Hawking radiation, Unruh radiation, and the equivalence principle.
Singleton, Douglas; Wilburn, Steve
2011-08-19
We compare the response function of an Unruh-DeWitt detector for different space-times and different vacua and show that there is a detailed violation of the equivalence principle. In particular comparing the response of an accelerating detector to a detector at rest in a Schwarzschild space-time we find that both detectors register thermal radiation, but for a given, equivalent acceleration the fixed detector in the Schwarzschild space-time measures a higher temperature. This allows one to locally distinguish the two cases. As one approaches the horizon the two temperatures have the same limit so that the equivalence principle is restored at the horizon. © 2011 American Physical Society
Neutron responsive self-powered radiation detector
Brown, Donald P.; Cannon, Collins P.
1978-01-01
An improved neutron responsive self-powered radiation detector is disclosed in which the neutron absorptive central emitter has a substantially neutron transmissive conductor collector sheath spaced about the emitter and the space between the emitter and collector sheath is evacuated.
NASA Technical Reports Server (NTRS)
Soli, G. A.; Blaes, B. R.; Beuhler, M. G.
1994-01-01
Custom proton sensitive SRAM chips are being flown on the BMDO Clementine missions and Space Technology Research Vehicle experiments. This paper describes the calibration procedure for the SRAM proton detectors and their response to the space environment.
Conceptual design of a hybrid Ge:Ga detector array
NASA Technical Reports Server (NTRS)
Parry, C. M.
1984-01-01
For potential applications in space infrared astronomy missions such as the Space Infrared Telescope Facility and the Large Deployable Reflector, integrated arrays of long-wavelength detectors are desired. The results of a feasibility study which developed a design for applying integrated array techniques to a long-wavelength (gallium-doped germanium) material to achieve spectral coverage between 30 and 200 microns are presented. An approach which builds up a two-dimensional array by stacking linear detector modules is presented. The spectral response of the Ge:Ga detectors is extended to 200 microns by application of uniaxial stress to the stack of modules. The detectors are assembled with 1 mm spacing between the elements. Multiplexed readout of each module is accomplished with integration sampling of a metal-oxide-semiconductor (MOS) switch chip. Aspects of the overall design, including the anticipated level of particle effects on the array in the space environment, a transparent electrode design for 200 microns response, estimates of optical crosstalk, and mechanical stress design calculations are included.
Funsten, Herbert O.; Harper, Ronnie W.; Dors, Eric E.; ...
2015-10-02
Channel electron multiplier (CEM) and microchannel plate (MCP) detectors are routinely used in space instrumentation for measurement of space plasmas. Here, our goal is to understand the relative sensitivities of these detectors to penetrating radiation in space, which can generate background counts and shorten detector lifetime. We use 662 keV γ-rays as a proxy for penetrating radiation such as γ-rays, cosmic rays, and high-energy electrons and protons that are ubiquitous in the space environment. We find that MCP detectors are ~20 times more sensitive to 662 keV γ-rays than CEM detectors. This is attributed to the larger total area ofmore » multiplication channels in an MCP detector that is sensitive to electronic excitation and ionization resulting from the interaction of penetrating radiation with the detector material. In contrast to the CEM detector, whose quantum efficiency ε γ for 662 keVγ -rays is found to be 0.00175 and largely independent of detector bias, the quantum efficiency of the MCP detector is strongly dependent on the detector bias, with a power law index of 5.5. Lastly, background counts in MCP detectors from penetrating radiation can be reduced using MCP geometries with higher pitch and smaller channel diameter.« less
Low-background detector arrays for infrared astronomy
NASA Technical Reports Server (NTRS)
Mccreight, C. R.; Estrada, J. A.; Goebel, J. H.; Mckelvey, M. E.; Mckibbin, D. D.; Mcmurray, R. E., Jr.; Weber, T. T.
1989-01-01
The status of a program which develops and characterizes integrated infrared (IR) detector array technology for space astronomical applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, coupled to silicon readout electronics. Low-background laboratory test results include measurements of responsivity, noise, dark current, temporal response, and the effects of gamma-radiation. In addition, successful astronomical imagery has been obtained on some arrays from this program. These two aspects of the development combine to demonstrate the strong potential for integrated array technology for IR space astronomy.
The development of infrared detectors and mechanisms for use in future infrared space missions
NASA Technical Reports Server (NTRS)
Houck, James R.
1995-01-01
The environment above earth's atmosphere offers significant advantages in sensitivity and wavelength coverage in infrared astronomy over ground-based observatories. In support of future infrared space missions, technology development efforts were undertaken to develop detectors sensitive to radiation between 2.5 micron and 200 micron. Additionally, work was undertaken to develop mechanisms supporting the imaging and spectroscopy requirements of infrared space missions. Arsenic-doped-Silicon and Antimony-doped-Silicon Blocked Impurity Band detectors, responsive to radiation between 4 micron and 45 micron, were produced in 128x128 picture element arrays with the low noise, high sensitivity performance needed for space environments. Technology development continued on Gallium-doped-Germanium detectors (for use between 80 micron and 200 micron), but were hampered by contamination during manufacture. Antimony-doped-Indium detectors (for use between 2.5 micron and 5 micron) were developed in a 256x256 pixel format with high responsive quantum efficiency and low dark current. Work began on adapting an existing cryogenic mechanism design for space-based missions; then was redirected towards an all-fixed optical design to improve reliability and lower projected mission costs.
INTEGRAL/SPI γ-ray line spectroscopy. Response and background characteristics
NASA Astrophysics Data System (ADS)
Diehl, Roland; Siegert, Thomas; Greiner, Jochen; Krause, Martin; Kretschmer, Karsten; Lang, Michael; Pleintinger, Moritz; Strong, Andrew W.; Weinberger, Christoph; Zhang, Xiaoling
2018-03-01
Context. The space based γ-ray observatory INTEGRAL of the European Space Agency (ESA) includes the spectrometer instrument "SPI". This is a coded mask telescope featuring a 19-element Germanium detector array for high-resolution γ-ray spectroscopy, encapsulated in a scintillation detector assembly that provides a veto for background from charged particles. In space, cosmic rays irradiate spacecraft and instruments, which, in spite of the vetoing detectors, results in a large instrumental background from activation of those materials, and leads to deterioration of the charge collection properties of the Ge detectors. Aim. We aim to determine the measurement characteristics of our detectors and their evolution with time, that is, their spectral response and instrumental background. These incur systematic variations in the SPI signal from celestial photons, hence their determination from a broad empirical database enables a reduction of underlying systematics in data analysis. For this, we explore compromises balancing temporal and spectral resolution within statistical limitations. Our goal is to enable modelling of background applicable to spectroscopic studies of the sky, accounting separately for changes of the spectral response and of instrumental background. Methods: We use 13.5 years of INTEGRAL/SPI data, which consist of spectra for each detector and for each pointing of the satellite. Spectral fits to each such spectrum, with independent but coherent treatment of continuum and line backgrounds, provides us with details about separated background components. From the strongest background lines, we first determine how the spectral response changes with time. Applying symmetry and long-term stability tests, we eliminate degeneracies and reduce statistical fluctuations of background parameters, with the aim of providing a self-consistent description of the spectral response for each individual detector. Accounting for this, we then determine how the instrumental background components change in intensities and other characteristics, most-importantly their relative distribution among detectors. Results: Spectral resolution of Ge detectors in space degrades with time, up to 15% within half a year, consistently for all detectors, and across the SPI energy range. Semi-annual annealing operations recover these losses, yet there is a small long-term degradation. The intensity of instrumental background varies anti-correlated to solar activity, in general. There are significant differences among different lines and with respect to continuum. Background lines are found to have a characteristic, well-defined and long-term consistent intensity ratio among detectors. We use this to categorise lines in groups of similar behaviour. The dataset of spectral-response and background parameters as fitted across the INTEGRAL mission allows studies of SPI spectral response and background behaviour in a broad perspective, and efficiently supports precision modelling of instrumental background.
Development of compact particle detectors for space based instruments
NASA Astrophysics Data System (ADS)
Barner, Lindsey; Grove, Andrew; Mohler, Jacob; Sisson, Caleb; Roth, Alex; Kryemadhi, Abaz
2017-01-01
The Silicon Photomultipliers (SiPMs) are new photon-detectors which have been increasingly used in particle physics. Their small size, good single photon resolution, simple readout, and immunity to magnetic fields offers benefits compared to traditional photomultipliers. LYSO and CeBr3 crystals are relatively new scintillators with high stopping power, very good light yield and fast decay time. The response of these detectors to low energy gamma rays will be presented. NASA Pennsylvania Space Grant Consortium.
Fast, Large-Area, Wide-Bandgap UV Photodetector for Cherenkov Light Detection
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.
2013-01-01
Due to limited resources available for power and space for payloads, miniaturizing and integrating instrumentation is a high priority for addressing the challenges of manned and unmanned deep space missions to high Earth orbit (HEO), near Earth objects (NEOs), Lunar and Martian orbits and surfaces, and outer planetary systems, as well as improvements to high-altitude aircraft safety. New, robust, and compact detectors allow future instrumentation packages more options in satisfying specific mission goals. A solid-state ultraviolet (UV) detector was developed with a theoretical fast response time and large detection area intended for application to Cherenkov detectors. The detector is based on the wide-bandgap semiconductor zinc oxide (ZnO), which in a bridge circuit can detect small, fast pulses of UV light like those required for Cherenkov detectors. The goal is to replace the role of photomultiplier tubes in Cherenkov detectors with these solid-state devices, saving on size, weight, and required power. For improving detection geometry, a spherical detector to measure high atomic number and energy (HZE) ions from any direction has been patented as part of a larger space radiation detector system. The detector will require the development of solid-state UV photodetectors fast enough (2 ns response time or better) to detect the shockwave of Cherenkov light emitted as the ions pass through a quartz, sapphire, or acrylic ball. The detector must be small enough to fit in the detector system structure, but have an active area large enough to capture enough Cherenkov light from the sphere. The detector is fabricated on bulk single-crystal undoped ZnO. Inter - digitated finger electrodes and contact pads are patterned via photolithography, and formed by sputtered metal of silver, platinum, or other high-conductivity metal.
NASA Technical Reports Server (NTRS)
Howell, L. W.
2001-01-01
A simple power law model consisting of a single spectral index (alpha-1) is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at knee energy (E(sub k)) to a steeper spectral index alpha-2 > alpha-1 above E(sub k). The maximum likelihood procedure is developed for estimating these three spectral parameters of the broken power law energy spectrum from simulated detector responses. These estimates and their surrounding statistical uncertainty are being used to derive the requirements in energy resolution, calorimeter size, and energy response of a proposed sampling calorimeter for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). This study thereby permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.
Stressed photoconductive detector for far-infrared space applications
NASA Technical Reports Server (NTRS)
Wang, J.-Q.; Richards, P. L.; Beeman, J. W.; Haller, E. E.
1987-01-01
An optimized leaf-spring apparatus for applying uniaxial stress to a Ge:Ga far-IR photoconductor has been designed and tested. This design has significant advantages for space applications which require high quantum efficiency and stable operation over long periods of time. The important features include adequate spring deflection with relatively small overall size, torque-free stress, easy measurement of applied stress, and a detector configuration with high responsivity. One-dimensional arrays of stressed photoconductors can be constructed using this design. A peak responsivity of 38 A/W is achieved in a detector with a cutoff wavelength of 200 microns, which was operated at a temperature of 2.0 K and a bias voltage equal to one-half of the breakdown voltage.
Development of the focal plane PNCCD camera system for the X-ray space telescope eROSITA
NASA Astrophysics Data System (ADS)
Meidinger, Norbert; Andritschke, Robert; Ebermayer, Stefanie; Elbs, Johannes; Hälker, Olaf; Hartmann, Robert; Herrmann, Sven; Kimmel, Nils; Schächner, Gabriele; Schopper, Florian; Soltau, Heike; Strüder, Lothar; Weidenspointner, Georg
2010-12-01
A so-called PNCCD, a special type of CCD, was developed twenty years ago as focal plane detector for the XMM-Newton X-ray astronomy mission of the European Space Agency ESA. Based on this detector concept and taking into account the experience of almost ten years of operation in space, a new X-ray CCD type was designed by the ‘MPI semiconductor laboratory’ for an upcoming X-ray space telescope, called eROSITA (extended Roentgen survey with an imaging telescope array). This space telescope will be equipped with seven X-ray mirror systems of Wolter-I type and seven CCD cameras, placed in their foci. The instrumentation permits the exploration of the X-ray universe in the energy band from 0.3 up to 10 keV by spectroscopic measurements with a time resolution of 50 ms for a full image comprising 384×384 pixels. Main scientific goals are an all-sky survey and investigation of the mysterious ‘Dark Energy’. The eROSITA space telescope, which is developed under the responsibility of the ‘Max-Planck-Institute for extraterrestrial physics’, is a scientific payload on the new Russian satellite ‘Spectrum-Roentgen-Gamma’ (SRG). The mission is already approved by the responsible Russian and German space agencies. After launch in 2012 the destination of the satellite is Lagrange point L2. The planned observational program takes about seven years. We describe the design of the eROSITA camera system and present important test results achieved recently with the eROSITA prototype PNCCD detector. This includes a comparison of the eROSITA detector with the XMM-Newton detector.
NASA Astrophysics Data System (ADS)
Vostrukhin, A. A.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Malakhov, A. V.; Mitrofanov, I. G.; Mokrousov, M. I.; Tomilina, T. M.; Bobrovnitskiy, Yu. I.; Grebennikov, A. S.; Laktionova, M. M.; Bakhtin, B. N.; Sotov, A. V.
2018-05-01
The results of testing a number of space-based detectors that contain PMTs or high-voltage electrodes for the noise from the microphonics that occurs in the signal path due to external mechanical action have been presented. A method for the vibration isolation of instruments aboard a spacecraft has been proposed to reduce their responsivity to vibrations.
NASA Technical Reports Server (NTRS)
Sburlan, S. E.; Farr, W. H.
2011-01-01
Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.
The Application of Neutron Transport Green's Functions to Threat Scenario Simulation
NASA Astrophysics Data System (ADS)
Thoreson, Gregory G.; Schneider, Erich A.; Armstrong, Hirotatsu; van der Hoeven, Christopher A.
2015-02-01
Radiation detectors provide deterrence and defense against nuclear smuggling attempts by scanning vehicles, ships, and pedestrians for radioactive material. Understanding detector performance is crucial to developing novel technologies, architectures, and alarm algorithms. Detection can be modeled through radiation transport simulations; however, modeling a spanning set of threat scenarios over the full transport phase-space is computationally challenging. Previous research has demonstrated Green's functions can simulate photon detector signals by decomposing the scenario space into independently simulated submodels. This paper presents decomposition methods for neutron and time-dependent transport. As a result, neutron detector signals produced from full forward transport simulations can be efficiently reconstructed by sequential application of submodel response functions.
Preparation and Current Situation of Proton-ICCHIBAN-2 Experiment
NASA Astrophysics Data System (ADS)
Uchihori, Yukio; Yasuda, Nakahiro; Kitamura, H.; Kodaira, S.; Benton, Eric; Hajek, Michael; Berger, Thomas; Jadrnickova, Iva; Ploc, Ondrej
The ICCHIBAN (Inter Comparison for Cosmicrays with Heavy Ion Beams at NIRS) working group has organized and performed various ICCHIBAN runs for active and passive radiation detectors at HIMAC, NIRS, Japan, Loma Linda and Brookhaven, USA and CERN, Switzer-land since the start of the ICCHIBAN project in the year 2002. One of the main focus points of this project is to understand the response of the applied detector systems (either active or passive) for personal and area dosimetry in space environment to a simulated sub-set of the space radiation environment, focusing on the heavy ion response. This is of special importance for the further intercomparison of space radiation data gathered by various international in-stitutes and universities for space radiation experiments as MATROSHKA, DOSIS, DOBIES, BRADOS, MATROSHKA-R etc. The ICCHIBAN experiments have created a big database of response data, especially for all the different passive radiation detectors and detector materials (Thermoluminescence (TLD) and Optical Luminescence (OSL)) over the last 7 years, resulting in a better understanding of how and why we still have differences in the measurement results from common space experiments -as the Space ICCHIBAN 2 experiment. One of the reasons why for the differences in the TLD/OSL results is the lack of intercomparison and response data for low LET particles up to around 10 keV/m, especially protons. Due to the fact, that the main contribution to absorbed dose in low earth orbit is due to protons, the ICCHIBAN working group has started the set-up of a Proton ICCHIBAN intercomparison experiment at NIRS. The Proton ICCHIBAN run has been performed at the cyclotron at NIRS, Chiba in February 2010. 15 institutes from 12 countries sent or brought their dosimeters and exposed them to 40 and 70 MeV proton beams with the same doses and exposure conditions. In this paper, the experiment procedures and current situation of the intercomparision experiments will be shown.
Research on vacuum utraviolet calibration technology
NASA Astrophysics Data System (ADS)
Wang, Jiapeng; Gao, Shumin; Sun, Hongsheng; Chen, Yinghang; Wei, Jianqiang
2014-11-01
Importance of extreme ultraviolet (EUV) and far ultraviolet (FUV) calibration is growing fast as vacuum ultraviolet payloads are wildly used in national space plan. A calibration device is established especially for the requirement of EUV and FUV metrology and measurement. Spectral radiation and detector relative spectral response at EUV and FUV wavelengths can be calibrated with accuracy of 26% and 20%, respectively. The setup of the device, theoretical model and value retroactive method are introduced and measurement of detector relative spectral response from 30 nm to 200 nm is presented in this paper. The calibration device plays an important role in national space research.
Infrared fiber-optic fire sensors - Concepts and designs for Space Station applications
NASA Technical Reports Server (NTRS)
Tapphorn, Ralph M.; Porter, Alan R.
1990-01-01
Various design configurations used for testing IR fiber-optic (IFO) fire-sensor concepts are presented. Responsibility measurements conducted to select the best concept are reviewed. The results indicate that IFO fire-sensor systems based on distributed fiber sensors are feasible for future aerospace applications. For Space Station Freedom, these systems offer alternative fire detectors for monitoring areas within equipment or stage compartments where the ventilation may be inadequate for proper operation of smoke detectors. They also allow a large number of areas to be monitored by a single central detector unit, which reduces the associated cost and weight.
Fundamental Limits on the Imaging and Polarisation Properties of Far-Infrared Detectors
NASA Technical Reports Server (NTRS)
Thomas, Christopher N.; Withington, Stafford; Chuss, David T.; Wollack, Edward J.; Moseley, S. Harvey
2009-01-01
Far-infrared bolometric detectors are used extensively in ground-based and space-borne astronomy, and thus it is important to understand their optical behaviour precisely. We have studied the intensity and polarisation response of free-space bolometers, and shown that when the size of the absorber is reduced below a wavelength, the response changes from being that of a classical optical detector to that of a few-mode antenna. We have calculated the modal content of the reception patterns, and found that for any volumetric detector having a side length of less than a wavelength, three magnetic and three electric dipoles characterize the behaviour. The size of the absorber merely determines the relative strengths of the contributions. The same formalism can be applied to thin-film absorbers, where the induced current is forced to flow in a plane. In this case, one magnetic and two electric dipoles characterize the behaviour. The ability to model easily the intensity, polarisation, and straylight characteristics of electrically-small detectors will be of great value when designing high-performance polarimetric imaging arrays.
ART-XC/SRG: joint calibration of mirror modules and x-ray detectors
NASA Astrophysics Data System (ADS)
Tkachenko, A.; Pavlinsky, M.; Levin, V.; Akimov, V.; Krivchenko, A.; Rotin, A.; Kuznetsova, M.; Lapshov, I.; Yaskovich, A.; Oleinikov, V.; Gubarev, M.; Ramsey, B.
2017-08-01
The Astronomical Roentgen Telescope - X-ray Concentrator (ART-XC) is a hard x-ray instrument with energy response 6-30 keV that will to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. ART-XC consists of seven co-aligned mirror modules coupled with seven focal plane CdTe double-sided strip detectors. The mirror modules had been fabricated and calibrated at the NASA Marshall Space Flight Center (MSFC). The Russian Space Research Institute (IKI) has developed and tested the X-ray detectors. The joint x-ray calibration of the mirror modules and focal plane detectors was carried out at the IKI test facility. Details of the calibration procedure and an overview of the results are presented here.
NASA Technical Reports Server (NTRS)
Youngblood, Wallace W.
1990-01-01
Viewgraphs of increased fire and toxic contaminant detection responsivity by use of distributed, aspirating sensors for space station are presented. Objectives of the concept described are (1) to enhance fire and toxic contaminant detection responsivity in habitable regions of space station; (2) to reduce system weight and complexity through centralized detector/monitor systems; (3) to increase fire signature information from selected locations in a space station module; and (4) to reduce false alarms.
High operating temperature nBn detector with monolithically integrated microlens
NASA Astrophysics Data System (ADS)
Soibel, Alexander; Keo, Sam A.; Fisher, Anita; Hill, Cory J.; Luong, Edward; Ting, David Z.; Gunapala, Sarath D.; Lubyshev, Dmitri; Qiu, Yueming; Fastenau, Joel M.; Liu, Amy W. K.
2018-01-01
We demonstrate an InAsSb nBn detector monolithically integrated with a microlens fabricated on the back side of the detector. The increase in the optical collection area of the detector resulted in a five-fold enhancement of the responsivity to Rp = 5.5 A/W. The responsivity increases further to Rp = 8.5 A/W with an antireflection coating. These 4.5 μm cut-off wavelength antireflection coated detectors with microlenses exhibited a detectivity of D* (λ) = 2.7 × 1010 cmHz0.5/W at T = 250 K, which can be reached easily with a single-stage thermoelectric cooler or with a passive radiator in the space environment. This represents a 25 K increase in the operating temperature of these devices compared to the uncoated detectors without an integrated microlens.
Verification of Dosimetry Measurements with Timepix Pixel Detectors for Space Applications
NASA Technical Reports Server (NTRS)
Kroupa, M.; Pinsky, L. S.; Idarraga-Munoz, J.; Hoang, S. M.; Semones, E.; Bahadori, A.; Stoffle, N.; Rios, R.; Vykydal, Z.; Jakubek, J.;
2014-01-01
The current capabilities of modern pixel-detector technology has provided the possibility to design a new generation of radiation monitors. Timepix detectors are semiconductor pixel detectors based on a hybrid configuration. As such, the read-out chip can be used with different types and thicknesses of sensors. For space radiation dosimetry applications, Timepix devices with 300 and 500 microns thick silicon sensors have been used by a collaboration between NASA and University of Houston to explore their performance. For that purpose, an extensive evaluation of the response of Timepix for such applications has been performed. Timepix-based devices were tested in many different environments both at ground-based accelerator facilities such as HIMAC (Heavy Ion Medical Accelerator in Chiba, Japan), and at NSRL (NASA Space Radiation Laboratory at Brookhaven National Laboratory in Upton, NY), as well as in space on board of the International Space Station (ISS). These tests have included a wide range of the particle types and energies, from protons through iron nuclei. The results have been compared both with other devices and theoretical values. This effort has demonstrated that Timepix-based detectors are exceptionally capable at providing accurate dosimetry measurements in this application as verified by the confirming correspondence with the other accepted techniques.
Evaluation of Space Radiation Effects on HgCdTe Avalanche Photodiode Arrays for Lidar Applications
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Abshire, James B.; Lauenstein, Jean-Marie; Sullivan, William III; Beck, Jeff; Hubbs, John E.
2018-01-01
We report the results from proton and gamma ray radiation testing of HgCdTe avalanche photodiode (APD) arrays developed by Leonardo DRS for space lidar detectors. We tested these devices with both approximately 60 MeV protons and gamma rays, with and without the read out integrated circuit (ROIC). We also measured the transient responses with the device fully powered and with the APD gain from unity to greater than 1000. The detectors produced a large current impulse in response to each proton hit but the response completely recovered within 1 microsecond. The devices started to have persistent damage at a proton fluence of 7e10 protons/cm2, equivalent to 10 krad(Si) total ionization dose. The dark current became much higher after the device was warmed to room temperature and cooled to 80K again, but it completely annealed after baking at 85 C for several hours. These results showed the HgCdTe APD arrays are suitable for use in space lidar for typical Earth orbiting and planetary missions provided that provisions are made to heat the detector chip to 85 C for several hours after radiation damage becomes evident that system performance is impacted.
NASA Technical Reports Server (NTRS)
Clements, E. B.; Carlton, A. K.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Sun, X.; Cahoy, K.
2016-01-01
Space weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years).
Adapting Schottky Diode Detector Technology to a Space Platform
1988-02-10
the LWIR region) but which are still in a very early experimental stage. A schematic diagram illustrating the basic layout of the PtSi detector is...responsivity and dark current variations in pixels across the focal plane array. Such defects are caused by diverse factors such as nonuniformities in
Performance overview of the Euclid infrared focal plane detector subsystems
NASA Astrophysics Data System (ADS)
Waczynski, A.; Barbier, R.; Cagiano, S.; Chen, J.; Cheung, S.; Cho, H.; Cillis, A.; Clémens, J.-C.; Dawson, O.; Delo, G.; Farris, M.; Feizi, A.; Foltz, R.; Hickey, M.; Holmes, W.; Hwang, T.; Israelsson, U.; Jhabvala, M.; Kahle, D.; Kan, Em.; Kan, Er.; Loose, M.; Lotkin, G.; Miko, L.; Nguyen, L.; Piquette, E.; Powers, T.; Pravdo, S.; Runkle, A.; Seiffert, M.; Strada, P.; Tucker, C.; Turck, K.; Wang, F.; Weber, C.; Williams, J.
2016-07-01
In support of the European space agency (ESA) Euclid mission, NASA is responsible for the evaluation of the H2RG mercury cadmium telluride (MCT) detectors and electronics assemblies fabricated by Teledyne imaging systems. The detector evaluation is performed in the detector characterization laboratory (DCL) at the NASA Goddard space flight center (GSFC) in close collaboration with engineers and scientists from the jet propulsion laboratory (JPL) and the Euclid project. The Euclid near infrared spectrometer and imaging photometer (NISP) will perform large area optical and spectroscopic sky surveys in the 0.9-2.02 μm infrared (IR) region. The NISP instrument will contain sixteen detector arrays each coupled to a Teledyne SIDECAR application specific integrated circuit (ASIC). The focal plane will operate at 100K and the SIDECAR ASIC will be in close proximity operating at a slightly higher temperature of 137K. This paper will describe the test configuration, performance tests and results of the latest engineering run, also known as pilot run 3 (PR3), consisting of four H2RG detectors operating simultaneously. Performance data will be presented on; noise, spectral quantum efficiency, dark current, persistence, pixel yield, pixel to pixel uniformity, linearity, inter pixel crosstalk, full well and dynamic range, power dissipation, thermal response and unit cell input sensitivity.
Wilson, Robert D.
2001-03-27
Methods and apparatus are disclosed for determining gas saturation, liquid saturation, porosity and density of earth formations penetrated by a well borehole. Determinations are made from measures of fast neutron and inelastic scatter gamma radiation induced by a pulsed, fast neutron source. The system preferably uses two detectors axially spaced from the neutron source. One detector is preferably a scintillation detector responsive to gamma radiation, and a second detector is preferably an organic scintillator responsive to both neutron and gamma radiation. The system can be operated in cased boreholes which are filled with either gas or liquid. Techniques for correcting all measurements for borehole conditions are disclosed.
NASA Technical Reports Server (NTRS)
Timothy, J. G.
1976-01-01
The full sensitivity, dynamic range, and photometric stability of microchannel array plates(MCP) are incorporated into a photon-counting detection system for space operations. Components of the system include feedback-free MCP's for high gain and saturated output pulse-height distribution with a stable response; multi-anode readout arrays mounted in proximity focus with the output face of the MCP; and multi-layer ceramic headers to provide electrical interface between the anode array in a sealed detector tube and the associated electronics.
Parallel Study of HEND, RAD, and DAN Instrument Response to Martian Radiation and Surface Conditions
NASA Technical Reports Server (NTRS)
Martiniez Sierra, Luz Maria; Jun, Insoo; Litvak, Maxim; Sanin, Anton; Mitrofanov, Igor; Zeitlin, Cary
2015-01-01
Nuclear detection methods are being used to understand the radiation environment at Mars. JPL (Jet Propulsion Laboratory) assets on Mars include: Orbiter -2001 Mars Odyssey [High Energy Neutron Detector (HEND)]; Mars Science Laboratory Rover -Curiosity [(Radiation Assessment Detector (RAD); Dynamic Albedo Neutron (DAN))]. Spacecraft have instruments able to detect ionizing and non-ionizing radiation. Instrument response on orbit and on the surface of Mars to space weather and local conditions [is discussed] - Data available at NASA-PDS (Planetary Data System).
sCMOS detector for imaging VNIR spectrometry
NASA Astrophysics Data System (ADS)
Eckardt, Andreas; Reulke, Ralf; Schwarzer, Horst; Venus, Holger; Neumann, Christian
2013-09-01
The facility Optical Information Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the scientific results of the institute of leading edge instruments and focal plane designs for EnMAP VIS/NIR spectrograph. EnMAP (Environmental Mapping and Analysis Program) is one of the selected proposals for the national German Space Program. The EnMAP project includes the technological design of the hyper spectral space borne instrument and the algorithms development of the classification. The EnMAP project is a joint response of German Earth observation research institutions, value-added resellers and the German space industry like Kayser-Threde GmbH (KT) and others to the increasing demand on information about the status of our environment. The Geo Forschungs Zentrum (GFZ) Potsdam is the Principal Investigator of EnMAP. DLR OS and KT were driving the technology of new detectors and the FPA design for this project, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generations of space borne sensor systems are focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high spectral resolution with intelligent synchronization control, fast-readout ADC chains and new focal-plane concepts open the door to new remote-sensing and smart deep space instruments. The paper gives an overview over the detector verification program at DLR on FPA level, new control possibilities for sCMOS detectors in global shutter mode and key parameters like PRNU, DSNU, MTF, SNR, Linearity, Spectral Response, Quantum Efficiency, Flatness and Radiation Tolerance will be discussed in detail.
NASA Technical Reports Server (NTRS)
Bratt, P. R.; Lewis, N. N.; Long, L. E.
1978-01-01
The development of doped-germanium detectors which have optimized performance in the 30- to 120-mu m wavelength range and are capable of achieving the objectives of the infrared astronomical satellite (IRAS) space mission is discussed. Topics covered include the growth and evaluation of Ge:Ga and Ge:Be crystals, procedures for the fabrication and testing of detectors, irradiance calculations, detector responsivity, and resistance measurements through MOSFET. Test data are presented in graphs and charts.
Widefield TSCSPC-systems with large-area-detectors: application in simultaneous multi-channel-FLIM
NASA Astrophysics Data System (ADS)
Stepanov, Sergei; Bakhlanov, Sergei; Drobchenko, Evgeny; Eckert, Hann-Jörg; Kemnitz, Klaus
2010-11-01
Novel proximity-type Time- and Space-Correlated Single Photon Counting (TSCSPC) crossed-delay-line (DL)- and multi-anode (MA)-systems of outstanding performance and homogeneity were developed, using large-area detector heads of 25 and 40 mm diameter. Instrument response functions IRF(space) = (60 +/- 5) μm FWHM and IRF(time) = (28 +/- 3) ps FWHM were achieved over the full 12 cm2 area of the detector. Deadtime at throughput of 105 cps is 10% for "high-resolution" system and 5% in the "video"-system at 106 cps, at slightly reduced time- and space resolution. A fluorescence lifetime of (3.5 +/- 1) ps can be recovered from multi-exponential dynamics of a single living cyanobacterium (Acaryochloris marina). The present large-area detectors are particularly useful in simultaneous multichannel applications, such as 2-colour anisotropy or 4-colour lifetime imaging, utilizing dual- or quad-view image splitters. The long-term stability, low- excitation-intensity (< 100 mW/cm2) widefield systems enable minimal-invasive observation, without significant bleaching or photodynamic reactions, thus allowing long-period observation of up to several hours in living cells.
Research on radiation detectors, boiling transients, and organic lubricants
NASA Technical Reports Server (NTRS)
1974-01-01
The accomplishments of a space projects research facility are presented. The subjects discussed are: (1) a study of radiation resistant semiconductor devices, (2) synthesis of high temperature organic lubricants, (3) departure from phase equilibrium during boiling transients, (4) effects of neutron irradiation on defect state in tungsten, and (5) determination of photon response function of NE-213 liquid scintillation detectors.
Development of a long wave infrared detector for SGLI instrument
NASA Astrophysics Data System (ADS)
Dariel, Aurélien; Chorier, P.; Reeb, N.; Terrier, B.; Vuillermet, M.; Tribolet, P.
2007-10-01
The Japanese Aerospace Exploration Agency (JAXA) will be conducting the Global Change Observation Mission (GCOM) for monitoring of global environmental change. SGLI (Second Generation Global Imager) is an optical sensor on board GCOM-C (Climate), that includes a Long Wave IR Detector (LWIRD) sensitive up to about 13 μm. SGLI will provide high accuracy measurements of the atmosphere (aerosol, cloud ...), the cryosphere (glaciers, snow, sea ice ...), the biomass and the Earth temperature (sea and land). Sofradir is a major supplier of Space industry based on the use of a Space qualified MCT technology for detectors from 0.8 to 15 μm. This mature and reproducible technology has been used for 15 years to produce thousands of LWIR detectors with cut-off wavelengths between 9 and 12 μm. NEC Toshiba Space, prime contractor for the Second Generation Global Imager (SGLI), has selected SOFRADIR for its heritage in space projects and Mercury Cadmium Telluride (MCT) detectors to develop the LWIR detector. This detector includes two detection circuits for detection at 10.8 μm and 12.0 μm, hybridized on a single CMOS readout circuit. Each detection circuit is made of 20x2 square pixels of 140 μm. In order to optimize the overall performance, each pixel is made of 5x5 square sub-pixels of 28 μm and the readout circuit enables sub-pixel deselection. The MCT material and the photovoltaic technology are adapted to maximize response for the requested bandwidths: cut-off wavelengths of the 2 detection circuits are 12.6 and 13.4 μm at 55K. This detector is packaged into a sealed housing for full integration into a Dewar at 55K. This paper describes the main technical requirements, the design features of this detector, including trade-offs regarding performance optimization, and presents preliminary electro-optical results.
CdTe focal plane detector for hard x-ray focusing optics
NASA Astrophysics Data System (ADS)
Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Gregory, Kyle; Inglis, Andrew; Panessa, Marco
2015-08-01
The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 mm x 20 mm CdTe-based detector with 250 μm square pixels (80x80 pixels) which achieves 1 keV FWHM @ 60 keV and gives full spectroscopy between 5 keV and 200 keV. An added advantage of these detectors is that they have a full-frame readout rate of 10 kHz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1mm-thick CdTe detectors are tiled into a 2x2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flightsuitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.
