Science.gov

Sample records for detector lowered underground

  1. Atmospheric neutrinos observed in underground detectors

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, T.

    1985-01-01

    Atmospheric neutrinos are produced when the primary cosmic ray beam hits the atmosphere and initiates atmospheric cascades. Secondary mesons decay and give rise to neutrinos. The neutrino production was calculated and compared with the neutrino fluxes detected in underground detectors. Contained neutrino events are characterized by observation of an interaction within the fiducial volume of the detector when the incoming particle is not observed. Both the neutrino flux and the containment requirement restrict the energy of the neutrinos observed in contained interactions to less than several GeV. Neutrinos interact with the rock surrounding the detector but only muon neutrino interactions can be observed, as the electron energy is dissipated too fast in the rock. The direction of the neutrino is preserved in the interaction and at energies above 1 TeV the angular resolution is restricted by the scattering of the muon in the rock. The muon rate reflects the neutrino spectrum above some threshold energy, determined by the detector efficiency for muons.

  2. An improved underground cosmic-ray detector made of RPCs

    NASA Astrophysics Data System (ADS)

    Zhang, Qingmin; Lv, Zhipeng; Deng, Bangjie; Zhang, Jiawen; Qian, Sen; Xu, Jilei

    2017-06-01

    In order to suppress muon-induced background, veto detector is very important, even if the particle physics experiments are deployed underground. Owing to its high efficiency, low cost and low sensitivity to environmental gamma-rays, resistive plate chamber (RPC) is a good candidate for large-area underground cosmic-ray detectors. Based on the experiences and lessons from the RPC veto detector in Daya Bay neutrino experiment, an improved design has been proposed considering the extremely low muon flux, which results in underestimation of RPC layer detection efficiency in self-calibration. Additionally, allowing for the studies of 9Li/8He and fast neutrons, the tracking ability has been considered in design. Finally, an improved design of an RPC underground cosmic-ray detector has been achieved.

  3. Underground muon observations in the Soudan 2 detector

    SciTech Connect

    Allison, W.W.M.; Barr, G.D.; Brooks, C.B.; Cobb, J.H.; Kirby-Gallagher, L.M.; Giles, R.H.; Perkins, D.H.; Shield, P.D.; Thomson, M.A.; West, N. . Nuclear Physics Lab.); Alner, G.J.; Cockerill, D.J.A.; Edwards, V.W.; Garcia-Garcia, C.; Litchfield, P.J.; Pearce, G.F. ); Ambats, I.; Ayres, D.S.; Balka, L.; Barrett, W.L.; Dawson, J.; Fields, T.H.; Goodman, M.C.; Hil

    1989-09-11

    The Soudan 2 nucleon decay detector has recorded data since Summer 1988 using a quarter (dimensions 4 m by 8 m by 5 m high) of the eventual detector. This iron-argon time projection chamber records extensive data on each event and has excellent angular and multi-track resolution. We describe the trigger, the event analysis procedure and the current status of the detector and the underground muon data sample. 1 ref.

  4. Time correlations of high energy muons in an underground detector

    NASA Astrophysics Data System (ADS)

    Becherini, Y.; Cecchini, S.; Chiarusi, T.; Cozzi, M.; Dekhissi, H.; Derkaoui, J.; Esposito, L. S.; Giacomelli, G.; Giorgini, M.; Giglietto, N.; Maaroufi, F.; Mandrioli, G.; Margiotta, A.; Manzoor, S.; Moussa, A.; Patrizii, L.; Popa, V.; Sioli, M.; Sirri, G.; Spurio, M.; Togo, V.

    2005-04-01

    We present the result of a search for correlations in the arrival times of high energy muons collected from 1995 till 2000 with the streamer tube system of the complete MACRO detector at the underground Gran Sasso Lab. Large samples of single muons (8.6 million), double muons (0.46 million) and multiple muons with multiplicities from 3 to 6 (0.08 million) were selected. These samples were used to search for time correlations of cosmic ray particles coming from the whole upper hemisphere or from selected space cones. The results of our analyses confirm with high statistics a random arrival time distribution of high energy cosmic rays.

  5. HEROICA: an underground facility for the fast screening of germanium detectors

    NASA Astrophysics Data System (ADS)

    Andreotti, E.; Garfagnini, A.; Maneschg, W.; Barros, N.; Benato, G.; Brugnera, R.; Costa, F.; Falkenstein, R.; Guthikonda, K. K.; Hegai, A.; Hemmer, S.; Hult, M.; Jänner, K.; Kihm, T.; Lehnert, B.; Liao, H.; Lubashevskiy, A.; Lutter, G.; Marissens, G.; Modenese, L.; Pandola, L.; Reissfelder, M.; Sada, C.; Salathe, M.; Schmitt, C.; Schulz, O.; Schwingenheuer, B.; Turcato, M.; Ur, C.; von Sturm, K.; Wagner, V.; Westermann, J.

    2013-06-01

    HEROICA (Hades Experimental Research Of Intrinsic Crystal Appliances) is an infrastructure to characterize germanium detectors and has been designed and constructed at the HADES Underground Research Laboratory, located in Mol (Belgium). Thanks to the 223 m overburden of clay and sand, the muon flux is lowered by four orders of magnitude. This natural shield minimizes the exposure of radio-pure germanium material to cosmic radiation resulting in a significant suppression of cosmogenic activation in the germanium detectors. The project has been strongly motivated by a special production of germanium detectors for the GERDA experiment. GERDA, currently collecting data at the Laboratori Nazionali del Gran Sasso of INFN, is searching for the neutrinoless double beta decay of 76Ge. In the near future, GERDA will increase its mass and sensitivity by adding new Broad Energy Germanium (BEGe) detectors. The production of the BEGe detectors is done at Canberra in Olen (Belgium), located about 30 km from the underground test site. Therefore, HADES is used both for storage of the crystals over night, during diode production, and for the characterization measurements. A full quality control chain has been setup and tested on the first seven prototype detectors delivered by the manufacturer at the beginning of 2012. The screening capabilities demonstrate that the installed setup fulfills a fast and complete set of measurements on the diodes and it can be seen as a general test facility for the fast screening of high purity germanium detectors. The results are of major importance for a future massive production and characterization chain of germanium diodes foreseen for a possible next generation 1-tonne double beta decay experiment with 76Ge.

  6. Search for double beta decay with HPGe detectors at the Gran Sasso underground laboratory

    NASA Astrophysics Data System (ADS)

    Chkvorets, Oleg

    2008-12-01

    Neutrinoless double-beta decay is practically the only way to establish the Majorana nature of the neutrino mass and its decay rate provides a probe of an effective neutrino mass. Double beta experiments are long-running underground experiments with specific challenges concerning the background reduction and the long term stability. These problems are addressed in this work for the Heidelberg-Moscow (HdM), GENIUS Test Facility (TF) and GERDA experiments. The HdM experiment collected data with enriched 76Ge high purity (HPGe) detectors from 1990 to 2003. An improved analysis of HdM data is presented, exploiting new calibration and spectral shape measurements with the HdM detectors. GENIUS-TF was a test-facility that verified the feasibility of using bare germanium detectors in liquid nitrogen. The first year results of this experiment are discussed. The GERDA experiment has been designed to further increase the sensitivity by operating bare germanium detectors in a high purity cryogenic liquid, which simultaneously serves as a shielding against background and as a cooling media. In the preparatory stage of GERDA, an external background gamma flux measurement was done at the experimental site in the Hall A of the Gran Sasso laboratory. The characterization of the enriched detectors from the HdM and IGEX experiments was performed in the underground detector laboratory for the GERDA collaboration. Long term stability measurements of a bare HPGe detector in liquid argon were carried out. Based on these measurements, the first lower limit on the half-life of neutrinoless double electron capture of 36Ar was established to be 1.85*10^18 years at 68% C.L.

  7. Crystal-growth Underground Breeding Extra-sensitive Detectors

    NASA Astrophysics Data System (ADS)

    Mei, Dongming

    2012-02-01

    CUBED (Center for Ultra-Low Background Experiments at DUSEL) collaborators from USD, SDSMT, SDSU, Sanford Lab, and Lawrence Berkeley National Laboratory are working on the development of techniques to manufacture crystals with unprecedented purity levels in an underground environment that may be used by experiments proposed for DUSEL. The collaboration continues to make significant progress toward its goal of producing high purity germanium crystals. High quality crystals are being pulled on a weekly basis at the temporary surface growth facility located on the USD campus. The characterization of the grown crystals demonstrates that the impurity levels are nearly in the range of the needed impurity level for detector-grade crystals. Currently, the crystals are being grown in high-purity hydrogen atmosphere. With an increase in purity due to the zone refining, the group expects to grow high-purity crystals by the end of 2011. The one third of the grown crystals will be manufactured to be detectors; the remaining will be fabricated in to wafers that have large applications in electro and optical devices as well as solar panels. This would allow the research to be connected to market and create more than 30 jobs and multi millions revenues in a few years.

  8. A Comprehensive Study of the Large Underground Xenon Detector

    NASA Astrophysics Data System (ADS)

    Woods, Michael Austin

    The Large Underground Xenon (LUX) dark matter search experiment operates a time projection chamber constructed of 370 kg of xenon, currently installed in the Homestake gold mine. The goal of the experiment is to detect Weakly Interacting Massive Particles (WIMPs). Novel calibration methods for this uniquely large detector are discussed. Background events due to standard model physics processes including cosmogenically activated xenon, alpha emission, and neutron production are shown to be negligible in recent 85 day WIMP search data. The LUX Monte Carlo simulation includes a new physical model, the Nobel Element Simulation Technique (NEST), for scintillation and ionization. NEST describes energy-, particle-, field- and medium-dependent behavior of a charge recombination model. A simulated data acquisition chain that bridges the gap between simulation and data has been developed to permit full testing of the analysis tools employed by LUX. Signal generation by cumulative photon responses are described algorithmically. Computational optimization has been performed to decrease processing time by a factor of fifty. A new technique for event depth estimation using machine learning and image analysis is introduced. Variable length waveforms are converted to fixed dimension field maps for use in machine learning. A support vector machine trained against pulse shapes with known depth successfully regressed depth without direct measurement of highly variable pulse widths. The world's most stringent limits on spin-independent WIMP-nucleon scattering cross section are presented.

  9. A search for cosmic sources of high energy neutrinos with small underground detectors

    NASA Technical Reports Server (NTRS)

    Berezinsky, V. S.; Castagnoli, C.; Galeotti, P.

    1985-01-01

    On the basis of standard source calculations of high energy neutrino fluxes, some models of astrophysical object (single stars and binary systems) are discussed from which a detectable muon flux is expected in small underground detectors.

  10. Preliminary results on underground muon bundles observed in the Frejus proton-decay detector

    NASA Technical Reports Server (NTRS)

    Degrange, B.

    1985-01-01

    The proton-decay detector installed in the Modane Underground laboratory (4400 mwe) in the Frejus tunnel (French Alps) has recorded 80 880 single muon and 2 322 multi-muon events between March '84 and March '85 (6425 hours of active time). During this period, a part of this modular detector was running, while new modules were being mounted, so that the detector size has continuously increased. The final detector has been completed in May '85.

  11. New Measurement of ^39Ar in Underground Argon with a Low Background Liquid Argon Detector

    NASA Astrophysics Data System (ADS)

    Xu, Jingke

    2012-03-01

    A low background liquid argon detector has been developed for sensitive measurements of the beta radioactive ^39Ar in argon from underground sources. The measurement is motivated by the need to improve on earlier studies that showed no sign of ^39Ar in certain sources of underground argon, but with a limited sensitivity of ˜ 5% relative to ^39Ar in atmospheric argon[1]. We will report preliminary measurements taken with the low background detector that was commissioned and operated at the Kimballton Underground Research Facility (KURF) in Virginia. A combination of passive and active background reduction techniques resulted in a very low background and a null result with sensitivity to ^39Ar less than 1% of atmospheric. The results confirm that underground argon is well suited for direct detection of dark matter WIMPs. [4pt] [1] D. Acosta-Kane et al., Nucl. Instr. Meth. A 587:46 (2008)

  12. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    SciTech Connect

    Garrison, Lance

    2014-01-01

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  13. Comparison of background in underground HPGe-detectors in different lead shield configurations.

    PubMed

    Hult, Mikael; Lutter, Guillaume; Yüksel, Ayhan; Marissens, Gerd; Misiaszek, Marcin; Rosengård, Ulf

    2013-11-01

    In underground HPGe-detector systems where the cosmic ray induced background is low, it is often difficult to assess the location of background sources. In this study, background counting rates of different HPGe-detectors in different lead shields are reported with the aim of better understanding background sources. To further enhance the understanding of the variations of environmental parameters, the background as a function of time over a long period was also studied. © 2013 Elsevier Ltd. All rights reserved.

  14. Dark Matter Search with SUB-keV Germanium Detectors at the China Jinping Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Yue, Qian; Wong, Henry T.

    2013-01-01

    Germanium detectors with sub-keV sensitivities open a window to search for low-mass WIMP dark matter. The CDEX-TEXONO Collaboration is conducting the first research program at the new China Jinping Underground Laboratory with this approach. The status and plans of the laboratory and the experiment are discussed.

  15. Dark Matter Search with sub-keV Germanium Detectors at the China Jinping Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Yue, Qian; Wong, Henry T.; Cdex-Texono Collaboration

    2012-07-01

    Germanium detectors with sub-keV sensitivities open a window to search for low-mass WIMP dark matter. The CDEX-TEXONO Collaboration is conducting the first research program at the new China Jinping Underground Laboratory with this approach. The status and plans of the laboratory and the experiment are discussed.

  16. Dark Matter Search with Sub-Kev Germanium Detectors at the China Jinping Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Yue, Qian; Wong, Henry T.

    2013-12-01

    Germanium detectors with sub-keV sensitivities open a window to search for low-mass WIMP dark matter. The CDEX-TEXONO Collaboration is conducting the first research program at the new China Jinping Underground Laboratory with this approach. The status and plans of the laboratory and the experiment are discussed.

  17. Underground

    ERIC Educational Resources Information Center

    Vrchota, Janet

    1974-01-01

    At a time when the future of New York's subway system looked bleak, new underground zoning legislation (the first ever) has been enacted. This new law requires buildings constructed near a subway station to provide transit easement space to allow public access to the subway through the building property. (MA)

  18. Possible explanation of the correlations between events recorded by underground detectors during the Supernova 1987A explosion

    SciTech Connect

    Alexeyev, E. N.

    2010-02-15

    A possible explanation of the time correlations between the data from underground detectors (Baksan telescope, LSD, IMB, Kamiokande II) and from the Rome and Maryland gravitational-wave antennas obtained during the Supernova 1987A explosion is proposed. It is shown that the synchronization of the events recorded by various underground facilities could be produced by gravitational radiation from the Supernova.

  19. Underground Prototype Water Cherenkov Muon Detector with the Tibet Air Shower Array

    SciTech Connect

    Amenomori, M.; Nanjo, H.; Bi, X. J.; Ding, L. K.; Feng, Zhaoyang; He, H. H.; Hu, H. B.; Lu, H.; Lu, S. L.; Ren, J. R.; Tan, Y. H.; Wang, B.; Wang, H.; Wang, Y.; Wu, H. R.; Zhang, H. M.; Zhang, J. L.; Zhang, Y.; Chen, D.; Kawata, K.

    2008-12-24

    We are planning to build a 10,000 m{sup 2} water-Cherenkov-type muon detector (MD) array under the Tibet air shower (AS) array. The Tibet AS+MD array will have the sensitivity to detect gamma rays in the 100 TeV region by an order of the magnitude better than any other previous existing detectors in the world. In the late fall of 2007, a prototype water Cherenkov muon detector of approximately 100 m{sup 2} was constructed under the existing Tibet AS array. The preliminary data analysis is in good agreement with our MC simulation. We are now ready for further expanding the underground water Cherenkov muon detector.

  20. Early detection of mine fire in underground by using smell detectors

    SciTech Connect

    Ohga, Kotaro; Higuchi, Kiyoshi

    1995-12-31

    In our laboratory, a new detection system using smell detectors was developed to detect the spontaneous combustion of coal and the combustion of other materials used underground. Laboratory experiments were carried out on several kinds of coals, including South African coals, and machine oil, wood and rubber used in belt conveyers. The following results were obtained: (1) Spontaneous combustion of coal can be detected earlier by smell detectors than by conventional CO detection methods. (2) There were no differences in the results using different kinds of coal. (3) Combustion d other materials can also be detected earlier by this system than by conventional detectors for gas and smoke. (4) Use of this detection system enables one to discern the source of the combustion gases, whether it be coal, wood, oil or rubber.

  1. Construction of a Shallow Underground Low-background Detector for a CTBT Radionuclide Laboratory

    SciTech Connect

    Forrester, Joel B.; Greenwood, Lawrence R.; Miley, Harry S.; Myers, Allan W.; Overman, Cory T.

    2013-05-01

    The International Monitoring System (IMS) is a verification component of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), and in addition to a series of radionuclide monitoring stations, contains sixteen radionuclide laboratories capable of verification of radionuclide station measurements. This paper presents an overview of a new commercially obtained low-background detector system for radionuclide aerosol measurements recently installed in a shallow (>30 meters water equivalent) underground clean-room facility at Pacific Northwest National Laboratory. Specifics such as low-background shielding materials, active shielding methods, and improvements in sensitivity to IMS isotopes will be covered.

  2. Observation of a shadow of the Moon in the underground muon flux in the Soudan 2 detector

    NASA Astrophysics Data System (ADS)

    Cobb, J. H.; Marshak, M. L.; Allison, W. W.; Alner, G. J.; Ayres, D. S.; Barrett, W. L.; Bode, C.; Border, P. M.; Brooks, C. B.; Cotton, R. J.; Courant, H.; Demuth, D. M.; Fields, T. H.; Gallagher, H. R.; Goodman, M. C.; Gran, R.; Joffe-Minor, T.; Kafka, T.; Kasahara, S. M.; Leeson, W.; Litchfield, P. J.; Longley, N. P.; Mann, W. A.; Milburn, R. H.; Miller, W. H.; Moon, C.; Mualem, L.; Napier, A.; Oliver, W. P.; Pearce, G. F.; Peterson, E. A.; Petyt, D. A.; Price, L. E.; Ruddick, K.; Sanchez, M.; Sankey, P.; Schneps, J.; Schub, M. H.; Seidlein, R.; Stassinakis, A.; Thron, J. L.; Vassiliev, V.; Villaume, G.; Wakely, S. P.; West, N.; Wall, D.

    2000-05-01

    A shadow of the Moon, with a statistical significance of 5σ, has been observed in the underground muon flux at a depth of 2090 mwe using the Soudan 2 detector. The angular resolution of the detector is well described by a Gaussian with a sigma <=0.3°. The position of the shadow confirms that the alignment of the detector is known to better than 0.15° and has remained stable during ten years of data taking.

  3. Search for a periodic signal from Cygnus X-3 usingmuons observed underground in the Frejus detector (4800 mwe)

    NASA Technical Reports Server (NTRS)

    Bareyre, P.; Barloutaud, R.; Becker, K. H.; Behr, L.; Berger, C.; Bland, R. W.; Chardin, G.; Daum, H. J.; Degrange, B.; Demski, S.

    1986-01-01

    Periodic signals from Cygnus X-3 in the ultra high energy range were recently reported by air shower arrays and attributed to gamma rays. Although gamma rays are expected to produce muon-poor showers, the preceding observations have stimulated similar studies based on underground muons. Two groups have claimed a significant underground signal coming from Cygnus X-3. The results are, however, extremely difficult to explain in the present framework of particle physics, and clearly need confirmation. The preliminary results obtained from the Frejus underground detector during its first 16 months of operation (March 1984 to June 1985) are presented.

  4. Search for Cygnus X-3 in underground muons during the 1989 radio outbursts using the IMB detector

    SciTech Connect

    Becker-Szendy, R.; Bratton, C.B.; Cady, R.; Casper, D.; Dye, S.T.; Gajewski, W.; Goldhaber, M.; Haines, T.J.; Halverson, P.G.; Jones, T.W.; Kielczewska, D.; Kropp, W.R.; Learned, J.G.; LoSecco, J.M.; Matsuno, S.; McGrew, C.; Mudan, M.S.; Price, L.; Reines, F.; Schultz, J.; Sobel, H.W.; Stone, J.L.; Sulak, L.R.; Svoboda, R.; Wittel, F. The University of Michigan, Ann Arbor, Michigan 48019 Brookhaven National Laboratory, Upton, New York 11973 Boston University, Boston, Massachusetts 02215 The University of Hawaii, Honolulu, Hawaii 96822 University College, London, WC1 E6BT, United Kingdom Warsaw University, Warsaw, Poland Cleveland State University, Cleveland, Ohio 44115 The University of Notre Dame, Notre Dame, Indiana 46556 Louisiana State University, Baton Rouge, Lousiana 70803 The University of Maryland, College Park, Maryland 20742)

    1991-02-15

    A search is made for underground muons from Cygnus X-3 with the Irvine-Michigan-Brookhaven IMB-3 detector around the time of the 1989 radio outbursts. No long-term pulsed signal is found in a sample of 11 117 underground muons collected from the direction of Cygnus X-3. We place an upper limit of 3{times}10{sup {minus}10} cm{sup {minus}2} sec{sup {minus}1} on the flux of underground muons from Cygnus X-3.

  5. Characterisation of an ultra low-background point contact HPGe well-detector for an underground laboratory.

    PubMed

    Hult, Mikael; Marissens, Gerd; Stroh, Heiko; Lutter, Guillaume; Tzika, Faidra; Marković, Nikola

    2017-08-03

    Since a few years there are well-type HPGe-detectors with a small, point-like, anode contacts available commercially. This paper describes the characterisation of the first ultra low-background, so-called, SAGe™ well detector with regards to resolution and background performance. Inside a passive lead/copper shield in the underground laboratory HADES a background count rate of 690 ± 6d(-1) (268 ± 3d(-1) per kg Ge) was recorded 19 months after taking it underground. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Mines as lower reservoir of an UPSH (Underground Pumping Storage Hydroelectricity): groundwater impacts and feasibility

    NASA Astrophysics Data System (ADS)

    Bodeux, Sarah; Pujades, Estanislao; Orban, Philippe; Dassargues, Alain

    2016-04-01

    The energy framework is currently characterized by an expanding use of renewable sources. However, their intermittence could not afford a stable production according to the energy demand. Pumped Storage Hydroelectricity (PSH) is an efficient possibility to store and release electricity according to the demand needs. Because of the topographic and environmental constraints of classical PSH, new potential suitable sites are rare in countries whose topography is weak or with a high population density. Nevertheless, an innovative alternative is to construct Underground Pumped Storage Hydroelectricity (UPSH) plants by using old underground mine works as lower reservoir. In that configuration, large amount of pumped or injected water in the underground cavities would impact the groundwater system. A representative UPSH facility is used to numerically determine the interactions with surrounding aquifers Different scenarios with varying parameters (hydrogeological and lower reservoir characteristics, boundaries conditions and pumping/injection time-sequence) are computed. Analysis of the computed piezometric heads around the reservoir allows assessing the magnitude of aquifer response and the required time to achieve a mean pseudo-steady state under cyclic solicitations. The efficiency of the plant is also evaluated taking the leakage into the cavity into account. Combining these two outcomes, some criterions are identified to assess the feasibility of this type of projects within potential old mine sites from a hydrogeological point of view.

  7. The effect of the interplanetary magnetic field on sidereal variations observed at medium depth underground detectors

    NASA Technical Reports Server (NTRS)

    Humble, J. E.; Fenton, A. G.

    1985-01-01

    It has been known for some years that the intensity variations in sidereal time observed by muon detectors at moderate underground depths are sensitive to the polarity of the interplanetary magnetic field (ipmf) near the Earth. There are differences in the response to these anisotropies as observed in the Norhtern and southern hemispheres. When fully understood, the nature of the anisotropy seems likely to provide information on the 3-dimensional structure of the heliomagnetosphere, its time variations, and its linking with the local interstellar field. The summation harmonic dials for the sidereal diurnal variation during 1958 to 1982 show that there is a strong dependence on whether the ipmf near the Earth is directed outwards from the Sun or inwards it.

  8. Half-life measurements of lutetium-176 using underground HPGe-detectors.

    PubMed

    Hult, Mikael; Vidmar, Tim; Rosengård, Ulf; Marissens, Gerd; Lutter, Guillaume; Sahin, Namik

    2014-05-01

    The half-life of (176)Lu was determined by measuring the (176)Lu activity in metallic lutetium foils. Three different HPGe-detectors located 225 m underground were employed for the study. Measurements using the sum-peak method were performed and resulted in an average massic activity of (52.61±0.36) Bq g(-1). The foils were of natural isotopic abundance so using the massic activity and the value of the natural isotopic abundance of (2.59±0.01)%, a half-life of (3.722±0.029)×10(10)a could be calculated. © 2013 Elsevier Ltd. All rights reserved.

  9. Lowering the threshold in the DAMA dark matter detector

    SciTech Connect

    Kelso, Chris

    2014-06-24

    We look at two improvements related to the DAMA/LIBRA dark matter detector. We show how using a more optimized binning scheme of the current data can lead to significantly tighter contraints on the compatible regions of the WIMP parameter space. In addition, the PMT’s of the detector were upgraded in 2010, allowing the low energy threshold to be lowered from 2 keVee to 1 keVee. We examine the implications for the dark matter interpretion of the DAMA modulation with data in this new energy region. Specifically, we focus on how well the degeneracy between the low mass and high mass regions can be removed by this new data. We find that the lower threshold data should rule out one of the two mass ranges in the spin-independent case at a minimum of the 2.6σ level in the worst case scenario.

  10. Particle dark matter and solar axion searches with a small germanium detector at the Canfranc Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Morales, A.; Avignone, F. T., III; Brodzinski, R. L.; Cebrián, S.; García, E.; González, D.; Irastorza, I. G.; Miley, H. S.; Morales, J.; de Solórzano, A. Ortiz; Puimedón, J.; Reeves, J. H.; Sarsa, M. L.; Scopel, S.; Villar, J. A.

    2002-01-01

    A small, natural abundance, germanium detector (COSME) has been operating recently at the Canfranc Underground Laboratory (Spanish Pyrenees) in improved conditions of shielding and overburden with respect to a previous operation of the same detector (Nucl. Instrum. Meth. A 321 (1992) 410; Phys. Rev. D 51 (1995) 1458). An exposure of 72.7 kg day in these conditions has at present a background improvement of about one order of magnitude compared to the former operation of the detector. These new data have been applied to a direct search for weakly interacting massive particles (WIMPs) and solar axions. New WIMP exclusion plots improving the current bounds for low masses are reported. The paper also presents a limit on the axion-photon coupling obtained from the analysis of the data looking for a Primakoff axion-to-photon conversion and Bragg scattering inside the crystal.

  11. Monte Carlo simulation of background characteristics of a HPGe detector operating underground in the Gran Sasso National Laboratory.

    PubMed

    Breier, R; Laubenstein, M; Povinec, P P

    2017-08-01

    Monte Carlo (MC) simulation of background components of an ultra-low background high purity germanium (HPGe) detector operating in a deep underground laboratory was carried out. The results show that the background of the HPGe detector is about two orders of magnitude higher than the MC prediction when accounting only for cosmic-ray induced background. The difference is due to natural radioactivity in the parts surrounding the Ge detector. To get reasonable agreement between MC simulations and the experiment, a contamination in the parts surrounding the Ge crystal from (40)K, (208)Tl and (214)Bi of 0.1mBqkg(-1) was required to include in the simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Limits on light WIMPs with a germanium detector at 177 eVee threshold at the China Jinping Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Liu, S. K.; Yue, Q.; Kang, K. J.; Cheng, J. P.; Wong, H. T.; Li, Y. J.; Lin, S. T.; Chang, J. P.; Chen, N.; Chen, Q. H.; Chen, Y. H.; Chuang, Y. C.; Deng, Z.; Du, Q.; Gong, H.; Hao, X. Q.; He, H. J.; He, Q. J.; Huang, H. X.; Huang, T. R.; Jiang, H.; Li, H. B.; Li, J. M.; Li, J.; Li, J.; Li, X.; Li, X. Q.; Li, X. Y.; Li, Y. L.; Liao, H. Y.; Lin, F. K.; Lü, L. C.; Ma, H.; Mao, S. J.; Qin, J. Q.; Ren, J.; Ren, J.; Ruan, X. C.; Shen, M. B.; Singh, L.; Singh, M. K.; Soma, A. K.; Su, J.; Tang, C. J.; Tseng, C. H.; Wang, J. M.; Wang, L.; Wang, Q.; Wu, S. Y.; Wu, Y. C.; Wu, Y. C.; Xianyu, Z. Z.; Xiao, R. Q.; Xing, H. Y.; Xu, F. Z.; Xu, Y.; Xu, X. J.; Xue, T.; Yang, C. W.; Yang, L. T.; Yang, S. W.; Yi, N.; Yu, C. X.; Yu, H.; Yu, X. Z.; Zeng, X. H.; Zeng, Z.; Zhang, L.; Zhang, Y. H.; Zhao, M. G.; Zhao, W.; Zhou, Z. Y.; Zhu, J. J.; Zhu, W. B.; Zhu, X. Z.; Zhu, Z. H.; CDEX Collaboration

    2014-08-01

    The China Dark Matter Experiment reports results on light WIMP dark matter searches at the China Jinping Underground Laboratory with a germanium detector array with a total mass of 20 g. The physics threshold achieved is 177 eVee ("ee" represents electron equivalent energy) at 50% signal efficiency. With 0.784 kg-days of data, exclusion region on spin-independent coupling with the nucleon is derived, improving over our earlier bounds at WIMP mass less than 4.6 GeV.

  13. Long-term stability of underground operated CZT detectors based on the analysis of intrinsic 113Cd β--decay

    NASA Astrophysics Data System (ADS)

    Ebert, J.; Gößling, C.; Gehre, D.; Hagner, C.; Heidrich, N.; Klingenberg, R.; Kröninger, K.; Nitsch, C.; Oldorf, C.; Quante, T.; Rajek, S.; Rebber, H.; Rohatsch, K.; Tebrügge, J.; Temminghoff, R.; Theinert, R.; Timm, J.; Wonsak, B.; Zatschler, S.; Zuber, K.

    2016-06-01

    The COBRA collaboration operates a demonstrator setup at the underground facility Laboratori Nazionali del Gran Sasso (LNGS, located in Italy) to prove the technological capabilities of this concept for the search for neutrinoless double beta-decay. The setup consists of 64 (1×1×1) cm3 Cadmium-Zinc-Telluride (CZT) detectors in Coplanar-Grid (CPG) configuration. One purpose of this demonstrator is to test if reliable long-term operation of CZT-CPG detectors in such a setup is possible. The demonstrator has been operated under ultra low-background conditions for more than three years and collected data corresponding to a total exposure of 218 kg days. The presented study focuses on the long-term stability of CZT detectors by analyzing the intrinsic, fourfold forbidden non-unique 113Cd single beta-decay. It can be shown that CZT detectors can be operated stably for long periods of time and that the 113Cd single beta-decay can be used as an internal monitor of the detector performance during the runtime of the experiment.

  14. A low energy threshold scintillation detector for X and low energy gamma rays at the Fréjus underground laboratory.

    PubMed

    Miramonti, L

    2001-10-01

    A low energy threshold scintillation detector for X and low energy gamma rays has been built in the Fréjus underground laboratory in order to investigate radioactive contaminations at very low energies down to about 5 keV. The main features and capabilities are described here.

  15. Producing 30 Tons of Underground Argon for the Next Generation Dark Matter Detector

    NASA Astrophysics Data System (ADS)

    Alexander, Thomas; DarkSide Collaboration Collaboration

    2017-01-01

    The DarkSide-20k experiment seeks to collect and purify 10s of tons of argon gas derived from the Doe Canyon CO2 well in southwestern Colorado, which has been shown to have a 39 Ar concentration of 0.73% of that found in argon collected from the atmosphere. Building upon the work of the DarkSide-50 collaboration, the DarkSide-20k experiment is building and installing a plant capable of producing 100 kg/day of 99.9% pure argon from the same underground source. To achieve this rate, the next generation plant (named Urania) will need to be able to mitigate minor contaminants in the well gas that hampered the previous generation plant. In this talk we will describe the new extraction plant, the identification of the minor contaminates, and how these contaminates are being mitigated.

  16. Smaller, Lower-Power Fast-Neutron Scintillation Detectors

    NASA Technical Reports Server (NTRS)

    Patel, Jagdish; Blaes, Brent

    2008-01-01

    Scintillation-based fast-neutron detectors that are smaller and less power-hungry than mainstream scintillation-based fast-neutron detectors are undergoing development. There are numerous applications for such detectors in monitoring fast-neutron fluxes from nuclear reactors, nuclear materials, and natural sources, both on Earth and in outer space. A particularly important terrestrial application for small, low-power, portable fast-neutron detectors lies in the requirement to scan for nuclear materials in cargo and baggage arriving at international transportation facilities. The present development of miniature, low-power scintillation-based fast-neutron detectors exploits recent advances in the fabrication of avalanche photodiodes (APDs). Basically, such a detector includes a plastic scintillator, typically between 300 and 400 m thick with very thin silver mirror coating on all its faces except the one bonded to an APD. All photons generated from scintillation are thus internally reflected and eventually directed to the APD. This design affords not only compactness but also tight optical coupling for utilization of a relatively large proportion of the scintillation light. The combination of this tight coupling and the avalanche-multiplication gain (typically between 750 and 1,000) of the APD is expected to have enough sensitivity to enable monitoring of a fast-neutron flux as small as 1,000 cm(exp -2)s(exp -1). Moreover, pulse-height analysis can be expected to provide information on the kinetic energies of incident neutrons. It has been estimated that a complete, fully developed fast-neutron detector of this type, would be characterized by linear dimensions of the order of 10 cm or less, a mass of no more than about 0.5 kg, and a power demand of no more than a few watts.

  17. An event observed by the Mont Blanc underground neutrino detector on February 23, 1987

    NASA Astrophysics Data System (ADS)

    Dadykin, V. L.; Zatsepin, G. T.; Korchaguin, V. B.; Korchaguin, P. V.; Malgin, A. S.; Ryazhskaya, O. G.; Ryassny, V. G.; Talochkin, V. P.; Khalchukov, F. F.; Yakushev, V. F.; Aglietta, M.; Badino, G.; Bologna, G.; Vernetto, S.; Galeotti, P.; Castagnoli, C.; Castellina, A.; Saavedra, O.; Trinchero, G.; Fulgione, W.

    1988-02-01

    An analysis is made of the event detected by the Soviet-Italian neutrino scintillation detector (LSD) beneath Mont Blanc on Februrary 23, 1987 at 2:52:37 UT. Corrected energies of the pulses of the event have been determined along with the probability of event imitiation by the background. The LSD data are compared with Kamiokande and IMB data. The possibility that the observed event may be connected with the explosion of SN 1987A is examined.

  18. Accelerator Measurments of the Askaryan Effect in Rock Salt: A Roadmap Toward Teraton Underground Neutrino Detectors

    SciTech Connect

    Gorham, P.

    2004-12-15

    We report on further SLAC measurements of the Askaryan effect: coherent radio emission from charge asymmetry in electromagnetic cascades. We used synthetic rock salt as the dielectric medium, with cascades produced by GeV bremsstrahlung photons at the Final Focus Test Beam. We extend our prior discovery measurements to a wider range of parameter space and explore the effect in a dielectric medium of great potential interest to large scale ultra-high energy neutrino detectors: rock salt (halite), which occurs naturally in high purity formations containing in many cases hundreds of cubic km of water-equivalent mass. We observed strong coherent pulsed radio emission over a frequency band from 0.2-15 GHz. A grid of embedded dual-polarization antennas was used to confirm the high degree of linear polarization and track the change of direction of the electric-field vector with azimuth around the shower. Coherence was observed over 4 orders of magnitude of shower energy. The frequency dependence of the radiation was tested over two orders of magnitude of UHF and microwave frequencies. We have also made the first observations of coherent transition radiation from the Askaryan charge excess, and the result agrees well with theoretical predictions. Based on these results we have performed detailed and conservative simulation of a realistic GZK neutrino telescope array within a salt-dome, and we find it capable of detecting 10 or more contained events per year from even the most conservative GZK neutrino models.

  19. Accelerator measurements of the Askaryan effect in rock salt: A roadmap toward teraton underground neutrino detectors

    SciTech Connect

    Gorham, P.W.; Guillian, E.; Milincic, R.; Miocinovic, P.; Saltzberg, D.; Williams, D.; Field, R.C.; Walz, D.

    2005-07-15

    We report on further SLAC measurements of the Askaryan effect: coherent radio emission from charge asymmetry in electromagnetic cascades. We used synthetic rock salt as the dielectric medium, with cascades produced by GeV bremsstrahlung photons at the Final Focus Test Beam. We extend our prior discovery measurements to a wider range of parameter space and explore the effect in a dielectric medium of great potential interest to large-scale ultra-high-energy neutrino detectors: rock salt (halite), which occurs naturally in high purity formations containing in many cases hundreds of km{sup 3} of water-equivalent mass. We observed strong coherent pulsed radio emission over a frequency band from 0.2-15 GHz. A grid of embedded dual-polarization antennas was used to confirm the high degree of linear polarization and track the change of direction of the electric-field vector with azimuth around the shower. Coherence was observed over 4 orders of magnitude of shower energy. The frequency dependence of the radiation was tested over 2 orders of magnitude of UHF and microwave frequencies. We have also made the first observations of coherent transition radiation from the Askaryan charge excess, and the result agrees well with theoretical predictions. Based on these results we have performed a detailed and conservative simulation of a realistic GZK neutrino telescope array within a salt dome, and we find it capable of detecting 10 or more contained events per year from even the most conservative GZK neutrino models.

  20. Effect of work boot type on work footwear habits, lower limb pain and perceptions of work boot fit and comfort in underground coal miners.

    PubMed

    Dobson, Jessica A; Riddiford-Harland, Diane L; Bell, Alison F; Steele, Julie R

    2017-04-01

    Lower limb injuries are highly prevalent in underground coal mining. Wearing gumboots with inadequate ankle support was thought to contribute to these injuries. Despite the uptake of leather lace-up boots, which provide more ankle support, no recent research could be found investigating the effect of this alternative work boot in underground coal mining. Consequently, this study aimed to determine whether boot type (gumboot, leather lace-up boot) influenced work footwear habits, foot problems, lower limb pain, lower back pain, or perceptions of work boot fit and comfort in underground coal miners. Chi-squared tests were applied to 358 surveys completed by underground coal miners to determine whether responses differed significantly (p < 0.05) according to boot-type. There were no significant between-boot differences in regards to the presence of foot problems, lower limb pain or lower back pain. However, the types of foot problems and locations of foot pain differed according to boot type. Gumboot wearers were also more likely to state that their work boot comfort was either 'uncomfortable' or 'indifferent', their work boot fit was 'poor' and their current boot did not provide enough support. The introduction of more structured leather lace-up boots appears to have positively influenced the support and fit provided by mining work boots, although foot problems, lower limb pain and lower back pain continue to be reported. Further investigation is recommended to identify which specific boot design features caused these observed differences in work boot fit, comfort and locations of foot pain and how these design features can be manipulated to create an underground coal mining work boot that is comfortable and reduces the high incidence of foot problems and lower limb pain suffered by underground coal miners. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Limits on light weakly interacting massive particles from the CDEX-1 experiment with a p -type point-contact germanium detector at the China Jinping Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Yue, Q.; Zhao, W.; Kang, K. J.; Cheng, J. P.; Li, Y. J.; Lin, S. T.; Chang, J. P.; Chen, N.; Chen, Q. H.; Chen, Y. H.; Chuang, Y. C.; Deng, Z.; Du, Q.; Gong, H.; Hao, X. Q.; He, H. J.; He, Q. J.; Huang, H. X.; Huang, T. R.; Jiang, H.; Li, H. B.; Li, J. M.; Li, J.; Li, J.; Li, X.; Li, X. Y.; Li, Y. L.; Liao, H. Y.; Lin, F. K.; Liu, S. K.; Lü, L. C.; Ma, H.; Mao, S. J.; Qin, J. Q.; Ren, J.; Ren, J.; Ruan, X. C.; Shen, M. B.; Singh, L.; Singh, M. K.; Soma, A. K.; Su, J.; Tang, C. J.; Tseng, C. H.; Wang, J. M.; Wang, L.; Wang, Q.; Wong, H. T.; Wu, S. Y.; Wu, Y. C.; Wu, Y. C.; Xianyu, Z. Z.; Xiao, R. Q.; Xing, H. Y.; Xu, F. Z.; Xu, Y.; Xu, X. J.; Xue, T.; Yang, L. T.; Yang, S. W.; Yi, N.; Yu, C. X.; Yu, H.; Yu, X. Z.; Zeng, X. H.; Zeng, Z.; Zhang, L.; Zhang, Y. H.; Zhao, M. G.; Zhou, Z. Y.; Zhu, J. J.; Zhu, W. B.; Zhu, X. Z.; Zhu, Z. H.; CDEX Collaboration

    2014-11-01

    We report results of a search for light dark matter weakly interacting massive particles (WIMPs) with CDEX-1 experiment at the China Jinping Underground Laboratory, based on 53.9 kg-days of data from a p -type point-contact germanium detector enclosed by a NaI(Tl) crystal scintillator as anti-Compton detector. The event rate and spectrum above the analysis threshold of 475 eVee are consistent with the understood background model. Part of the allowed regions for WIMP-nucleus coherent elastic scattering at WIMP mass of 6-20 GeV are probed and excluded. Independent of interaction channels, this result contradicts the interpretation that the anomalous excesses of the CoGeNT experiment are induced by dark matter, since identical detector techniques are used in both experiments.

  2. Cosmic-muon intensity measurement and overburden estimation in a building at surface level and in an underground facility using two BC408 scintillation detectors coincidence counting system.

    PubMed

    Zhang, Weihua; Ungar, Kurt; Liu, Chuanlei; Mailhot, Maverick

    2016-10-01

    A series of measurements have been recently conducted to determine the cosmic-muon intensities and attenuation factors at various indoor and underground locations for a gamma spectrometer. For this purpose, a digital coincidence spectrometer was developed by using two BC408 plastic scintillation detectors and an XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The results indicate that the overburden in the building at surface level absorbs a large part of cosmic ray protons while attenuating the cosmic-muon intensity by 20-50%. The underground facility has the largest overburden of 39 m water equivalent, where the cosmic-muon intensity is reduced by a factor of 6. The study provides a cosmic-muon intensity measurement and overburden assessment, which are important parameters for analysing the background of an HPGe counting system, or for comparing the background of similar systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The spectrum of cosmic ray muons obtained with 100-ton scintillation detector underground and the analysis of recent experimental data

    NASA Technical Reports Server (NTRS)

    Khalchukov, F. F.; Korolkova, E. V.; Kudryavtsev, V. A.; Malgin, A. S.; Ryazhskaya, O. G.; Zatsepin, G. T.

    1985-01-01

    The vertical muon spectrum up to 15 TeV obtained with the underground installation is presented. Recent experimental data dealing with horizontal and vertical cosmic ray muon spectra are analyzed and discussed.

  4. The impact of an underground cut-off wall on nutrient dynamics in groundwater in the lower Wang River watershed, China.

    PubMed

    Kang, Pingping; Xu, Shiguo

    2017-03-01

    Underground cut-off walls in coastal regions are mainly used to prevent saltwater intrusion, but their impact on nutrient dynamics in groundwater is not clear. In this study, a combined analysis of multiple isotopes ([Formula: see text]) and nitrogen and phosphorus concentrations is used in order to assess the impact of the underground cut-off walls on the nutrient dynamics in groundwater in the lower Wang River watershed, China. Compared with the nitrogen and phosphorus concentrations in groundwater downstream of the underground cut-off walls, high [Formula: see text] and total dissolved nitrogen concentrations and similar concentration levels of [Formula: see text] and total dissolved phosphorus are found in groundwater upstream of the underground cut-off walls. The isotopic data indicated the probable occurrence of denitrification and nitrification processes in groundwater upstream, whereas the fingerprint of these processes was not shown in groundwater downstream. The management of fertilizer application is critical to control nitrogen concentrations in groundwater restricted by the underground cut-off walls.

  5. DEEP UNDERGROUND NEUTRINO EXPERIMENT

    SciTech Connect

    Wilson, Robert J.

    2016-03-03

    The Deep Underground Neutrino Experiment (DUNE) collaboration will perform an experiment centered on accelerator-based long-baseline neutrino studies along with nucleon decay and topics in neutrino astrophysics. It will consist of a modular 40-kt (fiducial) mass liquid argon TPC detector located deep underground at the Sanford Underground Research Facility in South Dakota and a high-resolution near detector at Fermilab in Illinois. This conguration provides a 1300-km baseline in a megawatt-scale neutrino beam provided by the Fermilab- hosted international Long-Baseline Neutrino Facility.

  6. Analysis of upper and lower bounds of the frame noise in linear detector arrays

    NASA Technical Reports Server (NTRS)

    Jaggi, S.

    1991-01-01

    This paper estimates the upper and lower bounds of the frame noise of a linear detector array that uses a one-dimensional scan pattern. Using chi-square distribution, it is analytically shown why it is necessary to use the average of the variances and not the average of the standard deviations to estimate these bounds. Also, a criteria for determining whether any excessively noisy lines exist among the detectors is derived from these bounds. Using a Gaussian standard random variable generator, these bounds are demonstrated to be accurate within the specified confidence interval. A silicon detector array is then used for actual dark current measurements. The criterion developed for determination of noisy detectors is checked on the experimentally obtained data.

