Pixel circuits are divided into two parts; signal sensing circuit and event detection circuit. The event detection circuit consisting of a comparator and logic circuits which detect the incidence of high energy particle categorizes the incident photon it into two energy groups using an appropriate energy threshold and generate a two-bit code for an event and energy level. The code for energy level is then used for selection of the gain of the in-pixel amplifier for the detected signal, providing a function of high-dynamic-range signal measurement. The two-bit code for the event and energy level is scanned in the event scanning block and the signals from the hit pixels only are read out. The variable-gain in-pixel amplifier uses a continuous integrator and integration-time control for the variable gain. The proposed design allows the small signal detection and wide dynamic range due to the adaptive gain technique and capability of correlated double sampling (CDS) technique of kTC noise canceling of the charge detector.

  2. Reduction of the unnecessary dose from the over-range area with a spiral dynamic z-collimator: comparison of beam pitch and detector coverage with 128-detector row CT.

    PubMed

    Shirasaka, Takashi; Funama, Yoshinori; Hayashi, Mutsukazu; Awamoto, Shinichi; Kondo, Masatoshi; Nakamura, Yasuhiko; Hatakenaka, Masamitsu; Honda, Hiroshi

    2012-01-01

    Our purpose in this study was to assess the radiation dose reduction and the actual exposed scan length of over-range areas using a spiral dynamic z-collimator at different beam pitches and detector coverage. Using glass rod dosimeters, we measured the unilateral over-range scan dose between the beginning of the planned scan range and the beginning of the actual exposed scan range. Scanning was performed at detector coverage of 80.0 and 40.0 mm, with and without the spiral dynamic z-collimator. The dose-saving ratio was calculated as the ratio of the unnecessary over-range dose, with and without the spiral dynamic z-collimator. In 80.0 mm detector coverage without the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 108, 120, and 126 mm, corresponding to a beam pitch of 0.60, 0.80, and 0.99, respectively. With the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 48, 66, and 84 mm with a beam pitch of 0.60, 0.80, and 0.99, respectively. The dose-saving ratios with and without the spiral dynamic z-collimator for a beam pitch of 0.60, 0.80, and 0.99 were 35.07, 24.76, and 13.51%, respectively. With 40.0 mm detector coverage, the dose-saving ratios with and without the spiral dynamic z-collimator had the highest value of 27.23% with a low beam pitch of 0.60. The spiral dynamic z-collimator is important for a reduction in the unnecessary over-range dose and makes it possible to reduce the unnecessary dose by means of a lower beam pitch.

  3. Dynamic-Range Compression For Infrared Imagery

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Liu, Hua-Kuang

    1989-01-01

    Photorefractive crystals covering detectors prevent saturation. To make full use of information in image, desirable to compress dynamic range of input intensity to within region of approximately linear response of detector. Dynamic-range compression exhibited by measurements of attenuation in photorefractive GaAs. Effective dynamic-range-compressor plate, film, or coating reduces apparent contrast of scene imaged on detector plane to within dynamic range of detectors; original image contrast or intensity data recovered subsequently in electronic image processing because range-compression function and inverse known.

  4. Towards a microchannel-based X-ray detector with two-dimensional spatial and time resolution and high dynamic range.

    PubMed

    Adams, Bernhard W; Mane, Anil U; Elam, Jeffrey W; Obaid, Razib; Wetstein, Matthew; Chollet, Matthieu

    2015-09-01

    X-ray detectors that combine two-dimensional spatial resolution with a high time resolution are needed in numerous applications of synchrotron radiation. Most detectors with this combination of capabilities are based on semiconductor technology and are therefore limited in size. Furthermore, the time resolution is often realised through rapid time-gating of the acquisition, followed by a slower readout. Here, a detector technology is realised based on relatively inexpensive microchannel plates that uses GHz waveform sampling for a millimeter-scale spatial resolution and better than 100 ps time resolution. The technology is capable of continuous streaming of time- and location-tagged events at rates greater than 10(7) events per cm(2). Time-gating can be used for improved dynamic range.

  5. Towards a microchannel-based X-ray detector with two-dimensional spatial and time resolution and high dynamic range

    SciTech Connect

    Adams, Bernhard W.; Mane, Anil; Elam, Jeffrey; Obaid, Razib; Wetstein, Matthew J.

    2015-09-01

    X-ray detectors that combine two-dimensional spatial resolution with a high time resolution are needed in numerous applications of synchrotron radiation. Most detectors with this combination of capabilities are based on semiconductor technology and are therefore limited in size. Furthermore, the time resolution is often realised through rapid time-gating of the acquisition, followed by a slower readout. Here, a detector technology is realised based on relatively inexpensive microchannel plates that uses GHz waveform sampling for a millimeter-scale spatial resolution and better than 100 ps time resolution. The technology is capable of continuous streaming of time- and location-tagged events at rates greater than 10(7) events per cm(2). Time-gating can be used for improved dynamic range.

  6. Long range alpha particle detector

    DOEpatents

    MacArthur, Duncan W.; Wolf, Michael A.; McAtee, James L.; Unruh, Wesley P.; Cucchiara, Alfred L.; Huchton, Roger L.

    1993-01-01

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  7. Long range alpha particle detector

    DOEpatents

    MacArthur, D.W.; Wolf, M.A.; McAtee, J.L.; Unruh, W.P.; Cucchiara, A.L.; Huchton, R.L.

    1993-02-02

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  8. The Dynamic Range of LZ

    NASA Astrophysics Data System (ADS)

    Yin, Jun; LZ Collaboration

    2015-10-01

    The electronics of the LZ experiment, the 7-ton dark matter detector to be installed at the Sanford Underground Research Facility (SURF), is designed to provide a 70% efficiency for events that produce three photoelectrons in the photomultiplier tubes (PMTs). This corresponds approximately to the lowest energy threshold achievable in such a detector, and drives the noise specifications for the front end. The upper limit of the LZ dynamic range is defined by the electroluminescence (S2) signals. The low-energy channels of the LZ amplifiers provide the dynamic range required for the tritium and krypton calibrations. The high-energy channels provide the dynamic range required to measure the activated Xe lines. S2 signals induced by alpha particles from radon decay will saturate one or more channels of the top PMT array but techniques are being developed to recover the information lost due to saturation. This work was supported by the Department of Energy, Grant DE-SC0006605.

  9. The dynamic range of LZ

    NASA Astrophysics Data System (ADS)

    Yin, J.

    2016-02-01

    The electronics of the LZ experiment, the 7-tonne dark matter detector to be installed at the Sanford Underground Research Facility (SURF), is designed to permit studies of physics where the energies deposited range from 1 keV of nuclear-recoil energy up to 3,000 keV of electron-recoil energy. The system is designed to provide a 70% efficiency for events that produce three photoelectrons in the photomultiplier tubes (PMTs). This corresponds approximately to the lowest energy threshold achievable in multi-tonne time-projection chambers, and drives the noise specifications for the front end. The upper limit of the LZ dynamic range is defined to accommodate the electroluminescence (S2) signals. The low-energy channels of the LZ amplifiers provide the dynamic range required for the tritium and krypton calibrations. The high-energy channels provide the dynamic range required to measure the activated Xe lines.

  10. Detective Quantum Efficiency of a CsI-CMOS X-ray Detector for Breast Tomosynthesis Operating in High Dynamic Range and High Sensitivity Modes

    PubMed Central

    Patel, Tushita; Klanian, Kelly; Gong, Zongyi; Williams, Mark B.

    2017-01-01

    The spatial frequency dependent detective quantum efficiency (DQE) of a CsI-CMOS x-ray detector was measured in two operating modes: a high dynamic range (HDR) mode and a high sensitivity (HS) mode. DQE calculations were performed using the IEC-62220-1-2 Standard. For detector entrance air kerma values between ~7 µGy and 60 µGy the DQE is similar in either HDR mode or HS mode, with a value of ~0.7 at low frequency and ~ 0.15 – 0.20 at the Nyquist frequency fN = 6.7 mm−1. In HDR mode the DQE remains virtually constant for operation with Ka values between ~7 µGy and 119 µGy but decreases for Ka levels below ~ 7 µGy. In HS mode the DQE is approximately constant over the full range of entrance air kerma tested between 1.7 µGy and 60 µGy but kerma values above ~75 µGy produce hard saturation. Quantum limited operation in HS mode for entrance kerma as small as 1.7 µGy makes it possible to use a large number of low dose views to improve angular sampling and decrease acquisition time. PMID:28856340

  11. Detective Quantum Efficiency of a CsI-CMOS X-ray Detector for Breast Tomosynthesis Operating in High Dynamic Range and High Sensitivity Modes.

    PubMed

    Patel, Tushita; Klanian, Kelly; Gong, Zongyi; Williams, Mark B

    2012-07-01

    The spatial frequency dependent detective quantum efficiency (DQE) of a CsI-CMOS x-ray detector was measured in two operating modes: a high dynamic range (HDR) mode and a high sensitivity (HS) mode. DQE calculations were performed using the IEC-62220-1-2 Standard. For detector entrance air kerma values between ~7 µGy and 60 µGy the DQE is similar in either HDR mode or HS mode, with a value of ~0.7 at low frequency and ~ 0.15 - 0.20 at the Nyquist frequency fN = 6.7 mm(-1). In HDR mode the DQE remains virtually constant for operation with Ka values between ~7 µGy and 119 µGy but decreases for Ka levels below ~ 7 µGy. In HS mode the DQE is approximately constant over the full range of entrance air kerma tested between 1.7 µGy and 60 µGy but kerma values above ~75 µGy produce hard saturation. Quantum limited operation in HS mode for entrance kerma as small as 1.7 µGy makes it possible to use a large number of low dose views to improve angular sampling and decrease acquisition time.

  12. Fan-less long range alpha detector

    DOEpatents

    MacArthur, D.W.; Bounds, J.A.

    1994-05-10

    A fan-less long range alpha detector is disclosed which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces. 2 figures.

  13. Fan-less long range alpha detector

    DOEpatents

    MacArthur, Duncan W.; Bounds, John A.

    1994-01-01

    A fan-less long range alpha detector which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces.

  14. A method for the dynamic range extension of a pixelated Silicon detector beam profilometer based on the incomplete reset mechanism

    NASA Astrophysics Data System (ADS)

    Caccia, M.; Santoro, R.; Antonello, M.

    2017-03-01

    The SUCIMA collaboration, within a project supported by the European Commission in the Fifth Framework Program, developed a sensor for non-disruptive real-time beam profilometry for hadron therapy centres. The sensor, named MIMOTERA, has been used at different European facilities, imaging beams by direct impact on the sensor and by the detection of secondary electrons emitted by thin targets. In 2015, the detector has been thinned to 50 μm, integrated in a high vacuum and cryogenic temperature compliant assembly and successfully commissioned as antiproton beam monitor for the AEbar gIS experiment at CERN. The detector contributed to the optimisation of the experiment functionality providing the shape and position of the beam on a spill-by-spill basis. However, it failed in measuring the fluctuations of the beam intensity because the deposited energy exceeded the full well capacity and saturated the output signal. In order to recover this information, a method was developed based on the persistence of the signal in a series of frames that follows the one corresponding to the beam impact, due to the incomplete sensor reset. A laboratory test that makes use of a laser with tuneable intensity was designed and the method was qualified. This paper reports the description of the procedure and the main outcomes.

  15. Enabling photon counting detectors with dynamic attenuators

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-03-01

    Photon-counting x-ray detectors (PCXDs) are being investigated as a replacement for conventional x-ray detectors because they promise several advantages, including better dose efficiency, higher resolution and spectral imaging. However, many of these advantages disappear when the x-ray flux incident on the detector is too high. We recently proposed a dynamic, piecewise-linear attenuator (or beam shaping filter) that can control the flux incident on the detector. This can restrict the operating range of the PCXD to keep the incident count rate below a given limit. We simulated a system with the piecewise-linear attenuator and a PCXD using raw data generated from forward projected DICOM files. We investigated the classic paralyzable and nonparalyzable PCXD as well as a weighted average of the two, with the weights chosen to mimic an existing PCXD (Taguchi et al, Med Phys 2011). The dynamic attenuator has small synergistic benefits with the nonparalyzable detector and large synergistic benefits with the paralyzable detector. Real PCXDs operate somewhere between these models, and the weighted average model still shows large benefits from the dynamic attenuator. We conclude that dynamic attenuators can reduce the count rate performance necessary for adopting PCXDs.

  16. Wide range radioactive gas concentration detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  17. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  18. The solid state detector technology for picosecond laser ranging

    NASA Technical Reports Server (NTRS)

    Prochazka, Ivan

    1993-01-01

    We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.

  19. High dynamic range subjective testing

    NASA Astrophysics Data System (ADS)

    Allan, Brahim; Nilsson, Mike

    2016-09-01

    This paper describes of a set of subjective tests that the authors have carried out to assess the end user perception of video encoded with High Dynamic Range technology when viewed in a typical home environment. Viewers scored individual single clips of content, presented in High Definition (HD) and Ultra High Definition (UHD), in Standard Dynamic Range (SDR), and in High Dynamic Range (HDR) using both the Perceptual Quantizer (PQ) and Hybrid Log Gamma (HLG) transfer characteristics, and presented in SDR as the backwards compatible rendering of the HLG representation. The quality of SDR HD was improved by approximately equal amounts by either increasing the dynamic range or increasing the resolution to UHD. A further smaller increase in quality was observed in the Mean Opinion Scores of the viewers by increasing both the dynamic range and the resolution, but this was not quite statistically significant.

  20. High dynamic range infrared radiometry and imaging

    NASA Technical Reports Server (NTRS)

    Coon, Darryl D.; Karunasiri, R. P. G.; Bandara, K. M. S. V.

    1988-01-01

    The use is described of cryogenically cooled, extrinsic silicon infrared detectors in an unconventional mode of operation which offers an unusually large dynamic range. The system performs intensity-to-frequency conversion at the focal plane via simple circuits with very low power consumption. The incident IR intensity controls the repetition rate of short duration output pulses over a pulse rate dynamic range of about 10(6). Theory indicates the possibility of monotonic and approx. linear response over the full dynamic range. A comparison between the theoretical and the experimental results shows that the model provides a reasonably good description of experimental data. Some measurements of survivability with a very intense IR source were made on these devices and found to be very encouraging. Evidence continues to indicate that some variations in interpulse time intervals are deterministic rather than probabilistic.

  1. Small long-range alpha detector (LRAD) with computer readout

    SciTech Connect

    MacArthur, D.W.; Allander, K.S.; Bounds, J.A.; Butterfield, K.B.

    1991-10-01

    The small long-range alpha detector developed by N-2 was described in detail in the Los Alamos publication LA-12073-MS, Long-Range Alpha Detector,'' published in 1991. Since publication of that report, a computerized data acquisition system has been added to the LRAD detector. In addition to detailing the new data acquisition system, we discuss new data generated with the enhanced system, including measurements of (1) ultimate sensitivity; (2) detector linearity; (3) ion lifetime; and (4) characteristics. Furthermore, we have expanded our understanding of ion recombination and statistical noise effects in the LRAD and have addressed them here as well as several proposed applications. 6 refs., 30 figs.

  2. Streak camera dynamic range optimization

    SciTech Connect

    Wiedwald, J.D.; Lerche, R.A.

    1987-09-01

    The LLNL optical streak camera is used by the Laser Fusion Program in a wide range of applications. Many of these applications require a large recorded dynamic range. Recent work has focused on maximizing the dynamic range of the streak camera recording system. For our streak cameras, image intensifier saturation limits the upper end of the dynamic range. We have developed procedures to set the image intensifier gain such that the system dynamic range is maximized. Specifically, the gain is set such that a single streak tube photoelectron is recorded with an exposure of about five times the recording system noise. This ensures detection of single photoelectrons, while not consuming intensifier or recording system dynamic range through excessive intensifier gain. The optimum intensifier gain has been determined for two types of film and for a lens-coupled CCD camera. We have determined that by recording the streak camera image with a CCD camera, the system is shot-noise limited up to the onset of image intensifier nonlinearity. When recording on film, the film determines the noise at high exposure levels. There is discussion of the effects of slit width and image intensifier saturation on dynamic range. 8 refs.

  3. A Wide Dynamic Range Tapped Linear Array Image Sensor

    NASA Astrophysics Data System (ADS)

    Washkurak, William D.; Chamberlain, Savvas G.; Prince, N. Daryl

    1988-08-01

    Detectors for acousto-optic signal processing applications require fast transient response as well as wide dynamic range. There are two major choices of detectors: conductive or integration mode. Conductive mode detectors have an initial transient period before they reach then' i equilibrium state. The duration of 1 his period is dependent on light level as well as detector capacitance. At low light levels a conductive mode detector is very slow; response time is typically on the order of milliseconds. Generally. to obtain fast transient response an integrating mode detector is preferred. With integrating mode detectors. the dynamic range is determined by the charge storage capability of the tran-sport shift registers and the noise level of the image sensor. The conventional net hod used to improve dynamic range is to increase the shift register charge storage capability. To achieve a dynamic range of fifty thousand assuming two hundred noise equivalent electrons, a charge storage capability of ten million electrons would be required. In order to accommodate this amount of charge. unrealistic shift registers widths would be required. Therefore, with an integrating mode detector it is difficult to achieve a dynamic range of over four orders of magnitude of input light intensity. Another alternative is to solve the problem at the photodetector aml not the shift, register. DALSA's wide dynamic range detector utilizes an optimized, ion implant doped, profiled MOSFET photodetector specifically designed for wide dynamic range. When this new detector operates at high speed and at low light levels the photons are collected and stored in an integrating fashion. However. at bright light levels where transient periods are short, the detector switches into a conductive mode. The light intensity is logarithmically compressed into small charge packets, easily carried by the CCD shift register. As a result of the logarithmic conversion, dynamic ranges of over six orders of

  4. Alternating current long range alpha particle detector

    DOEpatents

    MacArthur, Duncan W.; McAtee, James L.

    1993-01-01

    An alpha particle detector, utilizing alternating currents, whcih is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.

  5. Enhancement of concentration range of chromatographically detectable components with array detector mass spectrometry

    DOEpatents

    Enke, Christie

    2013-02-19

    Methods and instruments for high dynamic range analysis of sample components are described. A sample is subjected to time-dependent separation, ionized, and the ions dispersed with a constant integration time across an array of detectors according to the ions m/z values. Each of the detectors in the array has a dynamically adjustable gain or a logarithmic response function, producing an instrument capable of detecting a ratio of responses or 4 or more orders of magnitude.

  6. Wide dynamic range beam profile monitor

    SciTech Connect

    Lee, D.M.; van Dyck, O.B.; Bilskie, J.R.; Brown, D.; Hardekopf, R.

    1985-10-01

    An economical harp multiplexer system has been developed to achieve a wide dynamic range. The harp system incorporates a pneumatically actuated harp detector with ceramic boards and carbon wires; a high-sensitivity multiplexer packaged in a double-wide NIM module; and flat, shielded ribbon cable consisting of individual twisted pairs. The system multiplexes 30 wires in each of the x and y planes simultaneously and operates with or without computer control. The system has operated in beams of 100 nA to 1 mA, 1- to 120-Hz repetition rate, with a signal-to-noise ratio of greater than 10/1.

  7. Wide dynamic range beam profile monitor

    SciTech Connect

    Lee, D.M.; Brown, D.; Hardekopf, R.; Bilskie, J.R.; van Dyck, O.B.V.

    1985-01-01

    An economical harp multiplexer system has been developed to achieve a wide dynamic range. The harp system incorporates a pneumatically actuated harp detector with ceramic boards and carbon wires; a high-sensitivity multiplexer packaged in a double-wide NIM module; and flat, shielded ribbon cable consisting of individual twisted pairs. The system multiplexes 30 wires in each of the x and y planes simultaneously and operates with or without computer control. The system has operated in beams of 100 nA to 1 mA, 1- to 120-Hz repetition rate, with a signal-to-noise ratio of greater than 10/1.

  8. Simple dynamic electromagnetic radiation detector

    NASA Technical Reports Server (NTRS)

    Been, J. F.

    1972-01-01

    Detector monitors gamma dose rate at particular position in a radiation facility where a mixed neutron-gamma environment exists, thus determining reactor power level changes. Device also maps gamma intensity profile across a neutron-gamma beam.

  9. Multi-dimensional position sensor using range detectors

    DOEpatents

    Vann, Charles S.

    2000-01-01

    A small, non-contact optical sensor uses ranges and images to detect its relative position to an object in up to six degrees of freedom. The sensor has three light emitting range detectors which illuminate a target and can be used to determine distance and two tilt angles. A camera located between the three range detectors senses the three remaining degrees of freedom, two translations and one rotation. Various range detectors, with different light sources, e.g. lasers and LEDs, different collection options, and different detection schemes, e.g. diminishing return and time of flight can be used. This sensor increases the capability and flexibility of computer controlled machines, e.g. it can instruct a robot how to adjust automatically to different positions and orientations of a part.

  10. High-dynamic-range neutron time-of-flight detector used to infer the D(t,n)(4)He and D(d,n)(3)He reaction yield and ion temperature on OMEGA.

    PubMed

    Forrest, C J; Glebov, V Yu; Goncharov, V N; Knauer, J P; Radha, P B; Regan, S P; Romanofsky, M H; Sangster, T C; Shoup, M J; Stoeckl, C

    2016-11-01

    Upgraded microchannel-plate-based photomultiplier tubes (MCP-PMT's) with increased stability to signal-shape linearity have been implemented on the 13.4-m neutron time-of-flight (nTOF) detector at the Omega Laser Facility. This diagnostic uses oxygenated xylene doped with diphenyloxazole C15H11NO + p-bis-(o-methylstyryl)-benzene (PPO + bis-MSB) wavelength shifting dyes and is coupled through four viewing ports to fast-gating MCP-PMT's, each with a different gain to allow one to measure the light output over a dynamic range of 1 × 10(6). With these enhancements, the 13.4-m nTOF can measure the D(t,n)(4)He and D(d,n)(3)He reaction yields and average ion temperatures in a single line of sight. Once calibrated for absolute neutron sensitivity, the nTOF detectors can be used to measure the neutron yield from 1 × 10(9) to 1 × 10(14) and the ion temperature with an accuracy approaching 5% for both the D(t,n)(4)He and D(d,n)(3)He reactions.

  11. High-dynamic-range neutron time-of-flight detector used to infer the D(t,n){sup 4}He and D(d,n){sup 3}He reaction yield and ion temperature on OMEGA

    SciTech Connect

    Forrest, C. J. Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Radha, P. B.; Regan, S. P.; Romanofsky, M. H.; Sangster, T. C.; Shoup, M. J.; Stoeckl, C.

    2016-11-15

    Upgraded microchannel-plate–based photomultiplier tubes (MCP-PMT’s) with increased stability to signal-shape linearity have been implemented on the 13.4-m neutron time-of-flight (nTOF) detector at the Omega Laser Facility. This diagnostic uses oxygenated xylene doped with diphenyloxazole C{sub 15}H{sub 11}NO + p-bis-(o-methylstyryl)-benzene (PPO + bis-MSB) wavelength shifting dyes and is coupled through four viewing ports to fast-gating MCP-PMT’s, each with a different gain to allow one to measure the light output over a dynamic range of 1 × 10{sup 6}. With these enhancements, the 13.4-m nTOF can measure the D(t,n){sup 4}He and D(d,n){sup 3}He reaction yields and average ion temperatures in a single line of sight. Once calibrated for absolute neutron sensitivity, the nTOF detectors can be used to measure the neutron yield from 1 × 10{sup 9} to 1 × 10{sup 14} and the ion temperature with an accuracy approaching 5% for both the D(t,n){sup 4}He and D(d,n){sup 3}He reactions.

  12. High-dynamic-range neutron time-of-flight detector used to infer the D(t,n)4He and D(d,n)3He reaction yield and ion temperature on OMEGA

    NASA Astrophysics Data System (ADS)

    Forrest, C. J.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Radha, P. B.; Regan, S. P.; Romanofsky, M. H.; Sangster, T. C.; Shoup, M. J.; Stoeckl, C.

    2016-11-01

    Upgraded microchannel-plate-based photomultiplier tubes (MCP-PMT's) with increased stability to signal-shape linearity have been implemented on the 13.4-m neutron time-of-flight (nTOF) detector at the Omega Laser Facility. This diagnostic uses oxygenated xylene doped with diphenyloxazole C15H11NO + p-bis-(o-methylstyryl)-benzene (PPO + bis-MSB) wavelength shifting dyes and is coupled through four viewing ports to fast-gating MCP-PMT's, each with a different gain to allow one to measure the light output over a dynamic range of 1 × 106. With these enhancements, the 13.4-m nTOF can measure the D(t,n)4He and D(d,n)3He reaction yields and average ion temperatures in a single line of sight. Once calibrated for absolute neutron sensitivity, the nTOF detectors can be used to measure the neutron yield from 1 × 109 to 1 × 1014 and the ion temperature with an accuracy approaching 5% for both the D(t,n)4He and D(d,n)3He reactions.

  13. Analysis of the TMI-2 source range detector response

    SciTech Connect

    Carew, J.F.; Diamond, D.J.; Eridon, J.M.

    1980-01-01

    In the first few hours following the TMI-2 accident large variations (factors of 10-100) in the source range (SR) detector response were observed. The purpose of this analysis was to quantify the various effects which could contribute to these large variations. The effects evaluated included the transmission of neutrons and photons from the core to detector and the reduction in the multiplication of the Am-Be startup sources, and subsequent reduction in SR detector response, due to core voiding. A one-dimensional ANISN slab model of the TMI-2 core, core externals, pressure vessel and containment has been constructed for calculation of the SR detector response and is presented.

  14. Development of a wide-range tritium-concentration detector

    SciTech Connect

    Jun, F.; Zhe, L.; Shicheng, L.; Jiangfeng, S.; Deli, L.

    2015-03-15

    According to the requirements of the tritium related systems of the TBM (Test Blanket Module) for monitoring the on-line tritium concentration, a wide-range tritium-concentration detector has been developed to measure the tritium concentration in the range of 10{sup 4} Bq/ml - 5*10{sup 8} Bq/ml. This detector is combined with a low-memory helium ionization chamber. The weak current signal collected in the ionization chamber is converted to the voltage signal by an I-V converter. The minimum weak current which the detector could be measured is 10{sup -14} A. The performance of the background current and the current response linearity of the prototype have been tested. The test result indicates that the linear response of the current signal of the prototype without connecting the ionization chamber is good. The linear correlation coefficient is R{sup 2} = 0.998.

  15. HIGH DYNAMIC-RANGE HIGH SPEED LINAC CURRENT MEASUREMENTS

    SciTech Connect

    Deibele, Craig Edmond; Curry, Douglas E; Dickson, Richard W

    2012-01-01

    It is desired to measure the linac current of a charged particle beam with a consistent accuracy over a dynamic range of over 120 dB. Conventional current transformers suffer from droop, can be susceptible to electromagnetic interference (EMI), and can be bandwidth limited. A novel detector and electronics were designed to maximize dynamic range of about 120 dB and measure rise-times on the order of 10 nanoseconds.

  16. Wind dynamic range video camera

    NASA Astrophysics Data System (ADS)

    Craig, G. D.

    1985-10-01

    A television camera apparatus is disclosed in which bright objects are attenuated to fit within the dynamic range of the system, while dim objects are not. The apparatus receives linearly polarized light from an object scene, the light being passed by a beam splitter and focused on the output plane of a liquid crystal light valve. The light valve is oriented such that, with no excitation from the cathode ray tube, all light is rotated 90 deg and focused on the input plane of the video sensor. The light is then converted to an electrical signal, which is amplified and used to excite the CRT. The resulting image is collected and focused by a lens onto the light valve which rotates the polarization vector of the light to an extent proportional to the light intensity from the CRT. The overall effect is to selectively attenuate the image pattern focused on the sensor.

  17. Wind dynamic range video camera

    NASA Technical Reports Server (NTRS)

    Craig, G. D. (Inventor)

    1985-01-01

    A television camera apparatus is disclosed in which bright objects are attenuated to fit within the dynamic range of the system, while dim objects are not. The apparatus receives linearly polarized light from an object scene, the light being passed by a beam splitter and focused on the output plane of a liquid crystal light valve. The light valve is oriented such that, with no excitation from the cathode ray tube, all light is rotated 90 deg and focused on the input plane of the video sensor. The light is then converted to an electrical signal, which is amplified and used to excite the CRT. The resulting image is collected and focused by a lens onto the light valve which rotates the polarization vector of the light to an extent proportional to the light intensity from the CRT. The overall effect is to selectively attenuate the image pattern focused on the sensor.

  18. Laser ranging and mapping with a photon-counting detector.

    PubMed

    Priedhorsky, W C; Smith, R C; Ho, C

    1996-01-20

    We propose a new technique for remote sensing: photon-counting laser mapping. MicroChannel plate detectors with a crossed delay-line (MCP/CDL) readout combine high position accuracy and subnanosecond photon timing, at event rates of 10(6) detected photons per second and more. A mapping system would combine an MCP/CDL detector with a fast-pulse, high-repetition-rate laser illuminator. The system would map solid targets with exceptional in-range and cross-range resolution. The resulting images would be intrinsically three dimensional, without resorting to multiple viewing angles, so that objects of identical albedo could be discriminated. For a detector time resolution and pulse width of the order of 10(-10) s, the in-range resolution would be a few centimeters, permitting the discrimination of surfaces by their textures. Images could be taken at night, at illumination levels up to full moonlight, from ground, airborne, or space platforms. We discuss signal to noise as a function of laser flux and background level and present simulated images.

  19. New focal plane detector system for the broad range spectrometer

    SciTech Connect

    Sjoreen, T.P.

    1984-01-01

    A focal plane detector system consisting of a vertical drift chamber, parallel plate avalanche counters, and an ionization chamber with segmented anodes has been installed in the Broad Range Spectrometer at the Holifield Facility at Oak Ridge. The system, which has been designed for use with light-heavy ions with energies ranging from 10 to 25 MeV/amu, has a position resolution of approx. 0.1 mm, a scattering angle resolution of approx. 3 mrad, and a mass resolution of approx. 1/60.

  20. A Wide Range Neutron Detector for Space Nuclear Reactor Applications

    SciTech Connect

    Nassif, Eduardo; Sismonda, Miguel; Matatagui, Emilio; Pretorius, Stephan

    2007-01-30

    We propose here a versatile and innovative solution for monitoring and controlling a space-based nuclear reactor that is based on technology already proved in ground based reactors. A Wide Range Neutron Detector (WRND) allows for a reduction in the complexity of space based nuclear instrumentation and control systems. A ground model, predecessor of the proposed system, has been installed and is operating at the OPAL (Open Pool Advanced Light Water Research Reactor) in Australia, providing long term functional data. A space compatible Engineering Qualification Model of the WRND has been developed, manufactured and verified satisfactorily by analysis, and is currently under environmental testing.

  1. Wide-range radioactive-gas-concentration detector

    DOEpatents

    Anderson, D.F.

    1981-11-16

    A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  2. Dynamics of laser interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Rakhmanov, Malik

    2000-11-01

    Dynamics of fields and mirrors in the new laser interferometric gravitational wave detectors is described. The dynamics of fields is formulated in terms of difference equations, which take into account the large delay due to the light transit time in the interferometer arm cavities. Solutions of these field equations are found in both transient and steady-state regimes. The solutions for fields in the transient regime can be used for the measurement of the parameters of Fabry-Perot cavities. The solutions for fields in the steady-state regime can be used for the analysis of noise performance of Fabry-Perot cavities. The dynamics of the mirrors is described in terms of two normal coordinates: the cavity length and its center of mass. Such dynamics is strongly affected by the radiation pressure of light circulating in the cavity. The forces of radiation pressure are nonlinear and nonconservative. These two effects introduce instabilities and give rise to a violation of conservation of energy for the motion of the suspended mirrors. Analytical calculations and numerical simulations of the dynamics are done with applications to the Laser Interferometer Gravitational-Wave Observatory (LIGO). The dynamics of signal recycling and power recycling interferometers is analyzed using the field equations. The response of the interferometers to the input laser field and motion of its mirrors is calculated. Several basic transfer functions are found. These correspond to either a single or a nested cavity. A nested cavity appears either in the dynamics of the differential mode in signal recycling interferometers or in the dynamics of the common mode of power recycling interferometers. The poles of transfer functions of these nested cavities are found. The response of the interferometers to gravitational waves is described: the analysis is done in the rest frame of a local observer which is a natural coordinate system of the detector. This response is given by the interferometer

  3. High dynamic range infrared thermography by pixelwise radiometric self calibration

    NASA Astrophysics Data System (ADS)

    Ochs, M.; Schulz, A.; Bauer, H.-J.

    2010-03-01

    A procedure is described where the response function of each pixel of an InSb detector is determined by radiometric self-calibration. With the present approach no knowledge of the spectral characteristics of the IR system is required to recover a quantity which is linear with the incident irradiance of the object. The inherent detector non-uniformity is corrected on the basis of self-calibrated scaled irradiance. Compared to the standard two-point non-uniformity correction procedure - performed with the detector signal - only two NUC-tables are required for arbitrary integration times. Images obtained at various exposures are fused to a single high dynamic range image. The procedure is validated with synthetic data and its performance is demonstrated by measurements performed with a high resolution InSb FPA.

  4. Active Dendrites Enhance Neuronal Dynamic Range

    PubMed Central

    Gollo, Leonardo L.; Kinouchi, Osame; Copelli, Mauro

    2009-01-01

    Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range. PMID:19521531

  5. Novel ultra-sensitive detectors in the 10-50 μm wavelength range.

    PubMed

    Ueda, Takeji; Komiyama, Susumu

    2010-01-01

    We have developed novel single-photon detectors in the 10-50 μm wavelength region. The detectors are charge-sensitive infrared phototransistors (CSIPs) fabricated in GaAs/AlGaAs double quantum well (QW) structures, in which a photo-generated hole (+e) in the floating gate (upper QW) modulates the conductance of a capacitively-coupled channel located underneath (lower QW). The excellent noise equivalent power (NEP = 8.3 × 10(-19) W/Hz(1/2)) and specific detectivity (D(*) = 8 × 10(14) cm Hz(1/2)/W) are demonstrated for 15 micron detection up to 23 K, which are by a few orders of magnitude better than those of other state-of-the-art high-sensitivity detectors. The dynamic range exceeds 10(6) (~aW to pW) by repeatedly resetting the accumulated holes in the upper QW. Simple device structure makes the detectors feasible for array fabrication: Furthermore, monolithic integration with reading circuits will be possible.

  6. Dynamic range tuning of graphene nanoresonators

    NASA Astrophysics Data System (ADS)

    Parmar, Marsha M.; Gangavarapu, P. R. Yasasvi; Naik, A. K.

    2015-09-01

    From sensing perspective, smaller electromechanical devices, in general, are expected to be more responsive to the stimuli. This enhanced performance, however, is contingent upon the noise sources remaining unchanged and the onset of nonlinear behavior not being precipitated by miniaturization. In this paper, we study the effect of strain on the nonlinearities and dynamic range in graphene nanoresonators. The dynamic response and the onset of nonlinearity in these devices are sensitive both to the electrostatic field used to actuate the device and the strain. By tuning the strain of the device by two orders of magnitude, we observe an enhancement of 25 dB in the dynamic range leading to a mass resolution of 100 yoctogram. The increase in dynamic range in our devices is modeled as a combined effect of strain and partial cancellation of elastic and electrostatic nonlinearities.

  7. Six orders of magnitude dynamic range in capillary electrophoresis with ultrasensitive laser-induced fluorescence detection

    PubMed Central

    Whitmore, Colin D.; Essaka, David; Dovichi, Norman J.

    2009-01-01

    An ultrasensitive laser-induced fluorescence detector was used with capillary electrophoresis for the study of 5-carboxy-tetramethylrhodamine. The raw signal from the detector provided roughly three orders of magnitude dynamic range. The signal saturated at high analyte concentrations due to the dead time associated with the single-photon counting avalanche photodiode employed in the detector. The signal can be corrected for the detector dead time, providing an additional order of magnitude dynamic range. To further increase dynamic range, two fiber-optic beam-splitters were cascaded to generate a primary signal and two attenuated signals, each monitored by a single-photon counting avalanche photodiode. The combined signals from the three photodiodes are reasonably linear from the concentration detection limit of 3 pM to 10 μM, the maximum concentration investigated, a range of 3,000,000. Mass detection limits were 150 yoctomoles injected onto the capillary. PMID:19836546

  8. Single and double grid long-range alpha detectors

    DOEpatents

    MacArthur, Duncan W.; Allander, Krag S.

    1993-01-01

    Alpha particle detectors capable of detecting alpha radiation from distant sources. In one embodiment, a voltage is generated in a single electrically conductive grid while a fan draws air containing air molecules ionized by alpha particles through an air passage and across the conductive grid. The current in the conductive grid can be detected and used for measurement or alarm. Another embodiment builds on this concept and provides an additional grid so that air ions of both polarities can be detected. The detector can be used in many applications, such as for pipe or duct, tank, or soil sample monitoring.

  9. Single and double grid long-range alpha detectors

    DOEpatents

    MacArthur, D.W.; Allander, K.S.

    1993-03-16

    Alpha particle detectors capable of detecting alpha radiation from distant sources. In one embodiment, a voltage is generated in a single electrically conductive grid while a fan draws air containing air molecules ionized by alpha particles through an air passage and across the conductive grid. The current in the conductive grid can be detected and used for measurement or alarm. Another embodiment builds on this concept and provides an additional grid so that air ions of both polarities can be detected. The detector can be used in many applications, such as for pipe or duct, tank, or soil sample monitoring.

  10. High Dynamic Range Imaging Using Multiple Exposures

    NASA Astrophysics Data System (ADS)

    Hou, Xinglin; Luo, Haibo; Zhou, Peipei; Zhou, Wei

    2017-06-01

    It is challenging to capture a high-dynamic range (HDR) scene using a low-dynamic range (LDR) camera. This paper presents an approach for improving the dynamic range of cameras by using multiple exposure images of same scene taken under different exposure times. First, the camera response function (CRF) is recovered by solving a high-order polynomial in which only the ratios of the exposures are used. Then, the HDR radiance image is reconstructed by weighted summation of the each radiance maps. After that, a novel local tone mapping (TM) operator is proposed for the display of the HDR radiance image. By solving the high-order polynomial, the CRF can be recovered quickly and easily. Taken the local image feature and characteristic of histogram statics into consideration, the proposed TM operator could preserve the local details efficiently. Experimental result demonstrates the effectiveness of our method. By comparison, the method outperforms other methods in terms of imaging quality.

  11. HEVC for high dynamic range services

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Hwan; Zhao, Jie; Misra, Kiran; Segall, Andrew

    2015-09-01

    Displays capable of showing a greater range of luminance values can render content containing high dynamic range information in a way such that the viewers have a more immersive experience. This paper introduces the design aspects of a high dynamic range (HDR) system, and examines the performance of the HDR processing chain in terms of compression efficiency. Specifically it examines the relation between recently introduced Society of Motion Picture and Television Engineers (SMPTE) ST 2084 transfer function and the High Efficiency Video Coding (HEVC) standard. SMPTE ST 2084 is designed to cover the full range of an HDR signal from 0 to 10,000 nits, however in many situations the valid signal range of actual video might be smaller than SMPTE ST 2084 supported range. The above restricted signal range results in restricted range of code values for input video data and adversely impacts compression efficiency. In this paper, we propose a code value remapping method that extends the restricted range code values into the full range code values so that the existing standards such as HEVC may better compress the video content. The paper also identifies related non-normative encoder-only changes that are required for remapping method for a fair comparison with anchor. Results are presented comparing the efficiency of the current approach versus the proposed remapping method for HM-16.2.

  12. High dynamic range holographic data storage media

    NASA Astrophysics Data System (ADS)

    Askham, Fred; Ayres, Mark R.; Urness, Adam C.

    2015-08-01

    Holographic data storage (HDS) employs the physics of holography to record digital data in three dimensions in a highly stable photopolymer medium. The photopolymer medium must provide the essential characteristics of low scatter and high dynamic range while maintaining low recording induced physical shrinkage and long archival lifetimes. In this article, we report on media advancements employing Akonia's DREDTM technology which provide a 5x increase in media dynamic range with unchanged media shrinkage. We also discuss the implications of these results for photopolymer media mechanistic models.

  13. High Dynamic Range Digital Imaging of Spacecraft

    NASA Technical Reports Server (NTRS)

    Karr, Brian A.; Chalmers, Alan; Debattista, Kurt

    2014-01-01

    The ability to capture engineering imagery with a wide degree of dynamic range during rocket launches is critical for post launch processing and analysis [USC03, NNC86]. Rocket launches often present an extreme range of lightness, particularly during night launches. Night launches present a two-fold problem: capturing detail of the vehicle and scene that is masked by darkness, while also capturing detail in the engine plume.

  14. Compressive dynamic range imaging via Bayesian shrinkage dictionary learning

    NASA Astrophysics Data System (ADS)

    Yuan, Xin

    2016-12-01

    We apply the Bayesian shrinkage dictionary learning into compressive dynamic-range imaging. By attenuating the luminous intensity impinging upon the detector at the pixel level, we demonstrate a conceptual design of an 8-bit camera to sample high-dynamic-range scenes with a single snapshot. Coding strategies for both monochrome and color cameras are proposed. A Bayesian reconstruction algorithm is developed to learn a dictionary in situ on the sampled image, for joint reconstruction and demosaicking. We use global-local shrinkage priors to learn the dictionary and dictionary coefficients representing the data. Simulation results demonstrate the feasibility of the proposed camera and the superior performance of the Bayesian shrinkage dictionary learning algorithm.

  15. Nonperturbative short-range dynamics in TMDs

    SciTech Connect

    Weiss, Christian

    2013-05-01

    This presentation covers: deep inelastic processes and transverse momentum distributions; chiral symmetry breaking, including the physical picture, the dynamical model, and parton distributions; partonic structures, including transverse momentum distributions, coordinate space correlator, and short range correlations; and measurements of semi-inclusive deep inelastic scattering, correlations, and multi-parton processes in pp interactions.

  16. Photon Counting Detectors for the 1.0 - 2.0 Micron Wavelength Range

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2004-01-01

    We describe results on the development of greater than 200 micron diameter, single-element photon-counting detectors for the 1-2 micron wavelength range. The technical goals include quantum efficiency in the range 10-70%; detector diameter greater than 200 microns; dark count rate below 100 kilo counts-per-second (cps), and maximum count rate above 10 Mcps.

  17. Adaptive optimal spectral range for dynamically changing scene

    NASA Astrophysics Data System (ADS)

    Pinsky, Ephi; Siman-tov, Avihay; Peles, David

    2012-06-01

    A novel multispectral video system that continuously optimizes both its spectral range channels and the exposure time of each channel autonomously, under dynamic scenes, varying from short range-clear scene to long range-poor visibility, is currently being developed. Transparency and contrast of high scattering medium of channels with spectral ranges in the near infrared is superior to the visible channels, particularly to the blue range. Longer wavelength spectral ranges that induce higher contrast are therefore favored. Images of 3 spectral channels are fused and displayed for (pseudo) color visualization, as an integrated high contrast video stream. In addition to the dynamic optimization of the spectral channels, optimal real-time exposure time is adjusted simultaneously and autonomously for each channel. A criterion of maximum average signal, derived dynamically from previous frames of the video stream is used (Patent Application - International Publication Number: WO2009/093110 A2, 30.07.2009). This configuration enables dynamic compatibility with the optimal exposure time of a dynamically changing scene. It also maximizes the signal to noise ratio and compensates each channel for the specified value of daylight reflections and sensors response for each spectral range. A possible implementation is a color video camera based on 4 synchronized, highly responsive, CCD imaging detectors, attached to a 4CCD dichroic prism and combined with a common, color corrected, lens. Principal Components Analysis (PCA) technique is then applied for real time "dimensional collapse" in color space, in order to select and fuse, for clear color visualization, the 3 most significant principal channels out of at least 4 characterized by high contrast and rich details in the image data.

  18. Three-dimensional dynamic range reduction techniques

    NASA Astrophysics Data System (ADS)

    Harding, Kevin G.; Qian, Xiaoping

    2004-02-01

    A significant limitation of the application of 3D structured light systems has been the large dynamic range of reflectivity of typical parts such as machined parts. The advent of digital cameras have helped this problem to some extent by providing a larger dynamic range of detection, but often parts must still be coated with white paint or powder to get a good enough return for 3D measurement techniques such as structured light. This paper will present an overview of methods that have been used to minimize the range of light reflections from many parts including polarization, multiple exposure, multiple viewing and masking techniques. Also presented will be methods of analysis such as phase analysis techniques which can provide improved robustness. Finally, we will discuss the pros and cons of these options as applied to the application of 3D structured light techniques to machined metal parts.

  19. The Dynamic Range of Human Lightness Perception

    PubMed Central

    Radonjić, Ana; Allred, Sarah R.; Gilchrist, Alan L.; Brainard, David H.

    2011-01-01

    Summary Natural viewing challenges the visual system with images that have a dynamic range of light intensity (luminance) that can approach 1,000,000:1 and that often exceeds 10,000:1 [1, 2]. The range of perceived surface reflectance (lightness), however, can be well-approximated by the Munsell matte neutral scale (N 2.0/ to N 9.5/), consisting of surfaces whose reflectance varies by about 30:1. Thus, the visual system, must map a large range of surface luminance onto a much smaller range of surface lightness. We measured this mapping in images with a dynamic range close to that of natural images. We studied simple images that lacked segmentation cues that would indicate multiple regions of illumination. We found a remarkable degree of compression: at a single image location, a stimulus luminance range of 5905:1 can be mapped onto an extended lightness scale that has a reflectance range of 100:1. We characterized how the luminance-to-lightness mapping changes with stimulus context. Our data rule out theories that predict perceived lightness from luminance ratios or Weber contrast. A mechanistic model connects our data to theories of adaptation and provides insight about how the underlying visual response varies with context. PMID:22079116

  20. Performance optimization of detector electronics for millimeter laser ranging

    NASA Technical Reports Server (NTRS)

    Cova, Sergio; Lacaita, A.; Ripamonti, Giancarlo

    1993-01-01

    The front-end electronic circuitry plays a fundamental role in determining the performance actually obtained from ultrafast and highly sensitive photodetectors. We deal here with electronic problems met working with microchannel plate photomultipliers (MCP-PMTs) and single photon avalanche diodes (SPADs) for detecting single optical photons and measuring their arrival time with picosecond resolution. The performance of available fast circuits is critically analyzed. Criteria for selecting the most suitable electronics are derived and solutions for exploiting the detector performance are presented and discussed.

  1. Integration of Dynamic Models in Range Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    This work addresses the various model interactions in real-time to make an efficient internet based decision making tool for Shuttle launch. The decision making tool depends on the launch commit criteria coupled with physical models. Dynamic interaction between a wide variety of simulation applications and techniques, embedded algorithms, and data visualizations are needed to exploit the full potential of modeling and simulation. This paper also discusses in depth details of web based 3-D graphics and applications to range safety. The advantages of this dynamic model integration are secure accessibility and distribution of real time information to other NASA centers.

  2. Dynamic range of hypercubic stochastic excitable media

    NASA Astrophysics Data System (ADS)

    Assis, Vladimir R. V.; Copelli, Mauro

    2008-01-01

    We study the response properties of d -dimensional hypercubic excitable networks to a stochastic stimulus. Each site, modeled either by a three-state stochastic susceptible-infected-recovered-susceptible system or by the probabilistic Greenberg-Hastings cellular automaton, is continuously and independently stimulated by an external Poisson rate h . The response function (mean density of active sites ρ versus h ) is obtained via simulations (for d=1,2,3,4 ) and mean-field approximations at the single-site and pair levels (∀d) . In any dimension, the dynamic range and sensitivity of the response function are maximized precisely at the nonequilibrium phase transition to self-sustained activity, in agreement with a reasoning recently proposed. Moreover, the maximum dynamic range attained at a given dimension d is a decreasing function of d .

  3. Coarsening dynamics of zero-range processes

    NASA Astrophysics Data System (ADS)

    Godrèche, Claude; Drouffe, Jean-Michel

    2017-01-01

    We consider a class of zero-range processes exhibiting a condensation transition in the stationary state, with a critical single-site distribution decaying faster than a power law. We present the analytical study of the coarsening dynamics of the system on the complete graph, both at criticality and in the condensed phase. In contrast with the class of zero-range processes with critical single-site distribution decaying as a power law, in the present case the role of finite-time corrections is essential for the understanding of the approach to scaling.

  4. Backwards compatible high dynamic range video compression

    NASA Astrophysics Data System (ADS)

    Dolzhenko, Vladimir; Chesnokov, Vyacheslav; Edirisinghe, Eran A.

    2014-02-01

    This paper presents a two layer CODEC architecture for high dynamic range video compression. The base layer contains the tone mapped video stream encoded with 8 bits per component which can be decoded using conventional equipment. The base layer content is optimized for rendering on low dynamic range displays. The enhancement layer contains the image difference, in perceptually uniform color space, between the result of inverse tone mapped base layer content and the original video stream. Prediction of the high dynamic range content reduces the redundancy in the transmitted data while still preserves highlights and out-of-gamut colors. Perceptually uniform colorspace enables using standard ratedistortion optimization algorithms. We present techniques for efficient implementation and encoding of non-uniform tone mapping operators with low overhead in terms of bitstream size and number of operations. The transform representation is based on human vision system model and suitable for global and local tone mapping operators. The compression techniques include predicting the transform parameters from previously decoded frames and from already decoded data for current frame. Different video compression techniques are compared: backwards compatible and non-backwards compatible using AVC and HEVC codecs.

  5. Design and implementation of a low-cost multiple-range digital phase detector

    NASA Astrophysics Data System (ADS)

    Omran, Hesham; Albasha, Lutfi; Al-Ali, A. R.

    2012-06-01

    This article describes the design, simulation, implementation and testing of a novel low-cost multiple-range programmable digital phase detector. The detector receives two periodic signals and calculates the ratio of the time difference to the time period to measure and display the phase difference. The resulting output values are in integer form ranging from -180° to 180°. Users can select the detector pre-set operation frequency ranges using a three-bit pre-scalar. This enables to use the detector for various applications. The proposed detector can be programmed over a frequency range of 10 Hz to 25 kHz by configuring its clock divider circuit. Detector simulations were conducted and verified using ModelSim and the design was implemented and tested using an Altera Cyclone II field-programmable gate array board. Both the simulation and actual circuit testing results showed that the phase detector has a magnitude of error of only 1°. The detector is ideal for applications such as power factor measurement and correction, self-tuning resonant circuits and in metal detection systems. Unlike other stand-alone phase detection systems, the reported system has the ability to be programmed to several frequency ranges, hence expanding its bandwidth.

  6. Development of wide-ranged diamond-based detector unit for gamma radiation measurement

    NASA Astrophysics Data System (ADS)

    Baranova, M. A.; Boyko, A. V.; Chebyshev, S. B.; Cherkashin, I. I.; Kireev, V. P.; Petrov, V. I.

    2016-02-01

    In the article the description of wide-ranged diamond-based detector unit is given. Characteristics of the diamond detector were studied in current and in impulse mode. As well it was studied how detector's sensitivity depends on power doze within the limits from 10-3 to 0,4Gy/h (impulse mode) and from 10-1to 2 104Gy/h (current mode). On the basis of the obtained data it is possible to estimate about the possibility of using the detector to prevent emergency accident on a nuclear power plant and for everyday control at a nuclear power plant.

  7. Dynamic phenomena studied with a CCD detector

    SciTech Connect

    Brizard, C.M.; Rodricks, B.G.; Alp, E.E. ); MacHarrie, R. )

    1991-08-01

    A new programmable charge coupled device (CCD) detector based on the CAMAC (Computer Automated Measurement and Control) modular system and coupled to a MircoVax 3 computer has been developed for time-resolved synchrotron experiments. The programmability of the electronics allows one to use many kinds of CCD chip. Moreover, different detector modes can be chosen according to the time scale of the experiment. Various time-resolved x-ray scattering experiments have already been performed at NSLS and CHESS with this imaging system. For example, a real-time study of the early stages of crystallization of the amorphous metallic alloy Fe{sub 80}B{sub 20} was carried out at the X6 beamline at NSLS. Here a spin melt ribbon of the amorphous metal was resistively heated in stages in 600{degrees}C and the crystallization observed on the CCD. The detector angular acceptance of 3{degrees} allowed for the observation of the evolution of the {alpha}-Fe, and Fe{sub 3}B and the Fe{sub 2}B phases simultaneously on a minute time scale.

  8. Mitochondrial uncouplers with an extraordinary dynamic range

    PubMed Central

    Lou, Phing-How; Hansen, Birgit S.; Olsen, Preben H.; Tullin, Søren; Murphy, Michael P.; Brand, Martin D.

    2007-01-01

    We have discovered that some weak uncouplers (typified by butylated hydroxytoluene) have a dynamic range of more than 106 in vitro: the concentration giving measurable uncoupling is less than one millionth of the concentration causing full uncoupling. They achieve this through a high-affinity interaction with the mitochondrial adenine nucleotide translocase that causes significant but limited uncoupling at extremely low uncoupler concentrations, together with more conventional uncoupling at much higher concentrations. Uncoupling at the translocase is not by a conventional weak acid/anion cycling mechanism since it is also caused by substituted triphenylphosphonium molecules, which are not anionic and cannot protonate. Covalent attachment of the uncoupler to a mitochondrially targeted hydrophobic cation sensitizes it to membrane potential, giving a small additional effect. The wide dynamic range of these uncouplers in isolated mitochondria and intact cells reveals a novel allosteric activation of proton transport through the adenine nucleotide translocase and provides a promising starting point for designing safer uncouplers for obesity therapy. PMID:17608618

  9. Enhanced dynamic range x-ray imaging.

    PubMed

    Haidekker, Mark A; Morrison, Logan Dain-Kelley; Sharma, Ajay; Burke, Emily

    2017-03-01

    X-ray images can suffer from excess contrast. Often, image exposure is chosen to visually optimize the region of interest, but at the expense of over- and underexposed regions elsewhere in the image. When image values are interpreted quantitatively as projected absorption, both over- and underexposure leads to the loss of quantitative information. We propose to combine multiple exposures into a composite that uses only pixels from those exposures in which they are neither under- nor overexposed. The composite image is created in analogy to visible-light high dynamic range photography. We present the mathematical framework for the recovery of absorbance from such composite images and demonstrate the method with biological and non-biological samples. We also show with an aluminum step-wedge that accurate recovery of step thickness from the absorbance values is possible, thereby highlighting the quantitative nature of the presented method. Due to the higher amount of detail encoded in an enhanced dynamic range x-ray image, we expect that the number of retaken images can be reduced, and patient exposure overall reduced. We also envision that the method can improve dual energy absorptiometry and even computed tomography by reducing the number of low-exposure ("photon-starved") projections.

  10. Penrose high-dynamic-range imaging

    NASA Astrophysics Data System (ADS)

    Li, Jia; Bai, Chenyan; Lin, Zhouchen; Yu, Jian

    2016-05-01

    High-dynamic-range (HDR) imaging is becoming increasingly popular and widespread. The most common multishot HDR approach, based on multiple low-dynamic-range images captured with different exposures, has difficulties in handling camera and object movements. The spatially varying exposures (SVE) technology provides a solution to overcome this limitation by obtaining multiple exposures of the scene in only one shot but suffers from a loss in spatial resolution of the captured image. While aperiodic assignment of exposures has been shown to be advantageous during reconstruction in alleviating resolution loss, almost all the existing imaging sensors use the square pixel layout, which is a periodic tiling of square pixels. We propose the Penrose pixel layout, using pixels in aperiodic rhombus Penrose tiling, for HDR imaging. With the SVE technology, Penrose pixel layout has both exposure and pixel aperiodicities. To investigate its performance, we have to reconstruct HDR images in square pixel layout from Penrose raw images with SVE. Since the two pixel layouts are different, the traditional HDR reconstruction methods are not applicable. We develop a reconstruction method for Penrose pixel layout using a Gaussian mixture model for regularization. Both quantitative and qualitative results show the superiority of Penrose pixel layout over square pixel layout.

  11. High-dynamic-range MCP structures

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Timothy, J. G.

    1991-01-01

    We report on the development of a new high-dynamic-range two-stage Multi-Anode Microchannel Array (MAMA) imaging tube designed for improved high count rate performance at FUV and EUV wavelengths. The new two-stage MAMA tube employs two 25-mm-diameter format MCPs placed in tandem with a small gap between the plates. The front (input) MCP is designed to be a low-gain converter plate that supports an opaque photocathode and converts the detected photons to electrons, while the second (output) MCP is of higher conductivity and thus maintains the overall gain of the multiplier at high count rates. The second MCP is mounted in proximity focus with a (224 x 960)-pixel fine-fine coincidence MAMA array for high-spatial-resolution imaging studies. The applied voltage across each MCP can be controlled independently. We report on the gain and dynamic range performance characteristics of the two-stage MAMA tube in two different configurations: first, with the output MCP having moderate conductivity (about 100 MOhm); and second, with the output MCP having very high conductivity (about 2 MOhm). These results are compared and contrasted with those of the more conventional MAMA tube configuration which employs a single high-gain curved-channel MCP.

  12. Large dynamic range relative B1+ mapping

    PubMed Central

    Hess, Aaron T.; Aljabar, Paul; Malik, Shaihan J.; Jezzard, Peter; Robson, Matthew D.; Hajnal, Joseph V.; Koopmans, Peter J.

    2015-01-01

    Purpose Parallel transmission (PTx) requires knowledge of the B1+ produced by each element. However, B1+ mapping can be challenging when transmit fields exhibit large dynamic range. This study presents a method to produce high quality relative B1+ maps when this is the case. Theory and Methods The proposed technique involves the acquisition of spoiled gradient echo (SPGR) images at multiple radiofrequency drive levels for each transmitter. The images are combined using knowledge of the SPGR signal equation using maximum likelihood estimation, yielding an image for each channel whose signal is proportional to the B1+ field strength. Relative B1+ maps are then obtained by taking image ratios. The method was tested using numerical simulations, phantom imaging, and through in vivo experiments. Results The numerical simulations demonstrated that the proposed method can reconstruct relative transmit sensitivities over a wide range of B1+ amplitudes and at several SNR levels. The method was validated at 3 Tesla (T) by comparing it with an alternative B1+ mapping method, and demonstrated in vivo at 7T. Conclusion Relative B1+ mapping in the presence of large dynamic range has been demonstrated through numerical simulations, phantom imaging at 3T and experimentally at 7T. The method will enable PTx to be applied in challenging imaging scenarios at ultrahigh field. Magn Reson Med 76:490–499, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26308375

  13. Development of a stacked detector system for the x-ray range and its possible applications

    NASA Astrophysics Data System (ADS)

    Maier, Daniel; Limousin, Olivier; Meuris, Aline; Pürckhauer, Sabina; Santangelo, Andrea; Schanz, Thomas; Tenzer, Christoph

    2014-07-01

    We have constructed a stacked detector system operating in the X-ray range from 0.5 keV to 250 keV that consists of a Si-based 64×64 DePFET-Matrix in front of a CdTe hybrid detector called Caliste-64. The setup is operated under laboratory conditions that approximate the expected environment of a space-borne observatory. The DePFET detector is an active pixel matrix that provides high count-rate capabilities with a near Fanolimited spectral resolution at energies up to 15 keV. The Caliste-64 hard X-ray camera consists of a 1mm thick CdTe crystal combined with very compact integrated readout electronics, constituting a high performance spectro-imager with event-triggered time-tagging capability in the energy range between 2 keV and 200 keV. In this combined geometry the DePFET detector works as the Low Energy Detector (LED) while the Caliste-64 - as the High Energy Detector (HED) - detects predominantly the high energetic photons that have passed the LED. In addition to the individual optimization of both detectors, we use the setup to test and optimize the performance of the combined detector system. Side-effects like X-ray fluorescence photons, electrical crosstalk, and mutual heating have negative impacts on the data quality and will be investigated. Besides the primary application as a combined imaging detector system with high sensitivity across a broad energy range, additional applications become feasible. Via the analysis of coincident events in both detectors we can estimate the capabilities of the setup to be used as a Compton camera and as an X-ray polarimeter - both desirable functionalities for use in the lab as well as for future X-ray missions.

  14. Dual Transition Edge Sensor Bolometer for Enhanced Dynamic Range

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Benford, D. J.; Moseley, S. H.; Irwin, K. D.