CdTe Focal Plane Detector for Hard X-Ray Focusing Optics
NASA Technical Reports Server (NTRS)
Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Inglis, Andrew; Panessa, Marco
2015-01-01
The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 millimeter x 20 millimeter CdTe-based detector with 250 micrometer square pixels (80 x 80 pixels) which achieves 1 kiloelectronvolt FWHM (Full-Width Half-Maximum) @ 60 kiloelectronvolts and gives full spectroscopy between 5 kiloelectronvolts and 200 kiloelectronvolts. An added advantage of these detectors is that they have a full-frame readout rate of 10 kilohertz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1 millimeter-thick CdTe detectors are tiled into a 2 x 2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flight-suitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.
Advanced Space Radiation Detector Technology Development
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.
2013-01-01
The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.
Advanced Space Radiation Detector Technology Development
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.
2013-01-01
The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.
Advanced Space Radiation Detector Technology Development
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.
2013-01-01
The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.
Agile Mcal, the Mini-Calorimeter
NASA Astrophysics Data System (ADS)
Bastia, Paolo; Poulsen, Jens Michael; Monzani, Franco; Radaelli, Paolo; Marchesi, Paolo; Labanti, Claudio; Marisaldi, Martino; Fuschino, Fabio; Bulgarelli, Andrea
2006-04-01
AGILE is a scientific mission dedicated to gamma-ray astrophysics in space, and the mini-calorimeter MCAL is one of four detector systems on the satellite. The MCAL instrument is sensitive in the energy range: 300 keV - 100 MeV. It has two main functions: one autonomous mode for detection of impulsive cosmic events and the other as “a slave” supporting the energy measurements of the pair-conversion tracker. The AGILE Small Mission is funded by the Italian Space Agency (ASI), and the INAF-IASF section at Bologna has the scientific responsibility for MCAL. LABEN develops the MCAL instrument with its detectors and electronics. This paper gives an overview of the detectors on AGILE, and then it gives details on the design of MCAL, and finally we report on the tests at instrument level.
Smith, M B; Akatov, Yu; Andrews, H R; Arkhangelsky, V; Chernykh, I V; Ing, H; Khoshooniy, N; Lewis, B J; Machrafi, R; Nikolaev, I; Romanenko, R Y; Shurshakov, V; Thirsk, R B; Tomi, L
2013-01-01
As part of the international Matroshka-R and Radi-N experiments, bubble detectors have been used on board the ISS in order to characterise the neutron dose and the energy spectrum of neutrons. Experiments using bubble dosemeters inside a tissue-equivalent phantom were performed during the ISS-16, ISS-18 and ISS-19 expeditions. During the ISS-20 and ISS-21 missions, the bubble dosemeters were supplemented by a bubble-detector spectrometer, a set of six detectors that was used to determine the neutron energy spectrum at various locations inside the ISS. The temperature-compensated spectrometer set used is the first to be developed specifically for space applications and its development is described in this paper. Results of the dose measurements indicate that the dose received at two different depths inside the phantom is not significantly different, suggesting that bubble detectors worn by a person provide an accurate reading of the dose received inside the body. The energy spectra measured using the spectrometer are in good agreement with previous measurements and do not show a strong dependence on the precise location inside the station. To aid the understanding of the bubble-detector response to charged particles in the space environment, calculations have been performed using a Monte-Carlo code, together with data collected on the ISS. These calculations indicate that charged particles contribute <2% to the bubble count on the ISS, and can therefore be considered as negligible for bubble-detector measurements in space.
SMOKE: Characterization of Smoke Particulate for Spacecraft Fire Detection
NASA Technical Reports Server (NTRS)
Urban, D. L.; Mulholland, G.; Yuan, Z. G.; Yang, J.; Cleary, T.
2001-01-01
'Smoke' is a flight definition investigation whose purpose is to characterize the smoke particulate from microgravity smoke sources to enable improved design of future space-craft smoke detectors. In the earliest missions (Mercury, Gemini and Apollo), the crew quarters were so cramped that it was considered reasonable that the astronauts would rapidly detect any fire. The Skylab module, however, included approximately 30 UV-sensing fire detectors. The Space Shuttle Orbiter has nine particle-ionization smoke detectors in the mid-deck and flight deck. The detectors for the US segments of the International Space Station (ISS) are laser-diode, forward-scattering, smoke detectors. Current plans for the ISS call for two detectors in the open area of the module, and detectors in racks that have cooling air-flow. Due to the complete absence of microgravity data, all three of these detector systems were designed based upon 1-g test data and experience. As planned mission durations and complexity increase and the volume of spacecraft increases, the need for and importance of effective, crew-independent, fire detection will grow significantly, necessitating more research into microgravity fire phenomena. In 1997 the Comparative Soot Diagnostics Experiment (CSD) flew in the Orbiter Middeck as a Glovebox payload. The CSD experiment was designed to produce small quantities of smoke from several sources to obtain particulate samples and to determine the response of the ISS and Orbiter smoke detectors to these sources. Marked differences in the performance of the detectors compared to their behavior in 1-g were observed. In extreme cases, the detector used in the orbiter was completely blind to easily visible smoke from sources that were readily detected in 1-g. It is hypothesized but as yet unverified that this performance difference was due to enhanced growth of liquid smoke droplets in low-g. These CSD results clearly demonstrate that spacecraft smoke detector design cannot be based on 1-g experience.
The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer
NASA Astrophysics Data System (ADS)
Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Rhodes, N. J.; Schooneveld, E. M.
2008-05-01
The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10Å-1. This opens a still unexplored region of the kinematical (q, ω) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure.
Infrared focal plane performance in the South Atlantic anomaly
NASA Technical Reports Server (NTRS)
Junga, Frank A.
1989-01-01
Proton-induced pulse height distributions (PHD's) in Si:XX detectors were studied analytically and experimentally. In addition, a preliminary design for a flight experiment to characterize the response of Si:XX detectors to the trapped proton environment and verify PHD models was developed. PHD's were computed for two orbit altitudes for a variety of shielding configurations. Most of the proton-induced pulses have amplitudes less that about 3.5 x 10(exp 5) e-h pairs. Shielding has a small effect on the shape of the PHD's. The primary effect of shielding is to reduce the total number of pulses produced. Proton-induced PHD's in a Si:Sb focal plane array bombarded by a unidirectional 67-MeV beam were measured. The maximum pulse height recorded was 6 x 10(exp 5) pairs. The distribution had two peaks: the larger peak corresponded to 3.8 x 10(exp 5) pairs and the smaller peak to 1.2 x 10(exp 5) pairs. The maximum pulse height and the larger peak are within a factor of two of predicted values. The low-energy peak was not expected, but is believed to be an artifact of inefficient charge collection in the detector. The planned flight experiment will be conducted on a Space Shuttle flight. Lockheed's helium extended life dewar (HELD) will be used to provide the required cryogenic environment for the detector. Two bulk Si:Sb arrays and two Si:As impurity band conduction arrays will be tested. The tests will be conducted while the Space Shuttle passes through the South Atlantic Anomaly. PHD's will be recorded and responsivity changes tracked. This experiment will provide a new database on proton-induced PHD's, compare two infrared detector technologies in a space environment, and provide the data necessary to validate PHD modeling.
Low-Power Multi-Aspect Space Radiation Detector System
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave; Freeman, Jon C.; Burkebile, Stephen P.
2012-01-01
The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of all of these detector technologies will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the deep space radiation field.
Apparatus for detecting the presence of a liquid
Kronberg, James W.
1995-01-01
An apparatus for detecting the presence of a liquid in a region, including an electrically passive sensor adapted for contacting the liquid, and an electrically active detector. The sensor is a circuit with a pair of spaced-apart terminals connected to a switch that closes in the presence of the liquid. The detector carries an alternating current with a resonant frequency. When the sensor is placed in a region and liquid is present in the region, the circuit of the sensor is closed. By bringing the detector close to the sensor, an alternating current is induced in the sensor that will, in turn, alter the resonant frequency of the detector. The change in the resonant frequency is signaled by a transducer. The switch can operate by a change in conductivity of a material between the terminals of the sensor or by expansion of a liquid absorber that pushes the two terminals together, or by a change in the conductivity of the space between the terminals as a result of the presence of the liquid. The detector generates an audible or visible signal, or both, in response to the change in current.
Apparatus for detecting the presence of a liquid
Kronberg, J.W.
1993-01-01
This invention is comprised of an apparatus for detecting the presence of a liquid in a region, including an electrically passive sensor adapted for contacting the liquid, and an electrically active detector. The sensor is a circuit with a pair of spaced-apart terminals connected to a switch that closes in the presence of the liquid. The detector carries an alternating current with a resonant frequency. When the sensor is placed in a region and liquid is present, the circuit of the sensor is closed. By bringing the detector close to the sensor, an alternating current is induced in the sensor that will, in turn, alter the resonant frequency of the detector. This change is signaled by a transducer. The switch can operate by a change in conductivity of a material between the terminals of the sensor or by expansion of a liquid absorber that pushes the two terminals together, or by a change in the conductivity of the space between the terminals as a result of the liquid. The detector generates an audible or visible signal, or both, in response to the current change.
Space activity and programs at SOFRADIR
NASA Astrophysics Data System (ADS)
Bouakka-Manesse, A.; Jamin, N.; Delannoy, A.; Fieque, B.; Leroy, C.; Pidancier, P.; Vial, L.; Chorier, P.; Péré-Laperne, N.
2016-09-01
SOFRADIR is one of the leading companies involved in the development and manufacturing of infrared detectors for space applications. As a matter of fact, SOFRADIR is involved in many space programs from visible up to VLWIR spectral ranges. These programs concern operational missions for earth imagery, meteorology and also scientific missions for universe exploration. One of the last space detectors available at SOFRADIR is a visible - SWIR detector named Next Generation Panchromatic Detector (NGP) which is well adapted for hyperspectral, imagery and spectroscopy applications. In parallel of this new space detector, numerous programs are currently running for different kind of missions: meteorology (MTG), Copernicus with the Sentinel detectors series, Metop-SG system (3MI), Mars exploration (Mamiss, etc.). In this paper, we present the last developments made for space activity and in particular the NGP detector. We will also present the space applications using this detector and show appropriateness of its use to answer space programs specifications, as for example those of Sentinel-5.
Space activity and programs at Sofradir
NASA Astrophysics Data System (ADS)
Bouakka-Manesse, A.; Jamin, N.; Delannoy, A.; Fièque, B.; Leroy, C.; Pidancier, P.; Vial, L.; Chorier, P.; Péré Laperne, N.
2016-10-01
SOFRADIR is one of the leading companies involved in the development and manufacturing of infrared detectors for space applications. As a matter of fact, SOFRADIR is involved in many space programs from visible up to VLWIR spectral ranges. These programs concern operational missions for earth imagery, meteorology and also scientific missions for universe exploration. One of the last space detectors available at SOFRADIR is a visible - SWIR detector named Next Generation Panchromatic Detector (NGP) which is well adapted for hyperspectral, imagery and spectroscopy applications. In parallel of this new space detector, numerous programs are currently running for different kind of missions: meteorology (MTG), Copernicus with the Sentinel detectors series, Metop-SG system (3MI), Mars exploration (Mamiss, etc….)… In this paper, we present the last developments made for space activity and in particular the NGP detector. We will also present the space applications using this detector and show appropriateness of its use to answer space programs specifications, as for example those of Sentinel-5.
Space Radiation Shielding Studies for Astronaut and Electronic Component Risk Assessment
NASA Technical Reports Server (NTRS)
Fuchs, Jordan Robert
2010-01-01
The dosimetry component of the Center for Radiation Engineering and Science for Space Exploration (CRESSE) will design, develop and characterize the response of a suite of radiation detectors and supporting instrumentation and electronics with three primary goals that will: (1) Use established space radiation detection systems to characterize the primary and secondary radiation fields existing in the experimental test-bed zones during exposures at particle accelerator facilities. (2) Characterize the responses of newly developed space radiation detection systems in the experimental test-bed zones during exposures at particle accelerator facilities, and (3) Provide CRESSE collaborators with detailed dosimetry information in experimental test-bed zones.
Detectors for the Atacama Cosmology Telescope
NASA Astrophysics Data System (ADS)
Marriage, Tobias Andrew
The Atacama Cosmology Telescope (ACT) will make measurements of the brightness temperature anisotropy in the Cosmic Microwave Background (CMB) on degree to arcminute angular scales. The ACT observing site is located 5200 m near the top of Cerro Toco in the Atacama Desert of northern Chile. This thesis presents research on the detectors which capture the image of the CMB formed at ACT's focal plane. In the first chapter, the primary brightness temperature fluctuations in the Cosmic Microwave Background are reviewed. In Chapter 2, a calculation shows how the CMB brightness is translated by ACT to an input power to the detectors. Chapter 3 describes the ACT detectors in detail and presents the response and sensitivity of the detectors to the input power computed in Chapter 2. Chapter 4 describes the detector fabrication at NASA Goddard Space Flight Center. Chapter 5 summarizes experiments which characterize the ACT detector performance.
46 CFR 76.27-10 - Location and spacing of detectors.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 3 2014-10-01 2014-10-01 false Location and spacing of detectors. 76.27-10 Section 76... PROTECTION EQUIPMENT Electric Fire Detecting System, Details § 76.27-10 Location and spacing of detectors. (a) The detectors shall be located close to the overhead in the space protected. Where liable to physical...
46 CFR 76.27-10 - Location and spacing of detectors.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 3 2013-10-01 2013-10-01 false Location and spacing of detectors. 76.27-10 Section 76... PROTECTION EQUIPMENT Electric Fire Detecting System, Details § 76.27-10 Location and spacing of detectors. (a) The detectors shall be located close to the overhead in the space protected. Where liable to physical...
46 CFR 76.27-10 - Location and spacing of detectors.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 3 2012-10-01 2012-10-01 false Location and spacing of detectors. 76.27-10 Section 76... PROTECTION EQUIPMENT Electric Fire Detecting System, Details § 76.27-10 Location and spacing of detectors. (a) The detectors shall be located close to the overhead in the space protected. Where liable to physical...
46 CFR 76.27-10 - Location and spacing of detectors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 3 2011-10-01 2011-10-01 false Location and spacing of detectors. 76.27-10 Section 76... PROTECTION EQUIPMENT Electric Fire Detecting System, Details § 76.27-10 Location and spacing of detectors. (a) The detectors shall be located close to the overhead in the space protected. Where liable to physical...
46 CFR 76.27-10 - Location and spacing of detectors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Location and spacing of detectors. 76.27-10 Section 76... PROTECTION EQUIPMENT Electric Fire Detecting System, Details § 76.27-10 Location and spacing of detectors. (a) The detectors shall be located close to the overhead in the space protected. Where liable to physical...
In-flight performance of the Faint Object Camera of the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Greenfield, P.; Paresce, F.; Baxter, D.; Hodge, P.; Hook, R.; Jakobsen, P.; Jedrzejewski, R.; Nota, A.; Sparks, W. B.; Towers, N.
1991-01-01
An overview of the Faint Object Camera and its performance to date is presented. In particular, the detector's efficiency, the spatial uniformity of response, distortion characteristics, detector and sky background, detector linearity, spectrography, and operation are discussed. The effect of the severe spherical aberration of the telescope's primary mirror on the camera's point spread function is reviewed, as well as the impact it has on the camera's general performance. The scientific implications of the performance and the spherical aberration are outlined, with emphasis on possible remedies for spherical aberration, hardware remedies, and stellar population studies.
A focal plane metrology system and PSF centroiding experiment
NASA Astrophysics Data System (ADS)
Li, Haitao; Li, Baoquan; Cao, Yang; Li, Ligang
2016-10-01
In this paper, we present an overview of a detector array equipment metrology testbed and a micro-pixel centroiding experiment currently under development at the National Space Science Center, Chinese Academy of Sciences. We discuss on-going development efforts aimed at calibrating the intra-/inter-pixel quantum efficiency and pixel positions for scientific grade CMOS detector, and review significant progress in achieving higher precision differential centroiding for pseudo star images in large area back-illuminated CMOS detector. Without calibration of pixel positions and intrapixel response, we have demonstrated that the standard deviation of differential centroiding is below 2.0e-3 pixels.
Efficient Charge Collection in Coplanar-Grid Radiation Detectors
NASA Astrophysics Data System (ADS)
Kunc, J.; Praus, P.; Belas, E.; Dědič, V.; Pekárek, J.; Grill, R.
2018-05-01
We model laser-induced transient-current waveforms in radiation coplanar-grid detectors. Poisson's equation is solved by the finite-element method and currents induced by a photogenerated charge are obtained using the Shockley-Ramo theorem. The spectral response on a radiation flux is modeled by Monte Carlo simulations. We show a 10 × improved spectral resolution of the coplanar-grid detector using differential signal sensing. We model the current waveform dependence on the doping, depletion width, diffusion, and detector shielding, and their mutual dependence is discussed in terms of detector optimization. The numerical simulations are successfully compared to experimental data, and further model simplifications are proposed. The space charge below electrodes and a nonhomogeneous electric field on a coplanar-grid anode are found to be the dominant contributions to laser-induced transient-current waveforms.
NASA Astrophysics Data System (ADS)
Martyniuk, Piotr; Gawron, Waldemar; Mikołajczyk, Janusz
2017-10-01
There are many room temperature applications to include free space optics (FSO) communication system combining quantum cascade lasers sources where HgCdTe long-wave (8-12 micrometer) infrared radiation (LWIR) detector reaching ultrafast response time < 1 ns and nearly background limited infrared photodetection (BLIP) condition are implemented. Both nearly BLIP detectivity and ultra-response time stay in contradiction in detector's optimization process. That issue could be circumvented by implementation of the hyperhemispherical GaAs immersion lens into structure to increase optical to electrical area ratio giving flexibility in terms of response time optimization. The optimization approach depends on voltage condition. The generation - recombination (GR) mechanism within active layer was found to be important for forward and weak reverse conditions while photogenerated carrier transport is significant for higher reverse bias. Except of applied voltage, the drift time strongly depends on thickness of the absorption region. Reducing the thickness of the active region, the short drift times could be reached, but that solution significantly reduces quantum efficiency and lowers detectivity. Taking that into consideration a special multilayer heterostructure designs are developed. The p-type absorber is promising due to both high ambipolar mobility and low thermal GR driven by the Auger 7 mechanism. Theoretical simulations indicate that depending on bias condition and T = 300 K the multilayer barrier LWIR HgCdTe structure could reach response time below < 100 ps while biased and <= 1 ns while unbiased. Immersed detectivity reaches > 109 cmHz1/2/W. Since commercially available FSO could operate separately in SWIR, MWIR and LWIR range - the dual band detectors should be implemented into FSO. This paper shows theoretical performance of the dual band back-to-back MWIR and LWIR HgCdTe detector operating at 300 K pointing out the MWIR active layer influence on LWIR operating regime.
López-Tarjuelo, Juan; Bouché-Babiloni, Ana; Morillo-Macías, Virginia; Santos-Serra, Agustín; Ferrer-Albiach, Carlos
2017-01-01
To estimate angular response deviation of MOSFETs in the realm of intraoperative electron radiotherapy (IOERT), review their energy dependence, and propose unambiguous names for detector rotations. MOSFETs have been used in IOERT. Movement of the detector, namely rotations, can spoil results. We propose yaw, pitch, and roll to name the three possible rotations in space, as these unequivocally name aircraft rotations. Reinforced mobile MOSFETs (model TN-502RDM-H) and an Elekta Precise linear accelerator were used. Two detectors were placed in air for the angular response study and the whole set of five detectors was calibrated as usual to evaluate energy dependence. The maximum readout was obtained with a roll of 90° and 4 MeV. With regard to pitch movement, a substantial drop in readout was achieved at 90°. Significant overresponse was measured at 315° with 4 MeV and at 45° with 15 MeV. Energy response is not different for the following groups of energies: 4, 6, and 9 MeV; and 12 MeV, 15 MeV, and 18 MeV. Our proposal to name MOSFET rotations solves the problem of defining sensor orientations. Angular response could explain lower than expected results when the tip of the detector is lifted due to inadvertent movements. MOSFETs energy response is independent of several energies and differs by a maximum of 3.4% when dependent. This can limit dosimetry errors and makes it possible to calibrate the detectors only once for each group of energies, which saves time and optimizes lifespan of MOSFETs.
Proceedings of the Third Infrared Detector Technology Workshop
NASA Technical Reports Server (NTRS)
Mccreight, Craig R. (Compiler)
1989-01-01
This volume consists of 37 papers which summarize results presented at the Third Infrared Detector Technology Workshop, held February 7-9, 1989, at Ames Research Center. The workshop focused on infrared (IR) detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers on discrete IR detectors, cryogenic readouts, extrinsic and intrinsic IR arrays, and recent results from ground-based observations with integrated arrays were given. Recent developments in the second-generation Hubble Space Telescope (HST) infrared spectrometer and in detectors and arrays for the European Space Agency's Infrared Space Observatory (ISO) are also included, as are status reports on the Space Infrared Telescope Facility (SIRTF) and the Stratospheric Observatory for Infrared Astronomy (SOFIA) projects.
NASA Technical Reports Server (NTRS)
Mahdavi, M.; Giboni, K. L.; Vajda, S.; Schweitzer, J. S.; Truax, J. A.
1994-01-01
Detectors that will be used for planetary missions must have their responses calibrated in a reproducible manner. In addition, it is important to characterize a detector system at uneven portions of its life cycle, for example after exposure to different amounts of radiation. A calibration and response characterization facility has been constructed at Schlumberger-Doll Research for all types of gamma- and x-ray detectors that may be used for planetary measurement. This facility is currently being tested. Initial use is expected for the MARS 94 detectors. The facility will then also be available for calibrating other detectors as well as arrays of detectors such as the NEAR detector with its central Nal(TI) crystal surrounded with a large BGO crystal. Cadmium telluride detectors are investigated for applications in space explorations. These detectors show an energy resolution of 5 keV for the 122 keV 57Co line. Earlier reported polarization effects are not observed. The detectors can be used at temperatures up to 100 C, although with reduced energy resolution. The thickness of standard detectors is limited to 2 mm. These detectors become fully efficient at bias voltages above 200 V. Initial results for a 1 cm thick detector show that the quality of the material is inferior to the thinner standard detectors and hole trapping affects the pulse height. A detailed characterization of the detector is in progress. Prototypes of photomultipliers based on a Channel Electron Multiplier (CEM) are being built to study their performance. Such photomultipliers promise better timing characteristics and a higher dynamic range while being more compact and of lower in weight.
Apparatus for detecting the presence of a liquid
Kronberg, J.W.
1995-10-31
An apparatus is described for detecting the presence of a liquid in a region, including an electrically passive sensor adapted for contacting the liquid, and an electrically active detector. The sensor is a circuit with a pair of spaced-apart terminals connected to a switch that closes in the presence of the liquid. The detector carries an alternating current with a resonant frequency. When the sensor is placed in a region and liquid is present in the region, the circuit of the sensor is closed. By bringing the detector close to the sensor, an alternating current is induced in the sensor that will, in turn, alter the resonant frequency of the detector. The change in the resonant frequency is signaled by a transducer. The switch can operate by a change in conductivity of a material between the terminals of the sensor or by expansion of a liquid absorber that pushes the two terminals together, or by a change in the conductivity of the space between the terminals as a result of the presence of the liquid. The detector generates an audible or visible signal, or both, in response to the change in current. 12 figs.
BTDI detector technology for reconnaissance application
NASA Astrophysics Data System (ADS)
Hilbert, Stefan; Eckardt, Andreas; Krutz, David
2017-11-01
The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design in a BTDI (Bidirectional Time Delay and Integration) architecture. This project demonstrates an approved technological design for high or multi-spectral resolution spaceborne instruments. DLR OS and BAE Systems were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy in order to keep pace with ambitious scientific and user requirements. Resulting from customer requirements and available technologies the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high-spectral resolution with intelligent control applications and new focal plane concepts opens the door to new remote sensing and smart deep space instruments. The paper gives an overview of the detector development and verification program at DLR on detector module level and key parameters like SNR, linearity, spectral response, quantum efficiency, PRNU, DSNU and MTF.
NASA Astrophysics Data System (ADS)
Abu Anas, Emran Mohammad; Kim, Jae Gon; Lee, Soo Yeol; Kamrul Hasan, Md
2011-10-01
The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature.
NASA Astrophysics Data System (ADS)
Adriani, O.; Albergo, S.; Auditore, L.; Basti, A.; Berti, E.; Bigongiari, G.; Bonechi, L.; Bonechi, S.; Bongi, M.; Bonvicini, V.; Bottai, S.; Brogi, P.; Carotenuto, G.; Castellini, G.; Cattaneo, P. W.; Daddi, N.; D'Alessandro, R.; Detti, S.; Finetti, N.; Italiano, A.; Lenzi, P.; Maestro, P.; Marrocchesi, P. S.; Mori, N.; Orzan, G.; Olmi, M.; Pacini, L.; Papini, P.; Pellegriti, M. G.; Rappoldi, A.; Ricciarini, S.; Sciuto, A.; Spillantini, P.; Starodubtsev, O.; Stolzi, F.; Suh, J. E.; Sulaj, A.; Tiberio, A.; Tricomi, A.; Trifiro', A.; Trimarchi, M.; Vannuccini, E.; Zampa, G.; Zampa, N.
2017-11-01
The direct detection of high-energy cosmic rays up to the PeV region is one of the major challenges for the next generation of space-borne cosmic-ray detectors. The physics performance will be primarily determined by their geometrical acceptance and energy resolution. CaloCube is a homogeneous calorimeter whose geometry allows an almost isotropic response, so as to detect particles arriving from every direction in space, thus maximizing the acceptance. A comparative study of different scintillating materials and mechanical structures has been performed by means of Monte Carlo simulation. The scintillation-Cherenkov dual read-out technique has been also considered and its benefit evaluated.
Mercuric iodide light detector and related method
Iwanczyk, Jan S.; Barton, Jeff B.; Dabrowski, Andrzej J.; Schnepple, Wayne F.
1986-01-01
Apparatus and method for detecting light involve applying a substantially uniform electrical potential difference between first and second spaced surfaces of a body of mercuric iodide, exposing the first surface to light and measuring an electrical current passed through the body in response to the light. The mercuric iodide may be substantially monocrystalline and the potential may be applied between a substantially transparent conductive layer at the first surface and a second conductive layer at the second surface. In a preferred embodiment, the detector is coupled to a scintillator for passage of light to the mercuric iodide in response to ionizing radiation incident on the scintillator.
Mercuric iodide light detector and related method
Iwanczyk, J.S.; Barton, J.B.; Dabrowski, A.J.; Schnepple, W.F.
1986-09-23
Apparatus and method for detecting light involve applying a substantially uniform electrical potential difference between first and second spaced surfaces of a body of mercuric iodide, exposing the first surface to light and measuring an electrical current passed through the body in response to the light. The mercuric iodide may be substantially monocrystalline and the potential may be applied between a substantially transparent conductive layer at the first surface and a second conductive layer at the second surface. In a preferred embodiment, the detector is coupled to a scintillator for passage of light to the mercuric iodide in response to ionizing radiation incident on the scintillator. 7 figs.
A new way of searching for transients: the ADWO method and its results
NASA Astrophysics Data System (ADS)
Bagoly, Z.; Szecsi, D.; Ripa, J.; Racz, I. I.; Csabai, I.; Dobos, L.; Horvath, I.; Balazs, L. G.; Toth, L. V.
2017-12-01
With the detection of gravitational wave emissions from from merging compact objects, it is now more important than ever to effectively mine the data-set of gamma-satellites for non-triggered, short-duration transients. Hence we developed a new method called the Automatized Detector Weight Optimization (ADWO), applicable for space-borne detectors such as Fermi's GBM and RHESSI's Ge detectors. Provided that the trigger time of an astrophysical event is well known (as in the case of a gravitational wave detection) but the detector response matrix is uncertain, ADWO combines the data of all detectors and energy channels to provide the best signal-to-noise ratio. We used ADWO to successfully identify any potential electromagnetic counterpart of gravitational wave events, as well as to detect previously un-triggered short-duration GRBs in the data-sets.
Charge collection properties in an irradiated pixel sensor built in a thick-film HV-SOI process
NASA Astrophysics Data System (ADS)
Hiti, B.; Cindro, V.; Gorišek, A.; Hemperek, T.; Kishishita, T.; Kramberger, G.; Krüger, H.; Mandić, I.; Mikuž, M.; Wermes, N.; Zavrtanik, M.
2017-10-01
Investigation of HV-CMOS sensors for use as a tracking detector in the ATLAS experiment at the upgraded LHC (HL-LHC) has recently been an active field of research. A potential candidate for a pixel detector built in Silicon-On-Insulator (SOI) technology has already been characterized in terms of radiation hardness to TID (Total Ionizing Dose) and charge collection after a moderate neutron irradiation. In this article we present results of an extensive irradiation hardness study with neutrons up to a fluence of 1× 1016 neq/cm2. Charge collection in a passive pixelated structure was measured by Edge Transient Current Technique (E-TCT). The evolution of the effective space charge concentration was found to be compliant with the acceptor removal model, with the minimum of the space charge concentration being reached after 5× 1014 neq/cm2. An investigation of the in-pixel uniformity of the detector response revealed parasitic charge collection by the epitaxial silicon layer characteristic for the SOI design. The results were backed by a numerical simulation of charge collection in an equivalent detector layout.
NASA Astrophysics Data System (ADS)
Sohn, J. D.; Min, K.; Lee, J.; Lee, D. Y.; Yi, Y.; Kang, K.; Shin, G. H.; Jo, G. B.; Lee, S. U.; Na, G.
2017-12-01
We reports the development of the High Energy Particle Detector (HEPD), one of the radiation detectors on board the Next Generation Small Satellite-1 to be launched into a low-Earth polar orbit in late 2017. The HEPD consists of three telescopes, each with a field of view of 33.4°, that are mounted on the satellite to have an angle of 0°, 45°, and 90° to the geomagnetic field during observations in the Earth's sub-auroral regions. The detection system of each telescope is composed of two silicon surface barrier detectors (SSDs), with the capability of measuring electrons from 300 keV to 2 MeV at 32 Hz that precipitate into the polar regions from the Earth's radiation belts when space storms occur. The successful operation of the HEPD in orbit will help us understand the interaction mechanisms between energetic electrons and plasma waves such as whistler and Electromagnetic Ion Cyclotron (EMIC) waves that are believed to be responsible for the energization and loss of high energy electrons in the Earth's radiation belts.
Sofradir latest developments for infrared space detectors
NASA Astrophysics Data System (ADS)
Chorier, Philippe; Delannoy, Anne
2011-06-01
Sofradir is one of the leading companies that develop and produce infrared detectors. Space applications have become a significant activity and Sofradir relies now on 20 years of experience in development and production of MCT infrared detectors of 2nd and 3rd generation for space applications. Thanks to its capabilities and experience, Sofradir is now able to offer high reliability infrared detectors for space applications. These detectors cover various kinds of applications like hyperspectral observation, earth observations for meteorological or scientific purpose and science experiments. In this paper, we present a review of latest Sofradir's development for infrared space applications. A presentation of Sofradir infrared detectors answering hyperspectral needs from visible up to VLWIR waveband will be made. In addition a particular emphasis will be placed on the different programs currently running, with a presentation of the associated results as they relate to performances and qualifications for space use.
Ge photocapacitive MIS infrared detectors
NASA Technical Reports Server (NTRS)
Binari, S. C.; Miller, W. E.; Tsuo, Y. H.; Miller, W. E.
1979-01-01
An undoped Ge photocapacitive detector is reported which has peak normalized detectivities at wavelengh 1.4 microns and chopping frequencies 13-1000 Hz of 9 x 10 to the 12th, 4 x 10 to the 9th cm Hz to the 1/2th/W operating respectively at temperatures 77, 195, and 295 K. The observed temperature, spectral, and frequency response of the signal and noise are explained in terms of the measured space charge and interface state properties of the device.
Multianode microchannel array detectors for Space Shuttle imaging applications
NASA Technical Reports Server (NTRS)
Timothy, J. G.; Bybee, R. L.
1981-01-01
The Multi-Anode Microchannel Arrays (MAMAs) are a family of photoelectric, photoncounting array detectors that have been developed and qualified specifically for use in space. MAMA detectors with formats as large as 256 x 1024 pixels are now in use or under construction for a variety of imaging and tracking applications. These photo-emissive detectors can be operated in a windowless configuration at extreme ultraviolet and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. The construction and modes-of-operation of the MAMA detectors are briefly described and the scientific objectives of a number of sounding rocket and Space Shuttle instruments utilizing these detectors are outlined. Performance characteristics of the MAMA detectors that are of fundamental importance for operation in the Space Shuttle environment are described and compared with those of the photo-conductive array detectors such as the CCDs and CIDs.
Proceedings of the Second Infrared Detector Technology Workshop
NASA Technical Reports Server (NTRS)
Mccreight, C. R. (Compiler)
1986-01-01
The workshop focused on infrared detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers are organized into the following categories: discrete infrared detectors and readout electronics; advanced bolometers; intrinsic integrated infrared arrays; and extrinsic integrated infrared arrays. Status reports on the Space Infrared Telescope Facility (SIRTF) and Infrared Space Observatory (ISO) programs are also included.
Deep-Space Test of a Neutrino Detector
NASA Astrophysics Data System (ADS)
Solomey, N.; Barghouty, N.; Christl, M.; Johnson, L.; Meyer, H.
2018-02-01
Changes in solar neutrino flux make it advantageous to take a detector into space since it changes as the inverse square of the distance from the Sun. A space-craft with a neutrino detector in solar orbit would perform science study opportunities.
Ground calibration of the Silicon Drift Detectors for NICER
NASA Astrophysics Data System (ADS)
LaMarr, Beverly; Prigozhin, Gregory; Remillard, Ronald; Malonis, Andrew; Gendreau, Keith C.; Arzoumanian, Zaven; Markwardt, Craig B.; Baumgartner, Wayne H.
2016-07-01
The Neutron star Interior Composition ExploreR (NICER) is set to be deployed on the International Space Station (ISS) in early 2017. It will use an array of 56 Silicon Drift Detectors (SDDs) to detect soft X-rays (0.2 - 12 keV) with 100 nanosecond timing resolution. Here we describe the effort to calibrate the detectors in the lab primarily using a Modulated X-ray Source (MXS). The MXS that was customized for NICER provides more than a dozen emission lines spread over the instrument bandwidth, providing calibration measurements for detector gain and spectral resolution. In addition, the fluorescence source in the MXS was pulsed at high frequency to enable measurement of the delay due to charge collection in the silicon and signal processing in the detector electronics. A second chamber, designed to illuminate detectors with either 55Fe, an optical LED, or neither, provided additional calibration of detector response, optical blocking, and effectiveness of background rejection techniques. The overall ground calibration achieved total operating time that was generally in the range of 500-1500 hours for each of the 56 detectors.