  7. Coincident observation of air Čerenkov light by a surface array and muon bundles by a deep underground detector

    NASA Astrophysics Data System (ADS)

    Ambrosio, M.; Antolini, R.; Auriemma, G.; Baker, R.; Baldini, A.; Bam, B.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Corona, A.; Cecchini, S.; Cei, F.; Chiarella, V.; Cormack, R.; Coutu, S.; Decataldo, G.; Dekhissi, H.; Demarzo, C.; de Vincenzi, M.; di Credico, A.; Diehl, E.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Grassi, M.; Green, P.; Grillo, A.; Guarino, F.; Guarnaccia, P.; Gustavino, C.; Habig, A.; Heinz, R.; Hong, J. T.; Iarocci, E.; Katsavounidis, E.; Kearns, E.; Kertzman, M.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Lee, C.; Levin, D. S.; Lipari, P.; Liu, G.; Liu, R.; Longo, M. J.; Lu, Y.; Ludlam, G.; Mancarella, G.; Mandrioli, G.; Margiotta-Neri, A.; Marin, A.; Marini, A.; Martello, D.; Marzari Chiesa, A.; Michael, D. G.; Mikheyev, S.; Miller, L.; Mittlebrunn, M.; Monacelli, P.; Monteno, M.; Mufson, S.; Musser, J.; Nicoló, D.; Nolty, R.; Nutter, S.; Okada, C.; Osteria, G.; Palamara, O.; Parlati, S.; Patera, V.; Patrizii, L.; Pavesi, B.; Pazzi, R.; Peck, C. W.; Petrakis, J.; Petrera, S.; Pignatano, N. D.; Pistilli, P.; Predieri, F.; Reynoldson, J.; Ronga, F.; Sanzani, G.; Sanzgiri, A.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Sembroski, G.; Serra Lugaresi, P.; Severi, M.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steele, J.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlé, G.; Togo, V.; Valente, V.; Walter, C. W.; Webb, R.; Worstell, W.

    1994-09-01

    We report on the simultaneous observation of atmospheric Čerenkov light by a prototype five telescope array, GRACE, (Gran Sasso Air Čerenkov Experiment) with deep underground muons in the MACRO (Monopole Astrophysics and Cosmic Ray Observatory). The telescope array was deployed at Campo Imperatore above the Gran Sasso Laboratory for a run completed in the fall of 1992. The total live time for the combined surface-underground operation was ~100 h during which more than 300 events were seen in coincidence. The efficacy of this technique to monitor the electromagnetic and penetrating muon components of a cosmic-ray-induced cascade is discussed.

  8. Underground water Cherenkov muon detector array with the Tibet air shower array for gamma-ray astronomy in the 100 TeV region

    NASA Astrophysics Data System (ADS)

    Amenomori, M.; Ayabe, S.; Bi, X. J.; Chen, D.; Cui, S. W.; Danzengluobu; Ding, L. K.; Ding, X. H.; Feng, C. F.; Feng, Zhaoyang; Feng, Z. Y.; Gao, X. Y.; Geng, Q. X.; Guo, H. W.; He, H. H.; He, M.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Huang, Q.; Jia, H. Y.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Labaciren; Le, G. M.; Li, A. F.; Li, J. Y.; Lu, H.; Lu, S. L.; Meng, X. R.; Mizutani, K.; Mu, J.; Munakata, K.; Nagai, A.; Nanjo, H.; Nishizawa, M.; Ohnishi, M.; Ohta, I.; Onuma, H.; Ouchi, T.; Ozawa, S.; Ren, J. R.; Saito, T.; Saito, T. Y.; Sakata, M.; Sako, T. K.; Sasaki, T.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Wang, B.; Wang, H.; Wang, X.; Wang, Y. G.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yan, C. T.; Yang, X. C.; Yasue, S.; Ye, Z. H.; Yu, G. C.; Yuan, A. F.; Yuda, T.; Zhang, H. M.; Zhang, J. L.; Zhang, N. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhaxisangzhu; Zhou, X. X.

    2007-06-01

    We propose to build a large water-Cherenkov-type muon-detector array (Tibet MD array) around the 37 000 m2 Tibet air shower array (Tibet AS array) already constructed at 4300 m above sea level in Tibet, China. Each muon detector is a waterproof concrete pool, 6 m wide × 6 m long × 1.5 m deep in size, equipped with a 20 inch-in-diameter PMT. The Tibet MD array consists of 240 muon detectors set up 2.5 m underground. Its total effective area will be 8640 m2 for muon detection. The Tibet MD array will significantly improve gamma-ray sensitivity of the Tibet AS array in the 100 TeV region (10 1000 TeV) by means of gamma/hadron separation based on counting the number of muons accompanying an air shower. The Tibet AS+MD array will have the sensitivity to gamma rays in the 100 TeV region by an order of magnitude better than any other previous existing detectors in the world.

  9. Effects of wearing gumboots and leather lace-up boots on lower limb muscle activity when walking on simulated underground coal mine surfaces.

    PubMed

    Dobson, Jessica A; Riddiford-Harland, Diane L; Steele, Julie R

    2015-07-01

    This study aimed to investigate the effects of wearing two standard underground coal mining work boots (a gumboot and a leather lace-up boot) on lower limb muscle activity when participants walked across simulated underground coal mining surfaces. Quadriceps (rectus femoris, vastus medialis, vastus lateralis) and hamstring (biceps femoris, semitendinosus) muscle activity were recorded as twenty male participants walked at a self-selected pace around a circuit while wearing each boot type. The circuit consisted of level, inclined and declined surfaces composed of rocky gravel and hard dirt. Walking in a leather lace-up boot, compared to a gumboot, resulted in increased vastus lateralis and increased biceps femoris muscle activity when walking on sloped surfaces. Increased muscle activity appears to be acting as a slip and/or trip prevention strategy in response to challenging surfaces and changing boot features. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  10. FAST CHOPPER BUILDING, TRA665, INTERIOR. LOWER (DETECTOR) LEVEL. NOTE BRICKEDIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FAST CHOPPER BUILDING, TRA-665, INTERIOR. LOWER (DETECTOR) LEVEL. NOTE BRICKED-IN WINDOW ON MTR SIDE. USED FOR STORAGE OF LEAD BRICKS AFTER EXPERIMENTAL NEUTRON INSTRUMENTS WERE REMOVED. SIGN SAYS "IN-PROCESS LEAD SOURCE STORAGE." INL NEGATIVE NO. HD-42-2. Mike Crane, Photographer, 3/2004 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. A Lower-Cost High-Resolution LYSO Detector Development for Positron Emission Mammography (PEM)

    PubMed Central

    Ramirez, Rocio A.; Zhang, Yuxuan; Liu, Shitao; Li, Hongdi; Baghaei, Hossain; An, Shaohui; Wang, Chao; Jan, Meei-Ling; Wong, Wai-Hoi

    2010-01-01

    In photomultiplier-quadrant-sharing (PQS) geometry for positron emission tomography applications, each PMT is shared by four blocks and each detector block is optically coupled to four round PMTs. Although this design reduces the cost of high-resolution PET systems, when the camera consists of detector panels that are made up of square blocks, half of the PMT’s sensitive window remains unused at the detector panel edge. Our goal was to develop a LYSO detector panel which minimizes the unused portion of the PMTs for a low-cost, high-resolution, and high-sensitivity positron emission mammography (PEM) camera. We modified the PQS design by using elongated blocks at panel edges and square blocks in the inner area. For elongated blocks, symmetric and asymmetrical reflector patterns were developed and PQS and PMT-half-sharing (PHS) arrangements were implemented in order to obtain a suitable decoding. The packing fraction was 96.3% for asymmetric block and 95.5% for symmetric block. Both of the blocks have excellent decoding capability with all crystals clearly identified, 156 for asymmetric and 144 for symmetric and peak-to-valley ratio of 3.0 and 2.3 respectively. The average energy resolution was 14.2% for the asymmetric block and 13.1% for the symmetric block. Using a modified PQS geometry and asymmetric block design, we reduced the unused PMT region at detector panel edges, thereby increased the field-of-view and the overall detection sensitivity and minimized the undetected breast region near the chest wall. This detector design and using regular round PMT allowed building a lower-cost, high-resolution and high-sensitivity PEM camera. PMID:20485510

  12. Underground physics with DUNE

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Vitaly A.; DUNE Collaboration

    2016-05-01

    The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40-kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches. In this paper we will focus on the underground physics with DUNE.

  13. Underground physics with DUNE

    SciTech Connect

    Kudryavtsev, Vitaly A.

    2016-06-09

    The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40-kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches. In this study, we will focus on the underground physics with DUNE.

  14. Underground physics with DUNE

    DOE PAGES

    Kudryavtsev, Vitaly A.

    2016-06-09

    The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40-kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches.more » In this study, we will focus on the underground physics with DUNE.« less

  15. Approaches to Quantify Potential Contaminant Transport in the Lower Carbonate Aquifer from Underground Nuclear Testing at Yucca Flat, Nevada National Security Site, Nye County, Nevada - 12434

    SciTech Connect

    Andrews, Robert W.; Birdie, Tiraz; Wilborn, Bill; Mukhopadhyay, Bimal

    2012-07-01

    Quantitative modeling of the potential for contaminant transport from sources associated with underground nuclear testing at Yucca Flat is an important part of the strategy to develop closure plans for the residual contamination. At Yucca Flat, the most significant groundwater resource that could potentially be impacted is the Lower Carbonate Aquifer (LCA), a regionally extensive aquifer that supplies a significant portion of the water demand at the Nevada National Security Site, formerly the Nevada Test Site. Developing and testing reasonable models of groundwater flow in this aquifer is an important precursor to performing subsequent contaminant transport modeling used to forecast contaminant boundaries at Yucca Flat that are used to identify potential use restriction and regulatory boundaries. A model of groundwater flow in the LCA at Yucca Flat has been developed. Uncertainty in this model, as well as other transport and source uncertainties, is being evaluated as part of the Underground Testing Area closure process. Several alternative flow models of the LCA in the Yucca Flat/Climax Mine CAU have been developed. These flow models are used in conjunction with contaminant transport models and source term models and models of contaminant transport from underground nuclear tests conducted in the overlying unsaturated and saturated alluvial and volcanic tuff rocks to evaluate possible contaminant migration in the LCA for the next 1,000 years. Assuming the flow and transport models are found adequate by NNSA/NSO and NDEP, the models will undergo a peer review. If the model is approved by NNSA/NSO and NDEP, it will be used to identify use restriction and regulatory boundaries at the start of the Corrective Action Decision Document Corrective Action Plan (CADD/CAP) phase of the Corrective Action Strategy. These initial boundaries may be revised at the time of the Closure Report phase of the Corrective Action Strategy. (authors)

  16. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  17. SOLAR CYCLE DEPENDENCE OF THE DIURNAL ANISOTROPY OF 0.6 TeV COSMIC-RAY INTENSITY OBSERVED WITH THE MATSUSHIRO UNDERGROUND MUON DETECTOR

    SciTech Connect

    Munakata, K.; Mizoguchi, Y.; Kato, C.; Yasue, S.; Mori, S.; Takita, M.; Kota, J.

    2010-04-01

    We analyze the temporal variation of the diurnal anisotropy of sub-TeV cosmic-ray intensity observed with the Matsushiro (Japan) underground muon detector over two full solar activity cycles in 1985-2008. We find an anisotropy component in the solar diurnal anisotropy superimposed on the Compton-Getting anisotropy due to Earth's orbital motion around the Sun. The phase of this additional anisotropy is almost constant at {approx}15:00 local solar time corresponding to the direction perpendicular to the average interplanetary magnetic field at Earth's orbit, while the amplitude varies between a maximum (0.043% +- 0.002%) and minimum ({approx}0.008% +- 0.002%) in a clear correlation with the solar activity. We find a significant time lag between the temporal variations of the amplitude and the sunspot number (SSN) and obtain the best correlation coefficient of +0.74 with the SSN delayed for 26 months. We suggest that this anisotropy might be interpreted in terms of the energy change due to the solar-wind-induced electric field expected for galactic cosmic rays (GCRs) crossing the wavy neutral sheet. The average amplitude of the sidereal diurnal variation over the entire period is 0.034% +- 0.003%, which is roughly one-third of the amplitude reported from air shower and deep-underground muon experiments monitoring multi-TeV GCR intensity suggesting a significant attenuation of the anisotropy due to the solar modulation. We find, on the other hand, only a weak positive correlation between the sidereal diurnal anisotropy and the solar activity cycle in which the amplitude in the 'active' solar activity epoch is about twice the amplitude in the 'quiet' solar activity epoch. This implies that only one-fourth of the total attenuation varies in correlation with the solar activity cycle and/or the solar magnetic cycle. We finally examine the temporal variation of the 'single-band valley depth' (SBVD) quoted by the Milagro experiment and, in contrast with recent Milagro

  18. Underground Libraries.

    ERIC Educational Resources Information Center

    Fuhlrott, Rolf

    1986-01-01

    Discussion of underground buildings constructed primarily during last two decades for various reasons (energy conservation, density of environment, preservation of landscape and historic buildings) notes advantages, disadvantages, and psychological and design considerations. Examples of underground libraries, built mainly in United States, are…

  19. Underground Mathematics

    ERIC Educational Resources Information Center

    Hadlock, Charles R

    2013-01-01

    The movement of groundwater in underground aquifers is an ideal physical example of many important themes in mathematical modeling, ranging from general principles (like Occam's Razor) to specific techniques (such as geometry, linear equations, and the calculus). This article gives a self-contained introduction to groundwater modeling with…

  20. Underground Mathematics

    ERIC Educational Resources Information Center

    Hadlock, Charles R

    2013-01-01

    The movement of groundwater in underground aquifers is an ideal physical example of many important themes in mathematical modeling, ranging from general principles (like Occam's Razor) to specific techniques (such as geometry, linear equations, and the calculus). This article gives a self-contained introduction to groundwater modeling with…

  1. Progress of MCT Detector Technology at AIM Towards Smaller Pitch and Lower Dark Current

    NASA Astrophysics Data System (ADS)

    Eich, D.; Schirmacher, W.; Hanna, S.; Mahlein, K. M.; Fries, P.; Figgemeier, H.

    2017-09-01

    We present our latest results on cooled p-on- n planar mercury cadmium telluride (MCT) photodiode technology. Along with a reduction in dark current for raising the operating temperature ( T op), AIM INFRAROT-MODULE GmbH (AIM) has devoted its development efforts to shrinking the pixel size. Both are essential requirements to meet the market demands for reduced size, weight and power and high-operating temperature applications. Detectors based on the p-on- n technology developed at AIM now span the spectrum from the mid-wavelength infrared (MWIR) to the very long wavelength infrared (VLWIR) with cut-off wavelengths from 5 μm to about 13.5 μm at 80 K. The development of the p-on- n technology for VLWIR as well as for MWIR is mainly implemented in a planar photodetector design with a 20- μm pixel pitch. For the VLWIR, dark currents significantly reduced as compared to `Tennant's Rule 07' are demonstrated for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at a 20 K higher operating temperature than with previous AIM technology. For MWIR detectors with a 20- μm pitch, noise equivalent temperature differences of less than 30 mK are obtained up to 170 K. This technology has been transferred to our small pixel pitch high resolution (XGA) MWIR detector with 1024 × 768 pixels at a 10- μm pitch. Excellent performance at an operating temperature of 160 K is demonstrated.

  2. Use of Cramer-Rao Lower Bound for Performance Evaluation of Different Monolithic Crystal PET Detector Designs

    PubMed Central

    Li, Xiaoli; Hunter, William C.J.; Lewellen, Tom K.; Miyaoka, Robert S.

    2012-01-01

    We have previously reported on continuous miniature crystal element (cMiCE) PET detectors that provide depth of interaction (DOI) positioning capability. A key component of the design is the use of a statistics-based positioning (SBP) method for 3D event positioning. The Cramer-Rao lower bound (CRLB) expresses limits on the estimate variances for a set of deterministic parameters. We examine the CRLB as a useful metric to evaluate the performance of our SBP algorithm and to quickly compare the best possible resolution when investigating new detector designs. In this work, the CRLB is first reported based upon experimental results from a cMiCE detector using a 50×50×15-mm3 LYSO crystal readout by a 64-channel PMT (Hamamatsu H8500) on the exit surface of the crystal. The X/Y resolution is relatively close to the CRLB, while the DOI resolution is more than double the CRLB even after correcting for beam diameter and finite X (i.e., reference DOI position) resolution of the detector. The positioning performance of the cMiCE detector with the same design was also evaluated through simulation. Similar with the experimental results, the difference between the CRLB and measured spatial resolution is bigger in DOI direction than in X/Y direction. Another simulation study was conducted to investigate what causes the difference between the measured spatial resolution and the CRLB. The cMiCE detector with novel sensor-on-entrance-surface (SES) design was modeled as a 49.2×49.2×15-mm3 LYSO crystal readout by a 12×12 array of 3.8×3.8-mm2 silicon photomultiplier (SiPM) elements with 4.1-mm center-to-center spacing on the entrance surface of the crystal. The results show that there are two main causes to account for the differences between the spatial resolution and the CRLB. First, Compton scatter in the crystal degrades the spatial resolution. The DOI resolution is degraded more than the X/Y resolution since small angle scatter is preferred. Second, our maximum likelihood

  3. Analytical Calculation of the Lower Bound on Timing Resolution for PET Scintillation Detectors Comprising High-Aspect-Ratio Crystal Elements

    PubMed Central

    Cates, Joshua W.; Vinke, Ruud; Levin, Craig S.

    2015-01-01

    Excellent timing resolution is required to enhance the signal-to-noise ratio (SNR) gain available from the incorporation of time-of-flight (ToF) information in image reconstruction for positron emission tomography (PET). As the detector’s timing resolution improves, so does SNR, reconstructed image quality, and accuracy. This directly impacts the challenging detection and quantification tasks in the clinic. The recognition of these benefits has spurred efforts within the molecular imaging community to determine to what extent the timing resolution of scintillation detectors can be improved and develop near-term solutions for advancing ToF-PET. Presented in this work, is a method for calculating the Cramér-Rao lower bound (CRLB) on timing resolution for scintillation detectors with long crystal elements, where the influence of the variation in optical path length of scintillation light on achievable timing resolution is non-negligible. The presented formalism incorporates an accurate, analytical probability density function (PDF) of optical transit time within the crystal to obtain a purely mathematical expression of the CRLB with high-aspect-ratio (HAR) scintillation detectors. This approach enables the statistical limit on timing resolution performance to be analytically expressed for clinically-relevant PET scintillation detectors without requiring Monte Carlo simulation-generated photon transport time distributions. The analytically calculated optical transport PDF was compared with detailed light transport simulations, and excellent agreement was found between the two. The coincidence timing resolution (CTR) between two 3×3×20 mm3 LYSO:Ce crystals coupled to analogue SiPMs was experimentally measured to be 162±1 ps FWHM, approaching the analytically calculated lower bound within 6.5%. PMID:26083559

  4. Analytical calculation of the lower bound on timing resolution for PET scintillation detectors comprising high-aspect-ratio crystal elements

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Vinke, Ruud; Levin, Craig S.

    2015-07-01

    Excellent timing resolution is required to enhance the signal-to-noise ratio (SNR) gain available from the incorporation of time-of-flight (ToF) information in image reconstruction for positron emission tomography (PET). As the detector’s timing resolution improves, so does SNR, reconstructed image quality, and accuracy. This directly impacts the challenging detection and quantification tasks in the clinic. The recognition of these benefits has spurred efforts within the molecular imaging community to determine to what extent the timing resolution of scintillation detectors can be improved and develop near-term solutions for advancing ToF-PET. Presented in this work, is a method for calculating the Cramér-Rao lower bound (CRLB) on timing resolution for scintillation detectors with long crystal elements, where the influence of the variation in optical path length of scintillation light on achievable timing resolution is non-negligible. The presented formalism incorporates an accurate, analytical probability density function (PDF) of optical transit time within the crystal to obtain a purely mathematical expression of the CRLB with high-aspect-ratio (HAR) scintillation detectors. This approach enables the statistical limit on timing resolution performance to be analytically expressed for clinically-relevant PET scintillation detectors without requiring Monte Carlo simulation-generated photon transport time distributions. The analytically calculated optical transport PDF was compared with detailed light transport simulations, and excellent agreement was found between the two. The coincidence timing resolution (CTR) between two 3× 3× 20 mm3 LYSO:Ce crystals coupled to analogue SiPMs was experimentally measured to be 162+/- 1 ps FWHM, approaching the analytically calculated lower bound within 6.5%.

  5. Underground Nuclear Astrophysics in China

    NASA Astrophysics Data System (ADS)

    Liu, Weiping

    2016-10-01

    Underground Nuclear Astrophysics in China (JUNA) will take the advantage of the ultra-low background in Jinping underground lab. High current accelerator with an ECR source and detectors will be set up. We plan to study directly a number of nuclear reactions important to hydrostatic stellar evolution at their relevant stellar energies, such as 25Mg(p,γ)26Al, 19F(p,α)16O, 13C(α,n)16O and 12C(α,γ)16O.

  6. Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Rountree, Steven Derek

    2014-03-01

    The Kimballton Underground Research Facility (KURF) is an operating deep underground research facility with six active projects, and greater than 50 trained researchers. KURF is 30 minutes from the Virginia Tech (VT) campus in an operating limestone mine with drive-in access (eg: roll-back truck, motor coach), over 50 miles of drifts (all 40' × 20 +' the current lab is 35' × 22' × 100'), and 1700' of overburden (1450m.w.e.). The laboratory was built in 2007 and offers fiber optic internet, LN2, 480/220/110 V power, ample water, filtered air, 55 F constant temp, low Rn levels, low rock background activity, and a muon flux of only ~0.004 muons per square meter, per second, per steradian. The current users are funded by NSF, DOE, and NNSA. Current user group: 1) mini-LENS (VT, Louisiana State University, BNL); 2) Double Beta Decay to Excited States (Duke University); 3) HPGe Low-Background Screening (University of North Carolina (UNC), VT); 4) MALBEK (UNC); 5&6) Watchman - 5) Radionuclide Detector and 6) MARS detector (LLNL, SNL, UC-Davis, UC-Berkeley, UH, Hawaii Pacific, UC-Irvine, VT).

  7. Black Hills State University Underground Campus.

    PubMed

    Mount, Brianna J; Thomas, Keenan J; Oliver-Mallory, Kelsey C; Lesko, Kevin T; Schnee, Richard W; Henning, Reyco; MacLellan, Ryan F; Guerra, Marcelo B B; Busch, Matthew; Christofferson, Cabot-Ann D; Wilkerson, J F; Xu, Wenqin; Mei, Dongming

    2017-08-01

    The Black Hills State University Underground Campus (BHUC) houses a low background counting facility on the 4850' level of the Sanford Underground Research Facility. There are currently four ultra-low background, high-purity germanium detectors installed in the BHUC and it is anticipated four more detectors will be installed within a year. In total, the BHUC will be able to accommodate up to twelve detectors with space inside a class 1000 cleanroom, an automated liquid nitrogen fill system, on-site personnel assistance and other required utilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Coincidences among the data recorded by the Baksan, KAMIOKA and Mont Blanc underground neutrino detectors, and by the Maryland and Rome gravitational-wave detectors during Supernova 1987 A

    NASA Astrophysics Data System (ADS)

    Aglietta, M.; Castellina, A.; Fulgione, W.; Trinchero, G.; Vernetto, S.

    1991-04-01

    Data recorded with neutrino detectors at Mont Blanc, Kamioka, and Baksan and with gravitational wave detectors in Maryland and Rome are analyzed. An attempt is made to find correlations associated with SN 1987 A. The time when an excess of coincidences is found is centered at a 5-pulse burst detected at Mont Blanc.

  9. Muon-induced background to proton decay in the p →K+ ν decay channel with large underground liquid argon TPC detectors

    NASA Astrophysics Data System (ADS)

    Klinger, J.; Kudryavtsev, V. A.; Richardson, M.; Spooner, N. J. C.

    2015-06-01

    Large liquid argon TPC detector programs such as LBNE and LAGUNA-LBNO will be able to make measurements of the proton lifetime which will outperform Cherenkov detectors in the proton decay channel p →K+ ν. At the large depths which are proposed for such experiments, a non-negligible source of isolated charged kaons may be produced in the showers of cosmogenic muons. We present an estimate of the cosmogenic muon background to proton decay in the p →K+ ν channel. The simulation of muon transport to a depth of 4 km w.e. is performed in the MUSIC framework and the subsequent propagation of muons and secondary particles in the vicinity of a cylindrical 20 kt LAr target is performed using GEANT4. An exposure time of 100 years is considered, with a rate of <0.0012 events/kt/year at 90% CL predicted from our simulations.

  10. Water Underground

    NASA Astrophysics Data System (ADS)

    de Graaf, I. E. M.

    2014-12-01

    The world's largest accessible source of freshwater is hidden underground. However it remains difficult to estimate its volume, and we still cannot answer the question; will there be enough for everybody? In many places of the world groundwater abstraction is unsustainable: more water is used than refilled, leading to decreasing river discharges and declining groundwater levels. It is predicted that for many regions in the world unsustainable water use will increase in the coming decades, due to rising human water use under a changing climate. It would not take long before water shortage causes widespread droughts and the first water war begins. Improving our knowledge about our hidden water is the first step to prevent such large water conflicts. The world's largest aquifers are mapped, but these maps do not mention how much water these aquifers contain or how fast water levels decline. If we can add thickness and geohydrological information to these aquifer maps, we can estimate how much water is stored and its flow direction. Also, data on groundwater age and how fast the aquifer is refilled is needed to predict the impact of human water use and climate change on the groundwater resource. Ultimately, if we can provide this knowledge water conflicts will focus more on a fair distribution instead of absolute amounts of water.

  11. Water underground

    NASA Astrophysics Data System (ADS)

    de Graaf, Inge

    2015-04-01

    The world's largest assessable source of freshwater is hidden underground, but we do not know what is happening to it yet. In many places of the world groundwater is abstracted at unsustainable rates: more water is used than being recharged, leading to decreasing river discharges and declining groundwater levels. It is predicted that for many regions of the world unsustainable water use will increase, due to increasing human water use under changing climate. It would not be long before shortage causes widespread droughts and the first water war begins. Improving our knowledge about our hidden water is the first step to stop this. The world largest aquifers are mapped, but these maps do not mention how much water they contain or how fast water levels decline. If we can add a third dimension to the aquifer maps, so a thickness, and add geohydrological information we can estimate how much water is stored. Also data on groundwater age and how fast it is refilled is needed to predict the impact of human water use and climate change on the groundwater resource.

  12. Integration of 64-detector lower extremity CT angiography into whole-body trauma imaging: feasibility and early experience.

    PubMed

    Foster, Bryan R; Anderson, Stephan W; Uyeda, Jennifer W; Brooks, Jeffrey G; Soto, Jorge A

    2011-12-01

    To evaluate the image quality and clinical utility of a polytrauma computed tomographic (CT) protocol that integrates lower extremity CT angiography into multiphasic whole-body trauma CT by utilizing 64-detector CT and a single contrast material bolus. This retrospective study was institutional review board approved and HIPAA compliant. Informed consent was waived. All patients who underwent CT angiography of the lower extremities integrated with multiphasic torso CT for trauma between May 2005 and September 2009 were included. Two hundred eighty-four patients met the inclusion criteria. The mechanism of trauma was blunt injury in 228 (80.3%) of 284 patients and penetrating in 56 (19.7%) of 284 patients. CT angiography encompassed the joints proximal and distal to the injured region, with scan delay fixed at 25 seconds. Two radiologists retrospectively reviewed all the extremity CT angiograms, noting the presence of vascular injury, and measured the attenuation in the lower extremity arteries. Arterial attenuation, in Hounsfield units, was measured at multiple vascular divisions, and CT angiographic results were compared with clinical outcome, and if available, repeat lower extremity CT angiographic, conventional angiographic, or surgical findings. Sensitivity and specificity with 95% confidence intervals were calculated. Sixty-three arterial injuries were identified in 44 (15.5%) of 284 patients as follows: occlusion (n = 37), narrowing (n = 9), active extravasation (n = 14), pseudoaneurysm (n= 2), and arteriovenous fistula (n = 1). Three patients underwent conventional angiography after CT angiography. Seven patients underwent surgical therapy with all CT angiographic findings confirmed. There were no injuries subsequently identified in the subgroup with a negative result at CT angiography. Of the 864 vascular divisions in which attenuation was measured, 69 (8%) of 864 had a mean attenuation less than 150 HU. Integration of lower extremity CT angiography into

  13. Underground physics in Japan - Present and future

    NASA Astrophysics Data System (ADS)

    Kitamura, T.

    1986-04-01

    Japanese underground-physics projects and Japanese participation in international programs are reviewed. Consideration is given to the large-solid-angle 30-100-m-deep underground-detector/surface-EAS-array installation at Ohya-cho; the Kamioka-mine Cerenkov detector; the DUMAND project near Hawaii; development of Super-Mutrons A and B at Ohya-cho; the results obtained in the JACEE project regarding quark-gluon-plasma muon pairs, muon bundles, and muon point sources; and a pair calorimeter and a proton-decay experiment for Gran Sasso Laboratory in Italy. Diagrams, graphs, and drawings are provided.

  14. Underground Layout Configuration

    SciTech Connect

    A. Linden

    2003-09-25

    The purpose of this analysis was to develop an underground layout to support the license application (LA) design effort. In addition, the analysis will be used as the technical basis for the underground layout general arrangement drawings.

  15. The MINOS detectors

    SciTech Connect

    Habig, A.; Grashorn, E.W.; /Minnesota U., Duluth

    2005-07-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment's primary goal is the precision measurement of the neutrino oscillation parameters in the atmospheric neutrino sector. This long-baseline experiment uses Fermilab's NuMI beam, measured with a Near Detector at Fermilab, and again 735 km later using a Far Detector in the Soudan Mine Underground Lab in northern Minnesota. The detectors are magnetized iron/scintillator calorimeters. The Far Detector has been operational for cosmic ray and atmospheric neutrino data from July of 2003, the Near Detector from September 2004, and the NuMI beam started in early 2005. This poster presents details of the two detectors.

  16. Vitrified underground structures

    DOEpatents

    Murphy, Mark T.; Buelt, James L.; Stottlemyre, James A.; Tixier, Jr., John S.

    1992-01-01

    A method of making vitrified underground structures in which 1) the vitrification process is started underground, and 2) a thickness dimension is controlled to produce substantially planar vertical and horizontal vitrified underground structures. Structures may be placed around a contaminated waste site to isolate the site or may be used as aquifer dikes.

  17. BACKGROUND TRACK DENSITY REDUCTION OF 50-HZ-HV ECE-PROCESSED THICK POLYCARBONATE DETECTORS TO IMPROVE LOWER DETECTION LIMIT.

    PubMed

    Sohrabi, M; Hakimi, A; Soltani, Z

    2016-12-01

    A recent novel development of 50-Hz-HV ECE of 1-mm-thick and 250-µm-thick polycarbonate track detectors (PCTDs) has proved some promising results for some health physics, dosimetry and ion-beam-related applications. The method while proved having some good characteristics for some applications provided a relatively higher background track density (BGTD) in particular when very high voltages are applied to the PCTDs. In order to decrease the minimum detection limit (MDL) of the PCTDs and to further promote its applications for low dose, the BGTD was reduced by applying a layer removal methodology applying ethylendiamine (EDA). The effects of EDA concentrations (50, 60, 65, 70, 75, 80, 85 and 90 %) in water at room temperature (26°C) and soaking durations up to 100 min at different EDA concentration on BGTD reduction were studied. The thickness of the layer removed from the surface of a PCTD highly depends on the soaking time and EDA concentration; it increases as the EDA concentration increases up to for example 700 µm after 2 h of soaking in the EDA solution. After ∼10 min of soaking duration at any of the above-stated concentrations, the BGTD reaches its minimum value, a value which differs from concentration to concentration. An EDA concentration of 85 % in water provided the lowest BGTD of 64.06 ± 3.12 tracks cm(- 2); ∼6 times lower than that of its original value. It is shown that the layer removal process does not change the registration characteristics of the PCTD and its appearance significantly. The MDL of the PCTDs depends strongly on the BGTD. The MDL values for a desired confidence level were also studied by three calculation methods. The results of the BGTD and the MDL studies under different conditions applied are presented and discussed.

  18. Underground laboratory in China

    NASA Astrophysics Data System (ADS)

    Chen, Heshengc

    2012-09-01

    The underground laboratories and underground experiments of particle physics in China are reviewed. The Jinping underground laboratory in the Jinping mountain of Sichuan, China is the deepest underground laboratory with horizontal access in the world. The rock overburden in the laboratory is more than 2400 m. The measured cosmic-ray flux and radioactivities of the local rock samples are very low. The high-purity germanium experiments are taking data for the direct dark-matter search. The liquid-xenon experiment is under construction. The proposal of the China National Deep Underground Laboratory with large volume at Jinping for multiple discipline research is discussed.

  19. The homestake surface-underground scintillations: Description

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.; Corbato, S.; Daily, T.; Fenyves, E. J.; Kieda, D.; Lande, K.; Lee, C. K.

    1985-01-01

    Two new detectors are currently under construction at the Homestake Gold Mine a 140-ton Large Area Scintillation Detector (LASD) with an upper surface area of 130 square meters, a geometry factor (for an isotropic flux) of 1200 square meters, sr, and a depth of 4200 m.w.e.; and a surface air shower array consisting of 100 scintillator elements, each 3 square meters, spanning an area of approximately square kilometers. Underground, half of the LASD is currently running and collecting muon data; on the surface, the first section of the air shower array will begin operation in the spring of 1985. The detectors and their capabilities are described.

  20. Above- and underground storage tanks

    SciTech Connect

    Canning, K.; Kilbourne, A.

    1997-09-01

    Storage tanks are the primary means of storing liquid, fluid and gas products. Federal and state environmental regulations, as well as local building and fire codes, take into account leaks and spills, tank emissions, underground tank seepage and safety issues, and they define standards for tank manufacturers and owners. For specific regulatory information pertaining to your application, contact the local authorities having jurisdiction. Storage tanks listed within this product guide have been classified as underground or aboveground, with subcategories including modular, process and temporary tanks. Tank construction materials include aluminum, carbon steel, concrete, fiberglass-reinforced plastic (FRP) and stainless steel. A variety of accessories, including automatic tank gauging systems, level monitors, leak detectors, overfill protection and tank inspection systems, also are listed. Aboveground storage tanks (ASTs) have less than 10 percent of their tank volume and piping below ground. Available in both vertical and horizontal configurations, they can be either erected in the field or fabricated in a factory. Underground storage tanks (USTs) are primarily used to contain regulated substances; USTs have at least 10% of their tank volume and piping buried belowground. Common UST construction materials include carbon steel, coated steel, cathodically protected steel and FRP. USTs are required to have corrosion protection, spill and overfill prevention and control and release detection in place by December 1998.

  1. Underground pumped hydroelectric storage

    NASA Astrophysics Data System (ADS)

    Allen, R. D.; Doherty, T. J.; Kannberg, L. D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-velocity requirements of a greater metropolitan area with population of 1 million or more.

  2. Overview of Opportunities in Underground Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Smith, Nigel

    2016-09-01

    The field of deep underground nuclear physics is within an exciting and burgeoning phase, demonstrated by the recent award of the 2105 Nobel Prize in physics for the observation of neutrino oscillations and neutrino flavor change, with new detector systems in construction and deployment to further develop this scientific field. This talk will overview the current status of the fields within deep underground nuclear physics, focusing on the study of astrophysical neutrino sources, the intrinsic nature of the neutrino, and nuclear astrophysics. The opportunities available in these fields in the near-future will also be discussed.

  3. Underground Nuclear Astrophysics Experiment JUNA in China

    NASA Astrophysics Data System (ADS)

    Liu, W. P.

    Underground Nuclear Astrophysics Experiment in China (JUNA) will take the advantage of the ultra-low background in Jinping underground lab. A 400 kV high current accelerator with an ECR source and γ , neutron and charged particle detectors will be set up. We plan to study directly a number of nuclear reactions important to hydrostatic stellar evolution near their Gamow window energies such as 25Mg(p, γ )26Al, 19F(p, α )16O, 13C(α , n)16O, and 12C(α , γ )16O, by the end of 2019.

  4. A new versatile underground gamma-ray spectrometry system.

    PubMed

    Lutter, Guillaume; Hult, Mikael; Marissens, Gerd; Andreotti, Erica; Rosengård, Ulf; Misiaszek, Marcin; Yüksel, Ayhan; Sahin, Namik

    2013-11-01

    The newest development in IRMM's underground analytical facility is a large lead shield lined with copper that is versatile and can host several detectors of different types. The characteristics and the background performance of the shield are described for four different detector configurations involving HPGe-detectors and NaI-detectors. The shield has been designed to swap detectors, while still maintaining a low background. This enables testing of detectors for other experiments and optimisation of detection limits for specific radionuclides in different projects.

  5. Underground physics and the barometric pumping effect observed for thermal neutron flux underground

    NASA Astrophysics Data System (ADS)

    Stenkin, Yu. V.; Alekseenko, V. V.; Gromushkin, D. M.; Sulakov, V. P.; Shchegolev, O. B.

    2017-05-01

    It is known that neutron background is a major problem for low-background experiments carrying out underground, such as dark matter search, double-beta decay searches and other experiments known as Underground Physics. We present here some results obtained with the en-detector of 0.75 m2, which is running for more than 4 years underground at a depth of 25 m water equivalent in Skobeltsyn Institute of Nuclear Physics, Moscow State University. Some spontaneous increases in thermal neutron flux up to a factor of 3 were observed in delayed anti-correlation with barometric pressure. The phenomenon can be explained by the radon barometric pumping effect resulting in similar effect in neutron flux being produced in (α, n)-reactions by alpha-decays of radon and its daughters in surrounding rock. This is the first demonstration of the barometric pumping effect observed in thermal neutron flux underground.

  6. Underground laboratories in Asia

    NASA Astrophysics Data System (ADS)

    Lin, Shin Ted; Yue, Qian

    2015-08-01

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  7. Underground laboratories in Asia

    SciTech Connect

    Lin, Shin Ted; Yue, Qian

    2015-08-17

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  8. A Facility Goes Underground.

    ERIC Educational Resources Information Center

    Grant, Norman

    1980-01-01

    Ohio's Sinclair Community College met the challenge of building a campus in an urban area with limited space by connecting the system with underground tunnels. This underground complex has made a comprehensive physical education, recreation, and intercollegiate program available to students and the community. (CJ)

  9. Radon measurements in underground dwellings from two prefectures in China

    SciTech Connect

    Wang, Zuo-Yuan; Zhang, Shou-Zhi; Shang, Bing

    1996-02-01

    We have embarked upon a lung cancer case control study in Gansu Province, China, where a substantial portion of the population live in underground dwellings. Radon measurements were made for 3 days in the summer for 40 homes using short-term E-PERM detectors and for 6 months from February through August in 49 homes using long-term alpha-track detectors. For both types of detectors, measurements were approximately log-normally distributed.

  10. Establishing sustainable strategies in urban underground engineering.

    PubMed

    Curiel-Esparza, Jorge; Canto-Perello, Julian; Calvo, Maria A

    2004-07-01

    Growth of urban areas, the corresponding increased demand for utility services and the possibility of new types of utility systems are overcrowding near surface underground space with urban utilities. Available subsurface space will continue to diminish to the point where utilidors (utility tunnels) may become inevitable. Establishing future sustainable strategies in urban underground engineering consists of the ability to lessen the use of traditional trenching. There is an increasing interest in utility tunnels for urban areas as a sustainable technique to avoid congestion of the subsurface. One of the principal advantages of utility tunnels is the substantially lower environmental impact compared with common trenches. Implementing these underground facilities is retarded most by the initial cost and management procedures. The habitual procedure is to meet problems as they arise in current practice. The moral imperative of sustainable strategies fails to confront the economic and political conflicts of interest. Municipal engineers should act as a key enabler in urban underground sustainable development.

  11. Underground multi-muon experiment EMMA

    NASA Astrophysics Data System (ADS)

    Kuusiniemi, P.; Bezrukov, L.; Enqvist, T.; Fynbo, H.; Inzhechik, L.; Jones, P.; Joutsenvaara, J.; Kalliokoski, T.; Karjalainen, J.; Loo, K.; Lubsandorzhiev, B.; Monto, T.; Petkov, V.; Räihä, T.; Sarkamo, J.; Slupecki, M.; Trzaska, W. H.; Virkajärvi, A.

    2011-04-01

    EMMA is a new experiment designed for cosmic-ray composition studies around the knee energy operating at the shallow depth underground in the Pyhäsalmi mine, Finland. The array has sufficient coverage and resolution to determine the multiplicity, the lateral density distribution and the arrival direction of high-energy muons on an event by event basis. Preliminary results on the muon multiplicity extracted using one detector station of the array are presented.

  12. Neutron background in underground particle astrophysics experiments

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, V. A.

    2007-03-01

    Neutron background for the high-sensitivity underground particle astrophysics experiments, such as dark matter searches, double-beta decay detectors, low-energy neutrino physics and astrophysics, is discussed. Neutron production via spontaneous fission and (α,n) reactions from U and Th, and by cosmic-ray muons is considered. We describe the method of calculating neutron spectra from radioactivity and effects produced in the detectors. The requirements for passive neutron shielding are given and the efficiency of an active veto system is discussed. It is shown that muon-induced neutrons require complex and accurate simulations where any simplification may lead to a significant error in the result.

  13. Underground pumped hydroelectric storage

    SciTech Connect

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  14. Depleted Argon from Underground Sources

    SciTech Connect

    Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P.; Alexander, T.; Alton, A.; Rogers, H.; Kendziora, C.; Pordes, S.

    2011-04-27

    Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

  15. Science Center Goes Underground

    ERIC Educational Resources Information Center

    Modern Schools, 1977

    1977-01-01

    A unique underground science center at Bluffton College, designed to save energy and preserve trees, rolling landscape, and other environmental features of the campus, is under construction in Bluffton, Ohio. (Author)

  16. Superior CT coronary angiography image quality at lower radiation exposure with second generation 320-detector row CT in patients with elevated heart rate: a comparison with first generation 320-detector row CT

    PubMed Central

    Soh, Siang Y.; Ko, Brian S. H.; Cameron, James D.; Crossett, Marcus; Nasis, Arthur; Troupis, John; Meredith, Ian T.; Seneviratne, Sujith K.

    2014-01-01

    Background This study aims to compare the image quality of second generation versus first generation 320-computed tomography coronary angiography (CTCA) in patients with heart rate ≥65 bpm as it has not been specifically reported. Methods Consecutive patients who underwent CTCA using second-generation-320-detector-row-CT were prospectively enrolled. A total of 50 patients with elevated (≥65 bpm) heart rate and 50 patients with controlled (<65 bpm) heart rate were included. Age and gender matched patients who were scanned with the first-generation-320-detector-row-CT were retrospectively identified. Image quality in each coronary artery segment was assessed by two blinded CT angiographers using the five-point Likert scale. Results In the elevated heart rate cohorts, while there was no significant difference in heart rate during scan-acquisition (66 vs. 69 bpm, P=0.308), or body mass index (28.5 vs. 29.6, P=0.464), the second generation scanner was associated with better image quality (3.94±0.6 vs. 3.45±0.8, P=0.001), and with lower radiation (2.8 vs. 4.3 mSv, P=0.009). There was no difference in scan image quality for the controlled heart rate cohorts. Conclusions The second generation CT scanner provides better image quality at lower radiation dose in patients with elevated heart rate (≥65 bpm) compared to first generation CT scanner. PMID:25276615

  17. Wiener filtering with a seismic underground array at the Sanford Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Coughlin, M.; Harms, J.; Christensen, N.; Dergachev, V.; DeSalvo, R.; Kandhasamy, S.; Mandic, V.

    2014-11-01

    A seismic array has been deployed at the Sanford Underground Research Facility in the former Homestake mine, South Dakota, USA, to study the underground seismic environment. This includes exploring the advantages of constructing a third-generation gravitational-wave (GW) detector underground. A major noise source for these detectors would be Newtonian noise (NN), which is induced by fluctuations in the local gravitational field. The hope is that a combination of a low-noise seismic environment and coherent noise subtraction using seismometers in the vicinity of the detector could suppress the NN to below the projected noise floor for future GW detectors. In this paper, certain properties of the NN subtraction problem are studied by applying similar techniques to data of a seismic array. We use Wiener filtering techniques to subtract coherent noise in a seismic array in the frequency band 0.05-1 Hz. This achieves more than an order of magnitude noise cancellation over a majority of this band. The variation in the Wiener-filter coefficients over the course of the day, including how local activities impact the filter, is analyzed. We also study the variation in coefficients over the course of a month, showing the stability of the filter with time. How varying the filter order affects the subtraction performance is also explored. It is shown that optimizing filter order can significantly improve subtraction of seismic noise.

  18. Underground infrastructure damage for a Chicago scenario

    SciTech Connect

    Dey, Thomas N; Bos, Rabdall J

    2011-01-25

    Estimating effects due to an urban IND (improvised nuclear device) on underground structures and underground utilities is a challenging task. Nuclear effects tests performed at the Nevada Test Site (NTS) during the era of nuclear weapons testing provides much information on how underground military structures respond. Transferring this knowledge to answer questions about the urban civilian environment is needed to help plan responses to IND scenarios. Explosions just above the ground surface can only couple a small fraction of the blast energy into an underground shock. The various forms of nuclear radiation have limited penetration into the ground. While the shock transmitted into the ground carries only a small fraction of the blast energy, peak stresses are generally higher and peak ground displacement is lower than in the air blast. While underground military structures are often designed to resist stresses substantially higher than due to the overlying rocks and soils (overburden), civilian structures such as subways and tunnels would generally only need to resist overburden conditions with a suitable safety factor. Just as we expect the buildings themselves to channel and shield air blast above ground, basements and other underground openings as well as changes of geology will channel and shield the underground shock wave. While a weaker shock is expected in an urban environment, small displacements on very close-by faults, and more likely, soils being displaced past building foundations where utility lines enter could readily damaged or disable these services. Immediately near an explosion, the blast can 'liquefy' a saturated soil creating a quicksand-like condition for a period of time. We extrapolate the nuclear effects experience to a Chicago-based scenario. We consider the TARP (Tunnel and Reservoir Project) and subway system and the underground lifeline (electric, gas, water, etc) system and provide guidance for planning this scenario.