    2004-01-01

    Broadband surveys at the millimeter and submillimeter wavelengths will require bolometers that can reach new limits of sensitivity and also operate under high background conditions. To address this need, we present results on a dual transition edge sensor (TES) device with two operating modes: one for low background, ultrasensitive detection and one for high background, enhanced dynamic range detection. The device consists of a detector element with two transition temperatures (T(sub c)) of 0.25 and 0.51 K located on the same micromachined, thermally isolated membrane structure. It can be biased on either transition, and features phonon-limited noise performance at the lower T(sub c). We measure noise performance on the lower transition 7 x 10(exp -18) W/rt(Hz) and the bias power on the upper transition of 12.5 pW, giving a factor of 10 enhancement of the dynamic range for the device. We discuss the biasable range of this type of device and present a design concept to optimize utility of the device.

  15. Allee dynamics: Growth, extinction and range expansion

    NASA Astrophysics Data System (ADS)

    Bose, Indrani; Pal, Mainak; Karmakar, Chiranjit

    In population biology, the Allee dynamics refer to negative growth rates below a critical population density. In this paper, we study a reaction-diffusion (RD) model of popoulation growth and dispersion in one dimension, which incorporates the Allee effect in both the growth and mortatility rates. In the absence of diffusion, the bifurcation diagram displays regions of both finite population density and zero population density, i.e. extinction. The early signatures of the transition to extinction at the bifurcation point are computed in the presence of additive noise. For the full RD model, the existence of traveling wave solutions of the population density is demonstrated. The parameter regimes in which the traveling wave advances (range expansion) and retreats are identified. In the weak Allee regime, the transition from the pushed to the pulled wave is shown as a function of the mortality rate constant. The results obtained are in agreement with the recent experimental observations on budding yeast populations.

  16. Fast range measurement of spot scanning proton beams using a volumetric liquid scintillator detector

    PubMed Central

    Hui, CheukKai; Robertson, Daniel; Alsanea, Fahed; Beddar, Sam

    2016-01-01

    Accurate confirmation and verification of the range of spot scanning proton beams is crucial for correct dose delivery. Current methods to measure proton beam range using ionization chambers are either time-consuming or result in measurements with poor spatial resolution. The large-volume liquid scintillator detector allows real-time measurements of the entire dose profile of a spot scanning proton beam. Thus, liquid scintillator detectors are an ideal tool for measuring the proton beam range for commissioning and quality assurance. However, optical artefacts may decrease the accuracy of measuring the proton beam range within the scintillator tank. The purpose of the current study was to 1) develop a geometric calibration system to accurately calculate physical distances within the liquid scintillator detector, taking into account optical artefacts; and 2) assess the accuracy, consistency, and robustness of proton beam range measurement using the liquid scintillator detector with our geometric calibration system. The range of the proton beam was measured with the calibrated liquid scintillator system and was compared to the nominal range. Measurements were made on three different days to evaluate the setup robustness from day to day, and three sets of measurements were made for each day to evaluate the consistency from delivery to delivery. All proton beam ranges measured using the liquid scintillator system were within half a millimeter of the nominal range. The delivery-to-delivery standard deviation of the range measurement was 0.04 mm, and the day-to-day standard deviation was 0.10 mm. In addition to the accuracy and robustness demonstrated by these results when our geometric calibration system was used, the liquid scintillator system allowed the range of all 94 proton beams to be measured in just two deliveries, making the liquid scintillator detector a perfect tool for range measurement of spot scanning proton beams. PMID:27274863

  17. Increasing dynamic range of cameras with dynamic sunlight filter (DSF)

    NASA Astrophysics Data System (ADS)

    Donval, A.; Fisher, T.; Cheskis, D.; Ofir, Y.; Oron, M.

    2011-06-01

    Todays battlefield is using imaging systems everywhere, starting from simple observation systems and up to very sophisticate warning and offensive systems. Cameras are integrated in almost all systems. Regulation and control of optical power in cameras presently requires an electronic feedback control or offline data processing, which introduces complex and expensive systems. We present a non-linear, solid-state passive dynamic sunlight filter (DSF) performing this process, yielding similar results - passively. When sunlight intensity increases, the DSF transmission decreases according to the amount of the incident lights, resulting in a darkened state, which is limited only to the over exposed area. The area returns to transparency once the amount of light decreases below a threshold level. We demonstrate here new experimental results showing an increase in the camera's dynamic range when using the DSF.

  18. Picosecond dynamics of a silicon donor based terahertz detector device

    SciTech Connect

    Bowyer, Ellis T.; Li, Juerong; Litvinenko, K. L.; Murdin, B. N. E-mail: yuxm@pku.edu.cn; Villis, B. J.; Erfani, Morteza; Matmon, Guy; Aeppli, Gabriel; Ortega, Jean-Michel; Prazeres, Rui; Dong, Li; Yu, Xiaomei E-mail: yuxm@pku.edu.cn

    2014-07-14

    We report the characteristics of a simple complementary metal-oxide-semiconductor compatible terahertz detector device with low response time (nanoseconds) determined using a short-pulse, high intensity free-electron laser. The noise equivalent power was 1 × 10{sup −11} W Hz{sup −1/2}. The detector has an enhanced response over narrow bands, most notably at 9.5 THz, with a continuum response at higher frequencies. Using such a device, the dynamics of donors in silicon can be explored, a system which has great potential for quantum information processing.

  19. Detectors for high resolution dynamic pet

    SciTech Connect

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.

    1983-05-01

    This report reviews the motivation for high spatial resolution in dynamic positron emission tomography of the head and the technical problems in realizing this objective. We present recent progress in using small silicon photodiodes to measure the energy deposited by 511 keV photons in small BGO crystals with an energy resolution of 9.4% full-width at half-maximum. In conjunction with a suitable phototube coupled to a group of crystals, the photodiode signal to noise ratio is sufficient for the identification of individual crystals both for conventional and time-of-flight positron tomography.

  20. Ultra-wide Range Gamma Detector System for Search and Locate Operations

    SciTech Connect

    Odell, D. Mackenzie Odell; Harpring, Larry J.; Moore, Frank S. Jr.; French, Phillip J.; Gordon, John R.

    2005-10-26

    Collecting debris samples following a nuclear event requires that operations be conducted from a considerable stand-off distance. An ultra-wide range gamma detector system has been constructed to accomplish both long range radiation search and close range hot sample collection functions. Constructed and tested on a REMOTEC Andros platform, the system has demonstrated reliable operation over six orders of magnitude of gamma dose from 100's of uR/hr to over 100 R/hr. Functional elements include a remotely controlled variable collimator assembly, a NaI(Tl)/photomultiplier tube detector, a proprietary digital radiation instrument, a coaxially mounted video camera, a digital compass, and both local and remote control computers with a user interface designed for long range operations. Long range sensitivity and target location, as well as close range sample selection performance are presented.

  1. Dynamic range multiwavelength particle characterization using analytical ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Walter, Johannes; Peukert, Wolfgang

    2016-03-01

    We demonstrate how a sophisticated data analysis methodology enables us to perform multiwavelength evaluations of dynamic rotor speed gradient experiments obtained by analytical ultracentrifugation equipped with a multiwavelength detector. Our data evaluation tool HDR-MULTIFIT allows for the accurate analysis of sedimentation coefficient distributions which can be converted to particle size distributions. By means of multiwavelength evaluation, species dependent extinction spectra can be determined even for complex mixtures. Moreover, optical and hydrodynamic properties can be correlated for spherical particles of known optical properties applying multiwavelength evaluation and Mie's theory leading to a significant increase in the dynamic range of the experiment. We provide the theoretical background about the operation principle of our methodology and compare the performance of the multiwavelength analysis to the conventional single wavelength analysis as it is applied in turbidity analysis. We validate our technique using NIST traceable reference particles and show that our technique is universally applicable to materials of known and unknown optical properties, thus clearly extending the possibilities of particle analysis.

  2. Silicon field-effect transistors as radiation detectors for the Sub-THz range

    SciTech Connect

    But, D. B. Golenkov, O. G.; Sakhno, N. V.; Sizov, F. F.; Korinets, S. V.; Gumenjuk-Sichevska, J. V.; Reva, V. P.; Bunchuk, S. G.

    2012-05-15

    The nonresonance response of silicon metal-oxide-semiconductor field-effect transistors (Si-MOSFETs) with a long channel (1-20 {mu}m) to radiation in the frequency range 43-135 GHz is studied. The transistors are fabricated by the standard CMOS technology with 1-{mu}m design rules. The volt-watt sensitivity and the noise equivalent power (NEP) for such detectors are estimated with the calculated effective area of the detecting element taken into account. It is shown that such transistors can operate at room temperature as broadband direct detectors of sub-THz radiation. In the 4-5 mm range of wavelengths, the volt-watt sensitivity can be as high as tens of kV/W and the NEP can amount to 10{sup -11} - 10{sup -12}W/{radical}Hz . The parameters of detectors under study can be improved by the optimization of planar antennas.

  3. Detectors for in vivo range and dose verification in proton therapy

    NASA Astrophysics Data System (ADS)

    Alarcon, R.; Blyth, D.; Galyaev, E.; Holmes, J.; Ice, L.; Randall, G.; Bues, M.; Fatyga, M.

    2016-09-01

    Particle detection instrumentation to address the in vivo verifications of proton dose and range is under development as part of a proton therapy research program focused on patient quality assurance. For in vivo proton range verification, a collimated gamma detector array is under construction to indirectly measure the position of the Bragg peak for each proton beam spot to within 1-2 mm precision. For dose flux verification, a proton fluence detector based on the technology of the Micromegas is under construction. This detector has an active area of about 100 cm2, coordinate resolution of better than 1 mm, and handling of incident proton beam fluxes of 109-1013 particles/s.

  4. Saturation and Dynamic Range of Microchannel Plate-Based X-Ray Imagers

    SciTech Connect

    ,

    2012-05-04

    This paper describes recent advances in Monte Carlo simulations of microchannel plate (MCP)–based x-ray detectors, a continuation of ongoing work in this area. A Monte Carlo simulation model has been developed over the past several years by National Security Technologies, LLC (NSTec). The model simulates the secondary electron emission process in an MCP pore and includes the effects of gain saturation. In this work we focus on MCP gain saturation and dynamic range. We have performed modeling and experimental characterizations of L/D = 46, 10-micron diameter, MCP-based detectors. The detectors are typically operated by applying a subnanosecond voltage pulse, which gates the detector on. Agreement between the simulations and experiment is very good for a variety of voltage pulse waveforms ranging in width from 150 to 300 ps. The results indicate that such an MCP begins to show nonlinear gain around 5 × 10^4 electrons per pore and hard saturation around 105 electrons per pore. The simulations show a difference in MCP sensitivity vs voltage for high flux of photons producing large numbers of photoelectrons on a subpicosecond timescale. Simulations and experiments both indicate an MCP dynamic range of 1 to 10,000, and the dynamic range depends on how the voltage is applied.

  5. High dynamic range imaging for the detection of motion

    NASA Astrophysics Data System (ADS)

    Hay, Jeffrey Robert

    High dynamic range imaging involves imaging at a bit depth higher than the typical 8-12 bits offered by standard video equipment. We propose a method of imaging a scene at high dynamic range, 14+ bits, to detect motion correlated with changes in the measured optical signal. Features within a scene, namely edges, can be tracked through a time sequence and produce a modulation in light levels associated with the edge moving across a region being sampled by the detector. The modulation in the signal is analyzed and a model is proposed that allows for an absolute measurement of the displacement of an edge. In addition, turbulence present in the received optical path produces a modulation in the received signal that can be directly related to the various turbulent eddy sizes. These features, present in the low frequency portion of the spectrum, are correlated to specific values for a relative measurement of the turbulence intensity. In some cases a single element sensor is used for a measurement at a single point. Video technology is also utilized to produce simultaneous measurements across the entire scene. Several applications are explored and the results discussed. Key applications include: the use of this technique to analyze the motions of bridges for the assessment of structural health, non-contact methods of measuring the blood pulse waveform and respiration rate of an individual(s), and the imaging of turbulence, including clear air turbulence, for relative values of intensity. Resonant frequencies of bridges can be measured with this technique as well as eddies formed from turbulent flow.

  6. Displacement response, detection limit, and dynamic range of fiber-optic lever sensors

    NASA Technical Reports Server (NTRS)

    He, Gang; Cuomo, Frank W.

    1991-01-01

    The authors present the evaluation of the displacement response, detection limit, and dynamic range of fiber-optic lever sensors in a general format to establish their dependence on fiber sizes, optoelectronic detector specifications, input power, and other relevant parameters. The formations for the normalized reflected optical power change are derived for the evaluation of the optimal sensor response, the linearity range, and the minimum detectable displacement. The theoretical models are verified by an experiment which determines sensor response, modulation index, reflected optical power change, and linear response range through dynamic measurement. The application of this theoretical model to the study of a fiber-optic microphone for acoustic pressure detection is considered.

  7. Displacement response, detection limit, and dynamic range of fiber-optic lever sensors

    NASA Technical Reports Server (NTRS)

    He, Gang; Cuomo, Frank W.

    1991-01-01

    The authors present the evaluation of the displacement response, detection limit, and dynamic range of fiber-optic lever sensors in a general format to establish their dependence on fiber sizes, optoelectronic detector specifications, input power, and other relevant parameters. The formations for the normalized reflected optical power change are derived for the evaluation of the optimal sensor response, the linearity range, and the minimum detectable displacement. The theoretical models are verified by an experiment which determines sensor response, modulation index, reflected optical power change, and linear response range through dynamic measurement. The application of this theoretical model to the study of a fiber-optic microphone for acoustic pressure detection is considered.

  8. Extension of the Focusable Mass Range in Distance-of-Flight Mass Spectrometry with Multiple Detectors

    SciTech Connect

    Gundlach-Graham, Alexander W.; Dennis, Elise; Ray, Steven J.; Enke, Christie G.; Carado, Anthony J.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2012-11-15

    Since the underlying theory of Distance-of-Flight Mass Spectrometry (DOFMS) was reported in 2007,[1] laboratory results[2, 3] have proven its practical viability. However, these previous implementations of DOFMS considered ion detection only over narrow DOF-detection windows, with 25-mm being the greatest detection length explored. These small mass windows cannot be used to evaluate how DOFMS focusing performs over greater DOF detection lengths and mass ranges. In the present study, we expand on previous studies by placing two spatially selective ion detectors along the detection plane of the DOFMS instrument. Ion signals are simultaneously collected from both DOF detectors in order to simulate DOFMS performance with a longer spatially selective ion detector.

  9. Noise and dynamical gain studies of GaAs photoconductive detectors

    NASA Astrophysics Data System (ADS)

    Vilcot, J. P.; Decoster, D.; Raczy, L.; Constant, M.

    1984-03-01

    Noise mesurements on N-type GaAs planar photoconductive detectors have been made over the 10 MHz-1.5 GHz frequency range. The dynamical gains of the devices were calculated from noise data and compared with the values obtained using picosecond measurements. In the gigahertz frequency domain, the photodetectors have an internal current gain as observed in the avalanche photodiodes, but no excess factor has been found.

  10. Conductance measurement circuit with wide dynamic range

    NASA Technical Reports Server (NTRS)

    Mount, Bruce E. (Inventor); Von Esch, Myron (Inventor)

    1994-01-01

    A conductance measurement circuit to measure conductance of a solution under test with an output voltage proportional to conductance over a 5-decade range, i.e., 0.01 uS to 1000 uS or from 0.1 uS to 10,000 uS. An increase in conductance indicates growth, or multiplication, of the bacteria in the test solution. Two circuits are used each for an alternate half-cycle time periods of an alternate squarewave in order to cause alternate and opposite currents to be applied to the test solution. The output of one of the two circuits may be scaled for a different range optimum switching frequency dependent upon the solution conductance and to enable uninterrupted measurement over the complete 5-decade range. This circuitry provides two overlapping ranges of conductance which can be read simultaneously without discontinuity thereby eliminating range switching within the basic circuitry. A VCO is used to automatically change the operating frequency according to the particular value of the conductance being measured, and comparators indicate which range is valid and also facilitate computer-controlled data acquisition. A multiplexer may be used to monitor any number of solutions under test continuously.

  11. High resolution Cerenkov and range detectors for balloon-borne cosmic-ray experiment

    NASA Technical Reports Server (NTRS)

    Ahlen, S. P.; Cartwright, B. G.; Tarle, G.

    1975-01-01

    A combination of an active Cerenkov detector and passive range detectors is proposed for the high resolution measurement of isotopic composition in the neighborhood of iron in the galactic cosmic rays. A large area (4,300 sq cm) Cerenkov counter and passive range detectors were tested. Tests with heavy ions (2.1 GeV/amu C-12, 289 MeV/amu Ar-40, and 594 MeV/amu Ne-20) revealed the spatial uniformity of response of the Cerenkov counter to be better than 1% peak-to-peak. Light collection efficiency is independent of projectile energy and incidence angle to within at least 0.5%. Passive Lexan track recorders to measure range in the presence of the nuclear interaction background which results from stopping particles through 0.9 interaction lengths of matter were also tested. It was found that nuclear interactions produce an effective range straggling distribution only approximately 75% wider than that expected from range straggling alone. The combination of these tested techniques makes possible high mass resolution in the neighborhood of iron.

  12. Servomotor and Controller Having Large Dynamic Range

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Howard, David E.; Smith, Dennis A.; Dutton, Ken; Paulson, M. Scott

    2007-01-01

    A recently developed micro-commanding rotational-position-control system offers advantages of less mechanical complexity, less susceptibility to mechanical resonances, less power demand, less bulk, less weight, and lower cost, relative to prior rotational-position-control systems based on stepping motors and gear drives. This system includes a digital-signal- processor (DSP)-based electronic controller, plus a shaft-angle resolver and a servomotor mounted on the same shaft. Heretofore, micro-stepping has usually been associated with stepping motors, but in this system, the servomotor is micro-commanded in response to rotational-position feedback from the shaft-angle resolver. The shaft-angle resolver is of a four-speed type chosen because it affords four times the resolution of a single-speed resolver. A key innovative aspect of this system is its position-feedback signal- conditioning circuits, which condition the resolver output signal for multiple ranges of rotational speed. In the preferred version of the system, two rotational- speed ranges are included, but any number of ranges could be added to expand the speed range or increase resolution in particular ranges. In the preferred version, the resolver output is conditioned with two resolver-to-digital converters (RDCs). One RDC is used for speeds from 0.00012 to 2.5 rpm; the other RDC is used for speeds of 2.5 to 6,000 rpm. For the lower speed range, the number of discrete steps of RDC output per revolution was set at 262,144 (4 quadrants at 16 bits per quadrant). For the higher speed range, the number of discrete steps per revolution was set at 4,096 (4 quadrants at 10 bits per quadrant).

  13. Determining the dynamic range of MCPs based on pore size and strip current

    NASA Astrophysics Data System (ADS)

    Hunt, C.; Adrian, M. L.; Herrero, F.; James, P.; Jones, H. H.; Rodriguez, M.; Roman, P.; Shappirio, M.

    2010-12-01

    Micro-Channel Plates (MCPs) are used as detectors for almost all detectors measuring particles (both ions, electrons and neutrals) below 30 keV. Recent advances in the manufacturing technology of the MCPs have increased the number of options one has when selecting plates for an instrument. But it is not clear how many of these options affect the performance of the MCPs. In particular the dynamic range is not a clear cut calculation to make from the strip current. There is also some evidence that pore size and coating play a role. We measured the dynamic range and pulse height distribution of MCPs detector chevron stacks with a wide variety of strip currents from the low “normal” range in the EDR range. We also looked at the effects of varying the pore size from 25 microns to 10 microns, partial plating of the MCP surface and coating one surface on each MCP with gold rather than the standard zinc chromium. We will show how the dynamic range and pulse height distributions vary vs. strip current, pore size, and surface plating configurations.

  14. Inertial Range Dynamics in Boussinesq Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert

    1996-01-01

    L'vov and Falkovich have shown that the dimensionally possible inertial range scaling laws for Boussinesq turbulence, Kolmogorov and Bolgiano scaling, describe steady states with constant flux of kinetic energy and of entropy respectively. These scaling laws are treated as similarity solutions of the direct interaction approximation for Boussinesq turbulence. The Kolmogorov scaling solution corresponds to a weak perturbation by gravity of a state in which the temperature is a passive scalar but in which a source of temperature fluctuations exists. Using standard inertial range balances, the renormalized viscosity and conductivity, turbulent Prandtl number, and spectral scaling law constants are computed for Bolgiano scaling.

  15. Radon monitoring using long-range alpha detector-based technology

    SciTech Connect

    Bolton, R.D.

    1994-11-01

    Long-Range Alpha Detector (LRAD) technology is being studied for monitoring radon gas concentrations. LRAD-based instruments collect and measure the ionization produced in air by alpha decays. These ions can be moved to a collection grid via electrostatic ion-transport design collected approximately 95% of the radon produced ions, while instruments using an airflow transport design collected from 44% to 77% of these ions, depending on detector geometry. The current produced by collecting this ionization is linear with respect to {sup 222}Rn concentration over the available test range of 0.07 to 820 pCi/L. In the absence of statistical limitations due to low radon concentrations, the speed of response of LRAD-based instruments is determined by the air exchange rate, and therefore changes in radon concentration can be detected in just a few seconds. Recent tests show that at radon concentrations below 20 pCi/L current pulses produced by individual alpha decays can be counted, thus improving detector sensitivity and stability even further. Because these detectors are simple, rugged, and do not consume much power, they are natural candidates for portable, battery operation.

  16. A range extender hybrid electric vehicle dynamic model

    SciTech Connect

    Powell, B.K.; Pilutti, T.E.

    1994-12-31

    This paper describes a dynamic model possessing the key system components of a Range Extender Hybrid Electric Vehicle. The model is suitable for dynamic analysis, control law synthesis, and prototype simulation.

  17. Research on high dynamic range information capture of GEO camera

    NASA Astrophysics Data System (ADS)

    Huang, Sijie; Chen, Fansheng; Gong, Xueyi

    2014-07-01

    A high dynamic range imaging method of GEO staring imaging is proposed based on radiance simulation of GEO remote sensing targets and analysis of foreign and domestic remote sensing payload characteristics. Due to the high temporal resolution of GEO staring imaging, multiple exposure method is used and image sequences are captured with different integration times; Then a high dynamic range image is obtained after fusion with the contrast of neighborhood pixel values being the weighting factor. Finally experiments are done in lab with visible plane array 2048*2048 imaging system for verifying multiple exposure test. It can be proved that using multiple exposure capture fusion method can obtain an 11 bit high dynamic range image. The essence of the method is that it sacrifices time resolution in exchange for high dynamic range, which overcomes the defect of small dynamic range of single exposure and is of practical significance in terms of GEO high dynamic range information capture.

  18. A detector based on silica fibers for ion beam monitoring in a wide current range

    NASA Astrophysics Data System (ADS)

    Auger, M.; Braccini, S.; Carzaniga, T. S.; Ereditato, A.; Nesteruk, K. P.; Scampoli, P.

    2016-03-01

    A detector based on doped silica and optical fibers was developed to monitor the profile of particle accelerator beams of intensity ranging from 1 pA to tens of μA. Scintillation light produced in a fiber moving across the beam is measured, giving information on its position, shape and intensity. The detector was tested with a continuous proton beam at the 18 MeV Bern medical cyclotron used for radioisotope production and multi-disciplinary research. For currents from 1 pA to 20 μA, Ce3+ and Sb3+ doped silica fibers were used as sensors. Read-out systems based on photodiodes, photomultipliers and solid state photomultipliers were employed. Profiles down to the pA range were measured with this method for the first time. For currents ranging from 1 pA to 3 μA, the integral of the profile was found to be linear with respect to the beam current, which can be measured by this detector with an accuracy of ~1%. The profile was determined with a spatial resolution of 0.25 mm. For currents ranging from 5 μA to 20 μA, thermal effects affect light yield and transmission, causing distortions of the profile and limitations in monitoring capabilities. For currents higher than ~1 μA, non-doped optical fibers for both producing and transporting scintillation light were also successfully employed.

  19. High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera Tracking

    NASA Astrophysics Data System (ADS)

    Liss, J.; Dunagan, S. E.; Johnson, R. R.; Chang, C. S.; LeBlanc, S. E.; Shinozuka, Y.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Pistone, K.; Kacenelenbogen, M. S.; Fahey, L.

    2016-12-01

    High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera TrackingThe NASA Ames Sun-photometer-Satellite Group, DOE, PNNL Atmospheric Sciences and Global Change Division, and NASA Goddard's AERONET (AErosol RObotic NETwork) team recently collaborated on the development of a new airborne sunphotometry instrument that provides information on gases and aerosols extending far beyond what can be derived from discrete-channel direct-beam measurements, while preserving or enhancing many of the desirable AATS features (e.g., compactness, versatility, automation, reliability). The enhanced instrument combines the sun-tracking ability of the current 14-Channel NASA Ames AATS-14 with the sky-scanning ability of the ground-based AERONET Sun/sky photometers, while extending both AATS-14 and AERONET capabilities by providing full spectral information from the UV (350 nm) to the SWIR (1,700 nm). Strengths of this measurement approach include many more wavelengths (isolated from gas absorption features) that may be used to characterize aerosols and detailed (oversampled) measurements of the absorption features of specific gas constituents. The Sky Scanning Sun Tracking Airborne Radiometer (3STAR) replicates the radiometer functionality of the AATS-14 instrument but incorporates modern COTS technologies for all instruments subsystems. A 19-channel radiometer bundle design is borrowed from a commercial water column radiance instrument manufactured by Biospherical Instruments of San Diego California (ref, Morrow and Hooker)) and developed using NASA funds under the Small Business Innovative Research (SBIR) program. The 3STAR design also incorporates the latest in robotic motor technology embodied in Rotary actuators from Oriental motor Corp. having better than 15 arc seconds of positioning accuracy. Control system was designed, tested and simulated using a Hybrid-Dynamical modeling methodology. The design also replaces the classic quadrant detector tracking sensor with a

  20. SU-E-T-641: Proton Range Measurements Using a Geometrically Calibrated Liquid Scintillator Detector

    SciTech Connect

    Hui, C; Robertson, D; Alsanea, F; Beddar, S

    2015-06-15

    Purpose: The purpose of this work is to develop a geometric calibration method to accurately calculate physical distances within a liquid scintillator detector and to assess the accuracy, consistency, and robustness of proton beam range measurements when using a liquid scintillator detector system with the proposed geometric calibration process. Methods: We developed a geometric calibration procedure to accurately convert pixel locations in the camera frame into physical locations in the scintillator frame. To ensure accuracy, the geometric calibration was performed before each experiment. The liquid scintillator was irradiated with spot scanning proton beams of 94 energies in two deliveries. A CCD camera was used to capture the two-dimensional scintillation light profile of each of the proton energies. An algorithm was developed to automatically calculate the proton range from the acquired images. The measured range was compared to the nominal range to assess the accuracy of the detector. To evaluate the robustness of the detector between each setup, the experiments were repeated on three different days. To evaluate the consistency of the measurements between deliveries, three sets of measurements were acquired for each experiment. Results: Using this geometric calibration procedure, the proton beam ranges measured using the liquid scintillator system were all within 0.3mm of the nominal range. The average difference between the measured and nominal ranges was −0.20mm. The delivery-to-delivery standard deviation of the proton range measurement was 0.04mm, and the setup-to-setup standard deviation of the measurement was 0.10mm. Conclusion: The liquid scintillator system can measure the range of all 94 beams in just two deliveries. With the proposed geometric calibration, it can measure proton range with sub-millimeter accuracy, and the measurements were shown to be consistent between deliveries and setups. Therefore, we conclude that the liquid scintillator

  1. Dynamic range measurement and calibration of SiPMs

    NASA Astrophysics Data System (ADS)

    Bretz, T.; Hebbeker, T.; Lauscher, M.; Middendorf, L.; Niggemann, T.; Schumacher, J.; Stephan, M.; Bueno, A.; Navas, S.; Ruiz, A. G.

    2016-03-01

    Photosensors have played and will continue to play an important role in high-energy and Astroparticle cutting-edge experiments. As of today, the most common photon detection device in use is the photomultiplier tube (PMT). However, we are witnessing rapid progress in the field and new devices now show very competitive features when compared to PMTs. Among those state-of-the-art photo detectors, silicon photomultipliers (SiPMs) are a relatively new kind of semiconductor whose potential is presently studied by many laboratories. Their characteristics make them a very attractive candidate for future Astroparticle physics experiments recording fluorescence and Cherenkov light, both in the atmosphere and on the ground. Such applications may require the measurement of the light flux on the sensor for the purpose of energy reconstruction. This is a complex task due to the limited dynamic range of SiPMs and the presence of thermal and correlated noise. In this work we study the response of three SiPM types in terms of delivered charge when exposed to light pulses in a broad range of intensities: from single photon to saturation. The influence of the pulse time duration and the SiPM over-voltage on the response are also quantified. Based on the observed behaviour, a method is presented to reconstruct the real number of photons impinging on the SiPM surface directly from the measured SiPM charge. A special emphasis is placed on the description of the methodology and experimental design used to perform the measurements.

  2. Logarithmic circuit with wide dynamic range

    NASA Technical Reports Server (NTRS)

    Wiley, P. H.; Manus, E. A. (Inventor)

    1978-01-01

    A circuit deriving an output voltage that is proportional to the logarithm of a dc input voltage susceptible to wide variations in amplitude includes a constant current source which forward biases a diode so that the diode operates in the exponential portion of its voltage versus current characteristic, above its saturation current. The constant current source includes first and second, cascaded feedback, dc operational amplifiers connected in negative feedback circuit. An input terminal of the first amplifier is responsive to the input voltage. A circuit shunting the first amplifier output terminal includes a resistor in series with the diode. The voltage across the resistor is sensed at the input of the second dc operational feedback amplifier. The current flowing through the resistor is proportional to the input voltage over the wide range of variations in amplitude of the input voltage.

  3. The CAOS camera platform: ushering in a paradigm change in extreme dynamic range imager design

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.

    2017-02-01

    Multi-pixel imaging devices such as CCD, CMOS and Focal Plane Array (FPA) photo-sensors dominate the imaging world. These Photo-Detector Array (PDA) devices certainly have their merits including increasingly high pixel counts and shrinking pixel sizes, nevertheless, they are also being hampered by limitations in instantaneous dynamic range, inter-pixel crosstalk, quantum full well capacity, signal-to-noise ratio, sensitivity, spectral flexibility, and in some cases, imager response time. Recently invented is the Coded Access Optical Sensor (CAOS) Camera platform that works in unison with current Photo-Detector Array (PDA) technology to counter fundamental limitations of PDA-based imagers while providing high enough imaging spatial resolution and pixel counts. Using for example the Texas Instruments (TI) Digital Micromirror Device (DMD) to engineer the CAOS camera platform, ushered in is a paradigm change in advanced imager design, particularly for extreme dynamic range applications.

  4. Intercomparison of experimental and theoretical ranges of heavy ions in plastic track detectors

    NASA Astrophysics Data System (ADS)

    Virk, H. S.; Randhawa, G. S.; Sharma, S. K.

    1996-01-01

    In the present study, CR-39 and Lexan polycarbonate plastic track detectors have been exposed to various heavy ion beams, i.e. ,238U, b,208Pb, u,197Au, a,139La, e132Xe and b93Nb (energy range from 5.6 to 18.0 MeV/u), from the UNILAC accelerator at GSI, Darmstadt. After exposure, the irradiated samples were etched under optimum etching conditions. The total etchable ranges of these heavy ions have been determined experimentally using a Carl Zeiss binocular microscope. In order to check the validity of the various stopping power and range formulations in this energy range, the experimentally determined range values have been compared with the theoretically computed values from the Benton and Henke, Mukherjee and Nayak, Ziegler et al. and Hubert et al. formulations.

  5. Short range laser obstacle detector. [for surface vehicles using laser diode array

    NASA Technical Reports Server (NTRS)

    Kuriger, W. L. (Inventor)

    1973-01-01

    A short range obstacle detector for surface vehicles is described which utilizes an array of laser diodes. The diodes operate one at a time, with one diode for each adjacent azimuth sector. A vibrating mirror a short distance above the surface provides continuous scanning in elevation for all azimuth sectors. A diode laser is synchronized with the vibrating mirror to enable one diode laser to be fired, by pulses from a clock pulse source, a number of times during each elevation scan cycle. The time for a given pulse of light to be reflected from an obstacle and received is detected as a measure of range to the obstacle.

  6. A single-photon detector in the far-infrared range

    PubMed

    Komiyama; Astafiev; Antonov; Kutsuwa; Hirai

    2000-01-27

    The far-infrared region (wavelengths in the range 10 microm-1 mm) is one of the richest areas of spectroscopic research, encompassing the rotational spectra of molecules and vibrational spectra of solids, liquids and gases. But studies in this spectral region are hampered by the absence of sensitive detectors--despite recent efforts to improve superconducting bolometers, attainable sensitivities are currently far below the level of single-photon detection. This is in marked contrast to the visible and near-infrared regions (wavelengths shorter than about 1.5 microm), in which single-photon counting is possible using photomultiplier tubes. Here we report the detection of single far-infrared photons in the wavelength range 175-210 microm (6.0-7.1 meV), using a single-electron transistor consisting of a semiconductor quantum dot in high magnetic field. We detect, with a time resolution of a millisecond, an incident flux of 0.1 photons per second on an effective detector area of 0.1 mm2--a sensitivity that exceeds previously reported values by a factor of more than 10(4). The sensitivity is a consequence of the unconventional detection mechanism, in which one absorbed photon leads to a current of 10(6)-10(12) electrons through the quantum dot. By contrast, mechanisms of conventional detectors or photon assisted tunnelling in single-electron transistors produce only a few electrons per incident photon.

  7. A full range detector for the HIRRBS high resolution RBS magnetic spectrometer

    SciTech Connect

    Skala, Wayne G.; Haberl, Arthur W.; Bakhru, Hassaram; Lanford, William

    2013-04-19

    The UAlbany HIRRBS (High Resolution RBS) system has been updated for better use in rapid analysis. The focal plane detector now covers the full range from U down to O using a linear stepper motor to translate the 1-cm detector across the 30-cm range. Input is implemented with zero-back-angle operation in all cases. The chamber has been modified to allow for quick swapping of sample holders, including a channeling goniometer. A fixed standard surface-barrier detector allows for normal RBS simultaneously with use of the magnetic spectrometer. The user can select a region on the standard spectrum or can select an element edge or an energy point for collection of the expanded spectrum portion. The best resolution currently obtained is about 2-to-3 keV, probably representing the energy width of the incoming beam. Calibration is maintained automatically for any spectrum portion and any beam energy from 1.0 to 3.5 MeV. Element resolving power, sensitivity and depth resolution are shown using several examples. Examples also show the value of simultaneous conventional RBS.

  8. Dynamic range studies and improvements for multiplexed photonic Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Miller, Edward Kirk; Lee, Kevin; Larson, Eric; Daykin, Edward

    2017-01-01

    We present studies of the dynamic range achievable with multiplexed photonic Doppler velocimetry (MPDV) measurements, and we demonstrate some techniques to extend the dynamic range. Improved dynamic range for MPDV measurements is needed in order to track the velocity of the free surface behind a cloud of ejecta, so we have undertaken theoretical and experimental studies of factors affecting dynamic range, particularly in cases where the large number of MPDV probe points precludes high illumination power on each channel. To quantify the potential dynamic range of a given MPDV configuration, we introduce a metric called the frequency-domain number of bits, FNOB, which is less stringent than the formally defined equivalent number of bits (ENOB). This new metric is simple to compute in the lab, and it is well suited to conventional PDV analysis, which does not require digitizer phase coherence beyond tens of nanoseconds.

  9. True coincidence summing corrections for an extended energy range HPGe detector

    SciTech Connect

    Venegas-Argumedo, Y.; Montero-Cabrera, M. E.

    2015-07-23

    True coincidence summing (TCS) effect for natural radioactive families of U-238 and Th-232 represents a problem when an environmental sample with a close source-detector geometry measurement is performed. By using a certified multi-nuclide standard source to calibrate an energy extended range (XtRa) HPGe detector, it is possible to obtain an intensity spectrum slightly affected by the TCS effect with energies from 46 to 1836 keV. In this work, the equations and some other considerations required to calculate the TCS correction factor for isotopes of natural radioactive chains are described. It is projected a validation of the calibration, performed with the IAEA-CU-2006-03 samples (soil and water)

  10. Wide Dynamic Range Front-end Electronics for Beam Current and Position Measurement

    SciTech Connect

    Rawnsley, W. R.; Potter, R. J.; Verzilov, V. A.; Root, L.

    2006-11-20

    An Analog Devices log detector, AD8306, and a Digital Signal Processor (DSP), ADSP-21992, have been found useful for building wide dynamic range, accurate and inexpensive front-end electronics to measure and process the RF signals from TRIUMF's beam monitors. The high-precision log detector has a useful dynamic range of over 100 dB. The 160 MHz mixed-signal DSP is used to digitize the log detector output, linearize it via a lookup table, perform temperature compensation, and remove the variable duty cycle 1 kHz pulse structure of the beam. This approach has been applied to two types of devices in a 500 MeV proton beamline. The 0.1% DC to CW total current monitor is based on a capacitive pickup resonant at 46.11 MHz, the second harmonic of the bunch frequency. The DSP software provides low pass filtering, calculates the antilog of the data and passes the output to a CAMAC input register. The BPM electronics process data from inductive pickup loops. The DSP controls a GaAs switch which multiplexes signals from four adjacent pickups to a single log detector. The DSP performs difference-over-sum or log-ratio data analysis along with averaging over an arbitrary number of samples.

  11. Cryocooled terahertz photoconductive detector system with background-limited performance in 1.5–4 THz frequency range

    SciTech Connect

    Aoki, Makoto; Hiromoto, Norihisa

    2015-10-15

    We describe a 4-K-cryocooled dual-band terahertz (THz) photoconductive detector system with background-limited performance. The detector system comprises two THz photoconductive detectors covering a response in a wide frequency range from 1.5 to 4 THz, low noise amplifiers, optical low-pass filters to eliminate input radiation of higher frequencies, and a mechanical 4 K Gifford-McMahon refrigerator that provides practical and convenient operation without a liquid He container. The electrical and optical performances of the THz detector system were evaluated at a detector temperature of 4 K under 300 K background radiation. We proved that the detector system can achieve background-limited noise-equivalent-power on the order of 10{sup −14} W/Hz{sup 1/2} in the frequency range from 1.5 to 4 THz even if the vibration noise of the mechanical refrigerator is present.

  12. Cryocooled terahertz photoconductive detector system with background-limited performance in 1.5-4 THz frequency range

    NASA Astrophysics Data System (ADS)

    Aoki, Makoto; Hiromoto, Norihisa

    2015-10-01

    We describe a 4-K-cryocooled dual-band terahertz (THz) photoconductive detector system with background-limited performance. The detector system comprises two THz photoconductive detectors covering a response in a wide frequency range from 1.5 to 4 THz, low noise amplifiers, optical low-pass filters to eliminate input radiation of higher frequencies, and a mechanical 4 K Gifford-McMahon refrigerator that provides practical and convenient operation without a liquid He container. The electrical and optical performances of the THz detector system were evaluated at a detector temperature of 4 K under 300 K background radiation. We proved that the detector system can achieve background-limited noise-equivalent-power on the order of 10-14 W/Hz1/2 in the frequency range from 1.5 to 4 THz even if the vibration noise of the mechanical refrigerator is present.

  13. Uncalibrated stereo rectification and disparity range stabilization: a comparison of different feature detectors

    NASA Astrophysics Data System (ADS)

    Luo, Xiongbiao; Jayarathne, Uditha L.; McLeod, A. Jonathan; Pautler, Stephen E.; Schlacta, Christopher M.; Peters, Terry M.

    2016-03-01

    This paper studies uncalibrated stereo rectification and stable disparity range determination for surgical scene three-dimensional (3-D) reconstruction. Stereoscopic endoscope calibration sometimes is not available and also increases the complexity of the operating-room environment. Stereo from uncalibrated endoscopic cameras is an alternative to reconstruct the surgical field visualized by binocular endoscopes within the body. Uncalibrated rectification is usually performed on the basis of a number of matched feature points (semi-dense correspondence) between the left and the right images of stereo pairs. After uncalibrated rectification, the corresponding feature points can be used to determine the proper disparity range that helps to improve the reconstruction accuracy and reduce the computational time of disparity map estimation. Therefore, the corresponding or matching accuracy and robustness of feature point descriptors is important to surgical field 3-D reconstruction. This work compares four feature detectors: (1) scale invariant feature transform (SIFT), (2) speeded up robust features (SURF), (3) affine scale invariant feature transform (ASIFT), and (4) gauge speeded up robust features (GSURF) with applications to uncalibrated rectification and stable disparity range determination. We performed our experiments on surgical endoscopic video images that were collected during robotic prostatectomy. The experimental results demonstrate that ASIFT outperforms other feature detectors in the uncalibrated stereo rectification and also provides a stable stable disparity range for surgical scene reconstruction.

  14. Monolithic single-photon detectors and time-to-digital converters for picoseconds time-of-flight ranging

    NASA Astrophysics Data System (ADS)

    Markovic, Bojan; Tisa, Simone; Tosi, Alberto; Zappa, Franco

    2011-03-01

    We present a novel "smart-pixel" able to measure and record in-pixel the time delay (photon timing) between a START (e.g. given by laser excitation, cell stimulus, or LIDAR flash) and a STOP (e.g. arrival of the first returning photon from the fluorescence decay signal or back reflection from an object). Such smart-pixel relies of a SPAD detector and a Timeto- Digital Converter monolithically designed and manufactured in the same chip. Many pixels can be laid out in a rows by columns architecture, to give birth to expandable 2D imaging arrays for picoseconds-level single-photon timing applications. Distance measurements, by means of direct TOF detection (used in LIDAR systems) provided by each pixel, can open the way to the fabrication of single-chip 3D ranging arrays for scene reconstruction and intelligent object recognition. We report on the design and characterization of prototype circuits, fabricated in a 0.35 μm standard CMOS technology containing complete conversion channels, "smart-pixel" and ancillary electronics with 20 μm active area diameter SPAD detector and related quenching circuitry. With a 100 MHz reference clock, the TDC provides timeresolution of 10 ps, dynamic range of 160 ns and very high conversion linearity.

  15. A wide dynamic range x-ray streak camera system

    SciTech Connect

    Niu Lihong; Yang Qinlao; Niu Hanben; Liao Hua; Zhou Junlan; Ding Yunkun

    2008-02-15

    An x-ray streak camera with wide dynamic range and a large slit photocathode of 30 mm length has been developed and calibrated. In order to achieve wide dynamic range, a conventional streak tube has been improved and the camera system has been designed without microchannel plate electron amplifier. As a result, a dynamic range of 922 is achieved in a single shot mode with laser pulse of 30 ps (full width at half maximum) at time resolution of better than 31 ps.

  16. SCD's uncooled detectors and video engines for a wide-range of applications

    NASA Astrophysics Data System (ADS)

    Fraenkel, A.; Mizrahi, U.; Bikov, L.; Giladi, A.; Shiloah, N.; Elkind, S.; Kogan, I.; Maayani, S.; Amsterdam, A.; Vaserman, I.; Duman, O.; Hirsh, Y.; Schapiro, F.; Tuito, A.; Ben-Ezra, M.

    2011-06-01

    Over the last decade SCD has established a state of the art VOx μ-Bolometer product line. Due to its overall advantages this technology is penetrating a large range of systems. In addition to a large variety of detectors, SCD has also recently introduced modular video engines with an open architecture. In this paper we will describe the versatile applications supported by the products based on 17μm pitch: Low SWaP short range systems, mid range systems based on VGA arrays and high-end systems that will utilize the XGA format. These latter systems have the potential to compete with cooled 2nd Gen scanning LWIR arrays, as will be demonstrated by TRM3 system level calculations.

  17. Trap with ultracold neutrons as a detector of dark matter with long-range forces

    SciTech Connect

    Serebrov, A. P. Zherebtsov, O. M.

    2011-12-15

    The possibility of using a trap with ultracold neutrons (UCNs) as a detector of dark matter particles with long-range forces is considered. The main advantage of this method is the possibility of detecting recoil energies {approx}10{sup -7} eV. The limitations on the parameters of the interaction potential in the form {Psi}=ae{sup -r/b}/r between dark matter particles and neutrons at different values of the dark matter density on the Earth are represented. It is shown that the suggestion about the long-range character of the interaction between dark matter particles leads to a significant increase in the elastic scattering cross section at low energies. As a consequence, dark matter can be captured and accumulated by the terrestrial gravitational field. The first experimental limitations on the existence of long-range dark matter on the Earth are presented.

  18. Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging.

    PubMed

    Li, Hao; Chen, Sijing; You, Lixing; Meng, Wengdong; Wu, Zhibo; Zhang, Zhongping; Tang, Kai; Zhang, Lu; Zhang, Weijun; Yang, Xiaoyan; Liu, Xiaoyu; Wang, Zhen; Xie, Xiaoming

    2016-02-22

    Superconducting nanowire single-photon detectors (SNSPDs) at a wavelength of 532 nm were designed and fabricated aiming to satellite laser ranging (SLR) applications. The NbN SNSPDs were fabricated on one-dimensional photonic crystals with a sensitive-area diameter of 42 μm. The devices were coupled with multimode fiber (ϕ = 50 μm) and exhibited a maximum system detection efficiency of 75% at an extremely low dark count rate of <0.1 Hz. An SLR experiment using an SNSPD at a wavelength of 532 nm was successfully demonstrated. The results showed a depth ranging with a precision of ~8.0 mm for the target satellite LARES, which is ~3,000 km away from the ground ranging station at the Sheshan Observatory.

  19. Lithium fluoride detectors for recording gamma rays over a wide dose range

    SciTech Connect

    Erkin, V.G.; Persinen, A.A.

    1987-02-01

    The authors have combined thermoluminescent and spectrophotometric methods to measure doses in the range 1 x 10/sup -4/ to 6 x 10/sup 5/ Gy with DTG-4 detectors of diameter 5 mm and thickness 1 mm. We used a /sup 60/Co or /sup 137/Cs source (doses 10/sup -4/-10 Gy), as well as an MRKh-..gamma..-20 apparatus (doses of 10/sup 2/-6 x 10/sup 5/ Gy). The gamma doses were monitored with a set of ionization chambers in the VA-J-18 apparatus as well as with ferrous sulfate dosemeters. The light sum was recorded over the range 20-200/sup 0/C with a Harshaw model 2000-D instrument and with a KDT-1. The optical absorption spectra were measured with an SF-26 spectrophotometer over the range 200-600 nm. The detectors were irradiated in batches of five for each dose in plastic cassettes providing obedience to the electron-equilibrium conditions.

  20. Radioactive source localization inside pipes using a long-range alpha detector

    NASA Astrophysics Data System (ADS)

    Wu, Xue-Mei; Tuo, Xian-Guo; Li, Zhe; Liu, Ming-Zhe; Zhang, Jin-Zhao; Dong, Xiang-Long; Li, Ping-Chuan

    2013-08-01

    Long-range alpha detectors (LRADs) are attracting much attention in the decommissioning of nuclear facilities because of some problems in obtaining source positions on an interior surface during pipe decommissioning. By utilizing the characteristic that LRAD detects alphas by collecting air-driving ions, this article applies a method to localize the radioactive source by ions' fluid property. By obtaining the ion travel time and the airspeed distribution in the pipe, the source position can be determined. Thus this method overcomes the ion's lack of periodic characteristics. Experimental results indicate that this method can approximately localize the source inside the pipe. The calculation results are in good agreement with the experimental results.

  1. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  2. Dynamics of Quantum Matter with Long-Range Entanglement

    DTIC Science & Technology

    2013-06-07

    REPORT Final Report: Dynamics of quantum matter with long-range entanglement. 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Recent experiments on...ultracold atoms in optical lattices have opened a remarkable new window on the dynamics of quantum matter with long-range entanglement. The simplest...paradigm of this is the boson superfluid-insulator quantum phase transition in two spatial dimensions. This project will study the theoretical

  3. Reconstructing Interlaced High-Dynamic-Range Video Using Joint Learning.

    PubMed

    Choi, Inchang; Baek, Seung-Hwan; Kim, Min H

    2017-11-01

    For extending the dynamic range of video, it is a common practice to capture multiple frames sequentially with different exposures and combine them to extend the dynamic range of each video frame. However, this approach results in typical ghosting artifacts due to fast and complex motion in nature. As an alternative, video imaging with interlaced exposures has been introduced to extend the dynamic range. However, the interlaced approach has been hindered by jaggy artifacts and sensor noise, leading to concerns over image quality. In this paper, we propose a data-driven approach for jointly solving two specific problems of deinterlacing and denoising that arise in interlaced video imaging with different exposures. First, we solve the deinterlacing problem using joint dictionary learning via sparse coding. Since partial information of detail in differently exposed rows is often available via interlacing, we make use of the information to reconstruct details of the extended dynamic range from the interlaced video input. Second, we jointly solve the denoising problem by tailoring sparse coding to better handle additive noise in low-/high-exposure rows, and also adopt multiscale homography flow to temporal sequences for denoising. We anticipate that the proposed method will allow for concurrent capture of higher dynamic range video frames without suffering from ghosting artifacts. We demonstrate the advantages of our interlaced video imaging compared with the state-of-the-art high-dynamic-range video methods.

  4. Intercomparison of experimental and theoretical ranges of heavy ions in plastic track detectors

    NASA Astrophysics Data System (ADS)

    Randhawa, G. S.; Sharma, S. K.; Virk, H. S.

    1996-01-01

    In the present study, CR-39 and Lexan polycarbonate plastic track detectors have been exposed to various heavy ion beams, i.e. 238U, 208Pb, 197Au, 139La, 132Xe and 93Nb (energy range from 5.6 to 18.0 MeV/u), from the UNILAC accelerator at GSI, Darmstadt. After exposure, the irradiated samples were etched under optimum etching conditions. The total etchable ranges of these heavy ions have been determined experimentally using a Carl Zeiss binocular microscope. In order to check the validity of the various stopping power and range formulations in this energy range, the experimentally determined range values have been compared with theoretically computed values from the Benton and Henke [Nucl. Instr. and Meth. 67 (1969) 87], Mukherjee and Nayak [Nucl. Instr. and Meth. 159 (1979) 421], Ziegler et al. [Stopping power and range of ions in solids, vol. 1 (Pergamon, New York, 1985); Nucl. Instr. and Meth. B 35 (1988) 215] and Hubert et al. [Nucl. Instr. and Meth. B 36 (1989) 357] formulations.

  5. Range image segmentation using Zernike moment-based generalized edge detector

    NASA Technical Reports Server (NTRS)

    Ghosal, S.; Mehrotra, R.

    1992-01-01

    The authors proposed a novel Zernike moment-based generalized step edge detection method which can be used for segmenting range and intensity images. A generalized step edge detector is developed to identify different kinds of edges in range images. These edge maps are thinned and linked to provide final segmentation. A generalized edge is modeled in terms of five parameters: orientation, two slopes, one step jump at the location of the edge, and the background gray level. Two complex and two real Zernike moment-based masks are required to determine all these parameters of the edge model. Theoretical noise analysis is performed to show that these operators are quite noise tolerant. Experimental results are included to demonstrate edge-based segmentation technique.

  6. Range image segmentation using Zernike moment-based generalized edge detector

    NASA Technical Reports Server (NTRS)

    Ghosal, S.; Mehrotra, R.

    1992-01-01

    The authors proposed a novel Zernike moment-based generalized step edge detection method which can be used for segmenting range and intensity images. A generalized step edge detector is developed to identify different kinds of edges in range images. These edge maps are thinned and linked to provide final segmentation. A generalized edge is modeled in terms of five parameters: orientation, two slopes, one step jump at the location of the edge, and the background gray level. Two complex and two real Zernike moment-based masks are required to determine all these parameters of the edge model. Theoretical noise analysis is performed to show that these operators are quite noise tolerant. Experimental results are included to demonstrate edge-based segmentation technique.

  7. Optics for long-range camera modules with QWIP 640x480 detectors

    NASA Astrophysics Data System (ADS)

    Johansson, Stefan A.

    2003-09-01

    In airborne applications there is a need for compact long range camera modules to be fitted into gyro-stabilized gimbals. The QWIP 640x480 detector operating in LWIR gives, with its high spatial and thermal resolution, a good performance. For the optics, long range means narrow field of view and long focal length. The challenge is to combine the narrow field of view with two wider fields of view for surveillance and still make it compact. The solution is to fold the optics. This normally gives optics with mounting difficulties, but by keeping the position requirement of each lens element low, the assembly is simplified. Design efforts combined with improved production techniques creates a solution based on diamond turned mirrors, lenses and diffractive elements. Narcissus effects are dealt with by means of customized AR coatings.

  8. Dynamics of range margins for metapopulations under climate change

    PubMed Central

    Anderson, B.J.; Akçakaya, H.R.; Araújo, M.B.; Fordham, D.A.; Martinez-Meyer, E.; Thuiller, W.; Brook, B.W.

    2009-01-01

    We link spatially explicit climate change predictions to a dynamic metapopulation model. Predictions of species' responses to climate change, incorporating metapopulation dynamics and elements of dispersal, allow us to explore the range margin dynamics for two lagomorphs of conservation concern. Although the lagomorphs have very different distribution patterns, shifts at the edge of the range were more pronounced than shifts in the overall metapopulation. For Romerolagus diazi (volcano rabbit), the lower elevation range limit shifted upslope by approximately 700 m. This reduced the area occupied by the metapopulation, as the mountain peak currently lacks suitable vegetation. For Lepus timidus (European mountain hare), we modelled the British metapopulation. Increasing the dispersive estimate caused the metapopulation to shift faster on the northern range margin (leading edge). By contrast, it caused the metapopulation to respond to climate change slower, rather than faster, on the southern range margin (trailing edge). The differential responses of the leading and trailing range margins and the relative sensitivity of range limits to climate change compared with that of the metapopulation centroid have important implications for where conservation monitoring should be targeted. Our study demonstrates the importance and possibility of moving from simple bioclimatic envelope models to second-generation models that incorporate both dynamic climate change and metapopulation dynamics. PMID:19324811

  9. Dynamics of range margins for metapopulations under climate change.

    PubMed

    Anderson, B J; Akçakaya, H R; Araújo, M B; Fordham, D A; Martinez-Meyer, E; Thuiller, W; Brook, B W

    2009-04-22

    We link spatially explicit climate change predictions to a dynamic metapopulation model. Predictions of species' responses to climate change, incorporating metapopulation dynamics and elements of dispersal, allow us to explore the range margin dynamics for two lagomorphs of conservation concern. Although the lagomorphs have very different distribution patterns, shifts at the edge of the range were more pronounced than shifts in the overall metapopulation. For Romerolagus diazi (volcano rabbit), the lower elevation range limit shifted upslope by approximately 700 m. This reduced the area occupied by the metapopulation, as the mountain peak currently lacks suitable vegetation. For Lepus timidus (European mountain hare), we modelled the British metapopulation. Increasing the dispersive estimate caused the metapopulation to shift faster on the northern range margin (leading edge). By contrast, it caused the metapopulation to respond to climate change slower, rather than faster, on the southern range margin (trailing edge). The differential responses of the leading and trailing range margins and the relative sensitivity of range limits to climate change compared with that of the metapopulation centroid have important implications for where conservation monitoring should be targeted. Our study demonstrates the importance and possibility of moving from simple bioclimatic envelope models to second-generation models that incorporate both dynamic climate change and metapopulation dynamics.

  10. Large-aperture germanium detector package for picosecond photon counting in the 0.5-1.6-microm range.

    PubMed

    Prochazka, I; Hamal, K; Greene, B; Kunimori, H

    1996-09-01

    We report the design, construction, and parameters of a detector package based on a germanium avalanche photodiode operated in the Geiger mode cooled to 77 K. The new design of the active quenching circuit, proper diode structure, and cryogenic cooling setup permitted us to increase the detector's active area to 0.1-mm diameter while maintaining an acceptable dark-count rate, timing resolution, and photon-counting sensitivity at 1.54 microm. The active-area size and the compact design of the detector package permitted its application in satellite laser ranging at 0.532- and 1.543-microm wavelengths, yielding subcentimeter ranging precision.

  11. Benchmarking novel approaches for modelling species range dynamics.

    PubMed

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E

    2016-08-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches

  12. Gamma-range corticomuscular coherence during dynamic force output.

    PubMed

    Omlor, Wolfgang; Patino, Luis; Hepp-Reymond, Marie-Claude; Kristeva, Rumyana

    2007-02-01

    The beta-range synchronization between cortical motor and muscular activity as revealed by EEG/MEG-EMG coherence has been extensively investigated for steady-state motor output. However, there is a lack of information on the modulation of the corticomuscular coherence in conjunction with dynamic force output. We addressed this question comparing the EEG-EMG coherence and the cortical motor spectral power in eight healthy subjects in a visuomotor task, in which the subjects exerted a steady-state or periodically modulated dynamic isometric force output with their right-index finger to keep a visual cursor within a target zone. In the static condition, significant coherence was confined to the beta-range. In the dynamic condition, the most distinct coherence occurred in the gamma-range and the significant beta-range coherence was strikingly reduced. The cortical motor power in the beta-range during dynamic force output was decreased, whereas the power in the gamma-range remained without significant change. We conclude that during dynamic force the corticospinal oscillation mode of the sensorimotor system shifts towards higher (principally gamma) frequencies for the rapid integration of the visual and somatosensory information required to produce the appropriate motor command.

  13. Statistical interpretation of ISO TC42 dynamic range: risky business

    NASA Astrophysics Data System (ADS)

    Williams, Don; Burns, Peter D.; Dupin, Michael

    2006-01-01

    Recently, two ISO electronic imaging standards aimed at digital capture device dynamic range metrology have been issued. Both ISO 15739 (digital still camera noise) and ISO 21550 (film scanner dynamic range) adopt a signal-to-noise ratio (SNR) criterion for specifying dynamic range. To resiliently compare systems with differing mean-signal transfer, or Electro-Optical Conversion Functions (OECF), an incremental SNR (SNRi) is used. The exposure levels that correspond to threshold-SNR values are used as endpoints to determine measured dynamic range. While these thresholds were developed through committee consensus with generic device applications in mind, the methodology of these standards is flexible enough to accommodate different application requirements. This can be done by setting the SNR thresholds according to particular signal-detection requirements. We will show how dynamic range metrology, as defined in the above standards, can be interpreted in terms of statistical hypothesis testing and confidence interval methods for mean signal values. We provide an interpretation of dynamic range that can be related to particular applications based on contributing influences of variance, confidence intervals, and sample size variables. In particular, we introduce the role of the spatial-correlation statistics for both signal and noise sources, not covered in previous discussions of these ISO standards. This can be interpreted in terms of a signal's spatial frequency spectrum and noise power spectrum (NPS) respectively. It is this frequency aspect to dynamic range evaluation that may well influence future standards. We maintain that this is important when comparing systems with different sampling settings, since the above noise statistics are currently computed on a per-pixel basis.

  14. ICESAT GLAS Altimetry Measurements: Received Signal Dynamic Range and Saturation Correction

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.; Borsa, Adrian A.; Fricker, Helen Amanda; Yi, Donghui; Dimarzio, John P.; Paolo, Fernando S.; Brunt, Kelly M.; Harding, David J.; Neumann, Gregory A.

    2017-01-01

    NASAs Ice, Cloud, and land Elevation Satellite (ICESat), which operated between 2003 and 2009, made the first satellite-based global lidar measurement of earths ice sheet elevations, sea-ice thickness, and vegetation canopy structure. The primary instrument on ICESat was the Geoscience Laser Altimeter System (GLAS), which measured the distance from the spacecraft to the earth's surface via the roundtrip travel time of individual laser pulses. GLAS utilized pulsed lasers and a direct detection receiver consisting of a silicon avalanche photodiode and a waveform digitizer. Early in the mission, the peak power of the received signal from snow and ice surfaces was found to span a wider dynamic range than anticipated, often exceeding the linear dynamic range of the GLAS 1064-nm detector assembly. The resulting saturation of the receiver distorted the recorded signal and resulted in range biases as large as approximately 50 cm for ice- and snow-covered surfaces. We developed a correction for this saturation range bias based on laboratory tests using a spare flight detector, and refined the correction by comparing GLAS elevation estimates with those derived from Global Positioning System surveys over the calibration site at the salar de Uyuni, Bolivia. Applying the saturation correction largely eliminated the range bias due to receiver saturation for affected ICESat measurements over Uyuni and significantly reduced the discrepancies at orbit crossovers located on flat regions of the Antarctic ice sheet.