Ground Calibration of the Silicon Drift Detectors for NICER
NASA Technical Reports Server (NTRS)
Lamarr, Beverly; Prigozhin, Gregory; Remillard, Ronald; Malonis, Andrew; Gendreau, Keith C.; Arzoumanian, Zaven; Markwardt, Craig B.; Baumgartner, Wayne H.
2016-01-01
The Neutron star Interior Composition ExploreR (NICER) is set to be deployed on the International Space Station (ISS) in early 2017. It will use an array of 56 Silicon Drift Detectors (SDDs) to detect soft X-rays (0.2 - 12 keV) with 100 nanosecond timing resolution. Here we describe the e ort to calibrate the detectors in the lab primarily using a Modulated X-ray Source (MXS). The MXS that was customized for NICER provides more than a dozen emission lines spread over the instrument bandwidth, providing calibration measurements for detector gain and spectral resolution. In addition, the fluorescence source in the MXS was pulsed at high frequency to enable measurement of the delay due to charge collection in the silicon and signal processing in the detector electronics. A second chamber, designed to illuminate detectors with either 55Fe, an optical LED, or neither, provided additional calibration of detector response, optical blocking, and effectiveness of background rejection techniques. The overall ground calibration achieved total operating time that was generally in the range of 500-1500 hours for each of the 56 detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Funsten, Herbert O.; Harper, Ronnie W.; Dors, Eric E.
Channel electron multiplier (CEM) and microchannel plate (MCP) detectors are routinely used in space instrumentation for measurement of space plasmas. Here, our goal is to understand the relative sensitivities of these detectors to penetrating radiation in space, which can generate background counts and shorten detector lifetime. We use 662 keV γ-rays as a proxy for penetrating radiation such as γ-rays, cosmic rays, and high-energy electrons and protons that are ubiquitous in the space environment. We find that MCP detectors are ~20 times more sensitive to 662 keV γ-rays than CEM detectors. This is attributed to the larger total area ofmore » multiplication channels in an MCP detector that is sensitive to electronic excitation and ionization resulting from the interaction of penetrating radiation with the detector material. In contrast to the CEM detector, whose quantum efficiency ε γ for 662 keVγ -rays is found to be 0.00175 and largely independent of detector bias, the quantum efficiency of the MCP detector is strongly dependent on the detector bias, with a power law index of 5.5. Lastly, background counts in MCP detectors from penetrating radiation can be reduced using MCP geometries with higher pitch and smaller channel diameter.« less
A real negative selection algorithm with evolutionary preference for anomaly detection
NASA Astrophysics Data System (ADS)
Yang, Tao; Chen, Wen; Li, Tao
2017-04-01
Traditional real negative selection algorithms (RNSAs) adopt the estimated coverage (c0) as the algorithm termination threshold, and generate detectors randomly. With increasing dimensions, the data samples could reside in the low-dimensional subspace, so that the traditional detectors cannot effectively distinguish these samples. Furthermore, in high-dimensional feature space, c0 cannot exactly reflect the detectors set coverage rate for the nonself space, and it could lead the algorithm to be terminated unexpectedly when the number of detectors is insufficient. These shortcomings make the traditional RNSAs to perform poorly in high-dimensional feature space. Based upon "evolutionary preference" theory in immunology, this paper presents a real negative selection algorithm with evolutionary preference (RNSAP). RNSAP utilizes the "unknown nonself space", "low-dimensional target subspace" and "known nonself feature" as the evolutionary preference to guide the generation of detectors, thus ensuring the detectors can cover the nonself space more effectively. Besides, RNSAP uses redundancy to replace c0 as the termination threshold, in this way RNSAP can generate adequate detectors under a proper convergence rate. The theoretical analysis and experimental result demonstrate that, compared to the classical RNSA (V-detector), RNSAP can achieve a higher detection rate, but with less detectors and computing cost.
Thermal response of large area high temperature superconducting YBaCuO infrared bolometers
NASA Technical Reports Server (NTRS)
Khalil, Ali E.
1991-01-01
Thermal analysis of large area high temperature superconducting infrared detector operating in the equilibrium mode (bolometer) was performed. An expression for the temperature coefficient beta = 1/R(dR/dT) in terms of the thermal conductance and the thermal time constant of the detector were derived. A superconducting transition edge bolometer is a thermistor consisting of a thin film superconducting YBaCuO evaporated into a suitable thermally isolated substrate. The operating temperature of the bolometer is maintained close to the midpoint of the superconducting transition region where the resistance R has a maximum dynamic range. A detector with a strip configuration was analyzed and an expression for the temperature rise (delta T) above the ambient due to a uniform illumination with a source of power density was calculated. An expression for the thermal responsibility depends upon the spatial modulation frequency and the angular frequency of the incoming radiation. The problem of the thermal cross talk between different detector elements was addressed. In the case of monolithic HTS detector array with a row of square elements of dimensions 2a and CCD or CID readout electronics the thermal spread function was derived for different spacing between elements.
HgCdTe APDs for time-resolved space applications
NASA Astrophysics Data System (ADS)
Rothman, J.; Lasfargues, G.; Delacourt, B.; Dumas, A.; Gibert, F.; Bardoux, A.; Boutillier, M.
2017-12-01
The use of HgCdTe avalanche photodiodes (APDs) for resolving the temporal variation of faint light level signals is analyzed. The analysis is based on the performance characteristics such as the gain, the response time, and dark currents in the APDs, measured as a function of operating temperature and Cd composition, and on recently developed detector demonstrator modules. The choice of Cd composition in the APDs is strongly dependent on the application needs in terms of electrical bandwidth and signal-to-noise ratio. A performance model has been developed and used to predict the performance of the future detector modules for different applications such as high bandwidth and/or deep space free space optical telecommunications and lidar, associated with sensitivities down to single photon level at low operating temperature and close to single-photon operation at bandwidth of 10 GHz at room temperature. The predictions are corroborated by the results obtained on detector modules that have been developed and used in lidar and deep space optical communications. In a first lidar prototype, integrating a 200 µm APD, we obtained a maximum sensitivity of 25 fW/√Hz at T = 190 K operating temperature. The detector has been used for differential absorption lidar estimations of the absorption due to presence of CO2 in the atmosphere. A random error of 3-10% was obtained for the estimation of the optical thickness at a distance of 100-3000 m, for a range resolution of 100 m and using and averaging time of 4 s. The pursuit of this development is pending on the space qualification of the technology. Results from first proton and irradiation tests are reported that shows on a close to constant performance during and after the irradiation and endurance tests.
Cognitive Radios Exploiting Gray Spaces via Compressed Sensing
NASA Astrophysics Data System (ADS)
Wieruch, Dennis; Jung, Peter; Wirth, Thomas; Dekorsy, Armin; Haustein, Thomas
2016-07-01
We suggest an interweave cognitive radio system with a gray space detector, which is properly identifying a small fraction of unused resources within an active band of a primary user system like 3GPP LTE. Therefore, the gray space detector can cope with frequency fading holes and distinguish them from inactive resources. Different approaches of the gray space detector are investigated, the conventional reduced-rank least squares method as well as the compressed sensing-based orthogonal matching pursuit and basis pursuit denoising algorithm. In addition, the gray space detector is compared with the classical energy detector. Simulation results present the receiver operating characteristic at several SNRs and the detection performance over further aspects like base station system load for practical false alarm rates. The results show, that especially for practical false alarm rates the compressed sensing algorithm are more suitable than the classical energy detector and reduced-rank least squares approach.
Advanced Space-Based Detectors
2012-09-24
tune the detector’s spectral response, the LQDIP architecture should ideally inherit some of the other benefits native to DWELL, QDIP, and QWIP ... noise ratio (SNR) will increase as the gate voltage is made more negative. However, this may also be an indication that the gate behavior is simply
14 CFR 121.273 - Fire-detector systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fire-detector systems. 121.273 Section 121.273 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED...-detector systems. Enough quick-acting fire detectors must be provided in each designated fire zone to...
14 CFR 27.1195 - Fire detector systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire detector systems. 27.1195 Section 27.1195 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... detector systems. Each turbine engine powered rotorcraft must have approved quick-acting fire detectors in...
14 CFR 121.273 - Fire-detector systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Fire-detector systems. 121.273 Section 121.273 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED...-detector systems. Enough quick-acting fire detectors must be provided in each designated fire zone to...
14 CFR 121.273 - Fire-detector systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fire-detector systems. 121.273 Section 121.273 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED...-detector systems. Enough quick-acting fire detectors must be provided in each designated fire zone to...
14 CFR 27.1195 - Fire detector systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire detector systems. 27.1195 Section 27.1195 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... detector systems. Each turbine engine powered rotorcraft must have approved quick-acting fire detectors in...
14 CFR 121.273 - Fire-detector systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fire-detector systems. 121.273 Section 121.273 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED...-detector systems. Enough quick-acting fire detectors must be provided in each designated fire zone to...
14 CFR 27.1195 - Fire detector systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire detector systems. 27.1195 Section 27.1195 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... detector systems. Each turbine engine powered rotorcraft must have approved quick-acting fire detectors in...
14 CFR 27.1195 - Fire detector systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire detector systems. 27.1195 Section 27.1195 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... detector systems. Each turbine engine powered rotorcraft must have approved quick-acting fire detectors in...
14 CFR 121.273 - Fire-detector systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fire-detector systems. 121.273 Section 121.273 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED...-detector systems. Enough quick-acting fire detectors must be provided in each designated fire zone to...
14 CFR 27.1195 - Fire detector systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire detector systems. 27.1195 Section 27.1195 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... detector systems. Each turbine engine powered rotorcraft must have approved quick-acting fire detectors in...
NASA Technical Reports Server (NTRS)
Prochzaka, Ivan; Kodat, Jan; Blazej, Josef; Sun, Xiaoli (Editor)
2015-01-01
We are reporting on a design, construction and performance of photon-counting detector packages based on silicon avalanche photodiodes. These photon-counting devices have been optimized for extremely high stability of their detection delay. The detectors have been designed for future applications in fundamental metrology and optical time transfer in space. The detectors have been qualified for operation in space missions. The exceptional radiation tolerance of the detection chip itself and of all critical components of a detector package has been verified in a series of experiments.
NASA Technical Reports Server (NTRS)
Zeitlin, C.; Heilbronn, L.; Miller, J.; Shavers, M.
2003-01-01
Measurements using silicon detectors to characterize the radiation transmitted through the EMU space suit and a human phantom have been performed using 155 and 250 MeV proton beams at LLUMC. The beams simulate radiation encountered in space, where trapped protons having kinetic energies on the order of 100 MeV are copious. Protons with 100 MeV kinetic energy and above can penetrate many centimeters of water or other light materials, so that astronauts exposed to such energetic particles will receive doses to their internal organs. This dose can be enhanced or reduced by shielding - either from the space suit or the self-shielding of the body - but minimization of the risk depends on details of the incident particle flux (in particular the energy spectrum) and on the dose responses of the various critical organs. Data were taken to characterize the beams and to calibrate the detectors using the beam in a treatment room at LLUPTF, in preparation for an experiment with the same beams incident on detectors placed in a human phantom within the EMU suit. Nuclear interactions of high-energy protons in various materials produce a small flux of highly ionizing, low-energy secondary radiation. Secondaries are of interest for their biological effects, since they cause doses and especially dose-equivalents to increase relative to the values expected simply from ionization energy loss along the Bragg curve. Because many secondaries have very short ranges, they are best measured in passive track detectors such as CR-39. The silicon detector data presented here are intended to supplement the CR-39 data in regions where silicon has greater sensitivity, in particular the portion of the LET spectrum below 5 keV/micron. The results obtained in this study suggest that optimizing the radiation shielding properties of space suits is a formidable task. The naive assumption that adding mass can reduce risk is not supported by the data, which show that reducing the dose delivered at or near the skin by low-energy particles may increase the dose delivered by energetic particles to points deeper in the body.
14 CFR 125.171 - Fire-detector systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fire-detector systems. 125.171 Section 125.171 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Requirements § 125.171 Fire-detector systems. Enough quick-acting fire detectors must be provided in each...
14 CFR 125.171 - Fire-detector systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Fire-detector systems. 125.171 Section 125.171 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Requirements § 125.171 Fire-detector systems. Enough quick-acting fire detectors must be provided in each...
14 CFR 125.171 - Fire-detector systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fire-detector systems. 125.171 Section 125.171 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Requirements § 125.171 Fire-detector systems. Enough quick-acting fire detectors must be provided in each...
14 CFR 125.171 - Fire-detector systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fire-detector systems. 125.171 Section 125.171 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Requirements § 125.171 Fire-detector systems. Enough quick-acting fire detectors must be provided in each...
14 CFR 125.171 - Fire-detector systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fire-detector systems. 125.171 Section 125.171 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Requirements § 125.171 Fire-detector systems. Enough quick-acting fire detectors must be provided in each...
ERIC Educational Resources Information Center
Nemirovsky, Ricardo; Tierney, Cornelia; Wright, Tracy
1998-01-01
Analyzed two children's use of a computer-based motion detector to make sense of symbolic expressions (Cartesian graphs). Found three themes: (1) tool perspectives, efforts to understand graphical responses to body motion; (2) fusion, emergent ways of talking and behaving that merge symbols and referents; and (3) graphical spaces, when changing…
Smoke Detection for the Orion Crew Exploration Vehicle
NASA Technical Reports Server (NTRS)
Sutin, Brian M.; Niu, William; Steiner, George; O'Hara, William; Lewis, John F.
2009-01-01
The Orion Crew Exploration Vehicle (CEV) requires a smoke detector for the detection of particulate smoke products as part of the Fire Detection and Suppression (FDS) system. The smoke detector described in this paper is an adaptation of a mature commercial aircraft design for manned spaceflight. Changes made to the original design include upgrading the materials and electronic to space-qualified parts, and modifying the mechanical design to withstand launch and landing loads. The results of laboratory characterization of the response of the new design to test particles are presented.
Water-level sensor and temperature-profile detector
Not Available
1981-01-29
A temperature profile detector is described which comprises a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material are positioned at spaced locations along a length of the conductors. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows.
High-resolution CdTe detectors with application to various fields (Conference Presentation)
NASA Astrophysics Data System (ADS)
Takeda, Shin'ichiro; Orita, Tadashi; Arai, Yasuo; Sugawara, Hirotaka; Tomaru, Ryota; Katsuragawa, Miho; Sato, Goro; Watanabe, Shin; Ikeda, Hirokazu; Takahashi, Tadayuki; Furenlid, Lars R.; Barber, H. Bradford
2016-10-01
High-quality CdTe semiconductor detectors with both fine position resolution and high energy resolution hold great promise to improve measurement in various hard X-ray and gamma-ray imaging fields. ISAS/JAXA has been developing CdTe imaging detectors to meet scientific demands in latest celestial observation and severe environmental limitation (power consumption, vibration, radiation) in space for over 15 years. The energy resolution of imaging detectors with a CdTe Schottky diode of In/CdTe/Pt or Al/CdTe/Pt contact is a highlight of our development. We can extremely reduce a leakage current of devises, meaning it allows us to supply higher bias voltage to collect charges. The 3.2cm-wide and 0.75mm-thick CdTe double-sided strip detector with a strip pitch of 250 µm has been successfully established and was mounted in the latest Japanese X-ray satellite. The energy resolution measured in the test on ground was 2.1 keV (FWHM) at 59.5 keV. The detector with much finer resolution of 60 µm is ready, and it was actually used in the FOXSI rocket mission to observe hard X-ray from the sun. In this talk, we will focus on our research activities to apply space sensor technologies to such various imaging fields as medical imaging. Recent development of CdTe detectors, imaging module with pinhole and coded-mask collimators, and experimental study of response to hard X-rays and gamma-rays are presented. The talk also includes research of the Compton camera which has a configuration of accumulated Si and CdTe imaging detectors.
Pázmándi, Tamás; Deme, Sándor; Láng, Edit
2006-01-01
One of the many risks of long-duration space flights is the excessive exposure to cosmic radiation, which has great importance particularly during solar flares and higher sun activity. Monitoring of the cosmic radiation on board space vehicles is carried out on the basis of wide international co-operation. Since space radiation consists mainly of charged heavy particles (protons, alpha and heavier particles), the equivalent dose differs significantly from the absorbed dose. A radiation weighting factor (w(R)) is used to convert absorbed dose (Gy) to equivalent dose (Sv). w(R) is a function of the linear energy transfer of the radiation. Recently used equipment is suitable for measuring certain radiation field parameters changing in space and over time, so a combination of different measurements and calculations is required to characterise the radiation field in terms of dose equivalent. The objectives of this project are to develop and manufacture a three-axis silicon detector telescope, called Tritel, and to develop software for data evaluation of the measured energy deposition spectra. The device will be able to determine absorbed dose and dose equivalent of the space radiation.
LWIR detector requirements for low-background space applications
NASA Technical Reports Server (NTRS)
Deluccia, Frank J.
1990-01-01
Detection of cold bodies (200 to 300 K) against space backgrounds has many important applications, both military and non-military. The detector performance and design characteristics required to support low-background applications are discussed, with particular emphasis on those characteristics required for space surveillance. The status of existing detector technologies under active development for these applications is also discussed. In order to play a role in future systems, new, potentially competing detector technologies such as multiple quantum well detectors must not only meet system-derived requirements, but also offer distinct performance or other advantages over these incumbent technologies.
Comparative Soot Diagnostics Experiment Looks at the Smoky World of Microgravity Combustion
NASA Technical Reports Server (NTRS)
Urban, David L.; Griffin, DeVon W.; Gard, Melissa Y.
1997-01-01
From an economic standpoint, soot is one of the most important combustion intermediates and products. It is a major industrial product and is the dominant medium for radiant heat transport in most flames used to generate heat and power. The nonbuoyant structure of most flames of practical interest (turbulent flames) makes the understanding of soot processes in microgravity flames important to our ability to predict fire behavior on Earth. In addition, fires in spacecraft are considered a credible possibility. To respond to this risk, NASA has flown fire (or smoke) detectors on Skylab and the space shuttles and included them in the International Space Station design. The design of these detectors, however, was based entirely on normal gravity (1g) data. The detector used in the shuttle fleet is an ionization detector, whereas the system planned for the space station uses forward scattering of near-infrared light. The ionization detector, which is similar to smoke detectors used in homes, has a comparative advantage for submicron particulates. In fact, the space shuttle model uses a separation system that makes it blind to particles larger than a micron (believed to be dust). In the larger size range, the lightscattering detector is most sensitive. Without microgravity smoke data, the difference in the particle size sensitivities of the two detectors cannot be evaluated. As part of the Comparative Soot Diagnostics (CSD) experiment, these systems were tested to determine their response to particulates generated during long periods of low gravity. This experiment provided the first such measurements toward understanding soot processes on Earth and for designing and implementing improved spacecraft smoke detection systems. The objectives of CSD were to examine how particulates form from a variety of sources and to quantify the performance of several diagnostic techniques. The sources tested included four overheated materials (paper, silicone rubber, Teflon-coated (DuPont) wire, and Kapton-coated (DuPont) wires), each tested at three heating rates, and a candle tested at three air velocities. Paper, silicone rubber, and wire insulation, materials found in spacecraft crew cabins, were selected because of their different smoke properties. The candle yielded hydrocarbon soot typical of many 1g flames. Four diagnostic techniques were employed: thermophoretic sampling collected particulates for size analysis; laser light extinction measurements near the source tallied total particulate production; and laser light scattering and ionization detector measurements far from the particulate source provided data for evaluating the performance of smoke detection systems for these particulate sources.
Double helix boron-10 powder thermal neutron detector
Wang, Zhehui; Morris, Christopher L.; Bacon, Jeffrey D.
2015-06-02
A double-helix Boron-10 powder detector having intrinsic thermal neutron detection efficiency comparable to 36'' long, 2-in diameter, 2-bar Helium-3 detectors, and which can be used to replace such detectors for use in portal monitoring, is described. An embodiment of the detector includes a metallic plate coated with Boron-10 powder for generating alpha and Lithium-7 particles responsive to neutrons impinging thereon supported by insulators affixed to at least two opposing edges; a grounded first wire wound in a helical manner around two opposing insulators; and a second wire having a smaller diameter than that of the first wire, wound in a helical manner around the same insulators and spaced apart from the first wire, the second wire being positively biased. A gas, disposed within a gas-tight container enclosing the plate, insulators and wires, and capable of stopping alpha and Lithium-7 particles and generating electrons produces a signal on the second wire which is detected and subsequently related to the number of neutrons impinging on the plate.
NASA Astrophysics Data System (ADS)
Staguhn, Johannes G.
2018-05-01
Spectroscopic, cold, space-based mid-to-far-infrared (FIR) missions, such as the Origins Space Telescope, will require large (tens of kilopixels), ultra-sensitive FIR detector arrays with sufficient dynamic range and high-density multiplexing schemes for the readout, in order to optimize the scientific return while staying within a realistic cost range. Issues like power consumption of multiplexers and their readout are significantly more important for space missions than they are for ground-based or suborbital applications. In terms of the detectors and their configuration into large arrays, significant development efforts are needed even for both of the most mature candidate superconducting detector technologies, namely transition edge sensors and (microwave) kinetic inductance detectors. Here we explore both practical and fundamental limits for those technologies in order to lay out a realistic path forward for both technologies. We conclude that beyond the need to enhance the detector sensitivities and pixel numbers by about an order of magnitude over currently existing devices, improved concepts for larger dynamic range and multiplexing density will be needed in order to optimize the scientific return of future cold FIR space missions. Background-limited, very high spectral resolution instruments will require photon-counting detectors.
Ren, Kuan; Liu, Shenye; Du, Huabing; Hou, Lifei; Jing, Longfei; Zhao, Yang; Yang, Zhiwen; Wei, Minxi; Deng, Keli; Yao, Li; Yang, Guohong; Li, Sanwei; Lan, Ke; Liu, Jie; Zhu, Xiaoli; Ding, Yongkun; Yi, Lin
2015-10-01
The space-resolving measurement of X-ray flux from a specific area (laser spot, re-emitting wall, or capsule) inside the hohlraum is an ongoing and critical problem in indirectly driven inertial-confinement fusion experiments. In this work, we developed a new two-dimensional space-resolving flux detection technique to measure the X-ray flux from specific areas inside the hohlraum by using the time- and space-resolving flux detector (SRFD). In two typical hohlraum experiments conducted at the Shenguang-III prototype laser facility, the X-ray flux and radiation temperature from an area 0.2 mm in diameter inside the hohlraum were measured through the laser entrance hole (LEH). The different flux intensities and radiation temperatures detected using the SRFD from the inner area of the LEH were compared with the result measured using the flat-response X-ray detector from the entire LEH. This comparison was also analyzed theoretically. The inner area detected using the SRFD was found to be the re-emitting wall area alone. This important improvement in space-resolving X-ray flux measurement will enhance the current X-ray flux space characterization techniques, thereby furthering the quantitative understanding of X-ray flux space behavior in the hohlraum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Kuan; Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900; Liu, Shenye, E-mail: lsye1029@163.com
2015-10-15
The space-resolving measurement of X-ray flux from a specific area (laser spot, re-emitting wall, or capsule) inside the hohlraum is an ongoing and critical problem in indirectly driven inertial-confinement fusion experiments. In this work, we developed a new two-dimensional space-resolving flux detection technique to measure the X-ray flux from specific areas inside the hohlraum by using the time- and space-resolving flux detector (SRFD). In two typical hohlraum experiments conducted at the Shenguang-III prototype laser facility, the X-ray flux and radiation temperature from an area 0.2 mm in diameter inside the hohlraum were measured through the laser entrance hole (LEH). Themore » different flux intensities and radiation temperatures detected using the SRFD from the inner area of the LEH were compared with the result measured using the flat-response X-ray detector from the entire LEH. This comparison was also analyzed theoretically. The inner area detected using the SRFD was found to be the re-emitting wall area alone. This important improvement in space-resolving X-ray flux measurement will enhance the current X-ray flux space characterization techniques, thereby furthering the quantitative understanding of X-ray flux space behavior in the hohlraum.« less
Very long stripe-filters for a multispectral detector
NASA Astrophysics Data System (ADS)
Laubier, D.; Mercier Ythier, Renaud
2017-11-01
In order to simplify instrument design, a new linear area CCD sensor has been developed under CNES responsibility. This detector has four lines 6000 13-μm square pixels long with four stripe filters, one in front of each of them. The detector itself was manufactured and mounted by ATMEL, and the filters were made by SAGEM/REOSC. Assembly was done in two ways, one by ATMEL, the other by SESO. CNES was responsible for the overall design and mechanical/optical interfaces. This paper reports the optical part of this work, including filters placement strategy and line spacing. It will be shown how these two features are closely linked to straylight performance. First, a trade-off study was conducted between several concepts: the results of this study will be presented, as well as the filter design and manufacturing results. They show good transmission and excellent rejection. Final performance of the complete prototypes has been measured, and it will be compared to theoretical models.
High-efficiency neutron detectors and methods of making same
McGregor, Douglas S.; Klann, Raymond
2007-01-16
Neutron detectors, advanced detector process techniques and advanced compound film designs have greatly increased neutron-detection efficiency. One embodiment of the detectors utilizes a semiconductor wafer with a matrix of spaced cavities filled with one or more types of neutron reactive material such as 10B or 6LiF. The cavities are etched into both the front and back surfaces of the device such that the cavities from one side surround the cavities from the other side. The cavities may be etched via holes or etched slots or trenches. In another embodiment, the cavities are different-sized and the smaller cavities extend into the wafer from the lower surfaces of the larger cavities. In a third embodiment, multiple layers of different neutron-responsive material are formed on one or more sides of the wafer. The new devices operate at room temperature, are compact, rugged, and reliable in design.
Detector Arrays for the James Webb Space Telescope Near-Infrared Spectrograph
NASA Technical Reports Server (NTRS)
Rauscher, Bernard J.; Alexander, David; Brambora, Clifford K.; Derro, Rebecca; Engler, Chuck; Fox, Ori; Garrison, Matthew B.; Henegar, Greg; Hill, robert J.; Johnson, Thomas;
2007-01-01
The James Webb Space Telescope's (JWST) Near Infrared Spectrograph (NIRSpec) incorporates two 5 micron cutoff (lambda(sub co) = 5 microns) 2048x2048 pixel Teledyne HgCdTe HAWAII-2RG sensor chip assemblies. These detector arrays, and the two Teledyne SIDECAR application specific integrated circuits that control them, are operated in space at T approx. 37 K. In this article, we provide a brief introduction to NIRSpec, its detector subsystem (DS), detector readout in the space radiation environment, and present a snapshot of the developmental status of the NIRSpec DS as integration and testing of the engineering test unit begins.
NASA Astrophysics Data System (ADS)
Ecoffet, Robert; Maget, Vincent; Rolland, Guy; Lorfevre, Eric; Bourdarie, Sébastien; Boscher, Daniel
2016-07-01
We have developed a series of instruments for energetic particle measurements, associated with component test beds "MEX". The aim of this program is to check and improve space radiation engineering models and techniques. The first series of instruments, "ICARE" has flown on the MIR space station (SPICA mission), the ISS (SPICA-S mission) and the SAC-C low Earth polar orbiting satellite (ICARE mission 2001-2011) in cooperation with the Argentinian space agency CONAE. A second series of instruments "ICARE-NG" was and is flown as: - CARMEN-1 mission on CONAE's SAC-D, 650 km, 98°, 2011-2015, along with three "SODAD" space micro-debris detectors - CARMEN-2 mission on the JASON-2 satellite (CNES, JPL, EUMETSAT, NOAA), 1336 km, 66°, 2008-now, along with JAXA's LPT energetic particle detector - CARMEN-3 mission on the JASON-3 satellite in the same orbit as JASON-2, launched 17 January 2016, along with a plasma detector "AMBRE", and JAXA's LPT again. The ICARE-NG is spectrometer composed of a set of three fully depleted silicon solid state detectors used in single and coincident mode. The on-board measurements consist in accumulating energy loss spectra in the detectors over a programmable accumulation period. The spectra are generated through signal amplitude classification using 8 bit ADCs and resulting in 128/256 channels histograms. The discriminators reference levels, amplifier gain and accumulation time for the spectra are programmable to provide for possible on-board tuning optimization. Ground level calibrations have been made at ONERA-DESP using radioactive source emitting alpha particles in order to determine the exact correspondence between channel number and particle energy. To obtain the response functions to particles, a detailed sectoring analysis of the satellite associated with GEANT-4/MCNP-X calculations has been performed to characterize the geometrical factors of the each detector for p+ as well as for e- with different energies. The component test bed "MEX" is equipped with two different types of active dosimeters, P-MOS silicon dosimeters and OSL (optically stimulated luminescence). Those dosimeters provide independent measurements of ionizing and displacement damage doses and consolidate spectrometers' observations. The data sets obtained cover more than one solar cycle. Dynamics of the radiation belts, effects of solar particle events, coronal mass ejections and coronal holes were observed. Spectrometer measurements and dosimeter readings were used to evaluate current engineering models, and helped in developing improved ones, along with "space weather" radiation belt indices. The presentation will provide a comprehensive review of detector features and mission results.
Wide-range radioactive-gas-concentration detector
Anderson, D.F.
1981-11-16
A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.
Tissue oxygenation and haemodynamics measurement with spatially resolved NIRS
NASA Astrophysics Data System (ADS)
Zhang, Y.; Scopesi, F.; Serra, G.; Sun, J. W.; Rolfe, P.
2010-08-01
We describe the use of Near Infrared Spectroscopy (NIRS) for the non-invasive investigation of changes in haemodynamics and oxygenation of human peripheral tissues. The goal was to measure spatial variations of tissue NIRS oxygenation variables, namely deoxy-haemoglobin (HHb), oxy-haemoglobin (HbO2), total haemoglobin (HbT), and thereby to evaluate the responses of the peripheral circulation to imposed physiological challenges. We present a skinfat- muscle heterogeneous tissue model with varying fat thickness up to 15mm and a Monte Carlo simulation of photon transport within this model. The mean partial path length and the mean photon visit depth in the muscle layer were derived for different source-detector spacing. We constructed NIRS instrumentation comprising of light-emitting diodes (LED) as light sources at four wavelengths, 735nm, 760nm, 810nm and 850nm and sensitive photodiodes (PD) as the detectors. Source-detector spacing was varied to perform measurements at different depths within forearm tissue. Changes in chromophore concentration in response to venous and arterial occlusion were calculated using the modified Lambert-Beer Law. Studies in fat and thin volunteers indicated greater sensitivity in the thinner subjects for the tissue oxygenation measurement in the muscle layer. These results were consistent with those found using Monte Carlo simulation. Overall, the results of this investigation demonstrate the usefulness of the NIRS instrument for deriving spatial information from biological tissues.
Space Detectors for Gamma Rays (100 MeV-100 GeV): from Egret to Fermi LAT
NASA Technical Reports Server (NTRS)
Thompson, David J.
2015-01-01
The design of spaceborne high-energy (E is greater than 100 MeV) gamma-ray detectors depends on two principal factors: (1) the basic physics of detecting and measuring the properties of the gamma rays; and (2) the constraints of operating such a detector in space for an extended period. Improvements in technology have enabled major advances in detector performance, as illustrated by two successful instruments, EGRET on the Compton Gamma Ray Observatory and LAT on the Fermi Gamma-ray Space Telescope.
Analysis of Measurements for Solid State Lidar Development
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin
1996-01-01
A Detector Characterization Facility (DCF), capable of measuring 2-micron detection devices and evaluating heterodyne receivers, was developed at the Marshall Space Flight Center. The DCF is capable of providing all the necessary detection parameters for design, development, and calibration of coherent and incoherent solid state laser radar (lidar) systems. The coherent lidars in particular require an accurate knowledge of detector heterodyne quantum efficient, nonlinearity properties, and voltage-current relationship as a function of applied optical power. At present, no detector manufacturer provides these qualities or adequately characterizes their detectors for heterodyne detection operation. In addition, the detector characterization facility measures the detectors DC and AC quantum efficiencies noise equivalent power and frequency response up to several GHz. The DCF is also capable of evaluating various heterodyne detection schemes such as balanced detectors and fiber optic interferometers. The design and analyses of measurements for the DCF were preformed over the previous year and a detailed description of its design and capabilities was provided in the NASA report NAS8-38609/DO77. It should also be noted that the DCF design was further improved to allow for the characterization of diffractive andholographical optical elements and other critical components of coherent lidar systems.
Equatorial secondary cosmic ray observatory to study space weather and terrestrial events
NASA Astrophysics Data System (ADS)
Vichare, Geeta; Bhaskar, Ankush; Datar, Gauri; Raghav, Anil; Nair, K. U.; Selvaraj, C.; Ananthi, M.; Sinha, A. K.; Paranjape, M.; Gawade, T.; Anil Kumar, C. P.; Panneerselvam, C.; Sathishkumar, S.; Gurubaran, S.
2018-05-01
Recently, equatorial secondary cosmic ray observatory has been established at Equatorial Geophysical Research Laboratory (EGRL), Tirunelveli, (Geographic Coordinates: 8.71°N, 77.76°E), to study secondary cosmic rays (SCR) produced due to the interaction of primary cosmic rays with the Earth's atmosphere. EGRL is a regional center of Indian Institute of Geomagnetism (IIG), located near the equator in the Southern part of India. Two NaI(Tl) scintillation detectors are installed inside the temperature controlled environment. One detector is cylindrical in shape of size 7.62 cm × 7.62 cm and another one is rectangular cuboid of 10.16 cm × 10.16 cm × 40.64 cm size. Besides NaI(Tl) detectors, various other research facilities such as the Geomagnetic observatory, Medium Frequency Radar System, Digital Ionosonde, All-sky airglow imager, Atmospheric electricity laboratory to measure the near-Earth atmospheric electric fields are also available at EGRL. With the accessibility of multi- instrument facilities, the objective is set to understand the relationship between SCR and various atmospheric and ionospheric processes, during space weather and terrestrial events. For gamma-ray spectroscopy, it is important to test the performance of the NaI(Tl) scintillation detectors and to calibrate the gamma-ray spectrum in terms of energy. The present article describes the details of the experimental setup installed near the equator to study cosmic rays, along with the performance testing and calibration of the detectors under various conditions. A systematic shift in the gain is observed with varying temperature of the detector system. It is found that the detector's response to the variations in the temperature is not just linear or non-linear type, but it depends on the history of the variation, indicating temperature hysteresis effects on NaI detector and PMT system. This signifies the importance of isothermal environment while studying SCR flux using NaI(Tl) detectors, especially for the experiments conducted during daytime such as solar eclipses etc.