  19. DOE Grant to organize "International Symposium on Opportunities in Underground Physics", Asilomar, CA, May 24-27, 2013

    SciTech Connect

    Babu, Kaladi S.

    2015-03-16

    The International Symposium in Opportunities in Underground Physics (ISOUP) was held in Asilomar, CA during May 24-27, 2013. The Symposium brought together scientists from the US and abroad for an open discussion on science opportunities provided by the possibility of a new generation of large underground detectors associated with long baseline neutrino beams. The Symposium was highly successful. The main focus of the Symposium was the science goals that could be achieved by placing such a detector deep underground.

  20. Three-dimensional demonstration of the lymphatic system in the lower extremities with multi-detector-row computed tomography: a study in a cadaver model.

    PubMed

    Yamazaki, Shun; Suami, Hiroo; Imanishi, Nobuaki; Aiso, Sadakazu; Yamada, Minoru; Jinzaki, Masahiro; Kuribayashi, Sachio; Chang, David W; Kishi, Kazuo

    2013-03-01

    Sentinel lymph node biopsy (SLNB) has had a great impact on the staging and treatment of cancer. The purpose of this study was to study the lymphatic anatomy of the lower extremities by constructing three-dimensional images using multi-detector-row computed tomography (MDCT). To select appropriate contrast media for MDCT lymphatic imaging in a cadaver, we tested four kinds of contrast media by injecting them into fresh swine kidneys. After the suitable contrast medium was selected, 10 lower extremities from 5 fresh cadavers were studied. After injection of the contrast medium, each lower extremity was scanned with high-spatial-resolution MDCT. The zinc oxide mixture was found to be the most appropriate contrast formula for MDCT imaging of cadaver lymphatics in terms of CT value and no extravasation. The high-resolution MDCT imaging revealed two different superficial lymphatic pathways in the legs. One lymphatic pathway accompanying the great saphenous vein had a constant course and was connected to the superficial inguinal lymph nodes. However, another pathway, along the small saphenous vein, was variable. Some of the deep lymphatic vessels bypassed the inguinal lymph nodes. Using a new protocol, we were able to construct three-dimensional images of the lower extremity lymphatics in a cadaver model. MDCT imaging provided novel information about two different superficial lymphatic pathways in the lower extremities. Copyright © 2013 Wiley Periodicals, Inc.

  1. Depleted argon from underground sources

    SciTech Connect

    Back, H.O.; Alton, A.; Calaprice, F.; Galbiati, C.; Goretti, A.; Kendziora, C.; Loer, B.; Montanari, D.; Mosteiro, P.; Pordes, S.; /Fermilab

    2011-09-01

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  2. Are underground coal miners satisfied with their work boots?

    PubMed

    Dobson, Jessica A; Riddiford-Harland, Diane L; Bell, Alison F; Steele, Julie R

    2018-01-01

    Dissatisfaction with work boot design is common in the mining industry. Many underground coal miners believe their work boots contribute to the high incidence of lower limb injuries they experience. Despite this, the most recent research to examine underground coal mining work boot satisfaction was conducted over a decade ago. This present study aimed to address this gap in the literature by assessing current mining work boot satisfaction in relation to the work-related requirements for underground coal mining. 358 underground coal miners (355 men; mean age = 39.1 ± 10.7 years) completed a 54-question survey regarding their job details, work footwear habits, foot problems, lower limb and lower back pain history, and work footwear fit and comfort. Results revealed that underground coal miners were not satisfied with their current mining work boots. This was evident in the high incidence of reported foot problems (55.3%), lower back pain (44.5%), knee pain (21.5%), ankle pain (24.9%) and foot pain (42.3%). Over half of the underground coal miners surveyed believed their work boots contributed to their lower limb pain and reported their work boots were uncomfortable. Different working roles and environments resulted in differences in the incidence of foot problems, lower limb pain and comfort scores, confirming that one boot design cannot meet all the work-related requirements of underground coal mining. Further research examining the interaction of a variety of boot designs across the different underground surfaces and the different tasks miners perform is paramount to identify key boot design features that affect the way underground coal miners perform. Enhanced work boot design could improve worker comfort and productivity by reducing the high rates of reported foot problems and pain amongst underground coal miners. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Underground mine communications: a survey

    SciTech Connect

    Yarkan, S.; Guzelgoz, S.; Arslan, H.; Murphy, R.R.

    2009-07-01

    After a recent series of unfortunate underground mining disasters, the vital importance of communications for underground mining is underlined one more time. Establishing reliable communication is a very difficult task for underground mining due to the extreme environmental conditions. Until now, no single communication system exists which can solve all of the problems and difficulties encountered in underground mine communications. However, combining research with previous experiences might help existing systems improve, if not completely solve all of the problems. In this survey, underground mine communication is investigated. Major issues which underground mine communication systems must take into account are discussed. Communication types, methods, and their significance are presented.

  4. CASPAR - Nuclear Astrophysics Underground

    NASA Astrophysics Data System (ADS)

    Strieder, Frank; Robertson, Daniel; Couder, Manoel; Greife, Uwe; Wells, Doug; Wiescher, Michael

    2015-10-01

    The work of the LUNA Collaboration at the Laboratori Nationali del Gran Sasso demonstrated the research potential of an underground accelerator for the field of nuclear astrophysics. Several key reactions could be studied at LUNA, some directly at the Gamow peak for solar hydrogen burning. The CASPAR (Compact Accelerator System for Performing Astrophysical Research) Collaboration will implement a high intensity 1 MV accelerator at the Sanford Underground Research Facility (SURF) and overcome the current limitation at LUNA. The installation of the accelerator in the recently rehabilitated underground cavity at SURF started in Summer 2015 and first beam should be delivered by the end of the year. This project will primarily focus on the neutron sources for the s-process, e.g. 13C(α , n) 16O and 22Ne(α , n) 25Mg , and lead to unprecedented measurements compared to previous studies. A detailed overview of the science goals of CASPAR will be presented.

  5. Underground mineral extraction

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B.

    1980-01-01

    A method was developed for extracting underground minerals such as coal, which avoids the need for sending personnel underground and which enables the mining of steeply pitched seams of the mineral. The method includes the use of a narrow vehicle which moves underground along the mineral seam and which is connected by pipes or hoses to water pumps at the surface of the Earth. The vehicle hydraulically drills pilot holes during its entrances into the seam, and then directs sideward jets at the seam during its withdrawal from each pilot hole to comminute the mineral surrounding the pilot hole and combine it with water into a slurry, so that the slurried mineral can flow to a location where a pump raises the slurry to the surface.

  6. Image quality and radiation dose of lower extremity CT angiography at 70 kVp on an integrated circuit detector dual-source computed tomography.

    PubMed

    Qi, Li; Zhao, Yan'E; Zhou, Chang Sheng; Spearman, James V; Renker, Matthias; Schoepf, U Joseph; Zhang, Long Jiang; Lu, Guang Ming

    2015-06-01

    Despite the well-established requirement for radiation dose reduction there are few studies examining the potential for lower extremity CT angiography (CTA) at 70 kVp. To compare the image quality and radiation dose of lower extremity CTA at 70 kVp using a dual-source CT system with an integrated circuit detector to similar studies at 120 kVp. A total of 62 patients underwent lower extremity CTA. Thirty-one patients were examined at 70 kVp using a second generation dual-source CT with an integrated circuit detector (70 kVp group) and 31 patients were evaluated at 120 kVp using a first generation dual-source CT (120 kVp group). The attenuation and image noise were measured and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Two radiologists assessed image quality. Radiation dose was compared. The mean attenuation of the 70 kVp group was higher than the 120 kVp group (575 ± 149 Hounsfield units [HU] vs. 258 ± 38 HU, respectively, P < 0.001) as was SNR (44.0 ± 22.0 vs 32.7 ± 13.3, respectively, P = 0.017), CNR (39.7 ± 20.6 vs 26.6 ± 11.7, respectively, P = 0.003) and the mean image quality score (3.7 ± 0.1 vs. 3.2 ± 0.3, respectively, P < 0.001). The inter-observer agreement was good for the 70 kVp group and moderate for the 120 kVp group. The dose-length product was lower in the 70 kVp group (264.5 ± 63.1 mGy × cm vs. 412.4 ± 81.5 mGy × cm, P < 0.001). Lower extremity CTA at 70 kVp allows for lower radiation dose with higher SNR, CNR, and image quality when compared with standard 120 kVp. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. The Underground Laboratory in South Korea : facilities and experiments

    NASA Astrophysics Data System (ADS)

    Kim, Yeongduk

    2017-01-01

    We have developed underground physics programs for last 15 years in South Korea. The scientific and technical motivation for this initiative was the lack of local facility of a large accelerator in Korea. Thanks to the large underground electric power generator in Yangyang area, we could construct a deep underground laboratory (Yangyang Laboratory, Y2L) and has performed some pioneering experiments for dark matter search and double beta decay experiments. Since year of 2013, a new research center in the Institute for Basic Science (IBS), Center for Underground Physics (CUP), is approved by the government and Y2L laboratory is managed by CUP. Due to the limited space in Y2L, we are proposing to construct a new deep underground laboratory where we can host larger scale experiments of next generation. The site is in an active iron mine, and will be made in 1100 meter underground with a space of about 2000 m2 by the end of 2019. I will describe the status and future plan for this underground laboratory. CUP has two main experimental programs. (1) Identification of dark matter : The annual modulation signal of DAMA/LIBRA experiment has been contradictory to many other experiments such as XENON100, LUX, and Super CDMS. Yale University and CUP (COSINE-100) experimentalists agreed to do an experiment together at the Y2L and recently commissioned a 100kg scale low background NaI(Tl) crystal experiment. In future, we will develop NaI(Tl) crystals with lower internal backgrounds and try to run identical detectors at both north and south hemisphere. Low mass WIMP search is also planned with a development of low temperature sensors coupled with highly scintillating crystals. (2) Neutrinoless double beta decay search : The mass of the lightest neutrino and the Majorana nature of the neutrinos are not determined yet. Neutrinoless double beta decay experiment can answer both of the questions directly, and ultra-low backgrounds and excellent energy resolution are critical to

  8. Background Underground at WIPP

    NASA Astrophysics Data System (ADS)

    Esch, Ernst-Ingo; Hime, A.; Bowles, T. J.

    2001-04-01

    Recent interest to establish a dedicated underground laboratory in the United States prompted an experimental program at to quantify the enviromental backgrounds underground at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. An outline of this program is provided along with recent experimental data on the cosmic ray muon flux at the 650 meter level of WIPP. The implications of the cosmic ray muon and fast neutron background at WIPP will be discussed in the context of new generation, low background experiments envisioned in the future.

  9. Dynamic Underground Stripping Project

    SciTech Connect

    Aines, R.; Newmark, R.; McConachie, W.; Udell, K.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; Udell, K.

    1992-01-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ``Dynamic Stripping`` to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving the contaminated site in FY 92.

  10. The ANDES underground laboratory

    NASA Astrophysics Data System (ADS)

    Bertou, X.

    2012-09-01

    The ANDES underground laboratory, planned for inclusion in the Agua Negra tunnel crossing the Andes between Argentina and Chile, will be the first deep underground laboratory in the southern hemisphere. It will be deep (1750 m of rock overburden), large (60 000 m3 of volume), and provide the international community with a unique site for testing dark-matter modulation signals. The site furthermore has a low nuclear reactor neutrino background and is of special interest to the geophysics sciences. The laboratory will be run as a multi-national facility, under a consortium of Latin-American countries. Its opening is expectedfor 2020.

  11. Lower limits of spin detection efficiency for two-parameter two-qubit (TPTQ) states with non-ideal ferromagnetic detectors

    NASA Astrophysics Data System (ADS)

    Majd, Nayereh; Ghasemi, Zahra

    2016-10-01

    We have investigated a TPTQ state as an input state of a non-ideal ferromagnetic detectors. Minimal spin polarization required to demonstrate spin entanglement according to entanglement witness and CHSH inequality with respect to (w.r.t.) their two free parameters have been found, and we have numerically shown that the entanglement witness is less stringent than the direct tests of Bell's inequality in the form of CHSH in the entangled limits of its free parameters. In addition, the lower limits of spin detection efficiency fulfilling secure cryptographic key against eavesdropping have been derived. Finally, we have considered TPTQ state as an output of spin decoherence channel and the region of ballistic transmission time w.r.t. spin relaxation time and spin dephasing time has been found.

  12. Particulate matter in the underground of Stockholm

    NASA Astrophysics Data System (ADS)

    Johansson, Christer; Johansson, Per-Åke

    The concentrations of PM 10 and PM 2.5 were measured during 2 weeks at an underground station in central Stockholm. The instrument, an automatic TEOM monitor (Tapered Element Oscillating Microbalance), was placed on the platform in the centre of the station. During weekdays between 7 a.m. and 7 p.m. the average PM 10 and PM 2.5 concentrations were 470 and 260 μg/ m3, respectively. These levels are a factor 5 and 10 times higher than the corresponding values measured in one of the busiest streets in central Stockholm. The concentrations in the underground followed closely the train traffic intensity. The levels were very similar from one day to the next. During Saturdays and Sundays the levels decreased slightly due to less frequent train passages. Additional measurements were performed right after the tunnel had been washed. Tunnel walls and railway tracks between the platforms of the underground system were washed using water. Only a slight reduction of the PM 10 levels (approximately 13%) could be observed during a few days after the water treatment. For PM 2.5 the reduction was even less, about 10% lower levels could be seen. This might indicate that particles from tunnel walls and tracks make only a minor contribution to the observed levels. These results confirm earlier unpublished measurements showing high levels of PM in the underground of Stockholm. Substantially, elevated particle exposure levels have also been reported in several earlier studies in the underground of London, UK.

  13. [Occurrence of radon in the Polish underground tourist routes].

    PubMed

    Olszewski, Jerzy; Zmyślony, Marek; Wrzesień, Małgorzata; Walczak, Katarzyna

    2015-01-01

    There are about 200 underground tourist routes in Poland. There are caves, mines or underground structures. This paper presents the results of the research intended to identify the extent of the occurrence of radon concentrations in underground areas of tourist routes. We conducted the measurement of periodic concentrations of radon (1-2 months) in the summer using type Tastrak trace detectors. We determined the average concentrations of radon in air in 66 underground tourist routes in Poland. The research results comprise 259 determinations of average radon concentrations in 66 routes. The arithmetic average of the results was 1610 Bqm-3, and the maximum measured concentration was over 20,000 Bqm-3. The minimum concentration was 100 Bqm-3 (threshold method) considering the arithmetic average of the measurements. It was found that in 67% of the routes, the average concentration of radon has exceeded 300 Bqm-3 and in 22 underground routes it exceeded 1000 Bqm-3. Radon which occurs in many Polish underground tourist routes may be an organizational, legal and health problem. It is necessary to develop a program of measures to reduce radon concentrations in underground routes, especially routes located in the former mines. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  14. Underground neutrino astronomy

    SciTech Connect

    Schramm, D.N.

    1983-02-01

    A review is made of possible astronomical neutrino sources detectable with underground facilities. Comments are made about solar neutrinos and gravitational-collapse neutrinos, and particular emphasis is placed on ultra-high-energy astronomical neutrino sources. An appendix mentions the exotic possibility of monopolonium.

  15. Underground Coal Mining

    NASA Technical Reports Server (NTRS)

    Hill, G. M.

    1980-01-01

    Computer program models coal-mining production, equipment failure and equipment repair. Underground mine is represented as collection of work stations requiring service by production and repair crews alternately. Model projects equipment availability and productivity, and indicates proper balance of labor and equipment. Program is in FORTRAN IV for batch execution; it has been implemented on UNIVAC 1108.

  16. Mars Underground News.

    NASA Astrophysics Data System (ADS)

    Edgett, K.

    Contents: Ten years Underground. Rover roundup (International Conference on Mobile Planetary Robots and Rover Roundup, Santa Monica, CA (USA), 29 Jan - 4 Feb 1997). Reaching the Red. Schedule of missions to Mars (as of April 1, 1997). Mars on the Web.

  17. Underground Tank Management.

    ERIC Educational Resources Information Center

    Bednar, Barbara A.

    1990-01-01

    The harm to human health and our environment caused by leaking underground storage tanks can be devastating. Schools can meet new federal waste management standards by instituting daily inventory monitoring, selecting a reliable volumetric testing company, locating and repairing leaks promptly, and removing and installing tanks appropriately. (MLH)

  18. Underground Coal Mining

    NASA Technical Reports Server (NTRS)

    Hill, G. M.

    1980-01-01

    Computer program models coal-mining production, equipment failure and equipment repair. Underground mine is represented as collection of work stations requiring service by production and repair crews alternately. Model projects equipment availability and productivity, and indicates proper balance of labor and equipment. Program is in FORTRAN IV for batch execution; it has been implemented on UNIVAC 1108.

  19. Underground Tank Management.

    ERIC Educational Resources Information Center

    Bednar, Barbara A.

    1990-01-01

    The harm to human health and our environment caused by leaking underground storage tanks can be devastating. Schools can meet new federal waste management standards by instituting daily inventory monitoring, selecting a reliable volumetric testing company, locating and repairing leaks promptly, and removing and installing tanks appropriately. (MLH)

  20. Global Pursuits: The Underground Railroad

    ERIC Educational Resources Information Center

    School Arts: The Art Education Magazine for Teachers, 2004

    2004-01-01

    This brief article describes Charles T. Webber's oil on canvas painting, "The Underground Railroad, 1893." The subject of this painting is the Underground Railroad, which today has become an American legend. The Underground Railroad was not a systematic means of transportation, but rather a secretive process that allowed fugitive slaves…

  1. Global Pursuits: The Underground Railroad

    ERIC Educational Resources Information Center

    School Arts: The Art Education Magazine for Teachers, 2004

    2004-01-01

    This brief article describes Charles T. Webber's oil on canvas painting, "The Underground Railroad, 1893." The subject of this painting is the Underground Railroad, which today has become an American legend. The Underground Railroad was not a systematic means of transportation, but rather a secretive process that allowed fugitive slaves…

  2. Search for double electron capture on 124Xe with the XMASS-I detector

    NASA Astrophysics Data System (ADS)

    Hiraide, Katsuki; XMASS Collaboration

    2016-05-01

    The XMASS project is a multi-purpose experiment using highly-purified liquid xenon scintillator located underground at the Kamioka Observatory in Japan. A search for two-neutrino double electron capture on 124Xe is performed using 165.9 days of data collected with the XMASS-I detector. No significant excess above background was observed and we set a lower limit on the half-life as 4.7 × 1021 years at 90% confidence level.

  3. Underground search for the decay of {sup 180}Ta{sup m}

    SciTech Connect

    Hult, Mikael; Gasparro, Joeel; Marissens, Gerd; Lindahl, Patric; Waetjen, Uwe; Johnston, Peter N.; Wagemans, Cyriel; Koehler, Matthias

    2006-11-15

    Tantalum-180m is a very rare primordial isotope and is not in its nuclear ground state. The radioactivity of {sup 180}Ta{sup m} has not yet been observed. Previous attempts to measure the half-life of {sup 180}Ta{sup m} have been performed using various detectors located above ground. In this work a 606 g Ta disk of natural isotopic composition was measured for 170 d in the 225 m deep underground laboratory HADES. The new lower bound for the half-life is 1.7x10{sup 16} y for electron capture decay and 1.2x10{sup 16} y for {beta}{sup -} decay. This gives a total lower bound for the half-life of 7.1x10{sup 15} y, which is a factor of 6 higher than the previous lower bound.

  4. Method of locating underground mines fires

    DOEpatents

    Laage, Linneas; Pomroy, William

    1992-01-01

    An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

  5. EAS selection in the EMMA underground array

    NASA Astrophysics Data System (ADS)

    Sarkamo, J.; Bezrukov, L.; Enqvist, T.; Fynbo, H.; Inzhechik, L.; Joutsenvaara, J.; Kalliokoski, T.; Kuusiniemi, P.; Loo, K.; Lubsandorzhiev, B.; Monto, T.; Petkov, V.; Räihä, T.; Slupecki, M.; Trzaska, W. H.; Virkajärvi, A.

    2013-02-01

    The first measurements of the Experiment with MultiMuon Array (EMMA) have been analyzed for the selection of the Extensive Air Showers (EAS). Test data were recorded with an underground muon tracking station and a satellite station separated laterally by 10 metres. Events with tracks distributed over all of the tracking detector area and even extending over to the satellite station are identified as EAS. The recorded multiplicity spectrum of the events is in general agreement with CORSIKA EAS simulation and demonstrates the array's capability of EAS detection.

  6. Radon as a tracer of daily, seasonal and spatial air movements in the Underground Tourist Route "Coal Mine" (SW Poland).

    PubMed

    Tchorz-Trzeciakiewicz, Dagmara Eulalia; Parkitny, Tomasz

    2015-11-01

    The surveys of radon concentrations in the Underground Tourist Route "Coal Mine" were carried out using passive and active measurement techniques. Passive methods with application of Solid State Nuclear Track Detectors LR115 were used at 4 points in years 2004-2007 and at 21 points in year 2011. These detectors were exchanged at the beginning of every season in order to get information about seasonal and spatial changes of radon concentrations. The average radon concentration noted in this facility was 799 Bq m(-3) and is consistent with radon concentrations noted in Polish coal mines. Seasonal variations, observed in this underground tourist route, were as follows: the highest radon concentrations were noted during summers, the lowest during winters, during springs and autumns intermediate but higher in spring than in autumn. The main external factor that affected seasonal changes of radon concentrations was the seasonal variation of outside temperature. No correlation between seasonal variations of radon concentrations and seasonal average atmospheric pressures was found. Spatial variations of radon concentrations corresponded with air movements inside the Underground Tourist Route "Coal Mine". The most vivid air movements were noted along the main tunnel in adit and at the place located near no blinded (in the upper part) shaft. Daily variations of radon concentrations were recorded in May 2012 using RadStar RS-230 as the active measurement technique. Typical daily variations of radon concentrations followed the pattern that the highest radon concentrations were recorded from 8-9 a.m. to 7-8 p.m. and the lowest during nights. The main factor responsible for hourly variations of radon concentrations was the daily variation of outside temperatures. No correlations were found between radon concentration and other meteorological parameters such as atmospheric pressure, wind velocity or precipitation. Additionally, the influence of human factor on radon

  7. Savannah River National Laboratory Underground Counting Facility

    NASA Astrophysics Data System (ADS)

    Brown, Tim

    2006-10-01

    The SRNL UCF is capable of detecting extremely small amounts of radioactivity in samples, providing applications in forensics, environmental analyses, and nonproliferation. Past customers of the UCF have included NASA, (Long Duration Exposure Facility) the IAEA, (Iraq), and nonproliferation concerns. The SRNL UCF was designed to conduct ultra-low level gamma-ray analyses for radioisotopes at trace levels. Detection sensitivity is enhanced by background reduction, high detector efficiency, and long counting times. Backgrounds from cosmic-rays, construction materials, and radon are reduced by counting underground, active and passive shielding, (pre-WWII steel) and situation behind a Class 10,000 clean facility. High-detection efficiency is provided by a well detector for small samples and three large HPGe detectors. Sample concentration methods such as ashing or chemical separation are also used. Count times are measured in days. Recently, two SCUREF programs were completed with the University of South Carolina to further enhance UCF detection sensitivity. The first developed an ultra-low background HPGe detector and the second developed an anti-cosmic shield that further reduces the detector background. In this session, we will provide an overview status of the recent improvements made in the UCF and future directions for increasing sensitivity.

  8. Underground waste barrier structure

    DOEpatents

    Saha, Anuj J.; Grant, David C.

    1988-01-01

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  9. Underground Engineering (Selected Articles),

    DTIC Science & Technology

    1984-04-04

    Layer By * An Engineering Group, by Shen Junda and Wang Jingwen .................. I Innovation in Injection Conctete Aggregates , by Hu Yexi...In the situation that the effect of underground water on the surrounding rock was small and the vibration was not significant, the surrounding rock...INNOVATIONIN INJECTION CONCRETE AGGREGATES /28 Hu Yexi The use of injection concrete in the construction of civil defense projects has already obtained

  10. Underground cosmic-ray experiment EMMA

    NASA Astrophysics Data System (ADS)

    Enqvist, T.; Joutsenvaara, J.; Jämsén, T.; Keränen, P.; Kuusiniemi, P.; Lehtola, M.; Mattila, A.; Narkilahti, J.; Peltoniemi, J.; Pennanen, A.; Räihä, T.; Sarkamo, J.; Shen, C.; Trzaska, W.; Usoskin, I.; Vaittinen, M.; Zhang, Z.

    2007-03-01

    A new cosmic-ray experiment is under construction in the Pyhäsalmi mine, Finland. It aims to study the chemical composition of cosmic rays at and above the knee region. The array, called EMMA, will cover approximately 150 m 2 of detector area at the depth of 85 metres ( ˜240 mwe). It is capable of measuring the multiplicity and the lateral distribution of underground muons, and the arrival direction of the air shower. The full-size array is expected to be ready by the end of 2007. A partial-size array (one third of the full size) is planned to record data already at the first quarter of 2007. The array is also expected to be capable of measuring such high-multiplicity muon bundles as was observed at the cosmic-ray experiments at the LEP detectors.

  11. Sudden stratospheric warmings seen in MINOS deep underground muon data

    SciTech Connect

    Osprey, S.; Barnett, J.; Smith, J.; Adamson, P.; Andreopoulos, C.; Arms, K.E.; Armstrong, R.; Auty, D.J.; Ayres, D.S.; Baller, B.; Barnes, P.D., Jr.; /LLNL, Livermore /Oxford U.

    2009-01-01

    The rate of high energy cosmic ray muons as measured underground is shown to be strongly correlated with upper-air temperatures during short-term atmospheric (10-day) events. The effects are seen by correlating data from the MINOS underground detector and temperatures from the European Centre for Medium Range Weather Forecasts during the winter periods from 2003-2007. This effect provides an independent technique for the measurement of meteorological conditions and presents a unique opportunity to measure both short and long-term changes in this important part of the atmosphere.

  12. Progress of Jinping Underground laboratory for Nuclear Astrophysics experiment JUNA

    NASA Astrophysics Data System (ADS)

    Liu, Weiping

    2015-08-01

    Direct measurement of the cross sections for the key nuclear reactions in hydrostatic stellar evolution within Gamow window, which makes use of low background at deep underground laboratory, is crucial to solve key scientific questions in nuclear astrophysics. JUNA project aims at direct measurement of (α,γ), (α,n) reactions in hydrostatic helium burning and (p, γ), (p, α) reactions in hydrostatic hydrogen burning based on Jinping deep underground laboratory in China. The progress of experimental techniques, which include the accelerator system with high stability and high intensity, the detector system, and the shielding material with low background, will be presented.

  13. Borehole Muon Detector Development

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Flygare, J.; Kouzes, R.; Lintereur, A.; Yamaoka, J. A. K.; Varner, G. S.

    2015-12-01

    Increasing atmospheric CO2 concentrations have spurred investigation into carbon sequestration methods. One of the possibilities being considered, storing super-critical CO2 in underground reservoirs, has drawn more attention and pilot projects are being supported worldwide. Monitoring of the post-injection fate of CO2 is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We propose here to develop a 4-D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Muon detection is a relatively mature field of particle physics and there are many muon detector designs, though most are quite large and not designed for subsurface measurements. The primary technical challenge preventing deployment of this technology in the subsurface is the lack of miniaturized muon-tracking detectors capable of fitting in standard boreholes and that will resist the harsh underground conditions. A detector with these capabilities is being developed by a collaboration supported by the U.S. Department of Energy. Current simulations based on a Monte Carlo modeling code predict that the incoming muon angle can be resolved with an error of approximately two degrees, using either underground or sea level spectra. The robustness of the design comes primarily from the use of scintillating rods as opposed to drift tubes. The rods are arrayed in alternating layers to provide a coordinate scheme. Preliminary testing and measurements are currently being performed to test and enhance the performance of the scintillating rods, in both a laboratory and a shallow underground facility. The simulation predictions and data from the experiments will be presented.

  14. The Jiangmen underground neutrino observatory experiment

    NASA Astrophysics Data System (ADS)

    Brugière, Timothée

    2017-02-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a multipurpose neutrino-oscillation experiment designed to determine the neutrino mass hierarchy as a primary physics goal, by detecting reactor antineutrinos from two power plants at 53-km distance. The detector is placed at 1800-m.w.e. deep underground and consists of a 20 kiloton liquid scintillator contained in a 34.5 m-diameter acrylic ball, instrumented by more than 17,000 20-in. PMTs ensuring a 77% photocatode coverage. To reach an unprecedented 3% energy resolution (at 1 MeV), the PMTs need a quantum efficiency of more than 30% and the attenuation length of the liquid has to be better than 20 m (at 430 nm). This precision on the energy is a key point to determine at the 3-4 σ significance level the neutrinos mass hierarchy with six years of running. The measurement of the antineutrino spectrum will also lead to the precise determination of three out of the six oscillation parameters to an accuracy of better than 1%. The experiment will also be able to observe neutrinos from terrestrial and extra-terrestrial sources. The international collaboration of JUNO was established in 2014, the civil construction started in 2015 and the R&D of the detectors is ongoing. JUNO is planning to start data taking in 2020.

  15. Underground nuclear astrophysics studies with CASPAR

    NASA Astrophysics Data System (ADS)

    Robertson, Daniel; Couder, Manoel; Greife, Uwe; Strieder, Frank; Wiescher, Michael

    2016-02-01

    The drive of low-energy nuclear astrophysics laboratories is to study the reactions of importance to stellar burning processes and elemental production through stellar nucleosynthesis, over the energy range of astrophysical interest. As laboratory measurements approach the stellar burning window, the rapid drop off of cross-sections is a significant barrier and drives the need to lower background interference. The natural background suppression of underground accelerator facilities enables the extension of current experimental data to lower energies. An example of such reactions of interest are those thought to be sources of neutrons for the s-process, the major production mechanism for elements above the iron peak. The reactions 13C(α,n)16O and 22Ne(α,n)25Mg are the proposed initial focus of the new nuclear astrophysics accelerator laboratory (CASPAR) currently under construction at the Sanford Underground Research Facility, Lead, South Dakota

  16. New developed DR detector performs radiographs of hand, pelvic and premature chest anatomies at a lower radiation dose and/or a higher image quality.

    PubMed

    Precht, Helle; Tingberg, Anders; Waaler, Dag; Outzen, Claus Bjørn

    2014-02-01

    A newly developed Digital Radiography (DR) detector has smaller pixel size and higher fill factor than earlier detector models. These technical advantages should theoretically lead to higher sensitivity and higher spatial resolution, thus making dose reduction possible without scarifying image quality compared to previous DR detector versions. To examine whether the newly developed Canon CXDI-70C DR detector provides an improved image quality and/or allows for dose reductions in hand and pelvic bone examinations as well as premature chest examinations, compared to the previous (CXDI-55C) DR detector version. A total of 450 images of a technical Contrast-Detail phantom were imaged on a DR system employing various kVp and mAs settings, providing an objective image quality assessment. In addition, 450 images of anthropomorphic phantoms were taken and analyzed by three specialized radiologists using Visual Grading Analysis (VGA). The results from the technical phantom studies showed that the image quality expressed as IQFINV values was on average approximately 45 % higher with the CXDI-70C detector compared to the CXDI-55C detector. Consistently, the VGA results from the anatomical phantom studies indicated that by using the CXDI-70C detector, diagnostic image quality could be maintained at a dose reduction of in average 30 %, depending on anatomy and kVp level. This indicates that the CXDI-70C detector is significantly more sensitive than the previous model, and supports a better clinical image quality. By using the newly developed DR detector a significant dose reduction is possible while maintaining image quality.

  17. Underground nuclear waste containments

    SciTech Connect

    Bandyopadhyay, K.K.

    1995-11-01

    In the United States, about a hundred million gallons of high-level nuclear waste are stored in underground containments. Basically, these containments are of two different designs: single-shell and double-shell structures. The single-shell structures consist of reinforced concrete cylindrical walls seated on circular mats and enclosed on top with torispherical domes or circular flat roofs. The walls and the basemats are lined with carbon steel. The double-shell structures provide another layer of protection and constitute a completely enclosed steel containment within the single-shell structure leaving an annular space between the two walls. Single-shell containments are of earlier vintage and were built in the period 1945-1965. Double-shell structures were built through the 1960s and 1970s. Experience gained in building and operating the single-shell containments was used in enhancing the design and construction of the double-shell structures. Currently, there are about 250 underground single-shell and double-shell structures containing the high-level waste with an inventory of about 800 million curies. During their service lives, especially in early stages, these structures were subjected to thermal excursions of varying extents; also, they have aged in the chemical environment. Furthermore, in their remaining service lives, the structures may be subjected to loads for which they were not designed, such as larger earthquakes or chemical explosions. As a result, the demonstration of safety of these underground nuclear containments poses a challenge to structural engineers, which increases with time. Regardless of current plans for gradual retrieval of the waste and subsequent solidification for disposal, many of these structures are expected to continue to contain the waste through the next 20-40 years. In order to verify their structural capabilities in fulfilling this mission, several studies were recently performed at Brookhaven National Laboratory.

  18. Underground petroleum tanks

    SciTech Connect

    Not Available

    1990-07-01

    This book presents the results of a survey of 46 state underground storage tank program officials. The survey covers: Whether petroleum tank insurance (mandated by the EPA) is available in each state and whether category 3 and 4 owners can obtain it; state programs that help owners meet the financial responsibility and/or technical requirements of such insurance; and lending institutions' attitudes towards providing loans to storage tank owners. A survey of the number and terms of insurance policies offered to tank owners is also presented.

  19. EMMA - an underground cosmic-ray experiment

    NASA Astrophysics Data System (ADS)

    Enqvist, T.; Bezrukov, L.; Fynbo, H.; Heikkilä, E.; Inzhechik, L.; Joutsenvaara, J.; Jones, P.; Jämsén, T.; Kalliokoski, T.; Keränen, P.; Kolos, K.; Kuusiniemi, P.; Lubsandorzhiev, B.; Olanterä, L.; Petkov, V.; Räihä, T.; Sarkamo, J.; Trzaska, W.; Usoskin, I.

    2009-12-01

    A new cosmic-ray experiment is under construction in the Pyhäsalmi mine, Finland. It aims to study the (mass) composition of cosmic rays at and above the knee region. The array, called EMMA (Experiment with MultiMuon Array), will cover approximately 130 m 2 of detector area at a depth of 75 metres (~210 mwe). It is able to locate shower cores in an area of approximately 400 m 2 with an accuracy better than 6 metres. The array detects underground muons and the muon multiplicity, their lateral distribution and the arrival direction of the air shower can be determined. First scientific measurements can be started during the spring 2009 with a partial-size array. The full-size array is expected to be ready by autumn 2010. The full-size array consist of two type of detectors: drift chambers and plastic scintillation detectors. Besides the composition study, it is also expected that the array contributes on the study of high-multiplicity muon bundles that were observed at the cosmic-ray experiments at the LEP detectors.

  20. Radiometric surveys in underground environment

    NASA Astrophysics Data System (ADS)

    Bochiolo, Massimo; Chiozzi, Paolo; Verdoya, Massimo; Pasquale, Vincenzo

    2010-05-01

    Due to their ability to travel through the air for several metres, gamma-rays emitted from natural radioactive elements can be successfully used in surveys carried out both with airborne and ground equipments. Besides the concentration of the radio-elements contained in rocks and soils and the intrinsic characteristics of the gamma-ray detector, the detected count rate depends on the solid angle around the spectrometer. On a flat outcrop, ground spectrometry detects the radiation ideally produced by a cylindrical mass of rock of about two metres in diameter and thickness of about half a meter. Under these geometrical conditions, the natural radioactivity can be easily evaluated. With operating conditions different from the standard ones, such as at the edge of an escarpment, the count rate halves because of the missing material, whereas in the vicinity of a rock wall the count rate will increase. In underground environment, the recorded count rate may even double and the in situ assessment of the concentration of radio-elements may be rather difficult, even if the ratios between the different radio-elements may not be affected. We tested the applicability of gamma-ray spectrometry for rapid assessment of the potential hazard levels related to radon and radiation dose rate in underground environment. A mine shaft, located in a zone of uranium enrichment in Liguria (Italy), has been investigated. A preliminary ground radiometric survey was carried out to define the extent of the ore deposit. Then, the radiometric investigation was focussed on the mine shaft. Due to rock mass above the shaft vault, the background gamma radiation can be considered of negligible influence on measurements. In underground surveys, besides deviations from a flat geometry, factors controlling radon exhalation, emanation and stagnation, such as fractures, water leakage and the presence of ventilation, should be carefully examined. We attempted to evaluate these control factors and collected

  1. North American deep underground laboratories: Soudan Underground Laboratory, SNOLab, and the Sanford Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Lesko, Kevin T.

    2015-08-01

    Over the past several decades, fundamental physics experiments have required access to deep underground laboratories to satisfy the increasingly strict requirements for ultra-low background environments and shielding from cosmic rays. In this presentation, I summarize the existing and anticipated physics programs and laboratory facilities of North America's deep facilities: The Soudan Underground Laboratory in Minnesota, SNOLab in Ontario, Canada, and the Sanford Underground Research Facility in Lead, South Dakota.

  2. Underground corrosion control

    SciTech Connect

    Not Available

    1993-01-01

    Corrosion of underground metallic structures continues to be a crucial concern within society and the engineering community. Costs associated with corrosion losses are staggering. Indirect costs associated with environmental damage as well as loss of public confidence has in many cases out-stripped direct costs for facility repair and replacement. NACE Group Committee T-10, responsible for the study and advancement of technology necessary for engineering solutions for underground corrosion problems, is divided into five key unit committees as follows: cathodic protection; interference problems; electric power and communications; protective coating systems; and internal corrosion of pipelines. The papers presented in this publication reflect the most recent developments in field practice in all five areas. Cathodic protection criteria, protection of pipelines, tanks and pilings, test methods, transit systems investigations, power and communication cables, and compliance with regulations are addressed. Interference testing, refinery problems, methods of safely mitigating the effects of induced AC on pipelines, and experience with alternate engineering materials such as prestressed concrete cylinder pipe and ductile iron pipe are included. All 37 papers have been processed separately for inclusion on the data base.

  3. Multinational underground nuclear parks

    SciTech Connect

    Myers, C.W.; Giraud, K.M.

    2013-07-01

    Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantages include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)

  4. Assessment of Cosmic Background Attenuation at Building 3425 (Underground Laboratory)

    SciTech Connect

    Kouzes, Richard T.; Borgardt, James D.; Lintereur, Azaree T.; Panisko, Mark E.

    2009-10-01

    Specifications for the Underground Facility (building 3425) in the Radiation Detection and Nuclear Sciences complex presently under construction at Pacific Northwest National Laboratory mandate a 30 meters water equivalent shielding for cosmic background attenuation at the 30-foot underground depth of the laboratory. A set thickness of a specified fill material was determined; however a smaller thickness of a higher density material was used for the earthen bunker. Questions arose as to whether this altered configuration met the required shielding specifications. A series of measurements were made to address this concern using a 4”x4”x16” NaI(Tl) detector (Scionix Holland, 3.5N-E2-X). Cosmic ray data were taken at the surface, and at several locations within the underground facility in order to obtain an experimental value for the attenuation of the cosmic radiation. This experimental result was compared with the contracted attenuation.

  5. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  6. A Course on Underground Processing.

    ERIC Educational Resources Information Center

    Miller, Clarence A.

    1981-01-01

    Discusses a one-semester course on recovering fossil fuels and minerals from underground formations. Includes course outline and information of its major divisions: (1) Geological Background; (2) Flow, Transport, and Interfacial Phenomena in Porous Media; and (3) Description of Underground Processes. (SK)

  7. A Case for Underground Schools.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    The underground school offers several advantages. Preliminary studies in Oklahoma have shown that these schools perform exceptionally well as learning environments. The lack of noise and distractions helps teachers keep the attention of their students. Underground structures can protect people against a broad range of natural and man-made…

  8. A Course on Underground Processing.

    ERIC Educational Resources Information Center

    Miller, Clarence A.

    1981-01-01

    Discusses a one-semester course on recovering fossil fuels and minerals from underground formations. Includes course outline and information of its major divisions: (1) Geological Background; (2) Flow, Transport, and Interfacial Phenomena in Porous Media; and (3) Description of Underground Processes. (SK)

  9. PHASE DETECTOR

    DOEpatents

    Kippenhan, D.O.

    1959-09-01

    A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

  10. 30 CFR 75.1714-7 - Multi-gas detectors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Multi-gas detectors. 75.1714-7 Section 75.1714... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1714-7 Multi-gas detectors. (a) Availability. A mine operator shall provide an MSHA-approved, handheld, multi-gas detector that...

  11. 30 CFR 75.1714-7 - Multi-gas detectors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Multi-gas detectors. 75.1714-7 Section 75.1714... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1714-7 Multi-gas detectors. (a) Availability. A mine operator shall provide an MSHA-approved, handheld, multi-gas detector that...

  12. 30 CFR 75.1714-7 - Multi-gas detectors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Multi-gas detectors. 75.1714-7 Section 75.1714... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1714-7 Multi-gas detectors. (a) Availability. A mine operator shall provide an MSHA-approved, handheld, multi-gas detector...

  13. 30 CFR 75.1714-7 - Multi-gas detectors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Multi-gas detectors. 75.1714-7 Section 75.1714... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1714-7 Multi-gas detectors. (a) Availability. A mine operator shall provide an MSHA-approved, handheld, multi-gas detector...

  14. 30 CFR 75.1714-7 - Multi-gas detectors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Multi-gas detectors. 75.1714-7 Section 75.1714... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1714-7 Multi-gas detectors. (a) Availability. A mine operator shall provide an MSHA-approved, handheld, multi-gas detector...

  15. Intruder Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The shadowy prowler is attempting a break-in, unaware that his presence has already been detected and reported by the device in the lower left corner of the photo. It is part of a three-element ntruder Detecti on System developed by NASA's Ames Research Center from technology acquired in the Apollo lunar exploration program. Apollo astronauts left behind on the moon small portable seismic (shock) detectors to record subsurface vibrations and transmit to Earth data on the moon's density and thickness. A similar seismic detector is the key component of the lntruder Detection System. Encased in a stainless steel tube, the detector is implanted in the ground outside the facility being protected-home, bank, industrial or other facilities. The vibration-sensing detector picks up the footstep of anyone within a preset range. The detector is connected by cable to the transmitter, which relays the warning to a portable radio receiver. The radio alerts plant guards or home occupants by emitting an audible tone burst for each footstep.

  16. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA)

    NASA Astrophysics Data System (ADS)

    Liu, WeiPing; Li, ZhiHong; He, JiangJun; Tang, XiaoDong; Lian, Gang; An, Zhu; Chang, JianJun; Chen, Han; Chen, QingHao; Chen, XiongJun; Chen, ZhiJun; Cui, BaoQun; Du, XianChao; Fu, ChangBo; Gan, Lin; Guo, Bing; He, GuoZhu; Heger, Alexander; Hou, SuQing; Huang, HanXiong; Huang, Ning; Jia, BaoLu; Jiang, LiYang; Kubono, Shigeru; Li, JianMin; Li, KuoAng; Li, Tao; Li, YunJu; Lugaro, Maria; Luo, XiaoBing; Ma, HongYi; Ma, ShaoBo; Mei, DongMing; Qian, YongZhong; Qin, JiuChang; Ren, Jie; Shen, YangPing; Su, Jun; Sun, LiangTing; Tan, WanPeng; Tanihata, Isao; Wang, Shuo; Wang, Peng; Wang, YouBao; Wu, Qi; Xu, ShiWei; Yan, ShengQuan; Yang, LiTao; Yang, Yao; Yu, XiangQing; Yue, Qian; Zeng, Sheng; Zhang, HuanYu; Zhang, Hui; Zhang, LiYong; Zhang, NingTao; Zhang, QiWei; Zhang, Tao; Zhang, XiaoPeng; Zhang, XueZhen; Zhang, ZiMing; Zhao, Wei; Zhao, Zuo; Zhou, Chao

    2016-02-01

    Jinping Underground lab for Nuclear Astrophysics (JUNA) will take the advantage of the ultralow background in Jinping underground lab, high current accelerator based on an ECR source and highly sensitive detector to study directly a number of crucial reactions to the hydrostatic stellar evolution for the first time at their relevant stellar energies. In its first phase, JUNA aims at the direct measurements of 25Mg(p,γ)26Al, 19F(p,α)16O, 13C(α,n)16O and 12C(α,γ)16O. The experimental setup, which include the accelerator system with high stability and high intensity, the detector system, and the shielding material with low background, will be established during the above research. The current progress of JUNA will be given.

  17. Status and prospects of a deep underground laboratory in China

    NASA Astrophysics Data System (ADS)

    Kang, K. J.; Cheng, J. P.; Chen, Y. H.; Li, Y. J.; Shen, M. B.; Wu, S. Y.; Yue, Q.

    2010-01-01

    An excellent candidate location for a deep underground laboratory with more than 2500 m of rock overburden has been identified at Sichuan Province in China. It can be accessed through a road tunnel of length 17.5 km, and is supported by services and amenities near the entrance provided by the local Ertan Hydropower Plant. The particle physics community in China is actively pursuing the construction of an underground laboratory at this location, under the leadership of Tsinghua University. Memorandum has been signed with Ertan Hydropower Plant which permits access to and construction of the underground laboratory — China JinPing Deep Underground Laboratory (CJPL). The basic features of this underground site, as well as the status and schedules of the construction of the first laboratory cavern are presented. The immediate goal is to have the first experiment operational in 2010, deploying an Ultra-Low-Energy Germanium detector for WIMP dark matter searches, with emphasis on the mass range of 1-10 GeV. The conceptual design of the experiment, as well as the future plans and prospects of the laboratory, will be surveyed.