  15. Development of automatic target recognition for infrared sensor-based close-range land mine detector

    NASA Astrophysics Data System (ADS)

    Ngan, Peter; Garcia, Sigberto A.; Cloud, Eugene L.; Duvoisin, Herbert A., III; Long, Daniel T.; Hackett, Jay K.

    1995-06-01

    Infrared imagery scenes change continuously with environmental conditions. Strategic targets embedded in them are often difficult to be identified with the naked eye. An IR sensor-based mine detector must include Automatic Target Recognition (ATR) to detect and extract land mines from IR scenes. In the course of the ATR development process, mine signature data were collected using a commercial 8-12 (mu) spectral range FLIR, model Inframetrics 445L, and a commercial 3-5 (mu) starting focal planar array FLIR, model Infracam. These sensors were customized to the required field-of-view for short range operation. These baseline data were then input into a specialized parallel processor on which the mine detection algorithm is developed and trained. The ATR is feature-based and consists of several subprocesses to progress from raw input IR imagery to a neural network classifier for final nomination of the targets. Initially, image enhancement is used to remove noise and sensor artifact. Three preprocessing techniques, namely model-based segmentation, multi-element prescreener, and geon detector are then applied to extract specific features of the targets and to reject all objects that do not resemble mines. Finally, to further reduce the false alarm rate, the extracted features are presented to the neural network classifier. Depending on the operational circumstances, one of three neural network techniques will be adopted; back propagation, supervised real-time learning, or unsupervised real-time learning. The Close Range IR Mine Detection System is an Army program currently being experimentally developed to be demonstrated in the Army's Advanced Technology Demonstration in FY95. The ATR resulting from this program will be integrated in the 21st Century Land Warrior program in which the mine avoidance capability is its primary interest.

  16. Real time pre-detection dynamic range compression

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor)

    1992-01-01

    A real time, pre-detection optical dynamic range compression system uses a photorefractive crystal, such as BaTiO3 or LiNbO3, in which light induced scattering from crystal inhomogeneities of the optical input occurs as a nonlinear function of the input intensity. The greater the intensity, the faster random interference gratings are created to scatter the incident light. The unscattered portion of the optical signal is therefore reduced in dynamic range over time. The amount or range of dynamic range compression may be controlled by adjusting the time of application of the unscattered crystal output to the photodetector with regard to the time of application of the optical input to the crystal.

  17. A low-noise large dynamic-range readout suitable for laser spectroscopy with photodiodes

    NASA Astrophysics Data System (ADS)

    Pullia, A.; Sanvito, T.; Potenza, M. A.; Zocca, F.

    2012-10-01

    An original low-noise large dynamic-range readout system for optical light spectroscopy with PIN diodes is presented. The front-end circuit is equipped with a smart device for automatic cancellation of the large dc offset brought about by the photodiode current. This device sinks away the exact amount of dc current from the preamplifier input, yielding auto zeroing of the output-voltage offset, while introducing the minimum electronic noise possible. As a result the measurement dynamic-range is maximized. Moreover, an auxiliary inspection point is provided which precisely tracks the dc component of the photodiode current. This output allows for precise beam alignment and may also be used for diagnostic purposes. The excellent gain stability and linearity make the circuit perfectly suited for optical-light pulse spectroscopy. Applications include particle sizing in the 100 nm range, two-dimensional characterization of semiconductor detectors, ultra-precise characterization of laser beam stability, confocal microscopy.

  18. Electro-optical detector for use in a wide mass range mass spectrometer

    NASA Technical Reports Server (NTRS)

    Giffin, Charles E. (Inventor)

    1976-01-01

    An electro-optical detector is disclosed for use in a wide mass range mass spectrometer (MS), in the latter the focal plane is at or very near the exit end of the magnetic analyzer, so that a strong magnetic field of the order of 1000G or more is present at the focal plane location. The novel detector includes a microchannel electron multiplier array (MCA) which is positioned at the focal plane to convert ion beams which are focused by the MS at the focal plane into corresponding electron beams which are then accelerated to form visual images on a conductive phosphored surface. These visual images are then converted into images on the target of a vidicon camera or the like for electronic processing. Due to the strong magnetic field at the focal plane, in one embodiment of the invention, the MCA with front and back parallel ends is placed so that its front end forms an angle of not less than several degrees, preferably on the order of 10.degree.-20.degree., with respect to the focal plane, with the center line of the front end preferably located in the focal plane. In another embodiment the MCA is wedge-shaped, with its back end at an angle of about 10.degree.-20.degree. with respect to the front end. In this embodiment the MCA is placed so that its front end is located at the focal plane.

  19. Time course of dynamic range adaptation in the auditory nerve

    PubMed Central

    Wang, Grace I.; Dean, Isabel; Delgutte, Bertrand

    2012-01-01

    Auditory adaptation to sound-level statistics occurs as early as in the auditory nerve (AN), the first stage of neural auditory processing. In addition to firing rate adaptation characterized by a rate decrement dependent on previous spike activity, AN fibers show dynamic range adaptation, which is characterized by a shift of the rate-level function or dynamic range toward the most frequently occurring levels in a dynamic stimulus, thereby improving the precision of coding of the most common sound levels (Wen B, Wang GI, Dean I, Delgutte B. J Neurosci 29: 13797–13808, 2009). We investigated the time course of dynamic range adaptation by recording from AN fibers with a stimulus in which the sound levels periodically switch from one nonuniform level distribution to another (Dean I, Robinson BL, Harper NS, McAlpine D. J Neurosci 28: 6430–6438, 2008). Dynamic range adaptation occurred rapidly, but its exact time course was difficult to determine directly from the data because of the concomitant firing rate adaptation. To characterize the time course of dynamic range adaptation without the confound of firing rate adaptation, we developed a phenomenological “dual adaptation” model that accounts for both forms of AN adaptation. When fitted to the data, the model predicts that dynamic range adaptation occurs as rapidly as firing rate adaptation, over 100–400 ms, and the time constants of the two forms of adaptation are correlated. These findings suggest that adaptive processing in the auditory periphery in response to changes in mean sound level occurs rapidly enough to have significant impact on the coding of natural sounds. PMID:22457465

  20. High dynamic range (HDR) virtual bronchoscopy rendering for video tracking

    NASA Astrophysics Data System (ADS)

    Popa, Teo; Choi, Jae

    2007-03-01

    In this paper, we present the design and implementation of a new rendering method based on high dynamic range (HDR) lighting and exposure control. This rendering method is applied to create video images for a 3D virtual bronchoscopy system. One of the main optical parameters of a bronchoscope's camera is the sensor exposure. The exposure adjustment is needed since the dynamic range of most digital video cameras is narrower than the high dynamic range of real scenes. The dynamic range of a camera is defined as the ratio of the brightest point of an image to the darkest point of the same image where details are present. In a video camera exposure is controlled by shutter speed and the lens aperture. To create the virtual bronchoscopic images, we first rendered a raw image in absolute units (luminance); then, we simulated exposure by mapping the computed values to the values appropriate for video-acquired images using a tone mapping operator. We generated several images with HDR and others with low dynamic range (LDR), and then compared their quality by applying them to a 2D/3D video-based tracking system. We conclude that images with HDR are closer to real bronchoscopy images than those with LDR, and thus, that HDR lighting can improve the accuracy of image-based tracking.

  1. Enhanced dynamic range in a genetically encoded Ca2+ sensor.

    PubMed

    Liu, Shun; He, Jun; Jin, Honglin; Yang, Fei; Lu, Jinling; Yang, Jie

    2011-08-19

    Genetically encoded fluorescence resonance energy transfer (FRET) indicators are powerful tools for real-time detection of second messenger molecules and activation of signal proteins. However, these fluorescent protein-based sensors typically display marginal FRET efficiency. To improve their FRET efficiency for optical imaging and screening, we developed a number of fluorescent protein mutants based on cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). To improve FRET ratios, which were initially within a narrow dynamic range, we used DNA shuffling to develop a new FRET pair called 3xCFP/Venus. The optimized 3xCFP/Venus pair exhibited higher FRET ratios than CyPet/YPet, which has one of the greatest dynamic ranges of protein-based FRET pairs. We converted this FRET pair to a Ca(2+) FRET indicators using circular permutation Venus (cpVenus) linked with 3xCFP to form 3xCFP/cpVenus, which displayed an ∼11-fold change in dynamic range in response to Ca(2+) binding. The enhanced dynamic range for Ca(2+) concentration detection using 3xCFP/cpVenus was confirmed in PC12 cells using previously established indicators (TN-XXL, ECFP/cpCitrine). To our knowledge, this FRET pair displays the largest dynamic range so far among genetically-encoded sensors, and can be used for sensitive FRET detection. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. The design and imaging characteristics of dynamic, solid-state, flat-panel x-ray image detectors for digital fluoroscopy and fluorography.

    PubMed

    Cowen, A R; Davies, A G; Sivananthan, M U

    2008-10-01

    Dynamic, flat-panel, solid-state, x-ray image detectors for use in digital fluoroscopy and fluorography emerged at the turn of the millennium. This new generation of dynamic detectors utilize a thin layer of x-ray absorptive material superimposed upon an electronic active matrix array fabricated in a film of hydrogenated amorphous silicon (a-Si:H). Dynamic solid-state detectors come in two basic designs, the indirect-conversion (x-ray scintillator based) and the direct-conversion (x-ray photoconductor based). This review explains the underlying principles and enabling technologies associated with these detector designs, and evaluates their physical imaging characteristics, comparing their performance against the long established x-ray image intensifier television (TV) system. Solid-state detectors afford a number of physical imaging benefits compared with the latter. These include zero geometrical distortion and vignetting, immunity from blooming at exposure highlights and negligible contrast loss (due to internal scatter). They also exhibit a wider dynamic range and maintain higher spatial resolution when imaging over larger fields of view. The detective quantum efficiency of indirect-conversion, dynamic, solid-state detectors is superior to that of both x-ray image intensifier TV systems and direct-conversion detectors. Dynamic solid-state detectors are playing a burgeoning role in fluoroscopy-guided diagnosis and intervention, leading to the displacement of x-ray image intensifier TV-based systems. Future trends in dynamic, solid-state, digital fluoroscopy detectors are also briefly considered. These include the growth in associated three-dimensional (3D) visualization techniques and potential improvements in dynamic detector design.

  3. Frequency-Modulated, Continuous-Wave Laser Ranging Using Photon-Counting Detectors

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Barber, Zeb W.; Dahl, Jason

    2014-01-01

    Optical ranging is a problem of estimating the round-trip flight time of a phase- or amplitude-modulated optical beam that reflects off of a target. Frequency- modulated, continuous-wave (FMCW) ranging systems obtain this estimate by performing an interferometric measurement between a local frequency- modulated laser beam and a delayed copy returning from the target. The range estimate is formed by mixing the target-return field with the local reference field on a beamsplitter and detecting the resultant beat modulation. In conventional FMCW ranging, the source modulation is linear in instantaneous frequency, the reference-arm field has many more photons than the target-return field, and the time-of-flight estimate is generated by balanced difference- detection of the beamsplitter output, followed by a frequency-domain peak search. This work focused on determining the maximum-likelihood (ML) estimation algorithm when continuous-time photoncounting detectors are used. It is founded on a rigorous statistical characterization of the (random) photoelectron emission times as a function of the incident optical field, including the deleterious effects caused by dark current and dead time. These statistics enable derivation of the Cramér-Rao lower bound (CRB) on the accuracy of FMCW ranging, and derivation of the ML estimator, whose performance approaches this bound at high photon flux. The estimation algorithm was developed, and its optimality properties were shown in simulation. Experimental data show that it performs better than the conventional estimation algorithms used. The demonstrated improvement is a factor of 1.414 over frequency-domainbased estimation. If the target interrogating photons and the local reference field photons are costed equally, the optimal allocation of photons between these two arms is to have them equally distributed. This is different than the state of the art, in which the local field is stronger than the target return. The optimal

  4. Real-time high dynamic range laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-04-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.

  5. Real-time high dynamic range laser scanning microscopy

    PubMed Central

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-01-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging. PMID:27032979

  6. High-dynamic-range pixel architectures for diagnostic medical imaging

    NASA Astrophysics Data System (ADS)

    Karim, Karim S.; Yin, Sherman; Nathan, Arokia; Rowlands, John A.

    2004-05-01

    One approach to increase pixel signal-to-noise ratio (SNR) in low noise digital fluoroscopy is to employ in-situ pixel amplification via current-mediated active pixel sensors (C-APS). Experiments reveal a reduction in readout noise and indicate that an a-Si C-APS, coupled together with an established X-ray detection technology such as amorphous selenium (a-Se), can meet the stringent requirements (of < 1000 noise electrons) for digital X-ray fluoroscopy. A challenge with the C-APS circuit is the presence of a small-signal input linearity constraint. While using such a pixel amplifier for real-time fluoroscopy (where the exposure level is small) is feasible, the voltage change at the amplifier input is much higher in chest radiography or mammography due to the larger X-ray exposure levels. The larger input voltage causes the C-APS output to be non-linear thus reducing the pixel dynamic range. In addition, the resulting larger pixel output current causes the external column amplifier to saturate further reducing the pixel dynamic range. In this research, we investigate two alternate amplified pixel architectures that exhibit higher dynamic range. The test pixels are designed and simulated using an a-Si TFT model implemented in Verilog-A and results indicate a linear performance, high dynamic range, and a programmable circuit gain via choice of supply voltage and sampling time. These high dynamic range pixel architectures have the potential to enable a large area, active matrix flat panel imager (AMFPI) to switch instantly between low exposure, fluoroscopic imaging and higher exposure radiographic imaging modes. Lastly, the high dynamic range pixel circuits are suitable for integration with on-panel multiplexers for both gate and data lines, which can further reduce circuit complexity.

  7. Real-time extended dynamic range imaging in shearography

    SciTech Connect

    Groves, Roger M.; Pedrini, Giancarlo; Osten, Wolfgang

    2008-10-20

    Extended dynamic range (EDR) imaging is a postprocessing technique commonly associated with photography. Multiple images of a scene are recorded by the camera using different shutter settings and are merged into a single higher dynamic range image. Speckle interferometry and holography techniques require a well-modulated intensity signal to extract the phase information, and of these techniques shearography is most sensitive to different object surface reflectivities as it uses self-referencing from a sheared image. In this paper the authors demonstrate real-time EDR imaging in shearography and present experimental results from a difficult surface reflectivity sample: a wooden panel painting containing gold and dark earth color paint.

  8. High dynamic range optical projection tomography (HDR-OPT).

    PubMed

    Fei, Peng; Yu, Zhilong; Wang, Xu; Lu, Peter J; Fu, Yusi; He, Zi; Xiong, Jingwei; Huang, Yanyi

    2012-04-09

    Traditional optical projection tomography (OPT) acquires a single image at each rotation angle, thereby suffering from limitations in CCD dynamic range; this conventional usage cannot resolve features in samples with highly heterogeneous absorption, such as in small animals with organs of varying size. We present a novel technique, applying multiple-exposure high dynamic range (HDR) imaging to OPT, and demonstrate its ability to resolve fine details in zebrafish embryos, without complicated chemical clearing. We implement the tomographic reconstruction algorithm on the GPU, yielding a performance increase of two orders of magnitude. These features give our method potential application in high-throughput, high-resolution in vivo 3D imaging.

  9. Phase Preserving Dynamic Range Compression of Aeromagnetic Images

    NASA Astrophysics Data System (ADS)

    Kovesi, Peter

    2014-05-01

    Geoscientific images with a high dynamic range, such as aeromagnetic images, are difficult to present in a manner that facilitates interpretation. The data values may range over 20000 nanoteslas or more but a computer monitor is typically designed to present input data constrained to 8 bit values. Standard photographic high dynamic range tonemapping algorithms may be unsuitable, or inapplicable to such data because they are have been developed on the basis of statistics of natural images, feature types found in natural images, and models of the human visual system. These algorithms may also require image segmentation and/or decomposition of the image into base and detail layers but these operations may have no meaning for geoscientific images. For geological and geophysical data high dynamic range images are often dealt with via histogram equalization. The problem with this approach is that the contrast stretch or compression applied to data values depends on how frequently the data values occur in the image and not on the magnitude of any data features themselves. This can lead to inappropriate distortions in the output. Other approaches include use of the Automatic Gain Control algorithm developed by Rajagopalan, or the tilt derivative. A difficulty with these approaches is that the signal can be over-normalized and perception of the overall variations in the signal can be lost. To overcome these problems a method is presented that compresses the dynamic range of an image while preserving local features. It makes no assumptions about the formation of the image, the feature types it contains, or its range of values. Thus, unlike algorithms designed for photographic images, this algorithm can be applied to a wide range of scientific images. The method is based on extracting local phase and amplitude values across the image using monogenic filters. The dynamic range of the image can then be reduced by applying a range reducing function to the amplitude values, for

  10. Real-Time Local Range On-Demand and Dynamic Regional Range Images

    SciTech Connect

    Tsap, L.V.

    2000-02-22

    This paper presents a new approach to a gesture tracking system using real-time range on-demand. The system represents a gesture-controlled interface for interactive visual exploration of large data sets. The paper describes a method performing range processing only when necessary and where necessary. Range data is processed only for non-static regions of interest. This is accomplished by a set of filters on the color, motion, and range data. The speedup achieved is between 41% and 54%. The algorithm also includes a robust skin color segmentation insensitive to illumination changes. Selective range processing results in dynamic regional range images (DRRIs). This development is also placed in a broader context of a biological visual system emulation, specifically redundancies and attention mechanisms.

  11. Real-Time Local Range On-Demand for Tracking Gestures and Dynamic Regional Range Images

    SciTech Connect

    Tsap, L.V.

    2000-05-30

    This paper presents a new approach to a gesture-tracking system using real-time range on-demand. The system represents a gesture-controlled interface for interactive visual exploration of large data sets. The paper describes a method performing range processing only when necessary and where necessary. Range data is processed only for non-static regions of interest. This is accomplished by a set of filters on the color, motion, and range data. The speedup achieved is between 41% and 54%. The algorithm also includes a robust skin-color segmentation insensitive to illumination changes. Selective range processing results in dynamic regional range images (DRRIs). This development is also placed in a broader context of a biological visual system emulation, specifically redundancies and attention mechanisms.

  12. High Dynamic Range Processing for Magnetic Resonance Imaging

    PubMed Central

    Sukerkar, Preeti A.; Meade, Thomas J.

    2013-01-01

    Purpose To minimize feature loss in T1- and T2-weighted MRI by merging multiple MR images acquired at different TR and TE to generate an image with increased dynamic range. Materials and Methods High Dynamic Range (HDR) processing techniques from the field of photography were applied to a series of acquired MR images. Specifically, a method to parameterize the algorithm for MRI data was developed and tested. T1- and T2-weighted images of a number of contrast agent phantoms and a live mouse were acquired with varying TR and TE parameters. The images were computationally merged to produce HDR-MR images. All acquisitions were performed on a 7.05 T Bruker PharmaScan with a multi-echo spin echo pulse sequence. Results HDR-MRI delineated bright and dark features that were either saturated or indistinguishable from background in standard T1- and T2-weighted MRI. The increased dynamic range preserved intensity gradation over a larger range of T1 and T2 in phantoms and revealed more anatomical features in vivo. Conclusions We have developed and tested a method to apply HDR processing to MR images. The increased dynamic range of HDR-MR images as compared to standard T1- and T2-weighted images minimizes feature loss caused by magnetization recovery or low SNR. PMID:24250788

  13. The Dynamic Range of Ultra-High Resolution Cryogenic Gamma-ray Spectrometers

    SciTech Connect

    Ali, S; Terracol, S F; Drury, O B; Friedrich, S

    2005-08-10

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to multilayer Mo/Cu transition-edge sensors (TES). The energy resolution achieved with a 1 x 1 x 0.25 mm{sup 3} Sn absorber is 50 -90eV for {gamma}-rays up to 100 keV and it decreases for large absorber sizes. We discuss the trade-offs between energy resolution and dynamic range, as well as development of TES arrays for higher count rates and better sensitivity.

  14. Research of time discrimination circuits for PMT signal readout over large dynamic range in LHAASO WCDA

    NASA Astrophysics Data System (ADS)

    Ma, C.; Zhao, L.; Dong, R.; Jiang, Z.; Chu, S.; Gao, X.; Liu, S.; An, Q.

    2016-11-01

    In the readout electronics of the Water Cerenkov Detector Array (WCDA) in the Large High Altitude Air Shower Observatory (LHAASO), both high-resolution charge and time measurement are required over a dynamic range from 1 photoelectron (P.E.) to 4000 P.E. for the PMT signal readout. In this paper, we present our work on the design of time discrimination circuits in LHAASO WCDA, especially on improvement to reduce the circuit dead time. Several approaches were studied through analysis and simulations, and actual circuits were designed and tested in the laboratory to evaluate the performance. Test results indicate that a time resolution better than 500 ps RMS is achieved in the whole large dynamic range, and the circuit dead time is successfully reduced to less than 200 ns.

  15. Calibration of semiconductor detectors in the 200-8500 keV range at VNIIM.

    PubMed

    Tereshchenko, Evgeny E; Moiseev, Nikolay

    2012-09-01

    At the ionising radiation department of the D.I. Mendeleyev Institute for Metrology, a semiconductor detector was calibrated in the energy range 200-8500 keV using (n,2γ) and (n,γ) reactions. Separate cylindrical targets (77 mm diameter and 10mm height) were made from mercuric sulphate, sodium chloride and metallic titanium. A (252)Cf spontaneous fission neutron source, placed in 150 mm diameter polyethylene ball, was used to generate thermal neutrons. The optimal target dimensions were determined taking into account the thermal neutron cross-sections and gamma-radiation attenuations in the target materials. The influence of the background radiation induced by neutrons from the walls, floors and ceilings was also taken into account. The shapes of the efficiency curves for point and volume sources in the 200-8500 keV range have been investigated. The experimental results are in good agreement with Monte-Carlo calculations. The emission rate of the 6.13 MeV photons from a (238)Pu-(13)C source was determined with an expanded uncertainty, U(c), of 10% (k=2).

  16. High speed high dynamic range high accuracy measurement system

    SciTech Connect

    Deibele, Craig E.; Curry, Douglas E.; Dickson, Richard W.; Xie, Zaipeng

    2016-11-29

    A measuring system includes an input that emulates a bandpass filter with no signal reflections. A directional coupler connected to the input passes the filtered input to electrically isolated measuring circuits. Each of the measuring circuits includes an amplifier that amplifies the signal through logarithmic functions. The output of the measuring system is an accurate high dynamic range measurement.

  17. Shaper Design in CMOS for High Dynamic Range

    SciTech Connect

    De Geronimo G.; Li S.

    2011-10-12

    We start with an analysis of the configurations commonly adopted to implement linear shapers. We show that, once the ENC from the charge amplifier is defined, the dynamic range of the system is set by the voltage swing and the value of the capacitance realizing the poles. The configuration used to realize the poles has also an impact, and those configurations based on passive components in feedback are expected to offer a higher dynamic range than the ones that use both active and passive components, like scaling mirrors. Finally, we introduce the concept of delayed dissipative feedback (DDF), which consists of delaying the resistive feedbacks from the furthest available nodes along the shaping chain. We will show that, in order to implement semi-Gaussian shapers, a small capacitor in positive feedback is required. The DDF technique can overcome some of the limitations of the more classical configurations. For example, in a third order shaper a factor of two higher dynamic range can be obtained or, at equal dynamic range, about 25% of the capacitance is needed (i.e. about 30% of the area in practical cases).

  18. Log amplifier instrument measures physiological biopotentials over wide dynamic range

    NASA Technical Reports Server (NTRS)

    Kado, R. T.

    1970-01-01

    To record biopotentials with extreme dynamic ranges, biopotential inputs are capacitatively coupled to a miniature, low power, solid-state signal conditioner consisting of a two-stage differential preamplifier that has a low noise figure. The ouput of the preamplifier uses diodes to provide an overall gain which is nearly logarithmic.

  19. Validating plastic scintillation detectors for photon dosimetry in the radiologic energy range

    PubMed Central

    Lessard, François; Archambault, Louis; Plamondon, Mathieu; Després, Philippe; Therriault-Proulx, François; Beddar, Sam; Beaulieu, Luc

    2012-01-01

    Purpose: Photon dosimetry in the kilovolt (kV) energy range represents a major challenge for diagnostic and interventional radiology and superficial therapy. Plastic scintillation detectors (PSDs) are potentially good candidates for this task. This study proposes a simple way to obtain accurate correction factors to compensate for the response of PSDs to photon energies between 80 and 150 kVp. The performance of PSDs is also investigated to determine their potential usefulness in the diagnostic energy range. Methods: A 1-mm-diameter, 10-mm-long PSD was irradiated by a Therapax SXT 150 unit using five different beam qualities made of tube potentials ranging from 80 to 150 kVp and filtration thickness ranging from 0.8 to 0.2 mmAl + 1.0 mmCu. The light emitted by the detector was collected using an 8-m-long optical fiber and a polychromatic photodiode, which converted the scintillation photons to an electrical current. The PSD response was compared with the reference free air dose rate measured with a calibrated Farmer NE2571 ionization chamber. PSD measurements were corrected using spectra-weighted corrections, accounting for mass energy-absorption coefficient differences between the sensitive volumes of the ionization chamber and the PSD, as suggested by large cavity theory (LCT). Beam spectra were obtained from x-ray simulation software and validated experimentally using a CdTe spectrometer. Correction factors were also obtained using Monte Carlo (MC) simulations. Percent depth dose (PDD) measurements were compensated for beam hardening using the LCT correction method. These PDD measurements were compared with uncorrected PSD data, PDD measurements obtained using Gafchromic films, Monte Carlo simulations, and previous data. Results: For each beam quality used, the authors observed an increase of the energy response with effective energy when no correction was applied to the PSD response. Using the LCT correction, the PSD response was almost energy independent, with

  20. Validating plastic scintillation detectors for photon dosimetry in the radiologic energy range

    SciTech Connect

    Lessard, Francois; Archambault, Louis; Plamondon, Mathieu; and others

    2012-09-15

    Purpose: Photon dosimetry in the kilovolt (kV) energy range represents a major challenge for diagnostic and interventional radiology and superficial therapy. Plastic scintillation detectors (PSDs) are potentially good candidates for this task. This study proposes a simple way to obtain accurate correction factors to compensate for the response of PSDs to photon energies between 80 and 150 kVp. The performance of PSDs is also investigated to determine their potential usefulness in the diagnostic energy range. Methods: A 1-mm-diameter, 10-mm-long PSD was irradiated by a Therapax SXT 150 unit using five different beam qualities made of tube potentials ranging from 80 to 150 kVp and filtration thickness ranging from 0.8 to 0.2 mmAl + 1.0 mmCu. The light emitted by the detector was collected using an 8-m-long optical fiber and a polychromatic photodiode, which converted the scintillation photons to an electrical current. The PSD response was compared with the reference free air dose rate measured with a calibrated Farmer NE2571 ionization chamber. PSD measurements were corrected using spectra-weighted corrections, accounting for mass energy-absorption coefficient differences between the sensitive volumes of the ionization chamber and the PSD, as suggested by large cavity theory (LCT). Beam spectra were obtained from x-ray simulation software and validated experimentally using a CdTe spectrometer. Correction factors were also obtained using Monte Carlo (MC) simulations. Percent depth dose (PDD) measurements were compensated for beam hardening using the LCT correction method. These PDD measurements were compared with uncorrected PSD data, PDD measurements obtained using Gafchromic films, Monte Carlo simulations, and previous data. Results: For each beam quality used, the authors observed an increase of the energy response with effective energy when no correction was applied to the PSD response. Using the LCT correction, the PSD response was almost energy independent, with

  1. Validating plastic scintillation detectors for photon dosimetry in the radiologic energy range.

    PubMed

    Lessard, François; Archambault, Louis; Plamondon, Mathieu; Després, Philippe; Therriault-Proulx, François; Beddar, Sam; Beaulieu, Luc

    2012-09-01

    Photon dosimetry in the kilovolt (kV) energy range represents a major challenge for diagnostic and interventional radiology and superficial therapy. Plastic scintillation detectors (PSDs) are potentially good candidates for this task. This study proposes a simple way to obtain accurate correction factors to compensate for the response of PSDs to photon energies between 80 and 150 kVp. The performance of PSDs is also investigated to determine their potential usefulness in the diagnostic energy range. A 1-mm-diameter, 10-mm-long PSD was irradiated by a Therapax SXT 150 unit using five different beam qualities made of tube potentials ranging from 80 to 150 kVp and filtration thickness ranging from 0.8 to 0.2 mmAl + 1.0 mmCu. The light emitted by the detector was collected using an 8-m-long optical fiber and a polychromatic photodiode, which converted the scintillation photons to an electrical current. The PSD response was compared with the reference free air dose rate measured with a calibrated Farmer NE2571 ionization chamber. PSD measurements were corrected using spectra-weighted corrections, accounting for mass energy-absorption coefficient differences between the sensitive volumes of the ionization chamber and the PSD, as suggested by large cavity theory (LCT). Beam spectra were obtained from x-ray simulation software and validated experimentally using a CdTe spectrometer. Correction factors were also obtained using Monte Carlo (MC) simulations. Percent depth dose (PDD) measurements were compensated for beam hardening using the LCT correction method. These PDD measurements were compared with uncorrected PSD data, PDD measurements obtained using Gafchromic films, Monte Carlo simulations, and previous data. For each beam quality used, the authors observed an increase of the energy response with effective energy when no correction was applied to the PSD response. Using the LCT correction, the PSD response was almost energy independent, with a residual 2

  2. Robust high-dynamic-range optical roll sensing.

    PubMed

    Gillmer, Steven R; Yu, Xiangzhi; Wang, Chen; Ellis, Jonathan D

    2015-06-01

    We present a robust optical-roll sensor with a high-dynamic range and high-throughput capabilities. The working principle relies on tracking the amplitude of an optical square wave-encoded light source. After encoding a square wave onto a polarization reference, quadrature demodulation of the polarized light allows us to cancel common-mode noise. Benefits of this sensor include its simplicity, low cost, high-throughput, insensitivity to source amplitude fluctuations, and no inherent drift. In this Letter, we present the working principle and experimentally validate a 43° usable working range with 0.002° resolution. This sensor has the highest reported dynamic range for optical roll sensing.

  3. Dynamic Range Across Music Genres and the Perception of Dynamic Compression in Hearing-Impaired Listeners

    PubMed Central

    Kirchberger, Martin

    2016-01-01

    Dynamic range compression serves different purposes in the music and hearing-aid industries. In the music industry, it is used to make music louder and more attractive to normal-hearing listeners. In the hearing-aid industry, it is used to map the variable dynamic range of acoustic signals to the reduced dynamic range of hearing-impaired listeners. Hence, hearing-aided listeners will typically receive a dual dose of compression when listening to recorded music. The present study involved an acoustic analysis of dynamic range across a cross section of recorded music as well as a perceptual study comparing the efficacy of different compression schemes. The acoustic analysis revealed that the dynamic range of samples from popular genres, such as rock or rap, was generally smaller than the dynamic range of samples from classical genres, such as opera and orchestra. By comparison, the dynamic range of speech, based on recordings of monologues in quiet, was larger than the dynamic range of all music genres tested. The perceptual study compared the effect of the prescription rule NAL-NL2 with a semicompressive and a linear scheme. Music subjected to linear processing had the highest ratings for dynamics and quality, followed by the semicompressive and the NAL-NL2 setting. These findings advise against NAL-NL2 as a prescription rule for recorded music and recommend linear settings. PMID:26868955

  4. Dynamic Range Across Music Genres and the Perception of Dynamic Compression in Hearing-Impaired Listeners.

    PubMed

    Kirchberger, Martin; Russo, Frank A

    2016-02-10

    Dynamic range compression serves different purposes in the music and hearing-aid industries. In the music industry, it is used to make music louder and more attractive to normal-hearing listeners. In the hearing-aid industry, it is used to map the variable dynamic range of acoustic signals to the reduced dynamic range of hearing-impaired listeners. Hence, hearing-aided listeners will typically receive a dual dose of compression when listening to recorded music. The present study involved an acoustic analysis of dynamic range across a cross section of recorded music as well as a perceptual study comparing the efficacy of different compression schemes. The acoustic analysis revealed that the dynamic range of samples from popular genres, such as rock or rap, was generally smaller than the dynamic range of samples from classical genres, such as opera and orchestra. By comparison, the dynamic range of speech, based on recordings of monologues in quiet, was larger than the dynamic range of all music genres tested. The perceptual study compared the effect of the prescription rule NAL-NL2 with a semicompressive and a linear scheme. Music subjected to linear processing had the highest ratings for dynamics and quality, followed by the semicompressive and the NAL-NL2 setting. These findings advise against NAL-NL2 as a prescription rule for recorded music and recommend linear settings.

  5. Molecular dynamics simulations of bubble nucleation in dark matter detectors.

    PubMed

    Denzel, Philipp; Diemand, Jürg; Angélil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)PFLDAS0031-917110.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α-particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.

  6. Molecular dynamics simulations of bubble nucleation in dark matter detectors

    NASA Astrophysics Data System (ADS)

    Denzel, Philipp; Diemand, Jürg; Angélil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958), 10.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α -particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.

  7. Four-channel, high-dynamic-range downconverter

    NASA Astrophysics Data System (ADS)

    Askew, R. E.; Paglione, R. W.; Denlinger, E. J.

    1991-11-01

    The David Sarnoff Research Center has developed, under a 24-month Naval Research Laboratory sponsored program, a four-channel, high-dynamic-range down-converter (HDRD) that will advance the state of the art in electronic warfare receivers by achieving a two-tone, spur-free dynamic range of 65 dB in a 50-MHz bandwidth. A spot check of the linear dynamic range measured 92 dB from the noise floor to the 1 dB compression point. There are several design features that lead to these excellent results. They include: (1) the use of wideband, low-noise, high intercept point MMIC amplifier chips for all of the amplifiers in the downconverter; (2) low-loss MMIC PIN-diode switches; (3) low-loss filters and diplexers; and (4) a high-dynamic-range mixer. The input frequency range of the HDRD is 6 to 18 GHz, and the output frequency (IF) is 3 to 5 GHz. It uses four local oscillator (LO) frequencies, 11, 13, 15, and 17 GHz, to downconvert the six, 2-GHz-wide subbands to the intermediate frequency. A switched filter bank, consisting of six 2-GHz-wide bandpass filters, provides the required frequency selection for the downconverter. Each branch of the filter bank includes an amplitude and phase trimming module to allow for the adjustment of the tracking among the four channels. The trimming module consists of T-pad attenuator chips and an adjustable length of 50-ohm transmission line.

  8. High-dynamic-range scene compression in humans

    NASA Astrophysics Data System (ADS)

    McCann, John J.

    2006-02-01

    Single pixel dynamic-range compression alters a particular input value to a unique output value - a look-up table. It is used in chemical and most digital photographic systems having S-shaped transforms to render high-range scenes onto low-range media. Post-receptor neural processing is spatial, as shown by the physiological experiments of Dowling, Barlow, Kuffler, and Hubel & Wiesel. Human vision does not render a particular receptor-quanta catch as a unique response. Instead, because of spatial processing, the response to a particular quanta catch can be any color. Visual response is scene dependent. Stockham proposed an approach to model human range compression using low-spatial frequency filters. Campbell, Ginsberg, Wilson, Watson, Daly and many others have developed spatial-frequency channel models. This paper describes experiments measuring the properties of desirable spatial-frequency filters for a variety of scenes. Given the radiances of each pixel in the scene and the observed appearances of objects in the image, one can calculate the visual mask for that individual image. Here, visual mask is the spatial pattern of changes made by the visual system in processing the input image. It is the spatial signature of human vision. Low-dynamic range images with many white areas need no spatial filtering. High-dynamic-range images with many blacks, or deep shadows, require strong spatial filtering. Sun on the right and shade on the left requires directional filters. These experiments show that variable scene- scenedependent filters are necessary to mimic human vision. Although spatial-frequency filters can model human dependent appearances, the problem still remains that an analysis of the scene is still needed to calculate the scene-dependent strengths of each of the filters for each frequency.

  9. Expanding the dynamic range of short wave infrared (SWIR) imagery

    NASA Astrophysics Data System (ADS)

    Hansen, Marc; Stern, Mark C.

    2010-04-01

    Advances have been made in short wave infrared (SWIR) imaging technology to address the most demanding imaging and surveillance applications. Multiple techniques have been developed and deployed in Goodrich's SWIR indium gallium arsenide (InGaAs) cameras to optimize the dynamic range performance of standard, commercial off-the-shelf (COTS) products. New developments have been implemented on multiple levels to give these cameras the unique ability to automatically compensate for changes in light levels over more than 5 orders of magnitude, while improving intra-scenic dynamic range. Features recently developed and implemented include a new Automatic Gain Control (AGC) algorithm, image flash suppression, and a proprietary image-enhancement algorithm with a simplified but powerful user command structure.

  10. Adaptive Delta-Sigma Modulation for Enhanced Input Dynamic Range

    NASA Astrophysics Data System (ADS)

    Zierhofer, Clemens M.

    2006-12-01

    An adaptive delta-sigma modulator of 1st order with one-bit quantization is presented. Adaptation is instantaneous and based on an exponential law. The feedback signal is a multibit discrete-level signal generated by a digital-to-analog converter (DAC). Compared to a nonadaptive delta-sigma modulator of 1st order, the input dynamic range is significantly enhanced. The gain in dynamic range is 6 dB per bit defining the feedback amplitude. The influence of nonideal DAC performance is discussed. It is demonstrated that an implementation of the system is realistic with standard CMOS technology. To relax the requirements to the one-bit quantizer, the quantizer input signal is amplified adaptively (Q-Switching).

  11. Image Alignment for Multiple Camera High Dynamic Range Microscopy

    PubMed Central

    Eastwood, Brian S.; Childs, Elisabeth C.

    2012-01-01

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera. PMID:22545028

  12. Managing Dynamic Range for Visualization of Astronomical Data

    NASA Astrophysics Data System (ADS)

    Hurt, R. L.

    2005-12-01

    The steps involved in transforming one or more astronomical FITS datasets into a print-friendly picture are similar to the photographer's role in taking a photograph. For many images, a key step is compressing dynamic range so that it can be viewed in print or onscreen. Since astronomical datasets can span many magnitudes of dynamic range, they must generally be transformed by the application of a stretch function to render into viewable 8-bit graphics. Many tools for this exist, including the Photoshop FITS LIberator which has a flexible system for stretching data. The quality of the final product can be improved by a proper understanding the characteristics of common stretch functions and how to renormalize the datasets through background subtraction and scaling. This paper will present a practical overview of these topics and show how stretch functions can be used most effectively.

  13. Fluorescence-based Broad Dynamic Range Viscosity Probes.

    PubMed

    Dragan, Anatoliy; Graham, August E; Geddes, Chris D

    2014-03-01

    We introduce two new fluorescent viscosity probes, SYBR Green (SG) and PicoGreen (PG), that we have studied over a broad range of viscosity and in collagen solutions. In water, both dyes have low quantum yields and excited state lifetimes, while in viscous solvents or in complex with DNA both parameters dramatically (300-1000-fold) increase. We show that in log-log scale the dependence of the dyes' quantum yield vs. viscosity is linear, the slope of which is sensitive to temperature. Application of SG and PG, as a fluorescence-based broad dynamic range viscosity probes, to the life sciences is discussed.

  14. Dynamic Concrete Beam Deformation Measuremnet with 3d Range Cameras

    NASA Astrophysics Data System (ADS)

    Qi, X.; Lichti, D.

    2012-07-01

    Concrete beams are used to construct bridges and other structures. Due to the traffic overloading or the decaying state of structures, deformation of bridges or other structures occurs frequently. Therefore, the requirement to measure concrete beam deformation, as integral components of structures, is well recognized. Many imaging techniques such as digital cameras, laser scanners and range cameras have been proven to be accurate and cost-effective methods for large-area measurement of deformation under static loading conditions. However, for obtaining useful information about the behaviour of the beams or monitoring real-time bridge deformation, the ability to measurement deformation under dynamic loading conditions is also necessary. This paper presents a relatively low-cost and high accuracy imaging technique to measure the deformation of concrete beams in response to dynamic loading with range cameras. However, due to the range camera measurement principle, target movement could lead to motion artefacts that degrade range measurement accuracy. The results of simulated and real-data investigation into the motion artefacts show that the lower sampling frequency leads to the more significant motion artefact. The results from real data experiments have indicated that periodic deformation can be recovered with sub-millimetre accuracy when the 3 Hz and 4 mm amplitude target motion is sampled at a rate of least 20 Hz and with 31 MHz range camera modulation frequency. When the modulation frequency is 29 MHz, the best sampling frequency is 20 Hz to keep the error under sub-millimetre.

  15. Linear dynamic range enhancement in a CMOS imager

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2008-01-01

    A CMOS imager with increased linear dynamic range but without degradation in noise, responsivity, linearity, fixed-pattern noise, or photometric calibration comprises a linear calibrated dual gain pixel in which the gain is reduced after a pre-defined threshold level by switching in an additional capacitance. The pixel may include a novel on-pixel latch circuit that is used to switch in the additional capacitance.

  16. Infrared predetection dynamic range compression via photorefractive crystals

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Cheng, Li-Jen

    1988-01-01

    The theoretical basis and practical implementation of a predetection dynamic-range compression technique for IR sensor systems are discussed. The approach takes advantage of the nonlinear intensity dependence of the gain coefficient in photorefractive crystals. Its feasibility is demonstrated in numerical computations using the experimental data of Cheng and Partovi (1986) on two-wave mixing in GaAs at 1.15 micron wavelength.

  17. High Dynamic Range Characterization of the Trauma Patient Plasma Proteome

    SciTech Connect

    Liu, Tao; Qian, Weijun; Gritsenko, Marina A.; Xiao, Wenzhong; Moldawer, Lyle L.; Kaushal, Amit; Monroe, Matthew E.; Varnum, Susan M.; Moore, Ronald J.; Purvine, Samuel O.; Maier, Ronald V.; Davis, Ronald W.; Tompkins, Ronald G.; Camp, David G.; Smith, Richard D.

    2006-06-08

    While human plasma represents an attractive sample for disease biomarker discovery, the extreme complexity and large dynamic range in protein concentrations present significant challenges for characterization, candidate biomarker discovery, and validation. Herein, we describe a strategy that combines immunoaffinity subtraction and chemical fractionation based on cysteinyl peptide and N-glycopeptide captures with 2D-LC-MS/MS to increase the dynamic range of analysis for plasma. Application of this ''divide-and-conquer'' strategy to trauma patient plasma significantly improved the overall dynamic range of detection and resulted in confident identification of 22,267 unique peptides from four different peptide populations (cysteinyl peptides, non-cysteinyl peptides, N-glycopeptides, and non-glycopeptides) that covered 3654 nonredundant proteins. Numerous low-abundance proteins were identified, exemplified by 78 ''classic'' cytokines and cytokine receptors and by 136 human cell differentiation molecules. Additionally, a total of 2910 different N-glycopeptides that correspond to 662 N-glycoproteins and 1553 N-glycosylation sites were identified. A panel of the proteins identified in this study is known to be involved in inflammation and immune responses. This study established an extensive reference protein database for trauma patients, which provides a foundation for future high-throughput quantitative plasma proteomic studies designed to elucidate the mechanisms that underlie systemic inflammatory responses.

  18. Color transfer between high-dynamic-range images

    NASA Astrophysics Data System (ADS)

    Hristova, Hristina; Cozot, Rémi; Le Meur, Olivier; Bouatouch, Kadi

    2015-09-01

    Color transfer methods alter the look of a source image with regards to a reference image. So far, the proposed color transfer methods have been limited to low-dynamic-range (LDR) images. Unlike LDR images, which are display-dependent, high-dynamic-range (HDR) images contain real physical values of the world luminance and are able to capture high luminance variations and finest details of real world scenes. Therefore, there exists a strong discrepancy between the two types of images. In this paper, we bridge the gap between the color transfer domain and the HDR imagery by introducing HDR extensions to LDR color transfer methods. We tackle the main issues of applying a color transfer between two HDR images. First, to address the nature of light and color distributions in the context of HDR imagery, we carry out modifications of traditional color spaces. Furthermore, we ensure high precision in the quantization of the dynamic range for histogram computations. As image clustering (based on light and colors) proved to be an important aspect of color transfer, we analyze it and adapt it to the HDR domain. Our framework has been applied to several state-of-the-art color transfer methods. Qualitative experiments have shown that results obtained with the proposed adaptation approach exhibit less artifacts and are visually more pleasing than results obtained when straightforwardly applying existing color transfer methods to HDR images.

  19. High Dynamic Range Characterization of the Trauma Patient Plasma Proteome

    PubMed Central

    Liu, Tao; Qian, Wei-Jun; Gritsenko, Marina A.; Xiao, Wenzhong; Moldawer, Lyle L.; Kaushal, Amit; Monroe, Matthew E.; Varnum, Susan M.; Moore, Ronald J.; Purvine, Samuel O.; Maier, Ronald V.; Davis, Ronald W.; Tompkins, Ronald G.; Camp II, David G.; Smith, Richard D.

    2007-01-01

    SUMMARY While human plasma represents an attractive sample for disease biomarker discovery, the extreme complexity and large dynamic range in protein concentrations present significant challenges for characterization, candidate biomarker discovery, and validation. Herein, we describe a strategy that combines immunoaffinity subtraction and subsequent chemical fractionation based on cysteinyl peptide and N-glycopeptide captures with 2D-LC-MS/MS to increase the dynamic range of analysis for plasma. Application of this “divide-and-conquer” strategy to trauma patient plasma significantly improved the overall dynamic range of detection and resulted in confident identification of 22,267 unique peptides from four different peptide populations (cysteinyl peptides, non-cysteinyl peptides, N-glycopeptides, and non-glycopeptides) that covered 3654 different proteins with 1494 proteins identified by multiple peptides. Numerous low-abundance proteins were identified, exemplified by 78 “classic” cytokines and cytokine receptors and by 136 human cell differentiation molecules. Additionally, a total of 2910 different N-glycopeptides that correspond to 662 N-glycoproteins and 1553 N-glycosylation sites were identified. A panel of the proteins identified in this study is known to be involved in inflammation and immune responses. This study established an extensive reference protein database for trauma patients, which provides a foundation for future high-throughput quantitative plasma proteomic studies designed to elucidate the mechanisms that underlie systemic inflammatory responses. PMID:16684767

  20. A method for the evaluation of wide dynamic range cameras

    NASA Astrophysics Data System (ADS)

    Wong, Ping Wah; Lu, Yu Hua

    2012-01-01

    We propose a multi-component metric for the evaluation of digital or video cameras under wide dynamic range (WDR) scenes. The method is based on a single image capture using a specifically designed WDR test chart and light box. Test patterns on the WDR test chart include gray ramps, color patches, arrays of gray patches, white bars, and a relatively dark gray background. The WDR test chart is professionally made using 3 layers of transparencies to produce a contrast ratio of approximately 110 dB for WDR testing. A light box is designed to provide a uniform surface with light level at about 80K to 100K lux, which is typical of a sunny outdoor scene. From a captured image, 9 image quality component scores are calculated. The components include number of resolvable gray steps, dynamic range, linearity of tone response, grayness of gray ramp, number of distinguishable color patches, smearing resistance, edge contrast, grid clarity, and weighted signal-to-noise ratio. A composite score is calculated from the 9 component scores to reflect the comprehensive image quality in cameras under WDR scenes. Experimental results have demonstrated that the multi-component metric corresponds very well to subjective evaluation of wide dynamic range behavior of cameras.

  1. Study on Method of Wide Dynamic Range Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Hu, X.; Teng, Y.

    2013-12-01

    Seismic data acquisition system is an indispensable device for seismic signal digitalization processing. Its performance is directly related to the final seismic signal acquisited, and ultimately affect the results of the data processing. The amplitude of seismic signal has a great span, its dynamic range even reached more than 160dB. And the dynamic range of the output signal of broadband seismometer is greater than 150dB too. Yet the dynamic range of 24-bit DAS(Data Acquisition System) which is currently widespread used and based on Σ-ΔA/D converter is only about 130dB. This lead to that the small seismic signal can't be recorded by 24-bit DAS as well as the amplitude of big seismic event wave recorded by it would be limited. For instance, since the 2008 Wenchuan Ms8.0 Earthquake is a huge seismic event, the amplitudes of seismic wave recorded by all the 24-bit seismometors in Sichuan Province in China are seriously limited. It makes the earthquake monitoring station lost its function when we seriously need the data, and we lost the rare huge seismic event wave data for late studying. It is the requirement for the DAS in practical application that for a small seismic signal recorded, it needed to improve the signal-to-noise ratio and has a high resolution, and for a big one, it is demanded to record the signal perfectly and not to be limited of its amplitude. According to this, we present a new method of wide dynamic range data acquisition: The Analog-to-Digital Converter classifies the input signal amplitude into several levels; The smaller-amplitude-level input voltage signal is digitalized with higher resolution while lower resolution digitalized for the bigger-amplitude-level input; Every amplitude-level-signal can be digitalized by an independent ordinary 24-bit Σ-ΔA/D converter for its dynamic range is less smaller; And finally, the controller-processing unit make all the level signal digital outputs into a 32-bit data, which has high resolution and

  2. Highly mobile laser ranging facilities of the Crustal Dynamics Project

    NASA Technical Reports Server (NTRS)

    Coates, R. J.

    1984-01-01

    Technical specifications, performance, and applications of the NASA transportable laser ranging systems (TLRS-1 and -2) for use in the Crustal Dynamics Program are described. TLRS-1 is truck-mounted, with the laser deployed through the roof. Interacting with the LAGEOS satellite, TLRS has a photoelectric receiver for gathering data on the roundtrip time of the laser beam for calculations of the range gate. The laser has a 0.1 nsec pulse at 3.5 mJ/pulse. Range is measured to within an error of 9 cm. The TLRS-2 version is configured for ease of air transport and modular breakdown and assembly. It has been activated on Easter Island. TLRS-3 and -4 are in development to serve as mobile units in South America and the Mediterranean area.

  3. Fast parallel algorithms for short-range molecular dynamics

    SciTech Connect

    Plimpton, S.

    1993-05-01

    Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a subset of atoms; the second assigns each a subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently -- those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 10,000,000 atoms on three parallel supercomputers, the nCUBE 2, Intel iPSC/860, and Intel Delta. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and the Intel Delta performs about 30 times faster than a single Y-MP processor and 12 times faster than a single C90 processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

  4. A new high dynamic range ROIC with smart light intensity control unit

    NASA Astrophysics Data System (ADS)

    Yazici, Melik; Ceylan, Omer; Shafique, Atia; Abbasi, Shahbaz; Galioglu, Arman; Gurbuz, Yasar

    2017-05-01

    This journal presents a new high dynamic range ROIC with smart pixel which consists of two pre-amplifiers that are controlled by a circuit inside the pixel. Each pixel automatically decides which pre-amplifier is used according to the incoming illumination level. Instead of using single pre-amplifier, two input pre-amplifiers, which are optimized for different signal levels, are placed inside each pixel. The smart circuit mechanism, which decides the best input circuit according to the incoming light level, is also designed for each pixel. In short, an individual pixel has the ability to select the best input amplifier circuit that performs the best/highest SNR for the incoming signal level. A 32 × 32 ROIC prototype chip is designed to demonstrate the concept in 0.18 μ m CMOS technology. The prototype is optimized for NIR and SWIR bands. Instead of a detector, process variation optimized current sources are placed inside the ROIC. The chip achieves minimum 8.6 e- input referred noise and 98.9 dB dynamic range. It has the highest dynamic range in the literature in terms of analog ROICs for SWIR band. It is operating in room temperature and power consumption is 2.8 μ W per pixel.

  5. High dynamic range hyperspectral imaging for camouflage performance test and evaluation

    NASA Astrophysics Data System (ADS)

    Pearce, D.; Feenan, J.

    2016-10-01

    This paper demonstrates the use of high dynamic range processing applied to the specific technique of hyper-spectral imaging with linescan spectrometers. The technique provides an improvement in signal to noise for reflectance estimation. This is demonstrated for field measurements of rural imagery collected from a ground-based linescan spectrometer of rural scenes. Once fully developed, the specific application is expected to improve the colour estimation approaches and consequently the test and evaluation accuracy of camouflage performance tests. Data are presented on both field and laboratory experiments that have been used to evaluate the improvements granted by the adoption of high dynamic range data acquisition in the field of hyperspectral imaging. High dynamic ranging imaging is well suited to the hyperspectral domain due to the large variation in solar irradiance across the visible and short wave infra-red (SWIR) spectrum coupled with the wavelength dependence of the nominal silicon detector response. Under field measurement conditions it is generally impractical to provide artificial illumination; consequently, an adaptation of the hyperspectral imaging and re ectance estimation process has been developed to accommodate the solar spectrum. This is shown to improve the signal to noise ratio for the re ectance estimation process of scene materials in the 400-500 nm and 700-900 nm regions.

  6. Nonlinear tuning of microresonators for dynamic range enhancement

    PubMed Central

    Saghafi, M.; Dankowicz, H.; Lacarbonara, W.

    2015-01-01

    This paper investigates the development of a novel framework and its implementation for the nonlinear tuning of nano/microresonators. Using geometrically exact mechanical formulations, a nonlinear model is obtained that governs the transverse and longitudinal dynamics of multilayer microbeams, and also takes into account rotary inertia effects. The partial differential equations of motion are discretized, according to the Galerkin method, after being reformulated into a mixed form. A zeroth-order shift as well as a hardening effect are observed in the frequency response of the beam. These results are confirmed by a higher order perturbation analysis using the method of multiple scales. An inverse problem is then proposed for the continuation of the critical amplitude at which the transition to nonlinear response characteristics occurs. Path-following techniques are employed to explore the dependence on the system parameters, as well as on the geometry of bilayer microbeams, of the magnitude of the dynamic range in nano/microresonators. PMID:26345078

  7. Nonlinear tuning of microresonators for dynamic range enhancement.

    PubMed

    Saghafi, M; Dankowicz, H; Lacarbonara, W

    2015-07-08

    This paper investigates the development of a novel framework and its implementation for the nonlinear tuning of nano/microresonators. Using geometrically exact mechanical formulations, a nonlinear model is obtained that governs the transverse and longitudinal dynamics of multilayer microbeams, and also takes into account rotary inertia effects. The partial differential equations of motion are discretized, according to the Galerkin method, after being reformulated into a mixed form. A zeroth-order shift as well as a hardening effect are observed in the frequency response of the beam. These results are confirmed by a higher order perturbation analysis using the method of multiple scales. An inverse problem is then proposed for the continuation of the critical amplitude at which the transition to nonlinear response characteristics occurs. Path-following techniques are employed to explore the dependence on the system parameters, as well as on the geometry of bilayer microbeams, of the magnitude of the dynamic range in nano/microresonators.

  8. A dynamic attenuator improves spectral imaging with energy-discriminating, photon counting detectors.

    PubMed

    Hsieh, Scott S; Pelc, Norbert J

    2015-03-01

    Energy-discriminating, photon counting (EDPC) detectors have high potential in spectral imaging applications but exhibit degraded performance when the incident count rate approaches or exceeds the characteristic count rate of the detector. In order to reduce the requirements on the detector, we explore the strategy of modulating the X-ray flux field using a recently proposed dynamic, piecewise-linear attenuator. A previous paper studied this modulation for photon counting detectors but did not explore the impact on spectral applications. In this work, we modeled detection with a bipolar triangular pulse shape (Taguchi et al., 2011) and estimated the Cramer-Rao lower bound (CRLB) of the variance of material selective and equivalent monoenergetic images, assuming deterministic errors at high flux could be corrected. We compared different materials for the dynamic attenuator and found that rare earth elements, such as erbium, outperformed previously proposed materials such as iron in spectral imaging. The redistribution of flux reduces the variance or dose, consistent with previous studies on benefits with conventional detectors. Numerical simulations based on DICOM datasets were used to assess the impact of the dynamic attenuator for detectors with several different characteristic count rates. The dynamic attenuator reduced the peak incident count rate by a factor of 4 in the thorax and 44 in the pelvis, and a 10 Mcps/mm (2) EDPC detector with dynamic attenuator provided generally superior image quality to a 100 Mcps/mm (2) detector with reference bowtie filter for the same dose. The improvement is more pronounced in the material images.

  9. Generation of high-dynamic range image from digital photo

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Potemin, Igor S.; Zhdanov, Dmitry D.; Wang, Xu-yang; Cheng, Han

    2016-10-01

    A number of the modern applications such as medical imaging, remote sensing satellites imaging, virtual prototyping etc use the High Dynamic Range Image (HDRI). Generally to obtain HDRI from ordinary digital image the camera is calibrated. The article proposes the camera calibration method based on the clear sky as the standard light source and takes sky luminance from CIE sky model for the corresponding geographical coordinates and time. The article considers base algorithms for getting real luminance values from ordinary digital image and corresponding programmed implementation of the algorithms. Moreover, examples of HDRI reconstructed from ordinary images illustrate the article.

  10. Low Power, Wide Dynamic Range Carbon Nanotube Vacuum Gauges

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Manohara, Harish M.

    2008-01-01

    This slide presentation presents carbon nanotube vacuum pressure sensor gauges that operate at low power and exhibit a wide-dynamic range based on microelectromechanical systems (MEMS) technology. The fabrication facility, and the formation process are shown. Pressure sensitivity was found to increase rapidly as the bias power was increased. In addition, by etching part of the thermal SiO2 beneath the tubes and minimizing heat conduction through the substrate, pressure sensitivity was extended toward lower pressures. Results are compared to a conventional thin film meander resistor, which was fabricated and whose pressure response was also measured for comparative purposes.

  11. The MOLDY short-range molecular dynamics package

    NASA Astrophysics Data System (ADS)

    Ackland, G. J.; D'Mellow, K.; Daraszewicz, S. L.; Hepburn, D. J.; Uhrin, M.; Stratford, K.

    2011-12-01

    We describe a parallelised version of the MOLDY molecular dynamics program. This Fortran code is aimed at systems which may be described by short-range potentials and specifically those which may be addressed with the embedded atom method. This includes a wide range of transition metals and alloys. MOLDY provides a range of options in terms of the molecular dynamics ensemble used and the boundary conditions which may be applied. A number of standard potentials are provided, and the modular structure of the code allows new potentials to be added easily. The code is parallelised using OpenMP and can therefore be run on shared memory systems, including modern multicore processors. Particular attention is paid to the updates required in the main force loop, where synchronisation is often required in OpenMP implementations of molecular dynamics. We examine the performance of the parallel code in detail and give some examples of applications to realistic problems, including the dynamic compression of copper and carbon migration in an iron-carbon alloy. Program summaryProgram title: MOLDY Catalogue identifier: AEJU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 2 No. of lines in distributed program, including test data, etc.: 382 881 No. of bytes in distributed program, including test data, etc.: 6 705 242 Distribution format: tar.gz Programming language: Fortran 95/OpenMP Computer: Any Operating system: Any Has the code been vectorised or parallelized?: Yes. OpenMP is required for parallel execution RAM: 100 MB or more Classification: 7.7 Nature of problem: Moldy addresses the problem of many atoms (of order 10 6) interacting via a classical interatomic potential on a timescale of microseconds. It is designed for problems where statistics must be gathered over a number of equivalent runs, such as

  12. Assessment of resolution and dynamic range for digital cinema

    NASA Astrophysics Data System (ADS)

    Fenimore, Charles P.; Nikolaev, A. I.

    2003-05-01

    The proponents of digital cinema seek picture quality exceeding that of the best film-based presentation. Quantifying the performance of systems for the presentation of high quality imagery presents several challenges. One is that the dynamic range and the resolution may not be simply related to the nominal characteristics of bit-depth and pixel counts. We review some of the measurement methods that have been applied to determining these characteristics. One of the presumed advantages of high bit depth systems is to reduce the visibility of image banding. Non-uniformity of the display can be compensated in test pattern design to enable the measurement of banding contrast. The subjective assessment of banding is compared to a contrast-weighted model of just noticeable image differences. Applied to a class of image banding test patterns, the metric relates dynamic range to contouring. The model produces an estimate of the visibility threshold for image contouring in a 10-bit system, superior to a simple Weber model. These measurement issues will continue to be challenges as d-cinema systems improve.