Kuipers sets up the EHS/TEPC Spectrometer and Detector Assembly in the SM
2012-03-12
ISS030-E-177101 (12 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, sets up the Environmental Health System / Tissue Equivalent Proportional Counter (EHS/TEPC) spectrometer and detector assembly on panel 327 in the Zvezda Service Module of the International Space Station. The TEPC detector assembly is the primary radiation measurement tool on the space station.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diepold, Marc, E-mail: marc.diepold@mpq.mpg.de; Franke, Beatrice; Götzfried, Johannes
Avalanche photodiodes are commonly used as detectors for low energy x-rays. In this work, we report on a fitting technique used to account for different detector responses resulting from photoabsorption in the various avalanche photodiode layers. The use of this technique results in an improvement of the energy resolution at 8.2 keV by up to a factor of 2 and corrects the timing information by up to 25 ns to account for space dependent electron drift time. In addition, this waveform analysis is used for particle identification, e.g., to distinguish between x-rays and MeV electrons in our experiment.
Development of the MAMA Detectors for the Hubble Space Telescope Imaging Spectrograph
NASA Technical Reports Server (NTRS)
Timothy, J. Gethyn
1997-01-01
The development of the Multi-Anode Microchannel Array (MAMA) detector systems started in the early 1970's in order to produce multi-element detector arrays for use in spectrographs for solar studies from the Skylab-B mission. Development of the MAMA detectors for spectrographs on the Hubble Space Telescope (HST) began in the late 1970's, and reached its culmination with the successful installation of the Space Telescope Imaging Spectrograph (STIS) on the second HST servicing mission (STS-82 launched 11 February 1997). Under NASA Contract NAS5-29389 from December 1986 through June 1994 we supported the development of the MAMA detectors for STIS, including complementary sounding rocket and ground-based research programs. This final report describes the results of the MAMA detector development program for STIS.
Optical modeling of waveguide coupled TES detectors towards the SAFARI instrument for SPICA
NASA Astrophysics Data System (ADS)
Trappe, N.; Bracken, C.; Doherty, S.; Gao, J. R.; Glowacka, D.; Goldie, D.; Griffin, D.; Hijmering, R.; Jackson, B.; Khosropanah, P.; Mauskopf, P.; Morozov, D.; Murphy, A.; O'Sullivan, C.; Ridder, M.; Withington, S.
2012-09-01
The next generation of space missions targeting far-infrared wavelengths will require large-format arrays of extremely sensitive detectors. The development of Transition Edge Sensor (TES) array technology is being developed for future Far-Infrared (FIR) space applications such as the SAFARI instrument for SPICA where low-noise and high sensitivity is required to achieve ambitious science goals. In this paper we describe a modal analysis of multi-moded horn antennas feeding integrating cavities housing TES detectors with superconducting film absorbers. In high sensitivity TES detector technology the ability to control the electromagnetic and thermo-mechanical environment of the detector is critical. Simulating and understanding optical behaviour of such detectors at far IR wavelengths is difficult and requires development of existing analysis tools. The proposed modal approach offers a computationally efficient technique to describe the partial coherent response of the full pixel in terms of optical efficiency and power leakage between pixels. Initial wok carried out as part of an ESA technical research project on optical analysis is described and a prototype SAFARI pixel design is analyzed where the optical coupling between the incoming field and the pixel containing horn, cavity with an air gap, and thin absorber layer are all included in the model to allow a comprehensive optical characterization. The modal approach described is based on the mode matching technique where the horn and cavity are described in the traditional way while a technique to include the absorber was developed. Radiation leakage between pixels is also included making this a powerful analysis tool.
Development and characterisation of MCT detectors for space astrophysics at CEA
NASA Astrophysics Data System (ADS)
Boulade, O.; Baier, N.; Castelein, P.; Cervera, C.; Chorier, P.; Destefanis, G.; Fièque, B.; Gravrand, O.; Guellec, F.; Moreau, V.; Mulet, P.; Pinsard, F.; Zanatta, J.-P.
2017-11-01
The Laboratoire Electronique et Traitement de l'Information (LETI) of the Commissariat à l'Energie Atomique (CEA, Grenoble, France) has been involved in the development of infrared detectors based on HgCdTe (MCT) material for over 30 years, mainly for defence and security programs [1]. Once the building blocks are developed at LETI (MCT material process, diode technology, hybridization, …), the industrialization is performed at SOFRADIR (also in Grenoble, France) which also has its own R&D program [2]. In past years, LETI also developed infrared detectors for space astrophysics in the mid infrared range - the long wave detector of the ISOCAM camera onboard ISO - as well as in the far infrared range - the bolometer arrays of the Herschel/PACS photometer unit -, both instruments which were under the responsibility of the Astrophysics department of CEA (IRFU/SAp, Saclay, France). Nowadays, the infrared detectors used in space and ground based astronomical instruments all come from vendors in the US. For programmatic reasons - increase the number of available vendors, decrease the cost, mitigate possible export regulations, …- as well as political ones - spend european money in Europe -, the European Space Agency (ESA) defined two roadmaps (one in the NIR-SWIR range, one in the MWIR-LWIR range) that will eventually allow for the procurement of infrared detectors for space astrophysics within Europe. The French Space Agency (CNES) also started the same sort of roadmaps, as part of its contribution to the different space missions which involve delivery of instruments by French laboratories. It is important to note that some of the developments foreseen in these roadmaps also apply to Earth Observations. One of the main goal of the ESA and CNES roadmaps is to reduce the level of dark current in MCT devices at all wavelengths. The objective is to use the detectors at the highest temperature where the noise induced by the dark current stays compatible with the photon noise, as the detector operating temperature has a very strong impact at system level. A consequence of reaching low levels of dark current is the need for very low noise readout circuits. CEA and SOFRADIR are involved in a number of activities that have already started in this framework. CEA/LETI does the development of the photo-voltaic (PV) layers - MCT material growth, diode technologies-, as well as some electro-optical characterisation at wafer, diode and hybrid component levels, and CEA/IRFU/SAp does all the electro-optical characterisation involving very low flux measurements (mostly dark current measurements). Depending of the program, SOFRADIR can also participate in the development of the hybrid components, for instance the very low noise readout circuits (ROIC) can be developed either at SOFRADIR or at CEA/LETI. Depending of the component specifications, the MCT epitaxy can be either liquid phase (LPE, which is the standard at SOFRADIR for production purposes) or molecular beam (MBE), the diode technology can be n/p (standard at LETI and SOFRADIR) or p/n (under development for several years now) [3], and the input stage of the ROIC can be Source Follower per Detector (SFD for very low flux low noise programs) or Capacitive Trans Impedance Amplifier (CTIA for intermediate flux programs) [4]. This paper will present the different developments and results obtained so far in the two NIR-SWIR and MWIR-LWIR spectral ranges, as well as the perspectives for the near future. CEA/LETI is also involved in the development of MCT Avalanche Photo Diodes (APD) that will be discussed in other papers [5,6].
Compact Micromachined Infrared Bandpass Filters for Planetary Spectroscopy
NASA Technical Reports Server (NTRS)
Merrell, Willie C., II; Aslam, Shahid; Brown, Ari D.; Chervenak, James A.; Huang, Wei-Chung; Quijada, Manuel; Wollack, Edward
2011-01-01
The future needs of space based observational planetary and astronomy missions include low mass and small volume radiometric instruments that can operate in high radiation and low temperature environments. Here we focus on a central spectroscopic component, the bandpass filter. We model the bandpass response of the filters to target the wavelength of the resonance peaks at 20, 40, and 60 micrometers and report good agreement between the modeled and measured response. We present a technique of using common micromachining processes for semiconductor fabrication to make compact, free standing resonant metal mesh filter arrays with silicon support frames. The process can accommodate multiple detector array architectures and the silicon frame provides lightweight mechanical support with low form factor. We also present a conceptual hybridization of the filters with a detector array.
Performance of charge-injection-device infrared detector arrays at low and moderate backgrounds
NASA Technical Reports Server (NTRS)
Mckelvey, M. E.; Mccreight, C. R.; Goebel, J. H.; Reeves, A. A.
1985-01-01
Three 2 x 64 element charge injection device infrared detector arrays were tested at low and moderate background to evaluate their usefulness for space based astronomical observations. Testing was conducted both in the laboratory and in ground based telescope observations. The devices showed an average readout noise level below 200 equivalent electrons, a peak responsivity of 4 A/W, and a noise equivalent power of 3x10 sq root of W/Hz. Array well capacity was measured to be significantly smaller than predicted. The measured sensitivity, which compares well with that of nonintegrating discrete extrinsic silicon photoconductors, shows these arrays to be useful for certain astronomical observations. However, the measured readout efficiency and frequency response represent serious limitations in low background applications.
Practical application of HgI2 detectors to a space-flight scanning electron microscope
NASA Technical Reports Server (NTRS)
Bradley, J. G.; Conley, J. M.; Albee, A. L.; Iwanczyk, J. S.; Dabrowski, A. J.
1989-01-01
Mercuric iodide X-ray detectors have been undergoing tests in a prototype scanning electron microscope system being developed for unmanned space flight. The detector program addresses the issues of geometric configuration in the SEM, compact packaging that includes separate thermoelectric coolers for the detector and FET, X-ray transparent hermetic encapsulation and electrical contacts, and a clean vacuum environment.
NASA Technical Reports Server (NTRS)
1983-01-01
The possibility of standard low temperature detector(s) for use in upcoming cryogenically cooled satellite and Space Shuttle payloads were investigated. These payloads operate from .3 kelvin to 300 kelvin. Standard detectors were selected and matching signal conditioning equipment compatible with the selected detector, typical spacecraft voltages, typical spacecraft telemetry systems, and the radiation encountered by a typical Earth orbiting spacecraft. Work statements to better define and advance detector performance were presented.
14 CFR 25.1733 - Fire detector systems, general: EWIS.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire detector systems, general: EWIS. 25.1733 Section 25.1733 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Systems (EWIS) § 25.1733 Fire detector systems, general: EWIS. EWIS associated with any installed fire...
14 CFR 25.1733 - Fire detector systems, general: EWIS.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire detector systems, general: EWIS. 25.1733 Section 25.1733 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Systems (EWIS) § 25.1733 Fire detector systems, general: EWIS. EWIS associated with any installed fire...
14 CFR 25.1733 - Fire detector systems, general: EWIS.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire detector systems, general: EWIS. 25.1733 Section 25.1733 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Systems (EWIS) § 25.1733 Fire detector systems, general: EWIS. EWIS associated with any installed fire...
14 CFR 25.1733 - Fire detector systems, general: EWIS.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire detector systems, general: EWIS. 25.1733 Section 25.1733 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Systems (EWIS) § 25.1733 Fire detector systems, general: EWIS. EWIS associated with any installed fire...
14 CFR 25.1733 - Fire detector systems, general: EWIS.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire detector systems, general: EWIS. 25.1733 Section 25.1733 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Systems (EWIS) § 25.1733 Fire detector systems, general: EWIS. EWIS associated with any installed fire...
Unruh effect for general trajectories
NASA Astrophysics Data System (ADS)
Obadia, N.; Milgrom, M.
2007-03-01
We consider two-level detectors coupled to a scalar field and moving on arbitrary trajectories in Minkowski space-time. We first derive a generic expression for the response function using a (novel) regularization procedure based on the Feynman prescription that is explicitly causal, and we compare it to other expressions used in the literature. We then use this expression to study, analytically and numerically, the time dependence of the response function in various nonstationarity situations. We show that, generically, the response function decreases like a power in the detector’s level spacing, E, for high E. It is only for stationary worldlines that the response function decays faster than any power law, in keeping with the known exponential behavior for some stationary cases. Under some conditions the (time-dependent) response function for a nonstationary worldline is well approximated by the value of the response function for a stationary worldline having the same instantaneous acceleration, torsion, and hypertorsion. While we cannot offer general conditions for this to apply, we discuss special cases; in particular, the low-energy limit for linear space trajectories.
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; O'Neill, P. M.
2001-01-01
There is considerable interest in developing silicon-based telescopes because of their compactness and low power requirements. Three such telescopes have been flown on board the Space Shuttle to measure the linear energy transfer spectra of trapped, galactic cosmic ray, and solar energetic particles. Dosimeters based on single silicon detectors have also been flown on the Mir orbital station. A comparison of the absorbed dose and radiation quality factors calculated from these telescopes with that estimated from measurements made with a tissue equivalent proportional counter show differences which need to be fully understood if these telescopes are to be used for astronaut radiation risk assessments. Instrument performance is complicated by a variety of factors. A Monte Carlo-based technique was developed to model the behavior of both single element detectors in a proton beam, and the performance of a two-element, wide-angle telescope, in the trapped belt proton field inside the Space Shuttle. The technique is based on: (1) radiation transport intranuclear-evaporation model that takes into account the charge and angular distribution of target fragments, (2) Landau-Vavilov distribution of energy deposition allowing for electron escape, (3) true detector geometry of the telescope, (4) coincidence and discriminator settings, (5) spacecraft shielding geometry, and (6) the external space radiation environment, including albedo protons. The value of such detailed modeling and its implications in astronaut risk assessment is addressed. c2001 Elsevier Science B.V. All rights reserved.
Badhwar, G D; O'Neill, P M
2001-07-11
There is considerable interest in developing silicon-based telescopes because of their compactness and low power requirements. Three such telescopes have been flown on board the Space Shuttle to measure the linear energy transfer spectra of trapped, galactic cosmic ray, and solar energetic particles. Dosimeters based on single silicon detectors have also been flown on the Mir orbital station. A comparison of the absorbed dose and radiation quality factors calculated from these telescopes with that estimated from measurements made with a tissue equivalent proportional counter show differences which need to be fully understood if these telescopes are to be used for astronaut radiation risk assessments. Instrument performance is complicated by a variety of factors. A Monte Carlo-based technique was developed to model the behavior of both single element detectors in a proton beam, and the performance of a two-element, wide-angle telescope, in the trapped belt proton field inside the Space Shuttle. The technique is based on: (1) radiation transport intranuclear-evaporation model that takes into account the charge and angular distribution of target fragments, (2) Landau-Vavilov distribution of energy deposition allowing for electron escape, (3) true detector geometry of the telescope, (4) coincidence and discriminator settings, (5) spacecraft shielding geometry, and (6) the external space radiation environment, including albedo protons. The value of such detailed modeling and its implications in astronaut risk assessment is addressed. c2001 Elsevier Science B.V. All rights reserved.
Fundamentals of the orbit and response for TianQin
NASA Astrophysics Data System (ADS)
Hu, Xin-Chun; Li, Xiao-Hong; Wang, Yan; Feng, Wen-Fan; Zhou, Ming-Yue; Hu, Yi-Ming; Hu, Shou-Cun; Mei, Jian-Wei; Shao, Cheng-Gang
2018-05-01
TianQin is a space-based laser interferometric gravitational wave detector aimed at detecting gravitational waves at low frequencies (0.1 mHz–1 Hz). It is formed by three identical drag-free spacecrafts in an equilateral triangular constellation orbiting around the Earth. The distance between each pair of spacecrafts is approximately 1.7 × 105 ~km . The spacecrafts are interconnected by infrared laser beams forming up to three Michelson-type interferometers. The detailed mission design and the study of science objectives for the TianQin project depend crucially on the orbit and the response of the detector. In this paper, we provide the analytic expressions for the coordinates of the orbit for each spacecraft in the heliocentric-ecliptic coordinate system to the leading orders. This enables a sufficiently accurate study of science objectives and data analysis, and serves as a first step to further orbit design and optimization. We calculate the response of a single Michelson detector to plane gravitational waves in arbitrary waveform which is valid in the full range of the sensitive frequencies. It is then used to generate the more realistic sensitivity curve of TianQin. We apply this model on a reference white-dwarf binary as a proof of principle.
A study of the radiation environment on board the space shuttle flight STS-57
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Atwell, W.; Benton, E. V.; Frank, A. L.; Keegan, R. P.; Dudkin, V. E.; Karpov, O. N.; Potapov, V.; Akopova, A. B.; Magradze, N. V.
1995-01-01
A joint NASA-Russian study of the radiation environment inside a SPACEHAB 2 locker on space shuttle flight STS-57 was conducted. The shuttle flew in a nearly circular orbit of 28.5 deg inclination and 462 km altitude. The locker carried a charged particle spectrometer, a tissue equivalent proportional counter (TEPC), and two area passive detectors consisting of combined NASA plastic nuclear track detectors (PNTD's) and thermoluminescent detectors (TLD's), and Russian nuclear emulsions, PNTD's, and TLD's. All the detector systems were shielded by the same shuttle mass distribution. This makes possible a direct comparison of the various dose measurement techniques. In addition, measurements of the neutron energy spectrum were made using the proton recoil technique. The results show good agreement between the integral LET spectrum of the combined galactic and trapped particles using the tissue equivalent proportional counter and track detectors between about 15 keV/micron and 200 keV/micron. The LET spectrum determined from nuclear emulsions was systematically lower by about 50%, possibly due to emulsion fading. The results show that the TEPC measured an absorbed dose 20% higher than TLD's, due primarily to an increased TEPC response to neutrons and a low sensitivity of TLD's to high LET particles under normal processing techniques. There is a significant flux of high energy neutrons that is currently not taken into consideration in dose equivalent calculations. The results of the analysis of the spectrometer data will be reported separately.
High density harp or wire scanner for particle beam diagnostics
Fritsche, C.T.; Krogh, M.L.
1996-05-21
Disclosed is a diagnostic detector head harp used to detect and characterize high energy particle beams using an array of closely spaced detector wires, typically carbon wires, spaced less than 0.1 cm (0.040 inch) connected to a hybrid microcircuit formed on a ceramic substrate. A method to fabricate harps to obtain carbon wire spacing and density not previously available utilizing hybrid microcircuit technology. The hybrid microcircuit disposed on the ceramic substrate connects electrically between the detector wires and diagnostic equipment which analyzes pulses generated in the detector wires by the high energy particle beams. 6 figs.
A high-performance electric field detector for space missions
NASA Astrophysics Data System (ADS)
Badoni, D.; Ammendola, R.; Bertello, I.; Cipollone, P.; Conti, L.; De Santis, C.; Diego, P.; Masciantonio, G.; Picozza, P.; Sparvoli, R.; Ubertini, P.; Vannaroni, G.
2018-04-01
We present the prototype of an Electric Field Detector (EFD) for space applications, that has been developed in the framework of the Chinese-Italian collaboration on the CSES (China Seismo-Electromagnetic Satellite) forthcoming missions. In particular CSES-1 will be placed in orbit in the early 2018. The detector consists of spherical probes designed to be installed at the tips of four booms deployed from a 3-axes stabilized satellite. The instrument has been conceived for space-borne measurements of electromagnetic phenomena such as ionospheric waves, lithosphere-atmosphere-ionosphere-magnetosphere coupling and anthropogenic electromagnetic emissions. The detector allows to measure electric fields in a wide band of frequencies extending from quasi-DC up to about 4 MHz , with a sensitivity of the order of 1 μV / m in the ULF band. With these bandwidth and sensitivity, the described electric field detector represents a very performing and updated device for electric field measurements in space.
The WFM Instrument of the LOFT mission
NASA Astrophysics Data System (ADS)
Gálvez, J. L.; Hernanz, M.; Álvarez, L.; LOFT/WFM Team
2013-05-01
LOFT, the Large Observatory For X-ray Timing, was selected by ESA in 2011 as one of the four M3 (medium class) missions concepts of the Cosmic Vision programme that will compete for a launch opportunity at the start of the 2020s. LOFT includes two instruments: the Large Area Detector (LAD), a ˜10 m^2 collimated X-ray detector in the 2-50 keV range (up to 80 keV in extended mode), and the Wide Field Monitor (WFM), a coded-mask wide field X-ray monitor based on silicon radiation detectors. We, the Institute of Space Sciences (CSIC-IEEC) in Barcelona, are deeply involved in the LOFT mission, sharing the leadership of the WFM instrument with DTU Space in Denmark. We are responsible of the mechanics of the WFM, including the structural and thermal design. The WFM baseline is a set of 4 units (each unit corresponds to 2 co-aligned cameras) arranged in arch, covering a field of view at zero response of 180°× 90°, and one more unit pointing to the anti-sun direction. The structure of each camera lies on its own coded mask of Tungsten, 150 μm thick, a collimator and the detector plane (20 cm below the mask) providing a fine (arc minutes) angular resolution. The camera detector plane (182 cm^2) will operate at -20°C in order to achieve an energy resolution FWHM of less than 500 eV in the 2-50 keV energy range. The WFM has the main scope of catching good triggering sources to be pointed with the LAD. Its large field of view will permit to observe in the same energy range of the LAD about 50% of the sky at once. The WFM is designed also to catch transient/bursting events down to a few mCrab fluxes and will provide for them data with fine spectral and timing resolution (up to 10 μsec).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, John C; Peplow, Douglas E.; Mosher, Scott W
2011-01-01
This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or moremore » localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(102-4), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.« less
Minimum length Pb/SCIN detector for efficient cosmic ray identification
NASA Technical Reports Server (NTRS)
Snyder, H. David
1989-01-01
A study was made of the performance of a minimal length cosmic ray shower detector that would be light enough for space flight and would provide efficient identification of positions and protons. Cosmic ray positions are mainly produced in the decay chain of: Pion yields Muon yields Positron and they provide a measure of the matter density traversed by primary protons. Present positron flux measurements are consistent with the Leaky Box and Halo models for sources of cosmic rays. Abundant protons in the space environment are a significant source of background that would wash out the positron signal. Protons and positrons produced very distictive showers of particles when they enter matter; many studies have been published on their behavior on large calorimeter detectors. The challenge is to determine the minimal material necessary (minimal calorimeter depth) for positive particles identification. The primary instrument for the investigation is the Monte Carlo code GEANT, a library of programs from CERN that can be used to model experimental geometry, detector responses and particle interaction processes. The use of the Monte Carlo approach is crucial since statistical fluctuations in shower shape are significant. Studies conducted during the 1988 summer program showed that straightforward approaches to the problem achieved 85 to 90 percent correct identification, but left a residue of 10 to 15 percent misidentified particles. This percentage improved to a few percent when multiple shower-cut criteria were applied to the data. This summer, the same study was extended to employ several physical and statistical methods of identifying response of the calorimeter and the efficiency of the optimal shower cuts to off-normal incidence particle was determined.
Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W
2016-05-21
The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.
Hadfield holds bubble detectors for the RaDI-N Experiment in the Columbus Module
2013-01-25
ISS034-E-034506 (25 Jan. 2013) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, holds bubble detectors for the RaDI-N experiment in the International Space Station?s Kibo laboratory. RaDI-N measures neutron radiation levels onboard the space station. RaDI-N uses bubble detectors as neutron monitors which have been designed to only detect neutrons and ignore all other radiation.
Wide range radioactive gas concentration detector
Anderson, David F.
1984-01-01
A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.
A three-dimensional spacecraft-charging computer code
NASA Technical Reports Server (NTRS)
Rubin, A. G.; Katz, I.; Mandell, M.; Schnuelle, G.; Steen, P.; Parks, D.; Cassidy, J.; Roche, J.
1980-01-01
A computer code is described which simulates the interaction of the space environment with a satellite at geosynchronous altitude. Employing finite elements, a three-dimensional satellite model has been constructed with more than 1000 surface cells and 15 different surface materials. Free space around the satellite is modeled by nesting grids within grids. Applications of this NASA Spacecraft Charging Analyzer Program (NASCAP) code to the study of a satellite photosheath and the differential charging of the SCATHA (satellite charging at high altitudes) satellite in eclipse and in sunlight are discussed. In order to understand detector response when the satellite is charged, the code is used to trace the trajectories of particles reaching the SCATHA detectors. Particle trajectories from positive and negative emitters on SCATHA also are traced to determine the location of returning particles, to estimate the escaping flux, and to simulate active control of satellite potentials.
The Global Muon Detector Network -GMDN and the space situational awareness
NASA Astrophysics Data System (ADS)
Schuch, Nelson Jorge; Munakata, Kazuoki; Dal Lago, Alisson; Marcos Denardini, Clezio; Echer, Ezequiel; Demítrio Gonzalez Alarcon, Walter; da Silva, Marlos; Rigozo, Nivaor R.; Petry, Adriano; Kirsch Pinheiro, Damaris; Braga, Carlos Roberto; Vinicius Dias Silveira, Marcos; Ronan Coelho Stekel, Tardelli; Espindola Antunes, Cassio; Ramos Vieira, Lucas; Kemmerich, Níkolas; Kato, Chihiro; Fushishita, Akira; Fujii, Zenjirou; Bieber, John W.; Evenson, Paul; Kuwabara, Takao; Duldig, Marcus L.; Humble, John E.; Chilingarian, Ashot; Sabbah, Ismail; Jansen, Frank
Space weather forecasting is a very important tool for the space situational awareness to the space objects, the space environment and related threats and risks for manned and non-manned spacecrafts. The global network of ground based multi-directional detectors (GMDN) can be considered as one example of an important emerging Space Situational Awareness program around the world, since its requirements needs global technical, scientific and logistic collab-oration between several countries in different continents. ICMEs accompanied by a strong shock often forms a high-energy galactic cosmic rays (GCRs) depleted region behind the shock known as a Forbush decrease. The ICME arrival also causes a systematic variation in the GCR streaming (i.e. the directional anisotropy of intensity). The magnitude of the streaming is small (about 1 % or less), but its variation is relevant. Some particles from this suppressed density region traveling with about the speed of light leak into the upstream region, much faster than the approaching shock, creating the possibility of being observed at the earth, by a global net-work of ground based multi-directional detectors (GMDN), as precursory loss-cone anisotropy. Loss-cones are typically visible 4-8 hours ahead of shock arrival for shocks associated with ma-jor geomagnetic storms. A multi-directional muon detector for detection of GCR was installed in 2001, through an international cooperation between Brazil, Japan and USA, and has been in operation since then at the Southern Space Observatory -SSO/CRS/INPE -MCT, (29.4° S, 53.8° W, 480m a.s.l), Sao Martinho da Serra, RS, in southern Brazil. The detector's capability and sensitivity were upgraded in 2005. The observations conducted by this detector are used for forecasting the arrival of the geomagnetic storm and their interplanetary coronal mass ejec-tion (ICME) drivers in the near-earth geospace. The detector measures high-energy GCRs by detecting secondary muons produced from the hadronic interactions of primary GCRs (mostly protons) with atmospheric nuclei. Since muons have a relatively long life-time (about 2.2 mi-croseconds at rest) and can reach the detector at ground level preserving the incident direction of primary particles, the detector can measure the GCRs intensity in various directions with a multidirectional detector at a single location, such as in Brazil. The Brazilian muon detector (MD), at SSO, is a part of the GMDN, an international collaboration consisting of 10 insti-tutions from 6 countries, with real time data generated by the GMDN, which was developed at Shinshu University, Japan. With the expectation of the approval by European Commission of the NESTEC (NExt generation Space TEChnology) Project, the GMDN may be upgrade in 2010 including new muon detectors in Bremen, Germany and in Hermanus, South Africa. Therefore the ICMEs traveling in the interplanetary space and reaching the Earth -cause re-duction in cosmic ray counts at the Earth by one to ten percent, and can be detected sometimes as much as ten hours before their arrival at Earth -with the GMDN, thus permitting accurate and reliable Space Weather forecasting and for the space situational awareness.
Telescope Array Low energy Extension: TALE
NASA Astrophysics Data System (ADS)
Ogio, Shoichi
TALE, the Telescope Array Low Energy extension was designed to lower the energy threshold to about 1016.5 eV. TALE has a surface detector (SD) array made up of 103 scintillation counters (40 with 400 m spacing, 36 with 600 m spacing and 27 with 1.2 km spacing) and a Fluorescence Detector (FD) station consisting of ten FD telescopes working with the Telescope Array Middle Drum FD station, which is made up of 14 telescopes. TALE-FD full operation started in 2013 and the SD array was partially-completed with 16 SDs and continues the operation from 2014. We will describe the history and the current status of the detectors and will make a brief report about the FD and the hybrid analysis results. TALE detector will be completed as a hybrid air shower detector in 2018. We will report the technical details of the detectors, the schedule and the expected performances.
High density harp or wire scanner for particle beam diagnostics
Fritsche, Craig T.; Krogh, Michael L.
1996-05-21
A diagnostic detector head harp (23) used to detect and characterize high energy particle beams using an array of closely spaced detector wires (21), typically carbon wires, spaced less than 0.1 cm (0.040 inch) connected to a hybrid microcircuit (25) formed on a ceramic substrate (26). A method to fabricate harps (23) to obtain carbon wire spacing and density not previously available utilizing hybrid microcircuit technology. The hybrid microcircuit (25) disposed on the ceramic substrate (26) connects electrically between the detector wires (21) and diagnostic equipment (37) which analyzes pulses generated in the detector wires (21) by the high energy particle beams.
Design and Technical Study of Neutrino Detector Spacecraft
NASA Technical Reports Server (NTRS)
Solomey, Niclolas
2017-01-01
A neutrino detector is proposed to be developed for use on a space probe in close orbit of the Sun. The detector will also be protected from radiation by a tungsten shield Sun shade, active veto array and passive cosmic shielding. With the intensity of solar neutrinos substantially greater in a close solar orbit than on the Earth only a small 250 kg detector is needed. It is expected that this detector and space probe studying the core of the Sun, its nuclear furnace and particle physics basic properties will bring new knowledge beyond what is currently possible for Earth bound solar neutrino detectors.
Characterising Passive Dosemeters for Dosimetry of Biological Experiments in Space (dobies)
NASA Astrophysics Data System (ADS)
Vanhavere, Filip; Spurny, Frantisek; Yukihara, Eduardo; Genicot, Jean-Louis
Introduction: The DOBIES (Dosimetry of biological experi-ments in space) project focusses on the use of a stan-dard dosimetric method (as a combination of differ-ent passive techniques) to measure accurately the absorbed doses and equivalent doses in biological samples. Dose measurements on biological samples are of high interest in the fields of radiobiology and exobiology. Radiation doses absorbed by biological samples must be quantified to be able to determine the relationship between observed biological effects and the radiation dose. The radiation field in space is very complex, con-sisting of protons, neutrons, electrons and high-energy heavy charged particles. It is not straightfor-ward to measure doses in this radiation field, cer-tainly not with only small and light passive doseme-ters. The properties of the passive detectors must be tested in radiation fields that are representative of the space radiation. We will report on the characterisation of different type of passive detectors at high energy fields. The results from such characterisation measurements will be applied to recent exposures of detectors on the International Space Station. Material and methods: Following passive detectors are used: • thermoluminescent detectors (TLD) • optically stimulated luminescence detectors (OSLD) • track etch detectors (TED) The different groups have participated in the past to the ICCHIBAN series of irradiations. Here protons and other particles of high energy were used to de-termine the LET-dependency of the passive detec-tors. The last few months, new irradiations have been done at the iThemba labs (100-200 MeV protons), Dubna (145 MeV protons) and the JRC-IRMM (quasi mono energetic neutrons up to 19 MeV). All these detectors were also exposed to a simulated space radiation field at CERN (CERF-field). Discussion: The interpretation of the TLD and OSLD results is done using the measured LET spectrum (TED) and the LET-dependency curves of ths TLD and OSLDs. These LET- dependency curves are determined based on the different irradiations listed above. We will report on the results of the different detectors in these fields. Further information on the LET of the space irradia-tion can be deduced from the ratio of the different peaks of the TLDs after glow curve deconvolution, and from the shape of the decay curve of the OSLDs. The results in the CERF field can on the other hand directly being used as a calibration for space radia-tion fields. Conclusion: Combining different passive detectors will lead to improved information on the radiation field, and thus to a better estimation of the absorbed dose to the bio-logical samples. We use the characterisations on high energy accelerators to improve the estimation of some recent space doses.
A TRD for space borne apparatus
NASA Astrophysics Data System (ADS)
Ambriola, M.; Bellotti, R.; Barbarito, E.; Cafagna, F.; Circella, M.; de Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Mongelli, M.; Romita, M.; Ruppi, M.; Spinelli, P.
2006-07-01
A Transition Radiation Detector (TRD), has been built to be used as charged particle identifier in satellite born apparatus. Originally conceived to be used in the PAMELA telescope, this TRD has been qualified for space as well. The compact design and the low power consumption make this detector suitable to be used in space researches in which identification is required for particle of relativistic energies (i.e. with Lorentz factor (γ)>1000. In this TRD, carbon fibers are used as radiator material, and 1024 straw tubes as sensitive detectors. All components are piled up in nine sensitive layers of radiators and straws working in proportional mode using a Xe CO2 gas mixture. The detector characteristics will be described along with its performances studied having exposed the detector to both cosmic rays and particle beams at CERN.
Power monitoring in space nuclear reactors using silicon carbide radiation detectors
NASA Technical Reports Server (NTRS)
Ruddy, Frank H.; Patel, Jagdish U.; Williams, John G.
2005-01-01
Space reactor power monitors based on silicon carbide (SiC) semiconductor neutron detectors are proposed. Detection of fast leakage neutrons using SiC detectors in ex-core locations could be used to determine reactor power: Neutron fluxes, gamma-ray dose rates and ambient temperatures have been calculated as a function of distance from the reactor core, and the feasibility of power monitoring with SiC detectors has been evaluated at several ex-core locations. Arrays of SiC diodes can be configured to provide the required count rates to monitor reactor power from startup to full power Due to their resistance to temperature and the effects of neutron and gamma-ray exposure, SiC detectors can be expected to provide power monitoring information for the fill mission of a space reactor.
Bolometric detector systems for IR and mm-wave space astronomy
NASA Technical Reports Server (NTRS)
Church, S. E.; Lange, A. E.; Mauskopf, P. D.; Hristov, V.; Bock, J. J.; DelCastillo, H. M.; Beeman, J.; Ade, P. A. R.; Griffin, M. J.
1996-01-01
Recent developments in bolometric detector systems for millimeter and submillimeter wave space astronomy are described. Current technologies meet all the requirements for the high frequency instrument onboard the cosmic background radiation anisotropy satellite/satellite for the measurement of background anisotropies (COBRAS/SAMBA) platform. It is considered that the technologies that are currently being developed will significantly reduce the effective time constant and/or the cooling requirements of bolometric detectors. These technologies lend themselves to the fabrication of the large format arrays required for the Far Infrared and Submillimeter Space Telescope (FIRST). The scientific goals and detector requirements of the COBRAS/SAMBA platform that will use infrared bolometers are reviewed and the baseline detector system is described, including the feed optics, the infrared filters, the cold amplifiers and the warm readout electronics.
A semiconductor radiation imaging pixel detector for space radiation dosimetry.
Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence
2015-07-01
Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.
Performance of Gas Scintillation Proportional Counter Array for High-Energy X-Ray Observatory
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail; Ramsey, Brian; Apple, Jeffery
2004-01-01
A focal plane array of high-pressure gas scintillation proportional counters (GSPC) for a High Energy X-Ray Observatory (HERO) is developed at the Marshall Space Flight Center. The array is consisted from eight GSPCs and is a part of balloon born payload scheduled to flight in May 2004. These detectors have an active area of approximately 20 square centimeters, and are filled with a high pressure (10(exp 6) Pa) xenon-helium mixture. Imaging is via crossed-grid position-sensitive phototubes sensitive in the UV region. The performance of the GSPC is well matched to that of the telescopes x-ray optics which have response to 75 keV and a focal spot size of approximately 500 microns. The detector's energy resolution, 4% FWHM at 60 keV, is adequate for resolving the broad spectral lines of astrophysical importance and for accurate continuum measurements. Results of the on-earth detector calibration will be presented and in-flight detector performance will be provided, as available.