  18. Time variations in the deep underground muon flux

    NASA Astrophysics Data System (ADS)

    Cecchini, S.; Cozzi, M.; Dekhissi, H.; Derkaoui, J.; Giacomelli, G.; Giorgini, M.; Maaroufi, F.; Mandrioli, G.; Margiotta, A.; Moussa, A.; Patrizii, L.; Sioli, M.; Sirri, G.; Spurio, M.; Togo, V.

    2009-08-01

    More than 35 million high-energy muons collected with the MACRO detector at the underground Gran Sasso Laboratory have been used to search for flux variations of different nature. Two kinds of studies were carried out: a search for the occurrence of clusters of events and a search for periodic variations. Different analysis methods, including the Scan Statistics test and the Lomb-Scargle spectral analysis have been applied to the data.

  19. Overview of the Jiangmen Underground Neutrino Observatory (JUNO)

    NASA Astrophysics Data System (ADS)

    Li, Yu-Feng

    2014-05-01

    The medium baseline reactor antineutrino experiment, Jiangmen Underground Neutrino Observatory (JUNO), which is being planned to be built at Jiangmen in South China, can determine the neutrino mass hierarchy and improve the precision of three oscillation parameters by one order of magnitude. The sensitivity potential on these measurements is reviewed and design concepts of the central detector are illustrated. Finally, we emphasize on the technical challenges we meet and the corresponding R&D efforts.

  20. Muon multiplicities measured using an underground cosmic-ray array

    NASA Astrophysics Data System (ADS)

    Kuusiniemi, P.; Enqvist, T.; Bezrukov, L.; Fynbo, H.; Inzhechik, L.; Joutsenvaara, J.; Loo, K.; Lubsandorzhiev, B.; Petkov, V.; Slupecki, M.; Trzaska, W. H.; Virkajärvi, A.

    2016-05-01

    EMMA (Experiment with Multi-Muon Array) is an underground detector array designed for cosmic-ray composition studies around the knee energy (or ~ 1 — 10 PeV). It operates at the shallow depth in the Pyhasalmi mine, Finland. The array consists of eleven independent detector stations ~ 15 m2 each. Currently seven stations are connected to the DAQ and the rest will be connected within the next few months. EMMA will determine the multiplicity, the lateral density distribution and the arrival direction of high-energy muons event by event. The preliminary estimates concerning its performance together with an example of measured muon multiplicities are presented.

  1. Nuclear Track Detectors. Searches for Exotic Particles

    NASA Astrophysics Data System (ADS)

    Giacomelli, G.; Togo, V.

    We used Nuclear Track Detectors (NTD) CR39 and Makrofol for many purposes: (i) Exposures at the SPS and at lower energy accelerator heavy ion beams for calibration purposes and for fragmentation studies. (ii) Searches for GUT and Intermediate Mass Magnetic Monopoles (IMM), nuclearites, Q-balls and strangelets in the cosmic radiation. The MACRO experiment in the Gran Sasso underground lab, with ˜1,000 m2 of CR39 detectors (plus scintillators and streamer tubes), established an upper limit for superheavy GUT poles at the level of 1.4 × 10-16 cm-2 s-1 sr-1for 4 ×10-5<β<1. The SLIM experiment at the high altitude Chacaltaya lab (5,230 m a.s.l.), using 427 m2 of CR39 detectors exposed for 4.22 years, gave an upper limit for IMMs of ˜1.3 × 10-15 cm-2 s-1 sr-1. The experiments yielded interesting upper limits also on the fluxes of the other mentioned exotic particles. (iii) Environmental studies, radiation monitoring, neutron dosimetry.

  2. Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Vogelaar, R. Bruce

    2011-10-01

    A new deep underground research facility is open and operating only 30 minutes from the Virginia Tech campus. It is located in an operating limestone mine, and has drive-in access (eg: roll-back truck, motor coach), over 50 miles of drifts (all 40' x 20' x 100'; the current lab is 35'x100'x22'), and is located where there is a 1700' overburden. The laboratory was built in 2007 and offers fiber optic internet, LN2, 480/220/110 V power, ample water, filtered air, 55 F constant temp, low Rn levels, low rock background activity, and a muon flux of only ˜ 0.004 muons per square meter, per second, per steradian. There are currently six projects using the facility: mini-LENS - Low Energy Neutrino Spectroscopy (Virginia Tech, Louisiana State University, BNL); Neutron Spectrometer (University of Maryland, NIST); Double Beta Decay to Excited States (Duke University); HPGe Low-Background Screening (North Carolina State University, University of North Carolina, Virginia Tech); MALBEK - Majorana neutrinoless double beta decay (University of North Carolina); Ar-39 Depleted Argon (Princeton University). I will summarize the current program, and exciting plans for the future.

  3. Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Rountree, S. Derek; Vogelaar, R. Bruce

    2012-03-01

    A new deep underground research facility is open and operating only 30 minutes from the Virginia Tech campus. It is located in an operating limestone mine, and has drive-in access (eg: roll-back truck, motor coach), over 50 miles of drifts (all 40' x 20+'; the current lab is 35' x 22' x 100'), and is located where there is a 1700' overburden. The laboratory was built in 2007 and offers fiber optic internet, LN2, 480/220/110 V power, ample water, filtered air, 55 F constant temp, low Rn levels, low rock background activity, and a muon flux of only ˜0.004 muons per square meter, per second, per steradian. There are currently six projects using the facility: mini-LENS - Low Energy Neutrino Spectroscopy (Virginia Tech, Louisiana State University, BNL); Neutron Spectrometer (University of Maryland, NIST); Double Beta Decay to Excited States (Duke University); HPGe Low-Background Screening (North Carolina State University, University of North Carolina, Virginia Tech); MALBEK - Majorana neutrinoless double beta decay (University of North Carolina); Ar-39 Depleted Argon (Princeton University). I will summarize the current program and exciting potential for the future.

  4. 30 CFR 75.343 - Underground shops.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground shops. 75.343 Section 75.343... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.343 Underground shops. (a) Underground shops shall be equipped with an automatic fire suppression system meeting the requirements of §...

  5. Environmental benefits of underground coal gasification.

    PubMed

    Liu, Shu-qin; Liu, Jun-hua; Yu, Li

    2002-04-01

    Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash, mercury, and tar discharge are decreased. Moreover, effect of underground gasification on underground water is analyzed and CO2 disposal method is put forward.

  6. A Low-cost, Portable, Ruggedized Cosmic Muon Detector Prototype for Geological Applications

    NASA Astrophysics Data System (ADS)

    Aguayo Navarrete, E.; Bonneville, A.

    2012-12-01

    , and other contributing factors such as altitude, magnetic field rigidity and time of the year. There has been extensive work on characterizing the cosmic ray showers and this work uses one of such parameterizations to model the cosmic muon flux. Monte Carlo simulations can model the passage of particles through matter, among them high energy muons going through Earth's subsurface. The first underground measurements carried out with the prototype are also presented. The μ-Witness detector collected measurements at Pacific Northwest National Laboratory, inside, outside, and in the shallow underground lab, which has a depth of ~30 meters water equivalent (mwe). The μ-Witness count rate was 2.51 ± 0.04 muons/s, 2.61 ± 0.05 muons/s, and 0.40 ± 0.01 muons/s inside, outside and in the underground lab, respectively. Indoor measurements were expected to be lower than outdoors, as the laboratory overhead serves as overburden, and was estimated to be about 2 mwe. From these measurements, assuming an inverse linear attenuation, we can infer the μ-Witness density sensitivity to be -0.0752 count/s*mwe. This figure will aid in the design of a large detector system for field-scale deployment at the ground surface and in boreholes.

  7. Variations of gamma-ray background in the Belgrade shallow underground low-level laboratory.

    PubMed

    Banjanac, Radomir; Dragić, Aleksandar; Udovičić, Vladimir; Joković, Dejan; Maletić, Dimitrije; Veselinović, Nikola; Savić, Mihailo

    2014-05-01

    During the last three years we investigated the variations of background simultaneously in two laboratories, the ground level (GLL) and the underground laboratory. The Forbush-like effect from March 2010 was observed in the GLL using a Ge detector and plastic veto scintillator. The underground plastic scintillator saw the same effect but the coincident veto spectrum did not detect the decrease of cosmic-ray intensity. Using a time series analysis of prominent post-radon lines, a significant radon daily variability was detected in the Ge detector background spectrum, but only in the GLL. © 2013 The Authors. Published by Elsevier Ltd All rights reserved.

  8. Underground Coal Gasification Program

    SciTech Connect

    Thorsness, C. B.; Britten, J. A.

    1994-12-01

    CAVSIM is a three-dimensional, axisymmetric model for resource recovery and cavity growth during underground coal gasification (UCG). CAVSIM is capable of following the evolution of the cavity from near startup to exhaustion, and couples explicitly wall and roof surface growth to material and energy balances in the underlying rubble zones. Growth mechanisms are allowed to change smoothly as the system evolves from a small, relatively empty cavity low in the coal seam to a large, almost completely rubble-filled cavity extending high into the overburden rock. The model is applicable to nonswelling coals of arbitrary seam thickness and can handle a variety of gas injection flow schedules or compositions. Water influx from the coal aquifer is calculated by a gravity drainage-permeation submodel which is integrated into the general solution. The cavity is considered to consist of up to three distinct rubble zones and a void space at the top. Resistance to gas flow injected from a stationary source at the cavity floor is assumed to be concentrated in the ash pile, which builds up around the source, and also the overburden rubble which accumulates on top of this ash once overburden rock is exposed at the cavity top. Char rubble zones at the cavity side and edges are assumed to be highly permeable. Flow of injected gas through the ash to char rubble piles and the void space is coupled by material and energy balances to cavity growth at the rubble/coal, void/coal and void/rock interfaces. One preprocessor and two postprocessor programs are included - SPALL calculates one-dimensional mean spalling rates of coal or rock surfaces exposed to high temperatures and generates CAVSIM input: TAB reads CAVSIM binary output files and generates ASCII tables of selected data for display; and PLOT produces dot matrix printer or HP printer plots from TAB output.

  9. Joint analysis of experimental data on the search for neutrino bursts using the BUST and LVD detectors

    NASA Astrophysics Data System (ADS)

    Novoseltseva, R. V.; Boliev, M. M.; Dzaparova, I. M.; Kochkarov, M. M.; Novoseltsev, Yu. F.; Petkov, V. B.; Volchenko, V. I.; Volchenko, G. V.; Yanin, A. F.; Agafonova, N. Yu.; Ashikhmin, V. V.; Dadykin, V. L.; Dobrynina, E. A.; Enikeev, R. I.; Mal'gin, A. S.; Ryazhskaya, O. G.; Shakiryanova, I. R.; Yakushev, V. F.; LVD Collaboration

    2016-06-01

    Preliminary results of joint analysis of data of the INR's Baksan Underground Scintillation Telescope (BUST) and the Gran Sasso Large Volume Detector (LVD) are presented. The results can be explained by random pulse coincidences in the BUST and LVD detectors.

  10. Low-dose triple-rule-out using 320-row-detector volume MDCT--less contrast medium and lower radiation exposure.

    PubMed

    Durmus, Tahir; Rogalla, Patrik; Lembcke, Alexander; Mühler, Matthias R; Hamm, Bernd; Hein, Patrick A

    2011-07-01

    To investigate image quality of triple-rule-out (TRO) computed tomography (CT) using a 320-row-detector CT system with substantially reduced contrast medium volume at 100 kV. Forty-six consecutive patients with noncritical, acute chest pain underwent 320-row-detector CT using a two-step TRO protocol consisting of a non-spiral, non-gated chest CT acquisition (150 mA) followed by a non-spiral, electrocardiography-gated cardiac acquisition (200-500 mA based on body mass index (BMI)). Data were acquired using a biphasic injection protocol with a total iodinated contrast medium volume of 60 ml (370 mg/ml). Vessel attenuation and effective doses were recorded. Image quality was scored independently by two readers. Mean attenuation was 584 ± 114 Hounsfield units (HU) in the ascending aorta, 335 ± 63HU in the aortic arch, 658 ± 136HU in the pulmonary trunk, and 521 ± 97HU and 549 ± 102HU in the right and left coronary artery, respectively. In all but one patient, attenuation and image quality allowed accurate visualization of the pulmonary arteries, thoracic aorta, and coronary arteries in a single examination. Ninety-six percent of all coronary artery segments were rated diagnostic. Radiation exposure ranged between 2.0 and 3.3 mSv. Using 320-row-detector CT the investigated low-dose TRO protocol resulted in excellent opacification and image quality with substantial reduction of contrast medium volume compared to recently published TRO protocols.

  11. Exotic geophysical phenomena observed in an environmental neutron flux study using EAS PRISMA detectors

    NASA Astrophysics Data System (ADS)

    Alekseenko, Victor; Bagrova, Anastasia; Cui, Shuwang; He, Yayun; Li, Bingbing; Ma, Xinhua; Pozdnyakov, Egor; Shchegolev, Oleg; Stenkin, Yuri; Stepanov, Vladimir

    2017-06-01

    Some exotic geophysical events are observed by a global net of electron-neutron detectors (en-detectors) developed in the framework of the PRISMA EAS project. Our en-detectors running both on the Earth's surface and underground are continuously measuring the environmental thermal neutron flux. Thermal neutrons are in equilibrium with media and are therefore sensitive to many geophysical phenomena, which are exotic for people studying ultra high-energy cosmic rays or carrying out low background experiments deep underground.

  12. Underground at Black Diamond Mines

    SciTech Connect

    Higgins, C.T.

    1989-10-01

    Although California is noted for its mining history and annually leads the nation in total monetary value of minerals produced, there a few opportunities for the public to tour underground mines. One reason is that nearly all mining in the state today is done above ground in open pits. Another reason is that active underground mines are not commonly favorable to public tours. There is one place, Black Diamond Mines Regional Preserve, where the public can safely tour a formerly active underground mine. Black Diamond Mines Regional Preserve is a 3,600-acre parkland about 5 miles southwest of Antioch in Contra Costa County. The Preserve was established in the early 1970s and is administered by the East Bay Regional Park District. Black Diamond Mines Preserve is noteworthy for its mining history as well as its natural history, both of which are briefly described here.

  13. Locating nuclear power plants underground.

    PubMed

    Scott, F M

    1975-01-01

    This paper reviews some of the questions that have been asked by experts and others as to why nuclear power plants are not located or placed underground. While the safeguards and present designs make such installations unnecessary, there are some definite advantages that warrant the additional cost involved. First of all, such an arrangement does satisfy the psychological concern of a number of people and, in so doing, might gain the acceptance of the public so that such plants could be constructed in urban areas of load centers. The results of these studies are presented and some of the requirements necessary for underground installations described, including rock conditions, depth of facilities, and economics.

  14. Logistics background study: underground mining

    SciTech Connect

    Hanslovan, J. J.; Visovsky, R. G.

    1982-02-01

    Logistical functions that are normally associated with US underground coal mining are investigated and analyzed. These functions imply all activities and services that support the producing sections of the mine. The report provides a better understanding of how these functions impact coal production in terms of time, cost, and safety. Major underground logistics activities are analyzed and include: transportation and personnel, supplies and equipment; transportation of coal and rock; electrical distribution and communications systems; water handling; hydraulics; and ventilation systems. Recommended areas for future research are identified and prioritized.

  15. Cosmic rays muon flux measurements at Belgrade shallow underground laboratory

    SciTech Connect

    Veselinović, N. Dragić, A. Maletić, D. Joković, D. Savić, M. Banjanac, R. Udovičić, V. Aničin, I.

    2015-02-24

    The Belgrade underground laboratory is a shallow underground one, at 25 meters of water equivalent. It is dedicated to low-background spectroscopy and cosmic rays measurement. Its uniqueness is that it is composed of two parts, one above ground, the other bellow with identical sets of detectors and analyzing electronics thus creating opportunity to monitor simultaneously muon flux and ambient radiation. We investigate the possibility of utilizing measurements at the shallow depth for the study of muons, processes to which these muons are sensitive and processes induced by cosmic rays muons. For this purpose a series of simulations of muon generation and propagation is done, based on the CORSIKA air shower simulation package and GEANT4. Results show good agreement with other laboratories and cosmic rays stations.

  16. 3D Cosmic Ray Muon Tomography from an Underground Tunnel

    NASA Astrophysics Data System (ADS)

    Guardincerri, Elena; Rowe, Charlotte; Schultz-Fellenz, Emily; Roy, Mousumi; George, Nicolas; Morris, Christopher; Bacon, Jeffrey; Durham, Matthew; Morley, Deborah; Plaud-Ramos, Kenie; Poulson, Daniel; Baker, Diane; Bonneville, Alain; Kouzes, Richard

    2017-05-01

    We present an underground cosmic ray muon tomographic experiment imaging 3D density of overburden, part of a joint study with differential gravity. Muon data were acquired at four locations within a tunnel beneath Los Alamos, New Mexico, and used in a 3D tomographic inversion to recover the spatial variation in the overlying rock-air interface, and compared with a priori knowledge of the topography. Densities obtained exhibit good agreement with preliminary results of the gravity modeling, which will be presented elsewhere, and are compatible with values reported in the literature. The modeled rock-air interface matches that obtained from LIDAR within 4 m, our resolution, over much of the model volume. This experiment demonstrates the power of cosmic ray muons to image shallow geological targets using underground detectors, whose development as borehole devices will be an important new direction of passive geophysical imaging.

  17. EMMA—a new underground cosmic-ray experiment

    NASA Astrophysics Data System (ADS)

    Enqvist, T.; Föhr, V.; Joutsenvaara, J.; Keränen, P.; Kuusiniemi, P.; Laitala, H.; Lehtola, M.; Mattila, A.; Narkilahti, J.; Nurmenniemi, S.; Peltoniemi, J.; Remes, H.; Räihä, T.; Shen, C.; Reponen, M.; Sarkamo, J.; Vaittinen, M.; Zhang, Z.; Jämsén, T.; Ding, L.; Zhu, Q.; Roos, M.; Dzaparova, I.; Karpov, S.; Kurenya, A.; Petkov, V.; Yanin, A.; Fynbo, H.

    2007-01-01

    An experiment observing underground muons originating from cosmic-ray air showers is under preparation in the Pyhäsalmi mine, Finland. The aim is to cover an area of about 200 300 m2, and the detector setup is capable of measuring the muon multiplicity and their lateral distribution. The detector is placed at a depth of about 85 m (corresponding about 240 m w.e.), which gives a threshold energy of muons of about 45 GeV. The detection of the multimuon events is motivated by partly unknown composition of the primary cosmic rays in the energy region of 1015 1016 eV, i.e., the knee region. In addition, by measuring only the higher energy muons of the air shower, the lowest energy muons being filtered out by the rock overburden, the data is sensitive also to the studies of the upper parts of the air shower. The experiment will be constructed mainly using drift chambers used previously in LEP detectors at CERN, but it can also be expanded using plastic scintillator detectors. The prototype detector is expected to be running in the beginning of 2006, and the full-size detector by the end of 2007.

  18. Germanium Detector Crystal Axis Orientation for the MAJORANA Demonstrator

    NASA Astrophysics Data System (ADS)

    Letourneau, Hannah

    2013-10-01

    The MAJORANA Demonstrator, currently being constructed at Sanford Underground Research Facility in Lead, South Dakota, is an array of germanium detectors which will be used to search for neutrinoless double beta decay, which would demonstrate that neutrinos have a Majorana mass term and lepton number is not conserved. An important characteristic of semiconductor detectors is the crystal axis orientation, because the propagation of electromagnetic signals is attenuated by the location of the interaction relative to the axis of the crystal. Conventionally, a goniometer is used to position a collimated low energy gamma source in many small increments around the detector to measure the rise time at each position. However, due to physical constraints from the casing of the Demonstrator, a different method must be developed. At the University of Washington this summer, I worked with a 76 Ge point-contact detector. I found the crystal axis orientation first with Americium 241, a lower energy gamma source. Then, I used a higher energy source, Thorium 232, in conjunction with the only a few angular reference points to also calculate rise time. Also, I wrote code to process the data. The success of this method will be evaluated and discussed. NSF

  19. Statistical Analysis of Resistivity Anomalies Caused by Underground Caves

    NASA Astrophysics Data System (ADS)

    Frid, V.; Averbach, A.; Frid, M.; Dudkinski, D.; Liskevich, G.

    2017-03-01

    Geophysical prospecting of underground caves being performed on a construction site is often still a challenging procedure. Estimation of a likelihood level of an anomaly found is frequently a mandatory requirement of a project principal due to necessity of risk/safety assessment. However, the methodology of such estimation is not hitherto developed. Aiming to put forward such a methodology the present study (being performed as a part of an underground caves mapping prior to the land development on the site area) consisted of application of electrical resistivity tomography (ERT) together with statistical analysis utilized for the likelihood assessment of underground anomalies located. The methodology was first verified via a synthetic modeling technique and applied to the in situ collected ERT data and then crossed referenced with intrusive investigations (excavation and drilling) for the data verification. The drilling/excavation results showed that the proper discovering of underground caves can be done if anomaly probability level is not lower than 90 %. Such a probability value was shown to be consistent with the modeling results. More than 30 underground cavities were discovered on the site utilizing the methodology.

  20. Leaking Underground Storage Tank (LUST) Trust Fund

    EPA Pesticide Factsheets

    In 1986, Congress created the Leaking Underground Storage Tank (LUST) Trust Fund to address releases from federally regulated underground storage tanks (USTs) by amending Subtitle I of the Solid Waste Disposal Act.

  1. High Temperature Superconducting Underground Cable

    SciTech Connect

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  2. Earthquake damage to underground facilities

    SciTech Connect

    Pratt, H.R.; Stephenson, D.E.; Zandt, G.; Bouchon, M.; Hustrulid, W.A.

    1980-01-01

    In order to assess the seismic risk for an underground facility, a data base was established and analyzed to evaluate the potential for seismic disturbance. Substantial damage to underground facilities is usually the result of displacements primarily along pre-existing faults and fractures, or at the surface entrance to these facilities. Evidence of this comes from both earthquakes and large explosions. Therefore, the displacement due to earthquakes as a function of depth is important in the evaluation of the hazard to underground facilities. To evaluate potential displacements due to seismic effects of block motions along pre-existing or induced fractures, the displacement fields surrounding two types of faults were investigated. Analytical models were used to determine relative displacements of shafts and near-surface displacement of large rock masses. Numerical methods were used to determine the displacement fields associated with pure strike-slip and vertical normal faults. Results are presented as displacements for various fault lengths as a function of depth and distance. This provides input to determine potential displacements in terms of depth and distance for underground facilities, important for assessing potential sites and design parameters.

  3. Slavery and the Underground Railroad.

    ERIC Educational Resources Information Center

    Anderson, Nancy Comfort

    2000-01-01

    Presents a bibliography of sources to help children understand slavery and the Underground Railroad and recommends a combination of fiction and nonfiction for a better understanding. Includes picture books, biographies of people who played prominent roles during the time of slavery, nonfiction books for older readers, and videotape. (LRW)

  4. Slavery and the Underground Railroad.

    ERIC Educational Resources Information Center

    Anderson, Nancy Comfort

    2000-01-01

    Presents a bibliography of sources to help children understand slavery and the Underground Railroad and recommends a combination of fiction and nonfiction for a better understanding. Includes picture books, biographies of people who played prominent roles during the time of slavery, nonfiction books for older readers, and videotape. (LRW)

  5. Underground technology benefits surface operations

    SciTech Connect

    Swaim, M.

    2008-09-15

    Sensitive ground fault relays (GFRs) on high voltage underground electrical equipment have been in used for a number of years to improve mine safety. Advanced GFRs do more than just interrupt fault current flow. They can also reveal linkages as they develop so ground faults are detected before they become critical. 3 figs.

  6. Relevance of multiple muons detected underground to the mass composition of primary cosmic rays

    NASA Technical Reports Server (NTRS)

    Szabelski, J.; Wdowczyk, J.; Wolfendale, A. W.

    1985-01-01

    Calculations have been made of the expected frequencies of multiple muons in the Soudan underground proton decay detector. It is concluded that the flux of heavy nuclei (z 10) in the range 10 to the 15th power to 10 to the 16th power eV/nucleus is at most 25% of the total particle flux in the same range.

  7. The CDEX Dark Matter Program at the China Jinping Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Yue, Qian; Kang, Kejun; Li, Jianming; Wong, Henry T.

    2016-05-01

    The China Jinping Underground Laboratory (CJPL) is a new facility for conducting low event-rate experiments. We present an overview of CJPL and the CDEX Dark Matter program based on germanium detectors with sub-keV sensitivities. The achieved results, status as well as the R&D and technology acquisition efforts towards a ton-scale experiment are reported.

  8. EMMA: A new underground cosmic-ray experiment

    NASA Astrophysics Data System (ADS)

    Enqvist, T.; Föhr, V.; Joutsenvaara, J.; Jämsén, T.; Keränen, P.; Kuusiniemi, P.; Laitala, H.; Lehtola, M.; Mattila, A.; Narkilahti, J.; Peltoniemi, J.; Remes, H.; Reponen, M.; Räihä, T.; Sarkamo, J.; Shen, C.; Vaittinen, M.; Zhang, Z.; Ding, L.; Zhu, Q.; Roos, M.; Dzaparova, I.; Karpov, S.; Kurenya, A.; Petkov, V.; Yanin, A.; Fynbo, H.

    2006-05-01

    A cosmic-ray experiment of new type is under construction in the Pyhäsalmi mine in the underground laboratory of the University of Oulu, Finland. It aims to study the composition of cosmic rays at and above the knee region (energy above 1 PeV). The experiment, called EMMA, covers about 150 m2 of detector area, and the setup is capable of measuring the multiplicity and the lateral distribution of underground muons, and the arrival direction of the air shower. The detector is placed at the depth of about 85 metres (corresponding about 240 mwe) which gives a threshold energy of muons of about 45 GeV. The rock overburden filters out all other particles of the air shower except the high-energy muons. These high-energy muons originate at high altitudes close to the first interaction of the primary cosmic ray and they carry more information about the primary than low-energy muons. The full-size detector is supposed to run by the end of 2007.

  9. Advancing Underground Nuclear Astrophysics with CASPAR

    NASA Astrophysics Data System (ADS)

    Robertson, Daniel; Couder, Manoel; Greife, Uwe; Strieder, Frank; Wells, Doug; Wiescher, Michael

    2015-04-01

    The advancement of experimental nuclear astrophysics techniques and the requirement of astrophysical network models for further nuclear data over greater energy ranges, has led to the requirement for the better understanding of nuclear reactions in stellar burning regimes. For those reactions of importance to stellar burning processes and elemental production through stellar nucleosynthesis, the energy range of astrophysical interest is always problematic to probe. As reaction measurements approach the burning window of interest, the rapid drop off in cross-section hampers laboratory investigation. The natural background suppression of underground accelerator facilities enables the extension of current experimental data to lower energies. An example of such reactions of interest are those thought to be sources of neutrons for the s-process, the major production mechanism for elements above the iron peak. The reactions 13 C(α,n)16 O and 22 Ne(α,n)25 Mg are the proposed initial focus of the new nuclear astrophysics accelerator laboratory (CASPAR) currently under construction at the Sanford Underground Research Facility, Lead, SD. With thanks to funding provided by South Dakota Science and Technology Authority and the NSF under Grant Number PHY-1419765.

  10. Detector Simulation and WIMP Search Analysis for the Cryogenic Dark Matter Search Experiment

    SciTech Connect

    McCarthy, Kevin

    2013-06-01

    Astrophysical and cosmological measurements on the scales of galaxies, galaxy clusters, and the universe indicate that 85% of the matter in the universe is composed of dark matter, made up of non-baryonic particles that interact with cross-sections on the weak scale or lower. Hypothetical Weakly Interacting Massive Particles, or WIMPs, represent a potential solution to the dark matter problem, and naturally arise in certain Standard Model extensions. The Cryogenic Dark Matter Search (CDMS) collaboration aims to detect the scattering of WIMP particles from nuclei in terrestrial detectors. Germanium and silicon particle detectors are deployed in the Soudan Underground Laboratory in Minnesota. These detectors are instrumented with phonon and ionization sensors, which allows for discrimination against electromagnetic backgrounds, which strike the detector at rates orders of magnitude higher than the expected WIMP signal. This dissertation presents the development of numerical models of the physics of the CDMS detectors, implemented in a computational package collectively known as the CDMS Detector Monte Carlo (DMC). After substantial validation of the models against data, the DMC is used to investigate potential backgrounds to the next iteration of the CDMS experiment, known as SuperCDMS. Finally, an investigation of using the DMC in a reverse Monte Carlo analysis of WIMP search data is presented.

  11. SUNLAB - The Project of a Polish Underground Laboratory

    SciTech Connect

    Kisiel, J.; Dorda, J.; Konefall, A.; Mania, S.; Szeglowski, T.; Budzanowski, M.; Haranczyk, M.; Kozak, K.; Mazur, J.; Mietelski, J. W.; Puchalska, M.; Szarska, M.; Tomankiewicz, E.; Zalewska, A.; Chorowski, M.; Polinski, J.; Cygan, S.; Hanzel, S.; Markiewicz, A.; Mertuszka, P.

    2010-11-24

    The project of the first Polish underground laboratory SUNLAB, in the Polkowice-Sieroszowice copper mine, belonging to the KGHM Polska Miedz S.A. holding, is presented. Two stages of the project are foreseen: SUNLAB1 (a small laboratory in the salt layer exhibiting extremely low level of natural radioactivity) and SUNLAB2 (a big laboratory in the anhydrite layer, able to host the next generation liquid argon detector - GLACIER, which is considered within the LAGUNA FP7 project). The results of the natural radioactivity background measurements performed in the Polkowice-Sieroszowice salt cavern are also briefly summarized.

  12. Cosmic muon flux measurements at the Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Kalousis, L. N.; Guarnaccia, E.; Link, J. M.; Mariani, C.; Pelkey, R.

    2014-08-01

    In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.

  13. SUNLAB-The Project of a Polish Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Kisiel, J.; Budzanowski, M.; Chorowski, M.; Cygan, S.; Dorda, J.; Hanzel, S.; Harańczyk, M.; Horoszczak, L.; Januszewska, K.; Jaroń, L.; Konefalł, A.; Kozak, K.; Lankof, L.; Mania, S.; Markiewicz, A.; Markowski, P.; Mazur, J.; Mertuszka, P.; Mietelski, J. W.; Poliński, J.; Puchalska, M.; Pytel, W.; Raczyński, M.; Sadecki, Z.; Sadowski, A.; Ślizowski, J.; Sulej, R.; Szarska, M.; Szeglowski, T.; Tomankiewicz, E.; Urbańczyk, K.; Zalewska, A.

    2010-11-01

    The project of the first Polish underground laboratory SUNLAB, in the Polkowice-Sieroszowice copper mine, belonging to the KGHM Polska Miedź S.A. holding, is presented. Two stages of the project are foreseen: SUNLAB1 (a small laboratory in the salt layer exhibiting extremely low level of natural radioactivity) and SUNLAB2 (a big laboratory in the anhydrite layer, able to host the next generation liquid argon detector-GLACIER, which is considered within the LAGUNA FP7 project). The results of the natural radioactivity background measurements performed in the Polkowice-Sieroszowice salt cavern are also briefly summarized.

  14. The London Underground: dust and hazards to health

    PubMed Central

    Seaton, A; Cherrie, J; Dennekamp, M; Donaldson, K; Hurley, J; Tran, C

    2005-01-01

    Aims: To assess hazards associated with exposure to dust in the London Underground railway and to provide an informed opinion on the risks to workers and the travelling public of exposure to tunnel dust. Methods: Concentrations of dust, as mass (PM2.5) and particle number, were measured at different underground stations and in train cabs; its size and composition were analysed; likely maximal exposures of staff and passengers were estimated; and in vitro toxicological testing of sample dusts in comparison with other dusts was performed. Results: Concentrations on station platforms were 270–480 µg/m3 PM2.5 and 14 000–29 000 particles/cm3. Cab concentrations over a shift averaged 130–200 µg/m3 and 17 000–23 000 particles/cm3. The dust comprised by mass approximately 67% iron oxide, 1–2% quartz, and traces of other metals, the residue being volatile matter. The finest particles are drawn underground from the surface while the coarser dust is generated by interaction of brakes, wheels, and rails. Taking account of durations of exposure, drivers and station staff would have maximum exposures of about 200 µg/m3 over eight hours; the occupational exposure standard for welding fume, as iron oxide, is 5 mg/m3 over an eight hour shift. Toxicology showed the dust to have cytotoxic and inflammatory potential at high doses, consistent with its composition largely of iron oxide. Discussion: It is unjustifiable to compare PM2.5 exposure underground with that on the surface, since the adverse effects of iron oxide and combustion generated particles differ. Concentrations of ultrafine particles are lower and of coarser (PM2.5) particles higher underground than on the surface. The concentrations underground are well below allowable workplace concentrations for iron oxide and unlikely to represent a significant cumulative risk to the health of workers or commuters. PMID:15901881

  15. The London Underground: dust and hazards to health.

    PubMed

    Seaton, A; Cherrie, J; Dennekamp, M; Donaldson, K; Hurley, J F; Tran, C L

    2005-06-01

    To assess hazards associated with exposure to dust in the London Underground railway and to provide an informed opinion on the risks to workers and the travelling public of exposure to tunnel dust. Concentrations of dust, as mass (PM2.5) and particle number, were measured at different underground stations and in train cabs; its size and composition were analysed; likely maximal exposures of staff and passengers were estimated; and in vitro toxicological testing of sample dusts in comparison with other dusts was performed. Concentrations on station platforms were 270-480 microg/m3 PM2.5 and 14,000-29,000 particles/cm3. Cab concentrations over a shift averaged 130-200 microg/m3 and 17,000-23,000 particles/cm3. The dust comprised by mass approximately 67% iron oxide, 1-2% quartz, and traces of other metals, the residue being volatile matter. The finest particles are drawn underground from the surface while the coarser dust is generated by interaction of brakes, wheels, and rails. Taking account of durations of exposure, drivers and station staff would have maximum exposures of about 200 microg/m3 over eight hours; the occupational exposure standard for welding fume, as iron oxide, is 5 mg/m3 over an eight hour shift. Toxicology showed the dust to have cytotoxic and inflammatory potential at high doses, consistent with its composition largely of iron oxide. It is unjustifiable to compare PM2.5 exposure underground with that on the surface, since the adverse effects of iron oxide and combustion generated particles differ. Concentrations of ultrafine particles are lower and of coarser (PM2.5) particles higher underground than on the surface. The concentrations underground are well below allowable workplace concentrations for iron oxide and unlikely to represent a significant cumulative risk to the health of workers or commuters.

  16. Underground hibernation in a primate.

    PubMed

    Blanco, Marina B; Dausmann, Kathrin H; Ranaivoarisoa, Jean F; Yoder, Anne D

    2013-01-01

    Hibernation in mammals is a remarkable state of heterothermy wherein metabolic rates are reduced, core body temperatures reach ambient levels, and key physiological functions are suspended. Typically, hibernation is observed in cold-adapted mammals, though it has also been documented in tropical species and even primates, such as the dwarf lemurs of Madagascar. Western fat-tailed dwarf lemurs are known to hibernate for seven months per year inside tree holes. Here, we report for the first time the observation that eastern dwarf lemurs also hibernate, though in self-made underground hibernacula. Hence, we show evidence that a clawless primate is able to bury itself below ground. Our findings that dwarf lemurs can hibernate underground in tropical forests draw unforeseen parallels to mammalian temperate hibernation. We expect that this work will illuminate fundamental information about the influence of temperature, resource limitation and use of insulated hibernacula on the evolution of hibernation.

  17. Underground hibernation in a primate

    PubMed Central

    Blanco, Marina B.; Dausmann, Kathrin H.; Ranaivoarisoa, Jean F.; Yoder, Anne D.

    2013-01-01

    Hibernation in mammals is a remarkable state of heterothermy wherein metabolic rates are reduced, core body temperatures reach ambient levels, and key physiological functions are suspended. Typically, hibernation is observed in cold-adapted mammals, though it has also been documented in tropical species and even primates, such as the dwarf lemurs of Madagascar. Western fat-tailed dwarf lemurs are known to hibernate for seven months per year inside tree holes. Here, we report for the first time the observation that eastern dwarf lemurs also hibernate, though in self-made underground hibernacula. Hence, we show evidence that a clawless primate is able to bury itself below ground. Our findings that dwarf lemurs can hibernate underground in tropical forests draw unforeseen parallels to mammalian temperate hibernation. We expect that this work will illuminate fundamental information about the influence of temperature, resource limitation and use of insulated hibernacula on the evolution of hibernation. PMID:23636180

  18. CHIPS Neutrino Detector Research and Development

    NASA Astrophysics Data System (ADS)

    Salazar, Ramon; Vahle, Patricia; Chips Collaboration

    2015-04-01

    The CHIPS R&D project is an effort to develop affordable megaton-scale neutrino detectors. The CHIPS strategy calls for submerging water Cherenkov detectors deep under water. The surrounding water acts as structural support, minimizing large initial investments in costly infrastructure, and serves as an overburden, shielding the detector from cosmic rays and eliminating the need for expensive underground construction. Additional cost savings will be achieved through photodetector development and optimization of readout geometry. In summer 2014 a small prototype of the CHIPS detector was deployed in the flooded Wentworth Mine Pit in Northern Minnesota. The detector has been recording data underwater throughout the fall and winter. In this talk, we will discuss lessons learned from the prototyping experience and the plans for submerging much larger detectors in future years.

  19. Sidereal variations deep underground in Tasmania

    NASA Technical Reports Server (NTRS)

    Humble, J. E.; Fenton, A. G.; Fenton, K. B.

    1985-01-01

    Data from the deep underground vertically directed muon telescopes at Poatina, Tasmania, have been used since 1972 for a number of investigations, including the daily intensity variations, atmospheric influences, and checking for possible effects due to the interplanetary magnetic field. These telescopes have a total sensitive area of only 3 square meters, with the result that the counting rate is low (about 1680 events per hour) and the statistical errors on the results are rather large. Consequently, it was decided several years ago to construct larger detectors for this station. The first of these telescopes has been in operation for two complete years, and the results from it are presented. Results from the new, more stable equipment at Poatina appear to confirm the existence of a first harmonic in the daily variations in sidereal time reported earlier, and are consistent with small or non-existent first harmonics in solar and anti-sidereal time. All the second harmonics appear to be small, if not zero at these energies.

  20. Radionuclides in an underground environment

    SciTech Connect

    Thompson, J.L.

    1996-08-01

    In the 100 years since Becquerel recognized radioactivity, mankind has been very successful in producing large amounts of radioactive materials. We have been less successful in reaching a consensus on how to dispose of the billions of curies of fission products and transuranics resulting from nuclear weapons testing, electrical power generation, medical research, and a variety of other human endeavors. Many countries, including the United States, favor underground burial as a means of disposing of radioactive wastes. There are, however, serious questions about how such buried wastes may behave in the underground environment and particularly how they might eventually contaminate water, air and soil resources on which we are dependent. This paper describes research done in the United States in the state of Nevada on the behavior of radioactive materials placed underground. During the last thirty years, a series of ``experiments`` conducted for other purposes (testing of nuclear weapons) have resulted in a wide variety of fission products and actinides being injected in rock strata both above and below the water table. Variables which seem to control the movement of these radionuclides include the physical form (occlusion versus surface deposition), the chemical oxidation state, sorption by mineral phases of the host rock, and the hydrologic properties of the medium. The information gained from these studies should be relevant to planning for remediation of nuclear facilities elsewhere in the world and for long-term storage of nuclear wastes.

  1. The stress and underground environment

    NASA Astrophysics Data System (ADS)

    Chama, A.

    2009-04-01

    Currently,the program of prevention in occupational health needs mainly to identify occupational hazards and strategy of their prevention.Among these risks,the stress represents an important psycho-social hazard in mental health,which unfortunately does not spare no occupation.My Paper attempts to highlight and to develop this hazard in its different aspects even its regulatory side in underground environment as occupational environment.In the interest of better prevention ,we consider "the information" about the impact of stress as the second prevention efficient and no expensive to speleologists,hygienists and workers in the underground areas. In this occasion of this event in Vienna,we also highlight the scientific works on the stress of the famous viennese physician and endocrinologist Doctor Hans Selye (1907-1982),nicknamed "the father of stress" and note on relation between biological rhythms in this underground area and psychological troubles (temporal isolation) (Jurgen Aschoff’s works and experiences out-of time).

  2. Underground storage of carbon dioxide

    SciTech Connect

    Tanaka, Shoichi

    1993-12-31

    Desk studies on underground storage of CO{sub 2} were carried out from 1990 to 1991 fiscal years by two organizations under contract with New Energy and Indestrial Technology Development Organization (NEDO). One group put emphasis on application of CO{sub 2} EOR (enhanced oil recovery), and the other covered various aspects of underground storage system. CO{sub 2} EOR is a popular EOR method in U.S. and some oil countries. At present, CO{sub 2} is supplied from natural CO{sub 2} reservoirs. Possible use of CO{sub 2} derived from fixed sources of industries is a main target of the study in order to increase oil recovery and storage CO{sub 2} under ground. The feasibility study of the total system estimates capacity of storage of CO{sub 2} as around 60 Gton CO{sub 2}, if worldwide application are realized. There exist huge volumes of underground aquifers which are not utilized usually because of high salinity. The deep aquifers can contain large amount of CO{sub 2} in form of compressed state, liquefied state or solution to aquifer. A preliminary technical and economical survey on the system suggests favorable results of 320 Gton CO{sub 2} potential. Technical problems are discussed through these studies, and economical aspects are also evaluated.

  3. The world deep underground laboratories

    NASA Astrophysics Data System (ADS)

    Bettini, A.

    2012-09-01

    This paper is an introduction to a series of coordinated articles of an EPJ Plus Focus Point on underground physics laboratories, written by the directors of the larger ones and by the coordinators of the principal new projects. The paper is largely based on the text of my lecture Perspectives of underground physics, given at the Enrico Fermi Varenna International School, Course CLXXXII (2011), Neutrino physics and astrophysics, reproduced here by permission of the Italian Physical Society. Underground laboratories provide the low radioactive background environment necessary to explore the highest energy scales that cannot be reached with accelerators, by searching for extremely rare phenomena. Experiments range from the direct search of the dark-matter particles that constitute the largest fraction of matter in the Universe, to the exploration of the properties of the neutrinos, the most elusive of the known particles and which might be particle and antiparticle at the same time, to the investigation on why our universe contains only matter and almost no antimatter, and much more.

  4. May heavy neutrinos solve underground and cosmic-ray puzzles?

    SciTech Connect

    Belotsky, K. M. Fargion, D. Khlopov, M. Yu. Konoplich, R. V.

    2008-01-15

    Primordial heavy neutrinos of the fourth generation might explain different astrophysical puzzles. The simplest fourth-neutrino scenario is consistent with known fourth-neutrino physics, cosmic ray antimatter, cosmic gamma fluxes, and positive signals in underground detectors for a very narrow neutrino mass window (46-47 GeV). However, accounting for the constraint of underground experiment CDMS prohibits solution of cosmic-ray puzzles in this scenario. We have analyzed extended heavy-neutrino models related to the clumpiness of neutrino density, new interactions in heavy-neutrino annihilation, neutrino asymmetry, and neutrino decay. We found that, in these models, the cosmic-ray imprint may fit the positive underground signals in DAMA/Nal experiment in the entire mass range 46-70 GeV allowed from uncertainties of electroweak parameters, while satisfaction of the CDMS constraint reduces the mass range to around 50 GeV, where all data can come to consent in the framework of the considered hypothesis.

  5. the Cryogenic Underground Observatory for Rare Events: Status and Prospects

    DOE PAGES

    Alduino, C.; Alfonso, K.; Artusa, D. R.; ...

    2017-05-09

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a large-scale double beta decay experiment utilizing cryogenic bolometers that is currently being commissioned at the Gran Sasso National Laboratory (LNGS) in Italy. Its primary focus is to search for the neutrinoless double beta decay of 130Te with a projected sensitivity to Majorana neutrino masses near the inverted mass hierarchy region. The detector is composed of 988 5x5x5-cm3 TeO2 crystals of natural isotopic composition arranged in 19 towers of 52 crystals each, all housed in a common dilution refrigerator. A single CUORE-like tower, CUORE-0, was assembled and operated as a stand-alonemore » detector for a period of approximately two years. In this report, the results from CUORE-0 and the current status and physics potential of CUORE are presented.« less

  6. Underground Muon Energy Spectra with the MACRO Trd

    NASA Astrophysics Data System (ADS)

    Mazziotta, M. N.; Brigida, M.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Rainò, S.; Spinelli, P.

    The MACRO detector was located in the Hall B of the Gran Sasso underground Laboratories under an average rock overburden of 3700 hg/cm2. A TRD composed by three identical modules, covering an horizontal area of 36 m2, was added to the MACRO detector in order to measure the residual energy of muons entering MACRO. This kind of measurement provides a useful tool to study the primary cosmic ray energy spectra and composition, their interactions with the Earth's atmosphere and the propagation of muons inside the rock. The results of the measurement of the energy of single and double muons crossing MACRO will be presented. Our data show that double muons are more energetic than single ones in the rock depth range from 3000 to 6500 hg/cm2. Single muon data confirm the reliability of the models adopted to describe the cosmic ray interactions with the atmosphere and the muon propagation inside the rock.