  13. Mangrove microclimates alter seedling dynamics at the range edge.

    PubMed

    Devaney, John L; Lehmann, Michael; Feller, Ilka C; Parker, John D

    2017-08-05

    Recent climate warming has led to asynchronous species migrations, with major consequences for ecosystems worldwide. In woody communities, localized microclimates have the potential to create feedback mechanisms that can alter the rate of species range shifts attributed to macroclimate drivers alone. Mangrove encroachment into saltmarsh in many areas is driven by a reduction in freeze events, and this encroachment can further modify local climate, but the subsequent impacts on mangrove seedling dynamics are unknown. We monitored microclimate conditions beneath mangrove canopies and adjacent open saltmarsh at a freeze-sensitive mangrove-saltmarsh ecotone and assessed survival of experimentally transplanted mangrove seedlings. Mangrove canopies buffered night time cooling during the winter, leading to interspecific differences in freeze damage on mangrove seedlings. However, mangrove canopies also altered biotic interactions. Herbivore damage was higher under canopies, leading to greater mangrove seedling mortality beneath canopies relative to saltmarsh. While warming-induced expansion of mangroves can lead to positive microclimate feedbacks, simultaneous fluctuations in biotic drivers can also alter seedling dynamics. Thus, climate change can drive divergent feedback mechanisms through both abiotic and biotic channels, highlighting the importance of vegetation-microclimate interactions as important moderators of climate driven range shifts. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Enhanced dynamic range fringe projection for micro-structure characterization

    NASA Astrophysics Data System (ADS)

    Samara, Ayman Mohammad

    We present a solution for one of the main limitations in classical interferometry and fringe projection, which is the dynamic range limitation. The technique is based on real time inverse fringe projection to enhance the dynamic range and increase the vertical resolution without the need of prior information about the test object or the system parameters. The object's form optical path difference map is first measured, and then used to generate inverse fringes to optically filter the low spatial frequency form. The surface finish can then be measured without the impact of the form. A stereo microscope-based fringe projection system was designed, constructed, and used to illustrate the technique. The system was also used to characterize solder bumps with an uncertainty of approximately 10%. Individual solder bumps were also characterized using Zygo's NewView(TM) scanning white light interferometer (SWLI), and the results were compared to measurements on Intel's bump metrology tool. The results show that the SWLI has the lowest uncertainty and maximum repeatability but the lowest measurement speed. Intel's tool has a repeatability of approximately 1% and a measurement speed of about 10 minutes per 100,000 bumps, making it suitable for high volume process control.

  15. Flicker reduction in tone mapped high dynamic range video

    NASA Astrophysics Data System (ADS)

    Guthier, Benjamin; Kopf, Stephan; Eble, Marc; Effelsberg, Wolfgang

    2011-01-01

    In order to display a high dynamic range (HDR) video on a regular low dynamic range (LDR) screen, it needs to be tone mapped. A great number of tone mapping (TM) operators exist - most of them designed to tone map one image at a time. Using them on each frame of an HDR video individually leads to flicker in the resulting sequence. In our work, we analyze three tone mapping operators with respect to flicker. We propose a criterion for the automatic detection of image flicker by analyzing the log average pixel brightness of the tone mapped frame. Flicker is detected if the difference between the averages of two consecutive frames is larger than a threshold derived from Stevens' power law. Fine-tuning of the threshold is done in a subjective study. Additionally, we propose a generic method to reduce flicker as a post processing step. It is applicable to all tone mapping operators. We begin by tone mapping a frame with the chosen operator. If the flicker detection reports a visible variation in the frame's brightness, its brightness is adjusted. As a result, the brightness variation is smoothed over several frames, becoming less disturbing.

  16. Theory of the dynamic response of a coplanar grid semiconductor detector

    SciTech Connect

    Kozorezov, A. G.; Wigmore, J. K.; Owens, A.; Peacock, A.

    2007-07-09

    The authors have developed a theoretical model for the response of a coplanar grid semiconductor detector to hard x- and {gamma}-ray radiation. Carrier drift trajectories were obtained by solving the coupled dynamical equations for carriers driven by electrostatic fields of the coplanar grid configuration. The pulse spectra calculated by summing the individual contributions for all carriers are compared to experimental results for a large volume optimized cadmium zinc telluride coplanar grid detector and good agreement is obtained.

  17. High-accuracy detector calibration in the 3-1500 eV spectral range at the PTB radiometry laboratory.

    PubMed

    Scholze, F; Henneken, H; Kuschnerus, P; Rabus, H; Richter, M; Ulm, G

    1998-05-01

    State-of-the-art detector calibration in the UV/VUV and soft X-ray spectral ranges at the Physikalisch-Technische Bundesanstalt (PTB) is based on the primary detector standard SYRES, a cryogenic electrical substitution radiometer capable of measuring radiant power of a few micro W. At the PTB radiometry laboratory at the synchrotron radiation facility BESSY, two dedicated beamlines are operated, providing monochromatic radiation of high spectral purity, high radiant power and tunable photon energy in the 3-1500 eV range. The spectral responsivity of detectors, e.g. photodiodes, can be measured with a relative uncertainty of about 1% by direct comparison with SYRES, as will be demonstrated for PtSi/Si and GaAsP/Au Schottky and silicon n-on-p photodiodes. The calibration of photon-counting detectors traceable to SYRES can by accomplished by exploiting the unique capability to scale the spectral photon flux over several orders of magnitude by changing the stored electron current. Calibrations of CCDs and photomultipliers are presented as examples.

  18. Increasing Linear Dynamic Range of a CMOS Image Sensor

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2007-01-01

    A generic design and a corresponding operating sequence have been developed for increasing the linear-response dynamic range of a complementary metal oxide/semiconductor (CMOS) image sensor. The design provides for linear calibrated dual-gain pixels that operate at high gain at a low signal level and at low gain at a signal level above a preset threshold. Unlike most prior designs for increasing dynamic range of an image sensor, this design does not entail any increase in noise (including fixed-pattern noise), decrease in responsivity or linearity, or degradation of photometric calibration. The figure is a simplified schematic diagram showing the circuit of one pixel and pertinent parts of its column readout circuitry. The conventional part of the pixel circuit includes a photodiode having a small capacitance, CD. The unconventional part includes an additional larger capacitance, CL, that can be connected to the photodiode via a transfer gate controlled in part by a latch. In the high-gain mode, the signal labeled TSR in the figure is held low through the latch, which also helps to adapt the gain on a pixel-by-pixel basis. Light must be coupled to the pixel through a microlens or by back illumination in order to obtain a high effective fill factor; this is necessary to ensure high quantum efficiency, a loss of which would minimize the efficacy of the dynamic- range-enhancement scheme. Once the level of illumination of the pixel exceeds the threshold, TSR is turned on, causing the transfer gate to conduct, thereby adding CL to the pixel capacitance. The added capacitance reduces the conversion gain, and increases the pixel electron-handling capacity, thereby providing an extension of the dynamic range. By use of an array of comparators also at the bottom of the column, photocharge voltages on sampling capacitors in each column are compared with a reference voltage to determine whether it is necessary to switch from the high-gain to the low-gain mode. Depending upon

  19. Development of a liquid scintillator-based 3D detector for range measurements of spot-scanned proton beams

    NASA Astrophysics Data System (ADS)

    Darne, C. D.; Robertson, D.; Beddar, S.

    2017-05-01

    The goal of the present study is to develop a liquid scintillator-based 3D detector and investigate its performance for beam range measurements in real time. The detector design consists of a tank filled with water-equivalent liquid scintillator that scintillates in response to incident proton beams. Three scientific complementary metal-oxide semiconductor (sCMOS) cameras collect the resulting optical signals. Preliminary measurements have shown that the optical detection system can record light distribution profiles anywhere inside the tank with an average spatial resolution of 0.23 mm. By employing multiple cameras the system is capable of capturing high resolution 2D depth and beams-eye profiles of the delivered beam and can consequently localize the position of beam anywhere inside the tank. It is also shown that it is capable of accurately measuring proton beam range with no more than 0.3 mm difference from the nominal range. The detector system thus demonstrates its ability to perform fast, high-resolution, and precise beam range measurements in 3D.

  20. Dynamic range of safe electrical stimulation of the retina

    NASA Astrophysics Data System (ADS)

    Butterwick, Alexander F.; Vankov, Alexander; Huie, Phil; Palanker, Daniel V.

    2006-02-01

    Electronic retinal prostheses represent a potentially effective approach for restoring some degree of sight in blind patients with retinal degeneration. However, levels of safe electrical stimulation and the underlying mechanisms of cellular damage are largely unknown. We measured the threshold of cellular damage as a function of pulse duration, electrode size, and number of pulses to determine the safe range of stimulation. Measurements were performed in-vitro on embryonic chicken retina with saline-filled glass pipettes for stimulation electrodes. Cellular damage was detected using Propidium Iodide fluorescent staining. Electrode size varied from 115μm to 1mm, pulse duration from 6μs to 6ms, and number of pulses from 1 to 7,500. The threshold current density was independent of electrode sizes exceeding 400μm. With smaller electrodes the current density was scaling reciprocal to the square of the pipette diameter, i.e. acting as a point source so that the damage threshold was determined by the total current in this regime. The damage threshold current measured with large electrodes (1mm) scaled with pulse duration as t -0.5, which is characteristic of electroporation. For repeated electrical pulsed exposure on the retina the threshold current density varied between 0.059 A/cm2 at 6ms to 1.3 A/cm2 at 6μs. The dynamic range of safe stimulation, i.e. the ratio of damage threshold to stimulation threshold was found to be duration-dependent, and varied from 10 to 100 at pulse durations varying between 10μs to 10ms. Maximal dynamic range of 100 was observed near 1ms pulse durations.

  1. Development of wide dynamic range beam loss monitor system for J-PARC main ring

    NASA Astrophysics Data System (ADS)

    Satou, K.; Toyama, T.; Kamikubota, N.; Yamada, S.; Yoshida, S.

    2017-07-01

    The new beam loss monitor (BLM) system now in operation at the main ring of J- PARC consists of an isolated front-end current to voltage converter, a VME-based 24 bit ADC system. A dual detector system employs a proportional-type gas chamber (PBLM) and an air- filled ionization chamber (AIC). The system shows a wide dynamic range of 160 dB. It can detect the low level signal that would arise in the case of the detection of residual dose in the ring itself after the beam has been turned off as well as an event such as high level beam loss at the collimators. The signal rise time of the waveform obtained is 17 µs which is fast enough to meet the speed requirement of the Machine Protection System (MPS); which is that the MPS should dump the beam within 100 µs when the beam loss signal exceeds the reference levels set in the ADC system.

  2. Image sensor with high dynamic range linear output

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Fossum, Eric R. (Inventor)

    2007-01-01

    Designs and operational methods to increase the dynamic range of image sensors and APS devices in particular by achieving more than one integration times for each pixel thereof. An APS system with more than one column-parallel signal chains for readout are described for maintaining a high frame rate in readout. Each active pixel is sampled for multiple times during a single frame readout, thus resulting in multiple integration times. The operation methods can also be used to obtain multiple integration times for each pixel with an APS design having a single column-parallel signal chain for readout. Furthermore, analog-to-digital conversion of high speed and high resolution can be implemented.

  3. High-dynamic range JVLA observations of clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Hlavacek-Larrondo, Julie

    2017-08-01

    The recently upgraded JVLA has enabled a breakthrough in radio astronomy by providing a radio telescope with unprecedented sensitivity, resolution, and imaging capabilities. We present new JVLA observations of clusters of galaxies, including state-of-the-art low-frequency 230-470 MHz observations of the Perseus cluster. These observations not only illustrate the high-quality/high-dynamic range images that can be obtained with the upgraded JVLA, but they also reveal that mini-halos are not simply diffuse, uniform radio sources. Instead, mini-halos appear to be filled with a rich variety of complex radio structures including arcs, filaments and edges. The depth and resolution of the JVLA observations allow us to conduct for the first time a detailed comparison of the mini-halo structure with the X-ray structure as seen in the Chandra X-ray images, providing new clues about the acceleration mechanisms of relativistic particles in the intracluster medium.

  4. Study of high dynamic range video quality assessment

    NASA Astrophysics Data System (ADS)

    Narwaria, Manish; Perreira Da Silva, Matthieu; Le Callet, Patrick

    2015-09-01

    In recent years, High Dynamic Range (HDR) imaging has attracted significant attention from industry and academia. As a result, there are currently several on-going efforts towards standardization and benchmarking of existing tools for HDR image and video, and one of the key aspects is that of video quality measurement (both subjective and objective approaches). Therefore, this paper aims to identify few key challenges in the said area and then discuss existing solutions. Specifically, we first discuss a few important practical aspects that make HDR video quality measurement potentially challenging. Second, we report our recent efforts towards developing HDR video datasets that have been subjectively annotated for visual quality. Finally, we analyze and compare the effectiveness of existing solutions for objective quality prediction.

  5. Picosecond X-ray streak camera dynamic range measurement

    SciTech Connect

    Zuber, C. Bazzoli, S.; Brunel, P.; Gontier, D.; Raimbourg, J.; Rubbelynck, C.; Trosseille, C.; Fronty, J.-P.; Goulmy, C.

    2016-09-15

    Streak cameras are widely used to record the spatio-temporal evolution of laser-induced plasma. A prototype of picosecond X-ray streak camera has been developed and tested by Commissariat à l’Énergie Atomique et aux Énergies Alternatives to answer the Laser MegaJoule specific needs. The dynamic range of this instrument is measured with picosecond X-ray pulses generated by the interaction of a laser beam and a copper target. The required value of 100 is reached only in the configurations combining the slowest sweeping speed and optimization of the streak tube electron throughput by an appropriate choice of high voltages applied to its electrodes.

  6. Dynamic range in the C. elegans brain network

    NASA Astrophysics Data System (ADS)

    Antonopoulos, Chris G.

    2016-01-01

    We study external electrical perturbations and their responses in the brain dynamic network of the Caenorhabditis elegans soil worm, given by the connectome of its large somatic nervous system. Our analysis is inspired by a realistic experiment where one stimulates externally specific parts of the brain and studies the persistent neural activity triggered in other cortical regions. In this work, we perturb groups of neurons that form communities, identified by the walktrap community detection method, by trains of stereotypical electrical Poissonian impulses and study the propagation of neural activity to other communities by measuring the corresponding dynamic ranges and Steven law exponents. We show that when one perturbs specific communities, keeping the rest unperturbed, the external stimulations are able to propagate to some of them but not to all. There are also perturbations that do not trigger any response. We found that this depends on the initially perturbed community. Finally, we relate our findings for the former cases with low neural synchronization, self-criticality, and large information flow capacity, and interpret them as the ability of the brain network to respond to external perturbations when it works at criticality and its information flow capacity becomes maximal.

  7. High-dynamic range DMD-based IR scene projector

    NASA Astrophysics Data System (ADS)

    Dupuis, Julia R.; Mansur, David J.; Vaillancourt, Robert; Benedict-Gill, Ryan; Newbry, Scott P.

    2013-03-01

    OPTRA is developing a next-generation digital micromirror device (DMD) based two-band infrared scene projector (IRSP) with infinite bit-depth independent of frame rate and an order of magnitude improvement in contrast over the state of the art. Traditionally DMD-based IRSPs have offered larger format and superior uniformity and pixel operability relative to resistive and diode arrays, however, they have been limited in contrast and also by the inherent bitdepth / frame rate tradeoff imposed by pulse width modulation (PWM). OPTRA's high dynamic range IRSP (HIDRA SP) has broken this dependency with a dynamic structured illumination solution. The HIDRA SP uses a source conditioning DMD to impose the structured illumination on two projector DMDs - one for each spectral band. The source conditioning DMD is operated in binary mode, and the relay optics which form the structured illumination act as a low pass spatial filter. The structured illumination is therefore spatially grayscaled and more importantly is analog with no PWM. In addition, the structured illumination concentrates energy where bright object will be projected and extinguishes energy in dark regions; the result is a significant improvement in contrast. The projector DMDs are operated with 8-bit PWM, however the total projected image is analog with no bit-depth / frame rate dependency. In this paper we describe our progress towards the development, build, and test of a prototype HIDRA SP.

  8. High-dynamic range DMD-based infrared scene projector

    NASA Astrophysics Data System (ADS)

    Mansur, David J.; Vaillancourt, Robert; Benedict-Gill, Ryan; Newbry, Scott P.; Rentz Dupuis, Julia

    2013-05-01

    OPTRA is developing a next-generation digital micromirror device (DMD) based two-band infrared scene projector (IRSP) with infinite bit-depth independent of frame rate and an order of magnitude improvement in contrast over the state of the art. Traditionally DMD-based IRSPs have offered larger format and superior uniformity and pixel operability relative to resistive and diode arrays, however, they have been limited in contrast and also by the inherent bitdepth / frame rate tradeoff imposed by pulse width modulation (PWM). OPTRA's high dynamic range IRSP (HIDRA SP) has broken this dependency with a dynamic structured illumination solution. The HIDRA SP uses a source conditioning DMD to impose the structured illumination on two projector DMDs - one for each spectral band. The source conditioning DMD is operated in binary mode, and the relay optics which form the structured illumination act as a low pass spatial filter. The structured illumination is therefore spatially grayscaled and more importantly is analog with no PWM. In addition, the structured illumination concentrates energy where bright object will be projected and extinguishes energy in dark regions; the result is a significant improvement in contrast. The projector DMDs are operated with 8-bit PWM, however the total projected image is analog with no bit-depth / frame rate dependency. In this paper we describe our progress towards the development, build, and test of a prototype HIDRA SP.

  9. Temporal artifacts in flat dynamic x-ray detectors

    NASA Astrophysics Data System (ADS)

    Overdick, Michael; Solf, Torsten; Wischmann, Hans-Aloys

    2001-06-01

    Flat X-ray detectors based on CsI:Tl scintillators and amorphous silicon photodiodes are known to exhibit temporal artefacts (ghost images) which decay over time. Previously, these temporal artefacts have been attributed mainly to residual signals from the amorphous silicon photodiodes. More detailed experiments presented here show that a second class of effects, the so-called gain effects, also contributes significantly to the observed temporal artefacts. Both the residual signals and the photodiode gain effect have been characterized under various exposure conditions in the study presented here. The results of the experiments quantitatively show the decay of the temporal artefacts. Additionally, the influence of the detector's reset light on both effects in the photodiode has been studied in detail. The data from the measurements is interpreted based on a simple trapping model which suggests a strong link between the photodiode residual signals and the photodiode gain effect. For the residual signal effect a possible correction scheme is described. Furthermore, the relevance of the remaining temporal artefacts for the applications is briefly discussed for both the photodiode residual signals and the photodiode gain effect.

  10. Optimization of detectors positioning with respect to flying dynamics for future formation flight missions

    NASA Astrophysics Data System (ADS)

    Civitani, Marta; Djalal, Sophie; Chipaux, Remi

    2009-08-01

    In a X-ray telescope in formation flight configuration, the optics and the focal-plane detectors reside in two different spacecraft. The dynamics of the detector spacecraft (DSC) with respect to the mirror spacecraft (MSC, carrying the mirrors of the telescope) changes continuously the arrival positions of the photons on the detectors. In this paper we analyze this issue for the case of the SIMBOL-X hard X-ray mission, extensively studied by CNES and ASI until 2009 spring. Due to the existing gaps between pixels and between detector modules, the dynamics of the system may produce a relevant photometric effect. The aim of this work is to present the optimization study of the control-law algorithm with respect to the detector's geometry. As the photometric effect may vary depending upon position of the source image on the detector, the analysis-carried out using the simuLOS (INAF, CNES, CEA) simulation tool-is extended over the entire SIMBOL-X field of view.

  11. Testing the Equivalence Principle in an Einstein Elevator: Detector Dynamics and Gravity Perturbations

    NASA Technical Reports Server (NTRS)

    Hubbard, Dorthy (Technical Monitor); Lorenzini, E. C.; Shapiro, I. I.; Cosmo, M. L.; Ashenberg, J.; Parzianello, G.; Iafolla, V.; Nozzoli, S.

    2003-01-01

    We discuss specific, recent advances in the analysis of an experiment to test the Equivalence Principle (EP) in free fall. A differential accelerometer detector with two proof masses of different materials free falls inside an evacuated capsule previously released from a stratospheric balloon. The detector spins slowly about its horizontal axis during the fall. An EP violation signal (if present) will manifest itself at the rotational frequency of the detector. The detector operates in a quiet environment as it slowly moves with respect to the co-moving capsule. There are, however, gravitational and dynamical noise contributions that need to be evaluated in order to define key requirements for this experiment. Specifically, higher-order mass moments of the capsule contribute errors to the differential acceleration output with components at the spin frequency which need to be minimized. The dynamics of the free falling detector (in its present design) has been simulated in order to estimate the tolerable errors at release which, in turn, define the release mechanism requirements. Moreover, the study of the higher-order mass moments for a worst-case position of the detector package relative to the cryostat has led to the definition of requirements on the shape and size of the proof masses.

  12. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality

    NASA Astrophysics Data System (ADS)

    Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.

    2005-12-01

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  13. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality.

    PubMed

    Vano, E; Geiger, B; Schreiner, A; Back, C; Beissel, J

    2005-12-07

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 microGy/frame (cine) and 5 and 95 mGy min(-1) (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  14. Impact of Infrared Lunar Laser Ranging on Lunar Dynamics

    NASA Astrophysics Data System (ADS)

    Viswanathan, Vishnu; Fienga, Agnès; Manche, Hervé; Gastineau, Mickael; Courde, Clément; Torre, Jean-Marie; Exertier, Pierre; Laskar, Jacques; LLR Observers : Astrogeo-OCA, Apache Point, McDonald Laser Ranging Station, Haleakala Observatory, Matera Laser Ranging Observatory

    2016-10-01

    Since 2015, in addition to the traditional green (532nm), infrared (1064nm) has been the preferred wavelength for lunar laser ranging at the Calern lunar laser ranging (LLR) site in France. Due to the better atmospheric transmission of IR with respect to Green, nearly 3 times the number of normal points have been obtained in IR than in Green [ C.Courde et al 2016 ]. In our study, in addition to the historical data obtained from various other LLR sites, we include the recent IR normal points obtained from Calern over the 1 year time span (2015-2016), constituting about 4.2% of data spread over 46 years of LLR. Near even distribution of data provided by IR on both the spatial and temporal domain, helps us to improve constraints on the internal structure of the Moon modeled within the planetary ephemeris : INPOP [ Fienga et al 2015 ]. IERS recommended models have been used in the data reduction software GINS (GRGS,CNES) [ V.Viswanathan et al 2015 ]. Constraints provided by GRAIL, on the Lunar gravitational potential and Love numbers have been taken into account in the least-square fit procedure. New estimates on the dynamical parameters of the lunar core will be presented.

  15. Wide-dynamic-range promoters engineered for cyanobacteria.

    PubMed

    Huang, Hsin-Ho; Lindblad, Peter

    2013-04-22

    Cyanobacteria, prokaryotic cells with oxygenic photosynthesis, are excellent bioengineering targets to convert solar energy into solar fuels. Tremendous genetic engineering approaches and tools have been and still are being developed for prokaryotes. However, the progress for cyanobacteria is far behind with a specific lack of non-native inducible promoters. We report the development of engineered TetR-regulated promoters with a wide dynamic range of transcriptional regulation. An optimal 239 (±16) fold induction in darkness (white-light-activated heterotrophic growth, 24 h) and an optimal 290 (±93) fold induction in red light (photoautotrophic growth, 48 h) were observed with the L03 promoter in cells of the unicellular cyanobacterium Synechocystis sp. strain ATCC27184 (i.e. glucose-tolerant Synechocystis sp. strain PCC 6803). By altering only few bases of the promoter in the narrow region between the -10 element and transcription start site significant changes in the promoter strengths, and consequently in the range of regulations, were observed. The non-native inducible promoters developed in the present study are ready to be used to further explore the notion of custom designed cyanobacterial cells in the complementary frameworks of metabolic engineering and synthetic biology.

  16. Dynamic-range tests for a gamma-ray sensor

    SciTech Connect

    Byrd, R.C.; Longmire, J.L.; Moss, C.E.

    1995-01-01

    The task of detecting and characterizing intense bursts of nuclear radiation requires an instrument capable of operating reliably over wide extremes of signal intensity. Developing techniques for testing and calibrating such a detector involves a combination of experimental measurements, data analyses, and computer simulations. The results of these efforts provide important insight into the instrument`s behavior in the laboratory and in its eventual application. For the present case, such studies not only verify the proper operation of the existing detector, but they also provide the basis for future improvements in its performance.

  17. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064  nm wavelength.

    PubMed

    Xue, Li; Li, Zhulian; Zhang, Labao; Zhai, Dongsheng; Li, Yuqiang; Zhang, Sen; Li, Ming; Kang, Lin; Chen, Jian; Wu, Peiheng; Xiong, Yaoheng

    2016-08-15

    Satellite laser ranging operating at 1064 nm wavelength using superconducting nanowire single-photon detectors (SNSPDs) is successfully demonstrated. A SNSPD with an intrinsic quantum efficiency of 80% and a dark count rate of 100 cps at 1064 nm wavelength is developed and introduced to Yunnan Observatory in China. With improved closed-loop telescope systems (field of view of about 26''), satellites including Cryosat, Ajisai, and Glonass with ranges of 1600 km, 3100 km, and 19,500 km, respectively, are experimentally ranged with mean echo rates of 1200/min, 4200/min, and 320/min, respectively. To the best of our knowledge, this is the first demonstration of laser ranging for satellites using SNSPDs at 1064 nm wavelength. Theoretical analysis of the detection efficiency and the mean echo rate for typical satellites indicate that it is possible for a SNSPD to range satellites from low Earth orbit to geostationary Earth orbit.

  18. Threshold contrast detail detectability measurement of the fluoroscopic image quality of a dynamic solid-state digital x-ray image detector.

    PubMed

    Davies, A G; Cowen, A R; Kengyelics, S M; Bury, R F; Bruijns, T J

    2001-01-01

    Solid-state digital x-ray imaging detectors of flat-panel construction will play an increasingly important role in future medical imaging facilities. Solid-state detectors that will support both dynamic (including fluoroscopic) and radiographic image recording are under active development. The image quality of an experimental solid-state digital x-ray image detector operating in a continuous fluoroscopy mode has been investigated. The threshold contrast detail detectability (TCDD) technique was used to compare the fluoroscopic imaging performance of an experimental dynamic solid-state digital x-ray image detector with that of a reference image intensifier television (IITV) fluoroscopy system. The reference system incorporated Plumbicon TV. Results were presented as a threshold detection index, or H(T)(A), curves. Measurements were made over a range of mean entrance air kerma (EAK) rates typically used in conventional IITV fluoroscopy. At the upper and mid EAK rate range (440 and 220 nGy/s) the solid-state detector outperformed the reference IITV fluoroscopy system as measured by TCDD performance. At the lowest measured EAK rate (104 nGy/s), the solid-state detector produces slightly inferior TCDD performance compared with the reference system. Although not statistically significant at this EAK rate, the difference will increase as EAK is lowered further. Overall the TCDD results and early clinical experiences support the proposition that a current design of dynamic solid-state detector produces image quality competitive with that of modern IITV fluoroscopy systems. These findings encourage the development of compact and versatile universal x-ray imaging systems based upon solid-state detector technology to support R & F and vascular/interventional applications.

  19. Effect of competing short-range attraction and long-range repulsion on the dynamics of globular particle suspensions

    NASA Astrophysics Data System (ADS)

    Riest, Jonas; Naegele, Gerhard

    2015-03-01

    The dynamic clustering of globular particle suspensions exhibiting competing short-range attraction and long-range repulsion such as protein solutions has gained a lot of interest in the last years. We investigate the influence of clustering on the phase behavior, and in particular on the dynamics of globular particle systems. To this end, we explore various pair potential models by a combination of static and dynamic analytic calculation methods in conjunction with Molecular Dynamics and Monte Carlo simulations. Our results show that the cluster peak (intermediate-range-order peak) is present also in the hydrodynamic function characterizing the short-time dynamics. Moreover, an enhanced short-range attraction leads to a larger sedimentation velocity and a smaller self-diffusion coefficient. Our results are useful also for technical applications, such as in the ultrafiltration of proteins.

  20. Resolution and Mass Range Performance in Distance-of-Flight Mass Spectrometry with a Multichannel Focal-Plane Camera Detector

    SciTech Connect

    Graham, Alexander W.; Ray, Steven J.; Enke, Christie G.; Felton, Jeremy A.; Carado, Anthony J.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2011-10-05

    Distance-of-flight mass spectrometry (DOFMS) is a velocity-based mass-separation technique in which ions are separated in space along the plane of a spatially selective detector. In the present work, a solid-state charge-detection array, the focal-plane camera (FPC), was incorporated into the DOFMS platform. Use of the FPC with our DOFMS instrument resulted in improvements in analytical performance, usability, and versatility over a previous generation instrument that employed a microchannel-plate/phosphor DOF detector. Notably, FPC detection provided resolution improvements of at least a factor of two, with typical DOF linewidths of 300 {micro}m (R(FWHM)=1000). Merits of solid-state detection for DOFMS are evaluated and methods to extend the DOFMS mass range are considered.

  1. Resolution and Mass Range Performance in Distance-of-flight Mass Spectrometry with a Multichannel Focal-Plane Camera Detector.

    SciTech Connect

    Graham, Alexander W.; Ray, Steven J.; Enke, Christie G.; Felton, Jeremy A.; Carado, Anthony J.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2011-11-15

    Distance-of-flight mass spectrometry (DOFMS) is a velocity-based mass-separation technique in which ions are separated in space along the plane of a spatially selective detector. In the present work, a solid-state charge-detection array, the focal-plane camera (FPC), was incorporated into the DOFMS platform. Use of the FPC with our DOFMS instrument resulted in improvements in analytical performance, usability, and versatility over a previous generation instrument that employed a microchannel-plate/phosphor DOF detector. Notably, FPC detection provided resolution improvements of at least a factor of 2, with typical DOF linewidths of 300 μm (R((fwhm)) = 1000). The merits of solid-state detection for DOFMS are evaluated, and methods to extend the DOFMS mass range are considered.

  2. Automatic dynamic range adjustment for ultrasound B-mode imaging.

    PubMed

    Lee, Yeonhwa; Kang, Jinbum; Yoo, Yangmo

    2015-02-01

    In medical ultrasound imaging, dynamic range (DR) is defined as the difference between the maximum and minimum values of the displayed signal to display and it is one of the most essential parameters that determine its image quality. Typically, DR is given with a fixed value and adjusted manually by operators, which leads to low clinical productivity and high user dependency. Furthermore, in 3D ultrasound imaging, DR values are unable to be adjusted during 3D data acquisition. A histogram matching method, which equalizes the histogram of an input image based on that from a reference image, can be applied to determine the DR value. However, it could be lead to an over contrasted image. In this paper, a new Automatic Dynamic Range Adjustment (ADRA) method is presented that adaptively adjusts the DR value by manipulating input images similar to a reference image. The proposed ADRA method uses the distance ratio between the log average and each extreme value of a reference image. To evaluate the performance of the ADRA method, the similarity between the reference and input images was measured by computing a correlation coefficient (CC). In in vivo experiments, the CC values were increased by applying the ADRA method from 0.6872 to 0.9870 and from 0.9274 to 0.9939 for kidney and liver data, respectively, compared to the fixed DR case. In addition, the proposed ADRA method showed to outperform the histogram matching method with in vivo liver and kidney data. When using 3D abdominal data with 70 frames, while the CC value from the ADRA method is slightly increased (i.e., 0.6%), the proposed method showed improved image quality in the c-plane compared to its fixed counterpart, which suffered from a shadow artifact. These results indicate that the proposed method can enhance image quality in 2D and 3D ultrasound B-mode imaging by improving the similarity between the reference and input images while eliminating unnecessary manual interaction by the user.

  3. New fabrication techniques for high dynamic range tunneling sensors

    NASA Astrophysics Data System (ADS)

    Chang, David T.; Stratton, Fred P.; Kubena, Randall L.; Vickers-Kirby, Deborah J.; Joyce, Richard J.; Schimert, Thomas R.; Gooch, Roland W.

    2000-08-01

    We have developed high dynamic range (105-106 g's) tunneling accelerometers1,2 that may be ideal for smart munitions applications by employing both surface and bulk micromachining processing techniques. The highly miniaturized surface-micromachined devices can be manufactured at very low cost and integrated on chip with the control electronics. Bulk-micromachined devices with Si as the cantilever material should have reduced long-term bias drift as well as better stability at higher temperatures. Fully integrated sensors may provide advantages in minimizing microphonics for high-g applications. Previously, we described initial test results using electrostatic forces generated by a self-test electrode located under a Au cantilever3. In this paper, we describe more recent testing of Ni and Au cantilever devices on a shaker table using a novel, low input voltage (5 V) servo controller on both printed wiring board and surface-mount control circuitry. In addition, we report our initial test results for devices packaged using a low-temperature wafer-level vacuum packaging technique for low-cost manufacturing.

  4. MRI dynamic range and its compatibility with signal transmission media

    PubMed Central

    Gabr, Refaat E.; Schär, Michael; Edelstein, Arthur D.; Kraitchman, Dara L.; Bottomley, Paul A.; Edelstein, William A.

    2010-01-01

    As the number of MRI phased array coil elements grows, interactions among cables connecting them to the system receiver become increasingly problematic. Fiber optic or wireless links would reduce electromagnetic interference, but their dynamic range (DR) is generally less than that of coaxial cables. Raw MRI signals, however, have a large DR because of the high signal amplitude near the center of k-space. Here, we study DR in MRI in order to determine the compatibility of MRI multicoil imaging with non-coaxial cable signal transmission. Since raw signal data are routinely discarded, we have developed an improved method for estimating the DR of MRI signals from conventional magnitude images. Our results indicate that the DR of typical surface coil signals at 3 T for human subjects is less than 88 dB, even for three-dimensional acquisition protocols. Cardiac and spine coil arrays had a maximum DR of less than 75 dB and head coil arrays less than 88 dB. The DR derived from magnitude images is in good agreement with that measured from raw data. The results suggest that current analog fiber optic links, with a spurious-free DR of 60–70 dB at 500 kHz bandwidth, are not by themselves adequate for transmitting MRI data from volume or array coils with DR ~90 dB. However, combining analog links with signal compression might make non-coaxial cable signal transmission viable. PMID:19251444

  5. Dynamic range of atomically thin vibrating nanomechanical resonators

    SciTech Connect

    Wang, Zenghui; Feng, Philip X.-L.

    2014-03-10

    Atomically thin two-dimensional (2D) crystals offer attractive properties for making resonant nanoelectromechanical systems (NEMS) operating at high frequencies. While the fundamental limits of linear operation in such systems are important, currently there is very little quantitative knowledge of the linear dynamic range (DR) and onset of nonlinearity in these devices, which are different than in conventional 1D NEMS such as nanotubes and nanowires. Here, we present theoretical analysis and quantitative models that can be directly used to predict the DR of vibrating 2D circular drumhead NEMS resonators. We show that DR has a strong dependence ∝10log(E{sub Y}{sup 3/2}ρ{sub 3D}{sup -1/2}rtε{sup 5/2}) on device parameters, in which strain ε plays a particularly important role in these 2D systems, dominating over dimensions (radius r, thickness t). This study formulizes the effects from device physical parameters upon DR and sheds light on device design rules toward achieving high DR in 2D NEMS vibrating at radio and microwave frequencies.

  6. Quantitative high dynamic range beam profiling for fluorescence microscopy

    SciTech Connect

    Mitchell, T. J. Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D.

    2014-10-15

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.

  7. High dynamic range coherent imaging using compressed sensing.

    PubMed

    He, Kuan; Sharma, Manoj Kumar; Cossairt, Oliver

    2015-11-30

    In both lensless Fourier transform holography (FTH) and coherent diffraction imaging (CDI), a beamstop is used to block strong intensities which exceed the limited dynamic range of the sensor, causing a loss in low-frequency information, making high quality reconstructions difficult or even impossible. In this paper, we show that an image can be recovered from high-frequencies alone, thereby overcoming the beamstop problem in both FTH and CDI. The only requirement is that the object is sparse in a known basis, a common property of most natural and manmade signals. The reconstruction method relies on compressed sensing (CS) techniques, which ensure signal recovery from incomplete measurements. Specifically, in FTH, we perform compressed sensing (CS) reconstruction of captured holograms and show that this method is applicable not only to standard FTH, but also multiple or extended reference FTH. For CDI, we propose a new phase retrieval procedure, which combines Fienup's hybrid input-output (HIO) method and CS. Both numerical simulations and proof-of-principle experiments are shown to demonstrate the effectiveness and robustness of the proposed CS-based reconstructions in dealing with missing data in both FTH and CDI.

  8. Method for increasing the dynamic range of mass spectrometers

    DOEpatents

    Belov, Mikhail; Smith, Richard D.; Udseth, Harold R.

    2004-09-07

    A method for enhancing the dynamic range of a mass spectrometer by first passing a sample of ions through the mass spectrometer having a quadrupole ion filter, whereupon the intensities of the mass spectrum of the sample are measured. From the mass spectrum, ions within this sample are then identified for subsequent ejection. As further sampling introduces more ions into the mass spectrometer, the appropriate rf voltages are applied to a quadrupole ion filter, thereby selectively ejecting the undesired ions previously identified. In this manner, the desired ions may be collected for longer periods of time in an ion trap, thus allowing better collection and subsequent analysis of the desired ions. The ion trap used for accumulation may be the same ion trap used for mass analysis, in which case the mass analysis is performed directly, or it may be an intermediate trap. In the case where collection is an intermediate trap, the desired ions are accumulated in the intermediate trap, and then transferred to a separate mass analyzer. The present invention finds particular utility where the mass analysis is performed in an ion trap mass spectrometer or a Fourier transform ion cyclotron resonance mass spectrometer.

  9. High Dynamic Range Beam Imaging with Two Simultaneously Sampling CCDs

    SciTech Connect

    Evtushenko, Pavel E.; Douglas, David R.

    2013-06-01

    Transverse beam profile measurement with sufficiently high dynamic range (HDR) is a key diagnostic to measure the beam halo, understand its sources and evolution. In this contribution we describe our initial experience with the HDR imaging of the electron beam at the JLab FEL. On contrary to HDR measurements made with wire scanners in counting mode, which provide only two or three 1D projections of transverse beam distribution, imaging allows to measure the distribution itself. That is especially important for non-equilibrium beams in the LINACs. The measurements were made by means of simultaneous imaging with two CCD sensors with different exposure time. Two images are combined then numerically in to one HDR image. The system works as an online tool providing HDR images at 4 Hz. An optically polished YAG:Ce crystal with the thickness of 100 {micro}m was used for the measurements. When tested with a laser beam images with the DR of about 10{sup 5} were obtained. With the electron beam the DR was somewhat smaller due to the limitations in the time structure of the tune-up beam macro pulse.

  10. High Dynamic Range Beam Imaging with Two Simultaneously Sampling CCDs

    SciTech Connect

    Evtushenko, Pavel; Douglas, David R.; Legg, Robert A.; Tennant, Christopher D.

    2013-05-01

    Transverse beam profile measurement with sufficiently high dynamic range (HDR) is a key diagnostic to measure the beam halo, understand its sources and evolution. In this contribution we describe our initial experience with the HDR imaging of the electron beam at the JLab FEL. On contrary to HDR measurements made with wire scanners in counting mode, which provide only two or three 1D projections of transverse beam distribution, imaging allows to measure the distribution itself. That is especially important for non-equilibrium beams in the LINACs. The measurements were made by means of simultaneous imaging with two CCD sensors with different exposure time. Two images are combined then numerically in to one HDR image. The system works as an online tool providing HDR images at 4 Hz. An optically polished YAG:Ce crystal with the thickness of 100 {micro}m was used for the measurements. When tested with a laser beam images with the DR of about 10{sup 5} were obtained. With the electron beam the DR was somewhat smaller due to the limitations in the time structure of the tune-up beam macro pulse.

  11. Infrared Lunar Laser Ranging at Calern : Impact on Lunar Dynamics

    NASA Astrophysics Data System (ADS)

    Viswanathan, Vishnu; Fienga, Agnes; Manche, Herve; Gastineau, Mickael; Courde, Clement; Torre, Jean Marie; Exertier, Pierre; Laskar, Jacques

    2017-04-01

    Introduction: Since 2015, in addition to the traditional green (532nm), infrared (1064nm) has been the preferred wavelength for lunar laser ranging at the Calern lunar laser ranging (LLR) site in France. Due to the better atmospheric transmission of IR with respect to Green, nearly 3 times the number of normal points have been obtained in IR than in Green [1]. Dataset: In our study, in addition to the historical data obtained from various other LLR sites, we include the recent IR normal points obtained from Calern over the 1 year time span (2015-2016), constituting about 4.2% of data spread over 46 years of LLR. Near even distribution of data provided by IR on both the spatial and temporal domain, helps us to improve constraints on the internal structure of the Moon modeled within the planetary ephemeris : INPOP [2]. Data reduction: IERS recommended models have been used in the data reduction software GINS (GRGS,CNES) [3]. Constraints provided by GRAIL [4], on the Lunar gravitational potential and Love numbers have been taken into account in the least-square fit procedure. Earth orientation parameters from KEOF series have been used as per a recent study [5]. Results: New estimates on the dynamical parameters of the lunar core will be presented. Acknowledgements: We thank the lunar laser ranging observers at Observatoire de la Côte d'Azur, France, McDonald Observatory, Texas, Haleakala Observatory, Hawaii, and Apache Point Observatory in New Mexico for providing LLR observations that made this study possible. The research described in this abstract was carried out at Geoazur-CNRS, France, as a part of a PhD thesis funded by Observatoire de Paris and French Ministry of Education and Research. References: [1] Clement C. et al. (2016) submitted to A&A [2] Fienga A. et al. (2015) Celest Mech Dyn Astr, 123: 325. doi:10.1007/s10569-015-9639-y [3] Viswanathan V. et al. (2015) EGU, Abstract 18, 13995 [4] Konopliv A. S. et al. (2013) J. Geophys. Res. Planets, 118, 1415

  12. Calibration and GEANT4 Simulations of the Phase II Proton Compute Tomography (pCT) Range Stack Detector

    SciTech Connect

    Uzunyan, S. A.; Blazey, G.; Boi, S.; Coutrakon, G.; Dyshkant, A.; Francis, K.; Hedin, D.; Johnson, E.; Kalnins, J.; Zutshi, V.; Ford, R.; Rauch, J. E.; Rubinov, P.; Sellberg, G.; Wilson, P.; Naimuddin, M.

    2015-12-29

    Northern Illinois University in collaboration with Fermi National Accelerator Laboratory (FNAL) and Delhi University has been designing and building a proton CT scanner for applications in proton treatment planning. The Phase II proton CT scanner consists of eight planes of tracking detectors with two X and two Y coordinate measurements both before and after the patient. In addition, a range stack detector consisting of a stack of thin scintillator tiles, arranged in twelve eight-tile frames, is used to determine the water equivalent path length (WEPL) of each track through the patient. The X-Y coordinates and WEPL are required input for image reconstruction software to find the relative (proton) stopping powers (RSP) value of each voxel in the patient and generate a corresponding 3D image. In this Note we describe tests conducted in 2015 at the proton beam at the Central DuPage Hospital in Warrenville, IL, focusing on the range stack calibration procedure and comparisons with the GEANT~4 range stack simulation.

  13. Design and operational experience of a microwave cavity axion detector for the 20–100μeV range

    DOE PAGES

    Al Kenany, S.; Anil, M. A.; Backes, K. M.; ...

    2017-02-09

    We describe a dark matter axion detector designed, constructed, and operated both as an innovation platform for new cavity and amplifier technologies and as a data pathfinder in the 5-25 GHz range (~20-100 eV). The platform is small but flexible to facilitate the development of new microwave cavity and amplifier concepts in an operational environment. The experiment has recently completed its first data production; it is the first microwave cavity axion search to deploy a Josephson parametric amplifier and a dilution refrigerator to achieve near-quantum limited performance.

  14. Design and operational experience of a microwave cavity axion detector for the 20 - 100 μeV range

    NASA Astrophysics Data System (ADS)

    Al Kenany, S.; Anil, M. A.; Backes, K. M.; Brubaker, B. M.; Cahn, S. B.; Carosi, G.; Gurevich, Y. V.; Kindel, W. F.; Lamoreaux, S. K.; Lehnert, K. W.; Lewis, S. M.; Malnou, M.; Palken, D. A.; Rapidis, N. M.; Root, J. R.; Simanovskaia, M.; Shokair, T. M.; Urdinaran, I.; van Bibber, K. A.; Zhong, L.

    2017-05-01

    We describe a dark matter axion detector designed, constructed, and operated both as an innovation platform for new cavity and amplifier technologies and as a data pathfinder in the 5-25 GHz range (∼ 20 - 100 μeV) . The platform is small but flexible to facilitate the development of new microwave cavity and amplifier concepts in an operational environment. The experiment has recently completed its first data production; it is the first microwave cavity axion search to deploy a Josephson parametric amplifier and a dilution refrigerator to achieve near-quantum limited performance.

  15. Parsimonious snow model explains reindeer population dynamics and ranging behavior

    NASA Astrophysics Data System (ADS)

    Kohler, J.; Aanes, R.; Hansen, B. B.; Loe, L.; Severinsen, T.; Stien, A.

    2008-12-01

    Winter snow is a key factor affecting polar ecosystems. One example is the strong negative correlation of winter precipitation with fluctuations in population in some high-arctic animal populations. Ice layers within and at the base of the snowpack have particularly deleterious effects on such populations. Svalbard reindeer have small home ranges and are vulnerable to local "locked pasture" events due to ground-ice formation. When pastures are locked, reindeer are faced with the decision of staying, living off a diminishing fat store, or trying to escape beyond the unknown spatial borders of the ice. Both strategies may inhibit reproduction and increase mortality, leading to population declines. Here we assess the impact of winter snow and ice on the population dynamics of an isolated herd of Svalbard reindeer near Ny-Ålesund, monitored annually since 1978, with a retrospective analysis of the winter snowpack. Because there are no long-term observational records of snow or snow properties, such as ice layers, we must recourse to snowpack modeling. A parsimonious model of snow and ground-ice thickness is driven with daily temperature and precipitation data collected at a nearby weather station. The model uses the degree-day concept and has three adjustable parameters which are tuned to correlate model snow and ground-ice thicknesses to the limited observations available: April snow accumulation measurements on two local glaciers, and a limited number of ground-ice observations made in recent years. Parameter values used are comparable to those reported elsewhere. We find that modeled mean winter ground-ice thickness explains a significant percentage of the observed variance in reindeer population growth rate. Adding other explanatory parameters, such as modeled mean winter snowpack thickness or previous years' population size does not significanly improve the relation. Furthermore, positioning data from a small subset of reindeer show that model icing events are

  16. Dynamic analysis and optimal design of exposure device of laser detector based on a virtual prototype

    NASA Astrophysics Data System (ADS)

    Xu, Da; Zhao, Jian-xun; Hu, Jun-biao; Li, Hua; Wang, Chuan-you; Li, Bing-wei

    2009-07-01

    The dynamical simulation model of the exposure device of laser detector is built up in ADAMS software. Aiming at optimizing the movement law of the pole and minimizing the maximal value of load of key parts, the influences of the spring stiffness coefficient,the damping coefficient, preload of spring and the mass of pole on the optimal goal are discussed. The virtual prototype of the exposure device of laser detector has been optimized and the optimized parameters are obtained. In order to choose the electromotor and material, intensity of key parts is checked based on ANSYS. And the problem of TQC is solved effectively by this way.

  17. Multiple-gain-ranging readout method to extend the dynamic range of amorphous silicon flat-panel imagers

    NASA Astrophysics Data System (ADS)

    Roos, Pieter G.; Colbeth, Richard E.; Mollov, Ivan; Munro, Peter; Pavkovich, John; Seppi, Edward J.; Shapiro, Edward G.; Tognina, Carlo A.; Virshup, Gary F.; Yu, J. Micheal; Zentai, George; Kaissl, Wolfgang; Matsinos, Evangelos; Richters, Jeroen; Riem, Heinrich

    2004-05-01

    The dynamic range of many flat panel imaging systems are fundamentally limited by the dynamic range of the charge amplifier and readout signal processing. We developed two new flat panel readout methods that achieve extended dynamic range by changing the read out charge amplifier feedback capacitance dynamically and on a real-time basis. In one method, the feedback capacitor is selected automatically by a level sensing circuit, pixel-by-pixel, based on its exposure level. Alternatively, capacitor selection is driven externally, such that each pixel is read out two (or more) times, each time with increased feedback capacitance. Both methods allow the acquisition of X-ray image data with a dynamic range approaching the fundamental limits of flat panel pixels. Data with an equivalent bit depth of better than 16 bits are made available for further image processing. Successful implementation of these methods requires careful matching of selectable capacitor values and switching thresholds, with the imager noise and sensitivity characteristics, to insure X-ray quantum limited operation over the whole extended dynamic range. Successful implementation also depends on the use of new calibration methods and image reconstruction algorithms, to insure artifact free rebuilding of linear image data by the downstream image processing systems. The multiple gain ranging flat panel readout method extends the utility of flat panel imagers and paves the way to new flat panel applications, such as cone beam CT. We believe that this method will provide a valuable extension to the clinical application of flat panel imagers.

  18. A long-range, wide field-of-view infrared eyeblink detector.

    PubMed

    Ryan, Steven B; Detweiler, Krystal L; Holland, Kyle H; Hord, Michael A; Bracha, Vlastislav

    2006-04-15

    Classical conditioning of the eyeblink response in the rabbit is one of the most advanced models of learning and memory in the mammalian brain. Successful use of the eyeblink conditioning paradigm requires precise measurements of the eyeblink response. One common technique of eyelid movement detection utilizes measurements of infrared (IR) light reflected from the surface of the eye. The performance of current IR sensors, however, is limited by their sensitivity to ambient infrared noise, by their small field-of-view and by short working distances. To address these limitations, we developed an IR eyeblink detector consisting of a pulsing (62.5 kHz) IR light emitting diode (LED) paired with a silicon IR photodiode and circuit that synchronously demodulates the recorded signal and rejects background IR noise. The working distance of the sensor exceeds 20 mm, and the field-of-view is larger than the area of a rabbit's eye. Due to its superior characteristics, the new sensor is ideally suited for both standard eyeblink conditioning and for studies that utilize IR-containing visual stimuli and/or that are conducted in an environment contaminated with IR noise.

  19. [Analysis of factors affecting the results of estimation of the detective quantum efficiency of digital X-ray detectors within high and low spatial frequency ranges].

    PubMed

    Zelikman, M I; Kabanov, S P; Kruchinin, S A; Lobov, D P

    2007-01-01

    Factors affecting the results of estimation of the detective quantum efficiency of digital X-ray detectors within high and low spatial frequency ranges are studied. These factors include energy dispersion and loss in the conversion channel, nonuniformity of the X-ray detector irradiation field, and the internal noise of the system.

  20. EMCCD-based high resolution dynamic x-ray detector for neurovascular interventions.

    PubMed

    Sharma, P; Vasan, S N Swetadri; Jain, A; Panse, A; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2011-01-01

    We have designed and developed from the discrete component level a high resolution dynamic detector for neurovascular interventions. The heart of the detector is a 1024 × 1024 pixel electron multiplying charge coupled device (EMCCD) with a pixel size of 13 × 13 μm(2), bonded to a fiber optic plate (FOP), and optically coupled to a 350 μm micro-columnar CsI(TI) scintillator via a 3.3:1 fiber optic taper (FOT). The detector provides x-ray images of 9 cycles/mm resolution at 15 frames/sec and real time live video at 30 frames/sec with binning at a lower resolution, both independent of gain applied to EMCCD, as needed for region-of-interest (ROI) image guidance during neurovascular interventions.

  1. EMCCD-Based High Resolution Dynamic X-Ray Detector for Neurovascular Interventions

    PubMed Central

    Sharma, P.; Vasan, S.N. Swetadri; Jain, A.; Panse, A.; Titus, A.H.; Cartwright, A. N.; Bednarek, D. R; Rudin, S.

    2012-01-01

    We have designed and developed from the discrete component level a high resolution dynamic detector for neurovascular interventions. The heart of the detector is a 1024 × 1024 pixel electron multiplying charge coupled device (EMCCD) with a pixel size of 13 × 13 μm2, bonded to a fiber optic plate (FOP), and optically coupled to a 350 μm micro-columnar CsI(TI) scintillator via a 3.3:1 fiber optic taper (FOT). The detector provides x-ray images of 9 cycles/mm resolution at 15 frames/sec and real time live video at 30 frames/sec with binning at a lower resolution, both independent of gain applied to EMCCD, as needed for region-of-interest (ROI) image guidance during neurovascular interventions. PMID:22256144

  2. Study of heavy ion range in different solid state nuclear track detector materials

    NASA Astrophysics Data System (ADS)

    Diwan, P. K.; Singh, Lakhwant; Singh, Gurinder; Kumar, Shyam

    2000-03-01

    The range of several heavy ions as 238U, 208Pb, 197Au, 139La, 58Ni and 56Fe in sodalime glass; 197Au and 58Ni in muscovite mica and Lexan polycarbonate; 209Bi and 197Au in CR-39 have been determined experimentally. The calculations of range for these projectile-target combinations have been made using the Benton and Henke [10], Mukherjee and Nayak [11], Ziegler et al. [12] and Hubert et al. [14] semiempirical formulations. Finally a comparison has been made with the experimental results.

  3. Development of a longer range standoff millimetre wave radar concealed threat detector

    NASA Astrophysics Data System (ADS)

    Bowring, Nicholas J.; Southgate, Matthew J.; Andrews, David A.; Rezgui, Nacer D.; Harmer, Stuart W.; O'Reilly, Dean

    2013-05-01

    A millimeter wave (75 - 110 GHz) polarimetric radar system (MiRTLE) has been developed for the detection of threat objects, such as guns, knives, or explosive devices, which have been concealed under clothing upon the human body. The system uses a Gaussian lens antenna to enable operation at stand-off ranges up to 25 meters. By utilizing ultra-wideband Swept Frequency Continuous Wave Radar very high range resolution (~ 10mm) is realized. The system is capable of detecting objects positioned in front of the body and of measuring the range of a target. By interpretation of the scattered waveform, the presence of a wide spectrum of threat items concealed on the human body may be detected. Threat detection is autonomously rendered by application of a neural network to the scattered time domain, polarimetric radar returns and the system may be taught to alarm or reject certain classes of objects; this allows for highly specific or broad spectrum threat detection. The radar system is portable and operator steerable allowing standoff monitoring of moving human targets in real time. Rapid (1ms) sweep times and fast signal acquisition and processing allow decisions to be made at video frame rates (30 fps) and integrated directly to a video feed providing the operator with a field of view and facilitating aiming. Performance parameters for detection of guns and simulated explosive devices are presented for ranges up to 25 meters.

  4. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited).

    PubMed

    MacPhee, A G; Dymoke-Bradshaw, A K L; Hares, J D; Hassett, J; Hatch, B W; Meadowcroft, A L; Bell, P M; Bradley, D K; Datte, P S; Landen, O L; Palmer, N E; Piston, K W; Rekow, V V; Hilsabeck, T J; Kilkenny, J D

    2016-11-01

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  5. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited)

    NASA Astrophysics Data System (ADS)

    MacPhee, A. G.; Dymoke-Bradshaw, A. K. L.; Hares, J. D.; Hassett, J.; Hatch, B. W.; Meadowcroft, A. L.; Bell, P. M.; Bradley, D. K.; Datte, P. S.; Landen, O. L.; Palmer, N. E.; Piston, K. W.; Rekow, V. V.; Hilsabeck, T. J.; Kilkenny, J. D.

    2016-11-01

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  6. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited)

    SciTech Connect

    MacPhee, A. G. Hatch, B. W.; Bell, P. M.; Bradley, D. K.; Datte, P. S.; Landen, O. L.; Palmer, N. E.; Piston, K. W.; Rekow, V. V.; Dymoke-Bradshaw, A. K. L.; Hares, J. D.; Hassett, J.; Meadowcroft, A. L.; Hilsabeck, T. J.; Kilkenny, J. D.

    2016-11-15

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  7. A 1-channel 3-band wide dynamic range compression chip for vibration transducer of implantable hearing aids.

    PubMed

    Kim, Dongwook; Seong, Kiwoong; Kim, Myoungnam; Cho, Jinho; Lee, Jyunghyun

    2014-01-01

    In this paper, a digital audio processing chip which uses a wide dynamic range compression (WDRC) algorithm is designed and implemented for implantable hearing aids system. The designed chip operates at a single voltage of 3.3V and drives a 16 bit parallel input and output at 32 kHz sample. The designed chip has 1-channel 3-band WDRC composed of a FIR filter bank, a level detector, and a compression part. To verify the performance of the designed chip, we measured the frequency separations of bands and compression gain control to reflect the hearing threshold level.

  8. Blocked impurity band detectors applied to tunable diode laser spectroscopy in the 8- to 28-micron range

    NASA Technical Reports Server (NTRS)

    Sirota, J. M.; Reuter, Dennis C.; Mumma, Michael J.

    1993-01-01

    A novel tunable diode laser spectrometer operating at 8-28 microns is described. A blocked impurity band Si:As chip is employed as detector. This device operates in this wavelength range with high detectivity and adequate frequency response for the high-sensitivity techniques used. A combination of sweep averaging and second-harmonic detection at 22 kHz yielded signal-to-noise ratios of 1200 at wavelengths above 20 microns. The sensitivity and spectral resolution achieved are an order of magnitude better than those of Fourier instruments in this range, with an improvement in instrument time response of about 3000. Several molecular bands of CO2 and N2O are observed for what is, to our knowledge, the first time with this instrument. Examples of spectral line measurements are presented.

  9. Population dynamics of sugar maple through the southern portion of its range: implications for range migration

    Treesearch

    Justin L. Hart; Christopher M. Oswalt; Craig M. Turberville

    2014-01-01

    The range of sugar maple (Acer saccharum Marsh.) is expected to shift northward in accord with changing climate. However, a pattern of increased sugar maple abundance has been reported from sites throughout the eastern US. The goal of our study was to examine the stability of the sugar maple southern range boundary by analyzing its demography through...

  10. A network of coincidence detector neurons with periodic and chaotic dynamics.

    PubMed

    Watanabe, Masataka; Aihara, Kazuyuki

    2004-09-01

    We propose a simple neural network model to understand the dynamics of temporal pulse coding. The model is composed of coincidence-detector neurons with uniform synaptic efficacies and random pulse propagation delays. We also assume a global negative feedback mechanism which controls the network activity, leading to a fixed number of neurons firing within a certain time window. Due to this constraint, the network state becomes well defined and the dynamics equivalent to a piecewise nonlinear map. Numerical simulations of the model indicate that the latency of neuronal firing is crucial to the global network dynamics; when the timing of postsynaptic firing is less sensitive to perturbations in timing of presynaptic spikes, the network dynamics become stable and periodic, whereas increased sensitivity leads to instability and chaotic dynamics. Furthermore, we introduce a learning rule which decreases the Lyapunov exponent of an attractor and enlarges the basin of attraction.

  11. The piecewise-linear dynamic attenuator reduces the impact of count rate loss with photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-06-01

    Photon counting x-ray detectors (PCXDs) offer several advantages compared to standard energy-integrating x-ray detectors, but also face significant challenges. One key challenge is the high count rates required in CT. At high count rates, PCXDs exhibit count rate loss and show reduced detective quantum efficiency in signal-rich (or high flux) measurements. In order to reduce count rate requirements, a dynamic beam-shaping filter can be used to redistribute flux incident on the patient. We study the piecewise-linear attenuator in conjunction with PCXDs without energy discrimination capabilities. We examined three detector models: the classic nonparalyzable and paralyzable detector models, and a ‘hybrid’ detector model which is a weighted average of the two which approximates an existing, real detector (Taguchi et al 2011 Med. Phys. 38 1089-102 ). We derive analytic expressions for the variance of the CT measurements for these detectors. These expressions are used with raw data estimated from DICOM image files of an abdomen and a thorax to estimate variance in reconstructed images for both the dynamic attenuator and a static beam-shaping (‘bowtie’) filter. By redistributing flux, the dynamic attenuator reduces dose by 40% without increasing peak variance for the ideal detector. For non-ideal PCXDs, the impact of count rate loss is also reduced. The nonparalyzable detector shows little impact from count rate loss, but with the paralyzable model, count rate loss leads to noise streaks that can be controlled with the dynamic attenuator. With the hybrid model, the characteristic count rates required before noise streaks dominate the reconstruction are reduced by a factor of 2 to 3. We conclude that the piecewise-linear attenuator can reduce the count rate requirements of the PCXD in addition to improving dose efficiency. The magnitude of this reduction depends on the detector, with paralyzable detectors showing much greater benefit than nonparalyzable detectors.