Development of a unit cell for a Ge:Ga detector array
NASA Technical Reports Server (NTRS)
1988-01-01
Two modules of gallium-doped germanium (Ge:Ga) infrared detectors with integrated multiplexing readouts and supporting drive electronics were designed and tested. This development investigated the feasibility of producing two-dimensional Ge:Ga arrays by stacking linear modules in a housing capable of providing uniaxial stress for enhanced long-wavelength response. Each module includes 8 detectors (1x1x2 mm) mounted to a sapphire board. The element spacing is 12 microns. The back faces of the detector elements are beveled with an 18 deg angle, which was proved to significantly enhance optical absorption. Each module includes a different silicon metal-oxide semiconductor field effect transistor (MOSFET) readout. The first circuit was built from discrete MOSFET components; the second incorporated devices taken from low-temperature integrated circuit multiplexers. The latter circuit exhibited much lower stray capacitance and improved stability. Using these switched-FET circuits, it was demonstrated that burst readout, with multiplexer active only during the readout period, could successfully be implemented at approximately 3.5 K.
CALET On-orbit Calibration and Performance
NASA Astrophysics Data System (ADS)
Akaike, Yosui; Calet Collaboration
2017-01-01
The CALorimetric Electron Telescope (CALET) was installed on the International Space Station (ISS) in August 2015, and has been accumulating high-statistics data to perform high-precision measurements of cosmic ray electrons, nuclei and gamma-rays. CALET has an imaging and a fully active calorimeter, with a total thickness of 30 radiation lengths and 1.3 proton interaction lengths, that allow measurements well into the TeV energy region with excellent energy resolution, 2% for electrons above 100 GeV, and powerful particle identification. CALET's performance has been confirmed by Monte Carlo simulations and beam tests. In order to maximize the detector performance and keep the high resolution for long observation on the ISS, it is required to perform the precise calibration of each detector component. We have therefore evaluated the detector response and monitored it by using penetrating cosmic ray events such as protons and helium nuclei. In this paper, we will present the on-orbit calibration and detector performance of CALET on the ISS. This research was supported by JSPS postdoctral fellowships for research abroad.
NASA Astrophysics Data System (ADS)
Sumesh, M. A.; Thomas, Beno; Vijesh, T. V.; Mohan Rao, G.; Viswanathan, M.; Karanth, S. P.
2018-01-01
Optically immersed bolometer IR detectors were fabricated using electron beam evaporated vanadium oxide as the sensing material. Spin-coated polyimide was used as medium to optically immerse the sensing element to the flat surface of a hemispherical germanium lens. This optical immersion layer also serves as the thermal impedance control layer and decides the performance of the devices in terms of responsivity and noise parameters. The devices were packaged in suitable electro-optical packages and the detector parameters were studied in detail. Thermal time constant varies from 0.57 to 6.0 ms and responsivity from 75 to 757 V W-1 corresponding to polyimide thickness in the range 2 to 70 μm for a detector bias of 9 V in the wavelength region of 14-16 μm. Highest D* obtained was 1.2×108 cmHz1/2 W-1. Noise equivalent temperature difference (NETD) of 20 mK was achieved for devices with polyimide thickness more than 32 μm. The figure of merit, NETD × τ product which describes trade-off between thermal time constant and sensitivity is also extensively studied for devices having different thickness of thermal impedance layers.
LWIR and VLWIR detectors development at SOFRADIR for space applications
NASA Astrophysics Data System (ADS)
Terrier, Bertrand; Delannoy, Anne; Chorier, Philippe; Maillard, Magalie; Rubaldo, Laurent
2010-10-01
SOFRADIR is one of the leading companies involved in the development and manufacturing of infrared detectors. Its offer covers the infrared spectrum from visible range (0.4 μm) up to very long wavelength range (15 μm). The need in this last field is driven by space activities, especially by meteorological instruments using imagery or spectrometry. In the frame of Meteosat Third Generation mission, ESA has launched pre-development activities to address the critical equipments for risk reduction. VLWIR detectors for FCI and IRS have been considered as challenging ones and thus SOFRADIR has been involved for manufacturing and testing 2D arrays with long cut-off wavelength (14.9μm at 50K) in order to evaluate their compliance to MTG requirements as far as dark current behaviour, quantum efficiency, photoresponse uniformity, spatial response, operability and reliability are concerned. In parallel, trends of space and tactical applications call for dark current reduction technology in order to improve systems performances in terms of operating temperature and signal to noise ratio. In the frame of its common laboratory DEFIR with CEA-LETI, Sofradir has developed a new MCT p on n technology to answer this need. First demonstrations were made with success (640x512, pitch 15μm and cut-off 9.5μm) and Sofradir is now industrializing this technology in particular for tactical application. Thanks to the communality between space and tactical activity at Sofradir, these results will benefit advantageously also to space activity. In this paper, we present a review of latest Sofradir results concerning LWIR and VLWIR technology. In particular, latest data, concerning development and characterization of generic VLWIR technology up to 15 μm cut-off wavelength, are presented as well as data concerning the promising p on n LWIR technology.
Testing of 100 mK bolometers for space applications
NASA Technical Reports Server (NTRS)
Murray, A. G.; Ade, P. A. R.; Bhatia, R. S.; Griffin, M. J.; Maffei, B.; Nartallo, R.; Beeman, J. W.; Bock, J.; Lange, A.; DelCastillo, H.
1996-01-01
Electrical and optical performance data are presented for a prototype 100 mK spider-web bolometer operating under very low photon backgrounds. These data are compared with the bolometer theory and are used to estimate the expected sensitivity of such a detector used for low background space astronomy. The results demonstrate that the sensitivity and speed of response requirements of the bolometer instruments proposed for these missions can be met by 100 mK spider-web bolometers using neutron transmutation doped germanium as the temperature sensitive element.
Space radiation-induced effects in polymer photodetectors
NASA Astrophysics Data System (ADS)
Taylor, Edward W.; Le, Dang T.; Durstock, Michael F.; Taylor, Barney E.; Claus, Richard O.; Zeng, Tingying; Morath, Christian P.; Cardimona, David A.
2002-09-01
Self-assembled polymer photo-detectors (PPDs) composed of ruthenium complex N3 and PPDs based on thin films of poly(p-phenylene vinlyene) with sulfonated polystyrene are examined for their ability to function in a simulated space radiation environment. Examination of the PPD pre- and post- response data following gamma-ray irradiation ranging in total dose from 10 krad(Si) to 100 krad(Si) are examined. The output photovoltage was observed to decrease for all irradiated devices. The brief study was performed at room temperature and a discussion of the preliminary data and results are presented.
Bi-layer kinetic inductance detectors for space observations between 80-120 GHz
NASA Astrophysics Data System (ADS)
Catalano, A.; Goupy, J.; le Sueur, H.; Benoit, A.; Bourrion, O.; Calvo, M.; D'addabbo, A.; Dumoulin, L.; Levy-Bertrand, F.; Macías-Pérez, J.; Marnieros, S.; Ponthieu, N.; Monfardini, A.
2015-08-01
We have developed lumped element kinetic inductance detectors (LEKIDs) that are sensitive in the frequency band from 80 to 120 GHz. In this work, we take advantage of the so-called proximity effect to reduce the superconducting gap of aluminium (Al), otherwise strongly suppressing the LEKID response for frequencies smaller than 100 GHz. We designed, produced, and optically tested various fully multiplexed arrays based on multi-layer combinations of Al and titanium (Ti). Their sensitivities were measured using a dedicated closed-circle 100 mK dilution cryostat and a sky simulator, which allowed us to reproduce realistic observation conditions. The spectral response was characterised with a Martin-Puplett interferometer up to THz frequencies and had a resolution of 3 GHz. We demonstrate that Ti-Al LEKID can reach an optical sensitivity of about 1.4 × 10-17 W/Hz0.5 (best pixel), or 2.2 × 10-17 W/Hz0.5 when averaged over the whole array. The optical background was set to roughly 0.4 pW per pixel, which is typical for future space observatories in this particular band. The performance is close to a sensitivity of twice the CMB photon noise limit at 100 GHz, which drove the design of the Planck HFI instrument. This figure remains the baseline for the next generation of millimetre-wave space satellites.
HVI-Test Setup for Debris Detector Verification
NASA Astrophysics Data System (ADS)
Bauer, Waldemar; Romberg, Oliver; Wiedemann, Carsten; Putzar, Robin; Drolshagen, Gerhard; Vorsmann, Peter
2013-08-01
Risk assessment concerning impacting space debris or micrometeoroids with spacecraft or payloads can be performed by using environmental models such as MASTER (ESA) or ORDEM (NASA). The validation of such models is performed by comparison of simulated results with measured data. Such data can be obtained from ground-based or space-based radars or telescopes, or by analysis of space hardware (e.g. Hubble Space Telescope, Space Shuttle Windows), which are retrieved from orbit. An additional data source is in-situ impact detectors, which are purposed for the collection of space debris and micrometeoroids impact data. In comparison to the impact data gained by analysis of the retrieved surfaces, the detected data contains additional information regarding impact time and orbit. In the past, many such in-situ detectors have been developed, with different measurement methods for the identification and classification of impacting objects. However, existing detectors have a drawback in terms of data acquisition. Generally the detection area is small, limiting the collected data as the number of recorded impacts has a linear dependence to the exposed area. An innovative impact detector concept is currently under development at the German Aerospace Centre (DLR) in Bremen, in order to increase the surface area while preserving the advantages offered by dedicated in-situ impact detectors. The Solar Generator based Impact Detector (SOLID) is not an add-on component on the spacecraft, making it different to all previous impact detectors. SOLID utilises existing subsystems of the spacecraft and adapts them for impact detection purposes. Solar generators require large panel surfaces in order to provide the spacecraft with sufficient energy. Therefore, the spacecraft solar panels provide a perfect opportunity for application as impact detectors. Employment of the SOLID method in several spacecraft in various orbits would serve to significantly increase the spatial coverage concerning space debris and micrometeoroids. In this way, the SOLID method will allow the generation of a large amount of impact data for environmental model validation. The ground verification of the SOLID method was performed at Fraunhofer EMI. For this purpose, a test model was developed. This paper focuses on the test methodology and development of the Hypervelocity Impact (HVI) test setup, including pretesting at the German Aerospace Centre (DLR), Bremen. Foreseen hardware and software for the automatic damage assessment of the detector after the impact are also presented.
NASA Technical Reports Server (NTRS)
1978-01-01
The possibility of standard low temperature detector(s) for use in upcoming cryogenically cooled satellite and Space Shuttle Payloads was investigated. These payloads operate from .3 Kelvin to 300 Kelvin. Standard detectors were selected and matching signal conditioning equipment were specified. This equipment will operate in a spacecraft environment and be compatible with the selected detector, typical spacecraft voltages, typical spacecraft telemetry systems, and the radiation encountered by a typical earth orbiting spacecraft. Work statements to better define and advance detector performance are presented.
Automated Test Systems for Toxic Vapor Detectors
NASA Technical Reports Server (NTRS)
Mattson, C. B.; Hammond, T. A.; Schwindt, C. J.
1997-01-01
The NASA Toxic Vapor Detection Laboratory (TVDL) at the Kennedy Space Center (KSC), Florida, has been using Personal Computer based Data Acquisition and Control Systems (PCDAS) for about nine years. These systems control the generation of toxic vapors of known concentrations under controlled conditions of temperature and humidity. The PCDAS also logs the test conditions and the test article responses in data files for analysis by standard spreadsheets or custom programs. The PCDAS was originally developed to perform standardized qualification and acceptance tests in a search for a commercial off-the-shelf (COTS) toxic vapor detector to replace the hydrazine detectors for the Space Shuttle launch pad. It has since become standard test equipment for the TVDL and is indispensable in producing calibration standards for the new hydrazine monitors at the 10 part per billion (ppb) level. The standard TVDL PCDAS can control two toxic vapor generators (TVG's) with three channels each and two flow/ temperature / humidity (FTH) controllers and it can record data from up to six toxic vapor detectors (TVD's) under test and can deliver flows from 5 to 50 liters per minute (L/m) at temperatures from near zero to 50 degrees Celsius (C) using an environmental chamber to maintain the sample temperature. The concentration range for toxic vapors depends on the permeation source installed in the TVG. The PCDAS can provide closed loop control of temperature and humidity to two sample vessels, typically one for zero gas and one for the standard gas. This is required at very low toxic vapor concentrations to minimize the time required to passivate the sample delivery system. Recently, there have been several requests for information about the PCDAS by other laboratories with similar needs, both on and off KSC. The purpose of this paper is to inform the toxic vapor detection community of the current status and planned upgrades to the automated testing of toxic vapor detectors at the Kennedy Space Center.
Automated Test Systems for Toxic Vapor Detectors
NASA Technical Reports Server (NTRS)
Mattson, C. B.; Hammond, T. A.; Schwindt, C. J.
1997-01-01
The NASA Toxic Vapor Detection Laboratory (TVDL) at the Kennedy Space Center (KSC), Florida, has been using Personal Computer based Data Acquisition and Control Systems (PCDAS) for about nine years. These systems control the generation of toxic vapors of known concentrations under controlled conditions of temperature and humidity. The PCDAS also logs the test conditions and the test article responses in data files for analysis by standard spreadsheets or custom programs. The PCDAS was originally developed to perform standardized qualification and acceptance tests in a search for a commercial off-the-shelf (COTS) toxic vapor detector to replace the hydrazine detectors for the Space Shuttle launch pad. It has since become standard test equipment for the TVDL and is indispensable in producing calibration standards for the new hydrazine monitors at the 10 part per billion (ppb) level. The standard TVDL PCDAS can control two toxic vapor generators (TVG's) with three channels each and two flow/temperature/humidity (FIFH) controllers and it can record data from up to six toxic vapor detectors (TVD's) under test and can deliver flows from 5 to 50 liters per minute (L/m) at temperatures from near zero to 50 degrees Celsius (C) using an environmental chamber to maintain the sample temperature. The concentration range for toxic vapors depends on the permeation source installed in the TVG. The PCDAS can provide closed loop control of temperature and humidity to two sample vessels, typically one for zero gas and one for the standard gas. This is required at very low toxic vapor concentrations to minimize the time required to passivate the sample delivery system. Recently, there have been several requests for information about the PCDAS by other laboratories with similar needs, both on and off KSC. The purpose of this paper is to inform the toxic vapor detection community of the current status and planned upgrades to the automated testing of toxic vapor detectors at the Kennedy Space Center.
A semiconductor radiation imaging pixel detector for space radiation dosimetry
NASA Astrophysics Data System (ADS)
Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence
2015-07-01
Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.
Results of dosimetric measurements in space missions
NASA Astrophysics Data System (ADS)
Reitz, G.; Beaujean, R.; Heilmann, C.; Kopp, J.; Leicher, M.; Strauch, K.
Detector packages consisting of plastic nuclear track detectors, nuclear emulsions, and thermoluminescence detectors were exposed at different locations inside the space laboratory Spacelab and at the astronauts' body and in different sections of the MIR space station. Total dose, particle fluence rate and linear energy transfer (LET) spectra of heavy ions, number of nuclear disintegrations and fast neutron fluence rates were determined of each exposure. The dose equivalent received by the Payload specialists (PSs) were calculated from the measurements, they range from 190 muSv d^-1 to 770 muSv d^-1. Finally, a preliminary investigation of results from a particle telescope of two silicon detectors, first used in the last BIORACK mission on STS 76, is reported.
GADRAS Detector Response Function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G
2014-11-01
The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.
Phonon Recycling for Ultrasensitive Kinetic Inductance Detectors
NASA Astrophysics Data System (ADS)
Zmuidzinas, Jonas
Initially proposed (Day et al. 2003; Zmuidzinas 2012) in 1999 by our Caltech/JPL group, and thanks to strong support from NASA, the superconducting (microwave) kinetic inductance detector (MKID or KID) technology continues to develop rapidly as it transitions into applications. The development effort worldwide is intensifying and NASA's continued support of KID development is essential in order to keep pace. Here we propose to investigate and demonstrate a new, low-TRL concept, which we call phonon recycling, that promises to open broad new avenues in KID design and performance. Briefly, phonon recycling allows the detector designer to tailor the responsivity and sensitivity of a KID to match the needs of the application by using geometry to restrict the rate at which recombination phonons are allowed to escape from the detector. In particular, phonon recycling should allow very low noise-equivalent power (NEP) to be achieved without requiring very low operating tem- peratures. Phonon recycling is analogous to the use of micromachined suspension legs to control the flow of heat in a bolometer, as measured by the thermal conductivity G. However, phonon recycling exploits the non-thermal distribution of recombination phonons as well as their very slow decay in crystals at low temperatures. These properties translate to geometrical and mechanical requirements for a phonon-recycled KID that are considerably more relaxed than for a bolometer operating at the same temperature and NEP. Our ultimate goal is to develop detector arrays suitable for a far-infrared (FIR) space mission, which will impose strict requirements on the array sensitivity, yield, uniformity, multiplexing density, etc. Through previous NASA support under the Strategic Astrophysics Technology (SAT) program, we have successfully demonstrated the MAKO submillimeter camera at the Caltech Submillimeter Observatory and have become familiar with these practical issues. If our demonstration of phonon recycling is successful, we will have a path for continuously adapting the high-background, high-NEP detectors we have demonstrated on the ground to the ultralow-NEP detectors needed for space.
Imaging X-Ray Polarimetry Explorer (IXPE) Risk Management
NASA Technical Reports Server (NTRS)
Alexander, Cheryl; Deininger, William D.; Baggett, Randy; Primo, Attina; Bowen, Mike; Cowart, Chris; Del Monte, Ettore; Ingram, Lindsey; Kalinowski, William; Kelley, Anthony;
2018-01-01
The Imaging X-ray Polarimetry Explorer (IXPE) project is an international collaboration to build and fly a polarization sensitive X-ray observatory. The IXPE Observatory consists of the spacecraft and payload. The payload is composed of three X-ray telescopes, each consisting of a mirror module optical assembly and a polarization-sensitive X-ray detector assembly; a deployable boom maintains the focal length between the optical assemblies and the detectors. The goal of the IXPE Mission is to provide new information about the origins of cosmic X-rays and their interactions with matter and gravity as they travel through space. IXPE will do this by exploiting its unique capability to measure the polarization of X-rays emitted by cosmic sources. The collaboration for IXPE involves national and international partners during design, fabrication, assembly, integration, test, and operations. The full collaboration includes NASA Marshall Space Flight Center (MSFC), Ball Aerospace, the Italian Space Agency (ASI), the Italian Institute of Astrophysics and Space Planetology (IAPS)/Italian National Institute of Astrophysics (INAF), the Italian National Institute for Nuclear Physics (INFN), the University of Colorado (CU) Laboratory for Atmospheric and Space Physics (LASP), Stanford University, McGill University, and the Massachusetts Institute of Technology. The goal of this paper is to discuss risk management as it applies to the IXPE project. The full IXPE Team participates in risk management providing both unique challenges and advantages for project risk management. Risk management is being employed in all phases of the IXPE Project, but is particularly important during planning and initial execution-the current phase of the IXPE Project. The discussion will address IXPE risk strategies and responsibilities, along with the IXPE management process which includes risk identification, risk assessment, risk response, and risk monitoring, control, and reporting.
Space Environmental Viewing and Analysis Network (SEVAN)
NASA Astrophysics Data System (ADS)
Chilingarian, Ashot
A network of particle detectors located at middle to low latitudes, SEVAN (Space Environ-mental Viewing and Analysis Network), aims to improve fundamental research of the particle acceleration in the vicinity of the sun and the space environment. The new type of particle detectors will simultaneously measure changing fluxes of most species of secondary cosmic rays, thus turning into a powerful integrated device used for exploration of solar modulation effects. The first SEVAN modules are under test operation at Aragats Space Environmental Center in Armenia, in Bulgaria and Croatia. We present the first results of SEVAN operation, as well as some characteristics of the detector setup.
Detector response function of an energy-resolved CdTe single photon counting detector.
Liu, Xin; Lee, Hyoung Koo
2014-01-01
While spectral CT using single photon counting detector has shown a number of advantages in diagnostic imaging, knowledge of the detector response function of an energy-resolved detector is needed to correct the signal bias and reconstruct the image more accurately. The objective of this paper is to study the photo counting detector response function using laboratory sources, and investigate the signal bias correction method. Our approach is to model the detector response function over the entire diagnostic energy range (20 keV
Gravitational wave detection in space
NASA Astrophysics Data System (ADS)
Ni, Wei-Tou
Gravitational Wave (GW) detection in space is aimed at low frequency band (100nHz-100mHz) and middle frequency band (100mHz-10Hz). The science goals are the detection of GWs from (i) Supermassive Black Holes; (ii) Extreme-Mass-Ratio Black Hole Inspirals; (iii) Intermediate-Mass Black Holes; (iv) Galactic Compact Binaries and (v) Relic GW Background. In this paper, we present an overview on the sensitivity, orbit design, basic orbit configuration, angular resolution, orbit optimization, deployment, time-delay interferometry (TDI) and payload concept of the current proposed GW detectors in space under study. The detector proposals under study have arm length ranging from 1000km to 1.3 × 109km (8.6AU) including (a) Solar orbiting detectors — (ASTROD Astrodynamical Space Test of Relativity using Optical Devices (ASTROD-GW) optimized for GW detection), Big Bang Observer (BBO), DECi-hertz Interferometer GW Observatory (DECIGO), evolved LISA (e-LISA), Laser Interferometer Space Antenna (LISA), other LISA-type detectors such as ALIA, TAIJI etc. (in Earthlike solar orbits), and Super-ASTROD (in Jupiterlike solar orbits); and (b) Earth orbiting detectors — ASTROD-EM/LAGRANGE, GADFLI/GEOGRAWI/g-LISA, OMEGA and TIANQIN.
Measurement of LET distribution and dose equivalent on board the space shuttle STS-65
NASA Technical Reports Server (NTRS)
Hayashi, T.; Doke, T.; Kikuchi, J.; Takeuchi, R.; Hasebe, N.; Ogura, K.; Nagaoka, S.; Kato, M.; Badhwar, G. D.
1996-01-01
Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD)" utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 microSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5 degrees) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15-200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.
Measurement of LET distribution and dose equivalent on board the space shuttle STS-65.
Hayashi, T; Doke, T; Kikuchi, J; Takeuchi, R; Hasebe, N; Ogura, K; Nagaoka, S; Kato, M; Badhwar, G D
1996-11-01
Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD)" utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 microSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5 degrees) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15-200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.
Image reconstruction in cone-beam CT with a spherical detector using the BPF algorithm
NASA Astrophysics Data System (ADS)
Zuo, Nianming; Zou, Yu; Jiang, Tianzi; Pan, Xiaochuan
2006-03-01
Both flat-panel detectors and cylindrical detectors have been used in CT systems for data acquisition. The cylindrical detector generally offers a sampling of a transverse image plane more uniformly than does a flat-panel detector. However, in the longitudinal dimension, the cylindrical and flat-panel detectors offer similar sampling of the image space. In this work, we investigate a detector of spherical shape, which can yield uniform sampling of the 3D image space because the solid angle subtended by each individual detector bin remains unchanged. We have extended the backprojection-filtration (BPF) algorithm, which we have developed previously for cone-beam CT, to reconstruct images in cone-beam CT with a spherical detector. We also conduct computer-simulation studies to validate the extended BPF algorithm. Quantitative results in these numerical studies indicate that accurate images can be obtained from data acquired with a spherical detector by use of our extended BPF cone-beam algorithms.
Particle and Smoke Detection on ISS for Next Generation Smoke Detectors
NASA Technical Reports Server (NTRS)
Urban, David L.; Ruff, Gary; Yuan, Zeng-guang; Sheredy, William; Funk, Greg
2007-01-01
Rapid fire detection requires the ability to differentiate fire signatures from background conditions and nuisance sources. Proper design of a fire detector requires detailed knowledge of all of these signal sources so that a discriminating detector can be designed. Owing to the absence of microgravity smoke data, all current spacecraft smoke detectors were designed based upon normal-g conditions. The removal of buoyancy reduces the velocities in the high temperature zones in flames, increasing the residence time of smoke particles and consequently allowing longer growth time for the particles. Recent space shuttle experiments confirmed that, in some cases, increased particles sizes are seen in low-gravity and that the relative performance of the ISS (International Space Station) and space-shuttle smoke-detectors changes in low-gravity; however, sufficient particle size information to design new detectors was not obtained. To address this issue, the SAME (Smoke Aerosol Measurement Experiment) experiment is manifested to fly on the ISS in 2007. The SAME experiment will make measurements of the particle size distribution of the smoke particulate from several typical spacecraft materials providing quantitative design data for spacecraft smoke detectors. A precursor experiment (DAFT: Dust Aerosol measurement Feasibility Test) flew recently on the ISS and provided the first measurement of the background smoke particulate levels on the ISS. These background levels are critical to the design of future smoke detectors. The ISS cabin was found to be a very clean environment with particulate levels substantially below the space shuttle and typical ground-based environments.
Wouters, L.F.
1958-10-28
The detection of the shape and amplitude of a radiation wave is discussed, particularly an apparatus for automatically indicating at spaced lntervals of time the radiation intensity at a flxed point as a measure of a radiation wave passing the point. The apparatus utilizes a number of photomultiplier tubes surrounding a scintillation type detector, For obtainlng time spaced signals proportional to radiation at predetermined intervals the photolnultiplier tubes are actuated ln sequence following detector incidence of a predetermined radiation level by electronic means. The time spaced signals so produced are then separately amplified and relayed to recording means.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prochazka, Ivan, E-mail: prochiva@gmail.com; Blazej, Josef; Kodet, Jan
2016-05-15
The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stabilitymore » is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of −55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.« less
A New Active Space Radiation Instruments for the International Space Station, A-DREAMS
NASA Astrophysics Data System (ADS)
Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Kobayashi, Shingo
For future space experiments in the International Space Station (ISS) or other satellites, radiation detectors, A-DREAMS (Active Dosimeter for Radiation Environment and Astronautic Monitoring in Space), using single or multiple silicon semi-conductor detectors have been developed. The first version of the detectors were produced and calibrated with particle accelerators. National Institute of Radiological Sciences has a medical heavy ion accelerator (HIMAC) for cancer therapy and a cyclotron accelerator. The detector was irradiated with high energy heavy ions and protons in HIMAC and the cyclotron and calibrated the energy resolution and linearity for deposited energies of these particles. We are planned to be going to use the new instrument in an international project, the new MATROSHKA experiment which is directed by members in the Institute of Bio-Medical Problem (IBMP) in Russia and German Space Center (DLR) in Germany. In the project, the dose distribution in human torso phantom will be investigated for several months in the ISS. For the project, a new type of the instruments is under development in NIRS and the current situation will be reported in this paper.
Prochazka, Ivan; Kodet, Jan; Blazej, Josef
2016-05-01
The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.
Design and fabrication of engineering model fiber-optics detector
NASA Technical Reports Server (NTRS)
Mcsweeney, A.
1972-01-01
The design and fabrication of an annular ring detector consisting of optical fibers terminated with photodetectors is described. The maximum width of each concentric ring has to be small enough to permit the resolution of a Ronchi ruling transform with a dot spacing of 150 microns. A minimum of 100 concentric rings covering a circular area of 2.54 cm diameter also is necessary. A fiber-optic array consisting of approximately 89,000 fibers of 76 microns diameter was fabricated to meet the above requirements. The fibers within a circular area of 2.5 cm diameter were sorted into 168 adjacent rings concentric with the center fiber. The response characteristics of several photodetectors were measured, and the data used to compare their linearity of response and dynamic range. Also, coupling loss measurements were made for three different methods of terminating the optical fibers with a photodetector.
The on-orbit calibration of the Fermi Large Area Telescope
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2009-09-06
The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope began its on-orbit operations on June 23, 2008. Calibrations, defined in a generic sense, correspond to synchronization of trigger signals, optimization of delays for latching data, determination of detector thresholds, gains and responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA), measurements of live time, of absolute time, and internal and spacecraft boresight alignments. Here in this work, we describe on-orbit calibration results obtained using known astrophysical sources, galactic cosmic rays, and charge injection into the front-end electronics of each detector. Instrument response functions will be describedmore » in a separate publication. This paper demonstrates the stability of calibrations and describes minor changes observed since launch. Lastly, these results have been used to calibrate the LAT datasets to be publicly released in August 2009.« less
Toroidal magnetized iron neutrino detector for a neutrino factory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bross, A.; Wands, R.; Bayes, R.
2013-08-01
A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mass. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this report, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of largemore » $$\\theta_{13}$$. The response and performance using the 10 GeV neutrino factory configuration are presented. It is shown that this setup has equivalent $$\\delta_{CP}$$ reach to a MIND with a dipole field and is sensitive to the discovery of CP violation over 85% of the values of $$\\delta_{CP}$$.« less
Principal Components Analysis of a JWST NIRSpec Detector Subsystem
NASA Technical Reports Server (NTRS)
Arendt, Richard G.; Fixsen, D. J.; Greenhouse, Matthew A.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Mott, D. Brent; Rauscher, Bernard J.; Wen, Yiting;
2013-01-01
We present principal component analysis (PCA) of a flight-representative James Webb Space Telescope NearInfrared Spectrograph (NIRSpec) Detector Subsystem. Although our results are specific to NIRSpec and its T - 40 K SIDECAR ASICs and 5 m cutoff H2RG detector arrays, the underlying technical approach is more general. We describe how we measured the systems response to small environmental perturbations by modulating a set of bias voltages and temperature. We used this information to compute the systems principal noise components. Together with information from the astronomical scene, we show how the zeroth principal component can be used to calibrate out the effects of small thermal and electrical instabilities to produce cosmetically cleaner images with significantly less correlated noise. Alternatively, if one were designing a new instrument, one could use a similar PCA approach to inform a set of environmental requirements (temperature stability, electrical stability, etc.) that enabled the planned instrument to meet performance requirements
Description of a Generalized Analytical Model for the Micro-dosimeter Response
NASA Technical Reports Server (NTRS)
Badavi, Francis F.; Stewart-Sloan, Charlotte R.; Xapsos, Michael A.; Shinn, Judy L.; Wilson, John W.; Hunter, Abigail
2007-01-01
An analytical prediction capability for space radiation in Low Earth Orbit (LEO), correlated with the Space Transportation System (STS) Shuttle Tissue Equivalent Proportional Counter (TEPC) measurements, is presented. The model takes into consideration the energy loss straggling and chord length distribution of the TEPC detector, and is capable of predicting energy deposition fluctuations in a micro-volume by incoming ions through both direct and indirect ionic events. The charged particle transport calculations correlated with STS 56, 51, 110 and 114 flights are accomplished by utilizing the most recent version (2005) of the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport WZETRN), which has been extensively validated with laboratory beam measurements and available space flight data. The agreement between the TEPC model prediction (response function) and the TEPC measured differential and integral spectra in lineal energy (y) domain is promising.
Wouters, L.F.
1960-08-30
Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.
Position-sensitive ``movie'' in situ neutron detector for the UCN τ experiment
NASA Astrophysics Data System (ADS)
Weaver, Hannah; UCNTau Collaboration
2016-09-01
Precision measurements of neutron β-decay parameters provide tests of fundamental theories in elementary particle physics and cosmology such as the Standard Model and Big Bang nucleosynthesis. In particular, the UCN τ experiment aims to measure the mean lifetime of ultracold neutrons confined in an asymmetric magneto-gravitational trap using an in situ neutron detector. This detector consists of a 20 nm film of 10B on top of a ZnS:Ag scintillating screen. The screen is readout using two photomultipliers which view an array of wavelength shifting fibers optically coupled to the scintillator. When the detector is lowered into the loaded trap, light is emitted due to the charged particles recoiling into the ZnS:Ag when neutrons absorb on the 10B. Phase space evolution in the stored neutron population can lead to apparent shifts in the measured neutron lifetime with the detector height. In order to quantify this systematic uncertainty, we are implementing a supplemental 64-channel position-sensitive PMT module with high quantum efficiency and fast time response to image the entire detector in situ during measurements. We have characterized a prototype using a ZnS screen and an α-particle source along with a prototype lens system and will report the results and future plans.
MoonBEAM: A Beyond Earth-Orbit Gamma-Ray Burst Detector for Gravitational-Wave Astronomy
NASA Technical Reports Server (NTRS)
Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.
2018-01-01
Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between different orbits. We present here a gamma-ray SmallSat concept in Earth-Moon L3 halo orbit that is capable of rapid response and provide a timing baseline for localization improvement when partnered with an Earth-orbit instrument. Such an instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.
NASA Astrophysics Data System (ADS)
Nicol, Patrick; Fleury, Joel; Le Naour, Claire; Bernard, Frédéric
2017-11-01
IASI (Infrared Atmospheric Sounding Interferometer) is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The presentation will describe the spectrometer detection chain architecture, composed by three different detectors cooled in a passive cryo-cooler (so called CBS : Cold Box Subsystem) and associated analog electronics up to digital conversion. It will mainly focus on design choices with regards to environment constraints, implemented technologies, and associated performances. CNES is leading the IASI program in collaboration with EUMETSAT. The instrument Prime is ALCATEL SPACE responsible, notably, of the detection chain architecture. SAGEM SA provides the detector package (so called CAU : Cold Acquisition Unit).
A report on the laboratory performance of the spectroscopic detector arrays for SPIRE/HSO
NASA Astrophysics Data System (ADS)
Nguyen, Hien T.; Bock, James J.; Ringold, Peter; Battle, John; Elliott, Steven C.; Turner, Anthony D.; Weilert, Mark; Hristov, Viktor V.; Schulz, Bernhard; Ganga, Ken; Zhang, L.; Beeman, Jeffrey W.; Ade, Peter A. R.; Hargrave, Peter C.
2004-10-01
We report the performance of the flight bolometer arrays for the Spectral and Photometric Imaging REceiver (SPIRE) instrument to be on board of the Herschel Space Observatory (HSO). We describe the test setup for the flight Bolometric Detector Assembly (BDA) that allows the characterization of its performance, both dark and optical, in one instrument's cool down. We summarize the laboratory procedure to measure the basic bolometer parameters, optical response time, optical efficiency of bolometer and feedhorn, dark and optical noise, and the overall thermal conductance of the BDA unit. Finally, we present the test results obtained from the two flight units, Spectroscopic Long Wavelength (SLW) and Spectroscopic Short Wavelength (SSW).