  7. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA)

    NASA Astrophysics Data System (ADS)

    Liu, WeiPing; Li, ZhiHong; He, JiangJun; Tang, XiaoDong; Lian, Gang; An, Zhu; Chang, JianJun; Chen, Han; Chen, QingHao; Chen, XiongJun; Chen, ZhiJun; Cui, BaoQun; Du, XianChao; Fu, ChangBo; Gan, Lin; Guo, Bing; He, GuoZhu; Heger, Alexander; Hou, SuQing; Huang, HanXiong; Huang, Ning; Jia, BaoLu; Jiang, LiYang; Kubono, Shigeru; Li, JianMin; Li, KuoAng; Li, Tao; Li, YunJu; Lugaro, Maria; Luo, XiaoBing; Ma, HongYi; Ma, ShaoBo; Mei, DongMing; Qian, YongZhong; Qin, JiuChang; Ren, Jie; Shen, YangPing; Su, Jun; Sun, LiangTing; Tan, WanPeng; Tanihata, Isao; Wang, Shuo; Wang, Peng; Wang, YouBao; Wu, Qi; Xu, ShiWei; Yan, ShengQuan; Yang, LiTao; Yang, Yao; Yu, XiangQing; Yue, Qian; Zeng, Sheng; Zhang, HuanYu; Zhang, Hui; Zhang, LiYong; Zhang, NingTao; Zhang, QiWei; Zhang, Tao; Zhang, XiaoPeng; Zhang, XueZhen; Zhang, ZiMing; Zhao, Wei; Zhao, Zuo; Zhou, Chao

    2016-04-01

    Jinping Underground laboratory for Nuclear Astrophysics (JUNA) will take the advantage of the ultra-low background of CJPL lab and high current accelerator based on an ECR source and a highly sensitive detector to directly study for the first time a number of crucial reactions occurring at their relevant stellar energies during the evolution of hydrostatic stars. In its first phase, JUNA aims at the direct measurements of 25Mg(p, γ)26Al, 19F(p, α)16O, 13C(α, n)16O and 12C(α, γ)16O reactions. The experimental setup, which includes an accelerator system with high stability and high intensity, a detector system, and a shielding material with low background, will be established during the above research. The current progress of JUNA will be given.

  8. EMMA a new underground cosmic-ray experiment

    NASA Astrophysics Data System (ADS)

    Enqvist, T.; Joutsenvaara, J.; Jämsén, T.; Keränen, P.; Kuusiniemi, P.; Lehtola, M.; Mattila, A.; Narkilahti, J.; Peltoniemi, J.; Pennanen, A.; Räihä, T.; Sarkamo, J.; Shen, C.; Trzaska, W.; Usoskin, I.; Vaittinen, M.; Zhang, Z.

    2008-01-01

    A new cosmic-ray experiment is under construction in the Pyhäsalmi mine, Finland. It aims to study the (mass) composition of cosmic rays at and above the knee region. The array, called EMMA, will cover approximately 150 m 2 of detector area at a depth of 85 metres (˜240 mwe). It is capable of measuring the multiplicity and the lateral distribution of underground muons and the arrival direction of the air shower. The full-size array is expected to be ready by the end of 2007. A partial-size array (one third of the full size) is planned to record data already at the first quarter of 2007. It is also expected that the array is capable of measuring such high-multiplicity muon bundles that were observed at the cosmic-ray experiments at the LEP detectors.

  9. The homestake surface-underground scintillators: Initial results

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.; Corbato, S.; Daily, T.; Fenyves, E. J.; Kieda, D.; Lande, K.; Lee, C. K.

    1986-01-01

    The first 70 tons of the 140-ton Large Area Scintillation Detector (LASD) have been operating since Jan. 1985 at a depth of 4850 ft. (4200 m.w.e.) in the Homestake Gold Mine, Lead, S.D. A total of 4 x 10(4) high-energy muons (E sub mu is approx. 2.7 TeV at the surface) have been detected. The remainder of the detector is scheduled to be in operation by the Fall of 1985. In addition, a surface air shower array is under construction. The first 27 surface counters, spaced out over an area of 270' x 500', began running in June, 1985. The LASD performance, the potential of the combined shower array and underground muon experiment for detecting point sources, and the initial results of a search for periodic emission from Cygnus X-3 are discussed.

  10. Background reduction of a spherical gaseous detector

    SciTech Connect

    Fard, Ali Dastgheibi; Loaiza, Pia; Piquemal, Fabrice; Giomataris, Ioannis; Gray, David; Gros, Michel; Magnier, Patrick; Navick, Xavier-François

    2015-08-17

    The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of detector. It consists of a large spherical volume filled with gas, using a single detection readout channel. The detector allows 100 % detection efficiency. SEDINE is a low background version of SPC installed at the Laboratoire Souterrain de Modane (LSM) underground laboratory (4800 m.w.e) looking for rare events at very low energy threshold, below 100 eV. This work presents the details on the chemical cleaning to reduce internal {sup 210}Pb surface contamination on the copper vessel and the external radon reduction achieved via circulation of pure air inside anti-radon tent. It will be also show the radon measurement of pure gases (Ar, N, Ne, etc) which are used in the underground laboratory for the low background experiments.

  11. Background reduction of a spherical gaseous detector

    NASA Astrophysics Data System (ADS)

    Fard, Ali Dastgheibi; Loaiza, Pia; Piquemal, Fabrice; Giomataris, Ioannis; Gray, David; Gros, Michel; Magnier, Patrick; Navick, Xavier-François; Savvidis, Ilias

    2015-08-01

    The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of detector. It consists of a large spherical volume filled with gas, using a single detection readout channel. The detector allows 100 % detection efficiency. SEDINE is a low background version of SPC installed at the Laboratoire Souterrain de Modane (LSM) underground laboratory (4800 m.w.e) looking for rare events at very low energy threshold, below 100 eV. This work presents the details on the chemical cleaning to reduce internal 210Pb surface contamination on the copper vessel and the external radon reduction achieved via circulation of pure air inside anti-radon tent. It will be also show the radon measurement of pure gases (Ar, N, Ne, etc) which are used in the underground laboratory for the low background experiments.

  12. A very low-background gamma-ray counting facility in the Baradello underground laboratory.

    PubMed

    Pellicciari, M; Fascilla, A; Giuliani, A; Pedretti, M; Cesana, A; Garlati, L; Terrani, M; Raselli, G L

    2005-01-01

    An underground station for the measurement of low-level radioactivity is in operation in Northern Italy in the town of Como under the Baradello hill. The rock cover is -300 m water equivalent. This paper reports about the preliminary measurements carried out to characterise the site of the Baradello hill and the installation of a high-purity Ge detector with a radio-pure copper shielding. Features and levels of the achieved background are reported and discussed, in comparison with other above ground and underground low-radioactivity stations. Sensitivities to radioactivity in typical environmental matrices are evaluated, confirming the very low-gamma background attained in the laboratory.

  13. RADIATION DETECTOR

    DOEpatents

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  14. Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Bemmerer, D.; Cowan, T. E.; Gohl, S.; Ilgner, C.; Junghans, A. R.; Reinhardt, T. P.; Rimarzig, B.; Reinicke, S.; Röder, M.; Schmidt, K.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M.; Wagner, A.; Wagner, L.; Zuber, K.

    2015-05-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, proteced from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise has been carried out using the same HPGe detector in a typical nuclear astrophysics setup at several sites, including the Dresden Felsenkeller underground laboratory. It was found that its rock overburden of 45m rock, together with an active veto against the remaining muon flux, reduces the background to a level that is similar to the deep underground scenario. Based on this finding, a used 5 MV pelletron tandem with 250 μA upcharge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is underway. The project is now fully funded. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the planned access possibilities for external users will be reported.

  15. Simulation of Underground Muon Flux with Application to Muon Tomography

    NASA Astrophysics Data System (ADS)

    Yamaoka, J. A. K.; Bonneville, A.; Flygare, J.; Lintereur, A.; Kouzes, R.

    2015-12-01

    Muon tomography uses highly energetic muons, produced by cosmic rays interacting within the upper atmosphere, to image dense materials. Like x-rays, an image can be constructed from the negative of the absorbed (or scattered) muons. Unlike x-rays, these muons can penetrate thousands of meters of earth. Muon tomography has been shown to be useful across a wide range of applications (such as imaging of the interior of volcanoes and cargo containers). This work estimates the sensitivity of muon tomography for various underground applications. We use simulations to estimate the change in flux as well as the spatial resolution when imaging static objects, such as mine shafts, and dynamic objects, such as a CO2 reservoir filling over time. We present a framework where we import ground density data from other sources, such as wells, gravity and seismic data, to generate an expected muon flux distribution at specified underground locations. This information can further be fed into a detector simulation to estimate a final experimental sensitivity. There are many applications of this method. We explore its use to image underground nuclear test sites, both the deformation from the explosion as well as the supporting infrastructure (access tunnels and shafts). We also made estimates for imaging a CO2 sequestration site similar to Futuregen 2.0 in Illinois and for imaging magma chambers beneath the Cascade Range volcanoes. This work may also be useful to basic science, such as underground dark matter experiments, where increasing experimental sensitivity requires, amongst other factors, a precise knowledge of the muon background.

  16. Commissioning the SNO+ detector

    NASA Astrophysics Data System (ADS)

    Descamps, Freija; SNO+ Collaboration

    2016-09-01

    The SNO+ experiment is the successor to the Sudbury Neutrino Observatory (SNO), in which SNO's heavy water is replaced by approximately 780T of liquid scintillator (LAB). The combination of the 2km underground location, the use of ultra-clean materials and the high light-yield of the liquid scintillator means that a low background level and a low energy threshold can be achieved. This creates a new multipurpose neutrino detector with the potential to address a diverse set of physics goals, including the detection of reactor, solar, geo- and supernova neutrinos. A main physics goal of SNO+ is the search for neutrinoless double beta decay. By loading the liquid scintillator with 0.5% of natural Tellurium, resulting in about 1300kg of 130Te (isotopic abundance is slightly over 34%), a competitive sensitivity to the effective neutrino mass can be reached. This talk will present the status of the SNO+ detector, specifically the results and status of the detector commissioning with water.

  17. Status and Growth of Underground Science at WIPP

    NASA Astrophysics Data System (ADS)

    Rempe, Norbert T.

    2008-10-01

    The science community is increasingly taking advantage of research opportunities in the government-owned Waste Isolation Pilot Plant (WIPP), 655m underground near Carlsbad, NM. Discoveries so far include viable bacteria, cellulose, and DNA in 250 million-year old salt, preserved in an ultra-low background-radiation setting. Supplementing the overburden's shielding against cosmic radiation, terrestrial background from the host formation is less than five percent that of average crustal rock. In the past, WIPP accommodated development and testing of neutral current detectors for the Sudbury Neutrino Observatory and dark matter research, and it currently hosts two experiments pursuing neutrino-less double-beta decay. That scientists can listen to whispers from the universe in proximity to megacuries of radioactive waste lends, of course, credibility to the argument that WIPP itself is very safe. Almost a century of regional petroleum and potash extraction history and more than three decades of WIPP studies have generated a comprehensive body of knowledge on geology, mining technology, rock mechanics, geochemistry, and other disciplines relevant to underground science. Existing infrastructure is being used and can be expanded to fit experimental needs. WIPP's exemplary safety and regulatory compliance culture, low excavating and operating cost, and the high probability of the repository operating at least another 40 years make its available underground space attractive for future research and development. Recent proposals include low-photon energy counting to study internal dose received decades ago, investigations into ultra-low radiation dose response in cell cultures and laboratory animals (e.g., hormesis vs. linear no-threshold) and detectors for dark matter, solar and supernova neutrinos, and proton decay. Additional proposals compatible with WIPP's primary mission are welcome.

  18. A Psychosocial Approach to Understanding Underground Spaces

    PubMed Central

    Lee, Eun H.; Christopoulos, George I.; Kwok, Kian W.; Roberts, Adam C.; Soh, Chee-Kiong

    2017-01-01

    With a growing need for usable land in urban areas, subterranean development has been gaining attention. While construction of large underground complexes is not a new concept, our understanding of various socio-cultural aspects of staying underground is still at a premature stage. With projected emergence of underground built environments, future populations may spend much more of their working, transit, and recreational time in underground spaces. Therefore, it is essential to understand the challenges and advantages that such environments have to improve the future welfare of users of underground spaces. The current paper discusses various psycho-social aspects of underground spaces, the impact they can have on the culture shared among the occupants, and possible solutions to overcome some of these challenges. PMID:28400744

  19. A Psychosocial Approach to Understanding Underground Spaces.

    PubMed

    Lee, Eun H; Christopoulos, George I; Kwok, Kian W; Roberts, Adam C; Soh, Chee-Kiong

    2017-01-01

    With a growing need for usable land in urban areas, subterranean development has been gaining attention. While construction of large underground complexes is not a new concept, our understanding of various socio-cultural aspects of staying underground is still at a premature stage. With projected emergence of underground built environments, future populations may spend much more of their working, transit, and recreational time in underground spaces. Therefore, it is essential to understand the challenges and advantages that such environments have to improve the future welfare of users of underground spaces. The current paper discusses various psycho-social aspects of underground spaces, the impact they can have on the culture shared among the occupants, and possible solutions to overcome some of these challenges.

  20. Underground gas storage in New York State: A historical perspective

    SciTech Connect

    Friedman, G.M.; Sarwar, G.; Bass, J.P.

    1995-09-01

    New York State has a long history of underground gas storage activity that began with conversion of the Zoar gas field into a storage reservoir in 1916, the first in the United States. By 1961 another fourteen storage fields were developed and seven more were added between 1970 and 1991. All twenty-two operating storage reservoirs of New York were converted from depleted gas fields and are of low-deliverability, base-load type. Nineteen of these are in sandstone reservoirs of the Lower Silurian Medina Group and the Lower Devonian Oriskany Formation and three in limestone reservoirs are located in the gas producing areas of southwestern New York and are linked to the major interstate transmission lines. Recent developments in underground gas storage in New York involve mainly carbonate-reef and bedded salt-cavern storage facilities, one in Stuben County and the other in Cayuga County, are expected to begin operation by the 1996-1997 heating season.

  1. Search for Pauli exclusion principle violating atomic transitions and electron decay with a p-type point contact germanium detector

    SciTech Connect

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Chu, P. -H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Finnerty, P. S.; Galindo-Uribarri, A.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O’Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C. -H.; Yumatov, V.; Zhitnikov, I.

    2016-11-11

    A search for Pauli-exclusion-principle-violating K electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of s at 90% C.L. It is estimated that the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation.

  2. Shotcrete for underground support VI

    SciTech Connect

    Not Available

    1993-01-01

    This proceedings consists of papers presented at the Shotcrete for Underground Support VI Conference held in Niagara-on-the-Lake, Ontario, Canada, May 2-6, 1993. It covers three broad themes concerning shotcrete - engineering, research, and applications. Specifically, the proceedings presents papers on: (1) materials engineering; (2) shotcrete research; (3) engineering design; and (4) tunneling, soil nailing, and mining applications. The book concludes by presenting an international compilation of guidelines and recommendations on shotcrete. Papers have been processed separately for inclusion on the data base.

  3. Improved gaseous leak detector

    DOEpatents

    Juravic, F.E. Jr.

    1983-10-06

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the nonlinear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  4. Gaseous leak detector

    DOEpatents

    Juravic, Jr., Frank E.

    1988-01-01

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the non linear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  5. Underground muons from the direction of Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Marshak, M. L.

    1992-01-01

    The flux of underground muons from the direction of the binary Cygnus X-3 was measured by the Soudan 2 proton decay detector. This time-projection calorimeter is located at a depth of 2200 m (water equivalent) in northern Minnesota at latitude 48 deg N, longitude 92 deg W. An analysis was then performed that compared both the total observed flux and the observed flux per transit with the number of events expected in the absence of a source. This expected number of events was determined by combining the detector acceptance as a function of time with detector acceptance as a function of the local spatial coordinates. These functions were evaluated by use of off-source events. The direction of Cygnus X-3 was defined as a 2 deg half-angle cone, centered on the nominal source coordinates. This definition is consistent with the expected appearance of a point source in the Soudan 2 detector after consideration of track reconstruction errors, multiple scattering in the rock, and possible systematic effects. Details of the analysis and the results are presented.

  6. Underground muons from the direction of Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Marshak, M. L.

    1992-02-01

    The flux of underground muons from the direction of the binary Cygnus X-3 was measured by the Soudan 2 proton decay detector. This time-projection calorimeter is located at a depth of 2200 m (water equivalent) in northern Minnesota at latitude 48 deg N, longitude 92 deg W. An analysis was then performed that compared both the total observed flux and the observed flux per transit with the number of events expected in the absence of a source. This expected number of events was determined by combining the detector acceptance as a function of time with detector acceptance as a function of the local spatial coordinates. These functions were evaluated by use of off-source events. The direction of Cygnus X-3 was defined as a 2 deg half-angle cone, centered on the nominal source coordinates. This definition is consistent with the expected appearance of a point source in the Soudan 2 detector after consideration of track reconstruction errors, multiple scattering in the rock, and possible systematic effects. Details of the analysis and the results are presented.

  7. Earth matter effects on supernova neutrinos in large-volume detectors

    NASA Astrophysics Data System (ADS)

    Borriello, Enrico

    2013-04-01

    Neutrino oscillations in the Earth matter may introduce peculiar modulations in the supernova (SN) neutrino spectra. The detection of this effect has been proposed as diagnostic tool for the neutrino mass hierarchy. We perform an updated study on the observability of this effect at large next-generation underground detectors (i.e., 0.4 Mton water Cherenkov, 50 kton scintillation and 100 kton liquid Argon detectors) based on neutrino fluxes from state-of-the-art SN simulations and accounting for statistical fluctuations via Montecarlo simulations. Since the average energies predicted by recent simulations are lower than previously expected and a tendency towards the equalization of the neutrino fluxes appears during the SN cooling phase, the detection of the Earth matter effect will be more challenging than expected from previous studies. We find that none of the proposed detectors shall be able to detect the Earth modulation for the neutrino signal of a typical galactic SN at 10 kpc. It should be observable in a 100 kton liquid Argon detector for a SN at few kpc and all three detectors would clearly see the Earth signature for very close-by stars only (d˜200 pc).

  8. Results from the Cryogenic Dark Matter Search at Soudan Underground Laboratory

    SciTech Connect

    Yoo, Jonghee; /Fermilab

    2005-07-01

    We present results from the Cryogenic Dark Matter Search at Soudan Underground Laboratory for two-tower arrays of detector. Twelve detectors were operated from March 25 to August 8, 2004, or 74.5 detector live days.Within expected background, no statistically significant indication of a WIMP signal was observed. Based on this null observation and combined with our previous results, we exclude a spin-averaged WIMP-nucleon interaction cross section above 1.6 x 10{sup -43} cm{sup 2} for Ge detectors, and 3 x 10{sup -42} cm{sup 2} for Si detectors, for a WIMP mass 60GeV/c{sup 2} with 90%C.L. This result constrains parameter space of minimal supersymmetric standard models (MSSM) and starts to reach the parameter space of a constrained model (CMSSM).

  9. 30 CFR 57.8519 - Underground main fan controls.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground main fan controls. 57.8519 Section... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Ventilation Surface and Underground § 57.8519 Underground main fan controls. All underground main fans shall...

  10. Development of a HPGe shielding system for radioactivity measurements at Cheongpyeong Underground Radiation Laboratory

    NASA Astrophysics Data System (ADS)

    Lim, S. I.; Huh, J. Y.; Lee, E. K.; Choi, S. H.; Hahn, I. S.; Kang, W. G.; Kim, A.; Kim, D. H.; Kim, Y. D.; Kim, Y. J.; Kim, K. W.; Park, S. Y.; Yoo, J. S.

    2016-12-01

    We constructed an underground laboratory called Cheongpyeong Underground Radiation Laboratory (CURL) for measuring the radioactivity levels of various samples by using HPGe detectors. CURL is located underground at a depth of 1000-m water equivalent in the Cheongpyeong Pumped Storage Power Plant. We developed a shielding system, which consists of 15-cm-thick Pb blocks and 5-cm-thick Cu blocks and completely surrounds a 100% HPGe detector. We measured the background radiations and the gamma peaks from sources with and without the shield. The shielding efficiencies were also estimated using MCNP5 simulations, and they were compared to our measured data. The shielding system blocked more than 99.99% of gamma rays with energies up to 3.0 MeV. The HPGe detector with the shielding system at CURL blocked both high-energy cosmic rays and background radiation from surrounding rocks and materials. Our CURL detector system was optimized for gamma-ray measurements of meterials with ultra-low radioactivity.

  11. 30 CFR 72.630 - Drill dust control at underground areas of underground mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill dust control at underground areas of... OF LABOR COAL MINE SAFETY AND HEALTH HEALTH STANDARDS FOR COAL MINES Miscellaneous § 72.630 Drill dust control at underground areas of underground mines. (a) Dust resulting from drilling in rock shall...

  12. 30 CFR 72.630 - Drill dust control at underground areas of underground mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill dust control at underground areas of... OF LABOR COAL MINE SAFETY AND HEALTH HEALTH STANDARDS FOR COAL MINES Miscellaneous § 72.630 Drill dust control at underground areas of underground mines. (a) Dust resulting from drilling in rock...

  13. Electromagnetic interactions in the MINOS detectors

    SciTech Connect

    Vahle, Patricia LaVern

    2004-08-01

    MINoS is a long-baseline neutrino experiment designed to observe the oscillation of neutrinos traveling between two detectors, a Near Detector at Fermi National Accelerator Laboratory and a Far Detector at the Soudan Underground Laboratory in northern Minnesota. Precision measurement of the oscillation parameters requires a better than 5% absolute energy calibration with is derived using a dedicated calibration detector, called CalDet. A smaller version of the MINOS detectors, the CalDet was exposed to particular beams in the CERN PS East Area test beams in 2001-2003. This document describes the conditions under which the CalDet beam data were taken, establishes selection criteria to identify a sample of electrons, and discusses the characteristics of electromagnetic interactions in the CalDet.

  14. Underground storage tank management plan

    SciTech Connect

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  15. Thermal detector model for cryogenic composite detectors for the dark matter experiments CRESST and EURECA

    NASA Astrophysics Data System (ADS)

    Roth, S.; Ciemniak, C.; Coppi, C.; Feilitzsch, F. V.; Gütlein, A.; Isaila, C.; Lanfranchi, J.-C.; Pfister, S.; Potzel, W.; Westphal, W.

    2008-11-01

    The CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) and the EURECA (European Underground Rare Event Calorimeter Array) experiments are direct dark matter search experiments where cryogenic detectors are used to detect spin-independent, coherent WIMP (Weakly Interacting Massive Particle)-nucleon scattering events by means of the recoil energy. The cryogenic detectors use a massive single crystal as absorber which is equipped with a TES (transition edge sensor) for signal read-out. They are operated at mK-temperatures. In order to enable a mass production of these detectors, as needed for the EURECA experiment, a so-called composite detector design (CDD) that allows decoupling of the TES fabrication from the optimization procedure of the absorber single-crystal was developed and studied. To further investigate, understand and optimize the performance of composite detectors, a detailed thermal detector which takes into account the CDD has been developed.

  16. Surface Particle Detectors in Space Weather forecast

    NASA Astrophysics Data System (ADS)

    Chilingarian, Ashot

    Recently several groups report on the development of the alarm system based on the surface particle detector data. Among them are high-latitude neutron monitors network "Spaceship Earth", coordinated by the group from Bartol Research Center; Muon network coordinated by the group from Shinshu University and Athens Neutron Monitor Data Processing Center. In the presented report, based on the information content of data from particle detectors of Aragats Space Environmental Center (ASEC) we made attempt to review possibility of surface particle detectors in Space Weather forecasts. Particle monitors located at ASEC at 1000, 2000 and 3200 m altitudes (40˚25 N, 44˚15 E; Vertical cut-off rigidity in 2007: 7.1 GV) detect charged and neutral components of the secondary cosmic rays with different energy thresholds and various angles of incidence. ASEC monitors reliably detect the highest energy CR due to unique geographical location and large underground high energy muon detector. Forecasting of the Solar Energetic Proton (SEP) events by surface particle detectors is based on the detection of the Ground Level Enhancements (GLE). Unfortunately not all SEPs contain particles energetic enough to produce GLE, therefore, the efficiency of the warnings will not be very high. Nonetheless, we can expect that the major events, (like 1859, 1956, 1972, 1989) with high probability will generate GLEs and surface detectors can provide forewarnings on upcoming abundant SEP particles. With the exception of the event on 20 January, when due to very good magnetic connection of the flare site with earth, all relativistic particles seem to come simultaneously, the enhancements of GeV solar particles detected by surface particle detectors can alert on upcoming severe radiation storm. The alerts from middle and low latitude monitors are even more important compared to high latitude networks, because of lower probability of false alarms. If an enhancement occurs at monitors with large cutoff

  17. Cancer incidence and mortality among underground and surface goldminers in Western Australia

    PubMed Central

    Peters, S; Reid, A; Fritschi, L; (Bill) Musk, A W; de Klerk, N

    2013-01-01

    Background: In a cohort of goldminers, we estimated cancer mortality and incidence, for both surface and underground workers, and we examined the hypothesis that (underground) mining may be protective against prostate cancer. Methods: Standardised mortality and incidence ratios (SMRs and SIRs) and 95% confidence intervals (CI) were calculated to compare cancer mortality and incidence of former goldminers with that of the general male population. Internal comparisons on duration of underground work were examined using Cox regression. Results: During 52 608 person-years of follow-up among 2294 goldminers, 1922 deaths were observed. For any cancer, mortality was increased for the total group of miners (SMR=1.27, 95% CI 1.16–1.39). In the Cox models, lung cancer mortality and incidence were particularly increased among underground miners, even after adjustment for smoking. The SMR for prostate cancer suggested a lower risk for underground miners, whereas incidence of prostate cancer was significantly increased (SIR=1.31, 95% CI 1.07–1.60) among underground miners. Conclusion: Overall cancer mortality and incidence was higher among Western Australian goldminers compared with the general male population, particularly for underground mining. This study does not support the hypothesis that miners have a decreased risk of prostate cancer. PMID:23579218

  18. Cancer incidence and mortality among underground and surface goldminers in Western Australia.

    PubMed

    Peters, S; Reid, A; Fritschi, L; Musk, A W Bill; de Klerk, N

    2013-05-14

    In a cohort of goldminers, we estimated cancer mortality and incidence, for both surface and underground workers, and we examined the hypothesis that (underground) mining may be protective against prostate cancer. Standardised mortality and incidence ratios (SMRs and SIRs) and 95% confidence intervals (CI) were calculated to compare cancer mortality and incidence of former goldminers with that of the general male population. Internal comparisons on duration of underground work were examined using Cox regression. During 52 608 person-years of follow-up among 2294 goldminers, 1922 deaths were observed. For any cancer, mortality was increased for the total group of miners (SMR=1.27, 95% CI 1.16-1.39). In the Cox models, lung cancer mortality and incidence were particularly increased among underground miners, even after adjustment for smoking. The SMR for prostate cancer suggested a lower risk for underground miners, whereas incidence of prostate cancer was significantly increased (SIR=1.31, 95% CI 1.07-1.60) among underground miners. Overall cancer mortality and incidence was higher among Western Australian goldminers compared with the general male population, particularly for underground mining. This study does not support the hypothesis that miners have a decreased risk of prostate cancer.

  19. The Martian Oasis Detector

    NASA Astrophysics Data System (ADS)

    Smith, P. H.; tomasko, M. G.; McEwen, A.; Rice, J.

    2000-07-01

    The next phase of unmanned Mars missions paves the way for astronauts to land on the surface of Mars. There are lessons to be learned from the unmanned precursor missions to the Moon and the Apollo lunar surface expeditions. These unmanned missions (Ranger, Lunar Orbiter, and Surveyor) provided the following valuable information, useful from both a scientific and engineering perspective, which was required to prepare the way for the manned exploration of the lunar surface: (1) high resolution imagery instrumental to Apollo landing site selection also tremendously advanced the state of Nearside and Farside regional geology; (2) demonstrated precision landing (less than two kilometers from target) and soft landing capability; (3) established that the surface had sufficient bearing strength to support a spacecraft; and (4) examination of the chemical composition and mechanical properties of the surface. The search for extinct or extant life on Mars will follow the water. However, geomorphic studies have shown that Mars has had liquid water on its surface throughout its geologic history. A cornucopia of potential landing sites with water histories (lakes, floodplains, oceans, deltas, hydrothermal regions) presently exist. How will we narrow down site selection and increase the likelihood of finding the signs of life? One way to do this is to identify 'Martian oases.' It is known that the Martian surface is often highly fractured and some areas have karst structures that support underground caves. Much of the water that formed the channels and valley networks is thought to be frozen underground. All that is needed to create the potential for liquid water is a near surface source of heat; recent lava flows and Martian meteorites attest to the potential for volcanic activity. If we can locate even one spot where fracturing, ice, and underground heat are co-located then we have the potential for an oasis. Such a discovery could truly excite the imaginations of both the

  20. State Certification of Underground Storage Tanks.

    DTIC Science & Technology

    1998-04-15

    This audit was part of the overall audit of "DoD Management of Underground Storage Tanks ," (Project No. 6CK-5051). The overall audit was jointly...Committee inquiry about whether state environmental regulatory agencies would be able to certify that DoD underground storage tanks were compliant

  1. 30 CFR 57.4761 - Underground shops.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and... toxic gases from a fire originating in an underground shop where maintenance work is routinely done...

  2. 47 CFR 32.2422 - Underground cable.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., Buried Cable. (d) The cost of cables leading from the main distributing frame or equivalent to central... 47 Telecommunication 2 2014-10-01 2014-10-01 false Underground cable. 32.2422 Section 32.2422... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2422 Underground cable...

  3. 47 CFR 32.2422 - Underground cable.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., Buried Cable. (d) The cost of cables leading from the main distributing frame or equivalent to central... 47 Telecommunication 2 2013-10-01 2013-10-01 false Underground cable. 32.2422 Section 32.2422... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2422 Underground cable...

  4. 47 CFR 32.2422 - Underground cable.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., Buried Cable. (d) The cost of cables leading from the main distributing frame or equivalent to central... 47 Telecommunication 2 2011-10-01 2011-10-01 false Underground cable. 32.2422 Section 32.2422... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2422 Underground cable...

  5. 47 CFR 32.2422 - Underground cable.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., Buried Cable. (d) The cost of cables leading from the main distributing frame or equivalent to central... 47 Telecommunication 2 2012-10-01 2012-10-01 false Underground cable. 32.2422 Section 32.2422... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2422 Underground cable...

  6. Resource Recovery of Flooded Underground Mine Workings

    EPA Science Inventory

    Butte, Montana has been the site of hard rock mining activities for over a century. Over 400 hundred underground mines were developed and over 10,000 miles of underground mine workings were created. During active mining, groundwater was removed from the workings by large-scale pu...

  7. Resource Recovery from Flooded Underground Mines

    EPA Science Inventory

    Butte, Montana has been the site of hard rock mining activities for over a century. Over 400 hundred underground mines were developed and over 10,000 miles of underground mine workings were created. During active mining, groundwater was removed from the workings by large-scale pu...

  8. Resource Recovery of Flooded Underground Mine Workings

    EPA Science Inventory

    Butte, Montana has been the site of hard rock mining activities for over a century. Over 400 hundred underground mines were developed and over 10,000 miles of underground mine workings were created. During active mining, groundwater was removed from the workings by large-scale pu...

  9. Resource Recovery from Flooded Underground Mines

    EPA Science Inventory

    Butte, Montana has been the site of hard rock mining activities for over a century. Over 400 hundred underground mines were developed and over 10,000 miles of underground mine workings were created. During active mining, groundwater was removed from the workings by large-scale pu...

  10. Seismic evaluation of an underground reinforced concrete tunnel

    SciTech Connect

    Huang, S.N.

    1993-02-01

    An underground reinforced concrete tunnel under the influence of seismic wave propagation was analyzed. Methods previously developed for underground steel pipes were extended to assess the structural integrity of the underground reinforced concrete tunnel.

  11. Acoustic imaging of underground storage tank wastes

    SciTech Connect

    Mech, S.J.

    1995-09-01

    Acoustics is a potential tool to determine the properties of high level wastes stored in Underground Storage Tanks. Some acoustic properties were successfully measured by a limited demonstration conducted in 114-TX. This accomplishment provides the basis for expanded efforts to qualify techniques which depend on the acoustic properties of tank wastes. This work is being sponsored by the Department of Energy under the Office of Science and Technology. In FY-1994, limited Tank Waste Remediation Systems EM-30 support was available at Hanford and Los Alamos National Laboratory. The Massachusetts Institute of Technology (MIT) and Earth Resources Laboratory (ERL) were engaged for analysis support, and Elohi Geophysics, Inc. for seismic testing services. Westinghouse-Hanford Company provided the testing and training, supplied the special engineering and safety analysis equipment and procedures, and provided the trained operators for the actual tank operations. On 11/9/94, limited in-tank tests were successfully conducted in tank 114-TX. This stabilized Single Shell Tank was reported as containing 16.8 feet of waste, the lower 6.28 feet of which contained interstitial liquid. Testing was conducted over the lower 12 feet, between two Liquid Observation Wells thirty feet apart. The ``quick-look`` data was reviewed on-site by MIT and Elohi.

  12. Transport model of underground sediment in soils.

    PubMed

    Jichao, Sun; Guangqian, Wang

    2013-01-01

    Studies about sediment erosion were mainly concentrated on the river channel sediment, the terrestrial sediment, and the underground sediment. The transport process of underground sediment is studied in the paper. The concept of the flush potential sediment is founded. The transport equation with stable saturated seepage is set up, and the relations between the flush potential sediment and water sediment are discussed. Flushing of underground sediment begins with small particles, and large particles will be taken away later. The pore ratio of the soil increases gradually. The flow ultimately becomes direct water seepage, and the sediment concentration at the same position in the water decreases over time. The concentration of maximal flushing potential sediment decreases along the path. The underground sediment flushing model reflects the flushing mechanism of underground sediment.

  13. Transport Model of Underground Sediment in Soils

    PubMed Central

    Guangqian, Wang

    2013-01-01

    Studies about sediment erosion were mainly concentrated on the river channel sediment, the terrestrial sediment, and the underground sediment. The transport process of underground sediment is studied in the paper. The concept of the flush potential sediment is founded. The transport equation with stable saturated seepage is set up, and the relations between the flush potential sediment and water sediment are discussed. Flushing of underground sediment begins with small particles, and large particles will be taken away later. The pore ratio of the soil increases gradually. The flow ultimately becomes direct water seepage, and the sediment concentration at the same position in the water decreases over time. The concentration of maximal flushing potential sediment decreases along the path. The underground sediment flushing model reflects the flushing mechanism of underground sediment. PMID:24288479

  14. Smoke Detector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo, Fire Chief Jay Stout of Safety Harbor, Florida, is explaining to young Richard Davis the workings of the Honeywell smoke and fire detector which probably saved Richard's life and that of his teen-age brother. Alerted by the detector's warning, the pair were able to escape their burning home. The detector in the Davis home was one of 1,500 installed in Safety Harbor residences in a cooperative program conducted by the city and Honeywell Inc.

  15. Underground coal mining section data

    NASA Technical Reports Server (NTRS)

    Gabrill, C. P.; Urie, J. T.

    1981-01-01

    A set of tables which display the allocation of time for ten personnel and eight pieces of underground coal mining equipment to ten function categories is provided. Data from 125 full shift time studies contained in the KETRON database was utilized as the primary source data. The KETRON activity and delay codes were mapped onto JPL equipment, personnel and function categories. Computer processing was then performed to aggregate the shift level data and generate the matrices. Additional, documented time study data were analyzed and used to supplement the KETRON databased. The source data including the number of shifts are described. Specific parameters of the mines from which there data were extracted are presented. The result of the data processing including the required JPL matrices is presented. A brief comparison with a time study analysis of continuous mining systems is presented. The procedures used for processing the source data are described.

  16. Locomotive track detection for underground

    NASA Astrophysics Data System (ADS)

    Ma, Zhonglei; Lang, Wenhui; Li, Xiaoming; Wei, Xing

    2017-08-01

    In order to improve the PC-based track detection system, this paper proposes a method to detect linear track for underground locomotive based on DSP + FPGA. Firstly, the analog signal outputted from the camera is sampled by A / D chip. Then the collected digital signal is preprocessed by FPGA. Secondly, the output signal of FPGA is transmitted to DSP via EMIF port. Subsequently, the adaptive threshold edge detection, polar angle and radius constrain based Hough transform are implemented by DSP. Lastly, the detected track information is transmitted to host computer through Ethernet interface. The experimental results show that the system can not only meet the requirements of real-time detection, but also has good robustness.

  17. Toxic hazards of underground excavation

    SciTech Connect

    Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

    1982-09-01

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

  18. Collaborative Proposal: DUSEL R&D at the Kimballton Underground Facility (ICP-MS Confirmation, Material Assay, and Radon Reduction)

    SciTech Connect

    Henning O. Back

    2010-11-30

    Experiments measuring rare events, such as neutrinoless double beta (0{nu}{beta}{beta}) decay, and those searching for, or measuring very weakly interacting particles, such as low energy solar neutrino experiments or direct dark matter searches, require ever lower backgrounds; particularly those from radioactive contamination of detector materials. The underground physics community strives to identify and develop materials with radioactive contamination at permissible levels, and to remove radioactive contaminants from materials, but each such material represents a separate dedicated research and development effort. This project attempted to help these research communities by expanding the capabilities in the United States, for indentifying low levels of radioactive contamination in detector materials through gamma ray spectroscopy. Additionally the project tried to make a cross comparison between well established gamma ray spectroscopy techniques for identifying radioactive contaminations and Inductively Coupled Plasma Mass Spectroscopy, which is a relatively new method for searching for uranium and thorium in materials. The project also studied the removal of radioactive radon gas for laboratory air, which showed that an inexpensive technologically simple radon scrubber can potentially be used for homes or businesses with high radon levels even after the employment of other mitigation techniques.

  19. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  20. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  1. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  2. Measurements of cosmic-ray correlated events at the Soudan underground laboratory

    SciTech Connect

    Villano, A. N.; Cushman, P.; Bunker, R.

    2013-08-08

    The ceiling and walls of the Low Background Facility at the Soudan Underground Laboratory are lined proportional tubes which form a 30 m × 17 m ×12 m muon tracker. The data acquisition records GPS-generated time stamps along with position information. The tracker is a refurbished version of the Soudan 2 proton-decay muon veto shield. It can now be used in conjunction with other experiments housed within its walls. Particularly interesting is the possible measurement of cavern muons coincident with high-energy neutron detections in the Neutron Multiplicity Meter (NMM), a 4-tonne gadolinium-loaded water Cherenkov neutron capture detector atop a 20-kilotonne lead target. Here we cover the ability of the shield and co-located detectors to achieve coincident timing resolutions of about 1 microsecond via GPS-synchronized absolute timing electronics. The usage of such technology for constraining muon-neutron correlations underground is discussed.

  3. Radon Monitoring and Early Low Background Counting at the Sanford Underground Laboratory

    SciTech Connect

    Thomas, K. J.; Mei, D.-M.; Heise, J.; Durben, D.; Salve, R.

    2011-04-27

    Radon detectors have been deployed underground at the Sanford Underground Laboratory at the site of the former Homestake Mine in Lead, SD. Currently, no radon mitigation measures are in place in the underground environment, and the continuing evolution of the facility ventilation systems has led to significant variations in early airborne radon concentrations. The average radon concentration measured near the primary ventilation intake for the 4850-ft level (Yates shaft) is 391 Bq/m{sup 3}, based on approximately 146 days of data. The corresponding average radon concentration near the other main ventilation intake for the 4850-ft level (Ross shaft) is 440 Bq/m{sup 3} based on approximately 350 days of data. Measurements have also been collected near the 1250-ft level Ross shaft, with average radon concentrations at 180 Bq/m{sup 3}. Secondary factors that may increase the baseline radon level underground include the presence of iron oxide and moisture, which are known to enhance radon emanation. The results of the current radon monitoring program will be used for the planning of future measurements and any potential optimization of ventilation parameters for the reduction of radon in relevant areas underground.

  4. Radon monitoring and early low background counting at the Sanford Underground Laboratory

    SciTech Connect

    Thomas, K.J.; Mei, D.M.; Heise, J.; Durben, D.; Salve, R.

    2010-09-01

    Radon detectors have been deployed underground at the Sanford Underground Laboratory at the site of the former Homestake Mine in Lead, SD. Currently, no radon mitigation measures are in place in the underground environment, and the continuing evolution of the facility ventilation systems has led to significant variations in early airborne radon concentrations. The average radon concentration measured near the primary ventilation intake for the 4850-ft level (Yates shaft) is 391 Bq/m{sup 3}, based on approximately 146 days of data. The corresponding average radon concentration near the other main ventilation intake for the 4850-ft level (Ross shaft) is 440 Bq/m{sup 3} based on approximately 350 days of data. Measurements have also been collected near the 1250-ft level Ross shaft, with average radon concentrations at 180 Bq/m{sup 3}. Secondary factors that may increase the baseline radon level underground include the presence of iron oxide and moisture, which are known to enhance radon emanation. The results of the current radon monitoring program will be used for the planning of future measurements and any potential optimization of ventilation parameters for the reduction of radon in relevant areas underground.

  5. Drawing from past experience to improve the management of future underground projects

    SciTech Connect

    Laughton, Christopher; /Fermilab

    2004-01-01

    The high-energy physics community is currently developing plans to build underground facilities as part of its continuing investigation into the fundamental nature of matter. The tunnels and caverns are being designed to house a new generation of particle accelerators and detectors. For these projects, the cost of constructing the underground facility will constitute a major portion of the told capital cost and project viability can be greatly enhanced by paying careful attention to design and construction practices. A review of recently completed underground physics facilities and related literature has been undertaken to identify some management principles that have proven successful in underground practice. Projects reviewed were constructed in the United States of America and Europe using both Design-Build and more traditional Engineer-Procure-Construct contract formats. Although the physics projects reviewed tend to place relatively strict tolerances on alignment, stability and dryness, their overall requirements are similar to those of other tunnels and it is hoped that some of the principles promoted in this paper will be of value to the owner of any underground project.

  6. Dark matter search in the Fréjus Underground Laboratory EDELWEISS experiment

    NASA Astrophysics Data System (ADS)

    de Bellefon, A.; Bergé, L.; Berkès, I.; Broszkiewicz, D.; Chambon, B.; Chapellier, M.; Chardin, G.; Charvin, Ph.; Chazal, V.; Coron, N.; de Jesus, M.; Drain, D.; Dumoulin, L.; Giraud-Héraud, Y.; Guerrier, G.; Goldbach, C.; Hadjout, J. P.; Leblanc, J.; Messous, Y.; Navick, X. F.; Nollez, G.; Pastor, C.; Pari, P.; Prostakov, I.; Perillo-Isaac, M. C.; Yvon, D.

    1996-02-01

    The status of the EDELWEISS experiment (Experience pour DEtecter Les Wimps En SIte Souterrain) in the Fréjus Underground Laboratory is reported. The cryostat is described with the main lines of low radioactivity design and readout system. The first results using bolometer detectors together with the measurement of the internal radioactive background using a 100 cm3 classical Ge crystal are reported. The future program of the experiment will be outlined.

  7. Time variations in the deep underground muon flux measured by MACRO

    NASA Astrophysics Data System (ADS)

    Becherini, Y.; Cecchini, S.; Cozzi, M.; Dekhissi, H.; Derkaoui, J.; Giacomelli, G.; Giorgini, M.; Maaroufi, F.; Mandrioli, G.; Margiotta, A.; Manzoor, S.; Moussa, A.; Patrizii, L.; Popa, V.; Sioli, M.; Sirri, G.; Spurio, M.; Togo, V.

    More than 30 million of high-energy muons collected with the MACRO detector at the underground Gran Sasso Laboratory have been used to search for flux variations of different natures. Two kinds of studies were carried out: search for periodic variations and for the occurrence of clusters of events. Different analysis methods, including Lomb-Scargle spectral analysis and Scan Test statistics have been applied to the data.

  8. Underground muons from the direction of Cygnus X-3 during the January 1991 radio flare

    SciTech Connect

    Not Available

    1991-08-01

    Muons recorded in the Soudan 2 underground nucleon decay detector from January 1989 to February 1991 have been examined for any correlation with the radio flares of Cyguns X-3 observed during this period. On two nearby days during the radio flare of January 1991 a total of 32 muons within 2.0{degrees} of the Cyguns X-3 direction were observed when 11.4 were expected.

  9. Fire Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An early warning fire detection sensor developed for NASA's Space Shuttle Orbiter is being evaluated as a possible hazard prevention system for mining operations. The incipient Fire Detector represents an advancement over commercially available smoke detectors in that it senses and signals the presence of a fire condition before the appearance of flame and smoke, offering an extra margin of safety.

  10. Metal Detectors.

    ERIC Educational Resources Information Center

    Harrington-Lueker, Donna

    1992-01-01

    Schools that count on metal detectors to stem the flow of weapons into the schools create a false sense of security. Recommendations include investing in personnel rather than hardware, cultivating the confidence of law-abiding students, and enforcing discipline. Metal detectors can be quite effective at afterschool events. (MLF)

  11. Vapor Detector

    NASA Technical Reports Server (NTRS)

    Waddell, H. M.; Garrard, G. C.; Houston, D. W.

    1982-01-01

    Detector eliminates need for removing covers to take samples. Detector is canister consisting of screw-in base and clear plastic tube that contains two colors of silica gel. Monoethylhydrazine and nitrogen tetroxide vapors are visually monitored with canister containing color-changing gels.