  12. The piecewise-linear dynamic attenuator reduces the impact of count rate loss with photon-counting detectors.

    PubMed

    Hsieh, Scott S; Pelc, Norbert J

    2014-06-07

    Photon counting x-ray detectors (PCXDs) offer several advantages compared to standard energy-integrating x-ray detectors, but also face significant challenges. One key challenge is the high count rates required in CT. At high count rates, PCXDs exhibit count rate loss and show reduced detective quantum efficiency in signal-rich (or high flux) measurements. In order to reduce count rate requirements, a dynamic beam-shaping filter can be used to redistribute flux incident on the patient. We study the piecewise-linear attenuator in conjunction with PCXDs without energy discrimination capabilities. We examined three detector models: the classic nonparalyzable and paralyzable detector models, and a 'hybrid' detector model which is a weighted average of the two which approximates an existing, real detector (Taguchi et al 2011 Med. Phys. 38 1089-102). We derive analytic expressions for the variance of the CT measurements for these detectors. These expressions are used with raw data estimated from DICOM image files of an abdomen and a thorax to estimate variance in reconstructed images for both the dynamic attenuator and a static beam-shaping ('bowtie') filter. By redistributing flux, the dynamic attenuator reduces dose by 40% without increasing peak variance for the ideal detector. For non-ideal PCXDs, the impact of count rate loss is also reduced. The nonparalyzable detector shows little impact from count rate loss, but with the paralyzable model, count rate loss leads to noise streaks that can be controlled with the dynamic attenuator. With the hybrid model, the characteristic count rates required before noise streaks dominate the reconstruction are reduced by a factor of 2 to 3. We conclude that the piecewise-linear attenuator can reduce the count rate requirements of the PCXD in addition to improving dose efficiency. The magnitude of this reduction depends on the detector, with paralyzable detectors showing much greater benefit than nonparalyzable detectors.

  13. The piecewise-linear dynamic attenuator reduces the impact of count rate loss with photon-counting detectors

    PubMed Central

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-01-01

    Photon counting x-ray detectors (PCXDs) offer several advantages compared to standard, energy-integrating x-ray detectors but also face significant challenges. One key challenge is the high count rates required in CT. At high count rates, PCXDs exhibit count rate loss and show reduced detective quantum efficiency in signal-rich (or high flux) measurements. In order to reduce count rate requirements, a dynamic beam-shaping filter can be used to redistribute flux incident on the patient. We study the piecewise-linear attenuator in conjunction with PCXDs without energy discrimination capabilities. We examined three detector models: the classic nonparalyzable and paralyzable detector models, and a “hybrid” detector model which is a weighted average of the two which approximates an existing, real detector (Taguchi et al, Med Phys 2011). We derive analytic expressions for the variance of the CT measurements for these detectors. These expressions are used with raw data estimated from DICOM image files of an abdomen and a thorax to estimate variance in reconstructed images for both the dynamic attenuator and a static beam-shaping (“bowtie”) filter. By redistributing flux, the dynamic attenuator reduces dose by 40% without increasing peak variance for the ideal detector. For non-ideal PCXDs, the impact of count rate loss is also reduced. The nonparalyzable detector shows little impact from count rate loss, but with the paralyzable model, count rate loss leads to noise streaks that can be controlled with the dynamic attenuator. With the hybrid model, the characteristic count rates required before noise streaks dominate the reconstruction are reduced by a factor of two to three. We conclude that the piecewise-linear attenuator can reduce the count rate requirements of the PCXD in addition to improving dose efficiency. The magnitude of this reduction depends on the detector, with paralyzable detectors showing much greater benefit than nonparalyzable detectors. PMID

  14. An LC-IMS-MS Platform Providing Increased Dynamic Range for High-Throughput Proteomic Studies

    SciTech Connect

    Baker, Erin Shammel; Livesay, Eric A.; Orton, Daniel J.; Moore, Ronald J.; Danielson, William F.; Prior, David C.; Ibrahim, Yehia M.; Lamarche, Brian L.; Mayampurath, Anoop M.; Schepmoes, Athena A.; Hopkins, Derek F.; Tang, Keqi; Smith, Richard D.; Belov, Mikhail E.

    2010-02-05

    A high-throughput approach and platform using 15 minute reversed-phase capillary liquid chromatography (RPLC) separations in conjunction with ion mobility spectrometry-mass spectrometry (IMS-MS) measurements was evaluated for the rapid analysis of complex proteomics samples. To test the separation quality of the short LC gradient, a sample was prepared by spiking twenty reference peptides at varying concentrations from 1 ng/mL to 10 µg/mL into a tryptic digest of mouse blood plasma and analyzed with both a LC-Linear Ion Trap Fourier Transform (FT) MS and LC-IMS-TOF MS. The LC-FT MS detected thirteen out of the twenty spiked peptides that had concentrations ≥100 ng/mL. In contrast, the drift time selected mass spectra from the LC-IMS-TOF MS analyses yielded identifications for nineteen of the twenty peptides with all spiking level present. The greater dynamic range of the LC-IMS-TOF MS system could be attributed to two factors. First, the LC-IMS-TOF MS system enabled drift time separation of the low concentration spiked peptides from the high concentration mouse peptide matrix components, reducing signal interference and background, and allowing species to be resolved that would otherwise be obscured by other components. Second, the automatic gain control (AGC) in the linear ion trap of the hybrid FT MS instrument limits the number of ions that are accumulated to reduce space charge effects, but in turn limits the achievable dynamic range compared to the TOF detector.

  15. Predicted image quality of a CMOS APS X-ray detector across a range of mammographic beam qualities

    NASA Astrophysics Data System (ADS)

    Konstantinidis, A.

    2015-09-01

    Digital X-ray detectors based on Complementary Metal-Oxide- Semiconductor (CMOS) Active Pixel Sensor (APS) technology have been introduced in the early 2000s in medical imaging applications. In a previous study the X-ray performance (i.e. presampling Modulation Transfer Function (pMTF), Normalized Noise Power Spectrum (NNPS), Signal-to-Noise Ratio (SNR) and Detective Quantum Efficiency (DQE)) of the Dexela 2923MAM CMOS APS X-ray detector was evaluated within the mammographic energy range using monochromatic synchrotron radiation (i.e. 17-35 keV). In this study image simulation was used to predict how the mammographic beam quality affects image quality. In particular, the experimentally measured monochromatic pMTF, NNPS and SNR parameters were combined with various mammographic spectral shapes (i.e. Molybdenum/Molybdenum (Mo/Mo), Rhodium/Rhodium (Rh/Rh), Tungsten/Aluminium (W/Al) and Tungsten/Rhodium (W/Rh) anode/filtration combinations at 28 kV). The image quality was measured in terms of Contrast-to-Noise Ratio (CNR) using a synthetic breast phantom (4 cm thick with 50% glandularity). The results can be used to optimize the imaging conditions in order to minimize patient's Mean Glandular Dose (MGD).

  16. A simulation study investigating a radiation detector utilizing the prompt gamma range verification technique for proton radiotherapy

    NASA Astrophysics Data System (ADS)

    Lau, Andrew David

    Proton therapy has shown to be a viable therapy for radiation oncology applications. The advantages of using protons as compared to photons in the treatments of diseases with radiation are numerous including the ability to deliver overall lower amounts of lethal radiation doses to the patient. This advantage is due to the fundamental interaction mechanism of the incident therapeutic protons with the patient, which produces a characteristic dose-distribution unique only to protons. Unlike photons, the entire proton beam is absorbed within the patent and the dose-distribution's maximum occurs near the end of the proton's path. Protons deliver less dose on the skin and intervening tissues, tighter dose conformality to the disease site, as well as no dose past the target volume, sparring healthy tissue distally in the patient. Current research in proton therapy is geared towards minimizing proton range uncertainty and monitoring in-vivo the location of the proton's path. Monitoring the beam's path serves also to verify which healthy structures/tissues were irradiated and whether the target volume has met the prescription dose. Among the many techniques used for in-vivo proton monitoring, the technique based on the emitted secondary particles, specifically the Prompt Gamma (PG) method, can be used for clinical implementation. This work focuses on developing a radiation detector system for using the PG method by investigating the characterizing the secondary particle field emitted from plastic and water phantoms as well as a radiation detector based on glass materials that exploits the Cherenkov phenomenon.

  17. False alarm suppression of multipulsed laser ranging system with Geiger-mode detector.

    PubMed

    Luo, Hanjun; Xu, Huigang; Xu, Benlian; Ouyang, Zhengbiao; Fu, Yadan

    2015-06-10

    The false alarm probability is of great concern when designing and evaluating the performance of a multipulsed laser ranging system with a Geiger-mode avalanche photodiode. In this paper, based on the statistical distribution difference of the arrival time of the echo photons and noise in the time histogram, a false alarm suppression algorithm is presented. According to the data-processing method of the algorithm, the theoretical model of target detection and false alarm probability with a Poisson statistic and the system working at long dead time is established. With typical system design parameters, the target detection probability under different echo intensity and detection number is analyzed, and the influence of four main factors, namely, detection number, echo intensity, noise, and echo position, on the false alarm probability is investigated. The results show that multipulsed detection can improve the target detection probability, and using this developed algorithm, the false alarm probability can be effectively suppressed, to obtain an appropriate false alarm probability; it is suitable that the detection number is selected as 8; and stronger echo intensity, lower noise level, and a more frontal echo position can result in a lower false alarm probability.

  18. Characterization of BSA unfolding and aggregation using a single-capillary viscometer and dynamic surface tension detector.

    PubMed

    Bramanti, Emilia; Ferrari, Carlo; Angeli, Valeria; Onor, Massimo; Synovec, Robert E

    2011-10-15

    A dynamic surface tension detector (DSTD) has been equipped with an additional pressure sensor for simultaneous viscosity measurements, as a detector for flow injection analysis. The viscosity measurement is based on a single capillary viscometer (SCV) placed in parallel configuration with the DSTD. The viscometer in the optimized conditions consists of a PEEK capillary (i.d.=0.25 mm, L=75 cm) kept at constant temperature using a thermostatic bath, which leads on the two sides to the two arms of a differential piezoelectric pressure transducer with a range of 0-35 psi. The DSTD, described previously, measures the changing pressure across the liquid/air interface of 2 μL drops repeatedly forming at the end of a capillary. SCV performance has been evaluated by measuring dynamic viscosity of water/glycerol mixtures analysed in flow injection and comparing the results with the values reported in the literature. The detection limits of SCV and DSTD, calculated as 3σ of the blank, were 0.012 cP and 0.6 dyn cm(-1), respectively. The FI-SCV-DSTD system has been applied to the study of temperature-induced denaturation/aggregation process in bovine serum albumin (BSA). The results have been supported and discussed with respect to BSA conformational analysis performed using Fourier Transform infrared spectroscopy.

  19. Dewar cooler integrated MWIR spectrometer for high rates and high dynamic range measurements

    NASA Astrophysics Data System (ADS)

    Guérineau, N.; Rommeluère, S.; Ferrec, Y.; Druart, G.; Lasfargues, G.; de Borniol, E.; Magli, S.

    2015-06-01

    There is a need for compact, hand-held, spectrometers for the measurement of spectral signatures of chemicals or objects. To achieve this goal, a new concept of Fourier-transform interferometer (FTIR) directly integrated on the infrared focal plane array (FPA) has been developed at ONERA. The fundamental properties of this key element called MICROSPOC will be recalled and we will see how those properties can be exploited to get a snapshot, compact and cryogenic MWIR spectrometer. These design rules have been applied to develop a very compact device that combines the metrological properties of a FTIR-FPA of quantum HgCdTe technology with the radiometric performances of a last generation Sofradir detection block (Infrared Detector Dewar Cooler Assembly - IDDCA). The experimental performances of the prototype will be presented, in terms of spectral resolution, acquisition rate, dynamic range and noise equivalent spectral radiance. We will discuss at the end the potential of this technology to meet the requirements of different applications.

  20. Verification of proton range, position, and intensity in IMPT with a 3D liquid scintillator detector system

    PubMed Central

    Archambault, L.; Poenisch, F.; Sahoo, N.; Robertson, D.; Lee, A.; Gillin, M. T.; Mohan, R.; Beddar, S.

    2012-01-01

    Purpose: Intensity-modulated proton therapy (IMPT) using spot scanned proton beams relies on the delivery of a large number of beamlets to shape the dose distribution in a highly conformal manner. The authors have developed a 3D system based on liquid scintillator to measure the spatial location, intensity, and depth of penetration (energy) of the proton beamlets in near real-time. Methods: The detector system consists of a 20 × 20 × 20 cc liquid scintillator (LS) material in a light tight enclosure connected to a CCD camera. This camera has a field of view of 25.7 by 19.3 cm and a pixel size of 0.4 mm. While the LS is irradiated, the camera continuously acquires images of the light distribution produced inside the LS. Irradiations were made with proton pencil beams produced with a spot-scanning nozzle. Pencil beams with nominal ranges in water between 9.5 and 17.6 cm were scanned to irradiate an area of 10 × 10 cm square on the surface of the LS phantom. Image frames were acquired at 50 ms per frame. Results: The signal to noise ratio of a typical Bragg peak was about 170. Proton range measured from the light distribution produced in the LS was accurate to within 0.3 mm on average. The largest deviation seen between the nominal and measured range was 0.6 mm. Lateral position of the measured pencil beam was accurate to within 0.4 mm on average. The largest deviation seen between the nominal and measured lateral position was 0.8 mm; however, the accuracy of this measurement could be improved by correcting light scattering artifacts. Intensity of single proton spots were measured with precision ranging from 3 % for the smallest spot intensity (0.005 MU) to 0.5 % for the largest spot (0.04 MU). Conclusions: Our LS detector system has been shown to be capable of fast, submillimeter spatial localization of proton spots delivered in a 3D volume. This system could be used for beam range, intensity and position verification in IMPT. PMID:22380355

  1. Verification of proton range, position, and intensity in IMPT with a 3D liquid scintillator detector system

    SciTech Connect

    Archambault, L.; Poenisch, F.; Sahoo, N.; Robertson, D.; Lee, A.; Gillin, M. T.; Mohan, R.; Beddar, S.

    2012-03-15

    Purpose: Intensity-modulated proton therapy (IMPT) using spot scanned proton beams relies on the delivery of a large number of beamlets to shape the dose distribution in a highly conformal manner. The authors have developed a 3D system based on liquid scintillator to measure the spatial location, intensity, and depth of penetration (energy) of the proton beamlets in near real-time. Methods: The detector system consists of a 20 x 20 x 20 cc liquid scintillator (LS) material in a light tight enclosure connected to a CCD camera. This camera has a field of view of 25.7 by 19.3 cm and a pixel size of 0.4 mm. While the LS is irradiated, the camera continuously acquires images of the light distribution produced inside the LS. Irradiations were made with proton pencil beams produced with a spot-scanning nozzle. Pencil beams with nominal ranges in water between 9.5 and 17.6 cm were scanned to irradiate an area of 10 x 10 cm square on the surface of the LS phantom. Image frames were acquired at 50 ms per frame. Results: The signal to noise ratio of a typical Bragg peak was about 170. Proton range measured from the light distribution produced in the LS was accurate to within 0.3 mm on average. The largest deviation seen between the nominal and measured range was 0.6 mm. Lateral position of the measured pencil beam was accurate to within 0.4 mm on average. The largest deviation seen between the nominal and measured lateral position was 0.8 mm; however, the accuracy of this measurement could be improved by correcting light scattering artifacts. Intensity of single proton spots were measured with precision ranging from 3 % for the smallest spot intensity (0.005 MU) to 0.5 % for the largest spot (0.04 MU). Conclusions: Our LS detector system has been shown to be capable of fast, submillimeter spatial localization of proton spots delivered in a 3D volume. This system could be used for beam range, intensity and position verification in IMPT.

  2. Cortical dynamics of visual motion perception: short-range and long-range apparent motion.

    PubMed

    Grossberg, S; Rudd, M E

    1992-01-01

    This article describes further evidence for a new neural network theory of biological motion perception. The theory clarifies why parallel streams V1----V2, V1----MT, and V1----V2----MT exist for static form and motion form processing among the areas V1, V2, and MT of visual cortex. The theory suggests that the static form system (Static BCS) generates emergent boundary segmentations whose outputs are insensitive to direction-of-contrast and to direction-of-motion, whereas the motion form system (Motion BCS) generates emergent boundary segmentations whose outputs are insensitive to direction-of-contrast but sensitive to direction-of-motion. The theory is used to explain classical and recent data about short-range and long-range apparent motion percepts that have not yet been explained by alternative models. These data include beta motion, split motion, gamma motion and reverse-contrast gamma motion, delta motion, and visual inertia. Also included are the transition from group motion to element motion in response to a Ternus display as the interstimulus interval (ISI) decreases; group motion in response to a reverse-contrast Ternus display even at short ISIs; speed-up of motion velocity as interflash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size, various classical dependencies between flash duration, spatial separation, ISI, and motion threshold known as Korte's laws; dependence of motion strength on stimulus orientation and spatial frequency; short-range and long-range form-color interactions; and binocular interactions of flashes to different eyes.

  3. Home range dynamics, habitat selection, and survival of Greater Roadrunners

    USGS Publications Warehouse

    Kelley, S.W.; Ransom, D.; Butcher, J.A.; Schulz, G.G.; Surber, B.W.; Pinchak, W.E.; Santamaria, C.A.; Hurtado, L.A.

    2011-01-01

    Greater Roadrunners (Geococcyx californianus) are common, poorly studied birds of arid and semi-arid ecosystems in the southwestern United States. Conservation of this avian predator requires a detailed understanding of their movements and spatial requirements that is currently lacking. From 2006 to 2009, we quantified home-range and core area sizes and overlap, habitat selection, and survival of roadrunners (N= 14 males and 20 females) in north-central Texas using radio-telemetry and fixed kernel estimators. Median home-range and core-area sizes were 90.4 ha and 19.2 ha for males and 80.1 ha and 16.7 ha for females, respectively. The size of home range and core areas did not differ significantly by either sex or season. Our home range estimates were twice as large (x??= 108.9 ha) as earlier published estimates based on visual observations (x??= 28-50 ha). Mean percent overlap was 38.4% for home ranges and 13.7% for core areas. Male roadrunners preferred mesquite woodland and mesquite savanna cover types, and avoided the grass-forb cover type. Female roadrunners preferred mesquite savanna and riparian woodland cover types, and avoided grass-forb habitat. Kaplan-Meier annual survival probabilities for females (0.452 ?? 0.118[SE]) were twice that estimated for males (0.210 ?? 0.108), but this difference was not significant. Mortality rates of male roadrunners were higher than those of females during the spring when males call from elevated perches, court females, and chase competing males. Current land use practices that target woody-shrub removal to enhance livestock forage production could be detrimental to roadrunner populations by reducing availability of mesquite woodland and mesquite savanna habitat required for nesting and roosting and increasing the amount of grass-forb habitat that roadrunners avoid. ??2011 The Authors. Journal of Field Ornithology ??2011 Association of Field Ornithologists.

  4. The dynamics of biogeographic ranges in the deep sea

    PubMed Central

    McClain, Craig R.; Hardy, Sarah Mincks

    2010-01-01

    Anthropogenic disturbances such as fishing, mining, oil drilling, bioprospecting, warming, and acidification in the deep sea are increasing, yet generalities about deep-sea biogeography remain elusive. Owing to the lack of perceived environmental variability and geographical barriers, ranges of deep-sea species were traditionally assumed to be exceedingly large. In contrast, seamount and chemosynthetic habitats with reported high endemicity challenge the broad applicability of a single biogeographic paradigm for the deep sea. New research benefiting from higher resolution sampling, molecular methods and public databases can now more rigorously examine dispersal distances and species ranges on the vast ocean floor. Here, we explore the major outstanding questions in deep-sea biogeography. Based on current evidence, many taxa appear broadly distributed across the deep sea, a pattern replicated in both the abyssal plains and specialized environments such as hydrothermal vents. Cold waters may slow larval metabolism and development augmenting the great intrinsic ability for dispersal among many deep-sea species. Currents, environmental shifts, and topography can prove to be dispersal barriers but are often semipermeable. Evidence of historical events such as points of faunal origin and climatic fluctuations are also evident in contemporary biogeographic ranges. Continued synthetic analysis, database construction, theoretical advancement and field sampling will be required to further refine hypotheses regarding deep-sea biogeography. PMID:20667884

  5. The dynamics of biogeographic ranges in the deep sea.

    PubMed

    McClain, Craig R; Hardy, Sarah Mincks

    2010-12-07

    Anthropogenic disturbances such as fishing, mining, oil drilling, bioprospecting, warming, and acidification in the deep sea are increasing, yet generalities about deep-sea biogeography remain elusive. Owing to the lack of perceived environmental variability and geographical barriers, ranges of deep-sea species were traditionally assumed to be exceedingly large. In contrast, seamount and chemosynthetic habitats with reported high endemicity challenge the broad applicability of a single biogeographic paradigm for the deep sea. New research benefiting from higher resolution sampling, molecular methods and public databases can now more rigorously examine dispersal distances and species ranges on the vast ocean floor. Here, we explore the major outstanding questions in deep-sea biogeography. Based on current evidence, many taxa appear broadly distributed across the deep sea, a pattern replicated in both the abyssal plains and specialized environments such as hydrothermal vents. Cold waters may slow larval metabolism and development augmenting the great intrinsic ability for dispersal among many deep-sea species. Currents, environmental shifts, and topography can prove to be dispersal barriers but are often semipermeable. Evidence of historical events such as points of faunal origin and climatic fluctuations are also evident in contemporary biogeographic ranges. Continued synthetic analysis, database construction, theoretical advancement and field sampling will be required to further refine hypotheses regarding deep-sea biogeography.

  6. High Dynamic Range Complex Impedance Measurement System for Petrophysical Usage

    NASA Astrophysics Data System (ADS)

    Chen, R.; He, X.; Yao, H.; Tan, S.; Shi, H.; Shen, R.; Yan, C.; Zeng, P.; He, L.; Qiao, N.; Xi, F.; Zhang, H.; Xie, J.

    2015-12-01

    Spectral induced polarization method (SIP) or complex resistivity method is increasing its application in metalliferous ore exploration, hydrocarbon exploration, underground water exploration, monitoring of environment pollution, and the evaluation of environment remediation. And the measurement of complex resistivity or complex impedance of rock/ore sample and polluted water plays a fundamental role in improving the application effect of SIP and the application scope of SIP. However, current instruments can't guaranty the accuracy of measurement when the resistance of sample is less than 10Ω or great than 100kΩ. A lot of samples, such as liquid, polluted sea water, igneous rock, limestone, and sandstone, can't be measured with reliable complex resistivity result. Therefore, this problem projects a shadow in the basic research and application research of SIP. We design a high precision measurement system from the study of measurement principle, sample holder, and measurement instrument. We design input buffers in a single board. We adopt operation amplifier AD549 in this system because of its ultra-high input impedance and ultra-low current noise. This buffer is good in acquiring potential signal across high impedance sample. By analyzing the sources of measurement error and errors generated by the measurement system, we propose a correction method to remove the error in order to achieve high quality complex impedance measurement for rock and ore samples. This measurement system can improve the measurement range of the complex impedance to 0.1 Ω ~ 10 GΩ with amplitude error less than 0.1% and phase error less than 0.1mrad when frequency ranges as 0.01 Hz ~ 1 kHz. We tested our system on resistors with resistance as 0.1Ω ~ 10 GΩ in frequency range as 1 Hz ~ 1000 Hz, and the measurement error is less than 0.1 mrad. We also compared the result with LCR bridge and SCIP, we can find that the bridge's measuring range only reaches 100 MΩ, SCIP's measuring range

  7. Population dynamics and range expansion in nine-banded armadillos.

    PubMed

    Loughry, William J; Perez-Heydrich, Carolina; McDonough, Colleen M; Oli, Madan K

    2013-01-01

    Understanding why certain species can successfully colonize new areas while others do not is a central question in ecology. The nine-banded armadillo (Dasypus novemcinctus) is a conspicuous example of a successful invader, having colonized much of the southern United States in the last 200 years. We used 15 years (1992-2006) of capture-mark-recapture data from a population of armadillos in northern Florida in order to estimate, and examine relationships among, various demographic parameters that may have contributed to this ongoing range expansion. Modeling across a range of values for γ, the probability of juveniles surviving in the population until first capture, we found that population growth rates varied from 0.80 for γ = 0.1, to 1.03 for γ = 1.0. Growth rates approached 1.0 only when γ ≥ 0.80, a situation that might not occur commonly because of the high rate of disappearance of juveniles. Net reproductive rate increased linearly with γ, but life expectancy (estimated at 3 years) was independent of γ. We also found that growth rates were lower during a 3-year period of hardwood removal that removed preferred habitat than in the years preceding or following. Life-table response experiment (LTRE) analysis indicated the decrease in growth rate during logging was primarily due to changes in survival rates of adults. Likewise, elasticity analyses of both deterministic and stochastic population growth rates revealed that survival parameters were more influential on population growth than were those related to reproduction. Collectively, our results are consistent with recent theories regarding biological invasions which posit that populations no longer at the leading edge of range expansion do not exhibit strong positive growth rates, and that high reproductive output is less critical in predicting the likelihood of successful invasion than are life-history strategies that emphasize allocation of resources to future, as opposed to current, reproduction.

  8. Population Dynamics and Range Expansion in Nine-Banded Armadillos

    PubMed Central

    Loughry, William J.; Perez-Heydrich, Carolina; McDonough, Colleen M.; Oli, Madan K.

    2013-01-01

    Understanding why certain species can successfully colonize new areas while others do not is a central question in ecology. The nine-banded armadillo (Dasypus novemcinctus) is a conspicuous example of a successful invader, having colonized much of the southern United States in the last 200 years. We used 15 years (1992–2006) of capture-mark-recapture data from a population of armadillos in northern Florida in order to estimate, and examine relationships among, various demographic parameters that may have contributed to this ongoing range expansion. Modeling across a range of values for γ, the probability of juveniles surviving in the population until first capture, we found that population growth rates varied from 0.80 for γ = 0.1, to 1.03 for γ = 1.0. Growth rates approached 1.0 only when γ ≥0.80, a situation that might not occur commonly because of the high rate of disappearance of juveniles. Net reproductive rate increased linearly with γ, but life expectancy (estimated at 3 years) was independent of γ. We also found that growth rates were lower during a 3-year period of hardwood removal that removed preferred habitat than in the years preceding or following. Life-table response experiment (LTRE) analysis indicated the decrease in growth rate during logging was primarily due to changes in survival rates of adults. Likewise, elasticity analyses of both deterministic and stochastic population growth rates revealed that survival parameters were more influential on population growth than were those related to reproduction. Collectively, our results are consistent with recent theories regarding biological invasions which posit that populations no longer at the leading edge of range expansion do not exhibit strong positive growth rates, and that high reproductive output is less critical in predicting the likelihood of successful invasion than are life-history strategies that emphasize allocation of resources to future, as opposed to current

  9. Study of the process e+e- → π+π-π0η in the c.m. energy range 1394-2005 MeV with the CMD-3 detector

    NASA Astrophysics Data System (ADS)

    Akhmetshin, R. R.; Amirkhanov, A. N.; Anisenkov, A. V.; Aulchenko, V. M.; Banzarov, V. Sh.; Bashtovoy, N. S.; Berkaev, D. E.; Bondar, A. E.; Bragin, A. V.; Eidelman, S. I.; Epifanov, D. A.; Epshteyn, L. B.; Erofeev, A. L.; Fedotovich, G. V.; Gayazov, S. E.; Grebenuk, A. A.; Gribanov, S. S.; Grigoriev, D. N.; Ignatov, F. V.; Ivanov, V. L.; Karpov, S. V.; Kazanin, V. F.; Koop, I. A.; Kirpotin, A. N.; Korobov, A. A.; Kozyrev, A. N.; Kozyrev, E. A.; Krokovny, P. P.; Kuzmenko, A. E.; Kuzmin, A. S.; Logashenko, I. B.; Lukin, P. A.; Mikhailov, K. Yu.; Okhapkin, V. S.; Otboev, A. V.; Pestov, Yu. N.; Popov, A. S.; Razuvaev, G. P.; Rogovsky, Yu. A.; Ruban, A. A.; Ryskulov, N. M.; Ryzhenenkov, A. E.; Senchenko, A. I.; Shatunov, Yu. M.; Shatunov, P. Yu.; Shebalin, V. E.; Shemyakin, D. N.; Shwartz, B. A.; Shwartz, D. B.; Sibidanov, A. L.; Solodov, E. P.; Titov, V. M.; Talyshev, A. A.; Vorobiov, A. I.; Zemlyansky, I. M.; Yudin, Yu. V.

    2017-10-01

    The cross section of the process e+e- →π+π-π0 η has been measured using a data sample of 21.8 pb-1 collected with the CMD-3 detector at the VEPP-2000 e+e- collider. 2769 ± 95 signal events have been selected in the center-of-mass energy range 1394-2005 MeV. The production dynamics is dominated by the ω (782) η and ϕ (1020) η intermediate states in the lower energy range, and by the a0 (980) ρ (770) intermediate state at higher energies.

  10. Calibration and assessment of channel-specific biases in microarray data with extended dynamical range

    PubMed Central

    Bengtsson, Henrik; Jönsson, Göran; Vallon-Christersson, Johan

    2004-01-01

    Background Non-linearities in observed log-ratios of gene expressions, also known as intensity dependent log-ratios, can often be accounted for by global biases in the two channels being compared. Any step in a microarray process may introduce such offsets and in this article we study the biases introduced by the microarray scanner and the image analysis software. Results By scanning the same spotted oligonucleotide microarray at different photomultiplier tube (PMT) gains, we have identified a channel-specific bias present in two-channel microarray data. For the scanners analyzed it was in the range of 15–25 (out of 65,535). The observed bias was very stable between subsequent scans of the same array although the PMT gain was greatly adjusted. This indicates that the bias does not originate from a step preceding the scanner detector parts. The bias varies slightly between arrays. When comparing estimates based on data from the same array, but from different scanners, we have found that different scanners introduce different amounts of bias. So do various image analysis methods. We propose a scanning protocol and a constrained affine model that allows us to identify and estimate the bias in each channel. Backward transformation removes the bias and brings the channels to the same scale. The result is that systematic effects such as intensity dependent log-ratios are removed, but also that signal densities become much more similar. The average scan, which has a larger dynamical range and greater signal-to-noise ratio than individual scans, can then be obtained. Conclusions The study shows that microarray scanners may introduce a significant bias in each channel. Such biases have to be calibrated for, otherwise systematic effects such as intensity dependent log-ratios will be observed. The proposed scanning protocol and calibration method is simple to use and is useful for evaluating scanner biases or for obtaining calibrated measurements with extended dynamical

  11. Long-Range Dynamic Correlations in Confined Suspensions

    NASA Astrophysics Data System (ADS)

    Frydel, Derek; Diamant, Haim

    2010-06-01

    Hydrodynamic interactions between particles confined in a liquid-filled linear channel are known to be screened beyond a distance comparable to the channel width. Using a simple analytical theory and lattice Boltzmann simulations, we show that the hydrodynamic screening is qualitatively modified when the time-dependent response and finite compressibility of the host liquid are taken into account. Diffusive compression modes in the confined liquid cause the particles to have velocity correlations of unbounded range, whose amplitude decays with time only as t-3/2.

  12. Dynamic range compression with ProteoMiner™: principles and examples.

    PubMed

    Li, Lei

    2015-01-01

    One of the main challenges in proteomics investigation, protein biomarker research, and protein purity and contamination analysis is how to efficiently enrich and detect low-abundance proteins in biological samples. One approach that makes the detection of rare species possible is the treatment of biological samples with solid-phase combinatorial peptide ligand libraries, ProteoMiner. This method utilizes hexapeptide bead library with huge diversity to bind and enrich low-abundance proteins but remove most of the high-abundance proteins, therefore compresses the protein abundance range in the samples. This work describes optimized protocols and highlights on the successful application of ProteoMiner to protein identification and analysis.

  13. WE-D-BRF-03: Proton Beam Range Verification with a Single Prompt Gamma-Ray Detector

    SciTech Connect

    Verburg, J; Testa, M; Cascio, E; Bortfeld, T; Lu, H; Seco, J

    2014-06-15

    Purpose: To present an experimental study of a novel range verification method for scanned and scattered proton beams. Methods: A detection system consisting of an actively shielded lanthanum(III)bromide scintillator and a one-sided lead collimator was used to measure prompt gamma-rays emitted during the delivery of proton beams to a water phantom and an anthropomorphic head phantom. The residual proton range at the collimator position was determined by comparing gamma-ray intensities while the proton energy was modulated to the distal end of the target. We used a clinical field to deliver a 50 cGy dose to a 12 cm diameter target in the water phantom and to a 175 cc tumor-shaped target in the head phantom. The detector signals were acquired with a custom data acquisition system enabling energy and time-of-flight discrimination of prompt gamma-rays. Results: Range deviations were detected with a statistical accuracy of ± 0.2 mm and ± 1.4 mm at 90% confidence level, respectively for the water and head phantom. We obtained a time resolution of 1 ns FWHM and an energy resolution < 2% FWHM for the main gamma lines from proton-induced nuclear reactions with carbon and oxygen. This allowed for an accurate separation of the prompt gamma-rays from neutron-induced background. Conclusion: Proton range deviations can be detected with millimeter accuracy using a single prompt gamma-ray measurement point acquired during the delivery of a few proton energy layers to the distal part of the target. The method is also feasible in the presence of background radiation from passively scattered proton beam delivery.

  14. Protein dynamics in a broad frequency range: Dielectric spectroscopy studies

    DOE PAGES

    Nakanishi, Masahiro; Sokolov, Alexei P.

    2014-09-17

    We present detailed dielectric spectroscopy studies of dynamics in two hydrated proteins, lysozyme and myoglobin. We emphasize the importance of explicit account for possible Maxwell-Wagner (MW) polarization effects in protein powder samples. Combining our data with earlier literature results, we demonstrate the existence of three major relaxation processes in globular proteins. To understand the mechanisms of these relaxations we involve literature data on neutron scattering, simulations and NMR studies. The faster process is ascribed to coupled protein-hydration water motions and has relaxation time similar to 10-50 Ps at room temperature. The intermediate process is similar to 10(2)-10(3) times slower thanmore » the faster process and might be strongly affected by MW polarizations. Based on the analysis of data obtained by different experimental techniques and simulations, we ascribe this process to large scale domain-like motions of proteins. The slowest observed process is similar to 10(6)-10(7) times slower than the faster process and has anomalously large dielectric amplitude Delta epsilon similar to 10(2)-10(4). The microscopic nature of this process is not clear, but it seems to be related to the glass transition of hydrated proteins. The presentedresults suggest a general classification of the relaxation processes in hydrated proteins. (c) 2014 Elsevier B.V. All rights reserved.« less

  15. Protein dynamics in a broad frequency range: Dielectric spectroscopy studies

    SciTech Connect

    Nakanishi, Masahiro; Sokolov, Alexei P.

    2014-09-17

    We present detailed dielectric spectroscopy studies of dynamics in two hydrated proteins, lysozyme and myoglobin. We emphasize the importance of explicit account for possible Maxwell-Wagner (MW) polarization effects in protein powder samples. Combining our data with earlier literature results, we demonstrate the existence of three major relaxation processes in globular proteins. To understand the mechanisms of these relaxations we involve literature data on neutron scattering, simulations and NMR studies. The faster process is ascribed to coupled protein-hydration water motions and has relaxation time similar to 10-50 Ps at room temperature. The intermediate process is similar to 10(2)-10(3) times slower than the faster process and might be strongly affected by MW polarizations. Based on the analysis of data obtained by different experimental techniques and simulations, we ascribe this process to large scale domain-like motions of proteins. The slowest observed process is similar to 10(6)-10(7) times slower than the faster process and has anomalously large dielectric amplitude Delta epsilon similar to 10(2)-10(4). The microscopic nature of this process is not clear, but it seems to be related to the glass transition of hydrated proteins. The presentedresults suggest a general classification of the relaxation processes in hydrated proteins. (c) 2014 Elsevier B.V. All rights reserved.

  16. Ecological change, range fluctuations and population dynamics during the Pleistocene.

    PubMed

    Hofreiter, Michael; Stewart, John

    2009-07-28

    Apart from the current human-induced climate change, the Holocene is notable for its stable climate. In contrast, the preceding age, the Pleistocene, was a time of intensive climatic fluctuations, with temperature changes of up to 15 degrees C occurring within a few decades. These climatic changes have substantially influenced both animal and plant populations. Until recently, the prevailing opinion about the effect of these climatic fluctuations on species in Europe was that populations survived glacial maxima in southern refugia and that populations died out outside these refugia. However, some of the latest studies of modern population genetics, the fossil record and especially ancient DNA reveal a more complex picture. There is now strong evidence for additional local northern refugia for a large number of species, including both plants and animals. Furthermore, population genetic analyses using ancient DNA have shown that genetic diversity and its geographical structure changed more often and in more unpredictable ways during the Pleistocene than had been inferred. Taken together, the Pleistocene is now seen as an extremely dynamic era, with rapid and large climatic fluctuations and correspondingly variable ecology. These changes were accompanied by similarly fast and sometimes dramatic changes in population size and extensive gene flow mediated by population movements. Thus, the Pleistocene is an excellent model case for the effects of rapid climate change, as we experience at the moment, on the ecology of plants and animals.

  17. Dynamic range in small-world networks of Hodgkin-Huxley neurons with chemical synapses

    NASA Astrophysics Data System (ADS)

    Batista, C. A. S.; Viana, R. L.; Lopes, S. R.; Batista, A. M.

    2014-09-01

    According to Stevens' law the relationship between stimulus and response is a power-law within an interval called the dynamic range. The dynamic range of sensory organs is found to be larger than that of a single neuron, suggesting that the network structure plays a key role in the behavior of both the scaling exponent and the dynamic range of neuron assemblies. In order to verify computationally the relationships between stimulus and response for spiking neurons, we investigate small-world networks of neurons described by the Hodgkin-Huxley equations connected by chemical synapses. We found that the dynamic range increases with the network size, suggesting that the enhancement of the dynamic range observed in sensory organs, with respect to single neurons, is an emergent property of complex network dynamics.

  18. Holarctic genetic structure and range dynamics in the woolly mammoth.

    PubMed

    Palkopoulou, Eleftheria; Dalén, Love; Lister, Adrian M; Vartanyan, Sergey; Sablin, Mikhail; Sher, Andrei; Edmark, Veronica Nyström; Brandström, Mikael D; Germonpré, Mietje; Barnes, Ian; Thomas, Jessica A

    2013-11-07

    Ancient DNA analyses have provided enhanced resolution of population histories in many Pleistocene taxa. However, most studies are spatially restricted, making inference of species-level biogeographic histories difficult. Here, we analyse mitochondrial DNA (mtDNA) variation in the woolly mammoth from across its Holarctic range to reconstruct its history over the last 200 thousand years (kyr). We identify a previously undocumented major mtDNA lineage in Europe, which was replaced by another major mtDNA lineage 32-34 kyr before present (BP). Coalescent simulations provide support for demographic expansions at approximately 121 kyr BP, suggesting that the previous interglacial was an important driver for demography and intraspecific genetic divergence. Furthermore, our results suggest an expansion into Eurasia from America around 66 kyr BP, coinciding with the first exposure of the Bering Land Bridge during the Late Pleistocene. Bayesian inference indicates Late Pleistocene demographic stability until 20-15 kyr BP, when a severe population size decline occurred.

  19. Fractional dynamics of systems with long-range interaction

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.; Zaslavsky, George M.

    2006-12-01

    We consider one-dimensional chain of coupled linear and nonlinear oscillators with long-range powerwise interaction defined by a term proportional to 1/∣ n - m∣ α+1 . Continuous medium equation for this system can be obtained in the so-called infrared limit when the wave number tends to zero. We construct a transform operator that maps the system of large number of ordinary differential equations of motion of the particles into a partial differential equation with the Riesz fractional derivative of order α, when 0 < α < 2. Few models of coupled oscillators are considered and their synchronized states and localized structures are discussed in details. Particularly, we discuss some solutions of time-dependent fractional Ginzburg-Landau (or nonlinear Schrodinger) equation.

  20. Characterization of HZC XP1805 photomultiplier tube for LHAASO-WCDA with a high dynamic range base

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Tang, Z.; Li, C.; Li, X.; Zha, W.; Chen, H.; Zhang, Y.; Shao, M.; Sun, Y.; Zhou, Y.

    2016-10-01

    The Water Cherenkov Detector Array (WCDA) for the Large High Altitude Air Shower Observatory (LHAASO) will employ 3000 large-sized hemisphere photomultiplier tubes (PMTs) to collect the Cherenkov light produced by shower particles crossing water. The PMTs require not only good single photoelectron (SPE) resolution and small transit time spread (TTS), but also good linearity up to 4000 photoelectrons. XP1805 PMT produced by Hainan Zhanchuang Photonics Technology Co., Ltd (HZC), China, with a production line imported from Photonis (France) is a good candidate for LHAASO-WCDA readout. In this paper, the design of a high dynamic range base for XP1805 is presented. The SPE responses and non-linearity of XP1805 with the high dynamic range base are measured. These results show that HZC XP1805 with the designed base is well qualified for LHAASO-WCDA, with peak-to-valley ratio greater than 2, TTS around 3 ns, dynamic range (non-linearity within 5%) over 1500 and 5300 photoelectrons for anode and the 6th dynode output, respectively, at PMT gain of 3 × 106 with the inciting light pulse width of 6.4 ns.

  1. A per-pixel Log2ADC for high dynamic range, 1000FPS digital focal plane arrays (DFPA)

    NASA Astrophysics Data System (ADS)

    Petilli, Eugene

    2016-09-01

    Intrinsix has developed a Digital Focal Plane Array (DFPA) architecture based on a novel piecewise linear Log2 ADC (LADC) with "lossless" analog compression which enables ultra-high dynamic range ROICs that use less power than other extended dynamic range technologies. The LADC provides dynamic range of 126dB with a constant 75dB SNR over the entire frame. The companding 13bit mantissa, 3bit radix per pixel LADCs compress the 21bit signals into efficient 16 bit data words. The Read Out IC (ROIC) is compatible with most IR and LWIR detectors including two-color SLS (photodiode) and uBolometers. The DFPA architecture leverages two (staggered frame prime and redundant) MIPI CSI-3 interfaces to achieve full HD DFPA at 1000 frames/sec; an equivalent uncompressed data rate of 100Gb/sec. The LADC uses direct injection into a moderate sized integrating capacitor and several comparators create a stream of multi-bit data values. These values are accumulated in an SRAM based log2ALU and the radix of the ALU is combined with the data to generate a feedback current to the integrating capacitor, closing the delta loop. The integration time and a single pole low pass IIR filter are configurable using control signals to the log2ALU. The feedback current is at least partially generated using PWM for high linearity.

  2. Modeling diverse range of potassium channels with Brownian dynamics.

    PubMed Central

    Chung, Shin-Ho; Allen, Toby W; Kuyucak, Serdar

    2002-01-01

    Using the experimentally determined KcsA structure as a template, we propose a plausible explanation for the diversity of potassium channels seen in nature. A simplified model of KcsA is constructed from its atomic resolution structure by smoothing out the protein-water boundary and representing the atoms forming the channel protein as a homogeneous, low dielectric medium. The properties of the simplified and atomic-detail models, deduced from electrostatic calculations and Brownian dynamics simulations, are shown to be qualitatively similar. We then study how the current flowing across the simplified model channel changes as the shape of the intrapore region is modified. This is achieved by increasing the radius of the intracellular pore systematically from 1.5 to 5 A while leaving the dimensions of the selectivity filter and inner chamber unaltered. The strengths of the dipoles located near the entrances of the channel, the carbonyl groups lining the selectivity filter, and the helix macrodipoles are kept constant. The channel conductance increases steadily as the radius of the intracellular pore is increased. The rate-limiting step for both the outward and inward current is the time it takes for an ion to cross the residual energy barrier located in the intrapore region. The current-voltage relationship obtained with symmetrical solutions is linear when the applied potential is less than approximately 100 mV but deviates slightly from Ohm's law at higher applied potentials. The nonlinearity in the current-voltage curve becomes less pronounced as the radius of the intracellular pore is increased. When the strengths of the dipoles near the intracellular entrance are reduced, the channel shows a pronounced inward rectification. Finally, the conductance exhibits the saturation property observed experimentally. We discuss the implications of these findings on the transport of ions across the potassium channels and membrane channels in general. PMID:12080118

  3. Holarctic genetic structure and range dynamics in the woolly mammoth

    PubMed Central

    Palkopoulou, Eleftheria; Dalén, Love; Lister, Adrian M.; Vartanyan, Sergey; Sablin, Mikhail; Sher, Andrei; Edmark, Veronica Nyström; Brandström, Mikael D.; Germonpré, Mietje; Barnes, Ian; Thomas, Jessica A.

    2013-01-01

    Ancient DNA analyses have provided enhanced resolution of population histories in many Pleistocene taxa. However, most studies are spatially restricted, making inference of species-level biogeographic histories difficult. Here, we analyse mitochondrial DNA (mtDNA) variation in the woolly mammoth from across its Holarctic range to reconstruct its history over the last 200 thousand years (kyr). We identify a previously undocumented major mtDNA lineage in Europe, which was replaced by another major mtDNA lineage 32–34 kyr before present (BP). Coalescent simulations provide support for demographic expansions at approximately 121 kyr BP, suggesting that the previous interglacial was an important driver for demography and intraspecific genetic divergence. Furthermore, our results suggest an expansion into Eurasia from America around 66 kyr BP, coinciding with the first exposure of the Bering Land Bridge during the Late Pleistocene. Bayesian inference indicates Late Pleistocene demographic stability until 20–15 kyr BP, when a severe population size decline occurred. PMID:24026825

  4. Ultrafast pump-probe microscopy with high temporal dynamic range.

    PubMed

    Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P

    2012-04-23

    Ultrafast pump-probe microscopy is a common method for time and space resolved imaging of short and ultra-short pulse laser ablation. The temporal delay between the ablating pump pulse and the illuminating probe pulse is tuned either by an optical delay, resulting in several hundred femtoseconds temporal resolution for delay times up to a few ns, or by an electronic delay, resulting in several nanoseconds resolution for longer delay times. In this work we combine both delay types for temporally high resolved observations of complete ablation processes ranging from femtoseconds to microseconds, while ablation is initiated by an ultrafast 660 fs laser pump pulse. For this purpose, we also demonstrate the calibration of the delay time zero point, the synchronization of both probe sources, as well as a method for image quality enhancing. In addition, we present for the first time to our knowledge pump-probe microscopy investigations of the complete substrate side selective ablation process of molybdenum films on glass. The initiation of mechanical film deformation is observed at about 400 ps, continues until approximately 15 ns, whereupon a Mo disk is sheared off free from thermal effects due to a directly induced laser lift-off ablation process. © 2012 Optical Society of America

  5. Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging.

    PubMed

    Tanaka, Rie

    2016-07-01

    Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography.

  6. Estimability and simple dynamical analyses of range (range-rate range-difference) observations to artificial satellites. [laser range observations to LAGEOS using non-Bayesian statistics

    NASA Technical Reports Server (NTRS)

    Vangelder, B. H. W.

    1978-01-01

    Non-Bayesian statistics were used in simulation studies centered around laser range observations to LAGEOS. The capabilities of satellite laser ranging especially in connection with relative station positioning are evaluated. The satellite measurement system under investigation may fall short in precise determinations of the earth's orientation (precession and nutation) and earth's rotation as opposed to systems as very long baseline interferometry (VLBI) and lunar laser ranging (LLR). Relative station positioning, determination of (differential) polar motion, positioning of stations with respect to the earth's center of mass and determination of the earth's gravity field should be easily realized by satellite laser ranging (SLR). The last two features should be considered as best (or solely) determinable by SLR in contrast to VLBI and LLR.

  7. Probing the role of long-range interactions in the dynamics of a long-range Kitaev chain

    NASA Astrophysics Data System (ADS)

    Dutta, Anirban; Dutta, Amit

    2017-09-01

    We study the role of long-range interactions (more precisely, the long-range superconducting gap term) on the nonequilibrium dynamics considering a long-range p -wave superconducting chain in which the superconducting term decays with distance between two sites in a power-law fashion characterized by an exponent α . We show that the Kibble-Zurek scaling exponent, dictating the power-law decay of the defect density in the final state reached following a slow (in comparison to the time scale associated with the minimum gap in the spectrum of the Hamiltonian) quenching of the chemical potential μ across a quantum critical point, depends nontrivially on the exponent α as long as α <2 ; on the other hand, for α >2 , we find that the exponent saturates to the corresponding well-known value of 1 /2 expected for the short-range model. Furthermore, studying the dynamical quantum phase transitions manifested in the nonanalyticities in the rate function of the return possibility I (t ) in subsequent temporal evolution following a sudden change in μ , we show the existence of a new region; in this region, we find three instants of cusp singularities in I (t ) associated with a single sector of Fisher zeros. Notably, the width of this region shrinks as α increases and vanishes in the limit α →2 , indicating that this special region is an artifact of the long-range nature of the Hamiltonian.

  8. NASA’s new High Dynamic Range Camera Records Rocket Test

    NASA Image and Video Library

    This is footage of Orbital ATK’s QM-2 solid rocket booster test taken by NASA’s High Dynamic Range Stereo X (HiDyRS-X) camera. HiDyRS-X records high speed, high dynamic range footage in multiple ex...

  9. Blocked impurity band detectors applied to tunable diode laser spectroscopy in the 8- to 28-micron range

    NASA Technical Reports Server (NTRS)

    Sirota, J. Marcos; Reuter, Dennis C.; Mumma, Michael J.

    1993-01-01

    Blocked impurity band (BIB) detectors have allowed extension of highly sensitive tunable diode laser (TDL) spectroscopy to over 20 micron spectral region. BIB detectors present low noise equivalent power. Here the apparatus and its components are described and an example of molecular spectra is presented.

  10. Monte Carlo simulations of high-speed, time-gated microchannel-plate-based x-ray detectors: Saturation effects in dc and pulsed modes and detector dynamic rangea)

    NASA Astrophysics Data System (ADS)

    Kruschwitz, Craig A.; Wu, Ming; Moy, Ken; Rochau, Greg

    2008-10-01

    We present here results of continued efforts to understand the performance of microchannel plate (MCP)-based, high-speed, gated, x-ray detectors. This work involves the continued improvement of a Monte Carlo simulation code to describe MCP performance coupled with experimental efforts to better characterize such detectors. Our goal is a quantitative description of MCP saturation behavior in both static and pulsed modes. A new model of charge buildup on the walls of the MCP channels is briefly described. The simulation results are compared to experimental data obtained with a short-pulse, high-intensity ultraviolet laser, and good agreement is found. These results indicate that a weak saturation can change the exponent of gain with voltage and that a strong saturation leads to a gain plateau. These results also demonstrate that the dynamic range of a MCP in pulsed mode has a value of between 102 and 103.

  11. Computerized methods for determining respiratory phase on dynamic chest radiographs obtained by a dynamic flat-panel detector (FPD) system.

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Kobayashi, Takeshi; Suzuki, Masayuki; Matsui, Takeshi; Matsui, Osamu

    2006-03-01

    Chest radiography using a dynamic flat-panel detector with a large field of view can provide sequential chest radiographs during respiration. These images provide information regarding respiratory kinetics, which is effective for diagnosis of pulmonary diseases. For valid analysis of respiratory kinetics in diagnosis of pulmonary diseases, it is crucial to determine the association between the kinetics and respiratory phase. We developed four methods to determine the respiratory phase based on image information associated with respiration and compared the results in dynamic chest radiographs of 37 subjects. Here, the properties of each method and future tasks are discussed. The method based on the change in size of the lung gave the most stable results, and that based on the change in distance from the lung apex to the diaphragm was the most promising method for determining the respiratory phase.

  12. Radiation damage resistance of AlGaN detectors for applications in the extreme-ultraviolet spectral range

    SciTech Connect

    Barkusky, Frank; Peth, Christian; Bayer, Armin; Mann, Klaus; John, Joachim; Malinowski, Pawel E.

    2009-09-15

    We report on the fabrication of aluminum gallium nitride (AlGaN) Schottky-photodiode-based detectors. AlGaN layers were grown using metal-organic chemical vapor deposition (MOCVD) on Si(111) wafers. The diodes were characterized at a wavelength of 13.5 nm using a table-top extreme-ultraviolet (EUV) radiation source, consisting of a laser-produced xenon plasma and a Schwarzschild objective. The responsivity of the diodes was tested between EUV energies ranging from 320 nJ down to several picojoules. For low fluences, a linear responsivity of 7.14 mAs/J could be determined. Saturation starts at approximately 1 nJ, merging into a linear response of 0.113 mAs/J, which could be attributed to the photoeffect on the Au electrodes on top of the diode. Furthermore, degradation tests were performed up to an absolute dose of 3.3x10{sup 19} photons/cm{sup 2}. AlGaN photodiodes were compared to commercially available silicon-based photodetectors. For AlGaN diodes, responsivity does not change even for the highest EUV dose, whereas the response of the Si diode decreases linearly to {approx}93% after 2x10{sup 19} photons/cm{sup 2}.

  13. Radiation damage resistance of AlGaN detectors for applications in the extreme-ultraviolet spectral range.

    PubMed

    Barkusky, Frank; Peth, Christian; Bayer, Armin; Mann, Klaus; John, Joachim; Malinowski, Pawel E

    2009-09-01

    We report on the fabrication of aluminum gallium nitride (AlGaN) Schottky-photodiode-based detectors. AlGaN layers were grown using metal-organic chemical vapor deposition (MOCVD) on Si(111) wafers. The diodes were characterized at a wavelength of 13.5 nm using a table-top extreme-ultraviolet (EUV) radiation source, consisting of a laser-produced xenon plasma and a Schwarzschild objective. The responsivity of the diodes was tested between EUV energies ranging from 320 nJ down to several picojoules. For low fluences, a linear responsivity of 7.14 mAs/J could be determined. Saturation starts at approximately 1 nJ, merging into a linear response of 0.113 mAs/J, which could be attributed to the photoeffect on the Au electrodes on top of the diode. Furthermore, degradation tests were performed up to an absolute dose of 3.3x10(19) photons/cm(2). AlGaN photodiodes were compared to commercially available silicon-based photodetectors. For AlGaN diodes, responsivity does not change even for the highest EUV dose, whereas the response of the Si diode decreases linearly to approximately 93% after 2x10(19) photons/cm(2).

  14. Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector.

    PubMed

    Ren, Min; Gu, Xiaorong; Liang, Yan; Kong, Weibin; Wu, E; Wu, Guang; Zeng, Heping

    2011-07-04

    We demonstrated a laser ranging system with single photon detection at 1550 nm. The single-photon detector was a 1-GHz sine-wave gated InGaAs/InP avalanche photodiode. In daylight, 8-cm depth resolution was achieved directly by using a time-of-flight approach based on time-correlated single photon counting measurement. This system presented a potential for low energy level and eye-safe laser ranging system in long-range measurement.

  15. Dynamic range compression in the honey bee auditory system toward waggle dance sounds.

    PubMed

    Tsujiuchi, Seiya; Sivan-Loukianova, Elena; Eberl, Daniel F; Kitagawa, Yasuo; Kadowaki, Tatsuhiko

    2007-02-21

    Honey bee foragers use a "waggle dance" to inform nestmates about direction and distance to locations of attractive food. The sound and air flows generated by dancer's wing and abdominal vibrations have been implicated as important cues, but the decoding mechanisms for these dance messages are poorly understood. To understand the neural mechanisms of honey bee dance communication, we analyzed the anatomy of antenna and Johnston's organ (JO) in the pedicel of the antenna, as well as the mechanical and neural response characteristics of antenna and JO to acoustic stimuli, respectively. The honey bee JO consists of about 300-320 scolopidia connected with about 48 cuticular "knobs" around the circumference of the pedicel. Each scolopidium contains bipolar sensory neurons with both type I and II cilia. The mechanical sensitivities of the antennal flagellum are specifically high in response to low but not high intensity stimuli of 265-350 Hz frequencies. The structural characteristics of antenna but not JO neurons seem to be responsible for the non-linear responses of the flagellum in contrast to mosquito and fruit fly. The honey bee flagellum is a sensitive movement detector responding to 20 nm tip displacement, which is comparable to female mosquito. Furthermore, the JO neurons have the ability to preserve both frequency and temporal information of acoustic stimuli including the "waggle dance" sound. Intriguingly, the response of JO neurons was found to be age-dependent, demonstrating that the dance communication is only possible between aged foragers. These results suggest that the matured honey bee antennae and JO neurons are best tuned to detect 250-300 Hz sound generated during "waggle dance" from the distance in a dark hive, and that sufficient responses of the JO neurons are obtained by reducing the mechanical sensitivity of the flagellum in a near-field of dancer. This nonlinear effect brings about dynamic range compression in the honey bee auditory system.

  16. Dynamic Range Compression in the Honey Bee Auditory System toward Waggle Dance Sounds

    PubMed Central

    Tsujiuchi, Seiya; Sivan-Loukianova, Elena; Eberl, Daniel F.; Kitagawa, Yasuo; Kadowaki, Tatsuhiko

    2007-01-01

    Honey bee foragers use a “waggle dance” to inform nestmates about direction and distance to locations of attractive food. The sound and air flows generated by dancer's wing and abdominal vibrations have been implicated as important cues, but the decoding mechanisms for these dance messages are poorly understood. To understand the neural mechanisms of honey bee dance communication, we analyzed the anatomy of antenna and Johnston's organ (JO) in the pedicel of the antenna, as well as the mechanical and neural response characteristics of antenna and JO to acoustic stimuli, respectively. The honey bee JO consists of about 300–320 scolopidia connected with about 48 cuticular “knobs” around the circumference of the pedicel. Each scolopidium contains bipolar sensory neurons with both type I and II cilia. The mechanical sensitivities of the antennal flagellum are specifically high in response to low but not high intensity stimuli of 265–350 Hz frequencies. The structural characteristics of antenna but not JO neurons seem to be responsible for the non-linear responses of the flagellum in contrast to mosquito and fruit fly. The honey bee flagellum is a sensitive movement detector responding to 20 nm tip displacement, which is comparable to female mosquito. Furthermore, the JO neurons have the ability to preserve both frequency and temporal information of acoustic stimuli including the “waggle dance” sound. Intriguingly, the response of JO neurons was found to be age-dependent, demonstrating that the dance communication is only possible between aged foragers. These results suggest that the matured honey bee antennae and JO neurons are best tuned to detect 250–300 Hz sound generated during “waggle dance” from the distance in a dark hive, and that sufficient responses of the JO neurons are obtained by reducing the mechanical sensitivity of the flagellum in a near-field of dancer. This nonlinear effect brings about dynamic range compression in the honey bee

  17. Experimental Study of Three-Nucleon Dynamics in the Dp Breakup Collisions Using the WASA Detector

    NASA Astrophysics Data System (ADS)

    Kłos, B.; Ciepał, I.; Jamróz, B.; Khatri, G.; Kistryn, S.; Kozela, A.; Magiera, A.; Parol, W.; Skwira-Chalot, I.; Stephan, E.

    2017-03-01

    Until recently, all calculations of breakup observables were carried out in a non-relativistic regime. The relativistic treatment of the breakup reaction in 3 N system is quite a new achievement. The detailed study of various aspects of few-nucleon system dynamics in medium energy region, with a particular emphasis on investigation of relativistic effects and their interplay with three nucleon force (3NF) becomes feasible with increasing available energy in the three nucleon system. Therefore an experiment to investigate the ^1H(d, pp)n breakup cross section using a deuteron beam of 300, 340, 380 and 400 MeV and the WASA detector has been performed at COSY-Jülich. The almost 4π geometry of the WASA detector gives an unique possibility to study variety of kinematic configurations, which reveal different sensitivity to aspects of dynamics of the three nucleon system. The main steps of the analysis, including energy calibration, PID, normalization and efficiency studies, and their impact on the final accuracy of the result, are discussed.

  18. Flat panel detector-based cone beam CT for dynamic imaging: system evaluation

    NASA Astrophysics Data System (ADS)

    Ning, Ruola; Conover, David; Yu, Yong; Zhang, Yan; Cai, Weixing; Yang, Dong; Lu, Xianghua

    2006-03-01

    The purpose of this study is to characterize a newly built flat panel detector (FPD)-based cone beam CT (CBCT) prototype for dynamic imaging. A CBCT prototype has been designed and constructed by completely modifying a GE HiSpeed Advantage (HSA) CT gantry, incorporating a newly acquired large size real-time FPD (Varian PaxScan 4030CB), a new x-ray generator and a dual focal spot angiography x-ray tube that allows the full coverage of the detector. During data acquisition, the x-ray tube and the FPD can be rotated on the gantry over Nx360 degrees due to integrated slip ring technology with the rotation speed of one second/revolution. With a single scan time of up to 40 seconds , multiple sets of reconstructions can be performed for dynamic studies. The upgrade of this system has been completed. The prototype was used for a series of preliminary phantom studies: different sizes of breast phantoms, a Humanoid chest phantom and scatter correction studies. The results of the phantom studies demonstrate that good image quality can be achieved with this newly built prototype.