NASA Astrophysics Data System (ADS)
Nicol, Patrick; Fleury, Joel; Bernard, Frédéric
2004-06-01
IASI (Infrared Atmospheric Sounding Interferometer) is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The presentation will describe the spectrometer detection chain architecture, composed by three different detectors cooled in a passive cryo-cooler (so called CBS : Cold Box Subsystem) and associated analog electronics up to digital conversion. It will mainly focus on design choices with regards to environment constraints, implemented technologies, and associated performances . CNES is leading the IASI program in collaboration with EUMETSAT. The instrument Prime is ALCATEL SPACE responsible, notably, of the detection chain architecture. SAGEM SA provides the detector package (so called CAU: Cold Acquisition Unit).
The Focusing Optics Solar X-ray Imager (FOXSI)
NASA Astrophysics Data System (ADS)
Christe, Steven; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.; Tajima, H.
2010-05-01
The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.
The Focusing Optics X-ray Solar Imager (FOXSI)
NASA Astrophysics Data System (ADS)
Krucker, Sam; Christe, Steven; Glesener, Lindsay; McBride, Steve; Turin, Paul; Glaser, David; Saint-Hilaire, Pascal; Delory, Gregory; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Terada, Yukikatsu; Ishikawa, Shin-Nosuke; Kokubun, Motohide; Saito, Shinya; Takahashi, Tadayuki; Watanabe, Shin; Nakazawa, Kazuhiro; Tajima, Hiroyasu; Masuda, Satoshi; Minoshima, Takashi; Shomojo, Masumi
2009-08-01
The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.
The Focusing Optics X-ray Solar Imager (FOXSI)
NASA Astrophysics Data System (ADS)
Krucker, Säm; Christe, Steven; Glesener, Lindsay; Ishikawa, Shin-nosuke; McBride, Stephen; Glaser, David; Turin, Paul; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Saito, Shinya; Tanaka, Yasuyuki; Takahashi, Tadayuki; Watanabe, Shin; Tanaka, Takaaki; Tajima, Hiroyasu; Masuda, Satoshi
2011-09-01
The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray (HXR) focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of an indirect imaging system, the derived images have a low dynamic range (typically <10) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the particle acceleration processes which occur there. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding impulsive energy release on the Sun. The FOXSI project is led by the Space Sciences Laboratory at the University of California, Berkeley. The NASA Marshall Space Flight Center is responsible for the grazingincidence optics, while the Astro-H team at JAXA/ISAS has provided double-sided silicon strip detectors. FOXSI is a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.
The Focusing Optics Solar X-ray Imager (FOXSI)
NASA Astrophysics Data System (ADS)
Christe, S.; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.
2009-12-01
The Focusing Optics x-ray Solar Imager is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager provides excellent spatial (2 arcseconds) and spectral (1~keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The foxsi project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.
The Focusing Optics X-Ray Solar Imager: FOXSI
NASA Technical Reports Server (NTRS)
Krucker, Saem; Christe, Steven; Glesener, Lindsay; Ishikawa, Shin-nosuke; McBride, Stephen; Glaser, David; Turin, Paul; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian;
2011-01-01
The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray (HXR) focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of an indirect imaging system, the derived images have a low dynamic range (typically <10) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the particle acceleration processes which occur there. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding impulsive energy release on the Sun. The FOXSI project is led by the Space Sciences Laboratory at the University of California, Berkeley. The NASA Marshall Space Flight Center is responsible for the grazing-incidence optics, while the Astro-H team at JAXA/ISAS has provided double-sided silicon strip detectors. FOXSI is a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.
Development of Mirror Modules for the ART-XC Instrument
NASA Technical Reports Server (NTRS)
Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Lapshov, I.
2012-01-01
The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART -XC instrument on board the Spectrum-Roentgen-Gamma Mission under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Currently, four of the modules are being fabricated by the Marshall Space Flight Center (MSFC.) Each MSFC module provides an effective area of 65 cm2 at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. We will present a status of the ART x-ray module development at MSFC.
Characterization and development of an event-driven hybrid CMOS x-ray detector
NASA Astrophysics Data System (ADS)
Griffith, Christopher
2015-06-01
Hybrid CMOS detectors (HCD) have provided great benefit to the infrared and optical fields of astronomy, and they are poised to do the same for X-ray astronomy. Infrared HCDs have already flown on the Hubble Space Telescope and the Wide-Field Infrared Survey Explorer (WISE) mission and are slated to fly on the James Webb Space Telescope (JWST). Hybrid CMOS X-ray detectors offer low susceptibility to radiation damage, low power consumption, and fast readout time to avoid pile-up. The fast readout time is necessary for future high throughput X-ray missions. The Speedster-EXD X-ray HCD presented in this dissertation offers new in-pixel features and reduces known noise sources seen on previous generation HCDs. The Speedster-EXD detector makes a great step forward in the development of these detectors for future space missions. This dissertation begins with an overview of future X-ray space mission concepts and their detector requirements. The background on the physics of semiconductor devices and an explanation of the detection of X-rays with these devices will be discussed followed by a discussion on CCDs and CMOS detectors. Next, hybrid CMOS X-ray detectors will be explained including their advantages and disadvantages. The Speedster-EXD detector and its new features will be outlined including its ability to only read out pixels which contain X-ray events. Test stand design and construction for the Speedster-EXD detector is outlined and the characterization of each parameter on two Speedster-EXD detectors is detailed including read noise, dark current, interpixel capacitance crosstalk (IPC), and energy resolution. Gain variation is also characterized, and a Monte Carlo simulation of its impact on energy resolution is described. This analysis shows that its effect can be successfully nullified with proper calibration, which would be important for a flight mission. Appendix B contains a study of the extreme tidal disruption event, Swift J1644+57, to search for periodicities in its X-ray light curve. iii.
Operation and performance of new NIR detectors from SELEX
NASA Astrophysics Data System (ADS)
Atkinson, D.; Bezawada, N.; Hipwood, L. G.; Shorrocks, N.; Milne, H.
2012-07-01
The European Space Agency (ESA) has funded SELEX Galileo, Southampton, UK to develop large format near infrared (NIR) detectors for its future space and ground based programmes. The UKATC has worked in collaboration with SELEX Galileo to test and characterise the new detectors produced during phase-1 of the development. In order to demonstrate the detector material performance, the HgCdTe (MCT) detector diodes (grown on GaAs substrate through MOVPE process in small 320×256, 24μm pixel format) are hybridised to the existing SELEX Galileo SWALLOW CMOS readout chip. The substrate removed and MCT thinned detector arrays were then tested and evaluated at the UKATC following screening tests at SELEX. This paper briefly describes the test setup, the operational aspects of the readout multiplexer and presents the performance parameters of the detector arrays including: conversion gain, detector dark current, read noise, linearity, quantum efficiency and persistence for various detector temperatures between 80K and 140K.
AMS-02 as a Space Weather Observatory
NASA Astrophysics Data System (ADS)
Whitman, K.; Bindi, V.; Chati, M.; Consolandi, C.; Corti, C.
2013-12-01
The Alpha Magnetic Spectrometer (AMS-02) is a state-of-the-art space detector that measures particles in the energy range of hundreds of MeV to a few TeV. AMS-02 has been installed onboard of the International Space Station (ISS) since May 2011 where it will operate for the duration of the station. To date, there is an abundance of space-based solar data collected in the low energy regimes, whereas there are very few direct measurements of higher energy particles available. AMS-02 is capable of measuring arrival time and composition of the highest energy SEPs in space. It is crucial to build a better knowledge base regarding the most energetic and potentially harmful events. We are currently developing a program to employ AMS-02 as a real-time space weather observatory. SEPs with higher energies are usually accelerated during a short period of time and they are the first particles to reach the Earth. AMS-02, measuring these highest energy SEPs, can alert the onset of an SEP event. During the past two years of operation, we have identified two main quantities in AMS-02 that are particularly sensitive to the arrival of SEPs: the detector livetime and the transition radiation detector (TRD) event size. By monitoring the detector livetime and the TRD event size, AMS-02 can pinpoint in real-time the arrival of SEPs inside the Earth's magnetosphere operating as a space weather detector.
Review of current neutron detection systems for emergency response
Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul; ...
2014-09-05
Neutron detectors are utilized in a myriad of applications—from safeguarding special nuclear materials (SNM) to determining lattice spacing in soft materials. The transformational changes taking place in neutron detection and imaging techniques in the last few years are largely being driven by the global shortage of helium-3 ( 3He). This article reviews the status of neutron sensors used specifically for SNM detection in radiological emergency response. These neutron detectors must be highly efficient, be rugged, have fast electronics to measure neutron multiplicity, and be capable of measuring direction of the neutron sources and possibly image them with high spatial resolution.more » Neutron detection is an indirect physical process: neutrons react with nuclei in materials to initiate the release of one or more charged particles that produce electric signals that can be processed by the detection system. Therefore, neutron detection requires conversion materials as active elements of the detection system; these materials may include boron-10 ( 10B), lithium-6 ( 6Li), and gadollinium-157 ( 157Gd), to name a few, but the number of materials available for neutron detection is limited. However, in recent years, pulse-shape-discriminating plastic scintillators, scintillators made of helium-4 ( 4He) under high pressure, pillar and trench semiconductor diodes, and exotic semiconductor neutron detectors made from uranium oxide and other materials have widely expanded the parameter space in neutron detection methodology. In this article we will pay special attention to semiconductor-based neutron sensors. Finally, modern microfabricated nanotubes covered inside with neutron converter materials and with very high aspect ratios for better charge transport will be discussed.« less
Review of current neutron detection systems for emergency response
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul; Kruschwitz, Craig
2014-09-01
Neutron detectors are used in a myriad of applications—from safeguarding special nuclear materials (SNM) to determining lattice spacing in soft materials. The transformational changes taking place in neutron detection and imaging techniques in the last few years are largely being driven by the global shortage of helium-3 (3He). This article reviews the status of neutron sensors used specifically for SNM detection in radiological emergency response. These neutron detectors must be highly efficient, be rugged, have fast electronics to measure neutron multiplicity, and be capable of measuring direction of the neutron sources and possibly image them with high spatial resolution. Neutron detection is an indirect physical process: neutrons react with nuclei in materials to initiate the release of one or more charged particles that produce electric signals that can be processed by the detection system. Therefore, neutron detection requires conversion materials as active elements of the detection system; these materials may include boron-10 (10B), lithium-6 (6Li), and gadollinium-157 (157Gd), to name a few, but the number of materials available for neutron detection is limited. However, in recent years, pulse-shape-discriminating plastic scintillators, scintillators made of helium-4 (4He) under high pressure, pillar and trench semiconductor diodes, and exotic semiconductor neutron detectors made from uranium oxide and other materials have widely expanded the parameter space in neutron detection methodology. In this article we will pay special attention to semiconductor-based neutron sensors. Modern microfabricated nanotubes covered inside with neutron converter materials and with very high aspect ratios for better charge transport will be discussed.
Novel Photon-Counting Detectors for Free-Space Communication
NASA Technical Reports Server (NTRS)
Krainak, M. A.; Yang, G.; Sun, X.; Lu, W.; Merritt, S.; Beck, J.
2016-01-01
We present performance data for novel photon-counting detectors for free space optical communication. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We present and compare dark count, photon-detection efficiency, wavelength response and communication performance data for these detectors. We successfully measured real-time communication performance using both the 2 detected-photon threshold and AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects. The HgCdTe APD array routinely demonstrated photon detection efficiencies of greater than 50% across 5 arrays, with one array reaching a maximum PDE of 70%. We performed high-resolution pixel-surface spot scans and measured the junction diameters of its diodes. We found that decreasing the junction diameter from 31 micrometers to 25 micrometers doubled the e- APD gain from 470 for an array produced in the year 2010 to a gain of 1100 on an array delivered to NASA GSFC recently. The mean single-photon SNR was over 12 and the excess noise factors measurements were 1.2-1.3. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output.
Novel Photon-Counting Detectors for Free-Space Communication
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff
2016-01-01
We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.
The paradox of characteristics of silicon detectors operated at temperature close to liquid helium
NASA Astrophysics Data System (ADS)
Eremin, V.; Shepelev, A.; Verbitskaya, E.; Zamantzas, C.; Galkin, A.
2018-05-01
The aim of this study is to give characterization of silicon p+/n/n+ detectors for the monitoring systems of the Large Hadron Collider machine at CERN with the focus on justifying the choice of silicon resistivity for the detector operation at the temperature of 1.9-10 K. The detectors from n-type silicon with the resistivity of 10, 4.5, and 0.5 kΩ cm were investigated at the temperature from 293 up to 7 K by the Transient Current Technique with a 660 nm pulse laser and alpha-particles. The shapes of the detector current pulse response allowed revealing a paradox in the properties of shallow donors of phosphorus, i.e., native dopants in the n-type Si. There was no carrier freeze-out on the phosphorus energy levels in the space charge region (SCR), and they remained positively charged irrespective of temperature, thus limiting the depleted region depth. As for the base region of a partially depleted detector, the levels became neutral at T < 28 K, which transformed silicon to an insulator. The reduction of the activation energy for carrier emission in the detector SCR estimated in the scope of the Poole-Frenkel effect failed to account for the impact of the electric field on the properties of phosphorus levels. The absence of carrier freeze-out in the SCR justifies the choice of high resistivity silicon as the only proper material for detector operation in a fully depleted mode at extremely low temperature.
New Broadband LIDAR for Greenhouse Carbon Dioxide Gas Sensing in the Earth's Atmosphere
NASA Technical Reports Server (NTRS)
Georgieva, Elena; Heaps, William S.; Huang,Wen
2011-01-01
We present demonstration of a novel broadband lidar technique capable of dealing with the atmospherically induced variations in CO2 absorption using a Fabry-Perot based detector and a broadband laser. The Fabry-Perot solid etalon in the receiver part is tuned to match the wavelength of several CO2 absorption lines simultaneously. The broadband technique tremendously reduces the requirement for source wavelength stability, instead putting this responsibility on the Fabry- Perot based receiver. The instrument technology we are developing has a clear pathway to space and realistic potential to become a robust, low risk space measurement system.
The XGS instrument on-board THESEUS
NASA Astrophysics Data System (ADS)
Fuschino, F.; Campana, R.; Labanti, C.; Marisaldi, M.; Amati, L.; Fiorini, M.; Uslenghi, M.; Baldazzi, G.; Evangelista, Y.; Elmi, I.; Feroci, M.; Frontera, F.; Rachevski, A.; Rignanese, L. P.; Vacchi, A.; Zampa, G.; Zampa, N.; Rashevskaya, I.; Bellutti, P.; Piemonte, C.
2016-10-01
Consolidated techniques used for space-borne X-ray and gamma-ray instruments are based on the use of scintillators coupled to Silicon photo-detectors. This technology associated with modern very low noise read-out electronics allows the design of innovative architectures able to reduce drastically the system complexity and power consumption, also with a moderate-to-high number of channels. These detector architectures can be exploited in the design of space instrumentation for gamma-spectroscopy with the benefit of possible smart background rejection strategies. We describe a detector prototype with 3D imaging capabilities to be employed in future gamma-ray and particle space missions in the 0.002-100 MeV energy range. The instrument is based on a stack of scintillating bars read out by Silicon Drift Detectors (SDDs) at both ends. The spatial segmentation and the crystal double-side readout allow a 3D position reconstruction with ∼3 mm accuracy within the full active volume, using a 2D readout along the two external faces of the detector. Furthermore, one of the side of SDDs can be used simultaneously to detect X-rays in the 2-30 keV energy range. The characteristics of this instrument make it suitable in next generation gamma-ray and particle space missions for Earth or outer space observations, and it will be briefly illustrated.
Laboratory test data on the stability of the STIS MAMAs
NASA Technical Reports Server (NTRS)
Joseph, Charles L.
1997-01-01
STIS has two MAMA detectors systems with distinctly different tube configurations. The first (designated BAND 1) has an opaque CsI photocathode deposited on the microchannel plate (MCP) providing wavelength coverage from 1150A to 1700A. The other MAMA (designated BAND 2) has a semitransparent CS2Te photocathode deposited on the faceplate in close proximity to the input of the MCP. It covers the 1650A to 3100A bandpass and serves as a backup for the short wavelength detector. Laboratory test data indicate that both of these detectors have good sensitivity, have good uniformity and provide stable response, making each capable of collecting data with a signal-to-noise ratio in excess of 100 per Space Telescope Imaging Spectrograph (STIS) optical resolution element. Over a multiyear development effort, a substantial body of laboratory test data (more than 6 GBytes spanning more than 6 years of collection) has accumulated on more than a dozen fabricated tubes. These tests even included a few destructive evaluations to examine the limitations and operating life. In addition, analyses where conducted regarding impact caused by the specified electronic tolerances and expected changes in the Hubble Space Telescope (HST) thermal environment. Perhaps the simplest test of stability is to collect a sequence of images, each with a uniform illumination, and use these individual "flat fields" to remove the pixel-to-pixel sensitivity in the other flat fields. These sequences typically spanned 3-5 weeks of time. The detectors are very stable, allowing the pixel-to-pixel sensitivity to be removed with good precision. The STIS specification for stability is 1% (sufficient for data with a S/N = 100) over a 1 week period and 2% over 30 days. All Engineering Model Units as well as Flight Detectors tested exceeded this specification.
Cosmic Ray research in Armenia
NASA Astrophysics Data System (ADS)
Chilingarian, A.; Mirzoyan, R.; Zazyan, M.
2009-11-01
Cosmic Ray research on Mt. Aragats began in 1934 with the measurements of East-West anisotropy by the group from Leningrad Physics-Technical Institute and Norair Kocharian from Yerevan State University. Stimulated by the results of their experiments in 1942 Artem and Abraham Alikhanyan brothers organized a scientific expedition to Aragats. Since that time physicists were studying Cosmic Ray fluxes on Mt. Aragats with various particle detectors: mass spectrometers, calorimeters, transition radiation detectors, and huge particle detector arrays detecting protons and nuclei accelerated in most violent explosions in Galaxy. Latest activities at Mt. Aragats include Space Weather research with networks of particle detectors located in Armenia and abroad, and detectors of Space Education center in Yerevan.
Research on application of several tracking detectors in APT system
NASA Astrophysics Data System (ADS)
Liu, Zhi
2005-01-01
APT system is the key technology in free space optical communication system, and acquisition and tracking detector is the key component in PAT system. There are several candidate detectors that can be used in PAT system, such as CCD, QAPD and CMOS Imager etc. The characteristics of these detectors are quite different, i.e., the structures and the working schemes. This paper gives thoroughly compare of the usage and working principle of CCD and CMOS imager, and discusses the key parameters like tracking error, noise analyses, power analyses etc. Conclusion is given at the end of this paper that CMOS imager is a good candidate detector for PAT system in free space optical communication system.
NASA Astrophysics Data System (ADS)
Hultberg, Tim; August, Thomas
2017-09-01
IASI has 4 different detectors, CrIS has 9, IASI-NG will have 16 and MTG-IRS 25600. There is a clear interest to harmonise the sensor data originating from different detectors, if it can be done be removing the parts of the instrument artefacts, which are not common to all detectors. When IASI spectra are analysed in principal component (PC) score space, differences between the four detectors are clearly observed. These differences are caused by different characteristics and different strengths of the ghost effect among the detectors and although they are small when analysed in radiance space, they can have a distinct negative impact on the use of the data. Considering that a large part of the operationally disseminated IASI PC scores are dominated by instrument artefacts, the partial removal of instrument artefacts is also of interest for data compression purposes. The instrument artefacts can be partly removed by projection onto a subspace common to all detectors. We show how the techniques of canonical angles can be used to compute a set of orthogonal vectors capturing only directions which are close to directions found in the signal spaces of all detectors. This principle can also be applied to detectors on-board different satellites, as we demonstrate with the example of IASI-A and IASI-B. The danger of the method is that a single deficient detector, 'blind' to one or more directions of the atmo- spheric signal, could potentially 'contaminate' the data from the other detectors. We discuss how to detect and avoid this problem and check it in practice with CrIS data.
14 CFR 125.173 - Fire detectors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fire detectors. 125.173 Section 125.173....173 Fire detectors. Fire detectors must be made and installed in a manner that assures their ability... subjected. Fire detectors must be unaffected by exposure to fumes, oil, water, or other fluids that may be...
46 CFR 15.855 - Cabin watchmen and fire patrolmen.
Code of Federal Regulations, 2013 CFR
2013-10-01
... of fire detectors, heat detectors, smoke detectors, and high-water alarms with audible- and visual... conditions are met: (1) Fire detectors are located in each space containing machinery or fuel tanks per § 181... extraction hood per § 181.425 of this chapter. (3) Heat and/or smoke detectors are located in each galley...
46 CFR 15.855 - Cabin watchmen and fire patrolmen.
Code of Federal Regulations, 2011 CFR
2011-10-01
... of fire detectors, heat detectors, smoke detectors, and high-water alarms with audible- and visual... conditions are met: (1) Fire detectors are located in each space containing machinery or fuel tanks per § 181... extraction hood per § 181.425 of this chapter. (3) Heat and/or smoke detectors are located in each galley...
14 CFR 125.173 - Fire detectors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fire detectors. 125.173 Section 125.173....173 Fire detectors. Fire detectors must be made and installed in a manner that assures their ability... subjected. Fire detectors must be unaffected by exposure to fumes, oil, water, or other fluids that may be...
14 CFR 125.173 - Fire detectors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fire detectors. 125.173 Section 125.173....173 Fire detectors. Fire detectors must be made and installed in a manner that assures their ability... subjected. Fire detectors must be unaffected by exposure to fumes, oil, water, or other fluids that may be...
14 CFR 125.173 - Fire detectors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fire detectors. 125.173 Section 125.173....173 Fire detectors. Fire detectors must be made and installed in a manner that assures their ability... subjected. Fire detectors must be unaffected by exposure to fumes, oil, water, or other fluids that may be...
14 CFR 125.173 - Fire detectors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Fire detectors. 125.173 Section 125.173....173 Fire detectors. Fire detectors must be made and installed in a manner that assures their ability... subjected. Fire detectors must be unaffected by exposure to fumes, oil, water, or other fluids that may be...
46 CFR 15.855 - Cabin watchmen and fire patrolmen.
Code of Federal Regulations, 2012 CFR
2012-10-01
... of fire detectors, heat detectors, smoke detectors, and high-water alarms with audible- and visual... conditions are met: (1) Fire detectors are located in each space containing machinery or fuel tanks per § 181... extraction hood per § 181.425 of this chapter. (3) Heat and/or smoke detectors are located in each galley...
[Analysis of the effect of detector's operating temperature on SNR in space-based remote sensor].
Li, Zhan-feng; Wang, Shu-rong; Huang, Yu
2012-03-01
Limb viewing is a new viewing geometry for space-based atmospheric remote sensing, but the spectral radiance of atmosphere scattering reduces rapidly with limb height. So the signal-noise-ratio (SNR) is a key performance parameter of limb remote sensor. A SNR model varying with detector's temperature is proposed, based on analysis of spectral radiative transfer and noise' source in representative instruments. The SNR at limb height 70 km under space conditions was validated by simulation experiment on limb remote sensing spectrometer prototype. Theoretic analysis and experiment's results indicate congruously that when detector's temperature reduces to some extent, a maximum SNR will be reached. After considering the power consumption, thermal conductivity and other issues, optimal operating temperature of detector can be decided.
Simulations of a Thin Sampling Calorimeter with GEANT/FLUKA
NASA Technical Reports Server (NTRS)
Lee, Jeongin; Watts, John; Howell, Leonard; Rose, M. Franklin (Technical Monitor)
2000-01-01
The Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS) will investigate the origin, composition and acceleration mechanism of cosmic rays by measuring the elemental composition of the cosmic rays up to 10(exp 15) eV. These measurements will be made with a thin ionization calorimeter and a transition radiation detector. This paper reports studies of a thin sampling calorimeter concept for the ACCESS thin ionization calorimeter. For the past year, a Monte Carlo simulation study of a Thin Sampling Calorimeter (TSC) design has been conducted to predict the detector performance and to design the system for achieving the ACCESS scientific objectives. Simulation results show that the detector energy resolution function resembles a Gaussian distribution and the energy resolution of TSC is about 40%. In addition, simulations of the detector's response to an assumed broken power law cosmic ray spectra in the region where the 'knee' of the cosmic ray spectrum occurs have been conducted and clearly show that a thin sampling calorimeter can provide sufficiently accurate estimates of the spectral parameters to meet the science requirements of ACCESS. n
Compact Tissue-equivalent Proportional Counter for Deep Space Human Missions.
Straume, T; Braby, L A; Borak, T B; Lusby, T; Warner, D W; Perez-Nunez, D
2015-10-01
Effects on human health from the complex radiation environment in deep space have not been measured and can only be simulated here on Earth using experimental systems and beams of radiations produced by accelerators, usually one beam at a time. This makes it particularly important to develop instruments that can be used on deep-space missions to measure quantities that are known to be relatable to the biological effectiveness of space radiation. Tissue-equivalent proportional counters (TEPCs) are such instruments. Unfortunately, present TEPCs are too large and power intensive to be used beyond low Earth orbit (LEO). Here, the authors describe a prototype of a compact TEPC designed for deep space applications with the capability to detect both ambient galactic cosmic rays and intense solar particle event radiation. The device employs an approach that permits real-time determination of yD (and thus quality factor) using a single detector. This was accomplished by assigning sequential sampling intervals as detectors “1” and “2” and requiring the intervals to be brief compared to the change in dose rate. Tests with g rays show that the prototype instrument maintains linear response over the wide dose-rate range expected in space with an accuracy of better than 5% for dose rates above 3 mGy h(-1). Measurements of yD for 200 MeV n(-1) carbon ions were better than 10%. Limited tests with fission spectrum neutrons show absorbed dose-rate accuracy better than 15%.
Compact Tissue-equivalent Proportional Counter for Deep Space Human Missions
Straume, T.; Braby, L.A.; Borak, T.B.; Lusby, T.; Warner, D.W.; Perez-Nunez, D.
2015-01-01
Abstract Effects on human health from the complex radiation environment in deep space have not been measured and can only be simulated here on Earth using experimental systems and beams of radiations produced by accelerators, usually one beam at a time. This makes it particularly important to develop instruments that can be used on deep-space missions to measure quantities that are known to be relatable to the biological effectiveness of space radiation. Tissue-equivalent proportional counters (TEPCs) are such instruments. Unfortunately, present TEPCs are too large and power intensive to be used beyond low Earth orbit (LEO). Here, the authors describe a prototype of a compact TEPC designed for deep space applications with the capability to detect both ambient galactic cosmic rays and intense solar particle event radiation. The device employs an approach that permits real-time determination of (and thus quality factor) using a single detector. This was accomplished by assigning sequential sampling intervals as detectors “1” and “2” and requiring the intervals to be brief compared to the change in dose rate. Tests with γ rays show that the prototype instrument maintains linear response over the wide dose-rate range expected in space with an accuracy of better than 5% for dose rates above 3 mGy h−1. Measurements of for 200 MeV n−1 carbon ions were better than 10%. Limited tests with fission spectrum neutrons show absorbed dose-rate accuracy better than 15%. PMID:26313585
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, John C; Peplow, Douglas E.; Mosher, Scott W
2010-01-01
This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or moremore » localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(10{sup 2-4}), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.« less
Parametric Characterization of TES Detectors Under DC Bias
NASA Technical Reports Server (NTRS)
Chiao, Meng P.; Smith, Stephen James; Kilbourne, Caroline A.; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chervenak, James A.; Datesman, Aaron M.; Eckart, Megan E.; Ewin, Audrey J.;
2016-01-01
The X-ray integrated field unit (X-IFU) in European Space Agency's (ESA's) Athena mission will be the first high-resolution X-ray spectrometer in space using a large-format transition-edge sensor microcalorimeter array. Motivated by optimization of detector performance for X-IFU, we have conducted an extensive campaign of parametric characterization on transition-edge sensor (TES) detectors with nominal geometries and physical properties in order to establish sensitivity trends relative to magnetic field, dc bias on detectors, operating temperature, and to improve our understanding of detector behavior relative to its fundamental properties such as thermal conductivity, heat capacity, and transition temperature. These results were used for validation of a simple linear detector model in which a small perturbation can be introduced to one or multiple parameters to estimate the error budget for X-IFU. We will show here results of our parametric characterization of TES detectors and briefly discuss the comparison with the TES model.
Calibration and Readiness of the ISS-RAD Charged Particle Detector
NASA Technical Reports Server (NTRS)
Rios, R.
2015-01-01
The International Space Station (ISS) Radiation Assessment Detector (RAD) is an intravehicular energetic particle detector designed to measure a broad spectrum of charged particle and neutron radiation unique to the ISS radiation environment. In this presentation, a summary of calibration and readiness of the RAD Sensor Head (RSH) - also referred to as the Charged Particle Detector (CPD) - for ISS will be presented. Calibration for the RSH consists of p, He, C, O, Si, and Fe ion data collected at the NASA Space Radiation Laboratory (NSRL) and Indiana University Cyclotron Facility (IUCF). The RSH consists of four detectors used in measuring the spectroscopy of charged particles - A, B, C, and D; high-energy neutral particles and charged particles are measured in E; and the last detector - F - is an anti-coincidence detector. A, B, and C are made from Si; D is made from BGO; E and F are made from EJ260XL plastic scintillator.
Method and system for improved resolution of a compensated calorimeter detector
Dawson, John W.
1991-01-01
An improved method and system for a depleted uranium calorimeter detector used in high energy physics experiments. In a depleted uranium calorimeter detector, the energy of a particle entering the calorimeter detector is determined and the output response of the calorimeter detector is compensated so that the ratio of the integrated response of the calorimeter detector from a lepton to the integrated response of the calorimeter detector from a hadron of the same energy as the lepton is approximately equal to 1. In the present invention, the energy of a particle entering the calorimeter detector is determined as a function of time and the hadron content of the response of the calorimeter detector is inferred based upon the time structure of the energy pulse measured by the calorimeter detector. The energy measurement can be corrected based on the inference of the hadron content whereby the resolution of the calorimeter can be improved.
A Helium GC/IMS for the Analysis of Extraterrestrial Volatiles in Exobiology Flight Experiments
NASA Technical Reports Server (NTRS)
Kojiro, Daniel R.; Carle, Glenn C.; Humphry, Donald E.; Shao, Maxine; Takeuchi, Nori
1995-01-01
For exobiology experiments on board spacecraft or space probes, a wide range of chemical species often must be detected and identified. The limited amount of power and space available for flight instruments severely limits the number of instruments that can be flown on any given mission. It is important then, that these experiments utilize instrumentation with universal response, so that all species of interest can be analyzed. Instrumentation to fulfill the analytical requirements of exobiology experiments has been developed utilizing Gas Chromatography - Ion Mobility Spectrometry. The Gas Chromatograph (GC) combines columns developed specifically for the complex mixtures anticipated with highly sensitive Metastable Ionization Detectors (a type of Helium Ionization Detector). To satisfy the limitations placed on resources, the Ion Mobility Spectrometer (IMS) uses the same ultra high purity helium as the GC. This GC-MS provides the analytical capability to fulfill a wide range of exobiology flight experiment applications and has been included on a proposed Discovery Mission and proposals for both Lander and Orbiter of the European Space Agency's Rosetta Comet Mission. A data base of helium IMS spectra is now being built for these future applications.
DAMPE prototype and its beam test results at CERN
NASA Astrophysics Data System (ADS)
Wu, Jian; Hu, Yiming; Chang, Jin
The first Chinese high energy cosmic particle detector(DAMPE) aims to detect electron/gamma at the range between 5GeV and 10TeV in space. A prototype of this detector is made and tested using both cosmic muons and test beam at CERN. Energy and space resolution as well as strong separation power for electron and proton are shown in the results. The detector structure is illustrated as well.
Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications
NASA Technical Reports Server (NTRS)
Farr, William H.
2009-01-01
Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.
Infrared Detector Activities at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Abedin, M. N.; Refaat, T. F.; Sulima, O. V.; Amzajerdian, F.
2008-01-01
Infrared detector development and characterization at NASA Langley Research Center will be reviewed. These detectors were intended for ground, airborne, and space borne remote sensing applications. Discussion will be focused on recently developed single-element infrared detector and future development of near-infrared focal plane arrays (FPA). The FPA will be applied to next generation space-based instruments. These activities are based on phototransistor and avalanche photodiode technologies, which offer high internal gain and relatively low noise-equivalent-power. These novel devices will improve the sensitivity of active remote sensing instruments while eliminating the need for a high power laser transmitter.
Subcellular Spatial Correlation of Particle Traversal and Biological Response in Clinical Ion Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niklas, Martin, E-mail: m.niklas@dkfz.de; German Cancer Consortium, National Center for Radiation Research in Oncology, Heidelberg Institute of Radiation Oncology, Heidelberg; Abdollahi, Amir
2013-12-01
Purpose: To report on the spatial correlation of physical track information (fluorescent nuclear track detectors, FNTDs) and cellular DNA damage response by using a novel hybrid detector (Cell-Fit-HD). Methods and Materials: The FNTDs were coated with a monolayer of human non-small cell lung carcinoma (A549) cells and irradiated with carbon ions (270.55 MeV u{sup −1}, rising flank of the Bragg peak). Phosphorylated histone variant H2AX accumulating at the irradiation-induced double-strand break site was labeled (RIF). The position and direction of ion tracks in the FNTD were registered with the location of the RIF sequence as an ion track surrogate inmore » the cell layer. Results: All RIF sequences could be related to their corresponding ion tracks, with mean deviations of 1.09 μm and −1.72 μm in position and of 2.38° in slope. The mean perpendicular between ion track and RIF sequence was 1.58 μm. The mean spacing of neighboring RIFs exhibited a regular rather than random spacing. Conclusions: Cell-Fit-HD allows for unambiguous spatial correlation studies of cell damage with respect to the intracellular ion traversal under therapeutic beam conditions.« less
Current developments and tests of small x-ray optical systems for space applications
NASA Astrophysics Data System (ADS)
Pina, L.; Hudec, R.; Inneman, A.; Doubravová, D.; Marsikova, V.
2017-05-01
The paper addresses the X-ray monitoring for astrophysical applications. A novel approach based on the use of 1D and 2D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV was further studied. Wide-field optical system of this type has not been used in space yet. Designed wide-field optical system combined with Timepix X-ray detector is described together with latest experimental results obtained during laboratory tests. Proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases where intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. The optical system is considered to be used in a student rocket experiment.
Next Generation Fast Neutron Detector for Space Exploration (Mini-FND)
NASA Astrophysics Data System (ADS)
Hassler, D. M.; Ehresmann, B.
2018-02-01
SwRI has developed a miniature Fast Neutron Detector (mini-FND), for use in the Deep Space Gateway, to characterize the neutron albedo radiation. Mini-FND will provide coverage of the biologically relevant neutrons at energies of 500 keV and greater.