  12. Low-background Gamma Spectroscopy at Sanford Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Chiller, Christopher; Alanson, Angela; Mei, Dongming

    2014-03-01

    Rare-event physics experiments require the use of material with unprecedented radio-purity. Low background counting assay capabilities and detectors are critical for determining the sensitivity of the planned ultra-low background experiments. A low-background counting, LBC, facility has been built at the 4850-Level Davis Campus of the Sanford Underground Research Facility to perform screening of material and detector parts. Like many rare event physics experiments, our LBC uses lead shielding to mitigate background radiation. Corrosion of lead brick shielding in subterranean installations creates radon plate-out potential as well as human risks of ingestible or respirable lead compounds. Our LBC facilities employ an exposed lead shield requiring clean smooth surfaces. A cleaning process of low-activity silica sand blasting and borated paraffin hot coating preservation was employed to guard against corrosion due to chemical and biological exposures. The resulting lead shield maintains low background contribution integrity while fully encapsulating the lead surface. We report the performance of the current LBC and a plan to develop a large germanium well detector for PMT screening. Support provided by Sd governors research center-CUBED, NSF PHY-0758120 and Sanford Lab.

  13. The ICARUS T600 Experiment in the Gran Sasso Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Kisiel, J.; Cieślik, K.; Dąbrowska, A.; Holeczek, J.; Kiełczewska, D.; Kochanek, I.; Kozłowski, T.; Łagoda, J.; Mania, S.; Mijakowski, P.; Palczewski, T. J.; Posiadała, M.; Przewłocki, P.; Rondio, E.; Sobczyk, J.; Stefan, D.; Stepaniak, J.; Sulej, R.; Szarska, M.; Szeglowski, T.; Szeptycka, M.; Wąchała, T.; Zalewska, A.

    2009-11-01

    With a mass of about 600 tons of Liquid Argon (LAr), the ICARUS T600 detector is the biggest, up to now, LAr Time Projection Chamber (TPC). Following its successful test run, on the Earth surface, in Pavia (Italy) in 2001, the detector is now very close to start data taking in the Gran Sasso underground laboratory. The main features of the LAr TPC technique, together with a short discussion of some of the ICARUS T600 test run results, are presented in this paper.

  14. Research and design of the electronics system for the underground dark matter detection experiment in IHEP

    NASA Astrophysics Data System (ADS)

    Jun, H.; Xiaoshan, J.; Jie, Z.; Wei, W.; Gang, L.

    2015-03-01

    The underground dark matter experiment in IHEP searches for direct detection of dark matter using CsI(Na) as detector material. Rare nuclear recoil events of dark matter particles scattering off the target material will be detected by photomultiplier tubes (PMTs). This paper describes the electronics system structure we chose for this detector. It focuses on the design of the main modules, the high-speed ADC module and the 2-level data acquisition module. Some performance results are presented at the end.

  15. Early distinction system of mine fire in underground by using a neural-network system

    SciTech Connect

    Ohga, Kotaro; Higuchi, Kiyoshi

    1996-12-31

    In our laboratory, a new detection system using smell detectors was developed to detect the spontaneous combustion of coal and the combustion of other materials used underground. The results of experiments clearly the combustion of materials can be detected earlier by this detection system than by conventional detectors for gas and smoke, and there were significant differences between output data from each smell detector for coal, rubber, oil and wood. In order to discern the source of combustion gases, we have been developing a distinction system using a neural-network system. It has shown successful results in laboratory tests. This paper describes our detection system using smell detectors and our distinction system which uses a neural-network system, and presents results of experiments using both systems.

  16. Assessing the acoustical climate of underground stations.

    PubMed

    Nowicka, Elzbieta

    2007-01-01

    Designing a proper acoustical environment--indispensable to speech recognition--in long enclosures is difficult. Although there is some literature on the acoustical conditions in underground stations, there is still little information about methods that make estimation of correct reverberation conditions possible. This paper discusses the assessment of the reverberation conditions of underground stations. A comparison of the measurements of reverberation time in Warsaw's underground stations with calculated data proves there are divergences between measured and calculated early decay time values, especially for long source-receiver distances. Rapid speech transmission index values for measured stations are also presented.

  17. Radon dose assessment in underground mines in Brazil.

    PubMed

    Santos, T O; Rocha, Z; Cruz, P; Gouvea, V A; Siqueira, J B; Oliveira, A H

    2014-07-01

    Underground miners are internally exposed to radon, thoron and their short-lived decay products during the mineral processing. There is also an external exposure due to the gamma emitters present in the rock and dust of the mine. However, the short-lived radon decay products are recognised as the main radiation health risk. When inhaled, they are deposited in the respiratory system and may cause lung cancer. To address this concern, concentration measurements of radon and its progeny were performed, the equilibrium factor was determined and the effective dose received was estimated in six Brazilian underground mines. The radon concentration was measured by using E-PERM, AlphaGUARD and CR-39 detectors. The radon progeny was determined by using DOSEman. The annual effective dose for the miners was estimated according to United Nations Scientific Committee on the Effects of Atomic Radiation methodologies. The mean value of the equilibrium factor was 0.4. The workers' estimated effective dose ranged from 1 to 21 mSv a(-1) (mean 9 mSv a(-1)). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Blast damage control during underground mining

    SciTech Connect

    Singh, S.P.

    1994-12-31

    Tracer blasting is commonly used in Canadian underground mines for overbreak control. It involves tracing a column of ANFO with a low strength detonating cord. In order to investigate the effectiveness of tracer blasting in perimeter control and to understand its mechanism, a field experimentation was conducted which involved drifting, benching and pipe tests. Initially, a comparison between tracer blasting and other explosive products was made on the basis of half cast factor and percentage overbreak. It was found that tracer blasting produced relatively much lower damage. The following observations were made during tracer blasting experiments: (a) reduction in ground vibrations; (b) partial deflagration and desensitization of ANFO; (c) reduction in the total available explosive energy; (d) continuous side initiation of ANFO column; (e) lateral VOD of ANFO was much less than the steady state VOD; (f) energy partitioning was more in favor of gas energy. It was observed that tracer blasting has the potential of being very cost effective and safer technique for overbreak control. A mechanism of tracer blasting has also been proposed in this paper.

  19. Redesigned β γ radioxenon detector

    NASA Astrophysics Data System (ADS)

    Cooper, Matthew W.; McIntyre, Justin I.; Bowyer, Ted W.; Carman, April J.; Hayes, James C.; Heimbigner, Tom R.; Hubbard, Charles W.; Lidey, Lance; Litke, Kevin E.; Morris, Scott J.; Ripplinger, Michael D.; Suarez, Reynold; Thompson, Robert

    2007-08-01

    The Automated Radio-xenon Sampler/Analyzer (ARSA), designed by Pacific Northwest National Laboratory (PNNL) collects and detects several radioxenon isotopes, and is used to monitor underground nuclear explosions. The ARSA is very sensitive to 133Xe, 131mXe, 133mXe, and 135Xe (<1 mBq/SCM) [M. Auera et al., Wernspergera, Appl. Radiat. 6 (2004) 60] through use of its compact high efficiency β-γ coincidence detector. For this reason, it is an excellent treaty monitoring system and it can be used as an environmental sampling device as well. Field testing of the ARSA has shown it to be both robust and reliable, but the nuclear detector requires a detailed photomultiplier tube (PMT) gain matching regime difficult to implement in a field environment. Complexity is a problem from a maintenance and quality assurance/quality control (QA/QC) standpoint, and efforts to reduce these issues have led to development of a simplified β-γ coincident detector. The new design reduces the number of PMT's and the complexity of the calibration needed in comparison to the old design. New scintillation materials (NaI(Tl), CsI(Na), and CsI(Tl)) were investigated and a comparison of three different gamma sensitive well detectors has been completed. A new plastic-scintillator gas cell was constructed and a new method of forming the scintillator gas cell was developed. The simplified detector system compares favorably with the original ARSA design in spectral resolution and efficiency and is significantly easier to set up and calibrate. The new materials and configuration allow the resulting β-γ coincidence detector to maintain the overall performance of the ARSA type β-γ detector while simplifying the design.

  20. Photon Detection System Designs for the Deep Underground Neutrino Experiment

    SciTech Connect

    Whittington, Denver

    2015-11-19

    The Deep Underground Neutrino Experiment (DUNE) will be a premier facility for exploring long-standing questions about the boundaries of the standard model. Acting in concert with the liquid argon time projection chambers underpinning the far detector design, the DUNE photon detection system will capture ultraviolet scintillation light in order to provide valuable timing information for event reconstruction. To maximize the active area while maintaining a small photocathode coverage, the experiment will utilize a design based on plastic light guides coated with a wavelength-shifting compound, along with silicon photomultipliers, to collect and record scintillation light from liquid argon. This report presents recent preliminary performance measurements of this baseline design and several alternative designs which promise significant improvements in sensitivity to low-energy interactions.

  1. The Case for an Underground Neutrino Facility in South Africa

    NASA Astrophysics Data System (ADS)

    Vilakazi, Zeblon

    2017-01-01

    Experiments in physics, Astro-particle physics and cosmology that require careful shielding against cosmic rays includes dark matter searches, studies of radioactive decays, and neutrino detection experiments. The need for such shielding has motivated the construction of laboratory caverns in mines and adjacent to tunnels under mountains. There are currently about a dozen such laboratories, in existence or under construction, all in the Northern Hemisphere. A motivation has been made for the establishment of a Southern Hemisphere facility. In this paper a feasibility study of measurements of radon in air (using electret ion chambers and alpha spectroscopy), background gamma ray measurements (inside/outside) the tunnel using scintillator (inorganic) detectors, cosmic ray measurements using organic scintillators and radiometric analyses of representative rock samplesfor the establishment of such a facility in the South Africa is presented. Keywords: Underground laboratory, Neutrinos, Gamma ray, Radon, Dark matter, Background.

  2. Photon detection system designs for the Deep Underground Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Whittington, D.

    2016-05-01

    The Deep Underground Neutrino Experiment (DUNE) will be a premier facility for exploring long-standing questions about the boundaries of the standard model. Acting in concert with the liquid argon time projection chambers underpinning the far detector design, the DUNE photon detection system will capture ultraviolet scintillation light in order to provide valuable timing information for event reconstruction. To maximize the active area while maintaining a small photocathode coverage, the experiment will utilize a design based on plastic light guides coated with a wavelength-shifting compound, along with silicon photomultipliers, to collect and record scintillation light from liquid argon. This report presents recent preliminary performance measurements of this baseline design and several alternative designs which promise significant improvements in sensitivity to low-energy interactions.

  3. Seasonal modulations of the underground cosmic-ray muon energy

    SciTech Connect

    Malgin, A. S.

    2015-08-15

    The parameters of the seasonal modulations in the intensity of muons and cosmogenic neutrons generated by them at a mean muon energy of 280 GeV have been determined in the LVD (Large Volume Detector) experiment. The modulations of muons and neutrons are caused by a temperature effect, the seasonal temperature and density variations of the upper atmospheric layers. The analysis performed here leads to the conclusion that the variations in the mean energy of the muon flux are the main source of underground cosmogenic neutron variations, because the energy of muons is more sensitive to the temperature effect than their intensity. The parameters of the seasonal modulations in the mean energy of muons and the flux of cosmogenic neutrons at the LVD depth have been determined from the data obtained over seven years of LVD operation.

  4. Argon-39 Background in DUNE Photon Detectors

    NASA Astrophysics Data System (ADS)

    Sinev, Gleb; DUNE Collaboration

    2016-03-01

    The Deep Underground Neutrino Experiment (DUNE) is a 40-kt liquid argon detector that will be constructed 5000 ft underground in the Sanford Underground Research Facility in order to study neutrino and proton decay physics. Instrumenting liquid argon with photon detectors to record scintillation in addition to the ionization signal can significantly improve time and energy resolution of the experiment. Argon produces light with wavelength of 128 nm. The reference design for the photon detectors includes acrylic bars covered in wavelength shifter, where the scintillation light can be captured and reemitted with longer wavelengths, then detected using silicon photomultipliers. Radiological backgrounds may noticeably deteriorate the photon detection system performance, especially for low-energy interactions. A particularly important background comes from argon-39 decays, because argon-39 is present in natural argon that will be used in DUNE and the background rate increases with the size of the experiment. The effect of the argon-39 background has been studied and is presented in this talk.

  5. The LUX-Zeplin Dark Matter Detector

    NASA Astrophysics Data System (ADS)

    Mock, Jeremy; Lux-Zeplin (Lz) Collaboration

    2016-03-01

    The LUX-ZEPLIN (LZ) detector is a second generation dark matter experiment that will operate at the 4850 foot level of the Sanford Underground Research Experiment as a follow-up to the LUX detector, currently the world's most sensitive WIMP direct detection experiment. The LZ detector will contain 7 tonnes of active liquid xenon with a 5.6 tonne fiducial mass in the TPC. The TPC is surrounded by an active, instrumented, liquid-xenon ``skin'' region to veto gammas, then a layer of liquid scintillator to veto neutrons, all contained within a water shield. Modeling the detector is key to understanding the expected background, which in turn leads to a better understanding of the projected sensitivity, currently expected to be 2e-48 cm2 for a 50 GeV WIMP. I will discuss the current status of the LZ experiment as well as its projected sensitivity.

  6. Cosmic ray studies with the MINOS detectors

    NASA Astrophysics Data System (ADS)

    Habig, Alec; Minos Collaboration

    2008-11-01

    The MINOS experiment uses two layered scintillator and steel detectors along with a muon neutrino beam to search for νμ disappearance, and thus neutrino oscillations. The Far Detector ('FD') is situated in a former iron mine in the Soudan Underground Mine State Park in Northeastern MN, 700 m (2070 mwe) below the surface. This 5.4 kt steel/scintillator calorimeter measures the neutrino flux after they have traveled the 735 km baseline. It also detects atmospheric neutrinos at a rate of several per week, and is the first magnetized atmospheric neutrino detector, able to discriminate between νμ and νμ on an event-by-event basis. The similar 1 kt Near Detector ('ND') is 100 m (220 mwe) underground at Fermilab. This poster discusses the science being done with the high energy cosmic ray muons which penetrate the rock overburden and are seen by the detectors. The typical surface energy of those seen at the FD are ~1 TeV (coming from ~8 TeV primary cosmic rays) and ~110 GeV at the ND (~900 GeV primaries).

  7. Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Titov, Maxim

    Since long time, the compelling scientific goals of future high-energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volumes with low mass budget, have been playing an important role in many fields of physics. Advances in photolithography and microprocessing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high-energy physics, MPGD applications have expanded to nuclear physics, photon detection, astroparticle and neutrino physics, neutron detection, and medical imaging.

  8. CDEX-1 1 kg point-contact germanium detector for low mass dark matter searches

    NASA Astrophysics Data System (ADS)

    Kang, Ke-Jun; Yue, Qian; Wu, Yu-Cheng; Cheng, Jian-Ping; Li, Yuan-Jing; Bai, Yang; Bi, Yong; Chang, Jian-Ping; Chen, Nan; Chen, Ning; Chen, Qing-Hao; Chen, Yun-Hua; Chuang, Yo-Chun; Deng, Zhi; Du, Qiang; Gong, Hui; Hao, Xi-Qing; He, Qing-Ju; Hu, Xin-Hui; Huang, Han-Xiong; Huang, Teng-Rui; Jiang, Hao; Li, Hau-Bin; Li, Jian-Min; Li, Jin; Li, Jun; Li, Xia; Li, Xin-Ying; Li, Xue-Qian; Li, Yu-Lan; Liao, Heng-Yi; Lin, Fong-Kay; Lin, Shin-Ted; Liu, Shu-Kui; Lü, Lan-Chun; Ma, Hao; Mao, Shao-Ji; Qin, Jian-Qiang; Ren, Jie; Ren, Jing; Ruan, Xi-Chao; Shen, Man-Bin; Lakhwinder, Singh; Manoj, Kumar Singh; Arun, Kumar Soma; Su, Jian; Tang, Chang-Jian; Tseng, Chao-Hsiung; Wang, Ji-Min; Wang, Li; Wang, Qing; Wong Tsz-King, Henry; Wu, Shi-Yong; Wu, Wei; Wu, Yu-Cheng; Xing, Hao-Yang; Xu, Yin; Xue, Tao; Yang, Li-Tao; Yang, Song-Wei; Yi, Nan; Yu, Chun-Xu; Yu, Hao; Yu, Xun-Zhen; Zeng, Xiong-Hui; Zeng, Zhi; Zhang, Lan; Zhang, Yun-Hua; Zhao, Ming-Gang; Zhao, Wei; Zhong, Su-Ning; Zhou, Zu-Ying; Zhu, Jing-Jun; Zhu, Wei-Bin; Zhu, Xue-Zhou; Zhu, Zhong-Hua

    2013-12-01

    The CDEX collaboration has been established for direct detection of light dark matter particles, using ultra-low energy threshold point-contact p-type germanium detectors, in China JinPing underground Laboratory (CJPL). The first 1 kg point-contact germanium detector with a sub-keV energy threshold has been tested in a passive shielding system located in CJPL. The outputs from both the point-contact P+ electrode and the outside N+ electrode make it possible to scan the lower energy range of less than 1 keV and at the same time to detect the higher energy range up to 3 MeV. The outputs from both P+ and N+ electrode may also provide a more powerful method for signal discrimination for dark matter experiment. Some key parameters, including energy resolution, dead time, decay times of internal X-rays, and system stability, have been tested and measured. The results show that the 1 kg point-contact germanium detector, together with its shielding system and electronics, can run smoothly with good performances. This detector system will be deployed for dark matter search experiments.

  9. Search for Neutrinoless Quadruple-β Decay of Nd 150 with the NEMO-3 Detector

    NASA Astrophysics Data System (ADS)

    Arnold, R.; Augier, C.; Barabash, A. S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Boursette, D.; Brudanin, V.; Busto, J.; Caffrey, A. J.; Calvez, S.; Cascella, M.; Cerna, C.; Cesar, J. P.; Chapon, A.; Chauveau, E.; Chopra, A.; Dawson, L.; Duchesneau, D.; Durand, D.; Egorov, V.; Eurin, G.; Evans, J. J.; Fajt, L.; Filosofov, D.; Flack, R.; Garrido, X.; Gómez, H.; Guillon, B.; Guzowski, P.; Hodák, R.; Huber, A.; Hubert, P.; Hugon, C.; Jullian, S.; Klimenko, A.; Kochetov, O.; Konovalov, S. I.; Kovalenko, V.; Lalanne, D.; Lang, K.; Lemière, Y.; Le Noblet, T.; Liptak, Z.; Liu, X. R.; Loaiza, P.; Lutter, G.; Macko, M.; Macolino, C.; Mamedov, F.; Marquet, C.; Mauger, F.; Morgan, B.; Mott, J.; Nemchenok, I.; Nomachi, M.; Nova, F.; Nowacki, F.; Ohsumi, H.; Patrick, C.; Pahlka, R. B.; Perrot, F.; Piquemal, F.; Povinec, P.; Přidal, P.; Ramachers, Y. A.; Remoto, A.; Reyss, J. L.; Riddle, C. L.; Rukhadze, E.; Saakyan, R.; Salazar, R.; Sarazin, X.; Shitov, Yu.; Simard, L.; Šimkovic, F.; Smetana, A.; Smolek, K.; Smolnikov, A.; Söldner-Rembold, S.; Soulé, B.; Štefánik, D.; Štekl, I.; Suhonen, J.; Sutton, C. S.; Szklarz, G.; Thomas, J.; Timkin, V.; Torre, S.; Tretyak, Vl. I.; Tretyak, V. I.; Umatov, V. I.; Vanushin, I.; Vilela, C.; Vorobel, V.; Waters, D.; Xie, F.; Žukauskas, A.; NEMO-3 Collaboration

    2017-07-01

    We report the results of a first experimental search for lepton number violation by four units in the neutrinoless quadruple-β decay of Nd 150 using a total exposure of 0.19 kg yr recorded with the NEMO-3 detector at the Modane Underground Laboratory. We find no evidence of this decay and set lower limits on the half-life in the range T1 /2>(1.1 - 3.2 )×1 021 yr at the 90% C.L., depending on the model used for the kinematic distributions of the emitted electrons.

  10. Liquid level detector

    DOEpatents

    Tshishiku, Eugene M [Augusta, GA

    2011-08-09

    A liquid level detector for conductive liquids for vertical installation in a tank, the detector having a probe positioned within a sheath and insulated therefrom by a seal so that the tip of the probe extends proximate to but not below the lower end of the sheath, the lower end terminating in a rim that is provided with notches, said lower end being tapered, the taper and notches preventing debris collection and bubble formation, said lower end when contacting liquid as it rises will form an airtight cavity defined by the liquid, the interior sheath wall, and the seal, the compression of air in the cavity preventing liquid from further entry into the sheath and contact with the seal. As a result, the liquid cannot deposit a film to form an electrical bridge across the seal.

  11. Supernova Registration in Water Cherenkov Veto of Dark Matter Detectors

    NASA Astrophysics Data System (ADS)

    Litvinovich, E. A.; Machulin, I. N.; Pugachev, D. A.; Skorokhvatov, M. D.

    2017-01-01

    Registration of supernova neutrinos is one of the main goals of large underground neutrino detectors. We consider the possibility of using the large water veto tanks of future dark matter experiments as the additional facilities for supernova detection. Simulations were performed for registration of Cherenkov light in 2 kt water veto of Darkside-20k from high energy positrons created by supernova electron antineutrinos via inverse beta decay reaction. Comparison between characteristics of different supernova neutrino detectors are presented.

  12. The detector system of the Daya Bay reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    An, F. P.; Bai, J. Z.; Balantekin, A. B.; Band, H. R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Brown, R. L.; Butorov, I.; Cao, D.; Cao, G. F.; Cao, J.; Carr, R.; Cen, W. R.; Chan, W. T.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chasman, C.; Chen, H. Y.; Chen, H. S.; Chen, M. J.; Chen, Q. Y.; Chen, S. J.; Chen, S. M.; Chen, X. C.; Chen, X. H.; Chen, X. S.; Chen, Y. X.; Chen, Y.; Cheng, J. H.; Cheng, J.; Cheng, Y. P.; Cherwinka, J. J.; Chidzik, S.; Chow, K.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dong, L.; Dove, J.; Draeger, E.; Du, X. F.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Fang, S. D.; Fu, J. Y.; Fu, Z. W.; Ge, L. Q.; Ghazikhanian, V.; Gill, R.; Goett, J.; Gonchar, M.; Gong, G. H.; Gong, H.; Gornushkin, Y. A.; Grassi, M.; Greenler, L. S.; Gu, W. Q.; Guan, M. Y.; Guo, R. P.; Guo, X. H.; Hackenburg, R. W.; Hahn, R. L.; Han, R.; Hans, S.; He, M.; He, Q.; He, W. S.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hinrichs, P.; Ho, T. H.; Hoff, M.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. Z.; Huang, H. X.; Huang, P. W.; Huang, X.; Huang, X. T.; Huber, P.; Hussain, G.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiang, H. J.; Jiang, W. Q.; Jiao, J. B.; Johnson, R. A.; Joseph, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lai, C. Y.; Lai, W. C.; Lai, W. H.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, M. K. P.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Lewis, C. A.; Li, B.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, J.; Li, N. Y.; Li, Q. J.; Li, S. F.; Li, S. C.; Li, W. D.; Li, X. B.; Li, X. N.; Li, X. Q.; Li, Y.; Li, Y. F.; Li, Z. B.; Liang, H.; Liang, J.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. X.; Lin, S. K.; Lin, Y. C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, B. J.; Liu, C.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S.; Liu, S. S.; Liu, X.; Liu, Y. B.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, A.; Luk, K. B.; Luo, T.; Luo, X. L.; Ma, L. H.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Mayes, B.; McDonald, K. T.; McFarlane, M. C.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Mohapatra, D.; Monari Kebwaro, J.; Morgan, J. E.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Newsom, C.; Ngai, H. Y.; Ngai, W. K.; Nie, Y. B.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pagac, A.; Pan, H.-R.; Patton, S.; Pearson, C.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Sands, W. R.; Seilhan, B.; Shao, B. B.; Shih, K.; Song, W. Y.; Steiner, H.; Stoler, P.; Stuart, M.; Sun, G. X.; Sun, J. L.; Tagg, N.; Tam, Y. H.; Tanaka, H. K.; Tang, W.; Tang, X.; Taychenachev, D.; Themann, H.; Torun, Y.; Trentalange, S.; Tsai, O.; Tsang, K. V.; Tsang, R. H. M.; Tull, C. E.; Tung, Y. C.; Viaux, N.; Viren, B.; Virostek, S.; Vorobel, V.; Wang, C. H.; Wang, L. S.; Wang, L. Y.; Wang, L. Z.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, T.; Wang, W.; Wang, W. W.; Wang, X. T.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Webber, D. M.; Wei, H. Y.; Wei, Y. D.; Wen, L. J.; Wenman, D. L.; Whisnant, K.; White, C. G.; Whitehead, L.; Whitten, C. A.; Wilhelmi, J.; Wise, T.; Wong, H. C.; Wong, H. L. H.; Wong, J.; Wong, S. C. F.; Worcester, E.; Wu, F. F.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xiang, S. T.; Xiao, Q.; Xing, Z. Z.; Xu, G.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, W.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Yip, K.; Young, B. L.; Yu, G. Y.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, F. H.; Zhang, H. H.; Zhang, J. W.; Zhang, K.; Zhang, Q. X.; Zhang, Q. M.; Zhang, S. H.; Zhang, X. T.; Zhang, Y. C.; Zhang, Y. H.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. F.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhou, Z. Y.; Zhuang, H. L.; Zimmerman, S.; Zou, J. H.

    2016-03-01

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of νbare oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin2 2θ13 and the effective mass splitting Δ mee2. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors' baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.

  13. ANNs pinpoint underground distribution faults

    SciTech Connect

    Glinkowski, M.T.; Wang, N.C.

    1995-10-01

    Many offline fault location techniques in power distribution circuits involve patrolling along the lines or cables. In overhead distribution lines, most of the failures can be located quickly by visual inspection without the aid of special equipment. However, locating a fault in underground cable systems is more difficult. It involves additional equipment (e.g., thumpers, radars, etc.) to transform the invisibility of the cable into other forms of signals, such as acoustic sound and electromagnetic pulses. Trained operators must carry the equipment above the ground, follow the path of the signal, and draw lines on their maps in order to locate the fault. Sometimes, even smelling the burnt cable faults is a way of detecting the problem. These techniques are time consuming, not always reliable, and, as in the case of high-voltage dc thumpers, can cause additional damage to the healthy parts of the cable circuit. Online fault location in power networks that involve interconnected lines (cables) and multiterminal sources continues receiving great attention, with limited success in techniques that would provide simple and practical solutions. This article features a new online fault location technique that: uses the pattern recognition feature of artificial neural networks (ANNs); utilizes new capabilities of modern protective relaying hardware. The output of the neural network can be graphically displayed as a simple three-dimensional (3-D) chart that can provide an operator with an instantaneous indication of the location of the fault.

  14. The First Great Migration: The Underground Railroad.

    ERIC Educational Resources Information Center

    Goodstein, Carol

    1990-01-01

    Describes the Underground Railroad, a loosely organized system used by runaway Southern slaves to reach freedom in the North. Discusses the role of "conductors," who acted as guides and offered shelter along the route. (FMW)

  15. The Black Underground: Fugitives from Slavery

    ERIC Educational Resources Information Center

    Quarles, Benjamin

    1969-01-01

    A brief account of the activities prior to the American Civil War of those who assisted black slaves in their flight from the South to the Northern States and Canada by an underground railroad movement. (RJ)

  16. The Black Underground: Fugitives from Slavery

    ERIC Educational Resources Information Center

    Quarles, Benjamin

    1969-01-01

    A brief account of the activities prior to the American Civil War of those who assisted black slaves in their flight from the South to the Northern States and Canada by an underground railroad movement. (RJ)

  17. The First Great Migration: The Underground Railroad.

    ERIC Educational Resources Information Center

    Goodstein, Carol

    1990-01-01

    Describes the Underground Railroad, a loosely organized system used by runaway Southern slaves to reach freedom in the North. Discusses the role of "conductors," who acted as guides and offered shelter along the route. (FMW)

  18. 30 CFR 57.8519 - Underground main fan controls.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground main fan controls. 57.8519 Section... Ventilation Surface and Underground § 57.8519 Underground main fan controls. All underground main fans shall have controls placed at a suitable protected location remote from the fan and preferably on the...

  19. 30 CFR 57.20031 - Blasting underground in hazardous areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting underground in hazardous areas. 57... METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Miscellaneous § 57.20031 Blasting underground in hazardous areas. In underground areas where...

  20. 30 CFR 75.320 - Air quality detectors and measurement devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air quality detectors and measurement devices... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.320 Air quality detectors and measurement devices. (a) Tests for methane shall be made by a qualified person...

  1. 29 CFR 1926.800 - Underground construction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., floor or walls in any underground work area for more than a 24-hour period; or (ii) The history of the... inches (304.8 mm) ±0.25 inch (6.35 mm) from the roof, face, floor or walls in any underground work area... equipped with explosion-doors or a weak-wall having an area at least equivalent to the cross-sectional...

  2. System for remote control of underground device

    DOEpatents

    Brumleve, T.D.; Hicks, M.G.; Jones, M.O.

    1975-10-21

    A system is described for remote control of an underground device, particularly a nuclear explosive. The system includes means at the surface of the ground for transmitting a seismic signal sequence through the earth having controlled and predetermined signal characteristics for initiating a selected action in the device. Additional apparatus, located with or adjacent to the underground device, produces electrical signals in response to the seismic signals received and compares these electrical signals with the predetermined signal characteristics.

  3. Detection of underground structures and tunnels

    SciTech Connect

    Mack, J.M.; Moses, R.W.; Kelly, R.E.; Flynn, E.R.; Kraus, R.H.; Cogbill, A.H.; Stolarczyk, L.G.

    1996-09-01

    This is the final report of a one year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. There is a continuing need in the United States defense and drug interdiction for effective over, convert, and standoff means of detecting underground tunnels, structures, and objects. This project sought to begin an assessment of electromagnetic and gravitational gradient detection approaches to the detection of underground structures and tunnels.

  4. MS Detectors

    SciTech Connect

    Koppenaal, David W.; Barinaga, Charles J.; Denton, M Bonner B.; Sperline, Roger P.; Hieftje, Gary M.; Schilling, G. D.; Andrade, Francisco J.; Barnes IV., James H.

    2005-11-01

    Good eyesight is often taken for granted, a situation that everyone appreciates once vision begins to fade with age. New eyeglasses or contact lenses are traditional ways to improve vision, but recent new technology, i.e. LASIK laser eye surgery, provides a new and exciting means for marked vision restoration and improvement. In mass spectrometry, detectors are the 'eyes' of the MS instrument. These 'eyes' have also been taken for granted. New detectors and new technologies are likewise needed to correct, improve, and extend ion detection and hence, our 'chemical vision'. The purpose of this report is to review and assess current MS detector technology and to provide a glimpse towards future detector technologies. It is hoped that the report will also serve to motivate interest, prompt ideas, and inspire new visions for ion detection research.

  5. Underground geotechnical and geological investigations at Ekati Mine-Koala North: case study

    NASA Astrophysics Data System (ADS)

    Jakubec, Jaroslav; Long, Larry; Nowicki, Tom; Dyck, Darren

    2004-09-01

    Since 1998, BHP Billiton has mined diamonds at the Ekati Diamond Mine™ near Lac de Gras in the Northwest Territories of Canada. Current operations are based on mining multiple pipes by the open-pit method, but as some pits deepen, converting to underground mining is being considered. As a test of underground mining methods and to provide access to the lower elevations of the Panda and Koala pipes, the Koala North pipe is being developed for underground mining. Initially, the top 40 m of the pipe were mined as an open pit to provide grade information and a prepared surface for the transition to underground mining. Currently, Koala North is being developed as an open-benching, mechanized, trackless operation. Although the method was successfully used at several De Beers diamond operations in South Africa, it has never been tested in an Arctic environment. This case study describes basic geology, mining method layout and ongoing geological and geotechnical investigation. From the beginning of underground development, geotechnical daily routines have been fully integrated within the technical services department, which supports the operation. Geotechnical, geological and structural information obtained from underground mapping and core logging is compiled, processed, reviewed and analyzed on site by the geotechnical staff. Conclusions and recommendations are implemented as part of the operations in a timely manner. This ongoing "live" process enables the operators to make the most efficient use of resources both for ground support and excavations as well as to address safety issues, which are the top priority.

  6. Monitoring of spent nuclear fuel with antineutrino detectors

    NASA Astrophysics Data System (ADS)

    Brdar, Vedran

    2017-09-01

    We put forward the possibility of employing antineutrino detectors in order to control the amounts of spent nuclear fuel in repositories or, alternatively, to precisely localize the underground sources of nuclear material. For instance, we discuss the applicability in determining a possible leakage of stored nuclear material which would aid in preventing environmental problems. The long-term storage facilities are also addressed.

  7. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Ownership of an underground storage tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL...

  8. Ultrasonic liquid level detector

    DOEpatents

    Kotz, Dennis M.; Hinz, William R.

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  9. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 1: The LBNF and DUNE Projects

    SciTech Connect

    Acciarri, R.

    2016-01-22

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  10. CAVSIM. Underground Coal Gasification Program

    SciTech Connect

    Britten, J.A., Thorsness, C.B. )

    1989-03-03

    CAVSIM is a three-dimensional, axisymmetric model for resource recovery and cavity growth during underground coal gasification (UCG). CAVSIM is capable of following the evolution of the cavity from near startup to exhaustion, and couples explicitly wall and roof surface growth to material and energy balances in the underlying rubble zones. Growth mechanisms are allowed to change smoothly as the system evolves from a small, relatively empty cavity low in the coal seam to a large, almost completely rubble-filled cavity extending high into the overburden rock. The model is applicable to nonswelling coals of arbitrary seam thickness and can handle a variety of gas injection flow schedules or compositions. Water influx from the coal aquifer is calculated by a gravity drainage-permeation submodel which is integrated into the general solution. The cavity is considered to consist of up to three distinct rubble zones and a void space at the top. Resistance to gas flow injected from a stationary source at the cavity floor is assumed to be concentrated in the ash pile, which builds up around the source, and also the overburden rubble which accumulates on top of this ash once overburden rock is exposed at the cavity top. Char rubble zones at the cavity side and edges are assumed to be highly permeable. Flow of injected gas through the ash to char rubble piles and the void space is coupled by material and energy balances to cavity growth at the rubble/coal, void/coal and void/rock interfaces. One preprocessor and two postprocessor programs are included - SPALL calculates one-dimensional mean spalling rates of coal or rock surfaces exposed to high temperatures and generates CAVSIM input: TAB reads CAVSIM binary output files and generates ASCII tables of selected data for display; and PLOT produces dot matrix printer or HP printer plots from TAB output.

  11. Photon detectors

    SciTech Connect

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  12. The Archveyor{trademark} mining system: Automated high wall mining, a precursor to improved safety, productivity, and cost underground

    SciTech Connect

    Sawarynski, T.J.

    1996-12-31

    Arch Mineral Corporation has an automated high wall miner called the Archveyor {trademark}. In production since 1992, it uses just two employees to operate the system. They consistently produce 91 metric tons per eight-hour employer-shift with peaks nearing 226 metric tons. The system uses a modified Joy 12CM miner cutting 3.7 meters. That loads into a 219 meter long continuous haulage Archveyor{trademark}. It discharges into a loadout vehicle that elevates the coal to load haul trucks. This technology can be adapted to mine over 305 meters into the high wall. Any continuous miner can be used to suit conditions. It is programmed to sump, shear down, sump, and shear up in a continuous cycle. It advances a set distance before the Archveyor{trademark} moves up behind it. The Archveyor{trademark} has a flight conveyor 838 mm wide used to tram and convey. Lift cylinders raise it off the ground to convey. To tram, the cylinders retract, dropping the Archveyor{trademark} to the ground. That places the full length of the return side or bottom of the flight conveyor in contract with the floor to tram in either direction. Programmable logic controllers are used with a gyroscope, gamma detectors, and inclinometers to keep on-heading and in-seam. Critical system functions are monitored and displayed for the operator. Safety, lower costs, and higher productivity drive the effort to use the Archveyor{trademark} technology underground. Arch Technology is assembling and preparing to install an underground system in the third quarter of 1996.

  13. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  14. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  15. 30 CFR 72.630 - Drill dust control at underground areas of underground mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dust control at underground areas of underground mines. (a) Dust resulting from drilling in rock shall... condition. Dust collectors approved under Part 33—Dust Collectors for Use in Connection with Rock Drilling... the purpose of this section. (c) Water control. Water used to control dust from drilling rock shall...

  16. 30 CFR 72.630 - Drill dust control at underground areas of underground mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dust control at underground areas of underground mines. (a) Dust resulting from drilling in rock shall... condition. Dust collectors approved under Part 33—Dust Collectors for Use in Connection with Rock Drilling... the purpose of this section. (c) Water control. Water used to control dust from drilling rock shall be...

  17. 30 CFR 72.630 - Drill dust control at underground areas of underground mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dust control at underground areas of underground mines. (a) Dust resulting from drilling in rock shall... condition. Dust collectors approved under Part 33—Dust Collectors for Use in Connection with Rock Drilling... the purpose of this section. (c) Water control. Water used to control dust from drilling rock shall be...

  18. MAJORANA: An Ultra-Low Background Enriched-Germanium Detector Array for Fundamental Physics Measurements

    NASA Astrophysics Data System (ADS)

    Detwiler, Jason

    2009-10-01

    The Majorana collaboration aims to perform a search for neutrinoless double-beta decay (0νββ) by fielding arrays of HPGe detectors mounted in ultra-clean electroformed-copper cryostats located deep underground. Recent advances in HPGe detector technology, in particular P-type Point-Contact (PPC) detectors, show great promise for identifying and reducing backgrounds to the 0νββ signal, which should result in improved sensitivity over previous generation experiments. The ultra-low energy threshold possible in PPC detectors also enables a broader physics program including sensitive searches for dark matter and axions. The Majorana Demonstrator R&D program will field three ˜20 kg modules of PPC detectors at Sanford Underground Laboratory. Half of the detector mass will be enriched to 86% in ^76Ge. I will present the motivation, design, recent progress and current status of this R&D effort, and discuss its physics reach.

  19. Constraints on sterile neutrino oscillations using DUNE near detector

    NASA Astrophysics Data System (ADS)

    Choubey, Sandhya; Pramanik, Dipyaman

    2017-01-01

    DUNE (Deep Underground Neutrino Experiment) is a proposed long-baseline neutrino experiment in the US with a baseline of 1300 km from Fermi National Accelerator Laboratory (Fermilab) to Sanford Underground Research Facility, which will house a 40 kt Liquid Argon Time Projection Chamber (LArTPC) as the far detector. The experiment will also have a fine grained near detector for accurately measuring the initial fluxes. We show that the energy range of the fluxes and baseline of the DUNE near detector is conducive for observing νμ →νe oscillations of Δm2 ∼ eV2 scale sterile neutrinos, and hence can be effectively used for testing to very high accuracy the reported oscillation signal seen by the LSND and MiniBooNE experiments. We study the sensitivity of the DUNE near detector to sterile neutrino oscillations by varying the baseline, detector fiducial mass and systematic uncertainties. We find that the detector mass and baseline of the currently proposed near detector at DUNE will be able to test the entire LSND parameter region with good precision. The dependence of sensitivity on baseline and detector mass is seen to give interesting results, while dependence on systematic uncertainties is seen to be small.

  20. The detector system of the Daya Bay reactor neutrino experiment

    SciTech Connect

    An, F. P.

    2015-12-15

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 213 and the effective mass splitting Δm2ee. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors’ baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This study describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.

  1. The detector system of the Daya Bay reactor neutrino experiment

    DOE PAGES

    An, F. P.

    2015-12-15

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 22θ13 and the effective mass splitting Δm2ee. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrinomore » mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors’ baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This study describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.« less

  2. Pyroelectric detectors

    NASA Technical Reports Server (NTRS)

    Haller, Eugene E.; Beeman, Jeffrey; Hansen, William L.; Hubbard, G. Scott; Mcmurray, Robert E., Jr.

    1990-01-01

    The multi-agency, long-term Global Change programs, and specifically NASA's Earth Observing system, will require some new and advanced photon detector technology which must be specifically tailored for long-term stability, broad spectral range, cooling constraints, and other parameters. Whereas MCT and GaAs alloy based photovoltaic detectors and detector arrays reach most impressive results to wavelengths as long as 12 microns when cooled to below 70 K, other materials, such as ferroelectrics and pyroelectrics, appear to offer special opportunities beyond 12 microns and above 70 K. These materials have found very broad use in a wide variety of room temperature applications. Little is known about these classes of materials at sub-room temperatures and no photon detector results have been reported. From the limited information available, researchers conclude that the room temperature values of D asterisk greater than or equal to 10(exp 9) cm Hz(exp 1/2)/W may be improved by one to two orders of magnitude upon cooling to temperatures around 70 K. Improvements of up to one order of magnitude appear feasible for temperatures achievable by passive cooling. The flat detector response over a wavelength range reaching from the visible to beyond 50 microns, which is an intrinsic advantage of bolometric devices, makes for easy calibration. The fact that these materials have been developed for reduced temperature applications makes ferro- and pyroelectric materials most attractive candidates for serious exploration.

  3. Terrestrial detector for low frequency gravitational waves based on full tensor measurement

    NASA Astrophysics Data System (ADS)

    Lee, Hyung Mok; Paik, Hojung; Majorana, Ettore; Vol Moody, M.; Griggs, Cornelius E.; Nielsen, Alex; Kim, Chumglee

    2015-08-01

    Terrestrial gravitational wave (GW) detectors are mostly based on Michelson-type laser interferometers with arm lengths of a few km to reach a strain sensitivity of 10-23 Hz-1/2 in the frequency range of a few 100 to a few 1000 Hz. There should be a large variety of sources generating GWs at lower frequencies below 10 Hz. However, seismic and Newtonian noise has been serious obstacle in realizing terrestrial low-frequency GW detectors. Here we describe a new GW detector concept by adopting new measurement techniques and configurations to overcome the present low-frequency barrier due to seismic and Newtonian noise. The detector is an extension of the superconducting gravity gradiometer (SGG) that has been developed at the University of Maryland to measure all components of the gravity gradient tensor by orthogonally combining three bars with test masses at each end. The oscillating component of the gravity gradient tensor is the GW strain tensor, but the actual signal is likely to be dominated by Newtonian and seismic noise, whose amplitudes are several orders of magnitude larger than the GWs. We propose to mitigate seismic noise by (a) constructing detector in deep underground, (b) applying passive isolation with pendulum suspension, and (c) using the common-mode rejection characteristic of the detector. The Newtonian noise can be suppressed by combining the components of the gradient tensor with signals detected by seismometers and microphones. By constructing a detector of 100-m long bars cooled to 0.1 K, a strain sensitivity of a few times 10-21 Hz-1/2 can be achieved in the frequency range between 0.1 to 10 Hz. Binaries composed of intermediate mass black holes of 1000 to 10,000 M¤ could be detected at distances up to a few Gpc with this detector. Detectable range for the merging white dwarf binaries is up to a few Mpc. Unlike current two-dimensional detectors, our single detector is able to determine the polarization of GWs and the direction to sources on

  4. A novel muon detector for borehole density tomography

    NASA Astrophysics Data System (ADS)

    Bonneville, Alain; Kouzes, Richard T.; Yamaoka, Jared; Rowe, Charlotte; Guardincerri, Elena; Durham, J. Matthew; Morris, Christopher L.; Poulson, Daniel C.; Plaud-Ramos, Kenie; Morley, Deborah J.; Bacon, Jeffrey D.; Bynes, James; Cercillieux, Julien; Ketter, Chris; Le, Khanh; Mostafanezhad, Isar; Varner, Gary; Flygare, Joshua; Lintereur, Azaree T.

    2017-04-01

    Muons can be used to image the density of materials through which they pass, including geological structures. Subsurface applications of the technology include tracking fluid migration during injection or production, with increasing concern regarding such timely issues as induced seismicity or chemical leakage into aquifers. Current density monitoring options include gravimetric data collection and active or passive seismic surveys. One alternative, or complement, to these methods is the development of a muon detector that is sufficiently compact and robust for deployment in a borehole. Such a muon detector can enable imaging of density structure to monitor small changes in density - a proxy for fluid migration - at depths up to 1500 m. Such a detector has been developed, and Monte Carlo modeling methods applied to simulate the anticipated detector response. Testing and measurements using a prototype detector in the laboratory and shallow underground laboratory demonstrated robust response. A satisfactory comparison with a large drift tube-based muon detector is also presented.

  5. The PTB underground laboratory for dosimetry and spectrometry

    PubMed

    Neumaier; Arnold; Bohm; Funck

    2000-07-01

    In 1991, the Physikalisch-Technische Bundesanstalt established an underground laboratory for dosimetry and spectrometry (UDO) at the Asse salt mine, near Braunschweig. Due to the depth of 925 m below ground (equivalent to about 2100 m of water), the cosmic ray muon intensity in this facility is reduced by more than 5 orders of magnitude. In addition, the low specific activity of the pure rock salt and a low concentration of radon lead to an extremely low ambient dose equivalent rate of less than 1 nSv/h. The UDO facility is therefore well suited for dosimetry at very low dose rates, as well as for Ultra-Low-Background (ULB) gamma-ray spectrometry. In 1998, a coaxial low-background HPGe-detector (88% relative efficiency, FWHM 2.0 keV at 1.33 MeV) with an extended shielding (20 cm low-activity lead, 1 cm electrolytic copper, N2-flushing) was installed at UDO; the count rate per mass of germanium, integrated over the energy range from 40 to 2750 keV, was measured to be 0.012 s(-1) kg(-1). Results from test measurements and first applications are reported. The design of a ULB gamma-detector system, presently under construction, is described.

  6. Evaluation of natural radionuclides in Brazilian underground mines

    NASA Astrophysics Data System (ADS)

    Santos, T. O.; Rocha, Z.; Vasconcelos, V.; Lara, E. G.; Palmieri, H. E. L.; Cruz, P.; Gouvea, V. A.; Siqueira, J. B.; Oliveira, A. H.