  19. In-line ion detector

    SciTech Connect

    Becker, R.; Kester, O.

    2008-02-15

    An in-line particle detector (IPD) uses secondary electrons for the detection of multiply charged ions with low to medium energy (10-10 keV). The ion detector does not physically intercept the ion beam line and is fully transparent to ions without applied voltages. The activation of the detector is performed by applying appropriate voltages to electrodes, which avoids any physical movement. Equipped with a channel electron multiplier, single particle counting is possible as well as measurement of currents. This detector therefore has a large dynamical range from about 10{sup -17} to 10{sup -3} A. The basic principle also allows for ion beam diagnostics.

  20. High-rate conditioning pulse trains in cochlear implants: Dynamic range measures with sinusoidal stimuli

    NASA Astrophysics Data System (ADS)

    Hong, Robert S.; Rubinstein, Jay T.

    2003-12-01

    The addition of a continuous, unmodulated, high-rate pulse train to the electrical signals of cochlear implant recipients results in statistically significant increases in psychophysical dynamic range (41 out of 46 electrode pairs tested). The observed increases in dynamic range are thought to result from nerve conditioning by appropriate levels of high-rate pulse train. Five dynamic range profiles are characterized, defining the different responses of dynamic range observed with increasing levels of the conditioner. Four of the five profiles demonstrate increases in dynamic range, with three showing behavior consistent with stochastic resonance. One profile depicts evidence of adaptation in response to higher levels of the conditioner, with a recovery period lasting throughout the duration (on the scale of tens of minutes) of experimentation. Dynamic range profiles are shown to be similar across sinusoidal frequencies (202, 515, and 1031 Hz) but potentially different across electrode pairs (electrodes 1-2, 7-8, and 15-16). Correlation analysis does not reveal any predictors of optimal conditioner level or amount of dynamic range increase with the conditioner.

  1. Spatial-temporal population dynamics across species range: from centre to margin

    Treesearch

    Qinfeng Guo; Mark Taper; Michele Schoenberger; J. Brandle

    2005-01-01

    Understanding the boundaries of species'rangs and the variations in population dynamics from the centre to margin of a species' range is critical. This study simulated spatial-tamporal patterns of birth and death rates and migration across a species' range in different seasons. Our results demonstrated the importance of dispersal and migration in...

  2. A Supra-Thermal Energetic Particle detector (STEP) for composition measurements in the range approximately 20 keV/nucleon to 1 MeV/nucleon

    NASA Technical Reports Server (NTRS)

    Mason, G. M.; Gloeckler, G.

    1981-01-01

    A detector system is described, employing a time-of-flight versus residual energy technique which allows measurement of particle composition (H-Fe), energy spectral and anisotropies in an energy range unaccessible with previously flown sensors. Applications of this method to measurements of the solar wind ion composition are discussed.

  3. A supra-thermal energetic particle detector /STEP/ for composition measurements in the range of about 20 keV/nucleon to 1 MeV/nucleon

    NASA Technical Reports Server (NTRS)

    Mason, G. M.; Gloeckler, G.

    1981-01-01

    A novel detector system is described, employing a time-of-flight versus residual energy technique which allows measurement of particle composition (H-Fe), energy spectra and anisotropies in an energy range unaccessible with previously flown sensors. Applications of this method to measurements of the solar wind ion composition are also discussed.

  4. Evidence for an unusual dynamical-arrest scenario in short-ranged colloidal systems

    NASA Astrophysics Data System (ADS)

    Foffi, G.; Dawson, K. A.; Buldyrev, S. V.; Sciortino, F.; Zaccarelli, E.; Tartaglia, P.

    2002-05-01

    Extensive molecular dynamics simulation studies of particles interacting via a short-ranged attractive square-well potential are reported. The calculated loci of constant diffusion coefficient D in the temperature-packing fraction plane show a reentrant behavior, i.e., an increase of diffusivity on cooling, confirming an important part of the high volume-fraction dynamical-arrest scenario earlier predicted by theory for particles with short-ranged potentials. The more efficient localization mechanism induced by the short-range bonding provides, on average, additional free volume as compared to the hard-sphere case and results in faster dynamics.

  5. Long-range micro-pulse aerosol lidar at 1.5  μm with an upconversion single-photon detector.

    PubMed

    Xia, Haiyun; Shentu, Guoliang; Shangguan, Mingjia; Xia, Xiuxiu; Jia, Xiaodong; Wang, Chong; Zhang, Jun; Pelc, Jason S; Fejer, M M; Zhang, Qiang; Dou, Xiankang; Pan, Jian-Wei

    2015-04-01

    A micro-pulse lidar at eye-safe wavelength is constructed based on an upconversion single-photon detector. The ultralow-noise detector enables using integration technique to improve the signal-to-noise ratio of the atmospheric backscattering even at daytime. With pulse energy of 110 μJ, pulse repetition rate of 15 kHz, optical antenna diameter of 100 mm and integration time of 5 min, a horizontal detection range of 7 km is realized. In the demonstration experiment, atmospheric visibility over 24 h is monitored continuously, with results in accordance with the weather forecasts.

  6. High temperature IR-imager with wide dynamic range for industrial process control

    NASA Astrophysics Data System (ADS)

    Hoffmann, Uwe; Hofmann, G.; Wassilew, D.; Heß, N.; Zimmerhackl, M.

    2008-03-01

    State of the art IR-Imager in the near infrared spectral range for monitoring high temperatures in industrial applications are characterized by a number of small measurement ranges. Scenes with a high temperature contrast require several measures switching between these ranges and result in pictures with under range and saturated parts. A newly developed high temperature IR-Imager with a spectral range in the near infrared provides a wide dynamic range by utilizing specialized signal processing. A continuous temperature measurement range from 600°C up to 1500°C is realized with a resolution of 640x480 points and a measuring frequency of 25Hz. Each resulting image contains the full dynamic range and is transmitted via a Fast Ethernet interface in real time.

  7. Dynamic Range of Vertical Cavity Surface Emitting Lasers in Multimode Links

    SciTech Connect

    Lee, H.L.T.; Dalal, R.V.; Ram, R.J.; Choquette, K.D.

    1999-07-07

    The authors report spurious free dynamic range measurements of 850nm vertical cavity surface emitting lasers in short multimode links for radio frequency communication. For a 27m fiber link, the dynamic range at optimal bias was greater than 95dB-Hz{sup 2/3} for modulation frequencies between 1 and 5.5 GHz, which exceeds the requirements for antenna remoting in microcellular networks. In a free space link, they have measured the highest dynamic range in an 850nm vertical cavity surface emitting laser of 113dB-Hz{sup 2/3} at 900MHz. We have also investigated the effects of modal noise and differential mode delay on the dynamic range for longer lengths of fiber.

  8. Ultrafast Optical Beam Deflection in a Planar Waveguide for High Dynamic Range Recording at Picosecond Resolution

    SciTech Connect

    Sarantos, C H; Heebner, J E

    2008-07-02

    We report the latest performance of an ultrafast, all-optical beam deflector based on a prism array imprinted in a planar waveguide. The deflector enables single-shot, high dynamic range optical recording with picosecond resolution.

  9. How interactions between animal movement and landscape processes modify range dynamics and extinction risk

    EPA Science Inventory

    Range dynamics models now incorporate many of the mechanisms and interactions that drive species distributions. However, connectivity continues to be studied using overly simple distance-based dispersal models with little consideration of how the individual behavior of dispersin...

  10. How interactions between animal movement and landscape processes modify range dynamics and extinction risk

    EPA Science Inventory

    Range dynamics models now incorporate many of the mechanisms and interactions that drive species distributions. However, connectivity continues to be studied using overly simple distance-based dispersal models with little consideration of how the individual behavior of dispersin...

  11. Linking traits to energetics and population dynamics to predict lizard ranges in changing environments.

    PubMed

    Buckley, Lauren B

    2008-01-01

    I present a dynamic bioenergetic model that couples individual energetics and population dynamics to predict current lizard ranges and those following climate warming. The model predictions are uniquely based on first principles of morphology, life history, and thermal physiology. I apply the model to five populations of a widespread North American lizard, Sceloporus undulatus, to examine how geographic variation in traits and life histories influences ranges. This geographic variation reflects the potential for species to adapt to environmental change. I then consider the range dynamics of the closely related Sceloporus graciosus. Comparing predicted ranges and actual current ranges reveals how dispersal limitations, species interactions, and habitat requirements influence the occupied portions of thermally suitable ranges. The dynamic model predicts individualistic responses to a uniform 3 degrees C warming but a northward shift in the northern range boundary for all populations and species. In contrast to standard correlative climate envelope models, the extent of the predicted northward shift depends on organism traits and life histories. The results highlight the limitations of correlative models and the need for more dynamic models of species' ranges.

  12. Full Dynamic-Range Pressure Sensor Matrix Based on Optical and Electrical Dual-Mode Sensing.

    PubMed

    Wang, Xiandi; Que, Miaoling; Chen, Mengxiao; Han, Xun; Li, Xiaoyi; Pan, Caofeng; Wang, Zhong Lin

    2017-04-01

    A pressure-sensor matrix (PSM) with full dynamic range can accurately detect and spatially map pressure profiles. A 100 × 100 large-scale PSM gives both electrical and optical signals by itself without applying an external power source. The device represents a major step toward digital imaging, and the visible display of the pressure distribution covers a large dynamic range. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Wide-Dynamic-Range Analog-to-Digital Conversion for HFDF.

    DTIC Science & Technology

    1986-11-01

    FIELD GROUP SUB-GROUP High-frequency direction finder (HFDF), lasers , fiber optics, switches, a. ,~esed~cea~ ad .Ab4 digitization, noise/jammer...dynamic-range digitization of wideband HFDF data, using a synchronously driven laser /fiber-optic system. Development activity reported is in the areas...dynamic- range digitization of wideband HFDF data, using a synchronously driven laser /fiber-optic system. The background of the concept and previous work

  14. The dynamic time-over-threshold method for multi-channel APD based gamma-ray detectors

    NASA Astrophysics Data System (ADS)

    Orita, T.; Shimazoe, K.; Takahashi, H.

    2015-03-01

    t- Recent advances in manufacturing technology have enabled the use of multi-channel pixelated detectors in gamma-ray imaging applications. When obtaining gamma-ray measurements, it is important to obtain pulse height information in order to avoid unnecessary events such as scattering. However, as the number of channels increases, more electronics are needed to process each channel's signal, and the corresponding increases in circuit size and power consumption can result in practical problems. The time-over-threshold (ToT) method, which has recently become popular in the medical field, is a signal processing technique that can effectively avoid such problems. However, ToT suffers from poor linearity and its dynamic range is limited. We therefore propose a new ToT technique called the dynamic time-over-threshold (dToT) method [4]. A new signal processing system using dToT and CR-RC shaping demonstrated much better linearity than that of a conventional ToT. Using a test circuit with a new Gd3Al2Ga3O12 (GAGG) scintillator and an avalanche photodiode, the pulse height spectra of 137Cs and 22Na sources were measured with high linearity. Based on these results, we designed a new application-specific integrated circuit (ASIC) for this multi-channel dToT system, measured the spectra of a 22Na source, and investigated the linearity of the system.

  15. Dynamic Engagement of Human Motion Detectors across Space–Time Coordinates

    PubMed Central

    2014-01-01

    Motion detection is a fundamental property of the visual system. The gold standard for studying and understanding this function is the motion energy model. This computational tool relies on spatiotemporally selective filters that capture the change in spatial position over time afforded by moving objects. Although the filters are defined in space–time, their human counterparts have never been studied in their native spatiotemporal space but rather in the corresponding frequency domain. When this frequency description is back-projected to spatiotemporal description, not all characteristics of the underlying process are retained, leaving open the possibility that important properties of human motion detection may have remained unexplored. We derived descriptors of motion detectors in native space–time, and discovered a large unexpected dynamic structure involving a >2× change in detector amplitude over the first ∼100 ms. This property is not predicted by the energy model, generalizes across the visual field, and is robust to adaptation; however, it is silenced by surround inhibition and is contrast dependent. We account for all results by extending the motion energy model to incorporate a small network that supports feedforward spread of activation along the motion trajectory via a simple gain-control circuit. PMID:24948800

  16. Dynamic Electrothermal Model of a Sputtered Thermopile Thermal Radiation Detector for Earth Radiation Budget Applications

    NASA Technical Reports Server (NTRS)

    Weckmann, Stephanie

    1997-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) is a program sponsored by the National Aeronautics and Space Administration (NASA) aimed at evaluating the global energy balance. Current scanning radiometers used for CERES consist of thin-film thermistor bolometers viewing the Earth through a Cassegrain telescope. The Thermal Radiation Group, a laboratory in the Department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently studying a new sensor concept to replace the current bolometer: a thermopile thermal radiation detector. This next-generation detector would consist of a thermal sensor array made of thermocouple junction pairs, or thermopiles. The objective of the current research is to perform a thermal analysis of the thermopile. Numerical thermal models are particularly suited to solve problems for which temperature is the dominant mechanism of the operation of the device (through the thermoelectric effect), as well as for complex geometries composed of numerous different materials. Feasibility and design specifications are studied by developing a dynamic electrothermal model of the thermopile using the finite element method. A commercial finite element-modeling package, ALGOR, is used.

  17. Dynamic engagement of human motion detectors across space-time coordinates.

    PubMed

    Neri, Peter

    2014-06-18

    Motion detection is a fundamental property of the visual system. The gold standard for studying and understanding this function is the motion energy model. This computational tool relies on spatiotemporally selective filters that capture the change in spatial position over time afforded by moving objects. Although the filters are defined in space-time, their human counterparts have never been studied in their native spatiotemporal space but rather in the corresponding frequency domain. When this frequency description is back-projected to spatiotemporal description, not all characteristics of the underlying process are retained, leaving open the possibility that important properties of human motion detection may have remained unexplored. We derived descriptors of motion detectors in native space-time, and discovered a large unexpected dynamic structure involving a >2× change in detector amplitude over the first ∼100 ms. This property is not predicted by the energy model, generalizes across the visual field, and is robust to adaptation; however, it is silenced by surround inhibition and is contrast dependent. We account for all results by extending the motion energy model to incorporate a small network that supports feedforward spread of activation along the motion trajectory via a simple gain-control circuit. Copyright © 2014 the authors 0270-6474/14/348449-13$15.00/0.

  18. Statistical treatment of photon/electron counting: extending the linear dynamic range from the dark count rate to saturation.

    PubMed

    Kissick, David J; Muir, Ryan D; Simpson, Garth J

    2010-12-15

    An experimentally simple photon counting method is demonstrated providing 7 orders of magnitude in linear dynamic range (LDR) for a single photomultiplier tube (PMT) detector. In conventional photon/electron counting methods, the linear range is dictated by the agreement between the binomially distributed measurement of counted events and the underlying Poisson distribution of photons/electrons. By explicitly considering the log-normal probability distribution in voltage transients as a function of the number of photons present and the Poisson distribution of photons, observed counts for a given threshold can be related to the mean number of photons well beyond the conventional limit. Analytical expressions are derived relating counts and photons that extend the linear range to an average of ∼11 photons arriving simultaneously with a single threshold. These expressions can be evaluated numerically for multiple thresholds extending the linear range to the saturation point of the PMT. The peak voltage distributions are experimentally shown to follow a Poisson weighted sum of log-normal distributions that can all be derived from the single photoelectron voltage peak-height distribution. The LDR that results from this method is compared to conventional single photon counting (SPC) and to signal averaging by analog to digital conversion (ADC).

  19. Comparison of multialkali and GaAs photocathode detectors for Joint European Torus edge light detection and ranging Thomson scattering profiles

    NASA Astrophysics Data System (ADS)

    Kempenaars, M.; Nielsen, P.; Pasqualotto, R.; Gowers, C.; Beurskens, M.

    2004-10-01

    The Joint European Torus (JET) tokamak has two light detection and ranging (LIDAR) Thomson scattering systems, one for the core and one dedicated to the edge Te and ne profiles. The LIDAR scheme is unique to JET and is envisaged for use on ITER. The system's spatial resolution is defined by the convolution product of its components: laser pulse duration, detector response time, and digitizer speed. The original multialkali photocathode microchannel plate photomultipliers dictated the response time, resulting in a 12 cm spatial resolution along the line of sight. In the edge LIDAR system, this is improved by aligning the line of sight with the flux surfaces, thus improving the effective spatial resolution to 2 cm depending on the plasma configuration. To meet demands for better edge gradient resolution, an upgrade to higher quantum efficiency detectors was proposed. Four GaAs photocathode detectors have been procured, two of which surpass expectations. These detectors are shown to have a more than two times higher effective quantum efficiency and their response time is at least twice as fast as the multialkali detectors. Combined with a fast digitizer this improves the spatial resolution by a factor of two, down to one centimeter effective, depending on plasma configuration.

  20. Comparison of multialkali and GaAs photocathode detectors for Joint European Torus edge light detection and ranging Thomson scattering profiles

    SciTech Connect

    Kempenaars, M.; Nielsen, P.; Pasqualotto, R.; Gowers, C.; Beurskens, M.

    2004-10-01

    The Joint European Torus (JET) tokamak has two light detection and ranging (LIDAR) Thomson scattering systems, one for the core and one dedicated to the edge T{sub e} and n{sub e} profiles. The LIDAR scheme is unique to JET and is envisaged for use on ITER. The system's spatial resolution is defined by the convolution product of its components: laser pulse duration, detector response time, and digitizer speed. The original multialkali photocathode microchannel plate photomultipliers dictated the response time, resulting in a 12 cm spatial resolution along the line of sight. In the edge LIDAR system, this is improved by aligning the line of sight with the flux surfaces, thus improving the effective spatial resolution to 2 cm depending on the plasma configuration. To meet demands for better edge gradient resolution, an upgrade to higher quantum efficiency detectors was proposed. Four GaAs photocathode detectors have been procured, two of which surpass expectations. These detectors are shown to have a more than two times higher effective quantum efficiency and their response time is at least twice as fast as the multialkali detectors. Combined with a fast digitizer this improves the spatial resolution by a factor of two, down to one centimeter effective, depending on plasma configuration.

  1. Design of pixel electronics based on asynchronous self-reset approach with floating-point output representation for high dynamic range imagers

    NASA Astrophysics Data System (ADS)

    Nascetti, A.; Valerio, P.

    2011-01-01

    A readout circuit suitable for multi-channel preamplifiers for pixellated detectors, hybrid detectors or thin film on asic imagers, for applications requiring large dynamic range such as computed tomography is discussed. The circuit implements an asynchronous self-reset with residue conversion scheme combined with a floating point representation of the input current. This solution allows to reach a very high dynamic range with good linearity while ensuring a compact output format. In particular, in the present implementation the input current range extends from 50 fA up to 820 nA corresponding to a 144 dB dynamic range which is equivalent to a 24-bit code. However the proposed scheme only uses 16 output bits for the floating point representation with 12-bit constant relative resolution: 12 bits serve for the output value itself and 4 for storing the position of the transition point between integer and fractional part. In addition, an analytical study of the achievable imaging performances shows that no significant degradation of the SNR is expected for the 12-bit constant relative resolution implementation with respect to the full 24-bit resolution scheme. Finally, the main building blocks of the circuit are analyzed in detail and their characteristics are put in relationship with the overall system performances.

  2. Breathing chest radiography using a dynamic flat-panel detector combined with computer analysis.

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Suzuki, Masayuki; Kobayashi, Takeshi; Matsui, Takeshi; Inoue, Hitoshi; Yoshihisa, Nakano

    2004-08-01

    Kinetic information is crucial when evaluating certain pulmonary diseases. When a dynamic flat-panel detector (FPD) can be used for a chest examination, kinetic information can be obtained simply and cost-effectively. The purpose of this study was to develop methods for analyzing respiratory kinetics, such as movement of the diaphragm and lung structures, and the respiratory changes in x-ray translucency in local lung fields. Postero-anterior dynamic chest radiographs during respiration were obtained with a modified FPD, which provided dynamic chest radiographs at a rate of 3 frames/s. Image registration for correction of physical motion was followed by measurement of the distance from the lung apex to the diaphragm. Next, we used a cross-correlation technique to measure the vectors of respiratory movement in specific lung areas. Finally, the average pixel value for a given local area was calculated by tracing the same local area in the lung field. This method of analysis was used for six healthy volunteers and one emphysema patient. The results reported here represent the initial stage in the development of a method that may constitute a new method for diagnosing certain pulmonary diseases, such as chronic obstructive pulmonary disease, fibroid lung, and pneumonia. A clinical evaluation of our method is now in progress.

  3. Dynamics of the ions in liquid argon detectors and electron signal quenching

    NASA Astrophysics Data System (ADS)

    Romero, Luciano; Santorelli, Roberto; Montes, Bárbara

    2017-06-01

    A study of the dynamics of the positive charges in liquid argon has been carried out in the context of the future massive time projection chambers proposed for dark matter and neutrino physics. Given their small mobility coefficient in liquid argon, the ions spend a considerably longer time in the active volume with respect to the electrons. The positive charge density can be additionally increased by the injection, in the liquid volume, of the ions produced by the electron multiplying devices located in gas argon. The impact of the ion current on the uniformity of the field has been evaluated as well as the probability of the charge signal quenching due to the electron-ion recombination along the drift. The study results show some potential concerns for massive detectors with drift of many meters operated on surface.

  4. Criteria to optimise a dynamic flat detector system used for interventional radiology.

    PubMed

    Simon, R; Vano, E; Prieto, C; Fernandez, J M; Ordiales, J M; Martinez, D

    2008-01-01

    An analysis of the relationship between image quality and incident air kerma has been carried out for a dynamic flat detector X-ray system used for interventional radiology. A phantom of polymethyl methacrylate (PMMA) to simulate patients and two different image test objects, Leeds TOR 18FG and NEMA XR 21, were used to evaluate the quality of the obtained images. Measurements were made simulating clinical configuration with different PMMA thicknesses (16, 20, 24 and 28 cm), available fields of view of 22, 31, 42 and 48 cm (diagonal dimension), in the three default fluoroscopy modes and in one of the most used digital subtraction angiography image acquisition modes. The obtained results are being used to help in the optimisation of clinical procedures.

  5. Dynamical phase transitions and Loschmidt echo in the infinite-range XY model.

    PubMed

    Žunkovič, Bojan; Silva, Alessandro; Fabrizio, Michele

    2016-06-13

    We compare two different notions of dynamical phase transitions in closed quantum systems. The first is identified through the time-averaged value of the equilibrium-order parameter, whereas the second corresponds to non-analyticities in the time behaviour of the Loschmidt echo. By exactly solving the dynamics of the infinite-range XY model, we show that in this model non-analyticities of the Loschmidt echo are not connected to standard dynamical phase transitions and are not robust against quantum fluctuations. Furthermore, we show that the existence of either of the two dynamical transitions is not necessarily connected to the equilibrium quantum phase transition.

  6. Large aperture at low cost three-dimensional time-of-flight range sensor using scanning micromirrors and synchronous detector switching.

    PubMed

    Bogatscher, Siegwart; Streck, Andreas; Fox, Maik; Meinzer, Sebastian; Heussner, Nico; Stork, Wilhelm

    2014-03-10

    In this article the problem of achieving fast scanning of a time-of-flight range sensor with a large optical receiver aperture at low system cost is targeted. The presented approach to solve this problem consists of a micromirror-based transmitter unit and a receiver unit consisting of a large aperture lens system with a small field of view and a detector array. A concept, which is called synchronous detector switching, is applied to the detector array. Thereby electronic steering of the small receiver field of view is possible. The overall approach is compared to alternative approaches, and the underlying concept of synchronous detector switching is demonstrated experimentally in an implementation of a three-dimensional time-of-flight range sensor. It is theoretically shown that the presented concept is potentially cheaper than the alternative approaches for applications with a field of view of less than 60×60°. After a discussion of the strengths and limitations of the approach, its effect on broader scientific issues is outlined.

  7. Dynamic Range for Speech Materials in Korean, English, and Mandarin: A Cross-Language Comparison

    ERIC Educational Resources Information Center

    Jin, In-Ki; Kates, James M.; Arehart, Kathryn H.

    2014-01-01

    Purpose: The purpose of this study was to identify whether differences in dynamic range (DR) are evident across the spoken languages of Korean, English, and Mandarin. Method: Recorded sentence-level speech materials were used as stimuli. DR was quantified using different definitions of DR (defined as the range in decibels from the highest to the…

  8. Dynamic Range for Speech Materials in Korean, English, and Mandarin: A Cross-Language Comparison

    ERIC Educational Resources Information Center

    Jin, In-Ki; Kates, James M.; Arehart, Kathryn H.

    2014-01-01

    Purpose: The purpose of this study was to identify whether differences in dynamic range (DR) are evident across the spoken languages of Korean, English, and Mandarin. Method: Recorded sentence-level speech materials were used as stimuli. DR was quantified using different definitions of DR (defined as the range in decibels from the highest to the…

  9. High dynamic range compression and detail enhancement of infrared images in the gradient domain

    NASA Astrophysics Data System (ADS)

    Zhang, Feifei; Xie, Wei; Ma, Guorui; Qin, Qianqing

    2014-11-01

    To find the trade-off between providing an accurate perception of the global scene and improving the visibility of details without excessively distorting radiometric infrared information, a novel gradient-domain-based visualization method for high dynamic range infrared images is proposed in this study. The proposed method adopts an energy function which includes a data constraint term and a gradient constraint term. In the data constraint term, the classical histogram projection method is used to perform the initial dynamic range compression to obtain the desired pixel values and preserve the global contrast. In the gradient constraint term, the moment matching method is adopted to obtain the normalized image; then a gradient gain factor function is designed to adjust the magnitudes of the normalized image gradients and obtain the desired gradient field. Lastly, the low dynamic range image is solved from the proposed energy function. The final image is obtained by linearly mapping the low dynamic range image to the 8-bit display range. The effectiveness and robustness of the proposed method are analyzed using the infrared images obtained from different operating conditions. Compared with other well-established methods, our method shows a significant performance in terms of dynamic range compression, while enhancing the details and avoiding the common artifacts, such as halo, gradient reversal, hazy or saturation.

  10. Spatial resolution of synchrotron x-ray microtomography in high energy range: Effect of x-ray energy and sample-to-detector distance

    NASA Astrophysics Data System (ADS)

    Seo, D.; Tomizato, F.; Toda, H.; Uesugi, K.; Takeuchi, A.; Suzuki, Y.; Kobayashi, M.

    2012-12-01

    Spatial resolution of three-dimensional images obtained by synchrotron X-ray microtomography technique is evaluated using cyclic bar patterns machined on a steel wire. Influences of X-ray energy and the sample-to-detector distance on spatial resolution were investigated. High X-ray energies of 33-78 keV are applied due to the high X-ray absorption of transition metals. Best spatial resolution of about 1.2 μm pitch was observed at the sample-to-detector distance range of 20-110 mm and at the energy range of 68-78 keV. Several factors such as X-ray scattering and diffraction phenomena affecting the degradation of spatial resolution are also discussed.

  11. Temporal-spatial characteristic evaluation in a dynamic flat-panel detector system

    NASA Astrophysics Data System (ADS)

    Kawashima, H.; Tanaka, R.; Matsubara, K.; Ichikawa, K.; Sakuta, K.; Minami, S.; Hayashi, N.; Sanada, S.; Kawamura, M.; Yamamoto, T.

    2010-04-01

    This report presents the fundamental temporospatial characteristics of a dynamic flat-panel detector (FPD) system. We investigated the relationship between pixel value and X-ray pulse output, and examined reproducibility, dependence on pulse width, tube voltage, and pulse rate. Sequential images were obtained using a direct conversion-type dynamic FPD. The exposure conditions were: 110 kV, 80 mA, 6.3 ms, 7.5 fps, source-to-image distance (SID) 1.5 m. X-ray pulse output was measured using a dosimetry system with a sampling interval of 70 μs, to determine temporal changes in each X-ray pulse output. Temporal changes in pixel value were measured in the obtained images, and the relationship between pixel value and X-ray pulse output was examined. Reproducibility was assessed by comparing the results in two sequential images obtained under the same exposure conditions. Moreover, the relationships and properties were evaluated by changing the pulse width (12 ms and 25 ms), tube voltage (80 kV, 90 kV, and 100 kV), and pulse rate (3.75 fps and 15 fps). The results showed a good correlation between the X-ray pulse output and pixel values. Fluctuation of the pixel value measured in sequential images is thought to be mainly due to changes in X-ray pulse output, and is not caused by FPD.

  12. Dynamic chest radiography with a flat-panel detector (FPD): ventilation-perfusion study

    NASA Astrophysics Data System (ADS)

    Tanaka, R.; Sanada, S.; Fujimura, M.; Yasui, M.; Tsuji, S.; Hayashi, N.; Okamoto, H.; Nanbu, Y.; Matsui, O.

    2011-03-01

    Pulmonary ventilation and blood flow are reflected in dynamic chest radiographs as changes in X-ray translucency, i.e., pixel values. This study was performed to investigate the feasibility of ventilation-perfusion (V/Q) study based on the changes in pixel value. Sequential chest radiographs of a patient with ventilation-perfusion mismatch were obtained during respiration using a dynamic flat-panel detector (FPD) system. The lung area was recognized and average pixel value was measured in each area, tracking and deforming the region of interest. Inter-frame differences were then calculated, and the absolute values were summed in each respiratory phase. The results were visualized as ventilation, blood flow, V/Q ratio distribution map and compared to distribution of radioactive counts on ventilation and perfusion scintigrams. In the results, abnormalities were appeared as a reduction of changes in pixel values, and a correlation was observed between the distribution of changes in pixel value and those of radioactivity counts (Ventilation; r=0.78, Perfusion; r=0.77). V/Q mismatch was also indicated as mismatch of changes in pixel value, and a correlation with V/Q calculated by radioactivity counts (r=0.78). These results indicated that the present method is potentially useful for V/Q study as an additional examination in conventional chest radiography.

  13. [Reproducibility of dynamic chest radiography with a flat-panel detector - respiratory changes in pixel value].

    PubMed

    Kawashima, Hiroki; Tanaka, Rie; Sanada, Shigeru

    2009-06-20

    Dynamic chest radiography using a flat panel detector (FPD) with a large field of view is expected to be a useful pulmonary functional evaluation method based on the respiratory changes in pixel value. For clinical use as a follow-up and therapeutic evaluation tool, the system must have a high degree of reproducibility in measurements of pixel values. The present study was performed to investigate the reproducibility of respiratory changes in pixel values. Dynamic chest radiographs of five normal subjects and one patient were obtained. Imaging was performed twice in each subject. The slope (X-ray translucency variation) was then calculated from the changes in pixel value from distance lung apex-diaphragm, and the slopes of two sequences were compared. The results showed there were no significant differences in changes in pixel value between the two sequences in all normal subject (5 males, p>0.05). The results indicated that the present method has reproducibility for measuring pulmonary function and also has potential as a tool for follow-up and therapeutic evaluation.

  14. Rubicon - a New Diode Array Detector System

    NASA Astrophysics Data System (ADS)

    Schmidt-Kaler, T.; Rudolph, R.; Tug, H.

    A photon-counting system with a 512-channel parallel output digital image tube is presented. Electronics developed separately for each detector channel as well as data aquisition are optimized for low power consumption and high counting rates. This detector, characterized by wide dynamic range, very low noise and high photometric accuracy, is especially suitable for spectrophotometry and calibrations.

  15. Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition

    PubMed Central

    Khubieh, Ayah; Ratté, Stéphanie; Lankarany, Milad; Prescott, Steven A.

    2016-01-01

    The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then staggered all-or-none recruitment of those neurons would be necessary for the population to achieve a broad dynamic range. Contrary to this explanation, we show here through dynamic clamp experiments in vitro and computer simulations that pyramidal neurons have a broad dynamic range under the noisy conditions that exist in the intact brain due to background synaptic input. Feedforward inhibition capitalizes on those noise effects to control neuronal gain and thereby regulates the population dynamic range. Importantly, noise allows neurons to be recruited gradually and occludes the staggered recruitment previously attributed to heterogeneous excitation. Feedforward inhibition protects spike timing against the disruptive effects of noise, meaning noise can enable the gain control required for rate coding without compromising the precise spike timing required for temporal coding. PMID:26209846

  16. Calibration of spectral responsivity of IR detectors in the range from 0.6 μm to 24 μm

    NASA Astrophysics Data System (ADS)

    Podobedov, Vyacheslav B.; Eppeldauer, George P.; Hanssen, Leonard M.; Larason, Thomas C.

    2016-05-01

    We report the upgraded performance of the National Institute of Standards and Technology (NIST) facility for spectral responsivity calibrations of infrared (IR) detectors in both radiant power and irradiance measurement modes. The extension of the wavelength range of the previous scale, below 0.8 μm and above 19 μm in radiant power mode as well as above 5.3 μm in irradiance mode, became available as a result of multiple improvements. The calibration facility was optimized for low-level radiant flux. A significantly reduced noise-equivalent-power and a relatively constant spectral response were achieved recently on newly developed pyroelectric detectors. Also, an efficient optical geometry was developed for calibration of the spectral irradiance responsivity without using an integrating sphere. Simultaneously, the upgrade and maintenance of the NIST transfer standards, with an extended spectral range, were supported by spectral reflectance measurements of a transfer standard pyroelectric detector using a custom integrating sphere and a Fourier transform spectrometer. The sphere reflectance measurements performed in a relative mode were compared to a bare gold-coated mirror reference, separately calibrated at the Fourier transform Infrared Spectrophotometry facility to 18 μm. Currently, the reflectance data for the pyroelectric standard, available in the range up to 30 μm, are supporting the absolute power responsivity scale by the propagation of the reflectance curve to the absolute tie-spectrum in the overlapping range. Typical examples of working standard pyroelectric-, Si-, MCT-, InSb- and InGaAs- detectors are presented and their optimal use for scale dissemination is analyzed.

  17. Impacts of Land Cover Data Selection and Trait Parameterisation on Dynamic Modelling of Species’ Range Expansion

    PubMed Central

    Heikkinen, Risto K.; Bocedi, Greta; Kuussaari, Mikko; Heliölä, Janne; Leikola, Niko; Pöyry, Juha; Travis, Justin M. J.

    2014-01-01

    Dynamic models for range expansion provide a promising tool for assessing species’ capacity to respond to climate change by shifting their ranges to new areas. However, these models include a number of uncertainties which may affect how successfully they can be applied to climate change oriented conservation planning. We used RangeShifter, a novel dynamic and individual-based modelling platform, to study two potential sources of such uncertainties: the selection of land cover data and the parameterization of key life-history traits. As an example, we modelled the range expansion dynamics of two butterfly species, one habitat specialist (Maniola jurtina) and one generalist (Issoria lathonia). Our results show that projections of total population size, number of occupied grid cells and the mean maximal latitudinal range shift were all clearly dependent on the choice made between using CORINE land cover data vs. using more detailed grassland data from three alternative national databases. Range expansion was also sensitive to the parameterization of the four considered life-history traits (magnitude and probability of long-distance dispersal events, population growth rate and carrying capacity), with carrying capacity and magnitude of long-distance dispersal showing the strongest effect. Our results highlight the sensitivity of dynamic species population models to the selection of existing land cover data and to uncertainty in the model parameters and indicate that these need to be carefully evaluated before the models are applied to conservation planning. PMID:25265281

  18. High dynamic range imaging pipeline: perception-motivated representation of visual content

    NASA Astrophysics Data System (ADS)

    Mantiuk, Rafal; Krawczyk, Grzegorz; Mantiuk, Radoslaw; Seidel, Hans-Peter

    2007-02-01

    The advances in high dynamic range (HDR) imaging, especially in the display and camera technology, have a significant impact on the existing imaging systems. The assumptions of the traditional low-dynamic range imaging, designed for paper print as a major output medium, are ill suited for the range of visual material that is shown on modern displays. For example, the common assumption that the brightest color in an image is white can be hardly justified for high contrast LCD displays, not to mention next generation HDR displays, that can easily create bright highlights and the impression of self-luminous colors. We argue that high dynamic range representation can encode images regardless of the technology used to create and display them, with the accuracy that is only constrained by the limitations of the human eye and not a particular output medium. To facilitate the research on high dynamic range imaging, we have created a software package (http://pfstools.sourceforge.net/) capable of handling HDR data on all stages of image and video processing. The software package is available as open source under the General Public License and includes solutions for high quality image acquisition from multiple exposures, a range of tone mapping algorithms and a visual difference predictor for HDR images. Examples of shell scripts demonstrate how the software can be used for processing single images as well as video sequences.

  19. Functional shoulder radiography with use of a dynamic flat panel detector.

    PubMed

    Sakuda, Keita; Sanada, Shigeru; Tanaka, Rie; Kitaoka, Katsuhiko; Hayashi, Norio; Matsuura, Yukihiro

    2014-07-01

    Our purpose in this study was to develop a functional form of radiography and to perform a quantitative analysis for the shoulder joint using a dynamic flat panel detector (FPD) system. We obtained dynamic images at a rate of 3.75 frames per second (fps) using an FPD system. Three patients and 5 healthy controls were studied with a clinically established frontal projection, with abduction of the arms. The arm angle, glenohumeral angle (G-angle), and scapulothoracic angle (S-angle) were measured on dynamic images. The ratio of the G-angle to the S-angle (GSR) was also evaluated quantitatively. In normal subjects, the G-angle and S-angle changed gradually along with the arm angle. The G-angle was approximately twice as large as the S-angle, resulting in a GSR of 2 throughout the abduction of the shoulder. Changes in G-angle and S-angle tended to be irregular in patients with shoulder disorders. The GSR of the thoracic outlet syndrome, recurrent dislocation of the shoulder joint, and anterior serratus muscle paralysis were 3-7.5, 4-9.5, and 3.5-7.5, respectively. The GSR of the anterior serratus muscle paralysis improved to approximately 2 after orthopedic treatment. Our preliminary results indicated that functional radiography by FPD and computer-aided quantitative analysis is useful for diagnosis of some shoulder disorders, such as the thoracic outlet syndrome, recurrent dislocation of the shoulder joint, and anterior serratus muscle paralysis. The technique and procedures described comprise a simple, functional shoulder radiographic method for evaluation of the therapeutic effects of surgery and/or rehabilitation.

  20. The MIC photon counting detector

    NASA Astrophysics Data System (ADS)

    Fordham, J. L. A.; Bone, D. A.; Oldfield, M. K.; Bellis, J. G.; Norton, T. J.

    1992-12-01

    The MIC (Microchannel plate Intensified CCD (Charge Coupled Device)) detector is an advanced performance Micro Channel Plate (MCP) intensified CCD photon counting detector developed for high resolution, high dynamic range, astronomical applications. The heart of the detector is an MCP intensifier developed specifically for photon counting applications. The maximum detector format is 3072 by 2304 pixels. The measured resolution of the detector system is 18 micrometers FWHM at 490 nm. The detector is linear to approximately 1,000,000 events/detector area/sec on a flat field and linear to count rates up to 200 events/object/s on star images. Two versions of the system have been developed. The first for ground based astronomical applications based around a 40 mm diameter intensifier, was proven in trials at a number of large optical telescopes. The second, specifically for the ESA X-Ray Multi Mirror Mission (XMM), where the MIC has been accepted as the blue detector for the incorporated Optical Monitor (OM). For the XMM-OM, the system is based around a 25 mm diameter intensifier. At present, under development, is a 75 mm diameter version of the detector which will have a maximum format of 6144 by 4608 pixels. Details of the MIC detector and its performance are presented.

  1. Uncertainty-based Estimation of the Secure Range for ISO New England Dynamic Interchange Adjustment

    SciTech Connect

    Etingov, Pavel V.; Makarov, Yuri V.; Wu, Di; Hou, Zhangshuan; Sun, Yannan; Maslennikov, S.; Luo, Xiaochuan; Zheng, T.; George, S.; Knowland, T.; Litvinov, E.; Weaver, S.; Sanchez, E.

    2014-04-14

    The paper proposes an approach to estimate the secure range for dynamic interchange adjustment, which assists system operators in scheduling the interchange with neighboring control areas. Uncertainties associated with various sources are incorporated. The proposed method is implemented in the dynamic interchange adjustment (DINA) tool developed by Pacific Northwest National Laboratory (PNNL) for ISO New England. Simulation results are used to validate the effectiveness of the proposed method.

  2. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics

    PubMed Central

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-01-01

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends. PMID:27256904

  3. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Hao, Xiaolei; Chen, Yongju; Yu, Shaogang; Xu, Songpo; Wang, Yanlan; Sun, Renping; Lai, Xuanyang; Wu, Chengyin; Gong, Qihuang; He, Xiantu; Liu, Xiaojun; Chen, Jing

    2016-06-01

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.

  4. Wide dynamic range wavefront sensor using sub-wavelength grating array

    NASA Astrophysics Data System (ADS)

    Liang, Xiaobin; Li, Yanqiu; Liu, Ke

    2015-07-01

    We propose a new zonal wavefront sensor with a very wide dynamic range. The proposed sensor uses a sub-wavelength grating array to subdivide the input wavefront and produce transmitted light spots on CCD. The wavefront tilts are calculated from the transmissions of a sub-wavelength grating array. The dynamic range and resolution of the proposed sensor are respectively decided by the grating parameters and the sub-unit size of the array. So these two performances of the sensor are independent of one another, which enables the realization of wide dynamic range and high resolution simultaneously. We introduce the principle of the sensor by both Rigorous Coupled Wave Analysis and Finite-Difference Time-Domain methods. A simulation is designed to validate our proposed method, and the measurement errors are analyzed. The sensor performs good sensitivity for wide incident angles, which is particularly suitable for spherical input wavefront.

  5. Sorting method to extend the dynamic range of the Shack-Hartmann wave-front sensor

    SciTech Connect

    Lee, Junwon; Shack, Roland V.; Descour, Michael R

    2005-08-10

    We propose a simple and powerful algorithm to extend the dynamic range of a Shack-Hartmann wave-front sensor. In a conventional Shack-Hartmann wave-front sensor the dynamic range is limited by the f-number of a lenslet, because the focal spot is required to remain in the area confined by the single lenslet. The sorting method proposed here eliminates such a limitation and extends the dynamic range by tagging each spot in a special sequence. Since the sorting method is a simple algorithm that does not change the measurement configuration, there is no requirement for extra hardware, multiple measurements, or complicated algorithms. We not only present the theory and a calculation example of the sorting method but also actually implement measurement of a highly aberrated wave front from nonrotational symmetric optics.

  6. Digital micromirror device camera with per-pixel coded exposure for high dynamic range imaging.

    PubMed

    Feng, Wei; Zhang, Fumin; Wang, Weijing; Xing, Wei; Qu, Xinghua

    2017-05-01

    In this paper, we overcome the limited dynamic range of the conventional digital camera, and propose a method of realizing high dynamic range imaging (HDRI) from a novel programmable imaging system called a digital micromirror device (DMD) camera. The unique feature of the proposed new method is that the spatial and temporal information of incident light in our DMD camera can be flexibly modulated, and it enables the camera pixels always to have reasonable exposure intensity by DMD pixel-level modulation. More importantly, it allows different light intensity control algorithms used in our programmable imaging system to achieve HDRI. We implement the optical system prototype, analyze the theory of per-pixel coded exposure for HDRI, and put forward an adaptive light intensity control algorithm to effectively modulate the different light intensity to recover high dynamic range images. Via experiments, we demonstrate the effectiveness of our method and implement the HDRI on different objects.

  7. Note: All-digital pulse-shrinking time-to-digital converter with improved dynamic range.

    PubMed

    Chen, Chun-Chi; Hwang, Chorng-Sii; Lin, Yi; Chen, Guan-Hong

    2016-04-01

    This paper proposes an all-digital pulse-shrinking time-to-digital converter (TDC) using the offset error cancellation circuitry to widen its dynamic range and to improve its accuracy. Although the TDC based on a pulse-shrinking mechanism can achieve a sub-gate resolution without circuit complexity, it possesses an undesired offset error that results in a nonzero lower bound appeared in its dynamic range and then affects its accuracy. The proposed cancellation circuitry for eliminating the offset error consists of a time adder with a delay line and a time subtractor with an identical delay line. The experimental TDC is implemented on Xilinx field programmable gate arrays and it also functions successfully in improving its dynamic range.

  8. Spectral CT modeling and reconstruction with hybrid detectors in dynamic-threshold-based counting and integrating modes.

    PubMed

    Li, Liang; Chen, Zhiqiang; Cong, Wenxiang; Wang, Ge

    2015-03-01

    Spectral CT with photon counting detectors can significantly improve CT performance by reducing image noise and dose, increasing contrast resolution and material specificity, as well as enabling functional and molecular imaging with existing and emerging probes. However, the current photon counting detector architecture is difficult to balance the number of energy bins and the statistical noise in each energy bin. Moreover, the hardware support for multi-energy bins demands a complex circuit which is expensive. In this paper, we promote a new scheme known as hybrid detectors that combine the dynamic-threshold-based counting and integrating modes. In this scheme, an energy threshold can be dynamically changed during a spectral CT scan, which can be considered as compressive sensing along the spectral dimension. By doing so, the number of energy bins can be retrospectively specified, even in a spatially varying fashion. To establish the feasibility and merits of such hybrid detectors, we develop a tensor-based PRISM algorithm to reconstruct a spectral CT image from dynamic dual-energy data, and perform experiments with simulated and real data, producing very promising results.

  9. Dynamics of the chain of forced oscillators with long-range interaction: From synchronization to chaos

    NASA Astrophysics Data System (ADS)

    Zaslavsky, G. M.; Edelman, M.; Tarasov, V. E.

    2007-12-01

    We consider a chain of nonlinear oscillators with long-range interaction of the type 1/l1+α, where l is a distance between oscillators and 0<α<2. In the continuous limit, the system's dynamics is described by a fractional generalization of the Ginzburg-Landau equation with complex coefficients. Such a system has a new parameter α that is responsible for the complexity of the medium and that strongly influences possible regimes of the dynamics, especially near α =2 and α =1. We study different spatiotemporal patterns of the dynamics depending on α and show transitions from synchronization of the motion to broad-spectrum oscillations and to chaos.

  10. The long-term population dynamics of common wasps in their native and invaded range.

    PubMed

    Lester, Philip J; Haywood, John; Archer, Michael E; Shortall, Chris R

    2017-03-01

    Populations of introduced species are often thought to perform differently, or experience different population dynamics, in their introduced range compared to their native habitat. Differences between habitats in climate, competition or natural enemies may result in populations with varying density dependence and population dynamics. We examined the long-term population dynamics of the invasive common wasp, Vespula vulgaris, in its native range in England and its invaded range in New Zealand. We used 39 years of wasp density data from four sites in England, and 23 years of data from six sites in New Zealand. Wasp population time series was examined using partial rate correlation functions. Gompertz population models and multivariate autoregressive state-space (MARSS) models were fitted, incorporating climatic variation. Gompertz models successfully explained 59-66% of the variation in wasp abundance between years. Density dependence in wasp populations appeared to act similarly in both the native and invaded range, with wasp abundance in the previous year as the most important variable in predicting intrinsic rate of increase (r). No evidence of cyclic population dynamics was observed. Both the Gompertz and MARSS models highlighted the role of weather conditions in each country as significant predictors of annual wasp abundance. The temporal evolution of wasp populations at all sites was best modelled jointly using a single latent dynamic factor for local trends, with the inclusion of a latent spring weather covariate. That same parsimonious multivariate model structure was optimal in both the native and invaded range. Density dependence is overwhelmingly important in predicting wasp densities and 'wasp years' in both the native and invaded range. Spring weather conditions in both countries have a major influence, probably through their impact on wasp colony initiation and early development. The population dynamics in the native range and invaded range show no

  11. Spin segregation via dynamically induced long-range interactions in a system of ultracold fermions

    SciTech Connect

    Ebling, Ulrich; Eckardt, Andre; Lewenstein, Maciej

    2011-12-15

    We investigate theoretically the time evolution of a one-dimensional system of spin-1/2 fermions in a harmonic trap after, initially, a spiral spin configuration far from equilibrium is created. We predict a spin segregation building up in time already for weak interaction under realistic experimental conditions. The effect relies on the interplay between exchange interaction and the harmonic trap, and it is found for a wide range of parameters. It can be understood as a consequence of an effective, dynamically induced long-range interaction that is derived by integrating out the rapid oscillatory dynamics in the trap.

  12. Cost-effective multi-camera array for high quality video with very high dynamic range

    NASA Astrophysics Data System (ADS)

    Keinert, Joachim; Wetzel, Marcus; Schöberl, Michael; Schäfer, Peter; Zilly, Frederik; Bätz, Michel; Fößel, Siegfried; Kaup, André

    2014-03-01

    Temporal bracketing can create images with higher dynamic range than the underlying sensor. Unfortunately, moving objects cause disturbing artifacts. Moreover, the combination with high frame rates is almost unachiev­ able since a single video frame requires multiple sensor readouts. The combination of multiple synchronized side-by-side cameras equipped with different attenuation filters promises a remedy, since all exposures can be performed at the same time with the same duration using the playout video frame rate. However, a disparity correction is needed to compensate the spatial displacement of the cameras. Unfortunately, the requirements for a high quality disparity correction contradict the goal to increase dynamic range. When using two cameras, disparity correction needs objects to be properly exposed in both cameras. In contrast, a dynamic range in­crease needs the cameras to capture different luminance ranges. As this contradiction has not been addressed in literature so far, this paper proposes a novel solution based on a three camera setup. It enables accurate de­ termination of the disparities and an increase of the dynamic range by nearly a factor of two while still limiting costs. Compared to a two camera solution, the mean opinion score (MOS) is improved by 13.47 units in average for the Middleburry images.

  13. Echo-acoustic flow dynamically modifies the cortical map of target range in bats

    NASA Astrophysics Data System (ADS)

    Bartenstein, Sophia K.; Gerstenberg, Nadine; Vanderelst, Dieter; Peremans, Herbert; Firzlaff, Uwe

    2014-08-01

    Echolocating bats use the delay between their sonar emissions and the reflected echoes to measure target range, a crucial parameter for avoiding collisions or capturing prey. In many bat species, target range is represented as an orderly organized map of echo delay in the auditory cortex. Here we show that the map of target range in bats is dynamically modified by the continuously changing flow of acoustic information perceived during flight (‘echo-acoustic flow’). Combining dynamic acoustic stimulation in virtual space with extracellular recordings, we found that neurons in the auditory cortex of the bat Phyllostomus discolor encode echo-acoustic flow information on the geometric relation between targets and the bat’s flight trajectory, rather than echo delay per se. Specifically, the cortical representation of close-range targets is enlarged when the lateral passing distance of the target decreases. This flow-dependent enlargement of target representation may trigger adaptive behaviours such as vocal control or flight manoeuvres.

  14. MO-F-CAMPUS-T-03: Verification of Range, SOBP Width, and Output for Passive-Scattering Proton Beams Using a Liquid Scintillator Detector

    SciTech Connect

    Henry, T; Robertson, D; Therriault-Proulx, F; Beddar, S

    2015-06-15

    Purpose: Liquid scintillators have been shown to provide fast and high-resolution measurements of radiation beams. However, their linear energy transfer-dependent response (quenching) limits their use in proton beams. The purpose of this study was to develop a simple and fast method to verify the range, spread-out Bragg peak (SOBP) width, and output of a passive-scattering proton beam with a liquid scintillator detector, without the need for quenching correction. Methods: The light signal from a 20×20×20 cm3 liquid scintillator tank was collected with a CCD camera. Reproducible landmarks on the SOBP depth-light curve were identified which possessed a linear relationship with the beam range and SOBP width. The depth-light profiles for three beam energies (140, 160 and 180 MeV) with six SOBP widths at each energy were measured with the detector. Beam range and SOBP width calibration factors were obtained by comparing the depth-light curve landmarks with the nominal range and SOBP width for each beam setting. The daily output stability of the liquid scintillator detector was also studied by making eight repeated output measurements in a cobalt-60 beam over the course of two weeks. Results: The mean difference between the measured and nominal beam ranges was 0.6 mm (σ=0.2 mm), with a maximum difference of 0.9 mm. The mean difference between the measured and nominal SOBP widths was 0.1 mm (σ=1.8 mm), with a maximum difference of 4.0 mm. Finally an output variation of 0.14% was observed for 8 measurements performed over 2 weeks. Conclusion: A method has been developed to determine the range and SOBP width of a passive-scattering proton beam in a liquid scintillator without the need for quenching correction. In addition to providing rapid and accurate beam range and SOBP measurements, the detector is capable of measuring the output consistency with a high degree of precision. This project was supported in part by award number CA182450 from the National Cancer

  15. Nine Orders of Magnitude Dynamic Range: Picomolar to Millimolar Concentration Measurement in Capillary Electrophoresis with Laser Induced Fluorescence Detection Employing Cascaded Avalanche Photodiode Photon Counters

    PubMed Central

    Dada, Oluwatosin O.; Essaka, David C.; Hindsgaul, Ole; Palcic, Monica M.; Prendergast, Jillian; Schnaar, Ronald L.

    2011-01-01

    The dynamic range of capillary electrophoresis analysis is ultimately limited by molecular shot noise at low concentrations and by concentration-induced band broadening at high concentrations. We report a system that approaches these fundamental limits. A laser-induced fluorescence detector is reported that employs a cascade of four fiber-optic beam-splitters connected in series to generate a primary signal and four attenuated signals, each monitored by a single-photon counting avalanche photodiode. Appropriate scaling of the signals from the five photodiodes produces a linear optical calibration curve for 5-carboxyl-tetramethylrhodamine from the concentration detection limit of 1 pM to the upper limit of 1 mM. Mass detection limits are 120 yoctomoles (70 molecules) injected into the instrument. The very-wide dynamic range instrument was used to study the metabolic products of the fluorescently labeled glycosphingolipid GM1-TMR produced by single cells isolated from the rat cerebellum. PMID:21410138

  16. Nine orders of magnitude dynamic range: picomolar to millimolar concentration measurement in capillary electrophoresis with laser induced fluorescence detection employing cascaded avalanche photodiode photon counters.

    PubMed

    Dada, Oluwatosin O; Essaka, David C; Hindsgaul, Ole; Palcic, Monica M; Prendergast, Jillian; Schnaar, Ronald L; Dovichi, Norman J

    2011-04-01

    The dynamic range of capillary electrophoresis analysis is ultimately limited by molecular shot noise at low concentrations and by concentration-induced band broadening at high concentrations. We report a system that approaches these fundamental limits. A laser-induced fluorescence detector is reported that employs a cascade of four fiber-optic beam splitters connected in series to generate a primary signal and four attenuated signals, each monitored by a single-photon counting avalanche photodiode. Appropriate scaling of the signals from the five photodiodes produces a linear optical calibration curve for 5-carboxyl-tetramethylrhodamine from the concentration detection limit of 1 pM to the upper limit of 1 mM. Mass detection limits are 120 yoctomoles (70 molecules) injected into the instrument. The very-wide dynamic range instrument was used to study the metabolic products of the fluorescently labeled glycosphingolipid tetramethylrhodamine labeled GM1 (GM1-TMR) produced by single cells isolated from the rat cerebellum.

  17. Maturity of lumped element kinetic inductance detectors for space-borne instruments in the range between 80 and 180 GHz

    NASA Astrophysics Data System (ADS)

    Catalano, A.; Benoit, A.; Bourrion, O.; Calvo, M.; Coiffard, G.; D'Addabbo, A.; Goupy, J.; Le Sueur, H.; Macías-Pérez, J.; Monfardini, A.

    2016-07-01

    This work intends to give the state-of-the-art of our knowledge of the performance of lumped element kinetic inductance detectors (LEKIDs) at millimetre wavelengths (from 80 to 180 GHz). We evaluate their optical sensitivity under typical background conditions that are representative of a space environment and their interaction with ionising particles. Two LEKID arrays, originally designed for ground-based applications and composed of a few hundred pixels each, operate at a central frequency of 100 and 150 GHz (Δν/ν about 0.3). Their sensitivities were characterised in the laboratory using a dedicated closed-cycle 100 mK dilution cryostat and a sky simulator, allowing for the reproduction of realistic, space-like observation conditions. The impact of cosmic rays was evaluated by exposing the LEKID arrays to alpha particles (241Am) and X sources (109Cd), with a read-out sampling frequency similar to those used for Planck HFI (about 200 Hz), and also with a high resolution sampling level (up to 2 MHz) to better characterise and interpret the observed glitches. In parallel, we developed an analytical model to rescale the results to what would be observed by such a LEKID array at the second Lagrangian point. We show that LEKID arrays behave adequately in space-like conditions with a measured noise equivalent power close to the cosmic microwave background photon noise and an impact of cosmic rays smaller with respect to those observed with Planck satellite detectors.

  18. Note: An X-ray powder diffractometer with a wide scattering-angle range of 72° using asymmetrically positioned one-dimensional detectors

    SciTech Connect

    Katsuya, Yoshio; Tanaka, Masahiko; Song, Chulho; Ito, Kimihiko; Kubo, Yoshimi; Sakata, Osami

    2016-01-15

    An X-ray powder diffractometer has been developed for a time-resolved measurement without the requirement of a scattering angle (2θ) scan. Six one-dimensional detector modules are asymmetrically arranged in a vertical line at a designed distance of 286.5 mm. A detector module actually covers a diffraction angle of about 12° with an angular resolution of 0.01°. A diffracted intensity pattern is simultaneously recorded in a 2θ angular range from 1.63° to 74.37° in a “one shot” measurement. We tested the performance of the diffractometer with reference CeO{sub 2} powders and demonstrated diffraction measurements from an operating lithium-air battery.

  19. Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals.

    PubMed

    Vallaitis, T; Bonk, R; Guetlein, J; Hillerkuss, D; Li, J; Brenot, R; Lelarge, F; Duan, G H; Freude, W; Leuthold, J

    2010-03-15

    Experimentally we find a 10 dB input power dynamic range advantage for amplification of phase encoded signals with quantum dot SOA as compared to low-confinement bulk SOA. An analysis of amplitude and phase effects shows that this improvement can be attributed to the lower alpha-factor found in QD SOA.

  20. Method and apparatus of high dynamic range image sensor with individual pixel reset

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Pain, Bedabrata (Inventor); Fossum, Eric R. (Inventor)

    2001-01-01

    A wide dynamic range image sensor provides individual pixel reset to vary the integration time of individual pixels. The integration time of each pixel is controlled by column and row reset control signals which activate a logical reset transistor only when both signals coincide for a given pixel.

  1. Control and dynamic range extension of linear photodiode arrays by a single board computer

    NASA Astrophysics Data System (ADS)

    McGeorge, Scott W.; Salin, Eric D.

    A complete interface for data acquisition and control of Reticon Series arrays utilizing an inexpensive microcomputer (Rockwell AIM-65) is described and with specific application to atomic spectra (ICP), data collection techniques are illustrated that provide a dynamic range extension for intense signals.

  2. Absence of gamma-range corticomuscular coherence during dynamic force in a deafferented patient.

    PubMed

    Patino, Luis; Omlor, Wolfgang; Chakarov, Vihren; Hepp-Reymond, Marie-Claude; Kristeva, Rumyana

    2008-04-01

    Recently, we studied corticomuscular coherence (CMC) in a visuomotor task and showed for the first time gamma-range (30-45 Hz) CMC during isometric compensation of a periodically modulated dynamic force. We speculated that for the control of such forces, the sensorimotor system resonates at gamma-range frequencies to rapidly integrate the visual and proprioceptive information and produce the appropriate motor command. In this study, we tested the role of the proprioceptive afferent feedback on gamma-range CMC by comparing the deafferented patient GL to six age- and sex-matched subjects during the performance of a visuomotor force task consisting of isometric compensation of static and dynamic forces applied on the finger. Patient GL presented no significant gamma-band CMC during dynamic force. Instead, she had only beta-range CMC as in the static force condition; concurrently, her performance was significantly worse than that of the controls in both conditions. This gives support to the conclusions of our previous paper and suggests that proprioceptive information is mandatory in the genesis of gamma-band CMC during the generation and control of dynamic forces.