Debris Detector Verification by Hvi-Tests
NASA Astrophysics Data System (ADS)
Bauer, Waldemar; Drolshagen, Gerhard; Vörsmann, Peter; Romberg, Oliver; Putzar, Robin
Information regarding Space Debris (SD) or Micrometeoroids (MM) impacting on spacecraft (S/C) or payloads (P/L) can be obtained by using environmental models e.g. MASTER (ESA) or ORDEM (NASA). The validation of such models is performed by comparison of simulated results with measured or orbital observed data. The latter is utilised for large particles and can be obtained from ground based or space based radars or telescopes. Data regarding very small but abundant particles can also be gained by analysis of retrieved hardware (e.g. Hubble Space Telescope, Space Shuttle Windows), which are brought from orbit back to Earth. Furthermore, in-situ impact detectors are an essential source for information on small size meteoroids and space debris. These kind of detectors are placed in orbit and collect impact data regarding SD and MM, sending data near real time via telemetry. Compared to the impact data which is gained by analysis of retrieved surfaces, the detected data comprise additional information regarding exact impact time and, depending on the type of detector, on the orbit and particles composition. Nevertheless, existing detectors have limitations. Since the detection area is small, statistically meaningful number of impacts are obtained for very small particles only. Measurements of particles in the size range of hundreds of microns to mm which are potentially damaging to S/C require larger sensor areas. To make use of the advantages of in-situ impact detectors and to increase the amount of impact data an innovative impact detector concept is currently under development at DLR in Bremen. Different to all previous impact detectors the Solar Generator based Impact Detector (SOLID) is not an add-on component on the S/C. SOLID makes use of existing subsystems of the S/C and adopts them for impact detection purposes. Since the number of impacts on a target in space depends linearly on the exposed area, the S/C solar panels offer a unique opportunity to use them for impact detection. Considering that the SOLID method could be applied to several S/Cs in different orbits, the spatial coverage in space concerning SD and MM can be significantly increased. In this way the method allows to generate large amount of impact data, which can be used for environmental model validation. This paper focuses on the verification of the SOLID method by Hypervelocity Impact (HVI) tests performed at Fraunhofer EMI. The test set-up as well as achieved results are presented and discussed.
Mihailescu, Lucian; Vetter, Kai M
2013-08-27
Apparatus for detecting and locating a source of gamma rays of energies ranging from 10-20 keV to several MeV's includes plural gamma ray detectors arranged in a generally closed extended array so as to provide Compton scattering imaging and coded aperture imaging simultaneously. First detectors are arranged in a spaced manner about a surface defining the closed extended array which may be in the form a circle, a sphere, a square, a pentagon or higher order polygon. Some of the gamma rays are absorbed by the first detectors closest to the gamma source in Compton scattering, while the photons that go unabsorbed by passing through gaps disposed between adjacent first detectors are incident upon second detectors disposed on the side farthest from the gamma ray source, where the first spaced detectors form a coded aperture array for two or three dimensional gamma ray source detection.
Forecasting Space Weather Events for a Neighboring World
NASA Technical Reports Server (NTRS)
Zheng, Yihua; Mason, Tom; Wood, Erin L.
2015-01-01
Shortly after NASA's Mars Atmosphere and Volatile EvolutioN mission (MAVEN) spacecraft entered Mars' orbit on 21 September 2014, scientists glimpsed the Martian atmosphere's response to a front of solar energetic particles (SEPs) and an associated coronal mass ejection (CME). In response to some solar flares and CMEs, streams of SEPs burst from the solar atmosphere and are further accelerated in the interplanetary medium between the Sun and the planets. These particles deposit their energy and momentum into anything in their path, including the Martian atmosphere and MAVEN particle detectors. MAVEN scientists had been alerted to the likely CME-Mars encounter by a space weather prediction system that had its origins in space weather forecasting for Earth but now forecasts space weather for Earth's neighboring planets. The two Solar Terrestrial Relations Observatory spacecraft and Solar Heliospheric Observatory observed a CME on 26 September, with a trajectory that suggested a Mars intercept. A computer model developed for solar wind prediction, the Wang-Sheeley-Arge-Enlil cone model [e.g., Zheng et al., 2013; Parsons et al., 2011], running in real time at the Community Coordinated Modeling Center (CCMC) located at NASA Goddard since 2006, showed the CME propagating in the direction of Mars (Figure 1). According to MAVEN particle detectors, the disturbance and accompanying SEP enhancement at the leading edge of the CME reached Mars at approximately 17 hours Universal Time on 29 September 2014. Such SEPs may have a profound effect on atmospheric escape - they are believed to be a possible means for driving atmospheric loss. SEPs can cause loss of Mars' upper atmosphere through several loss mechanisms including sputtering of the atmosphere. Sputtering occurs when atoms are ejected from the atmosphere due to impacts with energetic particles.
NASA Technical Reports Server (NTRS)
Rauscher, Bernard J.; Bolcar, Matthew R.; Clampin, Mark; Domagal-Goldman, Shawn D.; McElwain, Michael W.; Moseley, S. H.; Stahle, Carl; Stark, Christopher C.; Thronson, Harley A.
2015-01-01
Are we alone? Answering this ageless question will be a major focus for astrophysics in coming decades. Our tools will include unprecedentedly large UV-Optical-IR space telescopes working with advanced coronagraphs and starshades. Yet, these facilities will not live up to their full potential without better detectors than we have today. To inform detector development, this paper provides an overview of visible and near-IR (VISIR; lambda = 0.4 - 1.8 micrometers) detector needs for the Advanced Technology Large Aperture Space Telescope (ATLAST), specifically for spectroscopic characterization of atmospheric biosignature gasses. We also provide a brief status update on some promising detector technologies for meeting these needs in the context of a passively cooled ATLAST.
Accuracy of parameter estimates for closely spaced optical targets using multiple detectors
NASA Astrophysics Data System (ADS)
Dunn, K. P.
1981-10-01
In order to obtain the cross-scan position of an optical target, more than one scanning detector is used. As expected, the cross-scan position estimation performance degrades when two nearby optical targets interfere with each other. Theoretical bounds on the two-dimensional parameter estimation performance for two closely spaced optical targets are found. Two particular classes of scanning detector arrays, namely, the crow's foot and the brickwall (or mosaic) patterns, are considered.
Status of the isophot detector development
NASA Technical Reports Server (NTRS)
Wolf, J.; Lemke, D.; Burgdorf, M.; Groezinger, U.; Hajduk, CH.
1989-01-01
ISOPHOT is one of the four focal plane experiments of the European Space Agency's Infrared Space Observatory (ISO). Scheduled for a 1993 launch, it will operate extrinsic silicon and germanium photoconductors at low temperature and low background during the longer than 18 month mission. These detectors cover the wavelength range from 2.5 to 200 microns and are used as single elements and in arrays. A cryogenic preamplifier was developed to read out a total number of 223 detector pixels.
Integrated focal plane arrays for millimeter-wave astronomy
NASA Astrophysics Data System (ADS)
Bock, James J.; Goldin, Alexey; Hunt, Cynthia; Lange, Andrew E.; Leduc, Henry G.; Day, Peter K.; Vayonakis, Anastasios; Zmuidzinas, Jonas
2002-02-01
We are developing focal plane arrays of bolometric detectors for sub-millimeter and millimeter-wave astrophysics. We propose a flexible array architecture using arrays of slot antennae coupled via low-loss superconducting Nb transmission line to microstrip filters and antenna-coupled bolometers. By combining imaging and filtering functions with transmission line, we are able to realize unique structures such as a multi-band polarimeter and a planar, dispersive spectrometer. Micro-strip bolometers have significantly smaller active volume than standard detectors with extended absorbers, and can realize higher sensitivity and speed of response. The integrated array has natural immunity to stray radiation or spectral leaks, and minimizes the suspended mass operating at 0.1-0.3 K. We also discuss future space-borne spectroscopy and polarimetry applications. .
Space Radiation Detector with Spherical Geometry
NASA Technical Reports Server (NTRS)
Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)
2011-01-01
A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.
Space Radiation Detector with Spherical Geometry
NASA Technical Reports Server (NTRS)
Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)
2012-01-01
A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horne, Steve M.; Thoreson, Greg G.; Theisen, Lisa A.
2016-05-01
The Gamma Detector Response and Analysis Software–Detector Response Function (GADRAS-DRF) application computes the response of gamma-ray and neutron detectors to incoming radiation. This manual provides step-by-step procedures to acquaint new users with the use of the application. The capabilities include characterization of detector response parameters, plotting and viewing measured and computed spectra, analyzing spectra to identify isotopes, and estimating source energy distributions from measured spectra. GADRAS-DRF can compute and provide detector responses quickly and accurately, giving users the ability to obtain usable results in a timely manner (a matter of seconds or minutes).
14 CFR 121.275 - Fire detectors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fire detectors. 121.275 Section 121.275..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.275 Fire detectors. Fire detectors must be made and installed in a manner that assures their ability to resist, without failure, all...
14 CFR 121.275 - Fire detectors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fire detectors. 121.275 Section 121.275..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.275 Fire detectors. Fire detectors must be made and installed in a manner that assures their ability to resist, without failure, all...
14 CFR 121.275 - Fire detectors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fire detectors. 121.275 Section 121.275..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.275 Fire detectors. Fire detectors must be made and installed in a manner that assures their ability to resist, without failure, all...
14 CFR 121.275 - Fire detectors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fire detectors. 121.275 Section 121.275..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.275 Fire detectors. Fire detectors must be made and installed in a manner that assures their ability to resist, without failure, all...
14 CFR 121.275 - Fire detectors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Fire detectors. 121.275 Section 121.275..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.275 Fire detectors. Fire detectors must be made and installed in a manner that assures their ability to resist, without failure, all...
UV and Optical Detectors: Status and Prospects
NASA Technical Reports Server (NTRS)
Woodgate, Bruce; Oegerle, William (Technical Monitor)
2002-01-01
UV and visible detectors - status and prospects. The status and prospects for UV and visible detectors for space astrophysics missions will be described, based on the findings of the NASA working group roadmap report, hopefully updated.
Infrared responsivity of a pyroelectric detector with a single-wall carbon nanotube coating.
Theocharous, E; Engtrakul, C; Dillon, A C; Lehman, J
2008-08-01
The performance of a 10 mm diameter pyroelectric detector coated with a single-wall carbon nanotube (SWCNT) was evaluated in the 0.8 to 20 microm wavelength range. The relative spectral responsivity of this detector exhibits significant fluctuations over the wavelength range examined. This is consistent with independent absorbance measurements, which show that SWCNTs exhibit selective absorption bands in the visible and near-infrared. The performance of the detector in terms of noise equivalent power and detectivity in wavelength regions of high coating absorptivity was comparable with gold-black-coated pyroelectric detectors based on 50 microm thick LiTaO(3) crystals. The response of this detector was shown to be nonlinear for DC equivalent photocurrents >10(-9) A, and its spatial uniformity of response was comparable with other pyroelectric detectors utilizing gold-black coatings. The nonuniform spectral responsivity exhibited by the SWCNT-coated detector is expected to severely restrict the use of SWCNTs as black coatings for thermal detectors. However, the deposition of SWCNT coatings on a pyroelectric crystal followed by the study of the prominence of the spectral features in the relative spectral responsivity of the resultant pyroelectric detectors is shown to provide an effective method for quantifying the impurity content in SWCNT samples.
NASA Astrophysics Data System (ADS)
Granja, Carlos; Polansky, Stepan
2016-07-01
Detailed spatial- and time-correlated maps of the space radiation environment in Low Earth Orbit (LEO) are produced by the spacecraft payload SATRAM operating in open space on board the Proba-V satellite from the European Space Agency (ESA). Equipped with the hybrid semiconductor pixel detector Timepix, the compact radiation monitor payload provides the composition and spectral characterization of the mixed radiation field with quantum-counting and imaging dosimetry sensitivity, energetic charged particle tracking, directionality and energy loss response in wide dynamic range in terms of particle types, dose rates and particle fluxes. With a polar orbit (sun synchronous, 98° inclination) at the altitude of 820 km the payload samples the space radiation field at LEO covering basically the whole planet. First results of long-period data evaluation in the form of time-and spatially-correlated maps of total dose rate (all particles) are given.
Multidirectional Cosmic Ray Ion Detector for Deep Space CubeSats
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.
2016-01-01
Understanding the nature of anisotropy of solar energetic protons (SEPs) and galactic cosmic ray (GCR) fluxes in the interplanetary medium is crucial in characterizing time-dependent radiation exposure in interplanetary space for future exploration missions. NASA Glenn Research Center has proposed a CubeSat-based instrument to study solar and cosmic ray ions in lunar orbit or deep space. The objective of Solar Proton Anisotropy and Galactic cosmic ray High Energy Transport Instrument (SPAGHETI) is to provide multi-directional ion data to further understand anisotropies in SEP and GCR flux. The instrument is to be developed using large area detectors fabricated from high density, high purity silicon carbide (SiC) to measure linear energy transfer (LET) of ions. Stacks of these LET detectors are arranged in a CubeSat at orthogonal directions to provide multidirectional measurements. The low-noise, thermally-stable nature of silicon carbide and its radiation tolerance allows the multidirectional array of detector stacks to be packed in a 6U CubeSat without active cooling. A concept involving additional coincidence/anticoincidence detectors and a high energy Cherenkov detector is possible to further expand ion energy range and sensitivity.
Smith, M B; Khulapko, S; Andrews, H R; Arkhangelsky, V; Ing, H; Lewis, B J; Machrafi, R; Nikolaev, I; Shurshakov, V
2015-01-01
Measurements using bubble detectors have been performed in order to characterise the neutron dose and energy spectrum in the Russian segment of the International Space Station (ISS). Experiments using bubble dosemeters and a bubble-detector spectrometer, a set of six detectors with different energy thresholds that is used to determine the neutron spectrum, were performed during the ISS-22 (2009) to ISS-33 (2012) missions. The spectrometric measurements are in good agreement with earlier data, exhibiting expected features of the neutron energy spectrum in space. Experiments using a hydrogenous radiation shield show that the neutron dose can be reduced by shielding, with a reduction similar to that determined in earlier measurements using bubble detectors. The bubble-detector data are compared with measurements performed on the ISS using other instruments and are correlated with potential influencing factors such as the ISS altitude and the solar activity. Surprisingly, these influences do not seem to have a strong effect on the neutron dose or energy spectrum inside the ISS. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
High density Schottky barrier IRCCD sensors for SWIR applications at intermediate temperature
NASA Technical Reports Server (NTRS)
Elabd, H.; Villani, T. S.; Tower, J. R.
1982-01-01
Monolithic 32 x 64 and 64 x 1:128 palladium silicide (Pd2Si) interline transfer infrared charge coupled devices (IRCCDs) sensitive in the 1 to 3.5 micron spectral band were developed. This silicon imager exhibits a low response nonuniformity of typically 0.2 to 1.6% rms, and was operated in the temperature range between 40 to 140 K. Spectral response measurements of test Pd2Si p-type Si devices yield quantum efficiencies of 7.9% at 1.25 microns, 5.6% at 1.65 microns 2.2% at 2.22 microns. Improvement in quantum efficiency is expected by optimizing the different structural parameters of the Pd2Si detectors. The spectral response of the Pd2Si detectors fit a modified Fowler emission model. The measured photo-electric barrier height for the Pd2Si detectors is 0.34 eV and the measured quantum efficiency coefficient, C1, is 19%/eV. The dark current level of Pd2Si Schottky barrier focal plane arrays (FPAs) is sufficiently low to enable operation at intermediate temperatures at TV frame rates. Typical dark current level measured at 120 K on the FPA is 2 nA/sq cm. The operating temperature of the Pd2Si FPA is compatible with passive cooler performance. In addition, high density Pd2Si Schottky barrier FPAs are manufactured with high yield and therefore represent an economical approach to short wavelength IR imaging. A Pd2Si Schottky barrier image sensor for push-broom multispectral imaging in the 1.25, 1.65, and 2.22 micron bands is being studied. The sensor will have two line arrays (dual band capability) of 512 detectors each, with 30 micron center-to-center detector spacing. The device will be suitable for chip-to-chip abutment, thus providing the capability to produce large, multiple chip focal planes with contiguous, in-line sensors.
An end-to-end approach to developing biological and chemical detector requirements
NASA Astrophysics Data System (ADS)
Teclemariam, Nerayo P.; Purvis, Liston K.; Foltz, Greg W.; West, Todd; Edwards, Donna M.; Fruetel, Julia A.; Gleason, Nathaniel J.
2009-05-01
Effective defense against chemical and biological threats requires an "end-to-end" strategy that encompasses the entire problem space, from threat assessment and target hardening to response planning and recovery. A key element of the strategy is the definition of appropriate system requirements for surveillance and detection of threat agents. Our end-to-end approach to venue chem/bio defense is captured in the Facilities Weapons of Mass Destruction Decision Analysis Capability (FacDAC), an integrated system-of-systems toolset that can be used to generate requirements across all stages of detector development. For example, in the early stage of detector development the approach can be used to develop performance targets (e.g., sensitivity, selectivity, false positive rate) to provide guidance on what technologies to pursue. In the development phase, after a detector technology has been selected, the approach can aid in determining performance trade-offs and down-selection of competing technologies. During the application stage, the approach can be employed to design optimal defensive architectures that make the best use of available technology to maximize system performance. This presentation will discuss the end-to-end approach to defining detector requirements and demonstrate the capabilities of the FacDAC toolset using examples from a number of studies for the Department of Homeland Security.
NASA Technical Reports Server (NTRS)
Howell, L. W.
2001-01-01
A simple power law model consisting of a single spectral index alpha-1 is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV. Two procedures for estimating alpha-1 the method of moments and maximum likelihood (ML), are developed and their statistical performance compared. It is concluded that the ML procedure attains the most desirable statistical properties and is hence the recommended statistical estimation procedure for estimating alpha-1. The ML procedure is then generalized for application to a set of real cosmic-ray data and thereby makes this approach applicable to existing cosmic-ray data sets. Several other important results, such as the relationship between collecting power and detector energy resolution, as well as inclusion of a non-Gaussian detector response function, are presented. These results have many practical benefits in the design phase of a cosmic-ray detector as they permit instrument developers to make important trade studies in design parameters as a function of one of the science objectives. This is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.
IRAC test report. Gallium doped silicon band 2: Read noise and dark current
NASA Technical Reports Server (NTRS)
Lamb, Gerald; Shu, Peter; Mather, John; Ewin, Audrey; Bowser, Jeffrey
1987-01-01
A direct readout infrared detector array, a candidate for the Space Infrared Telescope Facility (SIRTF) Infrared Array Camera (IRAC), has been tested. The array has a detector surface of gallium doped silicon, bump bonded to a 58x62 pixel MOSFET multiplexer on a separate chip. Although this chip and system do not meet all the SIRTF requirements, the critically important read noise is within a factor of 3 of the requirement. Significant accomplishments of this study include: (1) development of a low noise correlated double sampling readout system with a readout noise of 127 to 164 electrons (based on the detector integrator capacitance of 0.1 pF); (2) measurement of the readout noise of the detector itself, ranging from 123 to 214 electrons with bias only (best to worst pixel), and 256 to 424 electrons with full clocking in normal operation at 5.4 K where dark current is small. Thirty percent smaller read noises are obtained at a temperature of 15K; (3) measurement of the detector response versus integration time, showing significant nonlinear behavior for large signals, well below the saturation level; and (4) development of a custom computer interface and suitable software for collection, analysis and display of data.
The High Energy Particle Detector on Board of the China Seismo-Electromagnetic Satellite
NASA Astrophysics Data System (ADS)
Sparvoli, Roberta; Palma, Francesco; Panico, Beatrice; Sotgiu, Alessandro; Vitale, Vincenzo
2016-08-01
The study of the Van Allen belts temporal stability is among the main objectives of the China Seismo- Electromagnetic Satellite (CSES) space mission, as well as the study of other electromagnetic disturbances with possible seismic origin. In parallel to this, the CSES mission will address issues of heliospheric and magnetospheric physics, by measuring the cosmic radiation around the Earth.The CSES satellite, developed by a Chinese-Italian collaboration, will be launched in the first half of 2017 and inserted into a circular Sun-synchronous orbit with 98° inclination and 500 km altitude. The expected lifetime is 5 years. CSES hosts several instruments on board: 2 magnetometers, an electric field detector, a plasma analyser, a Langmuir probe and a High-Energy Particle Detector (HEPD). The HEPD detector, responsibility of the Italian side of the CSES collaboration, will measure electrons (3 - 100 MeV) and protons (30 - 300 MeV) along CSES orbit. It consists of a segmented layer of plastic scintillators for the trigger and a calorimeter constituted by a tower of plastic scintillator counters and a LYSO plane. The direction of the incident particle is provided by two planes of double-side silicon micro-strip detectors placed in front of the trigger. Topic of this talk is the technical description of the HEPD and its main characteristics.
Radiation Design of Ion Mass Spectrometers
NASA Technical Reports Server (NTRS)
Sittler, Ed; Cooper, John; Christian, Eric; Moore, Tom; Sturner, Steve; Paschalidis, Nick
2011-01-01
In the harsh radiation environment of Jupiter and with the JUpiter ICy moon Explorer (JUICE) mission including two Europa flybys where local intensities are approx. 150 krad/month behind 100 mils of Al shielding, so background from penetrating radiation can be a serious issue for detectors inside an Ion Mass Spectrometer (IMS). This can especially be important for minor ion detection designs. Detectors of choice for time-of-flight (TOF) designs are microchannel plates (MCP) and some designs may include solid state detectors (SSD). The standard approach is to use shielding designs so background event rates are low enough that the detector max rates and lifetimes are first not exceeded and then the more stringent requirement that the desired measurement can successfully be made (i.e., desired signal is sufficiently greater than background noise after background subtraction is made). GEANT codes are typically used along with various electronic techniques, but such designs need to know how the detectors will respond to the simulated primary and secondary radiations produced within the instrument. We will be presenting some preliminary measurements made on the response of MCPs to energetic electrons (20 ke V to 1400 ke V) using a Miniature TOF (MTOF) device and the High Energy Facility at Goddard Space Flight Center which has a Van de Graaff accelerator.
NASA Technical Reports Server (NTRS)
Jones, B.
1985-01-01
This program was directed towards a better understanding of some of the important factors in the performance of infrared detector arrays at low background conditions appropriate for space astronomy. The arrays were manufactured by Aerojet Electrosystems Corporation, Azusa. Two arrays, both bismuth doped silicon, were investigated: an AMCID 32x32 Engineering mosiac Si:Bi accumulation mode charge injection device detector array and a metal oxide semiconductor/field effect transistor (MOS-FET) switched array of 16x32 pixels.
Lateral Diffusion Length Changes in HgCdTe Detectors in a Proton Environment
NASA Technical Reports Server (NTRS)
Hubbs, John E.; Marshall, Paul W.; Marshall, Cheryl J.; Gramer, Mark E.; Maestas, Diana; Garcia, John P.; Dole, Gary A.; Anderson, Amber A.
2007-01-01
This paper presents a study of the performance degradation in a proton environment of very long wavelength infrared (VLWIR) HgCdTe detectors. The energy dependence of the Non-Ionizing Energy Loss (NIEL) in HgCdTe provides a framework for estimating the responsivity degradation in VLWIR HgCdTe due to on orbit exposure from protons. Banded detector arrays that have different detector designs were irradiated at proton energies of 7, 12, and 63 MeV. These banded detector arrays allovedin sight into how the fundamental detector parameters degraded in a proton environment at the three different proton energies. Measured data demonstrated that the detector responsivity degradation at 7 MeV is 5 times larger than the degradation at 63 MeV. The comparison of the responsivity degradation at the different proton energies suggests that the atomic Columbic interaction of the protons with the HgCdTe detector is likely the primary mechanism responsible for the degradation in responsivity at proton energies below 30 MeV.
Radiation Measured for Chinese Satellite SJ-10 Space Mission
NASA Astrophysics Data System (ADS)
Zhou, Dazhuang; Sun, Yeqing; Zhang, Binquan; Zhang, Shenyi; Sun, Yueqiang; Liang, Jinbao; Zhu, Guangwu; Jing, Tao; Yuan, Bin; Zhang, Huanxin; Zhang, Meng; Wang, Wei; Zhao, Lei
2018-02-01
Space biological effects are mainly a result of space radiation particles with high linear energy transfer (LET); therefore, accurate measurement of high LET space radiation is vital. The radiation in low Earth orbits is composed mainly of high-energy galactic cosmic rays (GCRs), solar energetic particles, particles of radiation belts, the South Atlantic Anomaly, and the albedo neutrons and protons scattered from the Earth's atmosphere. CR-39 plastic nuclear track detectors sensitive to high LET are the best passive detectors to measure space radiation. The LET method that employs CR-39 can measure all the radiation LET spectra and quantities. CR-39 detectors can also record the incident directions and coordinates of GCR heavy ions that pass through both CR-39 and biosamples, and the impact parameter, the distance between the particle's incident point and the seed's spore, can then be determined. The radiation characteristics and impact parameter of GCR heavy ions are especially beneficial for in-depth research regarding space radiation biological effects. The payload returnable satellite SJ-10 provided an excellent opportunity to investigate space radiation biological effects with CR-39 detectors. The space bio-effects experiment was successfully conducted on board the SJ-10 satellite. This paper introduces space radiation in low Earth orbits and the LET method in radiation-related research and presents the results of nuclear tracks and biosamples hitting distributions of GCR heavy ions, the radiation LET spectra, and the quantities measured for the SJ-10 space mission. The SJ-10 bio-experiment indicated that radiation may produce significant bio-effects.
Simulation of radiation environment for the LHeC detector
NASA Astrophysics Data System (ADS)
Nayaz, Abdullah; Piliçer, Ercan; Joya, Musa
2017-02-01
The detector response and simulation of radiation environment for the Large Hadron electron Collider (LHeC) baseline detector is estimated to predict its performance over the lifetime of the project. In this work, the geometry of the LHeC detector, as reported in LHeC Conceptual Design Report (CDR), built in FLUKA Monte Carlo tool in order to simulate the detector response and radiation environment. For this purpose, events of electrons and protons with high enough energy were sent isotropically from interaction point of the detector. As a result, the detector response and radiation background for the LHeC detector, with different USRBIN code (ENERGY, HADGT20M, ALL-CHAR, ALL-PAR) in FLUKA, are presented.
NASA Astrophysics Data System (ADS)
Chai, S.; Lim, S.; Kim, C.-Y.; Hong, S.
2018-06-01
This paper presents matching condition for detector at THz frequencies, which directly read signals from an integrated antenna. We use direct THz-signal detections with CMOS transistors in non-resonant plasma wave mode, which are embedded in on-chip resonating antennas. The detector detects THz envelope signals directly from the side edges of the on-chip patch antennas. The signal detection mechanism is studied in the view of the impedance conditions of the antenna and the detector. The detectors are implemented with stacked transistors structures to achieve high responsivity. The measured responsivities of the detectors with antenna impedances that were simulated to be 599.7, 912.3, 1565, and 3190.6 Ω agree well with the calculated values. Moreover, the responsivity dependence on the detector impedance is shown with two different input impedances of the detectors. Since CMOS circuit models from foundry are not accurate at frequencies higher than f t , the matching guideline between the antenna and the detector is very useful in designing high responsivity detectors. This study found that a detector has to have a large input impedance conjugately matched to the antenna's impedance to have high responsivity.
NASA Astrophysics Data System (ADS)
Chai, S.; Lim, S.; Kim, C.-Y.; Hong, S.
2018-04-01
This paper presents matching condition for detector at THz frequencies, which directly read signals from an integrated antenna. We use direct THz-signal detections with CMOS transistors in non-resonant plasma wave mode, which are embedded in on-chip resonating antennas. The detector detects THz envelope signals directly from the side edges of the on-chip patch antennas. The signal detection mechanism is studied in the view of the impedance conditions of the antenna and the detector. The detectors are implemented with stacked transistors structures to achieve high responsivity. The measured responsivities of the detectors with antenna impedances that were simulated to be 599.7, 912.3, 1565, and 3190.6 Ω agree well with the calculated values. Moreover, the responsivity dependence on the detector impedance is shown with two different input impedances of the detectors. Since CMOS circuit models from foundry are not accurate at frequencies higher than f t , the matching guideline between the antenna and the detector is very useful in designing high responsivity detectors. This study found that a detector has to have a large input impedance conjugately matched to the antenna's impedance to have high responsivity.
Comparison of Detector Technologies for CAPS
NASA Technical Reports Server (NTRS)
Stockum, Jana L.
2005-01-01
In this paper, several different detectors are examined for use in a Comet/Asteroid Protection System (CAPS), a conceptual study for a possible future space-based system. Each detector will be examined for its future (25 years or more in the future) ability to find and track near-Earth Objects (NEOs) from a space-based detection platform. Within the CAPS study are several teams of people who each focus on different aspects of the system concept. This study s focus is on detection devices. In particular, evaluations on the following devices have been made: charge-coupled devices (CCDs), charge-injected devices (CIDs), superconducting tunneling junctions (STJs), and transition edge sensors (TESs). These devices can be separated into two main categories; the first category includes detectors that are currently being widely utilized, such as CCDs and CIDs. The second category includes experimental detectors, such as STJs and TESs. After the discussion of the detectors themselves, there will be a section devoted to the explicit use of these detectors with CAPS.
Hubble Space Telescope, Faint Object Camera
NASA Technical Reports Server (NTRS)
1981-01-01
This drawing illustrates Hubble Space Telescope's (HST's), Faint Object Camera (FOC). The FOC reflects light down one of two optical pathways. The light enters a detector after passing through filters or through devices that can block out light from bright objects. Light from bright objects is blocked out to enable the FOC to see background images. The detector intensifies the image, then records it much like a television camera. For faint objects, images can be built up over long exposure times. The total image is translated into digital data, transmitted to Earth, and then reconstructed. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.
Microwave characteristics of GaAs MMIC integratable optical detectors
NASA Technical Reports Server (NTRS)
Claspy, Paul C.; Hill, Scott M.; Bhasin, Kul B.
1989-01-01
Interdigitated photoconductive detectors were fabricated on microwave device structures, making them easily integratable with Monolithic Microwave Integrated Circuits (MMIC). Detector responsivity as high as 2.5 A/W and an external quantum efficiency of 3.81 were measured. Response speed was nearly independent of electrode geometry, and all detectors had usable response at frequencies to 6 GHz. A small signal model of the detectors based on microwave measurements was also developed.
Spaceborne electronic imaging systems
NASA Technical Reports Server (NTRS)
1971-01-01
Criteria and recommended practices for the design of the spaceborne elements of electronic imaging systems are presented. A spaceborne electronic imaging system is defined as a device that collects energy in some portion of the electromagnetic spectrum with detector(s) whose direct output is an electrical signal that can be processed (using direct transmission or delayed transmission after recording) to form a pictorial image. This definition encompasses both image tube systems and scanning point-detector systems. The intent was to collect the design experience and recommended practice of the several systems possessing the common denominator of acquiring images from space electronically and to maintain the system viewpoint rather than pursuing specialization in devices. The devices may be markedly different physically, but each was designed to provide a particular type of image within particular limitations. Performance parameters which determine the type of system selected for a given mission and which influence the design include: Sensitivity, Resolution, Dynamic range, Spectral response, Frame rate/bandwidth, Optics compatibility, Image motion, Radiation resistance, Size, Weight, Power, and Reliability.
Construction and test of a fine-grained liquid argon preshower prototype
NASA Astrophysics Data System (ADS)
Davis, R. A.; Gingrich, D. M.; Pinfold, J. L.; Rodning, N. L.; Boos, E.; Zhautykov, B. O.; Aubert, B.; Bazan, A.; Beaugiraud, B.; Boniface, J.; Colas, J.; Eynard, G.; Jezequel, S.; Leflour, T.; Linossier, O.; Nicoleau, S.; Rival, F.; Sauvage, G.; Thion, J.; VanDenPlas, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y. P.; Chmeissani, M.; Fernandez, E.; Garrido, Ll.; Martinez, M.; Padilla, C.; Gordon, H. A.; Radeka, V.; Rahm, D.; Stephani, D.; Baisin, L.; Berset, J. C.; Chevalley, J. L.; Gianotti, F.; Gildemeister, O.; Marin, C. P.; Nessi, M.; Poggioli, L.; Richter, W.; Vuillemin, V.; Baze, J. M.; Gosset, L.; Lavocat, P.; Lottin, J. P.; Mansoulié, B.; Meyer, J. P.; Renardy, J. F.; Schwindling, J.; Teiger, J.; Collot, J.; de Saintignon, P.; Dzahini, D.; Hostachy, J. Y.; Hoummada, A.; Laborie, G.; Mahout, G.; Hervas, L.; Chekhtman, A.; Cousinou, M. C.; Dargent, P.; Dinkespiller, B.; Etienne, F.; Fassnacht, P.; Fouchez, D.; Martin, L.; Miotto, A.; Monnier, E.; Nagy, E.; Olivetto, C.; Tisserant, S.; Battistoni, G.; Camin, D. V.; Cavalli, D.; Costa, G.; Cozzi, L.; Fedyakin, N.; Ferrari, A.; Mandelli, L.; Mazzanti, M.; Perini, L.; Resconi, S.; Sala, P.; Beaudoin, G.; Depommier, P.; León-Florián, E.; Leroy, C.; Roy, P.; Augé, E.; Chase, R.; Chollet, J. C.; de La Taille, C.; Fayard, L.; Fournier, D.; Hrisoho, A.; Merkel, B.; Noppe, J. M.; Parrour, G.; Pétroff, P.; Schaffer, A.; Seguin-Moreau, N.; Serin, L.; Tisserand, V.; Vichou, I.; Canton, B.; David, J.; Genat, J. F.; Imbault, D.; Le Dortz, O.; Savoy-Navarro, A.; Schwemling, P.; Eek, L. O.; Lund-Jensen, B.; Söderqvist, J.; Lefebvre, M.; Robertson, S.; RD3 Collaboration
1997-02-01
A separate liquid argon preshower detector consisting of two layers featuring a fine granularity of 2.5 × 10 -3 was studied by the RD3 collaboration. A prototype covering approximately 0.8 in pseudo-rapidity and 9° in azimuth was built and tested at CERN in July 94. CMOS and GaAs VLSI preamplifiers were designed and tested for this occasion. The combined response of this detector and an accordion electromagnetic calorimeter prototype to muons, electrons and photons is presented. For minimum ionizing tracks a signal-to-noise ratio of 4.5 per preshower layer was measured. Above 150 GeV the space resolution for electrons is better than 250 μm in both directions. The precision on the electromagnetic shower direction, determined together with the calorimeter, is better than 4 mrad above 50 GeV. It is concluded that the preshower detector would adequately fulfil its role for future operation at CERN Large Hadron Collider.
NASA Astrophysics Data System (ADS)
Bisconti, Francesca; JEM-EUSO Collaboration
2016-07-01
EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.