    2015-11-01

    Mineral processing releases long and short half-life radionuclides generating potential exposure to miners. They are internally exposed to radon, thoron and their short-life decay products and, externally, to the gamma emitters scattered in the rock and dust of the mine. Concerning to radiological hazards to workers, this paper focuses on the characterization of the natural radioactivity in the Brazilian underground mines. The radon and its progeny concentrations were measured by using AlphaGUARD and DOSEman detectors, respectively. Radon concentration measurement in groundwater was performed by using RAD7 detector. The 238U and 232Th activity concentration in ore and soil samples were determined by ICPMS. Gamma spectrometry was used to determined 226Ra, 228Ra and 40K activity concentrations. The average radon concentration ranged from 113 to 4964 Bq m-3 and the average Equilibrium Equivalent Concentration varied from 76 to 1174 Bq m-3. Based on these data, the total annual effective dose for the miners was estimated. The results suggest the need of establishing monitoring and control procedures in some mines.

  7. MAMA Detector

    NASA Technical Reports Server (NTRS)

    Bowyer, Stuart

    1998-01-01

    Work carried out under this grant led to fundamental discoveries and over one hundred publications in the scientific literature. Fundamental developments in instrumentation were made including all the instrumentation on the EUVE satellite, the invention of a whole new type of grazing instrument spectrometer and the development of fundamentally new photon counting detectors including the Wedge and Strip used on EUVE and many other missions and the Time Delay detector used on OREFUS and FUSE. The Wedge and Strip and Time Delay detectors were developed under this grant for less than two million dollars and have been used in numerous missions most recently for the FUSE mission. In addition, a fundamentally new type of diffuse spectrometer has been developed under this grant which has been used in instrumentation on the MMSAT spacecraft and the Lewis spacecraft. Plans are underway to use this instrumentation on several other missions as well.

  8. The Berkeley Low Background Facility and the Black Hills State University Underground Campus at SURF

    NASA Astrophysics Data System (ADS)

    Thomas, Keenan; Mount, Brianna; Lesko, Kevin; Norman, Eric; Smith, Alan; Poon, Alan; Chan, Yuen-Dat

    2015-10-01

    The Berkeley Low Background Facility at LBNL provides a variety of low background gamma spectroscopy services to a variety of projects and experiments. It operates HPGe spectrometers in two unique facilities: a surface low background lab at LBNL and underground (4300 m.w.e.) at the Sanford Underground Research Facility in Lead, SD. A large component of the measurements performed by the BLBF are for ultralow background experiments concerned with U, Th, K, and other radioisotopes within candidate construction materials to be used to construct sensitive detectors, such as those studying dark matter or neutrinos. The BLBF also makes a variety of environmental measurements in search of other radioisotopes, such as fallout from the Fukushima nuclear power plant accident in 2011 and other radioisotope monitoring activities. A general overview of the services and facilities will be presented. In 2015, the BLBF will be relocating its underground counting stations to a new, dedicated space on the 4850L of SURF. The Black Hills State University Underground Campus will host several low background counting stations and operate in a coordinated manner to provide low background measurements to the scientific community. An overview and description of the BHUC will be presented.

  9. High-Energy Neutron Backgrounds for Underground Dark Matter Experiments

    SciTech Connect

    Chen, Yu

    2016-01-01

    Direct dark matter detection experiments usually have excellent capability to distinguish nuclear recoils, expected interactions with Weakly Interacting Massive Particle (WIMP) dark matter, and electronic recoils, so that they can efficiently reject background events such as gamma-rays and charged particles. However, both WIMPs and neutrons can induce nuclear recoils. Neutrons are then the most crucial background for direct dark matter detection. It is important to understand and account for all sources of neutron backgrounds when claiming a discovery of dark matter detection or reporting limits on the WIMP-nucleon cross section. One type of neutron background that is not well understood is the cosmogenic neutrons from muons interacting with the underground cavern rock and materials surrounding a dark matter detector. The Neutron Multiplicity Meter (NMM) is a water Cherenkov detector capable of measuring the cosmogenic neutron flux at the Soudan Underground Laboratory, which has an overburden of 2090 meters water equivalent. The NMM consists of two 2.2-tonne gadolinium-doped water tanks situated atop a 20-tonne lead target. It detects a high-energy (>~ 50 MeV) neutron via moderation and capture of the multiple secondary neutrons released when the former interacts in the lead target. The multiplicity of secondary neutrons for the high-energy neutron provides a benchmark for comparison to the current Monte Carlo predictions. Combining with the Monte Carlo simulation, the muon-induced high-energy neutron flux above 50 MeV is measured to be (1.3 ± 0.2) ~ 10-9 cm-2s-1, in reasonable agreement with the model prediction. The measured multiplicity spectrum agrees well with that of Monte Carlo simulation for multiplicity below 10, but shows an excess of approximately a factor of three over Monte Carlo prediction for multiplicities ~ 10 - 20. In an effort to reduce neutron backgrounds for the dark matter experiment SuperCDMS SNO- LAB, an active neutron veto was developed

  10. HEROICA: A fast screening facility for the characterization of germanium detectors

    SciTech Connect

    Andreotti, Erica; Collaboration: GERDA Collaboration

    2013-08-08

    In the course of 2012, a facility for the fast screening of germanium detectors called HEROICA (Hades Experimental Research Of Intrinsic Crystal Appliances) has been installed at the HADES underground laboratory in the premises of the Belgian Nuclear Research Centre SCK•CEN, in Mol (Belgium). The facility allows performing a complete characterization of the critical germanium detectors' operational parameters with a rate of about two detectors per week.

  11. Hydrogen detector

    DOEpatents

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  12. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  13. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  14. Microwave detector

    SciTech Connect

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1986-12-02

    A detector is described for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations, the detector comprising: a B-dot loop linking the magnetic field of the microwave pulse; a biased ferrite, that produces a magnetization field flux that links the B-dot loop. The ferrite is positioned within the B-dot loop so that the magnetic field of the microwave pulse interacts with the ferrite and thereby participates in the formation of the magnetization field flux; and high-frequency insensitive means for measuring electric voltage or current induced in the B-dot loop.

  15. Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Sadrozinski, Hartmut

    2014-03-01

    The use of silicon detectors has experienced an exponential growth in accelerator and space based experiments, similar to trends in the semiconductor industry as a whole, usually paraphrased as ``Moore's Law.'' Some of the essentials for this phenomenon will be presented, together with examples of the exciting science results which it enabled. With the establishment of a ``semiconductor culture'' in universities and laboratories around the world, an increased understanding of the sensors results in thinner, faster, more radiation-resistant detectors, spawning an amazing wealth of new technologies and applications, which will be the main subject of the presentation.

  16. New cosmic rays experiments in the underground laboratory of IFIN-HH from Slanic Prahova, Romania

    SciTech Connect

    Mitrica, Bogdan; Stanca, Denis; Brancus, Iliana; Margineanu, Romul; Blebea-Apostu, Ana-Maria; Gomoiu, Claudia; Saftoiu, Alexandra; Toma, Gabriel; Gherghel-Lascu, Alexandru; Niculescu-Oglinzanu, Mihai; Rebel, Heinigerd; Haungs, Andreas; Sima, Octavian

    2015-02-24

    Since 2006 a modern laboratory has been developed by IFIN-HH in the underground of Slanic Prahova salt ore. This work presents a short review of previous scientific activities performed in the underground laboratory, in parallel with some plans for the future. A mobile detector for cosmic muon flux measurements has been set up at IFIN-HH, Romania. The device is used to measure the muon flux on different locations at the surface and underground and it consists of two detection layers, each one including four large scintillator plates. A new rotatable detector for measurements of the directional variation of the muon flux has been designed and it is presently under preliminary tests. Built from four layers of sensitive material and using for collecting the signals and directing them to the micro PMTs a new technique, through optical fibers instead wave length shifters, it allows an easy discrimination of the moun flux on the arrival directions of muons. Combining the possibility to rotate and the directionality properties, the underground muon detector is acting like a muon tomography device, being able to scan, using cosmic muons, the rock material above the detector. In parallel new detection system based on SiPM will be also installed in the following weeks. It should be composed by four layers, each layer consisting in 4 scintillator plates what we consider in the following as a module of detection. For this purpose, first two scintillator layers, with the optical fibers positioned on perpendicular directions are put in coincidence with other two layers, 1 m distance from the first two, with similar optical fiber arrangement, thus allowing reconstructing muon trajectory. It is intended also to design and construct an experimental device for the investigation of such radio antennas and the behavior of the signal in rock salt at the Slanic salt mine in Romania. Another method to detect high energy neutrinos is based on the detection of secondary particles resulting

  17. Optimizing WIMP directional detectors

    NASA Astrophysics Data System (ADS)

    Green, Anne M.; Morgan, Ben

    2007-03-01

    We study the dependence of the exposure required to directly detect a WIMP directional recoil signal on the capabilities of a directional detector. Specifically we consider variations in the nuclear recoil energy threshold, the background rate, whether the detector measures the recoil momentum vector in two or three dimensions and whether or not the sense of the momentum vector can be determined. We find that the property with the biggest effect on the required exposure is the measurement of the momentum vector sense. If the detector cannot determine the recoil sense, the exposure required is increased by an order of magnitude for 3-d read-out and two orders of magnitude for 2-d read-out. For 2-d read-out the required exposure, in particular if the senses cannot be measured, can be significantly reduced by analyzing the reduced angles with the, time dependent, projected direction of solar motion subtracted. The background rate effectively places a lower limit on the WIMP cross-section to which the detector is sensitive; it will be very difficult to detect WIMPs with a signal rate more than an order of magnitude below the background rate. Lowering the energy threshold also reduces the required exposure, but only for thresholds above 20 keV.

  18. Optimizing WIMP Directional Detectors

    NASA Astrophysics Data System (ADS)

    Green, A. M.; Morgan, B.

    2007-08-01

    We study the dependence of the number of events required to directly detect a WIMP directional recoil signal on the capabilities of a directional detector. We consider variations in the nuclear recoil energy threshold, the background rate, whether the detector measures the recoil momentum vector in 2 or 3 dimensions and whether or not the sense of the momentum vector can be determined. The property with the biggest effect on the required exposure is the measurement of the momentum vector sense. If the detector cannot determine the recoil sense, the exposure required is increased by an order of magnitude for 3-d read-out and two orders of magnitude for 2-d read-out. For 2-d read-out the required exposure, in particular if the senses can not be measured, can be significantly reduced by analyzing the reduced angles with the, time dependent, projected direction of solar motion subtracted. The background rate effectively places a lower limit on the WIMP cross-section to which the detector is sensitive; it will be very difficult to detect WIMPs with a signal rate more than an order of magnitude below the background rate. Lowering the energy threshold also reduces the required exposure, but only for thresholds above 20 keV.

  19. In Perspective: Three Underground Schools

    ERIC Educational Resources Information Center

    Progressive Architecture, 1975

    1975-01-01

    Three partially subterranean schools in Santa Ana, California, are expected to have lower heating and cooling costs. Using the roof for recreation avoided the expense of additional inner-city acreage. (Author/MLF)

  20. An Improved Nuclear Recoil Calibration in the LUX Detector Using a Pulsed D-D Neutron Generator

    NASA Astrophysics Data System (ADS)

    Huang, Dongqing

    2017-01-01

    The LUX dark matter search experiment is a 370 kg (250 kg active mass) two-_phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. The first absolute charge (Qy) and light (Ly) measurement performed in situ in the LUX detector with a D-D calibration technique for nuclear recoil spanning 0.7 to 74 keV and 1.1 to 74 keV respectively have been reported in. The D-D calibration has subsequently been further improved by incorporating pulsing technique, i.e. the D-D neutron production is concentrated within narrow pulses (20 us / 250 Hz) with the timing information recorded. This technique allows the suppression of accidental backgrounds in D-D neutron data and also provides increased sensitivity for the lower energy NR calibrations. I will report the improved NR absolute Qy and Ly measurements using the pulsed D-D calibration technique performed in situ in the LUX detector. Brown University, Large Underground Xenon(LUX) Collaboration.

  1. Status of the ICARUS T600 detector at the LNGS

    NASA Astrophysics Data System (ADS)

    Menegolli, Alessandro; ICARUS Collaboration

    2010-01-01

    The installation of the ICARUS T600 Liquid Argon TPC detector at the INFN (Istituto Nazionale di Fisica Nucleare) LNGS underground Laboratory (Assergi, Italy) is almost completed and its commissioning is forthcoming: the detector, the cryogenic plant and the data acquisition are now essentially ready. The main phases of the installation of the T600 plant will be resumed and the first tests on the inner detector constituents will be presented. Finally, the next steps needed to bring the T600 apparatus to the full operation in view of the physics run with the CNGS neutrino beam and the cosmic neutrinos will be explained.

  2. Possible Supernova Detection with Neutron Detectors near the SNO Laboratory

    NASA Astrophysics Data System (ADS)

    Duba, C. A.; Browne, M. C.; Robertson, R. G. H.

    1998-10-01

    Before neutron detectors are installed into the heavy water at SNO to detect neutral-current interactions, they are allowed to 'cool down' underground from surface cosmic-ray activation. During this time, they will be in a position to measure neutron flux from the INCO Creighton Mine's norite rock walls. A nearby galactic supernova will increase neutron production in the norite via charged- and neutral-current interactions. The increase in the neutron flux, as well as the neutral-current detectors' sensitivity to neutron flux, will be summarized and the possible use of these proportional counters as a supernova detector will be discussed.

  3. Comparison of pediatric radiation dose and vessel visibility on angiographic systems using piglets as a surrogate: anti-scatter grid removal vs lower detector air kerma settings with a grid - a preclinical investigation.

    PubMed

    Strauss, Keith J; Racadio, John M; Abruzzo, Todd A; Johnson, Neil D; Patel, Manish N; Kukreja, Kamlesh U; den Hartog, Mark J H; Hoonaert, Bart P A; Nachabe, Rami A

    2015-09-08

    The purpose of this study was to reduce pediatric doses while maintaining or improv-ing image quality scores without removing the grid from X-ray beam. This study was approved by the Institutional Animal Care and Use Committee. Three piglets (5, 14, and 20 kg) were imaged using six different selectable detector air kerma (Kair) per frame values (100%, 70%, 50%, 35%, 25%, 17.5%) with and without the grid. Number of distal branches visualized with diagnostic confidence relative to the injected vessel defined image quality score. Five pediatric interventional radiologists evaluated all images. Image quality score and piglet Kair were statistically compared using analysis of variance and receiver operating curve analysis to define the preferred dose setting and use of grid for a visibility of 2nd and 3rd order vessel branches. Grid removal reduced both dose to subject and imaging quality by 26%. Third order branches could only be visualized with the grid present; 100% detector Kair was required for smallest pig, while 70% detector Kair was adequate for the two larger pigs. Second order branches could be visualized with grid at 17.5% detector Kair for all three pig sizes. Without the grid, 50%, 35%, and 35% detector Kair were required for smallest to largest pig, respectively. Grid removal reduces both dose and image quality score. Image quality scores can be maintained with less dose to subject with the grid in the beam as opposed to removed. Smaller anatomy requires more dose to the detector to achieve the same image quality score.

  4. Method for making generally cylindrical underground openings

    DOEpatents

    Routh, J.W.

    1983-05-26

    A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.

  5. Design criteria for an underground lunar mine

    NASA Technical Reports Server (NTRS)

    Siekmeier, John A.

    1992-01-01

    Underground excavation and construction techniques have been well developed terrestrially and provide an attractive option for lunar mining and habitat construction. The lunar mine, processing facilities and habitats could be located beneath the lunar surface in basaltic rock that would protect the crew and equipment from the hazardous surface environment. A terrestrial-like atmosphere would be created within the underground structures allowing more conventional technologies to be utilized. In addition, the basalt would likely contain higher quality mineral deposits than the regolith (lunar soil) since the minerals in the regolith have been degraded by meteorite bombardment. The conditions that would affect the design of an underground lunar mine are described and a lunar rock mass rated to assess its quality using terrestrial rock mass classification systems. Design criteria are established and a construction scenario proposed. Parameters having the greatest effect on stability are identified based on distinct element computer modeling and terrestrial experience.

  6. Underground pipe inspection device and method

    SciTech Connect

    Germata, Daniel Thomas

    2009-02-24

    A method and apparatus for inspecting the walls of an underground pipe from inside the pipe in which an inspection apparatus having a circular planar platform having a plurality of lever arms having one end pivotably attached to one side of the platform, having a pipe inspection device connected to an opposite end, and having a system for pivoting the lever arms is inserted into the underground pipe, with the inspection apparatus oriented with the planar platform disposed perpendicular to the pipe axis. The plurality of lever arms are pivoted toward the inside wall of the pipe, contacting the inside wall with each inspection device as the apparatus is conveyed along a length of the underground pipe.

  7. Geological-Technical and Geo-engineering Aspects of Dimensional Stone Underground Quarrying

    NASA Astrophysics Data System (ADS)

    Fornaro, Mauro; Lovera, Enrico

    Underground exploitation of dimensional stones is not a novelty, being long since practised, as proved by a number of historical documents and by a certain number of ancient quarrying voids throughout the world. Anyway, so far, open cast quarrying has been the most adopted practice for the excavation of dimensional stones. One primary reason that led to this situation is of course connected to the lower production costs of an open cast exploitation compared to an underground one. This cheapness has been supported by geological and technical motives: on the one hand, the relative availability of surface deposits and, on the other, the development of technologies, which often can be used only outdoor. But, nowadays, general costs of quarrying activities should be re-evaluated because new, and often proper, restrictions have been strongly rising during recent years. As a consequence of both environmental and technical restrictions, pressure will more and more arise to reduce open cast quarrying and to promote underground exploitations. The trend is already well marked for weak rocks - for instance in the extractive basin of Carrara, where about one hundred quarries are active, 30 per cent is working underground, but also in Spain, Portugal and Greece the number of underground marble quarries is increasing - but not yet for hard rock quarrying, where only few quarries are working underground all around the world. One reason has to be found in cutting technologies traditionally used. In weak rocks, diamond wire saw and chain cutter are usable, with few adaptations, in underground spaces, while drilling and blasting, the traditional exploitation method for hard stone, is not easily usable in a confined space, where often only one free face is available. Many technicians and researchers agree that two technologies will probably open the door to underground quarrying in hard rocks: diamond wire and water jet. The first one is already available; the second should still be

  8. Vertex detectors

    SciTech Connect

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10{sup {minus}13} s, among them the {tau} lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation.

  9. Ge Detector Data Classification with Neural Networks

    NASA Astrophysics Data System (ADS)

    Wilson, Carly; Martin, Ryan; Majorana Collaboration

    2014-09-01

    The Majorana Demonstrator experiment is searching for neutrinoless double beta-decay using p-type point contact PPC germanium detectors at the Sanford Underground Research Facility, in South Dakota. Pulse shape discrimination can be used in PPC detectors to distinguish signal-like events from backgrounds. This research program explored the possibility of building a self-organizing map that takes data collected from germanium detectors and classifies the events as either signal or background. Self organizing maps are a type of neural network that are self-learning and less susceptible to being biased from imperfect training data. We acknowledge support from the Office of Nuclear Physics in the DOE Office of Science, the Particle and Nuclear Astrophysics Program of the National Science Foundation and the Russian Foundation for Basic Research.

  10. Detector Characterization for the Majorana Demonstrator

    NASA Astrophysics Data System (ADS)

    Gilliss, Thomas; Majorana Collaboration

    2015-04-01

    The MAJORANA DEMONSTRATOR (MJD) is a neutrinoless double-beta decay (0 νββ) search, in the isotope 76Ge . Seeking measurement of the 0 νββ lifetime, and exploration of additional physics, MJD employs high-purity Ge detectors possessing superior energy resolution down to a low threshold. Characterization of these p-type point contact detectors is essential to understanding the backgrounds and sensitivity of the experiment. Progress in characterizing MJD detectors will be presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility.

  11. Suicide on the London Underground System.

    PubMed

    Farmer, R; O'Donnell, I; Tranah, T

    1991-09-01

    Over the past 50 years there has been an increase in the numbers of people jumping/falling in front of trains on the London Underground system. Case-fatality rates have fallen from 70% in the 1950s to 55% today. The proportion certified as suicide has fallen while the proportions certified as accidents or open verdicts have risen. There is unusual clustering of events at some stations which are adjacent to psychiatric units. The hypothesis that ease of access to London Underground stations may sometimes be a determinant of suicide is investigated.

  12. Background Models for Muons and Neutrons Underground

    SciTech Connect

    Formaggio, Joseph A.

    2005-09-08

    Cosmogenic-induced activity is an issue of great concern for many sensitive experiments sited underground. A variety of different arch-type experiments - such as those geared toward the detection of dark matter, neutrinoless double beta decay and solar neutrinos - have reached levels of cleanliness and sensitivity that warrant careful consideration of secondary activity induced by cosmic rays. This paper reviews some of the main issues associated with the modeling of cosmogenic activity underground. Comparison with data, when such data is available, is also presented.

  13. Public outreach at the Soudan Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Gran, Richard

    2016-04-01

    There are many facets to the outreach program at the Soudan Underground Laboratory, currently host to the MINOS neutrino oscillation experiment and the Cryogenic Dark Matter experiment, plus a number of smaller experiments in the Low Background Counting Facility. The main focus is on twice daily public tours, operated in coordination with the Soudan Underground State Park and Minnesota Department of Natural Resources, who also operate undergound tours of the historical iron mining area. Another important component is the undergraduate interns and high school teachers who lead the tours. They also participate in the operation and/or analysis of the experiments hosted at the mine.

  14. Development and management of a radon assessment strategy suitable for underground railway tunnelling projects.

    PubMed

    Purnell, C J; Frommer, G; Chan, K; Auch, A A

    2004-01-01

    The construction of underground tunnels through radon-bearing rock poses a radiation health risk to tunnelling workers from exposure to radon gas and its radioactive decay products. This paper presents the development and practical application of a radon assessment strategy suitable for the measurement of radon in tunnelling work environments in Hong Kong. The assessment strategy was successfully evaluated on a number of underground railway tunnelling projects over a 3 y period. Radon measurements were undertaken using a combination of portable radon measurement equipment and track etch detectors (TEDs) deployed throughout the tunnels. The radon gas monitoring results were used to confirm that ventilation rates were adequate or identified, at an early stage, when further action to reduce radon levels was required. Exposure dose estimates based on the TED results showed that the exposure of tunnel workers to radon did not exceed 3 mSv per annum for the duration of each project.

  15. A Novel Nuclear Recoil Calibration in the LUX Detector Using a D-D Neutron Generator

    NASA Astrophysics Data System (ADS)

    Verbus, James; LUX Collaboration

    2015-04-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. I will describe a novel calibration of nuclear recoils (NR) in liquid xenon (LXe) performed in-situ in the LUX detector using mono-energetic 2.45 MeV neutrons produced by a D-D neutron generator. This technique was used to measure the NR charge yield in LXe (Qy) to < 1 keV recoil energy with an absolute determination of the deposited energy. The LUX Qy result is a factor of × 5 lower in energy compared to any other previous measurement in the field, and provides a significant improvement in calibration uncertainties. We also present a measurement of the NR light yield in LXe (Leff) to recoil energies as low as ~ 2 keV using the LUX D-D data. The Leff result is also lower in energy with smaller uncertainties than has been previously achieved. These absolute, ultra-low energy calibrations of the NR signal yields in LXe are a clear confirmation of the detector response used for the first LUX WIMP search analysis. Strategies for extending this calibration technique to even lower energies and smaller uncertainties will be discussed.

  16. Low threshold results and limits from the DRIFT directional dark matter detector

    NASA Astrophysics Data System (ADS)

    Battat, J. B. R.; Ezeribe, A. C.; Gauvreau, J.-L.; Harton, J. L.; Lafler, R.; Law, E.; Lee, E. R.; Loomba, D.; Lumnah, A.; Miller, E. H.; Monte, A.; Mouton, F.; Paling, S. M.; Phan, N. S.; Robinson, M.; Sadler, S. W.; Scarff, A.; Schuckman, F. G., II; Snowden-Ifft, D. P.; Spooner, N. J. C.; Waldram, N.

    2017-05-01

    We present results from a 54.7 live-day shielded run of the DRIFT-IId detector, the world's most sensitive, directional, dark matter detector. Several improvements were made relative to our previous work including a lower threshold for detection, a more robust analysis and a tenfold improvement in our gamma rejection factor. After analysis, no events remain in our fiducial region leading to an exclusion curve for spin-dependent WIMP-proton interactions which reaches 0.28 pb at 100 GeV/c2, a fourfold improvement on our previous work. We also present results from a 45.4 live-day unshielded run of the DRIFT-IId detector during which 14 nuclear recoil-like events were observed. We demonstrate that the observed nuclear recoil rate of 0.31 ± 0.08 events per day is consistent with detection of ambient, fast neutrons emanating from the walls of the Boulby Underground Science Facility.

  17. Reduced mortality rates in a cohort of long-term underground iron-ore miners.

    PubMed

    Björ, Ove; Jonsson, Håkan; Damber, Lena; Wahlström, Jens; Nilsson, Tohr

    2013-05-01

    Historically, working in iron-ore mines has been associated with an increased risk of lung cancer and silicosis. However, studies on other causes of mortality are inconsistent and in the case of cancer incidence, sparse. The aim of this study was to examine the association between iron-ore mining, mortality and cancer incidence. A 54-year cohort study on iron-ore miners from mines in northern Sweden was carried out comprising 13,000 workers. Standardized rate ratios were calculated comparing the disease frequency, mortality, and cancer incidence with that of the general population of northern Sweden. Poisson regression was used to evaluate the association between the durations of employment and underground work, and outcome. Underground mining was associated with a significant decrease in adjusted mortality rate ratios for cerebrovascular and digestive system diseases, and stroke. For several outcomes, elevated standardized rate ratios were observed among blue-collar workers relative to the reference population. However, only the incidence of lung cancer increased with employment time underground (P < 0.001). Long-term iron-ore mining underground was associated with lower rates regarding several health outcomes. This is possibly explained by factors related to actual job activities, environmental exposure, or the selection of healthier workers for long-term underground employment. Copyright © 2013 Wiley Periodicals, Inc.

  18. MEASUREMENT OF METHANE EMISSIONS FROM UNDERGROUND DISTRIBUTION MAINS AND SERVICES

    EPA Science Inventory

    The paper reports results of measurements of methane emissions from underground distribution mains and services. In the program, leakage from underground distribution systems is estimated by combining leak measurements with historical leak record data and the length of undergroun...

  19. 30 CFR 57.14160 - Mantrip trolley wire hazards underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mantrip trolley wire hazards underground. 57... wire hazards underground. Mantrips shall be covered if there is danger of persons contacting the trolley wire. ...

  20. Visit to the Deep Underground Science and Engineering Laboratory

    ScienceCinema

    None

    2016-07-12

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  1. MEASUREMENT OF METHANE EMISSIONS FROM UNDERGROUND DISTRIBUTION MAINS AND SERVICES

    EPA Science Inventory

    The paper reports results of measurements of methane emissions from underground distribution mains and services. In the program, leakage from underground distribution systems is estimated by combining leak measurements with historical leak record data and the length of undergroun...

  2. 30 CFR 57.4362 - Underground rescue and firefighting operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Procedures/alarms/drills § 57.4362 Underground rescue...

  3. Visit to the Deep Underground Science and Engineering Laboratory

    SciTech Connect

    2009-01-01

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  4. Visit to the Deep Underground Science and Engineering Laboratory

    SciTech Connect

    2009-03-31

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  5. 30 CFR 57.14160 - Mantrip trolley wire hazards underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Mantrip trolley wire hazards underground. 57... wire hazards underground. Mantrips shall be covered if there is danger of persons contacting the trolley wire....

  6. 30 CFR 57.14160 - Mantrip trolley wire hazards underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Mantrip trolley wire hazards underground. 57... wire hazards underground. Mantrips shall be covered if there is danger of persons contacting the trolley wire....

  7. 30 CFR 57.14160 - Mantrip trolley wire hazards underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Mantrip trolley wire hazards underground. 57... wire hazards underground. Mantrips shall be covered if there is danger of persons contacting the trolley wire....

  8. 30 CFR 57.14160 - Mantrip trolley wire hazards underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Mantrip trolley wire hazards underground. 57... wire hazards underground. Mantrips shall be covered if there is danger of persons contacting the trolley wire....

  9. Energy Policy Act of 2005 and Underground Storage Tanks (USTs)

    EPA Pesticide Factsheets

    The Energy Policy Act of 2005 significantly affected federal and state underground storage tank programs, required major changes to the programs, and is aimed at reducing underground storage tank releases to our environment.

  10. 9. PHOTOCOPY, ARCHITECTURAL SECTIONS AND DETAIL DRAWING OF UNDERGROUND STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. PHOTOCOPY, ARCHITECTURAL SECTIONS AND DETAIL DRAWING OF UNDERGROUND STORAGE MAGAZINES AND LAUNCHER-LOADER ASSEMBLIES. - NIKE Missile Base SL-40, Underground Storage Magazines & Launcher-Loader Assemblies, Southwesternmost end of launch area, Hecker, Monroe County, IL

  11. 8. PHOTOCOPY, ARCHITECTURAL FLOOR PLAN AND DETAIL DRAWING OF UNDERGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. PHOTOCOPY, ARCHITECTURAL FLOOR PLAN AND DETAIL DRAWING OF UNDERGROUND STORAGE MAGAZINES AND LAUNCHER-LOADER ASSEMBLIES. - NIKE Missile Base SL-40, Underground Storage Magazines & Launcher-Loader Assemblies, Southwesternmost end of launch area, Hecker, Monroe County, IL

  12. 7. PHOTOCOPY, PLUMBING AND MECHANICAL PLAN AND DETAILS FOR UNDERGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. PHOTOCOPY, PLUMBING AND MECHANICAL PLAN AND DETAILS FOR UNDERGROUND STORAGE MAGAZINES AND LAUNCHER-LOADER ASSEMBLIES. - NIKE Missile Base SL-40, Underground Storage Magazines & Launcher-Loader Assemblies, Southwesternmost end of launch area, Hecker, Monroe County, IL

  13. Flame Detector

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.

  14. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  15. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  16. Ground Water Discharges (EPA's Underground Injection ...

    EPA Pesticide Factsheets

    2017-07-06

    Most ground water used for drinking occurs near the earth's surface and is easily contaminated. Of major concern is the potential contamination of underground sources of drinking water by any of the hundreds of thousands of subsurface wastewater disposal injection wells nationwide.

  17. Reference electrodes for underground storage tanks

    SciTech Connect

    Ansuini, F.J.; Dimond, J.R.

    1995-12-31

    This paper discusses several factors affecting the reference potential established by copper/copper sulfate and silver/silver chloride reference electrodes. Guidelines for using permanent references in underground storage tank applications are presented and some causes of misleading readings with portable references are discussed.

  18. Underground Energy Storage Program. 1983 annual summary

    SciTech Connect

    Kannberg, L.D.

    1984-06-01

    The Underground Energy Storage Program approach, structure, history, and milestones are described. Technical activities and progress in the Seasonal Thermal Energy Storage and Compressed Air Energy Storage components of the program are then summarized, documenting the work performed and progress made toward resolving and eliminating technical and economic barriers associated with those technologies. (LEW)

  19. Animals Underground. Young Discovery Library Series.

    ERIC Educational Resources Information Center

    Ruffault, Charlotte

    This book is written for children ages 5 through 10. Part of a series designed to develop their curiosity, fascinate them and educate them, this volume explores the natural history of animals that live underground. Animals included are porcupine, insects, earthworm, mole, badger, rabbit, prairie dog, and beach animals. (YP)

  20. Animals Underground. Young Discovery Library Series.

    ERIC Educational Resources Information Center

    Ruffault, Charlotte

    This book is written for children ages 5 through 10. Part of a series designed to develop their curiosity, fascinate them and educate them, this volume explores the natural history of animals that live underground. Animals included are porcupine, insects, earthworm, mole, badger, rabbit, prairie dog, and beach animals. (YP)

  1. A Walk on the Underground Railroad.

    ERIC Educational Resources Information Center

    Cohen, Anthony

    2001-01-01

    Describes one historian's search for information on the Underground Railroad, retracing on foot one of the routes formerly traveled by fugitives, seeking historical societies and libraries in each town, and interviewing descendants of slaves. He also had himself boxed up and smuggled onto a train to simulate the situation of one fugitive. A…

  2. Preventing suicide on the London Underground.

    PubMed

    Clarke, R V; Poyner, B

    1994-02-01

    A field study was carried out to investigate the possibility of preventing suicide on the London Underground. Four groups of potentially valuable measures were identified with the objectives of: (i) reducing public access to the tracks; (ii) improving surveillance by station staff; (iii) facilitating emergency stops; and (iv) reducing injury. These strategies are discussed.

  3. Freedom Train: Building an Underground Railroad.

    ERIC Educational Resources Information Center

    Hickman, Wayne

    1999-01-01

    Describes an activity called the "Freedom Train": a simulation for eighth grade students that enables them to gain an understanding of the importance and dangers of the Underground Railroad. Explains that the project encourages students to work cooperatively while also reinforcing their research and map skills. Provides follow-up…

  4. Harriet Tubman and the Underground Railroad.

    ERIC Educational Resources Information Center

    Crawford, Mary; Ruthsdotter, Mary

    Suitable for elementary level students, this study unit helps increase students' comprehension of the risks involved in a black person's flight from slavery and of Harriet Tubman's success in leading more than 300 slaves to freedom via the Underground Railroad. Five activity suggestions are followed by a reading on the life of Harriet Tubman.…

  5. Freedom Train: Building an Underground Railroad.

    ERIC Educational Resources Information Center

    Hickman, Wayne

    1999-01-01

    Describes an activity called the "Freedom Train": a simulation for eighth grade students that enables them to gain an understanding of the importance and dangers of the Underground Railroad. Explains that the project encourages students to work cooperatively while also reinforcing their research and map skills. Provides follow-up…

  6. Underground natural gas storage reservoir management

    SciTech Connect

    Ortiz, I.; Anthony, R.

    1995-06-01

    The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

  7. Leakage Potential of Underground Storage Tanks

    DTIC Science & Technology

    1991-06-01

    Hazardous and Solid Waste Amendments , Title 17. Underground Storage Tanks, Sabitle I...Regulations The Hazardous and Solid Waste Amendments (HSWA) 10 of 1984 require all UST owners to comply with all applicable Federal, State, interstate and...Recovery Act, 1976. Public Law 98-616, Hazardous and Solid Waste Amendments , 1984. Public Law 98-616, Hazardous and Solid Waste

  8. A Walk on the Underground Railroad.

    ERIC Educational Resources Information Center

    Cohen, Anthony

    2001-01-01

    Describes one historian's search for information on the Underground Railroad, retracing on foot one of the routes formerly traveled by fugitives, seeking historical societies and libraries in each town, and interviewing descendants of slaves. He also had himself boxed up and smuggled onto a train to simulate the situation of one fugitive. A…

  9. 30 CFR 57.4761 - Underground shops.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and..., routing of the mine shop air directly to an exhaust system, reversal of mechanical ventilation, or use of...

  10. 29 CFR 1926.800 - Underground construction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exposure to electric current. (2) Following blasting, an employee shall not enter a work area until the air...; nor (ii) Underground electrical transmission and distribution lines, as addressed in subpart V of this... to function in the event of an electrical power failure at the jobsite. Such hoisting means shall...

  11. 47 CFR 32.2422 - Underground cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Underground cable. 32.2422 Section 32.2422 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS..., Buried Cable. (d) The cost of cables leading from the main distributing frame or equivalent to...

  12. A dark-matter search using the final CDMS II dataset and a novel detector of surface radiocontamination

    SciTech Connect

    Ahmed, Zeeshan

    2012-01-01

    Substantial evidence from galaxies, galaxy clusters, and cosmological scales suggests that ~85% of the matter of our universe is invisible. The missing matter, or "dark matter" is likely composed of non-relativistic, non-baryonic particles, which have very rare interactions with baryonic matter and with one another. Among dark matter candidates, Weakly Interacting Massive Particles (WIMPs) are particularly well motivated. In the early universe, thermally produced particles with weak-scale mass and interactions would `freeze out’ at the correct density to be dark matter today. Extensions to the Standard Model of particle physics, such as Supersymmetry, which solve gauge hierarchy and coupling unification problems, naturally provide such particles. Interactions of WIMPs with baryons are expected to be rare, but might be detectable in low-noise detectors. The Cryogenic Dark Matter Search (CDMS) experiment uses ionization- and phonon- sensitive germanium particle detectors to search for such interactions. CDMS detectors are operated at the Soudan Underground Laboratory in Minnesota, within a shielded environment to lower cosmogenic and radioactive background. The combination of phonon and ionization signatures from the detectors provides excellent residual-background rejection. This dissertation presents improved techniques for phonon calibration of CDMS II detectors and the analysis of the final CDMS II dataset with 612 kg-days of exposure. We set a limit of 3.8x10$^{-}$44 cm$^{2}$ on WIMP-nucleon spin-independent scattering cross section for a WIMP mass of 70 GeV/c$^{2}$. At the time this analysis was published, these data presented the most stringent limits on WIMP scattering for WIMP masses over 42 GeV/c$^{2}$, ruling out previously unexplored parameter space. Next-generation rare-event searches such as SuperCDMS, COUPP, and CLEAN will be limited in sensitivity, unless they achieve stringent control of the surface radioactive contamination on their detectors. Low

  13. Development of an underground HPGe array facility for ultra low radioactivity measurements

    SciTech Connect

    Sala, E.; Kang, W. G.; Kim, Y. D.; Lee, M. H.; Leonard, D. S.; Hahn, I. S.; Kim, G. W.; Park, S. Y.

    2015-08-17

    Low Level Counting techniques using low background facilities are continuously under development to increase the possible sensitivity needed for rare physics events experiments. The CUP (Center for Underground Physics) group of IBS is developing, in collaboration with Canberra, a ultra low background instrument composed of two arrays facing each other with 7 HPGe detectors each. The low radioactive background of each detector has been evaluated and improved by the material selection of the detector components. Samples of all the building materials have been provided by the manufacturer and the contaminations had been measured using an optimized low background 100% HPGe with a dedicated shielding. The evaluation of the intrinsic background has been performed using MonteCarlo simulations and considering the contribution of each material with the measured contamination. To further reduce the background, the instrument will be placed in the new underground laboratory at YangYang exploiting the 700m mountain coverage and radon-free air supplying system. The array has been designed to perform various Ultra Low background measurements; the sensitivity we are expecting will allow not only low level measurements of Ra and Th contaminations in Copper or other usually pure materials, but also the search for rare decays. In particular some possible candidates and configurations to detect the 0νECEC (for example {sup 106}Cd and {sup 156}Dy) and rare β decays ({sup 96}Zr, {sup 180m}Ta , etc ) are under study.

  14. Development of an underground HPGe array facility for ultra low radioactivity measurements

    NASA Astrophysics Data System (ADS)

    Sala, E.; Hahn, I. S.; Kang, W. G.; Kim, G. W.; Kim, Y. D.; Lee, M. H.; Leonard, D. S.; Park, S. Y.

    2015-08-01

    Low Level Counting techniques using low background facilities are continuously under development to increase the possible sensitivity needed for rare physics events experiments. The CUP (Center for Underground Physics) group of IBS is developing, in collaboration with Canberra, a ultra low background instrument composed of two arrays facing each other with 7 HPGe detectors each. The low radioactive background of each detector has been evaluated and improved by the material selection of the detector components. Samples of all the building materials have been provided by the manufacturer and the contaminations had been measured using an optimized low background 100% HPGe with a dedicated shielding. The evaluation of the intrinsic background has been performed using MonteCarlo simulations and considering the contribution of each material with the measured contamination. To further reduce the background, the instrument will be placed in the new underground laboratory at YangYang exploiting the 700m mountain coverage and radon-free air supplying system. The array has been designed to perform various Ultra Low background measurements; the sensitivity we are expecting will allow not only low level measurements of Ra and Th contaminations in Copper or other usually pure materials, but also the search for rare decays. In particular some possible candidates and configurations to detect the 0νECEC (for example 106Cd and 156Dy) and rare β decays (96Zr, 180mTa , etc ) are under study.

  15. Operation and performance of the ICARUS T600 cryogenic plant at Gran Sasso underground Laboratory

    NASA Astrophysics Data System (ADS)

    Antonello, M.; Aprili, P.; Baibussinov, B.; Boffelli, F.; Bubak, A.; Calligarich, E.; Canci, N.; Centro, S.; Cesana, A.; Cieślik, K.; Cline, D. B.; Cocco, A. G.; Dabrowska, A.; Dermenev, A.; Disdier, J. M.; Falcone, A.; Farnese, C.; Fava, A.; Ferrari, A.; Gibin, D.; Gninenko, S.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Ivashkin, A.; Kirsanov, M.; Kisiel, J.; Kochanek, I.; Lagoda, J.; Mania, S.; Menegolli, A.; Meng, G.; Montanari, C.; Otwinowski, S.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G. L.; Rossella, M.; Rubbia, C.; Sala, P. R.; Scaramelli, A.; Segreto, E.; Sergiampietri, F.; Stefan, D.; Sulej, R.; Szarska, M.; Terrani, M.; Torti, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H. G.; Yang, X.; Zalewska, A.; Zani, A.; Zaremba, K.

    2015-12-01

    ICARUS T600 liquid argon time projection chamber is the first large mass electronic detector of a new generation able to combine the imaging capabilities of the old bubble chambers with an excellent calorimetric energy measurement. After the three months demonstration run on surface in Pavia during 2001, the T600 cryogenic plant was significantly revised, in terms of reliability and safety, in view of its long term operation in an underground environment. The T600 detector was activated in Hall B of the INFN Gran Sasso Laboratory during spring 2010, where it was operated without interruption for about three years, taking data exposed to the CERN to Gran Sasso long baseline neutrino beam (CNGS) and cosmic rays. In this paper the T600 cryogenic plant is described in detail together with the commissioning procedures that lead to the successful operation of the detector shortly after the end of the filling with liquid argon. Overall plant performance and stability during the underground run are discussed. Finally, the decommissioning procedures, carried out about six months after the end of the CNGS neutrino beam operation, are reported.

  16. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  17. Assessment of occupational radiation exposure in underground artisanal gold mines in Tongo, Upper East Region of Ghana.

    PubMed

    Doyi, I; Oppon, O C; Glover, E T; Gbeddy, G; Kokroko, W

    2013-12-01

    Assessments of radon and gamma radiation levels were carried out in underground artisanal gold mines in Tongo. This is one of the numerous artisanal gold mining communities in Ghana. Solid State Nuclear Track Detectors (SSNTDs) were used to estimate the mean (222)Rn concentration and dose rates during the Harmattan season (November 2010 to February 2011). The values for the (222)Rn concentration at each monitoring site ranged from 14 ± 4 Bq m(-3) to 270 ± 9 Bq m(-3), with a mean value of 98 Bq m(-3). These measurements are well below the lower action level of 500 Bq m(-3) recommended by ICRP for workplaces. The activity concentrations of (40)K, (232)Th and (238)U were determined using gamma-ray spectroscopy method. The effective dose estimates of 0.11 ± 0.02 mSv y(-1) to 0.68 ± 0.04 mSv y(-1) were below the allowable limit of 20 mSv per annum for occupational exposure control recommended by the ICRP. The total annual effective dose varied from 0.22 ± 0.04 mSv y(-1) to 1.92 ± 0.08 mSv y(-1).

  18. Polysubstance Use Patterns in Underground Rave Attenders: A Cluster Analysis

    ERIC Educational Resources Information Center

    Fernandez-Calderon, Fermin; Lozano, Oscar M.; Vidal, Claudio; Ortega, Josefa Gutierrez; Vergara, Esperanza; Gonzalez-Saiz, Francisco; Bilbao, Izaskun; Caluente, Marta; Cano, Tomas; Cid, Francisco; Dominguez, Celia; Izquierdo, Emcarni; Perez, Maria I.

    2011-01-01

    Drug use in mainstream rave parties has been widely documented in a large number of studies. However, not much is known about drug use in underground raves. The purpose of this study is to find out the polysubstance use patterns at underground raves. Two hundred and fifty-two young people between the ages of 18 and 30 who went to underground raves…

  19. 43 CFR 3461.1 - Underground mining exemption from criteria.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Underground mining exemption from criteria...: Unsuitability for Mining § 3461.1 Underground mining exemption from criteria. (a) Federal lands with coal deposits that would be mined by underground mining methods shall not be assessed as unsuitable where...

  20. 43 CFR 3461.1 - Underground mining exemption from criteria.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Underground mining exemption from criteria...: Unsuitability for Mining § 3461.1 Underground mining exemption from criteria. (a) Federal lands with coal deposits that would be mined by underground mining methods shall not be assessed as unsuitable where...

  1. 43 CFR 3461.1 - Underground mining exemption from criteria.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Underground mining exemption from criteria...: Unsuitability for Mining § 3461.1 Underground mining exemption from criteria. (a) Federal lands with coal deposits that would be mined by underground mining methods shall not be assessed as unsuitable where...

  2. 43 CFR 3461.1 - Underground mining exemption from criteria.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Underground mining exemption from criteria...: Unsuitability for Mining § 3461.1 Underground mining exemption from criteria. (a) Federal lands with coal deposits that would be mined by underground mining methods shall not be assessed as unsuitable where...

  3. 47 CFR 32.6422 - Underground cable expense.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Underground cable expense. 32.6422 Section 32.6422 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM... Underground cable expense. (a) This account shall include expenses associated with underground cable. (b...

  4. 30 CFR 57.4057 - Underground trailing cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground trailing cables. 57.4057 Section 57.4057 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control § 57.4057 Underground trailing cables. Underground trailing cables shall be accepted or...