  3. Density matrix renormalization group with efficient dynamical electron correlation through range separation

    SciTech Connect

    Hedegård, Erik Donovan Knecht, Stefan; Reiher, Markus; Kielberg, Jesper Skau; Jensen, Hans Jørgen Aagaard

    2015-06-14

    We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.

  4. The Contribution of Matched Envelope Dynamic Range to the Binaural Benefits in Simulated Bilateral Electric Hearing

    ERIC Educational Resources Information Center

    Chen, Fei; Wong, Lena L. N.; Qiu, Jianxin; Liu, Yehai; Azimi, Behnam; Hu, Yi

    2013-01-01

    Purpose: This study examined the effects of envelope dynamic-range mismatch on the intelligibility of Mandarin speech in noise by simulated bilateral electric hearing. Method: Noise-vocoded Mandarin speech, corrupted by speech-shaped noise at 5 and 0 dB signal-to-noise ratios, was presented unilaterally or bilaterally to 10 normal-hearing…

  5. Emergence of long-range correlations and rigidity at the dynamic glass transition.

    PubMed

    Szamel, Grzegorz; Flenner, Elijah

    2011-09-02

    At the so-called dynamic glass transition predicted by the mean-field replica approach equilibrium liquid's translational symmetry is spontaneously broken, albeit at the microscopic level. We show that this fact implies the emergence of Goldstone modes and long-range density correlations. We derive and evaluate a new statistical mechanical expression for the glass shear modulus.

  6. Adaptive Dynamic Range Optimization (ADRO): A Digital Amplification Strategy for Hearing Aids and Cochlear Implants

    PubMed Central

    Blamey, Peter J.

    2005-01-01

    Adaptive dynamic range optimization (ADRO) is an amplification strategy that uses digital signal processing techniques to improve the audibility, comfort, and intelligibility of sounds for people who use cochlear implants and/or hearing aids. The strategy uses statistical analysis to select the most information-rich section of the input dynamic range in multiple-frequency channels. Fuzzy logic rules control the gain in each frequency channel so that the selected section of the dynamic range is presented at an audible and comfortable level. The ADRO processing thus adaptively optimizes the dynamic range of the signal in multiple-frequency channels. Clinical studies show that ADRO can be fitted easily to all degrees of hearing loss for hearing aids and cochlear implants in a direct and intuitive manner, taking the preferences of the listener into account. The result is high acceptance by new and experienced hearing aid users and strong preferences for ADRO compared with alternative amplification strategies. The ADRO processing is particularly well suited to bimodal and hybrid stimulation which combine electric and acoustic stimulation in opposite ears or in the same ear, respectively. PMID:16012705

  7. The Contribution of Matched Envelope Dynamic Range to the Binaural Benefits in Simulated Bilateral Electric Hearing

    ERIC Educational Resources Information Center

    Chen, Fei; Wong, Lena L. N.; Qiu, Jianxin; Liu, Yehai; Azimi, Behnam; Hu, Yi

    2013-01-01

    Purpose: This study examined the effects of envelope dynamic-range mismatch on the intelligibility of Mandarin speech in noise by simulated bilateral electric hearing. Method: Noise-vocoded Mandarin speech, corrupted by speech-shaped noise at 5 and 0 dB signal-to-noise ratios, was presented unilaterally or bilaterally to 10 normal-hearing…

  8. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems.

    PubMed

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  9. Fractional quantum mechanics on networks: Long-range dynamics and quantum transport.

    PubMed

    Riascos, A P; Mateos, José L

    2015-11-01

    In this paper we study the quantum transport on networks with a temporal evolution governed by the fractional Schrödinger equation. We generalize the dynamics based on continuous-time quantum walks, with transitions to nearest neighbors on the network, to the fractional case that allows long-range displacements. By using the fractional Laplacian matrix of a network, we establish a formalism that combines a long-range dynamics with the quantum superposition of states; this general approach applies to any type of connected undirected networks, including regular, random, and complex networks, and can be implemented from the spectral properties of the Laplacian matrix. We study the fractional dynamics and its capacity to explore the network by means of the transition probability, the average probability of return, and global quantities that characterize the efficiency of this quantum process. As a particular case, we explore analytically these quantities for circulant networks such as rings, interacting cycles, and complete graphs.

  10. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    NASA Astrophysics Data System (ADS)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  11. Fractional quantum mechanics on networks: Long-range dynamics and quantum transport

    NASA Astrophysics Data System (ADS)

    Riascos, A. P.; Mateos, José L.

    2015-11-01

    In this paper we study the quantum transport on networks with a temporal evolution governed by the fractional Schrödinger equation. We generalize the dynamics based on continuous-time quantum walks, with transitions to nearest neighbors on the network, to the fractional case that allows long-range displacements. By using the fractional Laplacian matrix of a network, we establish a formalism that combines a long-range dynamics with the quantum superposition of states; this general approach applies to any type of connected undirected networks, including regular, random, and complex networks, and can be implemented from the spectral properties of the Laplacian matrix. We study the fractional dynamics and its capacity to explore the network by means of the transition probability, the average probability of return, and global quantities that characterize the efficiency of this quantum process. As a particular case, we explore analytically these quantities for circulant networks such as rings, interacting cycles, and complete graphs.

  12. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    SciTech Connect

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-15

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  13. Nonlinear Dynamics of Bose-Einstein Condensates with Long-Range Interactions

    SciTech Connect

    Wunner, G.; Cartarius, H.; Fabcic, T.; Koeberle, P.; Main, J.; Schwidder, T.

    2008-11-13

    The motto of this paper is: Let's face Bose-Einstein condensation through nonlinear dynamics. We do this by choosing variational forms of the condensate wave functions (of given symmetry classes), which convert the Bose-Einstein condensates via the time-dependent Gross-Pitaevskii equation into Hamiltonian systems that can be studied using the methods of nonlinear dynamics. We consider in particular cold quantum gases where long-range interactions between the neutral atoms are present, in addition to the conventional short-range contact interaction, viz. gravity-like interactions, and dipole-dipole interactions. The results obtained serve as a useful guide in the search for nonlinear dynamics effects in numerically exact quantum calculations for Bose-Einstein condensates. A main result is the prediction of the existence of stable islands as well as chaotic regions for excited states of dipolar condensates, which could be checked experimentally.

  14. Requirements on high resolution detectors

    SciTech Connect

    Koch, A.

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  15. A reduction for spiking integrate-and-fire network dynamics ranging from homogeneity to synchrony.

    PubMed

    Zhang, J W; Rangan, A V

    2015-04-01

    In this paper we provide a general methodology for systematically reducing the dynamics of a class of integrate-and-fire networks down to an augmented 4-dimensional system of ordinary-differential-equations. The class of integrate-and-fire networks we focus on are homogeneously-structured, strongly coupled, and fluctuation-driven. Our reduction succeeds where most current firing-rate and population-dynamics models fail because we account for the emergence of 'multiple-firing-events' involving the semi-synchronous firing of many neurons. These multiple-firing-events are largely responsible for the fluctuations generated by the network and, as a result, our reduction faithfully describes many dynamic regimes ranging from homogeneous to synchronous. Our reduction is based on first principles, and provides an analyzable link between the integrate-and-fire network parameters and the relatively low-dimensional dynamics underlying the 4-dimensional augmented ODE.

  16. Research on risk long range identification for vessel traffic dynamic system

    NASA Astrophysics Data System (ADS)

    Qi, Ji; Guo, Ruijuan; Wang, Xiaoyu; Zhang, Hainan

    2017-09-01

    Vessel Long-range identification and tracking system has already been widely installed and applied in vessel. In this paper AIS system, vessel reporting system and LRIT in China are compared and analyzed based on the coverage area, confidentiality and accuracy of the LRIT information. Vessel Long-range identification and tracking model is established through a combination of AIS with LRIT system, which is applied to the research of vessel traffic dynamic system risk long range identification. Finally, the application of LRIT in the maritime field is discussed.

  17. Acute effect of static and dynamic stretching on hip dynamic range of motion during instep kicking in professional soccer players.

    PubMed

    Amiri-Khorasani, Mohammadtaghi; Abu Osman, Noor A; Yusof, Ashril

    2011-06-01

    The purpose of this study was to examine the effects of static and dynamic stretching within a pre-exercise warm-up on hip dynamic range of motion (DROM) during instep kicking in professional soccer players. The kicking motions of dominant legs were captured from 18 professional adult male soccer players (height: 180.38 ± 7.34 cm; mass: 69.77 ± 9.73 kg; age: 19.22 ± 1.83 years) using 4 3-dimensional digital video cameras at 50 Hz. Hip DROM at backward, forward, and follow-through phases (instep kick phases) after different warm-up protocols consisting of static, dynamic, and no-stretching on 3 nonconsecutive test days were captured for analysis. During the backswing phase, there was no difference in DROM after the dynamic stretching compared with the static stretching relative to the no-stretching method. There was a significant difference in DROM after the dynamic stretching compared with the static stretching relative to the no-stretching method during (a) the forward phase with p < 0.03, (b) the follow-through phase with p < 0.01, and (c) all phases with p < 0.01. We concluded that professional soccer players can perform a higher DROM of the hip joint during the instep kick after dynamic stretching incorporated in warm-ups, hence increasing the chances of scoring and injury prevention during soccer games.

  18. Uncertainty in predicting range dynamics of endemic alpine plants under climate warming.

    PubMed

    Hülber, Karl; Wessely, Johannes; Gattringer, Andreas; Moser, Dietmar; Kuttner, Michael; Essl, Franz; Leitner, Michael; Winkler, Manuela; Ertl, Siegrun; Willner, Wolfgang; Kleinbauer, Ingrid; Sauberer, Norbert; Mang, Thomas; Zimmermann, Niklaus E; Dullinger, Stefan

    2016-07-01

    Correlative species distribution models have long been the predominant approach to predict species' range responses to climate change. Recently, the use of dynamic models is increasingly advocated for because these models better represent the main processes involved in range shifts and also simulate transient dynamics. A well-known problem with the application of these models is the lack of data for estimating necessary parameters of demographic and dispersal processes. However, what has been hardly considered so far is the fact that simulating transient dynamics potentially implies additional uncertainty arising from our ignorance of short-term climate variability in future climatic trends. Here, we use endemic mountain plants of Austria as a case study to assess how the integration of decadal variability in future climate affects outcomes of dynamic range models as compared to projected long-term trends and uncertainty in demographic and dispersal parameters. We do so by contrasting simulations of a so-called hybrid model run under fluctuating climatic conditions with those based on a linear interpolation of climatic conditions between current values and those predicted for the end of the 21st century. We find that accounting for short-term climate variability modifies model results nearly as differences in projected long-term trends and much more than uncertainty in demographic/dispersal parameters. In particular, range loss and extinction rates are much higher when simulations are run under fluctuating conditions. These results highlight the importance of considering the appropriate temporal resolution when parameterizing and applying range-dynamic models, and hybrid models in particular. In case of our endemic mountain plants, we hypothesize that smoothed linear time series deliver more reliable results because these long-lived species are primarily responsive to long-term climate averages. © 2016 John Wiley & Sons Ltd.

  19. Low Voltage Power Efficient Tunable Shaper Circuit With Rail-To-Rail Output Range for the HYDE Detector at FAIR

    NASA Astrophysics Data System (ADS)

    Galán, J.; López-Ahumada, R.; Sánchez-Rodríguez, T.; Torralba, A.; Carvajal, R. G.; Martel, I.

    2014-04-01

    This paper presents a low voltage, low power readout front-end system implemented in 130 nm CMOS technology. A conventional architecture that consists of charge sensitive amplifier, pole/zero cancellation and shaper has been used. The work focuses on the design of novel circuit topologies in low voltage environment minimizing the power consumption in modern deep submicron CMOS technologies. An operational amplifier with rail-to-rail output swing that uses a gain boosting technique and class-AB output stage without extra power consumption has been used for the shaper. The circuit combines excellent performances with simplicity of design and suitability for low voltage operation. The system is intended to work with silicon detectors for nuclear physics applications and is optimized to match an input capacitance of 10 pF. The system features a peaking time of 500 ns, a power dissipation of 1.57 mW/channel and an equivalent noise charge of 201 e-.

  20. High-resolution, large dynamic range fiber-optic thermometer with cascaded Fabry-Perot cavities.

    PubMed

    Liu, Guigen; Sheng, Qiwen; Hou, Weilin; Han, Ming

    2016-11-01

    The paradox between a large dynamic range and a high resolution commonly exists in nearly all kinds of sensors. Here, we propose a fiber-optic thermometer based on dual Fabry-Perot interferometers (FPIs) made from the same material (silicon), but with different cavity lengths, which enables unambiguous recognition of the dense fringes associated with the thick FPI over the free-spectral range determined by the thin FPI. Therefore, the sensor combines the large dynamic range of the thin FPI and the high resolution of the thick FPI. To verify this new concept, a sensor with one 200 μm thick silicon FPI cascaded by another 10 μm thick silicon FPI was fabricated. A temperature range of -50°C to 130°C and a resolution of 6.8×10-3°C were demonstrated using a simple average wavelength tracking demodulation. Compared to a sensor with only the thick silicon FPI, the dynamic range of the hybrid sensor was more than 10 times larger. Compared to a sensor with only the thin silicon FPI, the resolution of the hybrid sensor was more than 18 times higher.

  1. High dynamic, high resolution and wide range single shot temporal pulse contrast measurement.

    PubMed

    Oksenhendler, Thomas; Bizouard, Pierre; Albert, Olivier; Bock, Stefan; Schramm, Ulrich

    2017-05-29

    A novel apparatus for the single-shot measurement of the temporal pulse contrast of modern ultra-short pulse lasers is presented, based on a simple yet conceptual refinement of the self-referenced spectral interferometry (SRSI) approach. The introduction of the spatial equivalent of a temporal delay by tilted beams analyzed with a high quality imaging spectrometer, enables unprecedented performance in dynamic, temporal range and resolution simultaneously. Demonstrated consistently in simulation and experiment at the front-end of the PW laser Draco, the full range of the ps temporal contrast defining the quality of relativistic laser-solid interaction could be measured with almost 80 dB dynamic range, 18ps temporal window, and 18fs temporal resolution. Additionally, spatio-temporal coupling as in the case of a pulse front tilt can be quantitatively explored.

  2. Implication of high dynamic range and wide color gamut content distribution

    NASA Astrophysics Data System (ADS)

    Lu, Taoran; Pu, Fangjun; Yin, Peng; Chen, Tao; Husak, Walt

    2015-09-01

    High Dynamic Range (HDR) and Wider Color Gamut (WCG) content represents a greater range of luminance levels and a more complete reproduction of colors found in real-world scenes. The current video distribution environments deliver Standard Dynamic Range (SDR) signal. Therefore, there might be some significant implication on today's end-to-end ecosystem from content creation to distribution and finally to consumption. For SDR content, the common practice is to apply compression on Y'CbCr 4:2:0 using gamma transfer function and non-constant luminance 4:2:0 chroma subsampling. For HDR and WCG content, it is desirable to examine if such signal format still works well for compression, and it is interesting to know if the overall system performance can be further improved by exploring different signal formats and processing workflows. In this paper, we will provide some of our insight into those problems.

  3. Dynamic Tensile Properties of Iron and Steels for a Wide Range of Strain Rates and Strain

    NASA Astrophysics Data System (ADS)

    Kojima, Nobusato; Hayashi, Hiroyuki; Yamamoto, Terumi; Mimura, Koji; Tanimura, Shinji

    The tensile stress-strain curves of iron and a variety of steels, covering a wide range of strength level, over a wide strain rate range on the order of 10-3 ~ 103 s-1, were obtained systematically by using the Sensing Block Type High Speed Material Testing System (SBTS, Saginomiya). Through intensive analysis of these results, the strain rate sensitivity of the flow stress for the large strain region, including the viscous term at high strain rates, the true fracture strength and the true fracture strain were cleared for the material group of the ferrous metals. These systematical data may be useful to develop a practical constitutive model for computer codes, including a fracture criterion for simulations of the dynamic behavior in crash worthiness studies and of work-pieces subjected to dynamic plastic working for a wide strain rate range.

  4. UMER: An analog computer for dynamics of swarms interacting via long-range forces

    NASA Astrophysics Data System (ADS)

    Kishek, R. A.; Bai, G.; Bernal, S.; Feldman, D.; Godlove, T. F.; Haber, I.; O'Shea, P. G.; Quinn, B.; Papadopoulos, C.; Reiser, M.; Stratakis, D.; Tian, K.; Tobin, C. J.; Walter, M.

    2006-06-01

    Some of the most challenging and interesting problems in nature involve large numbers of objects or particles mutually interacting through long-range forces. Examples range from galaxies and plasmas to flocks of birds and traffic flow on a highway. Even in cases where the form of the interacting force is precisely known, such as the 1/ r2-dependent Coulomb and gravitational forces, such problems present a formidable theoretical and modeling challenge for large numbers of interacting bodies. This paper reports on a newly constructed, scaled particle accelerator that will serve as an experimental testbed for the dynamics of swarms interacting through long-range forces. Primarily designed for intense beam dynamics studies for advanced accelerators, the University of Maryland Electron Ring (UMER) design is described in detail and an update on commissioning is provided. An example application to a system other than a charged particle beam is discussed.

  5. Current measurements in a wide dynamic range-applications in electrochemical nanotechnology.

    PubMed

    Mészáros, Gábor; Li, Chen; Pobelov, Ilya; Wandlowski, Thomas

    2007-10-24

    Current measurements in a wide dynamic range from low picoamperes up to a few milliamperes are usually carried by implementing logarithmic current-to-voltage converter circuits. Conductance studies in nanoscale metal | molecule | metal junctions require measurements with a high dynamic range, good accuracy and reasonable speed simultaneously. In this work we propose two novel circuit solutions which comply with these conditions: one is based on a high-accuracy, fine-tunable logarithmic current-to-voltage converter. Another circuit implements a double-output (or multiple-output) linear current-to-voltage converter, for which the problem of range-switching has been circumvented. Both circuits were applied in constructing a low-current bipotentiostat dedicated to the electrochemical formation of molecular-scale gaps, and a novel scanning tunnelling microscope preamplifier stage for current-distance spectroscopy studies.

  6. Twenty-year home-range dynamics of a white-tailed deer matriline

    USGS Publications Warehouse

    Nelson, Michael E.; Mech, L. David

    1999-01-01

    We examined the seasonal migration and home-range dynamics of a multigeneration white-tailed deer (Odocoileus virginianus) matriline comprising six females from four generations spanning a 20-year period in northeastern Minnesota. All, from the matriarch to her great-granddaughter, migrated to the same summer and winter ranges, the longest individual record being 14.5 years. Three maternal females concurrently occupied exclusive fawning sites within their ancestral matriarch's summer range, while two nonmaternal females explored new areas and ranged near their mothers. One great-granddaughter expanded her summer range 1 km beyond the matriarch's summer range while essentially vacating half of her ancestors' range and becoming nonmigratory the last 4 years of her life. These data indicate that individual movements of matriline members can potentially expand their ranges beyond the areas occupied by their ancestors through a slow process of small incremental changes. This suggests that the rapid extension of deer range in eastern North America resulted from natal dispersal by yearling deer rather than from the type of home-range expansion reported here.

  7. A low background-rate detector for ions in the 5 to 50 keV energy range to be used for radioisotope dating with a small cyclotron

    SciTech Connect

    Friedman, P.G.

    1986-11-25

    Accelerator mass spectrometry in tandem Van de Graaff accelerators has proven successful for radioisotope dating small samples. We are developing a 20 cm diameter 30 to 40 keV cyclotron dedicated to high-sensitivity radioisotope dating, initially for /sup 14/C. At this energy, range and dE/dx methods of particle identification are impossible. Thus arises the difficult problem of reliably detecting 30 to 40 keV /sup 14/C at 10/sup -2/ counts/sec in the high background environment of the cyclotron, where lower energy ions, electrons, and photons bombard the detector at much higher rates. We have developed and tested an inexpensive, generally useful ion detector that allows dark-count rates below 10/sup -4/ counts/sec and excellent background suppression. With the cyclotron tuned near the /sup 13/CH background peak, to the frequency for /sup 14/C, the detector suppresses the background to 6 x 10/sup -4/ counts/sec. For each /sup 14/C ion the detectors grazing-incidence Al/sub 2/O/sub 3/ conversion dynode emits about 20 secondary electrons, which are independently multiplied in separate pores of a microchannel plate. The output signal is proportional to the number of secondary electrons, allowing pulse-height discrimination of background. We have successfully tested the detector with positive /sup 12/C, /sup 23/Na, /sup 39/K, /sup 41/K, /sup 85/Rb, /sup 87/Rb, and /sup 133/Cs at 5 to 40 keV, and with 36 keV negative /sup 12/C and /sup 13/CH. It should detect ions and neutrals of all species, at energies above 5 keV, with good efficiency and excellent background discrimination. Counting efficiency and background discrimination improve with higher ion energy. The detector can be operated at least up to 2 x 10/sup -7/ Torr and be repeatedly exposed to air. The maximum rate is 10/sup 6.4/ ions/sec in pulse counting mode and 10/sup 9.7/ ions/sec in current integrating mode.

  8. Real-time modulated nanoparticle separation with an ultra-large dynamic range.

    PubMed

    Zeming, Kerwin Kwek; Thakor, Nitish V; Zhang, Yong; Chen, Chia-Hung

    2016-01-07

    Nanoparticles exhibit size-dependent properties which make size-selective purification of proteins, DNA or synthetic nanoparticles essential for bio-analytics, clinical medicine, nano-plasmonics and nano-material sciences. Current purification methods of centrifugation, column chromatography and continuous-flow techniques suffer from particle aggregation, multi-stage process, complex setups and necessary nanofabrication. These increase process costs and time, reduce efficiency and limit dynamic range. Here, we achieve an unprecedented real-time nanoparticle separation (51-1500 nm) using a large-pore (2 μm) deterministic lateral displacement (DLD) device. No external force fields or nanofabrication are required. Instead, we investigated innate long-range electrostatic influences on nanoparticles within a fluid medium at different NaCl ionic concentrations. In this study we account for the electrostatic forces beyond Debye length and showed that they cannot be assumed as negligible especially for precise nanoparticle separation methods such as DLD. Our findings have enabled us to develop a model to simultaneously quantify and modulate the electrostatic force interactions between nanoparticle and micropore. By simply controlling buffer solutions, we achieve dynamic nanoparticle size separation on a single device with a rapid response time (<20 s) and an enlarged dynamic range (>1200%), outperforming standard benchtop centrifuge systems. This novel method and model combines device simplicity, isolation precision and dynamic flexibility, opening opportunities for high-throughput applications in nano-separation for industrial and biological applications.

  9. Spatial-temporal population dynamics across species range: from center to margin

    USGS Publications Warehouse

    Guo, Q.; Taper, M.L.; Schoenberger, M.; Brandl, J.

    2005-01-01

    Understanding the boundaries of species' ranges and the variations in population dynamics from the centre to margin of a species' range is critical. This study simulated spatial-temporal patterns of birth and death rates and migration across a species' range in different seasons. Our results demonstrated the importance of dispersal and migration in altering birth and death rates, balancing source and sink habitats, and governing expansion or contraction of species' ranges in changing environments. We also showed that the multiple equilibria of metapopulations across a species' range could be easily broken following climatic changes or physical disturbances either or local or regional. Although we refer to our models as describing the population dynamics across whole species' range, they should also apply to small-scale habitats (metapopulations) in which species abundance follows a humped pattern or to any ecosystem or landscape where strong central-marginal (C-M) environmental gradients exist. Conservation of both central and marginal populations would therefore be equally important considerations in making management decisions.

  10. Spatial-temporal population dynamics across species range: From centre to margin

    USGS Publications Warehouse

    Guo, Q.; Taper, M.; Schoenberger, M.; Brandle, J.

    2005-01-01

    Understanding the boundaries of species' ranges and the variations in population dynamics from the centre to margin of a species' range is critical. This study simulated spatial-temporal patterns of birth and death rates and migration across a species' range in different seasons. Our results demonstrated the importance of dispersal and migration in altering birth and death rates, balancing source and sink habitats, and governing expansion or contraction of species' ranges in changing environments. We also showed that the multiple equilibria of metapopulations across a species' range could be easily broken following climatic changes or physical disturbances either local or regional. Although we refer to our models as describing the population dynamics across whole species' range, they should also apply to small-scale habitats (metapopulations) in which species abundance follows a humped pattern or to any ecosystem or landscape where strong central-marginal (C-M) environmental gradients exist. Conservation of both central and marginal populations would therefore be equally important considerations in making management decisions.

  11. Long-Range Correlations in Stride Intervals May Emerge from Non-Chaotic Walking Dynamics

    PubMed Central

    Ahn, Jooeun; Hogan, Neville

    2013-01-01

    Stride intervals of normal human walking exhibit long-range temporal correlations. Similar to the fractal-like behaviors observed in brain and heart activity, long-range correlations in walking have commonly been interpreted to result from chaotic dynamics and be a signature of health. Several mathematical models have reproduced this behavior by assuming a dominant role of neural central pattern generators (CPGs) and/or nonlinear biomechanics to evoke chaos. In this study, we show that a simple walking model without a CPG or biomechanics capable of chaos can reproduce long-range correlations. Stride intervals of the model revealed long-range correlations observed in human walking when the model had moderate orbital stability, which enabled the current stride to affect a future stride even after many steps. This provides a clear counterexample to the common hypothesis that a CPG and/or chaotic dynamics is required to explain the long-range correlations in healthy human walking. Instead, our results suggest that the long-range correlation may result from a combination of noise that is ubiquitous in biological systems and orbital stability that is essential in general rhythmic movements. PMID:24086274

  12. How interactions between animal movement and landscape processes modify local range dynamics and extinction risk

    PubMed Central

    Fordham, Damien A.; Shoemaker, Kevin T.; Schumaker, Nathan H.; Akçakaya, H. Reşit; Clisby, Nathan; Brook, Barry W.

    2014-01-01

    Forecasts of range dynamics now incorporate many of the mechanisms and interactions that drive species distributions. However, connectivity continues to be simulated using overly simple distance-based dispersal models with little consideration of how the individual behaviour of dispersing organisms interacts with landscape structure (functional connectivity). Here, we link an individual-based model to a niche-population model to test the implications of this omission. We apply this novel approach to a turtle species inhabiting wetlands which are patchily distributed across a tropical savannah, and whose persistence is threatened by two important synergistic drivers of global change: predation by invasive species and overexploitation. We show that projections of local range dynamics in this study system change substantially when functional connectivity is modelled explicitly. Accounting for functional connectivity in model simulations causes the estimate of extinction risk to increase, and predictions of range contraction to slow. We conclude that models of range dynamics that simulate functional connectivity can reduce an important source of bias in predictions of shifts in species distributions and abundances, especially for organisms whose dispersal behaviours are strongly affected by landscape structure. PMID:24806426

  13. CMOS Amperometric ADC With High Sensitivity, Dynamic Range and Power Efficiency for Air Quality Monitoring.

    PubMed

    Li, Haitao; Boling, C Sam; Mason, Andrew J

    2016-08-01

    Airborne pollutants are a leading cause of illness and mortality globally. Electrochemical gas sensors show great promise for personal air quality monitoring to address this worldwide health crisis. However, implementing miniaturized arrays of such sensors demands high performance instrumentation circuits that simultaneously meet challenging power, area, sensitivity, noise and dynamic range goals. This paper presents a new multi-channel CMOS amperometric ADC featuring pixel-level architecture for gas sensor arrays. The circuit combines digital modulation of input currents and an incremental Σ∆ ADC to achieve wide dynamic range and high sensitivity with very high power efficiency and compact size. Fabricated in 0.5 [Formula: see text] CMOS, the circuit was measured to have 164 dB cross-scale dynamic range, 100 fA sensitivity while consuming only 241 [Formula: see text] and 0.157 [Formula: see text] active area per channel. Electrochemical experiments with liquid and gas targets demonstrate the circuit's real-time response to a wide range of analyte concentrations.

  14. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    SciTech Connect

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T.; Lindgren, M.

    1994-06-01

    High energy physics experiments running at high interaction rates frequently require long record lengths for determining a level 1 trigger. The easiest way to provide a long event record is by digital means. In applications requiring wide dynamic range, however, digitization of an analog signal to obtain the digital record has been impossible due to lack of high speed, wide range FADCs. One such application is the readout of thousands of photomultiplier tubes in fixed target and colliding beam experiment calorimeters. A circuit has been designed for digitizing PMT signals over a wide dynamic range (17--18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Tests of the circuit with a PMT input and a pulsed laser have provided respectable results with little off line correction. Performance of the circuit for demanding applications can be significantly enhanced with additional off line correction. Circuit design, packaging issues, and test results of a multirange device are presented for the first time.

  15. CMOS Amperometric ADC with High Sensitivity, Dynamic Range and Power Efficiency for Air Quality Monitoring

    PubMed Central

    Li, Haitao; Boling, Sam; Mason, Andrew J.

    2016-01-01

    Airborne pollutants are a leading cause of illness and mortality globally. Electrochemical gas sensors show great promise for personal air quality monitoring to address this worldwide health crisis. However, implementing miniaturized arrays of such sensors demands high performance instrumentation circuits that simultaneously meet challenging power, area, sensitivity, noise and dynamic range goals. This paper presents a new multi-channel CMOS amperometric ADC featuring pixel-level architecture for gas sensor arrays. The circuit combines digital modulation of input currents and an incremental ΣΔ ADC to achieve wide dynamic range and high sensitivity with very high power efficiency and compact size. Fabricated in 0.5 μm CMOS, the circuit was measured to have 164 dB cross-scale dynamic range, 100 fA sensitivity while consuming only 241 μW and 0.157mm2 active area per channel. Electrochemical experiments with liquid and gas targets demonstrate the circuit’s real-time response to a wide range of analyte concentrations. PMID:27352395

  16. Large dynamic range terahertz spectrometers based on plasmonic photomixers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Javadi, Hamid; Jarrahi, Mona

    2017-02-01

    Heterodyne terahertz spectrometers are highly in demand for space explorations and astrophysics studies. A conventional heterodyne terahertz spectrometer consists of a terahertz mixer that mixes a received terahertz signal with a local oscillator signal to generate an intermediate frequency signal in the radio frequency (RF) range, where it can be easily processed and detected by RF electronics. Schottky diode mixers, superconductor-insulator-superconductor (SIS) mixers and hot electron bolometer (HEB) mixers are the most commonly used mixers in conventional heterodyne terahertz spectrometers. While conventional heterodyne terahertz spectrometers offer high spectral resolution and high detection sensitivity levels at cryogenic temperatures, their dynamic range and bandwidth are limited by the low radiation power of existing terahertz local oscillators and narrow bandwidth of existing terahertz mixers. To address these limitations, we present a novel approach for heterodyne terahertz spectrometry based on plasmonic photomixing. The presented design replaces terahertz mixer and local oscillator of conventional heterodyne terahertz spectrometers with a plasmonic photomixer pumped by an optical local oscillator. The optical local oscillator consists of two wavelength-tunable continuous-wave optical sources with a terahertz frequency difference. As a result, the spectrometry bandwidth and dynamic range of the presented heterodyne spectrometer is not limited by radiation frequency and power restrictions of conventional terahertz sources. We demonstrate a proof-of-concept terahertz spectrometer with more than 90 dB dynamic range and 1 THz spectrometry bandwidth.

  17. Long-range correlated dynamics in ultra-thin molecular glass films

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Glor, Ethan C.; Li, Mu; Liu, Tianyi; Wahid, Kareem; Zhang, William; Riggleman, Robert A.; Fakhraai, Zahra

    2016-09-01

    It has been previously shown that the free surface of molecular glasses has enhanced surface diffusion compared to the bulk. However, the degree by which the glass dynamics are affected by the free surface remains unexplored. Here, we measure enhanced dynamics in ultra-thin molecular glass films as a function of film thickness. We demonstrate that these films exhibit a sharp transition from glassy solid to liquid-like behavior when the thickness is reduced below 30 nm. This liquid-like behavior persists even at temperatures well below the glass transition temperature, Tg. The enhanced dynamics in these films can produce large scale morphological features during physical vapor deposition and lead to a dewetting instability in films held at temperatures as low as Tg - 35 K. The effective viscosity of these films are measured by monitoring the dewetting kinetics. These measurements combined with cooling-rate dependent Tg measurements show that the apparent activation barrier for rearrangement decreases sharply in films thinner than 30 nm. This sharp transition in the dynamics suggests that long-range correlated dynamics exists in these films such that the enhancement induced by the free surface can strongly affect the dynamics of the film over a length scale that is ten times larger than the size of the molecules.

  18. Spatio-temporal variation of biotic factors underpins contemporary range dynamics of congeners.

    PubMed

    Naujokaitis-Lewis, Ilona; Fortin, Marie-Josée

    2016-03-01

    Species' ranges are complex often exhibiting multidirectional shifts over space and time. Despite the strong fingerprint of recent historical climate change on species' distributions, biotic factors such as loss of vegetative habitat and the presence of potential competitors constitute important yet often overlooked drivers of range dynamics. Furthermore, short-term changes in environmental conditions can influence the underlying processes of local extinction and local colonization that drive range shifts, yet are rarely considered at broad scales. We used dynamic state-space occupancy models to test multiple hypotheses of the relative importance of major drivers of range shifts of Golden-winged Warblers (Vermivora chrysoptera) and Blue-winged Warblers (V. cyanoptera) between 1983 and 2012 across North America: warming temperatures; habitat changes; and occurrence of congeneric species, used here as proxy for biotic interactions. Dynamic occupancies for both species were most influenced by spatial relative to temporal variation in temperature and habitat. However, temporal variation in temperature anomalies and biotic interactions remained important. The two biotic factors considered, habitat change and biotic interactions, had the largest relative effect on estimated extinction rates followed by abiotic temperature anomalies. For the Golden-winged Warbler, the predicted presence of the Blue-winged Warbler, a hypothesized competitor, most influenced extinction probabilities, contributing to evidence supporting its role in site-level species replacement. Given the overall importance of biotic factors on range-wide dynamic occupancies, their consideration alongside abiotic factors should not be overlooked. Our results suggest that warming compounds the negative effect of habitat loss emphasizing species' need for habitat to adapt to a changing climate. Notably, even closely related species exhibited individual responses to abiotic and biotic factors considered.

  19. Dynamic range compression/expansion of light beams by photorefractive crystals

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen (Inventor); Liu, Hua-Kuang (Inventor)

    1988-01-01

    An apparatus is provided which greatly reduces the intensity of bright portions of an image while only moderately reducing the brightness of dimmer portions of the image, to thereby compress the range of light intensities to facilitate detection of the image. The apparatus includes a light detector device formed by a chip of photorefractive material. A 2-D array of light beams from an object to be detected passes through a beam splitter to form two arrays of light beams. The two arrays are directed at different angles against a surface of the chip of photorefractive material, the two arrays of light beams forming coincident images on the surface. One of the 2-D arrays of beams emerging from an opposite surface of the chip has a lower range of intensities, to facilitate detection of the object despite very bright spots in its image. The other array of light beams emerging from the chip has a greater range of intensities than the unprocessed image of the object.

  20. Dynamic range compression/expansion of light beams by photorefractive crystals

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen (Inventor); Liu, Hua-Kuang (Inventor)

    1988-01-01

    An apparatus is provided which greatly reduces the intensity of bright portions of an image while only moderately reducing the brightness of dimmer portions of the image, to thereby compress the range of light intensities to facilitate detection of the image. The apparatus includes a light detector device formed by a chip of photorefractive material. A 2-D array of light beams from an object to be detected passes through a beam splitter to form two arrays of light beams. The two arrays are directed at different angles against a surface of the chip of photorefractive material, the two arrays of light beams forming coincident images on the surface. One of the 2-D arrays of beams emerging from an opposite surface of the chip has a lower range of intensities, to facilitate detection of the object despite very bright spots in its image. The other array of light beams emerging from the chip has a greater range of intensities than the unprocessed image of the object.

  1. Detectability of regional lung ventilation with flat-panel detector-based dynamic radiography.

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Okazaki, Nobuo; Kobayashi, Takeshi; Suzuki, Masayuki; Matsui, Takeshi; Matsui, Osamu

    2008-03-01

    This study was performed to investigate the ability of breathing chest radiography using flat-panel detector (FPD) to quantify relative local ventilation. Dynamic chest radiographs during respiration were obtained using a modified FPD system. Imaging was performed in three different positions, ie, standing and right and left decubitus positions, to change the distribution of local ventilation. We measured the average pixel value in the local lung area. Subsequently, the interframe differences, as well as difference values between maximum inspiratory and expiratory phases, were calculated. The results were visualized as images in the form of a color display to show more or less x-ray translucency. Temporal changes and spatial distribution of the results were then compared to lung physiology. In the results, the average pixel value in each lung was associated with respiratory phase. In all positions, respiratory changes of pixel value in the lower area were greater than those in the upper area (P < 0.01), which was the same tendency as the regional differences in ventilation determined by respiratory physiology. In addition, in the decubitus position, it was observed that areas with large respiratory changes in pixel value moved up in the vertical direction during expiration, which was considered to be airway closure. In conclusion, breathing chest radiography using FPD was shown to be capable of quantifying relative ventilation in local lung area and detecting regional differences in ventilation and timing of airway closure. This method is expected to be useful as a new diagnostic imaging modality for evaluating relative local ventilation.

  2. Territorial Dynamics and Stable Home Range Formation for Central Place Foragers

    PubMed Central

    Potts, Jonathan R.; Harris, Stephen; Giuggioli, Luca

    2012-01-01

    Uncovering the mechanisms behind territory formation is a fundamental problem in behavioural ecology. The broad nature of the underlying conspecific avoidance processes are well documented across a wide range of taxa. Scent marking in particular is common to a large range of terrestrial mammals and is known to be fundamental for communication. However, despite its importance, exact quantification of the time-scales over which scent cues and messages persist remains elusive. Recent work by the present authors has begun to shed light on this problem by modelling animals as random walkers with scent-mediated interaction processes. Territories emerge as dynamic objects that continually change shape and slowly move without settling to a fixed location. As a consequence, the utilisation distribution of such an animal results in a slowly increasing home range, as shown for urban foxes (Vulpes vulpes). For certain other species, however, home ranges reach a stable state. The present work shows that stable home ranges arise when, in addition to scent-mediated conspecific avoidance, each animal moves as a central place forager. That is, the animal's movement has a random aspect but is also biased towards a fixed location, such as a den or nest site. Dynamic territories emerge but the probability distribution of the territory border locations reaches a steady state, causing stable home ranges to emerge from the territorial dynamics. Approximate analytic expressions for the animal's probability density function are derived. A programme is given for using these expressions to quantify both the strength of the animal's movement bias towards the central place and the time-scale over which scent messages persist. Comparisons are made with previous theoretical work modelling central place foragers with conspecific avoidance. Some insights into the mechanisms behind allometric scaling laws of animal space use are also given. PMID:22479510

  3. Singular dynamics and emergence of nonlocality in long-range quantum models

    NASA Astrophysics Data System (ADS)

    Lepori, L.; Trombettoni, A.; Vodola, D.

    2017-03-01

    We discuss how nonlocality originates in long-range quantum systems and how it affects their dynamics at and out of equilibrium. We focus in particular on the Kitaev chains with long-range pairings and on the quantum Ising chain with long-range antiferromagnetic coupling (both having a power-law decay with exponent α). By studying the dynamic correlation functions, we find that for every finite α two different behaviours can be identified, one typical of short-range systems and the other connected with locality violation. The latter behaviour is shown related also with the known power-law decay tails previously observed in the static correlation functions, and originated by modes—having in general energies far from the minima of the spectrum—where particular singularities develop as a consequence of the long-rangedness of the system. We refer to these modes as to ‘singular’ modes, and as to ‘singular dynamics’ to their dynamics. For the Kitaev model they are manifest, at finite α, in derivatives of the quasiparticle energy, the order of the derivatives at which the singularity occurs is increasing with α. The features of the singular modes and their physical consequences are clarified by studying an effective theory for them and by a critical comparison of the results from this theory with the lattice ones. Moreover, a numerical study of the effects of the singular modes on the time evolution after various types of global quenches is performed. We finally present and discuss the presence of singular modes and their consequences in interacting long-range systems by investigating in the long-range Ising quantum chain, both in the deep paramagnetic regime and at criticality, where they also play a central role for the breakdown of conformal invariance.

  4. On the spatial range of validity of the gas dynamic model in the magnetosheath of Venus

    NASA Technical Reports Server (NTRS)

    Zhang, T. L.; Russell, C. T.; Luhmann, J. G.; Spreiter, J. R.; Stahara, S. S.

    1993-01-01

    In the past, the global solar wind interaction with Venus has been treated with gas dynamic models which, while successful in modeling some of the global characteristics of the interaction, do not include the magnetic barrier in a self-consistent manner. This magnetic barrier is formed in the inner magnetosheath where it transfers solar wind momentum flux to the obstacle via magnetic pressure. In this study, we examine the extent to which the gas dynamic fluid approximation describes the magnetic field in the dayside Venus magnetosheath by comparing with two gas dynamic models, one which matches the observed ionopause location and one which matches the bow shock location. We find that each model predicts the field profile reasonably well in the vicinity of the matched bow shock or ionopause, but neither model provides an adequate model over the entire range from the ionopause to the bow shock.

  5. Long-Range Cortical Dynamics: A Perspective from the Mouse Sensorimotor Whisker System.

    PubMed

    Ni, Jianguang; Chen, Jerry L

    2017-09-16

    In the mammalian neocortex, the capacity to dynamically route and coordinate the exchange of information between areas is a critical feature of cognitive function, enabling processes such as higher-level sensory processing and sensorimotor integration. Despite the importance attributed to long-range connections between cortical areas, their exact operations and role in cortical function remain an open question. In recent years, progress has been made in understanding long-range cortical circuits through work focused on the mouse sensorimotor whisker system. In this review, we examine recent studies dissecting long-range circuits involved in whisker sensorimotor processing as an entry point for understanding the rules that govern long-range cortical circuit function. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Extended dynamical mean-field study of the Hubbard model with long-range interactions

    NASA Astrophysics Data System (ADS)

    Huang, Li; Ayral, Thomas; Biermann, Silke; Werner, Philipp

    2014-11-01

    Using extended dynamical mean-field theory and its combination with the G W approximation, we compute the phase diagrams and local spectral functions of the single-band extended Hubbard model on the square and simple cubic lattices, considering long-range interactions up to the third nearest neighbors. The longer-range interactions shift the boundaries between the metallic, charge-ordered insulating, and Mott insulating phases, and lead to characteristic changes in the screening modes and local spectral functions. Momentum-dependent self-energy contributions enhance the correlation effects and thus compete with the additional screening effect from longer-range Coulomb interactions. Our results suggest that the influence of longer-range intersite interactions is significant, and that these effects deserve attention in realistic studies of correlated materials.

  7. Molecular dynamics simulations of ion range profiles for heavy ions in light targets

    SciTech Connect

    Lan, Chune; Xue, Jianming; Zhang, Yanwen; Morris, James R.; Zhu, Zihua; Gao, Yuan; Wang, Yugang; Yan, Sha; Weber, William J.

    2012-09-01

    The determination of stopping powers for slow heavy ions in targets containing light elements is important to accurately describe ion-solid interactions, evaluate ion irradiation effects and predict ion ranges for device fabrication and nuclear applications. Recently, discrepancies of up to 40% between the experimental results and SRIM (Stopping and Range of Ions in Matter) predictions of ion ranges for heavy ions with medium and low energies (<25 keV/nucleon) in light elemental targets have been reported. The longer experimental ion ranges indicate that the stopping powers used in the SRIM code are overestimated. Here, a molecular dynamics simulation scheme is developed to calculate the ion ranges of heavy ions in light elemental targets. Electronic stopping powers generated from both a reciprocity approach and the SRIM code are used to investigate the influence of electronic stopping on ion range profiles. The ion range profiles for Au and Pb ions in SiC and Er ions in Si, with energies between 20 and 5250 keV, are simulated. The simulation results show that the depth profiles of implanted ions are deeper and in better agreement with the experiments when using the electronic stopping power values derived from the reciprocity approach. These results indicate that the origin of the discrepancy in ion ranges between experimental results and SRIM predictions in the low energy region may be an overestimation of the electronic stopping powers used in SRIM.

  8. Molecular dynamics simulations of ion range profiles for heavy ions in light targets

    SciTech Connect

    Lan, Chune; Xue, Jianming; Zhang, Yanwen; Morris, James R; Zhu, Zihua; Gao, Yuan; Wang, Yugang; Yan, Sha; Weber, William J

    2012-01-01

    The determination of stopping powers for slow heavy ions in targets containing light elements is important to accurately describe ion-solid interactions, evaluate ion irradiation effects and predict ion ranges for device fabrication and nuclear applications. Recently, discrepancies of up to 40% between the experimental results and SRIM (Stopping and Range of Ions in Matter) predictions of ion ranges for heavy ions with medium and low energies (< {approx} 25 keV/nucleon) in light elemental targets have been reported. The longer experimental ion ranges indicate that the stopping powers used in the SRIM code are overestimated. Here, a molecular dynamics simulation scheme is developed to calculate the ion ranges of heavy ions in light elemental targets. Electronic stopping powers generated from both a reciprocity approach and the SRIM code are used to investigate the influence of electronic stopping on ion range profiles. The ion range profiles for Au and Pb ions in SiC and Er ions in Si, with energies between 20 and 5250 keV, are simulated. The simulation results show that the depth profiles of implanted ions are deeper and in better agreement with the experiments when using the electronic stopping power values derived from the reciprocity approach. These results indicate that the origin of the discrepancy in ion ranges between experimental results and SRIM predictions in the low energy region may be an overestimation of the electronic stopping powers used in SRIM.

  9. Dynamic range of frontoparietal functional modulation is associated with working memory capacity limitations in older adults.

    PubMed

    Hakun, Jonathan G; Johnson, Nathan F

    2017-11-01

    Older adults tend to over-activate regions throughout frontoparietal cortices and exhibit a reduced range of functional modulation during WM task performance compared to younger adults. While recent evidence suggests that reduced functional modulation is associated with poorer task performance, it remains unclear whether reduced range of modulation is indicative of general WM capacity-limitations. In the current study, we examined whether the range of functional modulation observed over multiple levels of WM task difficulty (N-Back) predicts in-scanner task performance and out-of-scanner psychometric estimates of WM capacity. Within our sample (60-77years of age), age was negatively associated with frontoparietal modulation range. Individuals with greater modulation range exhibited more accurate N-Back performance. In addition, despite a lack of significant relationships between N-Back and complex span task performance, range of frontoparietal modulation during the N-Back significantly predicted domain-general estimates of WM capacity. Consistent with previous cross-sectional findings, older individuals with less modulation range exhibited greater activation at the lowest level of task difficulty but less activation at the highest levels of task difficulty. Our results are largely consistent with existing theories of neurocognitive aging (e.g. CRUNCH) but focus attention on dynamic range of functional modulation asa novel marker of WM capacity-limitations in older adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A high sensitive 66 dB linear dynamic range receiver for 3-D laser radar

    NASA Astrophysics Data System (ADS)

    Ma, Rui; Zheng, Hao; Zhu, Zhangming

    2017-08-01

    This study presents a CMOS receiver chip realized in 0.18 μm standard CMOS technology and intended for high precision 3-D laser radar. The chip includes an adjustable gain transimpedance pre-amplifier, a post-amplifier and two timing comparators. An additional feedback is employed in the regulated cascode transimpedance amplifier to decrease the input impedance, and a variable gain transimpedance amplifier controlled by digital switches and analog multiplexer is utilized to realize four gain modes, extending the input dynamic range. The measurement shows that the highest transimpedance of the channel is 50 k {{Ω }}, the uncompensated walk error is 1.44 ns in a wide linear dynamic range of 66 dB (1:2000), and the input referred noise current is 2.3 pA/\\sqrt{{Hz}} (rms), resulting in a very low detectable input current of 1 μA with SNR = 5.

  11. Introducing a Public Stereoscopic 3D High Dynamic Range (SHDR) Video Database

    NASA Astrophysics Data System (ADS)

    Banitalebi-Dehkordi, Amin

    2017-03-01

    High dynamic range (HDR) displays and cameras are paving their ways through the consumer market at a rapid growth rate. Thanks to TV and camera manufacturers, HDR systems are now becoming available commercially to end users. This is taking place only a few years after the blooming of 3D video technologies. MPEG/ITU are also actively working towards the standardization of these technologies. However, preliminary research efforts in these video technologies are hammered by the lack of sufficient experimental data. In this paper, we introduce a Stereoscopic 3D HDR database of videos that is made publicly available to the research community. We explain the procedure taken to capture, calibrate, and post-process the videos. In addition, we provide insights on potential use-cases, challenges, and research opportunities, implied by the combination of higher dynamic range of the HDR aspect, and depth impression of the 3D aspect.

  12. Noise-induced dynamical phase transitions in long-range systems.

    PubMed

    Chavanis, Pierre-Henri; Baldovin, Fulvio; Orlandini, Enzo

    2011-04-01

    In the thermodynamic limit, the time evolution of isolated long-range interacting systems is properly described by the Vlasov equation. This equation admits nonequilibrium dynamically stable stationary solutions characterized by a zero order parameter. We show that the presence of external noise sources, such as a heat bath, can reduce their lifetime and induce at a specific time a dynamical phase transition marked by a nonzero order parameter. This transition may be used as a distinctive experimental signature of the temporary existence of nonequilibrium Vlasov-stable states. In particular, we present evidence of a regime characterized by an order parameter pulse. Our analytical results are corroborated by numerical simulations of a paradigmatic long-range model.

  13. 32-channel pyrometer with high dynamic range for studies of shocked nanothermites

    NASA Astrophysics Data System (ADS)

    Bassett, Will P.; Dlott, Dana D.

    2017-01-01

    A 32-channel optical pyrometer has been developed for studying temperature dynamics of shock-initiated reactive materials with one nanosecond time resolution and high dynamic range. The pyrometer consists of a prism spectrograph which directs the spectrally-resolved emission to 32 fiber optics and 32 photomultiplier tubes and digitizers. Preliminary results show shock-initiated reactions of a nanothermite composite, nano CuO/Al in nitrocellulose binder, consists of three stages. The first stage occurred at 30 ns, right after the shock unloaded, the second stage at 100 ns and the third at 1 μs, and the temperatures ranged from 2100K to 3000K. Time-resolved emission spectra suggest hot spots formed during shock unloading, which initiated the bulk thermite/nitrocellulose reaction.

  14. Experimental investigation of a fiber Bragg grating integrated optical limiting amplifier with high dynamic range

    NASA Astrophysics Data System (ADS)

    Liaw, Shien Kuei; Chi, Sien

    1998-07-01

    By inserting a bidirectional erbium-doped fiber amplifier (EDFA) in between an optical circulator and a fiber Bragg grating (FBG), we realize an FBG-integrated optical limiting amplifier (OLA) with high dynamic range. The dual-pass OLA has a wide dynamic range of over 40 dB and a saturation signal output power of about 13.0 dBm. The performance of dual-pass OLA has no obvious degradation due to back reflection of the amplified signal. A negligible power penalty of about 0.3 dB is observed when compared with other conventional configurations. The FBG-integrated OLA configuration has potential application in wavelength division multiplexing systems where high saturated power is needed for multichannel transmission.

  15. Enhanced Dynamic Range in N-SQUID Lumped Josephson Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Eddins, A.; Levenson-Falk, E. M.; Toyli, D. M.; Vijay, R.; Minev, Z.; Siddiqi, I.

    2014-03-01

    Simultaneously providing high gain and nearly quantum-limited noise performance, superconducting parametric amplifiers (paramps) have been used successfully for high fidelity qubit readout, quantum feedback, and microwave quantum optics experiments. The Lumped Josephson Parametric Amplifier (LJPA) consists of a capacitively shunted SQUID coupled to a transmission line to form a nonlinear resonator. Like other paramps employing a resonant circuit, the LJPA's dynamic range-a potentially key ingredient for multiplexing-is limited. Simple theory predicts that the dynamic range can be increased without any reduction in bandwidth or gain by distributing the resonator nonlinearity over a series array of SQUIDs. We fabricated such array devices with up to 5 SQUIDs and observed a clear increase in the critical power for bifurcation about which parametric gain occurs. We discuss in detail amplifier performance as a function of the number of SQUIDs in the array. This research was supported by the Army Research Office under a QCT grant.

  16. Research on temperature distribution of combustion flames based on high dynamic range imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Feng, Huajun; Xu, Zhihai; Li, Qi

    2007-10-01

    The imaging-based three-color method is widely used in the field of non-contact temperature measurement of combustion flames. In this paper, by analyzing the imaging process of a combustion flame in detail, we re-derivate the three-color method by adopting a theory of high dynamic range imaging. Instead of using white balanced, gamma calibrated or other algorithms applied 8-bit pixel values, we use irradiance values on the image plane; these values are obtained by combining two differently exposed raw images into one high dynamic range irradiance map with the help of the imaging system's response function. An instrumentation system is presented and a series of experiments have been carried out, the results of which are satisfactory.

  17. Improvement of dynamic range of filter-less fluorescence sensor with body-biasing technique

    NASA Astrophysics Data System (ADS)

    Moriwaki, Yu; Takahashi, Kazuhiro; Akita, Ippei; Ishida, Makoto; Sawada, Kazuaki

    2015-04-01

    Although fluorescence microscopy is an important technique in biomedical fields, the bulky equipment is disadvantageous in some situations. We have previously proposed a filter-less fluorescence sensor whose operation is based on the light absorption coefficient, which depends on the wavelength in a silicon substrate. In this sensor, the ratio of the excitation light intensity to the fluorescence intensity is as high as 400:1 upon optimizing the impurity concentration and the depth of the p-well region. To improve the dynamic range, herein we use a body-biasing technique to optimize the potential distribution of the sensing area to acquire sufficient photocurrent. Consequently, the dynamic range of the filter-less fluorescence sensor is improved to 800:1 with an 8 V substrate voltage.

  18. High dynamic range infrared images detail enhancement based on local edge preserving filter

    NASA Astrophysics Data System (ADS)

    Song, Qiong; Wang, Yuehuan; Bai, Kun

    2016-07-01

    In the field of infrared (IR) image processing, displaying a high dynamic range (HDR) image on a low dynamic range display equipment with a natural visual effect, clear details on local areas and less artifacts is an important issue. In this paper, we present a new approach to display HDR IR images with contrast enhancement. First, the local edge-preserving filter (LEPF) is utilized to separate the image into a base layer and detail layer(s). After the filtering procedure, we use an adaptive Gamma transformation to adjust the gray distribution of the base layer, and stretch the detail layer based on a human visual effect principle. Then, we recombine the detail layer and base layer to obtain the enhance output. Finally, we adjust the luminance of output by applying multiple exposure fusion method. The experimental results demonstrate that our proposed method can provide a significant performance in terms of enhancing details and less artifacts than the state of the arts.

  19. High-dynamic-range fluorescence laminar optical tomography (HDR-FLOT)

    PubMed Central

    Tang, Qinggong; Liu, Yi; Tsytsarev, Vassiliy; Lin, Jonathan; Wang, Bohan; Kanniyappan, Udayakumar; Li, Zhifang; Chen, Yu

    2017-01-01

    Three-dimensional fluorescence laminar optical tomography (FLOT) can achieve resolutions of 100-200 µm and penetration depths of 2-3 mm. FLOT has been used in tissue engineering, neuroscience, as well as oncology. The limited dynamic range of the charge-coupled device-based system makes it difficult to image fluorescent samples with a large concentration difference, limits its penetration depth, and diminishes the quantitative accuracy of 3D reconstruction data. Here, incorporating the high-dynamic-range (HDR) method widely used in digital cameras, we present HDR-FLOT, increasing penetration depth and improving the ability to image fluorescent samples with a large concentration difference. The method was tested using an agar phantom and a B6 mouse for brain imaging in vivo. PMID:28736659

  20. Note: Increasing dynamic range of digital-to-analog converter using a superconducting quantum interference device

    SciTech Connect

    Nakanishi, Masakazu

    2014-10-15

    Responses of a superconducting quantum interference device (SQUID) are periodically dependent on magnetic flux coupling to its superconducting ring and the period is a flux quantum (Φ{sub o} = h/2e, where h and e, respectively, express Planck's constant and elementary charge). Using this periodicity, we had proposed a digital to analog converter using a SQUID (SQUID DAC) of first generation with linear current output, interval of which corresponded to Φ{sub o}. Modification for increasing dynamic range by interpolating within each interval is reported. Linearity of the interpolation was also based on the quantum periodicity. A SQUID DAC with dynamic range of about 1.4 × 10{sup 7} was created as a demonstration.

  1. A Kalman-filtering approach to high dynamic range imaging for measurement applications.

    PubMed

    Dedrick, Eric; Lau, Daniel

    2012-02-01

    High dynamic range imaging (HDRI) methods in computational photography address situations where the dynamic range of a scene exceeds what can be captured by an image sensor in a single exposure. HDRI techniques have also been used to construct radiance maps in measurement applications; unfortunately, the design and evaluation of HDRI algorithms for use in these applications have received little attention. In this paper, we develop a novel HDRI technique based on pixel-by-pixel Kalman filtering and evaluate its performance using objective metrics that this paper also introduces. In the presented experiments, this new technique achieves as much as 9.4-dB improvement in signal-to-noise ratio and can achieve as much as a 29% improvement in radiometric accuracy over a classic method.

  2. Design of a high-numerical-aperture digital micromirror device camera with high dynamic range.

    PubMed

    Qiao, Yang; Xu, Xiping; Liu, Tao; Pan, Yue

    2015-01-01

    A high-NA imaging system with high dynamic range is presented based on a digital micromirror device (DMD). The DMD camera consists of an objective imaging system and a relay imaging system, connected by a DMD chip. With the introduction of a total internal reflection prism system, the objective imaging system is designed with a working F/# of 1.97, breaking through the F/2.45 limitation of conventional DMD projection lenses. As for the relay imaging system, an off-axis design that could correct off-axis aberrations of the tilt relay imaging system is developed. This structure has the advantage of increasing the NA of the imaging system while maintaining a compact size. Investigation revealed that the dynamic range of a DMD camera could be greatly increased, by 2.41 times. We built one prototype DMD camera with a working F/# of 1.23, and the field experiments proved the validity and reliability our work.

  3. An ultra wide dynamic range CMOS image sensor with a linear response

    NASA Astrophysics Data System (ADS)

    Park, Jong Ho; Mase, Mitsuhito; Kawahito, Shoji; Sasaki, Masaaki; Wakamori, Yasuo; Ohta, Yukihiro

    2006-02-01

    An ultra wide dynamic range (WDR) CMOS image sensor (CIS) and the details of evaluation are presented. The proposed signal readout technique of extremely short accumulation (ESA) enables the dynamic range of image sensor to be expanded up to 146dB. Including the ESA signals, total of 4 different accumulation time signals are read out in one frame period based on burst readout technique. To achieve the high-speed signal readout required for the multiple exposure signals, column parallel A/D converters are integrated at the upper and lower sides of pixel arrays. The improved 12-bits cyclic ADCs with a built-in correlated double sampling (CDS) circuit has the differential non-linearity (DNL) of +/-0.3LSB.

  4. Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique

    PubMed Central

    Shafie, Suhaidi; Kawahito, Shoji; Halin, Izhal Abdul; Hasan, Wan Zuha Wan

    2009-01-01

    The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region. PMID:22303133

  5. Analysis of quantum Monte Carlo dynamics for quantum adiabatic evolution in infinite-range spin systems

    NASA Astrophysics Data System (ADS)

    Inoue, Jun-Ichi

    2011-03-01

    We analytically derive deterministic equations of order parameters such as spontaneous magnetization in infinite-range quantum spin systems obeying quantum Monte Carlo dynamics. By means of the Trotter decomposition, we consider the transition probability of Glauber-type dynamics of microscopic states for the corresponding classical system. Under the static approximation, differential equations with respect to macroscopic order parameters are explicitly obtained from the master equation that describes the microscopic-law. We discuss several possible applications of our approach to disordered spin systems for statistical-mechanical informatics. Especially, we argue the ground state searching for infinite-range random spin systems via quantum adiabatic evolution. We were financially supported by Grant-in-Aid for Scientific Research (C) of Japan Society for the Promotion of Science, No. 22500195.

  6. Note: Increasing dynamic range of digital-to-analog converter using a superconducting quantum interference device.

    PubMed

    Nakanishi, Masakazu

    2014-10-01

    Responses of a superconducting quantum interference device (SQUID) are periodically dependent on magnetic flux coupling to its superconducting ring and the period is a flux quantum (Φo = h/2e, where h and e, respectively, express Planck's constant and elementary charge). Using this periodicity, we had proposed a digital to analog converter using a SQUID (SQUID DAC) of first generation with linear current output, interval of which corresponded to Φo. Modification for increasing dynamic range by interpolating within each interval is reported. Linearity of the interpolation was also based on the quantum periodicity. A SQUID DAC with dynamic range of about 1.4 × 10(7) was created as a demonstration.