  5. 30 CFR 57.4057 - Underground trailing cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground trailing cables. 57.4057 Section 57.4057 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control § 57.4057 Underground trailing cables. Underground trailing cables shall be accepted or...

  6. 30 CFR 57.4057 - Underground trailing cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground trailing cables. 57.4057 Section 57.4057 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control § 57.4057 Underground trailing cables. Underground trailing cables shall be accepted or...

  7. 47 CFR 32.6422 - Underground cable expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Underground cable expense. 32.6422 Section 32.6422 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM... Underground cable expense. (a) This account shall include expenses associated with underground cable. (b...

  8. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground high-voltage cables. 75.804 Section... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... cables shall be adequate for the intended current and voltage. Splices made in such cables shall provide...

  9. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground high-voltage cables. 75.804 Section... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... cables shall be adequate for the intended current and voltage. Splices made in such cables shall provide...

  10. 30 CFR 57.4057 - Underground trailing cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground trailing cables. 57.4057 Section 57.4057 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control § 57.4057 Underground trailing cables. Underground trailing cables shall be accepted or...

  11. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground high-voltage cables. 75.804 Section... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... cables shall be adequate for the intended current and voltage. Splices made in such cables shall provide...

  12. 47 CFR 32.6422 - Underground cable expense.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Underground cable expense. 32.6422 Section 32.6422 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM... Underground cable expense. (a) This account shall include expenses associated with underground cable. (b...

  13. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground high-voltage cables. 75.804 Section... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... cables shall be adequate for the intended current and voltage. Splices made in such cables shall provide...

  14. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground high-voltage cables. 75.804 Section... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... cables shall be adequate for the intended current and voltage. Splices made in such cables shall provide...

  15. 30 CFR 57.4057 - Underground trailing cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground trailing cables. 57.4057 Section 57.4057 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control § 57.4057 Underground trailing cables. Underground trailing cables shall be accepted or...

  16. 47 CFR 32.6422 - Underground cable expense.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Underground cable expense. 32.6422 Section 32.6422 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM... Underground cable expense. (a) This account shall include expenses associated with underground cable. (b...

  17. 47 CFR 32.6422 - Underground cable expense.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Underground cable expense. 32.6422 Section 32.6422 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM... Underground cable expense. (a) This account shall include expenses associated with underground cable. (b...

  18. 30 CFR 57.4161 - Use of fire underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Use of fire underground. 57.4161 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Prohibitions/precautions/housekeeping § 57.4161 Use of fire underground. Fires shall not...

  19. 30 CFR 57.4260 - Underground self-propelled equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Prevention and Control Firefighting Equipment § 57.4260 Underground self-propelled equipment. (a) Whenever self-propelled equipment is used underground, a fire extinguisher shall be on the equipment. This... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground self-propelled equipment....

  20. 30 CFR 57.4461 - Gasoline use restrictions underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Gasoline use restrictions underground. 57.4461... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4461 Gasoline use restrictions underground. If gasoline is used underground to power internal combustion engines— (a) The mine shall...

  1. 30 CFR 57.4461 - Gasoline use restrictions underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Gasoline use restrictions underground. 57.4461... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4461 Gasoline use restrictions underground. If gasoline is used underground to power internal combustion engines— (a) The mine shall...

  2. 30 CFR 57.4461 - Gasoline use restrictions underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Gasoline use restrictions underground. 57.4461... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4461 Gasoline use restrictions underground. If gasoline is used underground to power internal combustion engines— (a) The mine shall...

  3. 30 CFR 57.4461 - Gasoline use restrictions underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Gasoline use restrictions underground. 57.4461... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4461 Gasoline use restrictions underground. If gasoline is used underground to power internal combustion engines— (a) The mine shall...

  4. 30 CFR 57.4461 - Gasoline use restrictions underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Gasoline use restrictions underground. 57.4461... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4461 Gasoline use restrictions underground. If gasoline is used underground to power internal combustion engines— (a) The mine shall...

  5. An Economic Comparison of Passively Conditioned Underground Houses.

    DTIC Science & Technology

    1981-05-01

    15 Heat Transfer ........ ..................... ... 34 Energy Balance and Human Thermal Comfort . ...... ... 41 Conclusion...114 29. Thermal Comfort --Passive Underground House ... ........... .. 117 30. Stable Soil Temperature Depths...121 31. Thermal Comfort --Deep Earth Underground House .. ......... .. 124 32. Life Cycle Cash Flow Diagram--Base Underground House

  6. How to Start a High School Underground Newspaper. Fifth Edition.

    ERIC Educational Resources Information Center

    Greenberg, Cory

    Stressing the diversity which characterizes the high school underground press movement, the pamphlet presents case histories of several papers, an overview of the first ten years of the high school underground press, and technical information necessary for starting a paper. The first wave of high school underground newspapers appeared in major…

  7. 30 CFR 57.4462 - Storage of combustible liquids underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Storage of combustible liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4462 Storage of combustible liquids underground. The requirements of this standard apply to underground areas only....

  8. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small...

  9. 30 CFR 57.4462 - Storage of combustible liquids underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Storage of combustible liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4462 Storage of combustible liquids underground. The requirements of this standard apply to underground areas only....

  10. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small...

  11. 30 CFR 57.4462 - Storage of combustible liquids underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage of combustible liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4462 Storage of combustible liquids underground. The requirements of this standard apply to underground areas only....

  12. 30 CFR 57.4462 - Storage of combustible liquids underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage of combustible liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4462 Storage of combustible liquids underground. The requirements of this standard apply to underground areas only....

  13. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small...

  14. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small...

  15. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small...

  16. 30 CFR 57.4462 - Storage of combustible liquids underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage of combustible liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4462 Storage of combustible liquids underground. The requirements of this standard apply to underground areas only....

  17. Polysubstance Use Patterns in Underground Rave Attenders: A Cluster Analysis

    ERIC Educational Resources Information Center

    Fernandez-Calderon, Fermin; Lozano, Oscar M.; Vidal, Claudio; Ortega, Josefa Gutierrez; Vergara, Esperanza; Gonzalez-Saiz, Francisco; Bilbao, Izaskun; Caluente, Marta; Cano, Tomas; Cid, Francisco; Dominguez, Celia; Izquierdo, Emcarni; Perez, Maria I.

    2011-01-01

    Drug use in mainstream rave parties has been widely documented in a large number of studies. However, not much is known about drug use in underground raves. The purpose of this study is to find out the polysubstance use patterns at underground raves. Two hundred and fifty-two young people between the ages of 18 and 30 who went to underground raves…

  18. 30 CFR 57.4263 - Underground belt conveyors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Control Firefighting Equipment § 57.4263 Underground belt conveyors. Fire protection shall be provided at the head, tail, drive, and take-up pulleys of underground belt conveyors. Provisions shall be... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground belt conveyors. 57.4263 Section...

  19. 30 CFR 57.4161 - Use of fire underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Use of fire underground. 57.4161 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Prohibitions/precautions/housekeeping § 57.4161 Use of fire underground. Fires shall...

  20. 30 CFR 57.4360 - Underground alarm systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Procedures/alarms/drills § 57.4360 Underground alarm systems. (a) Fire alarm... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground alarm systems. 57.4360 Section 57...

  1. 30 CFR 57.4360 - Underground alarm systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Procedures/alarms/drills § 57.4360 Underground alarm systems. (a) Fire alarm... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground alarm systems. 57.4360 Section 57...

  2. 30 CFR 57.4360 - Underground alarm systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Procedures/alarms/drills § 57.4360 Underground alarm systems. (a) Fire alarm... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground alarm systems. 57.4360 Section 57...

  3. 30 CFR 57.4360 - Underground alarm systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Procedures/alarms/drills § 57.4360 Underground alarm systems. (a) Fire alarm... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground alarm systems. 57.4360 Section 57...

  4. 29 CFR 1926.903 - Underground transportation of explosives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Underground transportation of explosives. 1926.903 Section... Explosives § 1926.903 Underground transportation of explosives. (a) All explosives or blasting agents in... explosives or blasting agents taken to an underground loading area shall not exceed the amount estimated to...

  5. 29 CFR 1926.903 - Underground transportation of explosives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Underground transportation of explosives. 1926.903 Section... Explosives § 1926.903 Underground transportation of explosives. (a) All explosives or blasting agents in... explosives or blasting agents taken to an underground loading area shall not exceed the amount estimated to...

  6. 29 CFR 1926.903 - Underground transportation of explosives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Underground transportation of explosives. 1926.903 Section... Explosives § 1926.903 Underground transportation of explosives. (a) All explosives or blasting agents in... explosives or blasting agents taken to an underground loading area shall not exceed the amount estimated to...

  7. 30 CFR 57.4505 - Fuel lines to underground areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fuel lines to underground areas. 57.4505... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Installation/construction/maintenance § 57.4505 Fuel lines to underground areas. Fuel...

  8. 30 CFR 57.4561 - Stationary diesel equipment underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary diesel equipment underground. 57... Fire Prevention and Control Installation/construction/maintenance § 57.4561 Stationary diesel equipment underground. Stationary diesel equipment underground shall be— (a) Supported on a noncombustible base; and (b...

  9. 30 CFR 57.4463 - Liquefied petroleum gas use underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Liquefied petroleum gas use underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to maintenance...

  10. 30 CFR 57.4463 - Liquefied petroleum gas use underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Liquefied petroleum gas use underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to maintenance...

  11. 30 CFR 57.4463 - Liquefied petroleum gas use underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Liquefied petroleum gas use underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to maintenance...

  12. 30 CFR 57.4463 - Liquefied petroleum gas use underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Liquefied petroleum gas use underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to maintenance...

  13. 30 CFR 57.4463 - Liquefied petroleum gas use underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Liquefied petroleum gas use underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to maintenance...

  14. 30 CFR 57.4263 - Underground belt conveyors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground belt conveyors. 57.4263 Section 57... and Control Firefighting Equipment § 57.4263 Underground belt conveyors. Fire protection shall be provided at the head, tail, drive, and take-up pulleys of underground belt conveyors. Provisions shall...

  15. 30 CFR 57.4263 - Underground belt conveyors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground belt conveyors. 57.4263 Section 57... and Control Firefighting Equipment § 57.4263 Underground belt conveyors. Fire protection shall be provided at the head, tail, drive, and take-up pulleys of underground belt conveyors. Provisions shall...

  16. 30 CFR 57.4263 - Underground belt conveyors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground belt conveyors. 57.4263 Section 57... and Control Firefighting Equipment § 57.4263 Underground belt conveyors. Fire protection shall be provided at the head, tail, drive, and take-up pulleys of underground belt conveyors. Provisions shall...

  17. 78 FR 68783 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... Safety and Health Administration 30 CFR Part 75 RIN 1219-AB84 Refuge Alternatives for Underground Coal... training for miners to deploy and use refuge alternatives in underground coal mines. The U.S. Court of... in underground coal mines. On January 13, 2009, the United Mine Workers of America (UMWA)...

  18. 78 FR 48591 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Refuge Alternatives for Underground Coal Mines; Proposed Rules #0;#0;Federal Register / Vol. 78 , No. 153... 30 CFR Part 75 RIN 1219-AB84 Refuge Alternatives for Underground Coal Mines AGENCY: Mine Safety and... alternatives in underground coal mines. The U.S. Court of Appeals for the District of Columbia Circuit...

  19. 29 CFR 1926.903 - Underground transportation of explosives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Underground transportation of explosives. 1926.903 Section... Explosives § 1926.903 Underground transportation of explosives. (a) All explosives or blasting agents in...) Trucks used for the transportation of explosives underground shall have the electrical system checked...

  20. 29 CFR 1926.903 - Underground transportation of explosives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Underground transportation of explosives. 1926.903 Section... Explosives § 1926.903 Underground transportation of explosives. (a) All explosives or blasting agents in...) Trucks used for the transportation of explosives underground shall have the electrical system checked...

  1. 30 CFR 57.4260 - Underground self-propelled equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Prevention and Control Firefighting Equipment § 57.4260 Underground self-propelled equipment. (a) Whenever self-propelled equipment is used underground, a fire extinguisher shall be on the equipment. This... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground self-propelled equipment. 57.4260...

  2. Design and Construction of Prototype Dark Matter Detectors

    SciTech Connect

    Peter Fisher

    2012-03-23

    The Lepton Quark Studies (LQS) group is engaged in searching for dark matter using the Dark Matter Time Projection Chamber (DMTPC) at the Waste Isolation Pilot Plant (WIPP) (Carlsbad, NM). DMTPC is a direction-sensitive dark matter detector designed to measure the recoil direction and energy deposited by fluorine nuclei recoiling from the interaction with incident WIMPs. In the past year, the major areas of progress have been: to publish the first dark matter search results from a surface run of the DMTPC prototype detector, to build and install the 10L prototype in the underground laboratory at WIPP which will house the 1 m{sup 3} detector, and to demonstrate charge and PMT readout of the TPC using prototype detectors, which allow triggering and {Delta}z measurement to be used in the 1 m{sup 3} detector under development.

  3. DMTPC: A dark matter detector with directional sensitivity

    NASA Astrophysics Data System (ADS)

    Battat, J. B. R.; Allien, S.; Caldwell, T.; Dujmic, D.; Dushkin, A.; Fisher, P.; Golub, F.; Goyal, S.; Henderson, S.; Inglis, A.; Lanza, R.; Lopez, J.; Kaboth, A.; Kohse, G.; Monroe, J.; Sciolla, G.; Skvorodnev, B. N.; Tomita, H.; Vanderspek, R.; Wellenstein, H.; Yamamoto, R.

    2009-12-01

    By correlating nuclear recoil directions with the Earth's direction of motion through the Galaxy, a directional dark matter detector can unambiguously detect Weakly Interacting Massive Particles (WIMPs), even in the presence of backgrounds. Here, we describe the Dark Matter Time-Projection Chamber (DMTPC) detector, a TPC filled with CF4 gas at low pressure (0.1 atm). Using this detector, we have measured the vector direction (head-tail) of nuclear recoils down to energies of 100 keV with an angular resolution of <=15°. To study our detector backgrounds, we have operated in a basement laboratory on the MIT campus for several months. We are currently building a new, high-radiopurity detector for deployment underground at the Waste Isolation Pilot Plant facility in New Mexico.

  4. DMTPC: A dark matter detector with directional sensitivity

    SciTech Connect

    Battat, J. B. R.; Caldwell, T.; Dujmic, D.; Fisher, P.; Henderson, S.; Lanza, R.; Lopez, J.; Kaboth, A.; Kohse, G.; Monroe, J.; Sciolla, G.; Vanderspek, R.; Yamamoto, R.; Allien, S.; Inglis, A.; Tomita, H.; Dushkin, A.; Golub, F.; Goyal, S.; Skvorodnev, B. N.

    2009-12-17

    By correlating nuclear recoil directions with the Earth's direction of motion through the Galaxy, a directional dark matter detector can unambiguously detect Weakly Interacting Massive Particles (WIMPs), even in the presence of backgrounds. Here, we describe the Dark Matter Time-Projection Chamber (DMTPC) detector, a TPC filled with CF{sub 4} gas at low pressure (0.1 atm). Using this detector, we have measured the vector direction (head-tail) of nuclear recoils down to energies of 100 keV with an angular resolution of {<=}15 deg. To study our detector backgrounds, we have operated in a basement laboratory on the MIT campus for several months. We are currently building a new, high-radiopurity detector for deployment underground at the Waste Isolation Pilot Plant facility in New Mexico.

  5. Price deflation and the underground organ economy in the Philippines.

    PubMed

    Mendoza, Roger Lee

    2011-03-01

    This is the first in-depth study of the illicit human organ trade in the Philippines. The question for analytical investigation is why the underground organ commerce thrives, despite meager support and compensation for commercial donors (or vendors). Quantitative survey results were obtained from a probability sample of living Filipino kidney vendors (P = 0.95; α = 0.05). The kidney trade was studied because it has the highest level of demand among all tradeable human organs in the Philippines and globally. The study finds that deflated vendor compensation, lower than global kidney purchase prices, and relative stability in kidney supply obtain from a combination of the socio-economic characteristics of Filipino vendors and the asymmetric information available to them. The high degree of ambiguity and continuity between legitimate organ donations and underground buy-and-sell operations poses major challenges to effective regulation and law enforcement on the part of the Philippine government. Any reform effort will need to effectively address the fine distinction between two different but overlapping organ procurement markets, and brokered trading, with minimal transaction costs, based on asymmetric information. Policy lessons and insights from the Philippine experience that are transferable to other countries, particularly in the developing world, are noted in this study.

  6. Using {sup 222}Rn as a tracer of geophysical processes in underground environments

    SciTech Connect

    Lacerda, T.; Anjos, R. M.; Silva, A. A. R. da; Yoshimura, E. M.

    2014-11-11

    Radon levels in two old mines in San Luis, Argentina, are reported and analyzed. These mines are today used for touristic visitation. Our goal was to assess the potential use of such radioactive noble gas as tracer of geological processes in underground environments. CR-39 nuclear track detectors were used during the winter and summer seasons. The findings show that the significant radon concentrations reported in this environment are subject to large seasonal modulations, due to the strong dependence of natural ventilation on the variations of outside temperature. The results also indicate that radon pattern distribution appear as a good method to localize unknown ducts, fissures or secondary tunnels in subterranean environments.

  7. Using 222Rn as a tracer of geophysical processes in underground environments

    NASA Astrophysics Data System (ADS)

    Lacerda, T.; Anjos, R. M.; Valladares, D. L.; da Silva, A. A. R.; Rizzotto, M.; Velasco, H.; de Rosas, J. P.; Ayub, J. Juri; Yoshimura, E. M.

    2014-11-01

    Radon levels in two old mines in San Luis, Argentina, are reported and analyzed. These mines are today used for touristic visitation. Our goal was to assess the potential use of such radioactive noble gas as tracer of geological processes in underground environments. CR-39 nuclear track detectors were used during the winter and summer seasons. The findings show that the significant radon concentrations reported in this environment are subject to large seasonal modulations, due to the strong dependence of natural ventilation on the variations of outside temperature. The results also indicate that radon pattern distribution appear as a good method to localize unknown ducts, fissures or secondary tunnels in subterranean environments.

  8. Neutron background measurements at China Jinping underground laboratory with a Bonner multi-sphere spectrometer

    NASA Astrophysics Data System (ADS)

    Hu, Qingdong; Ma, Hao; Zeng, Zhi; Cheng, Jianping; Chen, Yunhua; He, Shengming; Li, Junli; Shen, Manbin; Wu, Shiyong; Yue, Qian; Yue, Jianfeng; Zhang, Hui

    2017-07-01

    The neutron background spectrum from thermal neutron to 20 MeV fast neutron was measured at the first experimental hall of China Jinping underground laboratory with a Bonner multi-sphere spectrometer. The measurement system was validated by a 252Cf source and inconformity was corrected. Due to micro charge discharge, the dataset was screened and background from the steel of the detectors was estimated by MC simulation. Based on genetic algorithm we obtained the energy distribution of the neutron and the total flux of neutron was (2.69±1.02) ×10-5 cm-2 s-1.

  9. The MICROMEGEM detector

    NASA Astrophysics Data System (ADS)

    Bouhali, O.; De Lentdecker, G.; Dewèze, S.; Udo, F.; Van Doninck, W.; Vander Velde, C.; Van Lancker, L.; Zhukov, V.; Boulogne, I.; Daubie, E.

    2001-02-01

    This article introduces the MICROMEGEM detector, a position-sensitive proportional gas counter produced using advanced Printed Circuit Board (PCB) technology. The detector is equipped with a Gas Electron Multiplier (GEM) foil placed 50 μm above a plane of pick-up strips. The GEM produces a first gas amplification which is extended below the GEM foil by applying a strong electric field between the strips and the lower electrode of the GEM. The array of strips is used for read-out to obtain 1-D positional information. We present results on the gas gain, the energy resolution and the rate capability. The behaviour in an intense beam of 300 MeV/c pions in presence of heavily ionizing particles has also been investigated.

  10. Lung cancer in a nonsmoking underground uranium miner.

    PubMed Central

    Mulloy, K B; James, D S; Mohs, K; Kornfeld, M

    2001-01-01

    Working in mines is associated with acute and chronic occupational disorders. Most of the uranium mining in the United States took place in the Four Corners region of the Southwest (Arizona, Colorado, New Mexico, and Utah) and on Native American lands. Although the uranium industry collapsed in the late 1980s, the industry employed several thousand individuals who continue to be at increased risk for developing lung cancers. We present the case of a 72-year-old Navajo male who worked for 17 years as an underground uranium miner and who developed lung cancer 22 years after leaving the industry. His total occupational exposure to radon progeny was estimated at 506 working level months. The miner was a life-long nonsmoker and had no other significant occupational or environmental exposures. On the chest X-ray taken at admission into the hospital, a right lower lung zone infiltrate was detected. The patient was treated for community-acquired pneumonia and developed respiratory failure requiring mechanical ventilation. Respiratory failure worsened and the patient died 19 days after presenting. On autopsy, a 2.5 cm squamous cell carcinoma of the right lung arising from the lower lobe bronchus, a right broncho-esophageal fistula, and a right lower lung abscess were found. Malignant respiratory disease in uranium miners may be from several occupational exposures; for example, radon decay products, silica, and possibly diesel exhaust are respiratory carcinogens that were commonly encountered. In response to a growing number of affected uranium miners, the Radiation Exposure Compensation Act (RECA) was passed by the U.S. Congress in 1990 to make partial restitution to individuals harmed by radiation exposure resulting from underground uranium mining and above-ground nuclear tests in Nevada. PMID:11333194

  11. Chemochromic Hydrogen Leak Detectors

    NASA Technical Reports Server (NTRS)

    Roberson, Luke; Captain, Janine; Williams, Martha; Smith, Trent; Tate, LaNetra; Raissi, Ali; Mohajeri, Nahid; Muradov, Nazim; Bokerman, Gary

    2009-01-01

    At NASA, hydrogen safety is a key concern for space shuttle processing. Leaks of any level must be quickly recognized and addressed due to hydrogen s lower explosion limit. Chemo - chromic devices have been developed to detect hydrogen gas in several embodiments. Because hydrogen is odorless and colorless and poses an explosion hazard, there is an emerging need for sensors to quickly and accurately detect low levels of leaking hydrogen in fuel cells and other advanced energy- generating systems in which hydrogen is used as fuel. The device incorporates a chemo - chromic pigment into a base polymer. The article can reversibly or irreversibly change color upon exposure to hydrogen. The irreversible pigment changes color from a light beige to a dark gray. The sensitivity of the pigment can be tailored to its application by altering its exposure to gas through the incorporation of one or more additives or polymer matrix. Furthermore, through the incorporation of insulating additives, the chemochromic sensor can operate at cryogenic temperatures as low as 78 K. A chemochromic detector of this type can be manufactured into any feasible polymer part including injection molded plastic parts, fiber-spun textiles, or extruded tapes. The detectors are simple, inexpensive, portable, and do not require an external power source. The chemochromic detectors were installed and removed easily at the KSC launch pad without need for special expertise. These detectors may require an external monitor such as the human eye, camera, or electronic detector; however, they could be left in place, unmonitored, and examined later for color change to determine whether there had been exposure to hydrogen. In one type of envisioned application, chemochromic detectors would be fabricated as outer layers (e.g., casings or coatings) on high-pressure hydrogen storage tanks and other components of hydrogen-handling systems to provide visible indications of hydrogen leaks caused by fatigue failures or

  12. Low-background gamma-ray spectrometry in the Garching underground laboratory

    NASA Astrophysics Data System (ADS)

    Hofmann, M.; Mannel, T.; Sivers, M. V.

    2013-08-01

    We describe two setups that were built for low-background gamma-ray spectrometry in the Garching Underground Laboratory (˜ 10 m.w.e.). Both setups are based on HPGe detectors surrounded by several layers of passive shielding as well as an active muon veto. The first setup (GEM) comprises a single HPGe detector surrounded by a NaI(Tl) scintillation detector that serves as anti-Compton veto. The second setup (LoAx) consists of two smaller HPGe detectors which are arranged face-to-face to cover a large solid angle around the sample. The detection efficiency of both systems is determined using a calibrated Monte-Carlo simulation. The count rate finally achieved in the energy range 40-2700keV is 10250±26cts/day for the GEM setup, and 5258±27cts/day and 6876±31cts/day between 20-1500keV for the two detectors of the LoAx setup. This leads to detection sensitivities of a few mBq/kg for U and Th at both screening stations.

  13. Hadronic interactions in the MINOS detectors

    SciTech Connect

    Kordosky, Michael Alan

    2004-08-01

    MINOS, the Main Injector Neutrino Oscillation Search, will study neutrino flavor transformations using a Near detector at the Fermi National Accelerator Laboratory and a Far detector located in the Soudan Underground Laboratory in northern Minnesota. The MINOS collaboration also constructed the CalDet (calibration detector), a smaller version of the Near and Far detectors, to determine the topological and signal response to hadrons, electrons and muons. The detector was exposed to test-beams in the CERN Proton Synchrotron East Hall during 2001-2003, where it collected events at momentum settings between 200 MeV/c and 10 GeV/c. In this dissertation we present results of the CalDet experiment, focusing on the topological and signal response to hadrons. We briefly describe the MINOS experiment and its iron-scintillator tracking-sampling calorimters as a motivation for the CalDet experiment. We discuss the operation of the CalDet in the beamlines as well as the trigger and particle identification systems used to isolate the hadron sample. The method used to calibrate the MINOS detector is described and validated with test-beam data. The test-beams were simulated to model the muon flux, energy loss upstream of the detector and the kaon background. We describe the procedure used to discriminate between pions and muons on the basis of the event topology. The hadron samples were used to benchmark the existing GEANT3 based hadronic shower codes and determine the detector response and resolution for pions and protons. We conclude with comments on the response to single hadrons and to neutrino induced hadronic showers.

  14. ANDES: An Underground Laboratory in South America

    NASA Astrophysics Data System (ADS)

    Dib, Claudio O.

    ANDES (Agua Negra Deep Experiment Site) is an underground laboratory, proposed to be built inside the Agua Negra road tunnel that will connect Chile (IV Region) with Argentina (San Juan Province) under the Andes Mountains. The Laboratory will be 1750 meters under the rock, becoming the 3rd deepest underground laboratory of this kind in the world, and the first in the Southern Hemisphere. ANDES will be an international Laboratory, managed by a Latin American consortium. The laboratory will host experiments in Particle and Astroparticle Physics, such as Neutrino and Dark Matter searches, Seismology, Geology, Geophysics and Biology. It will also be used for the development of low background instrumentation and related services. Here we present the general features of the proposed laboratory, the current status of the proposal and some of its opportunities for science.

  15. The Sanford underground research facility at Homestake

    SciTech Connect

    Heise, J.

    2014-06-24

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

  16. Leak detection for underground storage tanks

    SciTech Connect

    Durgin, P.B. ); Young, T.M.

    1993-01-01

    This symposium was held in New Orleans, Louisiana on January 29, 1992. The purpose of this conference was to provide a forum for exchange of state-of-the-art information on leak detection for underground storage tanks that leaked fuel. A widespread concern was protection of groundwater supplies from these leaking tanks. In some cases, the papers report on research that was conducted two or three years ago but has never been adequately directed to the underground storage tank leak-detection audience. In other cases, the papers report on the latest leak-detection research. The symposium was divided into four sessions that were entitled: Internal Monitoring; External Monitoring; Regulations and Standards; and Site and Risk Evaluation. Individual papers have been cataloged separately for inclusion in the appropriate data bases.

  17. Modeling of underground cathodic protection stray currents

    SciTech Connect

    Brichau, F.; Deconinck, J.; Driesens, T.

    1996-06-01

    OKAPPI, a numerical model for calculating cathodic protection (CP) problems involving underground pipelines, was extended to situations involving stray currents. Aboveground structures such as rail bars, power stations, electric train or tram vehicles, and overhead lifelines were integrated in the existing model in a straightforward and transparent way. As a result, it was shown that the model can be used to deal with most of the CP problems encountered with underground pipes. Situations where the sources of stray current, such as other CP installations or earthing systems located in the soil, were modeled and compared with theory. Cases involving the four standard kinds of CP interference (anodic, cathodic, combined, and induced) were calculated and discussed. A few complex situations involving overhead systems such as trams or railways were investigated. The theoretically expected phenomena were confirmed by the calculations.

  18. Reliability assessment of underground shaft closure

    SciTech Connect

    Fossum, A.F.

    1994-12-31

    The intent of the WIPP, being constructed in the bedded geologic salt deposits of Southeastern New Mexico, is to provide the technological basis for the safe disposal of radioactive Transuranic (TRU) wastes generated by the defense programs of the United States. In determining this technological basis, advanced reliability and structural analysis techniques are used to determine the probability of time-to-closure of a hypothetical underground shaft located in an argillaceous salt formation and filled with compacted crushed salt. Before being filled with crushed salt for sealing, the shaft provides access to an underground facility. Reliable closure of the shaft depends upon the sealing of the shaft through creep closure and recompaction of crushed backfill. Appropriate methods are demonstrated to calculate cumulative distribution functions of the closure based on laboratory determined random variable uncertainty in salt creep properties.

  19. Automatic three-dimensional underground mine mapping

    SciTech Connect

    Huber, D.F.; Vandapel, N.

    2006-01-15

    For several years, our research group has been developing methods for automated modeling of three-dimensional environments. In September 2002, we were given the opportunity to demonstrate our mapping capability in an underground coal mine. The opportunity arose as a result of the Quecreek mine accident, in which an inaccurate map caused miners to breach an abandoned, water-filled mine, trapping them for several days. Our field test illustrates the feasibility and potential of high-resolution 3D mapping of an underground coal mine using a cart-mounted 3D laser scanner In this paper we present our experimental setup, the automatic 3D modeling method used, and the results of the field test.

  20. Low-Power Multi-Aspect Space Radiation Detector System

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave; Freeman, Jon C.; Burkebile, Stephen P.

    2012-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of all of these detector technologies will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the deep space radiation field.

  1. Rotary steerable motor system for underground drilling

    DOEpatents

    Turner, William E.; Perry, Carl A.; Wassell, Mark E.; Barbely, Jason R.; Burgess, Daniel E.; Cobern, Martin E.

    2010-07-27

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  2. Rotary steerable motor system for underground drilling

    DOEpatents

    Turner, William E.; Perry, Carl A.; Wassell, Mark E.; Barbely, Jason R.; Burgess, Daniel E.; Cobern, Martin E.

    2008-06-24

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  3. Cathodic protection installation for underground storage tanks

    SciTech Connect

    Koszewski, L.

    1995-12-31

    The 1998 deadline is fast approaching for upgrading Underground Storage Tanks (USTs) with cathodic protection. With so many tanks requiring upgrades over the next few years, tank owners and operators will likely find a shrinking pool of quality cathodic protection installation contractors to perform the necessary upgrading. The proper installation of cathodic protection components is critical to long term effective operation of the cathodic protection system.

  4. Acoustic Impedance Measurement for Underground Surfaces.

    NASA Astrophysics Data System (ADS)

    Cockcroft, Paul William

    Available from UMI in association with The British Library. Requires signed TDF. This thesis investigates the measurement of acoustic impedance for surfaces likely to be found in underground coal mines. By introducing the concepts of industrial noise, the effects of noise on the ear and relevant legislation the need for the protection of workers can be appreciated. Representative acoustic impedance values are vital as input for existing computer models that predict sound levels in various underground environments. These enable the mining engineer to predict the noise level at any point within a mine in the vicinity of noisy machinery. The concepts of acoustic intensity and acoustic impedance are investigated and different acoustic impedance measurement techniques are detailed. The possible use of either an impedance tube or an intensity meter for these kinds of measurements are suggested. The problems with acoustic intensity and acoustic impedance measurements are discussed with reference to the restraints that an underground environment imposes on any measurement technique. The impedance tube method for work in an acoustics laboratory is shown and the theory explained, accompanied by a few representative results. The use of a Metravib intensity meter in a soundproof chamber to gain impedance values is explained in detail. The accompanying software for the analysis of the two measured pressure signals is shown as well as the actual results for a variety of test surfaces. The use of a Nagra IV-SJ tape recorder is investigated to determine the effect of recording on the measurement and subsequent analysis of the input signals, particularly with reference to the phase difference introduced between the two simultaneous pressure signals. The subsequent use of a Norwegian Electronic intensity meter, including a proposal for underground work, is shown along with results for tests completed with this piece of equipment. Finally, recommendations are made on how to link up

  5. Radio Active Waste Management: Underground Repository Method

    SciTech Connect

    Rudrapati Sandesh Kumar; Payal Shirvastava

    2002-07-01

    Finding a solution for nuclear waste is a key issue, not only for the protection of the environment but also for the future of the nuclear industry. Ten years from now, when the first decisions for the replacement of existing nuclear power plants will have to be made, The general public will require to know the solution for nuclear waste before accepting new nuclear plants. In other words, an acceptable solution for the management of nuclear waste is a prerequisite for a renewal of nuclear power. Most existing wastes are being stored in safe conditions waiting for permanent solution, with some exceptions in the former Eastern Bloc. Temporary surface or shallow storage is a well known technique widely used all over the world. A significant research effort has been made by the author of this paper in the direction of underground repository. The underground repository appears to be a good solution. Trying to transform dangerous long lived radionuclides into less harmful short lived or stable elements is a logical idea. It is indeed possible to incinerate or transmute heavy atoms of long lived elements in fast breeder reactors or even in pressurised or boiling water reactors. There are also new types of reactors which could be used, namely accelerator driven systems. High level and long lived wastes (spent fuel and vitrified waste) contain a mixture of high activity (heat producing) short lived nuclides and low activity long lived alpha emitting nuclides. To avoid any alteration due to temperature of the engineered or geological barrier surrounding the waste underground, it is necessary to store the packages on the surface for several decades (50 years or more) to allow a sufficient temperature decrease before disposing of them underground. In all cases, surface (or shallow) storage is needed as a temporary solution. This paper gives a detailed and comprehensive view of the Deep Geological Repository, providing a pragmatic picture of the means to make this method, a

  6. Sixth underground coal-conversion symposium

    SciTech Connect

    Not Available

    1980-01-01

    The sixth annual underground coal conversion symposium was held at Shangri-la near Afton, Oklahoma, July 13 to 17, 1980. Sessions were developed to: Doe Field Programs, Major Industry Activity, Mathematical Modeling, Laboratory Studies, Environmental Studies, Economics, Instruments and Controls, and General Topics. Fifty-two papers from the proceedings have been entered individually into EDB and ERA. Thirteen papers had been entered previously from other sources. (LTN)

  7. Laboratory Investigation of Containment of Underground Explosions.

    DTIC Science & Technology

    1983-12-01

    the mechanics of containing gases in cavities formed by underground nuclear explosions. One experimental technique uses constant flow rate...30 2.3 Containment Experiment Apparatus...........................31 2.4 Constant Flow -Rate Hydrofracture System ................... 32 2.5 Overall...charge size (3/8 gram PETN), overburden pressure [1000 psi (6.895 MPa). viscosity of the hydrofracture fluid (I centipoise), and rate of fluid 0 flow

  8. Radioxenon Production from an Underground Nuclear Detonation

    NASA Astrophysics Data System (ADS)

    Sun, Y.

    2016-12-01

    The Comprehensive Nuclear Test Ban Treaty of 1996 has sparked the attention of many nations around the world for detecting Underground Nuclear Explosions (UNEs). The radioisotopes, specifically isotopes of xenon, Xe-131m, Xe-133m, Xe-133, and Xe-135, are being studied using their half-lives and decay networks for distinguishing civilian nuclear applications from UNEs. This study aims to simulate radioxenon concentrations and their uncertainties using analytical solutions of radioactive decay networks.

  9. Underground communications and tracking technology advances

    SciTech Connect

    Fiscor, S.

    2007-03-15

    As the June 2009 deadline set by the MINER Act grows near, several technologies have emerged as possible options for communicating and tracking underground coal miners in the event of an emergency or disaster. NIOSH is currently deciding how best to invest $10 million assigned by Congress under an Emergency Supplementary Appropriations Act (ESA) to research and develop mine safety technology. Medium and ultra high frequency (UHF) systems seem to be leading the pack with radio frequency identification (RFID) tags serving as the tracking system. Wireless mesh systems can serve as a communications infrastructure and they can do much more. Even more technologies continue to emerge, such as inertial navigation tracking systems. Mines are discovering the wonders of modern voice and data communications underground. Still no one know if it is economically practical to design a system that will function after a coal mine explosion. From the nineteen systems submitted to MSHA's request for information (RFI), six systems were selected that represented most of the technologies that had been proposed: the Rajant Breadcrumb, Innovative Wireless, Concurrent Technologies/Time Domain, Transtek, Gamma Services, and the Kutta Consulting systems. They were tested at CONSOL Energy's McElroy mine in April 2006. MSHA felt that all of those systems needed a significant amount of work before they were ready for use in a underground coal mining environment. The agency continues to work with these, and other manufacturers, to assist in arranging for field demonstration and then to gain MSHA approval.

  10. The Sanford Underground Research Facility at Homestake

    NASA Astrophysics Data System (ADS)

    Heise, J.

    2015-08-01

    The former Homestake gold mine in Lead, South Dakota, has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability.

  11. Underground Nuclear Astrophysics - from LUNA to CASPAR

    NASA Astrophysics Data System (ADS)

    Strieder, Frank; Caspar Collaboration

    2015-04-01

    It is in the nature of astrophysics that many of the processes and objects are physically inaccessible. Thus, it is important that those aspects that can be studied in the laboratory are well understood. Nuclear reactions are such quantities that can be partly measured in the laboratory. These reactions influence the nucleosynthesis of the elements in the Big Bang as well as in all objects formed thereafter, and control the associated energy generation and evolution of stars. Since 20 years LUNA (Laboratory for Underground Nuclear Astrophysics) has been measuring cross sections relevant for hydrogen burning in the Gran Sasso Laboratory and demonstrated the research potential of an underground accelerator facility. Unfortunately, the number of reactions is limited by the energy range accessible with the 400 kV LUNA accelerator. The CASPAR (Compact Accelerator System for Performing Astrophysical Research) Collaboration will implement a high intensity 1 MV accelerator at the Sanford Underground Research Facility (SURF) and overcome the current limitation at LUNA. This project will primarily focus on the neutron sources for the so-called s-process, e.g. 13 C(α , n) 16 O and 22 Ne(α , n) 25 Mg , and lead to unprecedented measurements compared to previous studies.

  12. The Sanford Underground Research Facility at Homestake

    NASA Astrophysics Data System (ADS)

    Heise, J.

    2015-05-01

    The former Homestakegold mine in Lead, South Dakota has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinolessdouble-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low- background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long- baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability.

  13. The Sanford Underground Research Facility at Homestake

    SciTech Connect

    Heise, J.

    2015-08-17

    The former Homestake gold mine in Lead, South Dakota, has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability.

  14. Intelligent Scheduling for Underground Mobile Mining Equipment.

    PubMed

    Song, Zhen; Schunnesson, Håkan; Rinne, Mikael; Sturgul, John

    2015-01-01

    Many studies have been carried out and many commercial software applications have been developed to improve the performances of surface mining operations, especially for the loader-trucks cycle of surface mining. However, there have been quite few studies aiming to improve the mining process of underground mines. In underground mines, mobile mining equipment is mostly scheduled instinctively, without theoretical support for these decisions. Furthermore, in case of unexpected events, it is hard for miners to rapidly find solutions to reschedule and to adapt the changes. This investigation first introduces the motivation, the technical background, and then the objective of the study. A decision support instrument (i.e. schedule optimizer for mobile mining equipment) is proposed and described to address this issue. The method and related algorithms which are used in this instrument are presented and discussed. The proposed method was tested by using a real case of Kittilä mine located in Finland. The result suggests that the proposed method can considerably improve the working efficiency and reduce the working time of the underground mine.

  15. Intelligent Scheduling for Underground Mobile Mining Equipment

    PubMed Central

    Song, Zhen; Schunnesson, Håkan; Rinne, Mikael; Sturgul, John

    2015-01-01

    Many studies have been carried out and many commercial software applications have been developed to improve the performances of surface mining operations, especially for the loader-trucks cycle of surface mining. However, there have been quite few studies aiming to improve the mining process of underground mines. In underground mines, mobile mining equipment is mostly scheduled instinctively, without theoretical support for these decisions. Furthermore, in case of unexpected events, it is hard for miners to rapidly find solutions to reschedule and to adapt the changes. This investigation first introduces the motivation, the technical background, and then the objective of the study. A decision support instrument (i.e. schedule optimizer for mobile mining equipment) is proposed and described to address this issue. The method and related algorithms which are used in this instrument are presented and discussed. The proposed method was tested by using a real case of Kittilä mine located in Finland. The result suggests that the proposed method can considerably improve the working efficiency and reduce the working time of the underground mine. PMID:26098934

  16. Modelling of Train Noise in Underground Stations

    NASA Astrophysics Data System (ADS)

    Kang, J.

    1996-08-01

    TNS, a computer model for predicting the temporal and spatial distribution of train noise in underground stations, is developed. The train is regarded as a series of sections, and the train noise distribution in a station is calculated by inputting the sound attenuation from a train section source in the underground system (i.e., the station and tunnel). This input can be obtained by physical scale modelling. The prediction by TNS in an underground station in London shows good agreement with site measurements. A series of computations in the station demonstrates that: (1) the overall level of the train noise in the area near the end walls is slightly less than the other areas; (2) some conventional architectural acoustic treatments in the station are effective when a train is still in the tunnel but not as helpful when the train is already in the station; and (3) train noise has a significant effect on the speech intelligibility of public address systems as measured by the Speech Transmission Index (STI).

  17. Liquid Scintillation Detectors for High Energy Neutrinos

    SciTech Connect

    Smith, Stefanie N.; Learned, John G.

    2010-03-30

    Large open volume (not segmented) liquid scintillation detectors have been generally dedicated to low energy neutrino measurements, in the MeV energy region. We describe the potential employment of large detectors (>1 kiloton) for studies of higher energy neutrino interactions, such as cosmic rays and long-baseline experiments. When considering the physics potential of new large instruments the possibility of doing useful measurements with higher energy neutrino interactions has been overlooked. Here we take into account Fermat's principle, which states that the first light to reach each PMT will follow the shortest path between that PMT and the point of origin. We describe the geometry of this process, and the resulting wavefront, which we are calling the 'Fermat surface', and discuss methods of using this surface to extract directional track information and particle identification. This capability may be demonstrated in the new long-baseline neutrino beam from Jaeri accelerator to the KamLAND detector in Japan. Other exciting applications include the use of Hanohano as a movable long-baseline detector in this same beam, and LENA in Europe for future long-baseline neutrino beams from CERN. Also, this methodology opens up the question as to whether a large liquid scintillator detector should be given consideration for use in a future long-baseline experiment from Fermilab to the DUSEL underground laboratory at Homestake.

  18. RESEARCH INTO EVALUATIONS OF UNDERGROUND SPACE ACCORDING TO QOL - CENTERING ON THE NAGOYA UNDERGROUND METRO -

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Naomi; Wake, Tenji; Mita, Takeshi; Wake, Hiromi

    The present research investigates issues concerning space underground and concerns itself with psychological evaluations of comfort in underground railway premises from the perspective of the users of such premises. The actual psychological evaluation was done on the premises of nine Nagoya City underground stations. Four factors were extracted from the results obtained. The first factor is transmission information, the second factor is the comfort of the environment, the third is sense of insecurity, and the fourth, convenience. A covariance structure analysis was carried out to see if there was any relationship between these factors and the research participants' age and frequency of underground usage. It was found from this that the first element is related to the frequency with which the participants in the research use the underground trains. When the frequency of use is high, transmission of information is high. A relationship was also found between aging and factors one and four. The older the person the worse information transmission is and the more dependent they are on convenience, such as, for example, in terms of elevators and escalators.

  19. [Analysis of the natural radioactivity due to the radon gas in the underground of Rome].

    PubMed

    Magrini, A; Grana, M; Gianello, G; La Bua, R; Laurini, C; Messina, A; Pagliari, E; Bergamaschi, A

    2007-01-01

    Radon is a decay product of 238Uranium which is classified by WHO/IARC as group 1 carcinogen, given its causal relationship with lung neoplasia. An annual concentration of this gas higher than 500 Bq/m3 in workplace is considered potentially dangerous by the italian legislation. No data are currently available on radon level in underground tunnels, which are a potentially important source of exposure both for workers and travellers. Measurements have been performed in a station and within the trains. Two months integrated measures, and 5 days continuous (hourly) assessments have been performed. Integrated measurements have been performed by means of 12 passive dosimeters, containing a detector made of CR39 (polymeric type), whereas active scintillation-type dosimeters have been employed for continuous assessments. Two months integrated measures: radon level in the station was 665 +/- 71 Bq/m3, whereas values within the trains ranged between 96 and 117 Bq/m3. Continuous measurements: Mean radon level during work activities was 783 +/- 536 Bq/m3 and thereafter it rose to 850 +/- 131 Bq/m3 Radon nelle levels in underground tunnels may exceed attention levels, whereas within trains they remain well below these levels. Further studies focused to assess the risk of underground employers are needed.

  20. Occupational heat strain in a hot underground metal mine.

    PubMed

    Lutz, Eric A; Reed, Rustin J; Turner, Dylan; Littau, Sally R

    2014-04-01

    In a hot underground metal mine, this study evaluated the relationship between job task, physical body type, work shift, and heat strain. Thirty-one miners were evaluated during 98 shifts while performing deep shaft-sinking tasks. Continuous core body temperature, heart rate, pre- and postshift urine specific gravity (USG), and body mass index were measured. Cutting and welding tasks were associated with significantly (P < 0.05) increased core body temperature, maximum heart rate, and increased postshift urine specific gravity. Miners in the obese level II and III body mass index categories, as well as those working night shift, had lower core body temperatures (P < 0.05). This study confirms that job task, body type, and shift are risk factors for heat strain.