  7. High-Dynamic-Range Single-Shot Cross-Correlator Based on an Optical Pulse Replicator

    SciTech Connect

    Dorrer, C.; Bromage, J.; Zuegel, J.D.

    2008-09-05

    The operation of a single-shot cross-correlator based on a pulse replicator is described. The correlator uses a discrete sequence of sampling pulses that are nonlinearly mixed with the pulse under test. The combination of a high reflector and partial reflector replicates an optical pulse by multiple internal reflections and generates a sequence of spatially displaced and temporally delayed sampling pulses. This principle is used in a cross-correlator characterizing optical pulses at 1053 nm. A dynamic range higher than 60 dB is obtained over a temporal range larger than 200 ps.

  8. Human tissue color as viewed in high dynamic range optical spectral transmission measurements.

    PubMed

    Petrov, Georgi I; Doronin, Alexander; Whelan, Harry T; Meglinski, Igor; Yakovlev, Vladislav V

    2012-09-01

    High dynamic range optical-to-near-infrared transmission measurements for different parts of human body in the spectral range from 650 to 950 nm have been performed. Experimentally measured spectra are correlated with Monte Carlo simulations using chromaticity coordinates in CIE 1976 L*a*b* color space. Both a qualitative and a quantitative agreement have been found, paving a new way of characterizing human tissues in vivo. The newly developed experimental and computational platform for assessing tissue transmission spectra is anticipated to have a considerable impact on identifying favorable conditions for laser surgery and optical diagnostics, while providing supplementary information about tissue properties.

  9. Determination of metal ions by fluorescence anisotropy exhibits a broad dynamic range

    NASA Astrophysics Data System (ADS)

    Thompson, Richard B.; Maliwal, Badri P.; Fierke, Carol A.

    1998-05-01

    Recently, we have shown that metal ions free in solution may be determined at low levels by fluorescence anisotropy (polarization) measurements. Anisotropy measurements enjoy the advantages of wavelength ratiometric techniques for determining metal ions such as calcium, because anisotropy measurements are ratiometric as well. Furthermore, fluorescence anisotropy may be imaged in the microscope. An advantage of anisotropy not demonstrated for wavelength ratiometric approaches using indicators such as Fura-2 and Indo-1 is that under favorable circumstances anisotropy-based determinations exhibit a much broader dynamic range in metal ion concentration. Determinations of free Zn(II) in the picomolar range are demonstrated.

  10. Face recognition based on matching of local features on 3D dynamic range sequences

    NASA Astrophysics Data System (ADS)

    Echeagaray-Patrón, B. A.; Kober, Vitaly

    2016-09-01

    3D face recognition has attracted attention in the last decade due to improvement of technology of 3D image acquisition and its wide range of applications such as access control, surveillance, human-computer interaction and biometric identification systems. Most research on 3D face recognition has focused on analysis of 3D still data. In this work, a new method for face recognition using dynamic 3D range sequences is proposed. Experimental results are presented and discussed using 3D sequences in the presence of pose variation. The performance of the proposed method is compared with that of conventional face recognition algorithms based on descriptors.

  11. Incongruent range dynamics between co-occurring Asian temperate tree species facilitated by life history traits.

    PubMed

    Zhao, Yun-Peng; Yan, Xiao-Ling; Muir, Graham; Dai, Qiong-Yan; Koch, Marcus A; Fu, Cheng-Xin

    2016-04-01

    Postglacial expansion to former range limits varies substantially among species of temperate deciduous forests in eastern Asia. Isolation hypotheses (with or without gene flow) have been proposed to explain this variance, but they ignore detailed population dynamics spanning geological time and neglect the role of life history traits. Using population genetics to uncover these dynamics across their Asian range, we infer processes that formed the disjunct distributions of Ginkgo biloba and the co-occurring Cercidiphyllum japonicum (published data). Phylogenetic, coalescent, and comparative data suggest that Ginkgo population structure is regional, dichotomous (to west-east refugia), and formed ˜51 kya, resulting from random genetic drift during the last glaciation. This split is far younger than the north-south population structure of Cercidiphyllum (~1.89 Mya). Significant (recent) unidirectional gene flow has not homogenized the two Ginkgo refugia, despite 2Nm > 1. Prior to this split, gene flow was potentially higher, resulting in conflicting support for a priori hypotheses that view isolation as an explanation for the variation in postglacial range limits. Isolation hypotheses (with or without gene flow) are thus not necessarily mutually exclusive due to temporal variation of gene flow and genetic drift. In comparison with Cercidiphyllum, the restricted range of Ginkgo has been facilitated by uncompetitive life history traits associated with seed ecology, highlighting the importance of both demography and lifetime reproductive success when interpreting range shifts.

  12. Implementing molecular dynamics on hybrid high performance computers - short range forces

    NASA Astrophysics Data System (ADS)

    Brown, W. Michael; Wang, Peng; Plimpton, Steven J.; Tharrington, Arnold N.

    2011-04-01

    The use of accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high-performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - (1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory, (2) minimizing the amount of code that must be ported for efficient acceleration, (3) utilizing the available processing power from both multi-core CPUs and accelerators, and (4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS, however, the methods can be applied in many molecular dynamics codes. Specifically, we describe algorithms for efficient short range force calculation on hybrid high-performance machines. We describe an approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPUs and 180 CPU cores.

  13. MO-A-BRD-01: An Investigation of the Dynamic Response of a Novel Acousto-Optic Liquid Crystal Detector for Full-Field Transmission Ultrasound Breast Imaging

    SciTech Connect

    Rosenfield, J.R.; La Riviere, P.J.; Sandhu, J.S.

    2014-06-15

    Purpose: To characterize the dynamic response of a novel acousto-optic (AO) liquid crystal detector for high-resolution transmission ultrasound breast imaging. Transient and steady-state lesion contrast were investigated to identify optimal transducer settings for our prototype imaging system consistent with the FDA limits of 1 W/cm{sup 2} and 50 J/cm{sup 2} on the incident acoustic intensity and the transmitted acoustic energy flux density. Methods: We have developed a full-field transmission ultrasound breast imaging system that uses monochromatic plane-wave illumination to acquire projection images of the compressed breast. The acoustic intensity transmitted through the breast is converted into a visual image by a proprietary liquid crystal detector operating on the basis of the AO effect. The dynamic response of the AO detector in the absence of an imaged breast was recorded by a CCD camera as a function of the acoustic field intensity and the detector exposure time. Additionally, a stereotactic needle biopsy breast phantom was used to investigate the change in opaque lesion contrast with increasing exposure time for a range of incident acoustic field intensities. Results: Using transducer voltages between 0.3 V and 0.8 V and exposure times of 3 minutes, a unique one-to-one mapping of incident acoustic intensity to steady-state optical brightness in the AO detector was observed. A transfer curve mapping acoustic intensity to steady-state optical brightness shows a high-contrast region analogous to the linear portion of the Hurter-Driffield curves of radiography. Using transducer voltages between 1 V and 1.75 V and exposure times of 90 s, the lesion contrast study demonstrated increasing lesion contrast with increasing breast exposure time and acoustic field intensity. Lesion-to-background contrast on the order of 0.80 was observed. Conclusion: Maximal lesion contrast in our prototype system can be obtained using the highest acoustic field intensity and the

  14. Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression

    NASA Technical Reports Server (NTRS)

    Laun, Matthew C. (Inventor)

    2016-01-01

    Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.

  15. Dynamics of wood in stream networks of the western Cascades Range, Oregon

    Treesearch

    Nicole M. Czarnomski; David M. Dreher; Kai U. Snyder; Julia A. Jones; Frederick J. Swanson

    2008-01-01

    We develop and test a conceptual model of wood dynamics in stream networks that considers legacies of forest management practices, floods, and debris flows. We combine an observational study of wood in 25 km of 2nd- through 5th-order streams in a steep, forested watershed of the western Cascade Range of Oregon with whole-network studies of forest cutting, roads, and...

  16. Proposed satellite laser ranging and very long baseline interferometry sites for crustal dynamics investigations

    NASA Technical Reports Server (NTRS)

    Lowman, P. D.; Allenby, R. J.; Frey, H. V.

    1979-01-01

    Recommendations are presented for a global network of 125 sites for geodetic measurements by satellite laser ranging and very long baseline interferometry. The sites were proposed on the basis of existing facilities and scientific value for investigation of crustal dynamics as related to earthquake hazards. Tectonic problems are discussed for North America peripheral regions and for the world. The sites are presented in tables and maps, with bibliographic references.

  17. Roles of Long-Range Tertiary Interactions in Limiting Dynamics of the Tetrahymena Group I Ribozyme

    PubMed Central

    2015-01-01

    We determined the effects of mutating the long-range tertiary contacts of the Tetrahymena group I ribozyme on the dynamics of its substrate helix (referred to as P1) and on catalytic activity. Dynamics were assayed by fluorescence anisotropy of the fluorescent base analogue, 6-methyl isoxanthopterin, incorporated into the P1 helix, and fluorescence anisotropy and catalytic activity were measured for wild type and mutant ribozymes over a range of conditions. Remarkably, catalytic activity correlated with P1 anisotropy over 5 orders of magnitude of activity, with a correlation coefficient of 0.94. The functional and dynamic effects from simultaneous mutation of the two long-range contacts that weaken P1 docking are cumulative and, based on this RNA’s topology, suggest distinct underlying origins for the mutant effects. Tests of mechanistic predictions via single molecule FRET measurements of rate constants for P1 docking and undocking suggest that ablation of the P14 tertiary interaction frees P2 and thereby enhances the conformational space explored by the undocked attached P1 helix. In contrast, mutation of the metal core tertiary interaction disrupts the conserved core into which the P1 helix docks. Thus, despite following a single correlation, the two long-range tertiary contacts facilitate P1 helix docking by distinct mechanisms. These results also demonstrate that a fluorescence anisotropy probe incorporated into a specific helix within a larger RNA can report on changes in local helical motions as well as differences in more global dynamics. This ability will help uncover the physical properties and behaviors that underlie the function of RNAs and RNA/protein complexes. PMID:24738560

  18. SpectraCAM SPM: a camera system with high dynamic range for scientific and medical applications

    NASA Astrophysics Data System (ADS)

    Bhaskaran, S.; Baiko, D.; Lungu, G.; Pilon, M.; VanGorden, S.

    2005-08-01

    A scientific camera system having high dynamic range designed and manufactured by Thermo Electron for scientific and medical applications is presented. The newly developed CID820 image sensor with preamplifier-per-pixel technology is employed in this camera system. The 4 Mega-pixel imaging sensor has a raw dynamic range of 82dB. Each high-transparent pixel is based on a preamplifier-per-pixel architecture and contains two photogates for non-destructive readout of the photon-generated charge (NDRO). Readout is achieved via parallel row processing with on-chip correlated double sampling (CDS). The imager is capable of true random pixel access with a maximum operating speed of 4MHz. The camera controller consists of a custom camera signal processor (CSP) with an integrated 16-bit A/D converter and a PowerPC-based CPU running a Linux embedded operating system. The imager is cooled to -40C via three-stage cooler to minimize dark current. The camera housing is sealed and is designed to maintain the CID820 imager in the evacuated chamber for at least 5 years. Thermo Electron has also developed custom software and firmware to drive the SpectraCAM SPM camera. Included in this firmware package is the new Extreme DRTM algorithm that is designed to extend the effective dynamic range of the camera by several orders of magnitude up to 32-bit dynamic range. The RACID Exposure graphical user interface image analysis software runs on a standard PC that is connected to the camera via Gigabit Ethernet.

  19. A convection-driven long-range linear gradient generator with dynamic control.

    PubMed

    Wang, Hao; Chen, Chia-Hung; Xiang, Zhuolin; Wang, Ming; Lee, Chengkuo

    2015-03-21

    We developed a novel gradient generator to achieve long range and linear chemical gradients with a dynamic control function. The length of the gradient can be on the centimetre scale. The gradient profile can be tuned by changing the flow rates. The device can work in both high flow rate regimes with large shear stress and low flow rate regimes with minimum shear stress. The drug screening function was demonstrated by the viability test of PC-9 cancer cells.

  20. A visibility matching tone reproduction operator for high dynamic range scenes

    SciTech Connect

    Larson, G.W.; Rushmeier, H.; Piatko, C.

    1997-01-15

    The authors present a tone reproduction operator that preserves visibility in high dynamic range scenes. The method introduces a new histogram adjustment technique, based on the population of local adaptation luminances in a scene. To match subjective viewing experience, the method incorporates models for human contrast sensitivity, glare, spatial acuity and color sensitivity. They compare the results to previous work and present examples the techniques applied to lighting simulation and electronic photography.

  1. Psychophysical evaluation of the image quality of a dynamic flat-panel digital x-ray image detector using the threshold contrast detail detectability (TCDD) technique

    NASA Astrophysics Data System (ADS)

    Davies, Andrew G.; Cowen, Arnold R.; Bruijns, Tom J. C.

    1999-05-01

    We are currently in an era of active development of the digital X-ray imaging detectors that will serve the radiological communities in the new millennium. The rigorous comparative physical evaluations of such devices are therefore becoming increasingly important from both the technical and clinical perspectives. The authors have been actively involved in the evaluation of a clinical demonstration version of a flat-panel dynamic digital X-ray image detector (or FDXD). Results of objective physical evaluation of this device have been presented elsewhere at this conference. The imaging performance of FDXD under radiographic exposure conditions have been previously reported, and in this paper a psychophysical evaluation of the FDXD detector operating under continuous fluoroscopic conditions is presented. The evaluation technique employed was the threshold contrast detail detectability (TCDD) technique, which enables image quality to be measured on devices operating in the clinical environment. This approach addresses image quality in the context of both the image acquisition and display processes, and uses human observers to measure performance. The Leeds test objects TO[10] and TO[10+] were used to obtain comparative measurements of performance on the FDXD and two digital spot fluorography (DSF) systems, one utilizing a Plumbicon camera and the other a state of the art CCD camera. Measurements were taken at a range of detector entrance exposure rates, namely 6, 12, 25 and 50 (mu) R/s. In order to facilitate comparisons between the systems, all fluoroscopic image processing such as noise reduction algorithms, were disabled during the experiments. At the highest dose rate FDXD significantly outperformed the DSF comparison systems in the TCDD comparisons. At 25 and 12 (mu) R/s all three-systems performed in an equivalent manner and at the lowest exposure rate FDXD was inferior to the two DSF systems. At standard fluoroscopic exposures, FDXD performed in an equivalent

  2. Seasonal source-sink dynamics at the edge of a species' range.

    PubMed

    Kanda, L Leann; Fuller, Todd K; Sievert, Paul R; Kellogg, Robert L

    2009-06-01

    The roles of dispersal and population dynamics in determining species' range boundaries recently have received theoretical attention but little empirical work. Here we provide data on survival, reproduction, and movement for a Virginia opossum (Didelphis virginiana) population at a local distributional edge in central Massachusetts (USA). Most juvenile females that apparently exploited anthropogenic resources survived their first winter, whereas those using adjacent natural resources died of starvation. In spring, adult females recolonized natural areas. A life-table model suggests that a population exploiting anthropogenic resources may grow, acting as source to a geographically interlaced sink of opossums using only natural resources, and also providing emigrants for further range expansion to new human-dominated landscapes. In a geographical model, this source-sink dynamic is consistent with the local distribution identified through road-kill surveys. The Virginia opossum's exploitation of human resources likely ameliorates energetically restrictive winters and may explain both their local distribution and their northward expansion in unsuitable natural climatic regimes. Landscape heterogeneity, such as created by urbanization, may result in source-sink dynamics at highly localized scales. Differential fitness and individual dispersal movements within local populations are key to generating regional distributions, and thus species ranges, that exceed expectations.

  3. Long-range correlations improve understanding of the influence of network structure on contact dynamics.

    PubMed

    Peyrard, N; Dieckmann, U; Franc, A

    2008-05-01

    Models of infectious diseases are characterized by a phase transition between extinction and persistence. A challenge in contemporary epidemiology is to understand how the geometry of a host's interaction network influences disease dynamics close to the critical point of such a transition. Here we address this challenge with the help of moment closures. Traditional moment closures, however, do not provide satisfactory predictions close to such critical points. We therefore introduce a new method for incorporating longer-range correlations into existing closures. Our method is technically simple, remains computationally tractable and significantly improves the approximation's performance. Our extended closures thus provide an innovative tool for quantifying the influence of interaction networks on spatially or socially structured disease dynamics. In particular, we examine the effects of a network's clustering coefficient, as well as of new geometrical measures, such as a network's square clustering coefficients. We compare the relative performance of different closures from the literature, with or without our long-range extension. In this way, we demonstrate that the normalized version of the Bethe approximation-extended to incorporate long-range correlations according to our method-is an especially good candidate for studying influences of network structure. Our numerical results highlight the importance of the clustering coefficient and the square clustering coefficient for predicting disease dynamics at low and intermediate values of transmission rate, and demonstrate the significance of path redundancy for disease persistence.

  4. Chroma sampling and modulation techniques in high dynamic range video coding

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Krishnan, Madhu; Topiwala, Pankaj

    2015-09-01

    High Dynamic Range and Wide Color Gamut (HDR/WCG) Video Coding is an area of intense research interest in the engineering community, for potential near-term deployment in the marketplace. HDR greatly enhances the dynamic range of video content (up to 10,000 nits), as well as broadens the chroma representation (BT.2020). The resulting content offers new challenges in its coding and transmission. The Moving Picture Experts Group (MPEG) of the International Standards Organization (ISO) is currently exploring coding efficiency and/or the functionality enhancements of the recently developed HEVC video standard for HDR and WCG content. FastVDO has developed an advanced approach to coding HDR video, based on splitting the HDR signal into a smoothed luminance (SL) signal, and an associated base signal (B). Both signals are then chroma downsampled to YFbFr 4:2:0 signals, using advanced resampling filters, and coded using the Main10 High Efficiency Video Coding (HEVC) standard, which has been developed jointly by ISO/IEC MPEG and ITU-T WP3/16 (VCEG). Our proposal offers both efficient coding, and backwards compatibility with the existing HEVC Main10 Profile. That is, an existing Main10 decoder can produce a viewable standard dynamic range video, suitable for existing screens. Subjective tests show visible improvement over the anchors. Objective tests show a sizable gain of over 25% in PSNR (RGB domain) on average, for a key set of test clips selected by the ISO/MPEG committee.

  5. Single molecule electronics: increasing dynamic range and switching speed using cross-conjugated species.

    PubMed

    Andrews, David Q; Solomon, Gemma C; Van Duyne, Richard P; Ratner, Mark A

    2008-12-24

    Molecular electronics is partly driven by the goal of producing active electronic elements that rival the performance of their solid-state counterparts, but on a much smaller size scale. We investigate what constitutes an ideal switch or molecular device, and how it can be designed, by analyzing transmission plots. The interference features in cross-conjugated molecules provide a large dynamic range in electron transmission probability, opening a new area for addressing electronic functionality in molecules. This large dynamic range is accessible through changes in electron density alone, enabling fast and stable switching. Using cross-conjugated molecules, we show how the width, depth, and energetic location of the interference features can be controlled. In an example of a single molecule transistor, we calculate a change in conductance of 8 orders of magnitude with an applied gate voltage. Using multiple interference features, we propose and calculate the current/voltage behavior of a molecular rectifier with a rectification ratio of >150,000. We calculate a purely electronic negative differential resistance behavior, suggesting that the large dynamic range in electron transmission probability caused by quantum interference could be exploited in future electronic devices.

  6. Fluorescent Protein Based FRET Pairs with Improved Dynamic Range for Fluorescence Lifetime Measurements

    PubMed Central

    George Abraham, Bobin; Sarkisyan, Karen S.; Mishin, Alexander S.; Santala, Ville; Tkachenko, Nikolai V.; Karp, Matti

    2015-01-01

    Fluorescence Resonance Energy Transfer (FRET) using fluorescent protein variants is widely used to study biochemical processes in living cells. FRET detection by fluorescence lifetime measurements is the most direct and robust method to measure FRET. The traditional cyan-yellow fluorescent protein based FRET pairs are getting replaced by green-red fluorescent protein variants. The green-red pair enables excitation at a longer wavelength which reduces cellular autofluorescence and phototoxicity while monitoring FRET. Despite the advances in FRET based sensors, the low FRET efficiency and dynamic range still complicates their use in cell biology and high throughput screening. In this paper, we utilized the higher lifetime of NowGFP and screened red fluorescent protein variants to develop FRET pairs with high dynamic range and FRET efficiency. The FRET variations were analyzed by proteolytic activity and detected by steady-state and time-resolved measurements. Based on the results, NowGFP-tdTomato and NowGFP-mRuby2 have shown high potentials as FRET pairs with large fluorescence lifetime dynamic range. The in vitro measurements revealed that the NowGFP-tdTomato has the highest Förster radius for any fluorescent protein based FRET pairs yet used in biological studies. The developed FRET pairs will be useful for designing FRET based sensors and studies employing Fluorescence Lifetime Imaging Microscopy (FLIM). PMID:26237400

  7. Stereo Vision-Based High Dynamic Range Imaging Using Differently-Exposed Image Pair.

    PubMed

    Park, Won-Jae; Ji, Seo-Won; Kang, Seok-Jae; Jung, Seung-Won; Ko, Sung-Jea

    2017-06-22

    In this paper, a high dynamic range (HDR) imaging method based on the stereo vision system is presented. The proposed method uses differently exposed low dynamic range (LDR) images captured from a stereo camera. The stereo LDR images are first converted to initial stereo HDR images using the inverse camera response function estimated from the LDR images. However, due to the limited dynamic range of the stereo LDR camera, the radiance values in under/over-exposed regions of the initial main-view (MV) HDR image can be lost. To restore these radiance values, the proposed stereo matching and hole-filling algorithms are applied to the stereo HDR images. Specifically, the auxiliary-view (AV) HDR image is warped by using the estimated disparity between initial the stereo HDR images and then effective hole-filling is applied to the warped AV HDR image. To reconstruct the final MV HDR, the warped and hole-filled AV HDR image is fused with the initial MV HDR image using the weight map. The experimental results demonstrate objectively and subjectively that the proposed stereo HDR imaging method provides better performance compared to the conventional method.

  8. Stereo Vision-Based High Dynamic Range Imaging Using Differently-Exposed Image Pair

    PubMed Central

    Park, Won-Jae; Ji, Seo-Won; Kang, Seok-Jae; Jung, Seung-Won; Ko, Sung-Jea

    2017-01-01

    In this paper, a high dynamic range (HDR) imaging method based on the stereo vision system is presented. The proposed method uses differently exposed low dynamic range (LDR) images captured from a stereo camera. The stereo LDR images are first converted to initial stereo HDR images using the inverse camera response function estimated from the LDR images. However, due to the limited dynamic range of the stereo LDR camera, the radiance values in under/over-exposed regions of the initial main-view (MV) HDR image can be lost. To restore these radiance values, the proposed stereo matching and hole-filling algorithms are applied to the stereo HDR images. Specifically, the auxiliary-view (AV) HDR image is warped by using the estimated disparity between initial the stereo HDR images and then effective hole-filling is applied to the warped AV HDR image. To reconstruct the final MV HDR, the warped and hole-filled AV HDR image is fused with the initial MV HDR image using the weight map. The experimental results demonstrate objectively and subjectively that the proposed stereo HDR imaging method provides better performance compared to the conventional method. PMID:28640235

  9. Seasonal source-sink dynamics at the edge of a species' range

    USGS Publications Warehouse

    Kanda, L.L.; Fuller, T.K.; Sievert, P.R.; Kellogg, R.L.

    2009-01-01

    The roles of dispersal and population dynamics in determining species' range boundaries recently have received theoretical attention but little empirical work. Here we provide data on survival, reproduction, and movement for a Virginia opossum (Didelphis virginiana) population at a local distributional edge in central Massachusetts (USA). Most juvenile females that apparently exploited anthropogenic resources survived their first winter, whereas those using adjacent natural resources died of starvation. In spring, adult females recolonized natural areas. A life-table model suggests that a population exploiting anthropogenic resources may grow, acting as source to a geographically interlaced sink of opossums using only natural resources, and also providing emigrants for further range expansion to new human-dominated landscapes. In a geographical model, this source-sink dynamic is consistent with the local distribution identified through road-kill surveys. The Virginia opossum's exploitation of human resources likely ameliorates energetically restrictive winters and may explain both their local distribution and their northward expansion in unsuitable natural climatic regimes. Landscape heterogeneity, such as created by urbanization, may result in source-sink dynamics at highly localized scales. Differential fitness and individual dispersal movements within local populations are key to generating regional distributions, and thus species ranges, that exceed expectations. ?? 2009 by the Ecological Society of America.

  10. High sensitive/wide dynamic range, field emission pressure sensor based on fully embedded CNTs

    NASA Astrophysics Data System (ADS)

    Taak, S.; Rajabali, S.; Darbari, S.; Mohajerzadeh, S.

    2014-01-01

    The formation of high sensitivity-wide dynamic range field emission pressure sensors based on carbon nanotubes (CNTs) is reported. In this work, CNTs are grown inside an array of micromachined holes in order to ensure a high sensitivity and a wide dynamic range by allowing anode-cathode proximity while preventing anode-cathode direct contact simultaneously. External pressure is applied to a Si-based flexible anode, which results in consequent variations in emission current, due to electric field changes. Microcavities in this structure have been formed by a Si deep vertical etching process, while the CNTs have been grown by direct current plasma-enhanced chemical vapour deposition. Also, it is demonstrated that a similar fabrication process can be applied to implement a device with an electrically controllable emission current. A high sensitivity of 1.5-13.7 µA kPa-1 (with Vanode/cathode < 100 V) within a dynamic range from around 0.1 to 1 GPa, is measured in this experiment.

  11. Digital PCR modeling for maximal sensitivity, dynamic range and measurement precision.

    PubMed

    Majumdar, Nivedita; Wessel, Thomas; Marks, Jeffrey

    2015-01-01

    The great promise of digital PCR is the potential for unparalleled precision enabling accurate measurements for genetic quantification. A challenge associated with digital PCR experiments, when testing unknown samples, is to perform experiments at dilutions allowing the detection of one or more targets of interest at a desired level of precision. While theory states that optimal precision (Po) is achieved by targeting ~1.59 mean copies per partition (λ), and that dynamic range (R) includes the space spanning one positive (λL) to one negative (λU) result from the total number of partitions (n), these results are tempered for the practitioner seeking to construct digital PCR experiments in the laboratory. A mathematical framework is presented elucidating the relationships between precision, dynamic range, number of partitions, interrogated volume, and sensitivity in digital PCR. The impact that false reaction calls and volumetric variation have on sensitivity and precision is next considered. The resultant effects on sensitivity and precision are established via Monte Carlo simulations reflecting the real-world likelihood of encountering such scenarios in the laboratory. The simulations provide insight to the practitioner on how to adapt experimental loading concentrations to counteract any one of these conditions. The framework is augmented with a method of extending the dynamic range of digital PCR, with and without increasing n, via the use of dilutions. An example experiment demonstrating the capabilities of the framework is presented enabling detection across 3.33 logs of starting copy concentration.

  12. 3D shape measurement of objects with high dynamic range of surface reflectivity

    NASA Astrophysics Data System (ADS)

    Liu, Gui-Hua; Liu, Xian-Yong; Feng, Quan-Yuan

    2011-08-01

    This paper presents a method that allows a conventional dual-camera structured light system to directly acquire the three-dimensional shape of the whole surface of an object with high dynamic range of surface reflectivity. To reduce the degradation in area-based correlation caused by specular highlights and diffused darkness, we first disregard these highly specular and dark pixels. Then, to solve this problem and further obtain unmatched area data, this binocular vision system was also used as two camera-projector monocular systems operated from different viewing angles at the same time to fill in missing data of the binocular reconstruction. This method involves producing measurable images by integrating such techniques as multiple exposures and high dynamic range imaging to ensure the capture of high-quality phase of each point. An image-segmentation technique was also introduced to distinguish which monocular system is suitable to reconstruct a certain lost point accurately. Our experiments demonstrate that these techniques extended the measurable areas on the high dynamic range of surface reflectivity such as specular objects or scenes with high contrast to the whole projector-illuminated field.

  13. Gold Nanoparticle Aggregation for Quantification of Oligonucleotides: Optimization and Increased Dynamic Range

    PubMed Central

    Cordray, Michael S.; Amdahl, Matthew; Richards-Kortum, Rebecca R.

    2012-01-01

    A variety of assays have been proposed to detect small quantities of nucleic acids at the point-of-care. One approach relies on target-induced aggregation of gold nanoparticles functionalized with oligonucleotide sequences complementary to adjacent regions on the targeted sequence. In the presence of the target sequence, the gold nanoparticles aggregate, producing an easily detectable shift in the optical scattering properties of the solution. The major limitations of this assay are that it requires heating, and that long incubation times are required to produce a result. This study aims to optimize the assay conditions and optical readout, with the goals of eliminating the need for heating and reducing the time to result without sacrificing sensitivity or dynamic range. By optimizing assay conditions and measuring the spectrum of scattered light at the endpoint of incubation, we find that the assay is capable of producing quantifiable results at room temperature in 30 minutes with a linear dynamic range spanning from 150 amoles to 15 fmoles of target. If changes in light scattering are measured dynamically during the incubation process, the linear range can be expanded 2-fold, spanning 50 amoles to 500 fmoles, while decreasing the time to result down to 10 minutes. PMID:23000603

  14. Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis

    NASA Astrophysics Data System (ADS)

    Labiche, Jean-Claude; Mathon, Olivier; Pascarelli, Sakura; Newton, Mark A.; Ferre, Gemma Guilera; Curfs, Caroline; Vaughan, Gavin; Homs, Alejandro; Carreiras, David Fernandez

    2007-09-01

    Originally conceived and developed at the European Synchrotron Radiation Facility (ESRF) as an "area" detector for rapid x-ray imaging studies, the fast readout low noise (FReLoN) detector of the ESRF [J.-C. Labiche, ESRF Newsletter 25, 41 (1996)] has been demonstrated to be a highly versatile and unique detector. Charge coupled device (CCD) cameras at present available on the public market offer either a high dynamic range or a high readout speed. A compromise between signal dynamic range and readout speed is always sought. The parameters of the commercial cameras can sometimes be tuned, in order to better fulfill the needs of specific experiments, but in general these cameras have a poor duty cycle (i.e., the signal integration time is much smaller than the readout time). In order to address scientific problems such as time resolved experiments at the ESRF, a FReLoN camera has been developed by the Instrument Support Group at ESRF. This camera is a low noise CCD camera that combines high dynamic range, high readout speed, accuracy, and improved duty cycle in a single image. In this paper, we show its application in a quasi-one-dimensional sense to dynamic problems in materials science, catalysis, and chemistry that require data acquisition on a time scale of milliseconds or a few tens of milliseconds. It is demonstrated that in this mode the FReLoN can be applied equally to the investigation of rapid changes in long range order (via diffraction) and local order (via energy dispersive extended x-ray absorption fine structure) and in situations of x-ray hardness and flux beyond the capacity of other detectors.

  15. Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis

    SciTech Connect

    Labiche, Jean-Claude; Mathon, Olivier; Pascarelli, Sakura; Newton, Mark A.; Ferre, Gemma Guilera; Curfs, Caroline; Vaughan, Gavin; Homs, Alejandro; Carreiras, David Fernandez

    2007-09-15

    Originally conceived and developed at the European Synchrotron Radiation Facility (ESRF) as an 'area' detector for rapid x-ray imaging studies, the fast readout low noise (FReLoN) detector of the ESRF [J.-C. Labiche, ESRF Newsletter 25, 41 (1996)] has been demonstrated to be a highly versatile and unique detector. Charge coupled device (CCD) cameras at present available on the public market offer either a high dynamic range or a high readout speed. A compromise between signal dynamic range and readout speed is always sought. The parameters of the commercial cameras can sometimes be tuned, in order to better fulfill the needs of specific experiments, but in general these cameras have a poor duty cycle (i.e., the signal integration time is much smaller than the readout time). In order to address scientific problems such as time resolved experiments at the ESRF, a FReLoN camera has been developed by the Instrument Support Group at ESRF. This camera is a low noise CCD camera that combines high dynamic range, high readout speed, accuracy, and improved duty cycle in a single image. In this paper, we show its application in a quasi-one-dimensional sense to dynamic problems in materials science, catalysis, and chemistry that require data acquisition on a time scale of milliseconds or a few tens of milliseconds. It is demonstrated that in this mode the FReLoN can be applied equally to the investigation of rapid changes in long range order (via diffraction) and local order (via energy dispersive extended x-ray absorption fine structure) and in situations of x-ray hardness and flux beyond the capacity of other detectors.

  16. Effects of static and dynamic higher-order optical modes in balanced homodyne readout for future gravitational waves detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Teng; Danilishin, Stefan L.; Steinlechner, Sebastian; Barr, Bryan W.; Bell, Angus S.; Dupej, Peter; Gräf, Christian; Hennig, Jan-Simon; Houston, E. Alasdair; Huttner, Sabina H.; Leavey, Sean S.; Pascucci, Daniela; Sorazu, Borja; Spencer, Andrew; Wright, Jennifer; Strain, Kenneth A.; Hild, Stefan

    2017-03-01

    With the recent detection of gravitational waves (GWs), marking the start of the new field of GW astronomy, the push for building more sensitive laser-interferometric gravitational wave detectors (GWDs) has never been stronger. Balanced homodyne detection (BHD) allows for a quantum-noise (QN) limited readout of arbitrary light field quadratures, and has therefore been suggested as a vital building block for upgrades to Advanced LIGO and third-generation observatories. In terms of the practical implementation of BHD, we develop a full framework for analyzing the static optical high-order modes (HOMs) occurring in the BHD paths related to the misalignment or mode matching at the input and output ports of the laser interferometer. We find the effects of HOMs on the quantum-noise limited sensitivity is independent of the actual interferometer configuration; e.g. Michelson and Sagnac interferometers are affected in the same way. We show that misalignment of the output ports of the interferometer (output misalignment) only affects the high-frequency part of the quantum-noise limited sensitivity (detection noise). However, at low frequencies, HOMs reduce the interferometer response and the radiation pressure noise (back-action noise) by the same amount and hence the quantum-noise limited sensitivity is not negatively affected in that frequency range. We show that the misalignment of the laser into the interferometer (input misalignment) produces the same effect as output misalignment and additionally decreases the power inside the interferometer. We also analyze dynamic HOM effects, such as beam jitter created by the suspended mirrors of the BHD. Our analyses can be directly applied to any BHD implementation in a future GWD. Moreover, we apply our analytical techniques to the example of the speed meter proof-of-concept experiment under construction in Glasgow. We find that for our experimental parameters, the performance of our seismic isolation system in the BHD paths is

  17. Dynamics and thermodynamics of systems with long-range dipole-type interactions.

    PubMed

    Atenas, Boris; Curilef, Sergio

    2017-02-01

    A Hamiltonian mean field model, where the potential is inspired by dipole-dipole interactions, is proposed to characterize the behavior of systems with long-range interactions. The dynamics of the system remains in quasistationary states before arriving at equilibrium. The equilibrium is analytically derived from the canonical ensemble and coincides with that obtained from molecular dynamics simulations (microcanonical ensemble) at only long time scales. The dynamics of the system is characterized by the behavior of the mean value of the kinetic energy. The significance of the results, compared to others in the recent literature, is that two plateaus sequentially emerge in the evolution of the model under the special considerations of the initial conditions and systems of finite size. The first plateau decays to a different second one before the system reaches equilibrium, but the dynamics of the system is expected to have only one plateau when the thermodynamics limit is reached because the difference between them tends to disappear as N tends to infinity. Hence, the first plateau is a type of quasistationary state the lifetime of which depends on a power law of N and the second seems to be a true quasistationary state as reported in the literature. We characterize the general behavior of the model according to its dynamics and thermodynamics.

  18. Dynamics and thermodynamics of systems with long-range dipole-type interactions

    NASA Astrophysics Data System (ADS)

    Atenas, Boris; Curilef, Sergio

    2017-02-01

    A Hamiltonian mean field model, where the potential is inspired by dipole-dipole interactions, is proposed to characterize the behavior of systems with long-range interactions. The dynamics of the system remains in quasistationary states before arriving at equilibrium. The equilibrium is analytically derived from the canonical ensemble and coincides with that obtained from molecular dynamics simulations (microcanonical ensemble) at only long time scales. The dynamics of the system is characterized by the behavior of the mean value of the kinetic energy. The significance of the results, compared to others in the recent literature, is that two plateaus sequentially emerge in the evolution of the model under the special considerations of the initial conditions and systems of finite size. The first plateau decays to a different second one before the system reaches equilibrium, but the dynamics of the system is expected to have only one plateau when the thermodynamics limit is reached because the difference between them tends to disappear as N tends to infinity. Hence, the first plateau is a type of quasistationary state the lifetime of which depends on a power law of N and the second seems to be a true quasistationary state as reported in the literature. We characterize the general behavior of the model according to its dynamics and thermodynamics.

  19. Novel insights on population and range edge dynamics using an unparalleled spatiotemporal record of species invasion.

    PubMed

    Grayson, Kristine; Johnson, Derek M

    2017-09-11

    Quantifying the complex spatial dynamics taking place at range edges is critical for understanding future distributions of species, yet very few systems have sufficient data or the spatial resolution to empirically test these dynamics. This paper reviews how data from a large-scale pest management program have provided important contributions to the fields of population dynamics and invasion biology. The invasion of gypsy moth (Lymantria dispar) is well-documented from its introduction near Boston, Massachusetts USA in 1869 to its current extent of over 900,000 km(2) in Eastern North America. Over the past two decades, the USDA Forest Service Slow the Spread (STS) program for managing the future spread of gypsy moth has produced unrivaled spatiotemporal data across the invasion front. The STS program annually deploys a grid of 60,000 - 100,000 pheromone-baited traps, currently extending from Minnesota to North Carolina. The data from this program has provided the foundation for investigations of complex population dynamics and the ability to examine ecological hypotheses previously untestable outside of theoretical venues, particularly regarding invasive spread and Allee effects. This system provides empirical data on the importance of long-distance dispersal and time lags on population establishment and spatial spread. Studies showing high rates of spatiotemporal variation of the range edge, from rapid spread to border stasis and even retraction, highlight future opportunities to test mechanisms that influence both invasive and native species ranges. The STS trap data have also created a unique opportunity to study low-density population dynamics and quantify Allee effects with empirical data. Notable contributions include evidence for spatiotemporal variation in Allee effects, demonstrating empirical links between Allee effects and spatial spread, and testing mechanisms of population persistence and growth rates at range edges. There remain several outstanding

  20. Combining population-dynamic and ecophysiological models to predict climate-induced insect range shifts.

    PubMed

    Crozier, Lisa; Dwyer, Greg

    2006-06-01

    Hundreds of species are shifting their ranges in response to recent climate warming. To predict how continued climate warming will affect the potential, or “bioclimatic range,” of a skipper butterfly, we present a population‐dynamic model of range shift in which population growth is a function of temperature. We estimate the parameters of this model using previously published data for Atalopedes campestris. Summer and winter temperatures affect population growth rate independently in this species and therefore interact as potential range‐limiting factors. Our model predicts a two‐phase response to climate change; one range‐limiting factor gradually becomes dominant, even if warming occurs steadily along a thermally linear landscape. Whether the range shift accelerates or decelerates and whether the number of generations per year at the range edge increases or decreases depend on whether summer or winter warms faster. To estimate the uncertainty in our predictions of range shift, we use a parametric bootstrap of biological parameter values. Our results show that even modest amounts of data yield predictions with reasonably small confidence intervals, indicating that ecophysiological models can be useful in predicting range changes. Nevertheless, the confidence intervals are sensitive to regional differences in the underlying thermal landscape and the warming scenario.

  1. Study of the process e+e-→ω η π0 in the energy range √{s }<2 GeV with the SND detector

    NASA Astrophysics Data System (ADS)

    Achasov, M. N.; Aulchenko, V. M.; Barnyakov, A. Yu.; Beloborodov, K. I.; Berdyugin, A. V.; Berkaev, D. E.; Bogdanchikov, A. G.; Botov, A. A.; Dimova, T. V.; Druzhinin, V. P.; Golubev, V. B.; Kardapoltsev, L. V.; Kharlamov, A. G.; Koop, I. A.; Korol, A. A.; Kovrizhin, D. P.; Koshuba, S. V.; Kupich, A. S.; Lysenko, A. P.; Melnikova, N. A.; Martin, K. A.; Pakhtusova, E. V.; Obrazovsky, A. E.; Perevedentsev, E. A.; Rogovsky, Yu. A.; Serednyakov, S. I.; Silagadze, Z. K.; Shatunov, Yu. M.; Shatunov, P. Yu.; Shtol, D. A.; Skrinsky, A. N.; Surin, I. K.; Tikhonov, Yu. A.; Usov, Yu. V.; Vasiljev, A. V.; Zemlyansky, I. M.

    2016-08-01

    The process e+e-→ω η π0 is studied in the energy range 1.45-2.00 GeV using data with an integrated luminosity of 33 pb-1 accumulated by the SND detector at the e+e- collider VEPP-2000. The e+e-→ω η π0 cross section is measured for the first time. The cross section has a threshold near 1.75 GeV. Its value is about 2 nb in the energy range 1.8-2.0 GeV. The dominant intermediate state for the process e+e-→ω η π0 is found to be ω a0(980 ).

  2. Single-crystal CVD diamond detector for low-energy charged particles with energies ranging from 100 keV to 2 MeV

    SciTech Connect

    Yuki Sato; Hiroyuki Murakami; Takehiro Shimaoka; Masakatsu Tsubota; Junichi, H. Kaneko

    2015-07-01

    The performance of a diamond detector made of a single-crystal diamond grown by chemical vapor deposition was studied for charged particles, having energies ranging from 100 keV to 2 MeV. Energy peaks of these low-energy ions were clearly observed. However, we observed that the pulse height for individual incident ion decreases with increasing atomic number of the ions. We estimated the charge collection efficiency of the generated charge carriers by charged particle incident. The charge collection above ∼95% is achieved for helium (He{sup +}) with the energy above 1.5 MeV. On the other hand, the charge collection efficiency for heavy-ions shows wrong values compared with that of He{sup +}, ∼70% for silicon (Si{sup +}) and 35 to 40% for gold (Au{sup 3+}), at the same incident energy range, respectively. (authors)

  3. Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator

    PubMed Central

    Wang, Ying-Chih; Han, Jongyoon

    2008-01-01

    Almost all immuno-biosensors are inherently limited by the quality of antibodies available for the target molecule, and obtaining a highly sensitive antibody for a given target molecule is a challenge. We describe a highly efficient and flexible way to enhance immunoassay detection sensitivity and binding kinetics using a nanofluidic based electrokinetic preconcentrator. The device is a microfluidic integration of charge-based biomolecule concentrator and a bead-based immunoassay. Because the preconcentrator can increase the local biomolecule concentration by many orders of magnitude, it gives the immuno-sensor better sensitivity and faster binding kinetics. With a 30 min preconcentration, we were able to enhance the immunoassay sensitivity (with molecular background) by more than 500 fold from higher 50 pM to the sub 100 fM range. Moreover, by adjusting the preconcentration time, we can switch the detection range of the given bead-based assay (from 10–10,000 ng/ml to 0.01–10,000 ng/ml) to have a broader dynamic range of detection. As the system can enhance both detection sensitivity and dynamic range, it can be used to address the most critical detection issues in the detection of common disease biomarkers. PMID:18305855

  4. In-line process control for laser welding of titanium by high dynamic range ratio pyrometry and plasma spectroscopy

    NASA Astrophysics Data System (ADS)

    Lempe, B.; Taudt, C.; Baselt, T.; Rudek, F.; Maschke, R.; Basan, F.; Hartmann, P.

    2014-02-01

    The production of complex titanium components for various industries using laser welding processes has received growing attention in recent years. It is important to know whether the result of the cohesive joint meets the quality requirements of standardization and ultimately the customer requirements. Erroneous weld seams can have fatal consequences especially in the field of car manufacturing and medicine technology. To meet these requirements, a real-time process control system has been developed which determines the welding quality through a locally resolved temperature profile. By analyzing the resulting weld plasma received data is used to verify the stability of the laser welding process. The determination of the temperature profile is done by the detection of the emitted electromagnetic radiation from the material in a range of 500 nm to 1100 nm. As detectors, special high dynamic range CMOS cameras are used. As the emissivity of titanium depends on the wavelength, the surface and the angle of radiation, measuring the temperature is a problem. To solve these a special pyrometer setting with two cameras is used. That enables the compensation of these effects by calculating the difference between the respective pixels on simultaneously recorded images. Two spectral regions with the same emissivity are detected. Therefore the degree of emission and surface effects are compensated and canceled out of the calculation. Using the spatially resolved temperature distribution the weld geometry can be determined and the laser process can be controlled. The active readjustment of parameters such as laser power, feed rate and inert gas injection increases the quality of the welding process and decreases the number of defective goods.

  5. Demonstration of 136 dB dynamic range capability for a simultaneous dual optical band CAOS camera.

    PubMed

    Riza, Nabeel A; La Torre, J Pablo

    2016-12-26

    For the first time, proposed and demonstrated is a simultaneous dual optical band coded access optical sensor (CAOS) camera design suited for extreme contrast multispectral bright target scenarios. Deploying a digital micromirror devices (DMDs)-based time-frequency agile pixels CAOS-mode within a two point detector spatially and spectrally isolating framework, this imager simultaneously and independently detects pixel selective image information for two different broad spectral bands that further undergo independent spectral image data extraction via finer-tuned wavelength filtering using all-optical or CAOS-mode electronic filters. A proof-of-concept visible-near infrared band CAOS imager is successfully demonstrated using a target scene containing LEDs and engaging narrowband optical filters. In addition, using the CAOS-mode, demonstrated is the RF domain simultaneous color content monitoring of a white light LED image pixel. Also proposed is the use of a higher bit count analog-to-digital converter (ADC) with both range and sampling duration parameter control along with a larger data set electronic DSP to extract higher DSP gain and realize additional noise suppression. Using a 16-bit ADC and 2,097,152 point fast Fourier transform (FFT) digital signal processing (DSP) for a 633 nm laser engaged test target scene that is subject to nearly 7 decades (107) of gradual optical attenuation, the experimental camera demonstrates an agile pixel extreme dynamic range of 136 dB, which is a 56 dB improvement over the previous CAOS-imaging demonstrations.

  6. Optimizing the dynamic range extension of a radiochromic film dosimetry system

    SciTech Connect

    Devic, Slobodan; Tomic, Nada; Soares, Christopher G.; Podgorsak, Ervin B.

    2009-02-15

    The authors present a radiochromic film dosimetry protocol for a multicolor channel radiochromic film dosimetry system consisting of the external beam therapy (EBT) model GAFCHROMIC film and the Epson Expression 1680 flat-bed document scanner. Instead of extracting only the red color channel, the authors are using all three color channels in the absorption spectrum of the EBT film to extend the dynamic dose range of the radiochromic film dosimetry system. By optimizing the dose range for each color channel, they obtained a system that has both precision and accuracy below 1.5%, and the optimized ranges are 0-4 Gy for the red channel, 4-50 Gy for the green channel, and above 50 Gy for the blue channel.

  7. Universal threshold for the dynamical behavior of lattice systems with long-range interactions.

    PubMed

    Bachelard, Romain; Kastner, Michael

    2013-04-26

    Dynamical properties of lattice systems with long-range pair interactions, decaying like 1/r(α) with the distance r, are investigated, in particular the time scales governing the relaxation to equilibrium. Upon varying the interaction range α, we find evidence for the existence of a threshold at α=d/2, dependent on the spatial dimension d, at which the relaxation behavior changes qualitatively and the corresponding scaling exponents switch to a different regime. Based on analytical as well as numerical observations in systems of vastly differing nature, ranging from quantum to classical, from ferromagnetic to antiferromagnetic, and including a variety of lattice structures, we conjecture this threshold and some of its characteristic properties to be universal.

  8. Slow dynamics in many-body quantum systems with long range interactions

    NASA Astrophysics Data System (ADS)

    Santos, Lea; Perez-Bernal, Francisco

    2016-05-01

    In recent experiments with ion traps the range of the interactions between spins-1/2 can be controlled. In the limit of infinite-range interaction the system may be described by the Lipkin model, which exhibits an excited state quantum phase transition (ESQPT). The latter corresponds to a singularity in the spectrum that occurs at the ground state and propagates to higher energies as the control parameter increases beyond the ground state critical point. We show that the evolution of an initial state with energy close to the ESQPT critical point may be extremely slow. This result is surprising, since the dynamics is usually expected to be very fast in systems with long-range interactions. This behavior is justified with the analysis of the structures of the eigenstates. This work was supported by the NSF Grant No. DMR-1147430.

  9. Small high-speed dynamic target at close range laser active imaging system

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Wang, Du-yue; Zhang, Zheng; Zhang, Yue; Dai, Qin

    2016-11-01

    In the shooting range measuring, all-weather, high speed, unattended, the new concepts such as the remote control is gradually applied. In this paper, a new type of low cost range measurement system, using FPGA + MCU as electronic control system of laser active illumination and high-speed CMOS camera, data to the rear zone by using optical fiber communications, transmission and realizes the remote control of unmanned, due to the low cost of front-end equipment, can be used as consumables replacement at any time, combined with distributed layout principle, can maximum limit close to the measured with mutilate ability goal, thus to achieve the goal of small high-speed dynamic imaging from close range.

  10. Molecular dynamics characterization of icosahedral short range order in undercooled copper

    NASA Astrophysics Data System (ADS)

    Celino, M.

    2011-05-01

    The stability of undercooled simple metals is still an intriguing problem for materials science and technology. There is not consensus on the role played by the icosahedral short range order during undercooling. The scenario is even less clear for undercooled metals under external pressure. Extensive molecular dynamics simulations, based on an empirical tight-binding interatomic potential, are performed to explain experimental results recently obtained on liquid and undercooled liquid copper. A common neighbour analysis is used to fully characterize the icosahedral short range order in both undercooled and liquid systems. Moreover, the effect of pressure on icosahedral short range order, is addressed and rationalized. External pressure increases the probability to find atomic bonds with icosahedral symmetry both in the liquid and in the undercooled copper.

  11. Effect of long-range hopping and interactions on entanglement dynamics and many-body localization

    NASA Astrophysics Data System (ADS)

    Singh, Rajeev; Moessner, Roderich; Roy, Dibyendu

    2017-03-01

    We numerically investigate the dynamics of entanglement in a chain of spinless fermions with nonrandom but long-range hopping and interactions, and with random on-site energies. For moderate disorder in the absence of interactions, the chain hosts delocalized states at the top of the band which undergo a delocalization-localization transition with increasing disorder. We find an interesting regime in this noninteracting disordered chain where the long-time entanglement entropy scales as S (t )˜lnt and the saturated entanglement entropy scales with system size L as S (L ,t →∞ )˜lnL . We further study the interplay of long-range hopping and interactions on the growth of entanglement and the many-body localization (MBL) transition in this system. We develop an analogy to higher-dimensional short-range systems to compare and contrast such behavior with the physics of MBL in a higher dimension.

  12. Long-range protein–water dynamics in hyperactive insect antifreeze proteins

    PubMed Central

    Meister, Konrad; Ebbinghaus, Simon; Xu, Yao; Duman, John G.; DeVries, Arthur; Gruebele, Martin; Leitner, David M.; Havenith, Martina

    2013-01-01

    Antifreeze proteins (AFPs) are specific proteins that are able to lower the freezing point of aqueous solutions relative to the melting point. Hyperactive AFPs, identified in insects, have an especially high ability to depress the freezing point by far exceeding the abilities of other AFPs. In previous studies, we postulated that the activity of AFPs can be attributed to two distinct molecular mechanisms: (i) short-range direct interaction of the protein surface with the growing ice face and (ii) long-range interaction by protein-induced water dynamics extending up to 20 Å from the protein surface. In the present paper, we combine terahertz spectroscopy and molecular simulations to prove that long-range protein–water interactions make essential contributions to the high antifreeze activity of insect AFPs from the beetle Dendroides canadensis. We also support our hypothesis by studying the effect of the addition of the osmolyte sodium citrate. PMID:23277543

  13. Long-range protein-water dynamics in hyperactive insect antifreeze proteins.

    PubMed

    Meister, Konrad; Ebbinghaus, Simon; Xu, Yao; Duman, John G; DeVries, Arthur; Gruebele, Martin; Leitner, David M; Havenith, Martina

    2013-01-29

    Antifreeze proteins (AFPs) are specific proteins that are able to lower the freezing point of aqueous solutions relative to the melting point. Hyperactive AFPs, identified in insects, have an especially high ability to depress the freezing point by far exceeding the abilities of other AFPs. In previous studies, we postulated that the activity of AFPs can be attributed to two distinct molecular mechanisms: (i) short-range direct interaction of the protein surface with the growing ice face and (ii) long-range interaction by protein-induced water dynamics extending up to 20 Å from the protein surface. In the present paper, we combine terahertz spectroscopy and molecular simulations to prove that long-range protein-water interactions make essential contributions to the high antifreeze activity of insect AFPs from the beetle Dendroides canadensis. We also support our hypothesis by studying the effect of the addition of the osmolyte sodium citrate.

  14. Analysis of electric vehicle extended range misalignment based on rigid-flexible dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Xiaowei; Lv, Mingliang; Chen, Zibo; Ji, Wei; Gao, Ruiceng

    2017-04-01

    The safety of the extended range electric vehicle is seriously affected by the misalignment fault. Therefore, this paper analyzed the electric vehicle extended range misalignment based on rigid-flexible dynamics. Through comprehensively applied the hybrid modeling of rigid-flexible and the method of fault diagnosis of machinery and equipment comprehensively, it established a extender hybrid rigid flexible mechanical model by means of the software ADAMS and ANSYS. By setting the relevant parameters to simulate the misalignment of shafting, the failure phenomenon, the spectrum analysis and the evolution rules were analyzed. It concluded that 0.5th and 1 harmonics are considered as the characteristic parameters of misalignment diagnostics for electric vehicle extended range.

  15. Optimizing the dynamic range extension of a radiochromic film dosimetry system.

    PubMed

    Devic, Slobodan; Tomic, Nada; Soares, Christopher G; Podgorsak, Ervin B

    2009-02-01

    The authors present a radiochromic film dosimetry protocol for a multicolor channel radiochromic film dosimetry system consisting of the external beam therapy (EBT) model GAFCHROMIC film and the Epson Expression 1680 flat-bed document scanner. Instead of extracting only the red color channel, the authors are using all three color channels in the absorption spectrum of the EBT film to extend the dynamic dose range of the radiochromic film dosimetry system. By optimizing the dose range for each color channel, they obtained a system that has both precision and accuracy below 1.5%, and the optimized ranges are 0-4 Gy for the red channel, 4-50 Gy for the green channel, and above 50 Gy for the blue channel.

  16. Dynamic defectoscopy with flat panel and CdTe Timepix X-ray detectors combined with an optical camera

    NASA Astrophysics Data System (ADS)

    Vavrik, D.; Fauler, A.; Fiederle, M.; Jandejsek, I.; Jakubek, M.; Turecek, D.; Zwerger, A.

    2013-04-01

    Damage of gradually loaded ductile materials involves a number of physical processes which are highly nonlinear and have different intensity and extent. Dynamic defectoscopy (i.e. defectoscopy of time changing damage processes) combining an X-ray/optical imaging system is proposed for online visualization and analysis of the complex behaviour of such materials. A large area flat panel detector with rather long read out time is used for overall observation of slow damage processes. On the other hand, a semiconductor CdTe Timepix detector with small active area allows following the rapid damage processes occurring in the final phase of specimen failure. Optical imaging of the specimen surface was utilized for analysing the specimen deformations.

  17. Silicon Photomultiplier-Based Multi-Channel Gamma Ray Detector Using the Dynamic Time-Over-Threshold Method

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Shimazoe, K.; Takahashi, H.

    2016-02-01

    Silicon photomultipliers (SiPMs), which are a relatively new type of photon detector, have received more attention in the fields of nuclear medicine and high-energy physics because of their compactness and high gain up to 106. In this work, a SiPM-based multi-channel gamma ray detector with individual read out based on the dynamic time-over-threshold (dToT) method is implemented and demonstrated as an elemental material for large-area gamma ray imager applications. The detector consists of 64 channels of KETEK SiPM PM6660 (6 × 6 mm2 containing 10,000 micro-cells of 60 × 60 μm2) coupled to an 8 × 8 array of high-energy resolution Gd3(Al,Ga)5O12(Ce) (HR-GAGG) crystals (10 × 10 × 10 mm3) segmented by a 1 mm thick BaSO4 reflector. To produce a digital pulse containing linear energy information, the dToT-based read-out circuit consists of a CR-RC shaping amplifier (2.2 μs) and comparator with a feedback component. By modelling the pulse of the SiPM, the light output, and the CR-RC shaping amplifier, the integral-non-linearity (INL) was numerically calculated in terms of the delay time and the time constant of dynamic threshold movement. The experimental results of the averaged INL and energy resolution were 5.8±1.6% and the full-width-at-half-maximum (FWHM) of 7.4±0.9% at 662 keV, respectively. The 64-channel single-mode detector module was successfully implemented, demonstrating potential for its use as an elemental material for large-area gamma ray imaging applications.

  18. Wide range bandgap modulation based on ZnO-based alloys and fabrication of solar blind UV detectors with high rejection ratio.

    PubMed

    Su, Longxing; Zhu, Yuan; Yong, Dingyu; Chen, Mingming; Ji, Xu; Su, Yuquan; Gui, Xuchun; Pan, Bicai; Xiang, Rong; Tang, Zikang

    2014-08-27

    Theoretical calculations on formation energies of MgZnO, BeZnO and BeMgZnO alloys are presented. The ternary alloy MgZnO (BeZnO) is found to be unstable with high Mg (Be) contents. However, the quaternary system BeMgZnO is predicted to be stable with small Be/Mg atom ratio. Subsequently, a wurtzite Be0.17Mg0.54Zn0.29O alloy with a bandgap of 5.15 eV has been acquired experimentally. Its bandgap is in the middle of solar blind region and thus it is an ideal material for realizing a high rejection ratio solar blind ultraviolet (UV) detector, which has long been a problem. A metal-semiconductor-metal (MSM) structured solar blind UV detector based on this material is then fabricated, realizing a much higher rejection ratio than reported MgZnO-based detectors. One more interesting thing is, as a complicated quaternary system, BeMgZnO can maintain its crystal quality in a wide compositional range, which is not happening in MgZnO and BeZnO. To get some microscopic insight into the Be-Mg mutual stabilizing mechanism, more calculations on the lattice constants of BeZnO and MgZnO alloys, and the coordination preference of Be ions in alloy were conducted. The a-axis lattice compensation and 4-fold coordination preference of Be atom are confirmed the major origins for Be-Mg mutual stabilizing in ZnO lattice.

  19. Three dimensional atmospheric dynamics of terrestrial exoplanets over a wide range of orbital and atmospheric parameters

    NASA Astrophysics Data System (ADS)

    Kaspi, Y.; Showman, A. P.

    2014-04-01

    The recent discoveries of terrestrial exoplanets and super Earths extending over a broad range of orbital and physical parameters, suggests that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone-including transitions to Snowballlike states and runaway-greenhouse feedbacks-depend on the equator-to-pole temperature differences, pattern of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model (GCM) including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, planetary mass, surface gravity, heat flux from a parent star and atmospheric mass affect the atmospheric circulation and temperature distribution on such planets. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley cells, and the equator-to-pole temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global-scale climate feedbacks that control the width of the habitable zone.

  20. Atmospheric dynamics of terrestrial exoplanets over a wide range of orbital and atmospheric parameters

    NASA Astrophysics Data System (ADS)

    Kaspi, Yohai; Showman, Adam

    2014-05-01

    The recent discoveries of terrestrial exoplanets and super Earths extending over a broad range of orbital and physical parameters, suggests that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone--including transitions to Snowball-like states and runaway-greenhouse feedbacks--depend on the equator-to-pole temperature differences, pattern of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model (GCM) including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, planetary mass, surface gravity, heat flux from a parent star, atmospheric mass and optical thickness affect the atmospheric circulation and temperature distribution on such planets. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley cells, and the equator-to-pole temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global-scale climate feedbacks that control the width of the habitable zone.