Effects of sub-bandgap illumination on electrical properties and detector performances of CdZnTe:In
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lingyan; Jie, Wanqi, E-mail: jwq@nwpu.edu.cn; Zha, Gangqiang, E-mail: zha-gq@hotmail.com
2014-06-09
The effects of sub-bandgap illumination on electrical properties of CdZnTe:In crystals and spectroscopic performances of the fabricated detectors were discussed. The excitation process of charge carriers through thermal and optical transitions at the deep trap could be described by the modified Shockley-Read-Hall model. The ionization probability of the deep donor shows an increase under illumination, which should be responsible for the variation of electrical properties within CdZnTe bulk materials with infrared (IR) irradiation. By applying Ohm's law, diffusion model and interfacial layer-thermionic-diffusion theory, we obtain the decrease of bulk resistivity and the increase of space charge density in the illuminatedmore » crystals. Moreover, the illumination induced ionization will further contribute to improving carrier transport property and charge collection efficiency. Consequently, the application of IR irradiation in the standard working environment is of great significance to improve the spectroscopic characteristics of CdZnTe radiation detectors.« less
46 CFR 15.855 - Cabin watchmen and fire patrolmen.
Code of Federal Regulations, 2014 CFR
2014-10-01
... of an uninspected passenger vessel not more than 300 GRT may substitute the use of fire detectors, heat detectors, smoke detectors, and high-water alarms with audible- and visual-warning indicators, in... detectors are located in each space containing machinery or fuel tanks per § 181.400(c) of this chapter. (2...
Image Science Research for Speckle-based LADAR (Speckle Research for 3D Imaging LADAR)
2008-04-03
INVARIANT + FERGUS, TORRALBA, AND FREEMAN. MIT-CSAIL-TR-2006-058 MAP DETECTOR PATTERN FOR EACH POINT IN OBJECT SPACE DEBLURRING PROBLEM IMPULSE RESPONSE...GENERALIZED THEORY FOR THE LOGARITHMIC ASPHERE ( )( ) it e φ ρρ −= IMPULSE RESPONSE (PSF) 2 2 2 2 0 0 22 2( ) 2 2 0 2 2 2 2 2 2 0 0 2 ( ; ) 2 ( ) i s i i t R...ascent; γ=1, Burch, Skilling, Gull; Loops needed Noise deviation Area of PSF New parameter L σ A γ COMPARISON OF MAXIMUM ENTROPY METHODS † † W. CHI
The Future of Single- to Multi-band Detector Technologies: Review
NASA Technical Reports Server (NTRS)
Abedin, M. Nurul; Bhat, Ishwara; Gunapala, Sarath D.; Bandara, Sumith V.; Refaat, Tamer F.; Sandford, Stephen P.; Singh, Upendra N.
2006-01-01
Using classical optical components such as filters, prisms and gratings to separate the desired wavelengths before they reach the detectors results in complex optical systems composed of heavy components. A simpler system will result by utilizing a single optical system and a detector that responds separately to each wavelength band. Therefore, a continuous endeavors to develop the capability to reliably fabricate detector arrays that respond to multiple wavelength regions. In this article, we will review the state-of-the-art single and multicolor detector technologies over a wide spectral-range, for use in space-based and airborne remote sensing applications. Discussions will be focused on current and the most recently developed focal plane arrays (FPA) in addition to emphasizing future development in UV-to-Far infrared multicolor FPA detectors for next generation space-based instruments to measure water vapor and greenhouse gases. This novel detector component will make instruments designed for these critical measurements more efficient while reducing complexity and associated electronics and weight. Finally, we will discuss the ongoing multicolor detector technology efforts at NASA Langley Research Center, Jet Propulsion Laboratory, Rensselaer Polytechnic Institute, and others.
Instrument performance and simulation verification of the POLAR detector
NASA Astrophysics Data System (ADS)
Kole, M.; Li, Z. H.; Produit, N.; Tymieniecka, T.; Zhang, J.; Zwolinska, A.; Bao, T. W.; Bernasconi, T.; Cadoux, F.; Feng, M. Z.; Gauvin, N.; Hajdas, W.; Kong, S. W.; Li, H. C.; Li, L.; Liu, X.; Marcinkowski, R.; Orsi, S.; Pohl, M.; Rybka, D.; Sun, J. C.; Song, L. M.; Szabelski, J.; Wang, R. J.; Wang, Y. H.; Wen, X.; Wu, B. B.; Wu, X.; Xiao, H. L.; Xiong, S. L.; Zhang, L.; Zhang, L. Y.; Zhang, S. N.; Zhang, X. F.; Zhang, Y. J.; Zhao, Y.
2017-11-01
POLAR is a new satellite-born detector aiming to measure the polarization of an unprecedented number of Gamma-Ray Bursts in the 50-500 keV energy range. The instrument, launched on-board the Tiangong-2 Chinese Space lab on the 15th of September 2016, is designed to measure the polarization of the hard X-ray flux by measuring the distribution of the azimuthal scattering angles of the incoming photons. A detailed understanding of the polarimeter and specifically of the systematic effects induced by the instrument's non-uniformity are required for this purpose. In order to study the instrument's response to polarization, POLAR underwent a beam test at the European Synchrotron Radiation Facility in France. In this paper both the beam test and the instrument performance will be described. This is followed by an overview of the Monte Carlo simulation tools developed for the instrument. Finally a comparison of the measured and simulated instrument performance will be provided and the instrument response to polarization will be presented.
Measurements of speed of response of high-speed visible and IR optical detectors
NASA Technical Reports Server (NTRS)
Rowe, H. E.; Osmundson, J. S.
1972-01-01
A technique for measuring speed of response of high speed visible and IR optical detectors to mode-locked Nd:YAG laser pulses is described. Results of measurements of response times of four detectors are presented. Three detectors that can be used as receivers in a 500-MHz optical communication system are tested.
Hutchinson, Joseph P; Li, Jianfeng; Farrell, William; Groeber, Elizabeth; Szucs, Roman; Dicinoski, Greg; Haddad, Paul R
2011-03-25
The responses of four different types of aerosol detectors have been evaluated and compared to establish their potential use as a universal detector in conjunction with ultra high pressure liquid chromatography (UHPLC). Two charged-aerosol detectors, namely Corona CAD and Corona Ultra, and also two different types of light-scattering detectors (an evaporative light scattering detector, and a nano-quantity analyte detector [NQAD]) were evaluated. The responses of these detectors were systematically investigated under changing experimental and instrumental parameters, such as the mobile phase flow-rate, analyte concentration, mobile phase composition, nebulizer temperature, evaporator temperature, evaporator gas flow-rate and instrumental signal filtering after detection. It was found that these parameters exerted non-linear effects on the responses of the aerosol detectors and must therefore be considered when designing analytical separation conditions, particularly when gradient elution is performed. Identical reversed-phase gradient separations were compared on all four aerosol detectors and further compared with UV detection at 200 nm. The aerosol detectors were able to detect all 11 analytes in a test set comprising species having a variety of physicochemical properties, whilst UV detection was applicable only to those analytes containing chromophores. The reproducibility of the detector response for 11 analytes over 10 consecutive separations was found to be approximately 5% for the charged-aerosol detectors and approximately 11% for the light-scattering detectors. The tested analytes included semi-volatile species which exhibited a more variable response on the aerosol detectors. Peak efficiencies were generally better on the aerosol detectors in comparison to UV detection and particularly so for the light-scattering detectors which exhibited efficiencies of around 110,000 plates per metre. Limits of detection were calculated using different mobile phase compositions and the NQAD detector was found to be the most sensitive (LOD of 10 ng/mL), followed by the Corona CAD (76 ng/mL), then UV detection at 200 nm (178 ng/mL) using an injection volume of 25 μL. Copyright © 2011 Elsevier B.V. All rights reserved.
Far-Infrared Blocked Impurity Band Detector Development
NASA Technical Reports Server (NTRS)
Hogue, H. H.; Guptill, M. T.; Monson, J. C.; Stewart, J. W.; Huffman, J. E.; Mlynczak, M. G.; Abedin, M. N.
2007-01-01
DRS Sensors & Targeting Systems, supported by detector materials supplier Lawrence Semiconductor Research Laboratory, is developing far-infrared detectors jointly with NASA Langley under the Far-IR Detector Technology Advancement Partnership (FIDTAP). The detectors are intended for spectral characterization of the Earth's energy budget from space. During the first year of this effort we have designed, fabricated, and evaluated pilot Blocked Impurity Band (BIB) detectors in both silicon and germanium, utilizing pre-existing customized detector materials and photolithographic masks. A second-year effort has prepared improved silicon materials, fabricated custom photolithographic masks for detector process, and begun detector processing. We report the characterization results from the pilot detectors and other progress.
Total hydrocarbon analysis by ion mobility spectrometry
NASA Technical Reports Server (NTRS)
Cross, John H.; Limero, Thomas F.; James, John T.
1994-01-01
Astronauts must be alerted quickly to chemical leaks that compromise their health and the success of their missions. An ideal leak detector would be equally sensitive to all compounds that might constitute a hazard and insensitive to nontoxic compounds. No ideal sensor exists; thus, selection of a methodology is a series of compromises. The commonly used methods are either insensitive at the low exposure levels set by OSHA, NASA, and other organizations or are selectively insensitive to important classes of chemicals such as Freons. After extensive study and experience, the Toxicology Group at JSC has selected ion mobility spectrometry (IMS) for development into a broad range, sensitive detector. In addition to the sensing method, signal processing is important leak detection because a background signal can be expected at all times. The leak-detecting instrument must be programmed to discriminate between authentic leaks and background fluctuations caused by routine operations. The results of an evaluation of the prototype THA is presented in terms related to spacecraft operations. The evaluation included determination of instrumental parameters such as stability and response times. We also included responses to some common components of spacecraft atmospheres in pure form and in binary and ternary mixtures. The output of the four algorithms to the mixtures was found to be noticeably different. These responses are compared on the basis of their utility for signaling a chemical leak. As a means of evaluating its resistance to a falsely positive response, the THA was challenged with carbon dioxide and methane, compounds whose concentrations normally increase in spacecraft air during human habitation. The instrument showed virtually no response to these interferences. Although the prototype THA is designed for space flight, this detector is expected to be useful for field screening at chemical waste dumps and other environmentally sensitive locations.
NASA Astrophysics Data System (ADS)
Alfonso, Krystal; Elsalim, Mashal; King, Michael; Strellis, Dan; Gozani, Tsahi
2013-04-01
MCNPX simulations have been used to guide the development of a portable inspection system for narcotics, explosives, and special nuclear material (SNM) detection. The system seeks to address these threats to national security by utilizing a high-yield, compact neutron source to actively interrogate the threats and produce characteristic signatures that can then be detected by radiation detectors. The portability of the system enables rapid deployment and proximity to threats concealed in small spaces. Both dD and dT electronic neutron generators (ENG) were used to interrogate ammonium nitrate fuel oil (ANFO) and cocaine hydrochloride, and the detector response of NaI, CsI, and LaBr3 were compared. The effect of tungsten shielding on the neutron flux in the gamma ray detectors was investigated, while carbon, beryllium, and polyethylene ENG moderator materials were optimized by determining the reaction rate density in the threats. In order to benchmark the modeling results, experimental measurements are compared with MCNPX simulations. In addition, the efficiency and die-away time of a portable differential die-away analysis (DDAA) detector using 3He proportional counters for SNM detection has been determined.
Problematic projection to the in-sample subspace for a kernelized anomaly detector
Theiler, James; Grosklos, Guen
2016-03-07
We examine the properties and performance of kernelized anomaly detectors, with an emphasis on the Mahalanobis-distance-based kernel RX (KRX) algorithm. Although the detector generally performs well for high-bandwidth Gaussian kernels, it exhibits problematic (in some cases, catastrophic) performance for distances that are large compared to the bandwidth. By comparing KRX to two other anomaly detectors, we can trace the problem to a projection in feature space, which arises when a pseudoinverse is used on the covariance matrix in that feature space. Here, we show that a regularized variant of KRX overcomes this difficulty and achieves superior performance over a widemore » range of bandwidths.« less
Photon-Counting Kinetic Inductance Detectors for the Origins Space Telescope
NASA Astrophysics Data System (ADS)
Noroozian, Omid
We propose to develop photon-counting Kinetic Inductance Detectors (KIDs) for the Origins Space Telescope (OST) and any predecessor missions, with the goal of producing background-limited photon-counting sensitivity, and with a preliminary technology demonstration in time to inform the Decadal Survey planning process. The OST, a midto far- infrared observatory concept, is being developed as a major NASA mission to be considered by the next Decadal Survey with support from NASA Headquarters. The objective of such a facility is to allow rapid spectroscopic surveys of the high redshift universe at 420-800 μm, using arrays of integrated spectrometers with moderate resolutions (R=λ/Δλ 1000), to create a powerful new data set for exploring galaxy evolution and the growth of structure in the Universe. A second objective of OST is to perform higher resolution (R 10,000-100,000) spectroscopic surveys at 20-300 µm, a uniquely powerful tool for exploring the evolution of protoplanetary disks into fledgling solar systems. Finally the OST aims to obtain sensitive mid-infrared (5-40 µm) spectroscopy of thermal emission from rocky planets in the habitable zone using the transit method. These OST science objectives are very exciting and represent a wellorganized community agreement. However, they are all impossible to reach without new detector technology, and the OST can’t be recommended or approved if suitable detectors do not exist. In all of the above instrument concepts, photon-counting direct detectors are mission-enabling and essential for reaching the sensitivity permitted by the cryogenic Origins Space Telescope and the performance required for its important science programs. Our group has developed an innovative design for an optically-coupled KID that can reach the photon-counting sensitivity required by the ambitious science goals of the OST mission. A KID is a planar microwave resonator patterned from a superconducting thin film, which responds to incident photons with a change in its resonance frequency and dissipation. This detector response is intrinsically frequency multiplexed, and consequently KIDs at different resonance frequencies can be read out using standard digital radio techniques, which enables multiplexing of 10,000s of detectors. In our photon-counting KID design we employ a small-volume (and thin) superconducting Al inductor to enhance the per-photon responsivity, and large parallel-plate NbTiN capacitors on single-crystal silicon-on-insulator (SOI) substrates to eliminate frequency noise. We have developed a comprehensive design demonstrating that photon-counting sensitivity is possible in a small-volume Al KID. In addition, we have already demonstrated ultra-high quality factors in resonators made of very thin ( 10 nm) Al films with long electron lifetimes. These are the critical material parameters for reaching photon-counting sensitivity levels. In our proposed work plan our objective is to implement these high quality films into our optically-coupled small-volume KID design and demonstrate photon-counting sensitivity. The successful development of our photon-counting technology will significantly increase the sensitivity of the OST mission, making it more scientifically competitive than one based on power detectors. Photon-counting at the background limit provides a x4 increase in observation speed over that of background-limited power detection, since there is no need to measure and subtract a zero point. Photon-counting detectors will enable an instrument on the OST to observe the fine structure lines of galaxies which are currently only observable at redshifts of z 1, out to redshifts of z=6, probing the early stages of galaxy, star and planet formation. Our photon-counting detectors will also enable entirely new science, including the mapping of the composition and evolution of water and other key volatiles in planet-forming materials around large samples of nearby young stars.
Multiple-Coil, Pulse-Induction Metal Detector
NASA Technical Reports Server (NTRS)
Lesky, Edward S.; Reid, Alan M.; Bushong, Wilton E.; Dickey, Duane P.
1988-01-01
Multiple-head, pulse-induction metal detector scans area of 72 feet squared with combination of eight detector heads, each 3 ft. square. Head includes large primary coil inducing current in smaller secondary coils. Array of eight heads enables searcher to cover large area quickly. Pulses applied to primary coil, induced in secondary coils measured to determine whether metal present within range of detector head. Detector designed for recovery of Space Shuttle debris.
A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Zhichao; Guo Liang; Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900
2010-07-15
A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photonmore » energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.« less
A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV.
Li, Zhichao; Jiang, Xiaohua; Liu, Shenye; Huang, Tianxuan; Zheng, Jian; Yang, Jiamin; Li, Sanwei; Guo, Liang; Zhao, Xuefeng; Du, Huabin; Song, Tianming; Yi, Rongqing; Liu, Yonggang; Jiang, Shaoen; Ding, Yongkun
2010-07-01
A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.
14 CFR 25.1731 - Powerplant and APU fire detector system: EWIS.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Powerplant and APU fire detector system... Systems (EWIS) § 25.1731 Powerplant and APU fire detector system: EWIS. (a) EWIS that are part of each fire or overheat detector system in a fire zone must be fire-resistant. (b) No EWIS component of any...
14 CFR 25.1731 - Powerplant and APU fire detector system: EWIS.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Powerplant and APU fire detector system... Systems (EWIS) § 25.1731 Powerplant and APU fire detector system: EWIS. (a) EWIS that are part of each fire or overheat detector system in a fire zone must be fire-resistant. (b) No EWIS component of any...
14 CFR 25.1731 - Powerplant and APU fire detector system: EWIS.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Powerplant and APU fire detector system... Systems (EWIS) § 25.1731 Powerplant and APU fire detector system: EWIS. (a) EWIS that are part of each fire or overheat detector system in a fire zone must be fire-resistant. (b) No EWIS component of any...
14 CFR 25.1731 - Powerplant and APU fire detector system: EWIS.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Powerplant and APU fire detector system... Systems (EWIS) § 25.1731 Powerplant and APU fire detector system: EWIS. (a) EWIS that are part of each fire or overheat detector system in a fire zone must be fire-resistant. (b) No EWIS component of any...
14 CFR 25.1731 - Powerplant and APU fire detector system: EWIS.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Powerplant and APU fire detector system... Systems (EWIS) § 25.1731 Powerplant and APU fire detector system: EWIS. (a) EWIS that are part of each fire or overheat detector system in a fire zone must be fire-resistant. (b) No EWIS component of any...
NASA Astrophysics Data System (ADS)
Reitz, Guenther; Berger, Thomas; Kürner, Christine; Burmeister, Sünke; Hajek, Michael; Bilski, Pawel; Horwacik, Tomasz; Vanhavere, Filip; Spurny, Frantisek; Jadrnickova, Iva; Pálfalvi, József K.; O'Sullivan, Denis; Yasuda, Nakahiro; Uchihori, Yukio; Kitamura, Hisashi; Kodaira, Satoshi; Yukihara, Eduardo; Benton, Eric; Zapp, Neal; Gaza, Ramona; Zhou, Dazhuang; Semones, Edward; Roed, Yvonne; Boehme, Matthias; Haumann, Lutz
Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. The DOSIS (Dose Distribution inside the ISS) experiment, under the project and science lead of DLR, aims for the spatial and tempo-ral measurement of the radiation field parameters inside the European Columbus laboratory onboard the International Space Station. This goal is achieved by applying a combination of passive (Thermo-and Optical luminescence detectors and Nuclear track etch detectors) and active (silicon telescope) radiation detectors. The passive radiation detectors -so called pas-sive detector packages (PDP) are mounted at eleven positions within the Columbus laboratory -aiming for a spatial dose distribution measurement of the absorbed dose, the linear energy transfer spectra and the dose equivalent with an average exposure time of six months. Two active silicon telescopes -so called Dosimetry Telescopes (DOSTEL 1 and DOSTEL 2) together with a Data and Power Unit (DDPU) are mounted within the DOSIS Main Box at a fixed loca-tion beneath the European Physiology Module (EPM) rack. The DOSTEL 1 and DOSTEL 2 detectors are positioned at a 90 angle to each other for a precise measurement of the temporal and spatial variation of the radiation field, especially during crossing of the South Atlantic Anomaly (SAA). The DOSIS hardware was launched with the Space Shuttle Endeavour to the International Space Station on 15 July 2009 and installed by European Astronaut Frank de Winne on 18 July 2009. The first PDP set was downloaded after an exposure time of 124 days in November 2009 and a second PDP set was installed in November 2009. The active part of the instrument suit is working since July 2009. The presentation will give an overview about the DOSIS experiment as well as first results from the passive and active radiation detector measurements. The Austrian activities within this experiment were supported by the Austrian Space Appli-cations Programme (ASAP) of the Federal Ministry for Transport, Innovation and Technology under contract no. 819643. The Polish contribution to this work was supported by the Min-istry of Science and Higher Education, grant No. DWM/N118/ESA/2008. The Hungarian contribution was supported by the ESA PECS grant No. C98066.
CONCORD: comparison of cosmic radiation detectors in the radiation field at aviation altitudes
NASA Astrophysics Data System (ADS)
Meier, Matthias M.; Trompier, François; Ambrozova, Iva; Kubancak, Jan; Matthiä, Daniel; Ploc, Ondrej; Santen, Nicole; Wirtz, Michael
2016-05-01
Space weather can strongly affect the complex radiation field at aviation altitudes. The assessment of the corresponding radiation exposure of aircrew and passengers has been a challenging task as well as a legal obligation in the European Union for many years. The response of several radiation measuring instruments operated by different European research groups during joint measuring flights was investigated in the framework of the CONCORD (COmparisoN of COsmic Radiation Detectors) campaign in the radiation field at aviation altitudes. This cooperation offered the opportunity to measure under the same space weather conditions and contributed to an independent quality control among the participating groups. The CONCORD flight campaign was performed with the twin-jet research aircraft Dassault Falcon 20E operated by the flight facility Oberpfaffenhofen of the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR). Dose rates were measured at four positions in the atmosphere in European airspace for about one hour at each position in order to obtain acceptable counting statistics. The analysis of the space weather situation during the measuring flights demonstrates that short-term solar activity did not affect the results which show a very good agreement between the readings of the instruments of the different institutes.
Detectors for the James Webb Space Telescope near-infrared spectrograph
NASA Astrophysics Data System (ADS)
Rauscher, Bernard J.; Figer, Donald F.; Regan, Michael W.; Boeker, Torsten; Garnett, James; Hill, Robert J.; Bagnasco, Giorgio; Balleza, Jesus; Barney, Richard; Bergeron, Louis E.; Brambora, Clifford; Connelly, Joe; Derro, Rebecca; DiPirro, Michael J.; Doria-Warner, Christina; Ericsson, Aprille; Glazer, Stuart D.; Greene, Charles; Hall, Donald N.; Jacobson, Shane; Jakobsen, Peter; Johnson, Eric; Johnson, Scott D.; Krebs, Carolyn; Krebs, Danny J.; Lambros, Scott D.; Likins, Blake; Manthripragada, Sridhar; Martineau, Robert J.; Morse, Ernie C.; Moseley, Samuel H.; Mott, D. Brent; Muench, Theo; Park, Hongwoo; Parker, Susan; Polidan, Elizabeth J.; Rashford, Robert; Shakoorzadeh, Kamdin; Sharma, Rajeev; Strada, Paolo; Waczynski, Augustyn; Wen, Yiting; Wong, Selmer; Yagelowich, John; Zuray, Monica
2004-10-01
The Near-Infrared Spectrograph (NIRSpec) is the James Webb Space Telescope"s primary near-infrared spectrograph. NASA is providing the NIRSpec detector subsystem, which consists of the focal plane array, focal plane electronics, cable harnesses, and software. The focal plane array comprises two closely-butted λco ~ 5 μm Rockwell HAWAII-2RG sensor chip assemblies. After briefly describing the NIRSpec instrument, we summarize some of the driving requirements for the detector subsystem, discuss the baseline architecture (and alternatives), and presents some recent detector test results including a description of a newly identified noise component that we have found in some archival JWST test data. We dub this new noise component, which appears to be similar to classical two-state popcorn noise in many aspects, "popcorn mesa noise." We close with the current status of the detector subsystem development effort.
Detectors for the James Webb Space Telescope Near-Infrared Spectrograph
NASA Technical Reports Server (NTRS)
Rauscher, Bernard J.; Figer, Donald F.; Regan, Michael W.; Boeker, Torsten; Garnett, James; Hill, Robert J.; Bagnasco, Georgio; Balleza, Jesus; Barney, Richard; Bergeron, Louis E.
2004-01-01
The Near-Infrared Spectrograph (NIRSpec) is the James Webb Space Telescope's primary near-infrared spectrograph. NASA is providing the NIRSpec detector subsystem, which consists of the focal plane array, focal plane electronics, cable harnesses, and software. The focal plane array comprises two closely-butted lambda (sub co) approximately 5 micrometer Rockwell HAWAII- 2RG sensor chip assemblies. After briefly describing the NIRSpec instrument, we summarize some of the driving requirements for the detector subsystem, discuss the baseline architecture (and alternatives), and presents some recent detector test results including a description of a newly identified noise component that we have found in some archival JWST test data. We dub this new noise component, which appears to be similar to classical two-state popcorn noise in many aspects, "popcorn mesa noise." We close with the current status of the detector subsystem development effort.
The energy spectrum of Jovian electrons in interplanetary space
NASA Technical Reports Server (NTRS)
Christon, S. P.; Cummings, A. C.; Stone, E. C.; Webber, W. R.
1985-01-01
The energy spectrum of electrons with energies approximately 10 to approximately 180 MeV measured with the electron telescope on the Voyager 1 and 2 spacecraft in interplanetary space from 1978 to 1983 is reported. The kinetic energy of electrons is determined by double dE/dx measurements from the first two detectors (D1,D2) of a stack of eight solid state detectors and by the range of particle penetration into the remaining six detectors (D3 to D8) which are interleaved with tungsten absorbers.
Sensitivity of an imaging space infrared interferometer.
Nakajima, T; Matsuhara, H
2001-02-01
We study the sensitivities of space infrared interferometers. We formulate the signal-to-noise ratios of infrared images obtained by aperture synthesis in the presence of source shot noise, background shot noise, and detector read noise. We consider the case in which n beams are combined pairwise at n(n-1)/2 detectors and the case in which all the n beams are combined at a single detector. We apply the results to future missions, Terrestrial Planet Finder and Darwin. We also discuss the potential of a far-infrared interferometer for a deep galaxy survey.
NASA Technical Reports Server (NTRS)
Ando, K.
1982-01-01
A substantial technology base of solid state pushbroom sensors exists and is in the process of further evolution at both GSFC and JPL. Technologies being developed relate to short wave infrared (SWIR) detector arrays; HgCdTe hybrid detector arrays; InSb linear and area arrays; passive coolers; spectral beam splitters; the deposition of spectral filters on detector arrays; and the functional design of the shuttle/space platform imaging spectrometer (SIS) system. Spatial and spectral characteristics of field, aircraft and space multispectral sensors are summaried. The status, field of view, and resolution of foreign land observing systems are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaut, Arkadiusz
We present the results of the estimation of parameters with LISA for nearly monochromatic gravitational waves in the low and high frequency regimes for the time-delay interferometry response. Angular resolution of the detector and the estimation errors of the signal's parameters in the high frequency regimes are calculated as functions of the position in the sky and as functions of the frequency. For the long-wavelength domain we give compact formulas for the estimation errors valid on a wide range of the parameter space.
Heavy-ion anisotropy measured by ALTEA in the International Space Station.
Di Fino, L; Casolino, M; De Santis, C; Larosa, M; La Tessa, C; Narici, L; Picozza, P; Zaconte, V
2011-09-01
The uneven shielding of the International Space Station from the vessel hull, racks and experiments produces a modulation of the internal radiation environment. A detailed knowledge of this environment, and therefore of the Station's shielding effectiveness, is mandatory for an accurate assessment of radiation risk. We present here the first 3D measurements of the Station's radiation environment, discriminating particle trajectories and LET, made possible using the detection capability of the ALTEA-space detector. We provide evidence for a strong (factor ≈ 3) anisotropy in the inner integral LET for high-LET particles (LET > 50 keV/µm) showing a minimum along the longitudinal station axis (most shielded) and a maximum normal to it. Integrating over all measured LETs, the anisotropy is strongly reduced, showing that unstopped light ions plus the fragments produced by heavier ions approximately maintain flux/LET isotropy. This suggests that, while changing the quality of radiation, the extra shielding along the station main axis is not producing a benefit in terms of total LET. These features should be taken into account (1) when measuring radiation with detectors that cannot distinguish the direction of the impinging radiation or that are unidirectional, (2) when planning radiation biology experiments on the ISS, and (3) when simulating the space radiation environment for experiments on the ground. A novel analysis technique that fully exploits the ability to retrieve the angular distribution of the radiation is also presented as well as the angular particle flux and LET characteristic of three geomagnetic zones measured during 2009 by the ALTEA-space detector. This technique is applied to the ALTEA-space detector, but a wider applicability to other detectors is suggested.
SU-F-T-490: Separating Effects Influencing Detector Response in Small MV Photon Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wegener, S; Sauer, O
2016-06-15
Purpose: Different detector properties influence their responses especially in field sizes below the lateral electron range. Due to the finite active volume, the detector density and electron perturbation at other structural parts, the response factor is in general field size dependent. We aimed to visualize and separate the main effects contributing to detector behavior for a variety of detector types. This was achieved in an experimental setup, shielding the field center. Thus, effects caused by scattered radiation could be examined separately. Methods: Signal ratios for field sizes down to 8 mm (SSD 90 cm, water depth 10 cm) of amore » 6MV beam from a Siemens Primus LINAC were recorded with several detectors: PTW microDiamond and PinPoint ionization chamber, shielded diodes (PTW P-60008, IBA PFD and SNC Edge) and unshielded diodes (PTW E-60012 and IBA SFD). Measurements were carried out in open fields and with an aluminum pole of 4 mm diameter as a central block. The geometric volume effect was calculated from profiles obtained with Gafchromic EBT3 film, evaluated using FilmQA Pro software (Ashland, USA). Results: Volume corrections were 1.7% at maximum. After correction, in small open fields, unshielded diodes showed a lower response than the diamond, i.e. diamond detector over-response seems to be higher than that for unshielded diodes. Beneath the block, this behavior was amplified by a factor of 2. For the shielded diodes, the overresponse for small open fields could be confirmed. However their lateral response behavior was strongly type dependent, e.g. the signal ratio dropped from 1.02 to 0.98 for the P-60008 diode. Conclusion: The lateral detector response was experimentally examined. Detector volume and density alone do not fully account for the field size dependence of detector response. Detector construction details play a major role, especially for shielded diodes.« less
NASA Technical Reports Server (NTRS)
2002-01-01
The Bonner Ball Neutron Detector measures neutron radiation. Neutrons are uncharged atomic particles that have the ability to penetrate living tissues, harming human beings in space. The Bonner Ball Neutron Detector is one of three radiation experiments during Expedition Two. The others are the Phantom Torso and Dosimetric Mapping.
2D Array of Far-infrared Thermal Detectors: Noise Measurements and Processing Issues
NASA Technical Reports Server (NTRS)
Lakew, B.; Aslam, S.; Stevenson, T.
2008-01-01
A magnesium diboride (MgB2) detector 2D array for use in future space-based spectrometers is being developed at GSFC. Expected pixel sensitivities and comparison to current state-of-the-art infrared (IR) detectors will be discussed.
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail V.; Ramsey, B.; ODell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.
2012-01-01
The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART-XC instrument on board the Spectrum-Roentgen Gamma Mission under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Currently, four of the modules are being fabricated by the Marshall Space Flight Center (MSFC.) Each MSFC module consist of 28 nested Ni/Co thin shells giving an effective area of 65 sq cm at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. Delivery of these modules to the IKI is scheduled for summer 2013. We present a status of the ART x-ray modules development at the MSFC.
NASA Astrophysics Data System (ADS)
Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.
2012-09-01
The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART-XC instrument on board the Spectrum-Roentgen-Gamma Mission under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Currently, four of the modules are being fabricated by the Marshall Space Flight Center (MSFC.) Each MSFC module consist of 28 nested Ni/Co thin shells giving an effective area of 65 cm2 at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. Delivery of these modules to the IKI is scheduled for summer 2013. We present a status of the ART x-ray modules development at the MSFC.
Life-finding detector development at NASA GSFC using a custom H4RG test bed
NASA Astrophysics Data System (ADS)
Mosby, Gregory; Rauscher, Bernard; Kutyrev, Alexander
2018-01-01
Chemical species associated with life, called biosignatures, should be visible in exoplanet atmospheres with larger space telescopes. These signals will be faint and require very low noise (~e-) detectors to robustly measure. At NASA Goddard we are developing a single detector H4RG test bed to characterize and identify potential technology developments needed for the next generation's large space telescopes. The vacuum and cryogenic test bed will include near infrared light sources from integrating spheres using a motorized shutter. The detector control and readout will be handled by a Leach controller. Detector cables have been manufactured and test planning has begun. Planned tests include testing minimum read noise capabilities, persistence mitigation strategies using long wavelength light, and measuring intrapixel variation which might affect science goals of future missions. In addition to providing a means to identify areas of improvement in detector technology, we hope to use this test bed to probe some fundamental physics of these infrared arrays.
Simulations of radiation-damaged 3D detectors for the Super-LHC
NASA Astrophysics Data System (ADS)
Pennicard, D.; Pellegrini, G.; Fleta, C.; Bates, R.; O'Shea, V.; Parkes, C.; Tartoni, N.
2008-07-01
Future high-luminosity colliders, such as the Super-LHC at CERN, will require pixel detectors capable of withstanding extremely high radiation damage. In this article, the performances of various 3D detector structures are simulated with up to 1×1016 1 MeV- neq/cm2 radiation damage. The simulations show that 3D detectors have higher collection efficiency and lower depletion voltages than planar detectors due to their small electrode spacing. When designing a 3D detector with a large pixel size, such as an ATLAS sensor, different electrode column layouts are possible. Using a small number of n+ readout electrodes per pixel leads to higher depletion voltages and lower collection efficiency, due to the larger electrode spacing. Conversely, using more electrodes increases both the insensitive volume occupied by the electrode columns and the capacitive noise. Overall, the best performance after 1×1016 1 MeV- neq/cm2 damage is achieved by using 4-6 n+ electrodes per pixel.
Charge distribution and response time for a modulation-doped extrinsic infrared detector
NASA Technical Reports Server (NTRS)
Hadek, Victor
1987-01-01
The electric charge distribution and response time of a modulation-doped extrinsic infrared detector are determined. First, it is demonstrated theoretically that the photoconductive layer is effectively depleted of ionized majority-impurity charges so that scattering is small and mobility is high for photogenerated carriers. Then, using parameters appropriate to an actual detector, the predicted response time is 10 to the -8th to about 10 to the -9th s, which is much faster than comparable conventional detectors. Thus, the modulation-doped detector design would be valuable for heterodyne applications.
High resolution, multiple-energy linear sweep detector for x-ray imaging
Perez-Mendez, Victor; Goodman, Claude A.
1996-01-01
Apparatus for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels.
High resolution, multiple-energy linear sweep detector for x-ray imaging
Perez-Mendez, V.; Goodman, C.A.
1996-08-20
Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.
High sensitivity microchannel plate detectors for space extreme ultraviolet missions.
Yoshioka, K; Homma, T; Murakami, G; Yoshikawa, I
2012-08-01
Microchannel plate (MCP) detectors have been widely used as two-dimensional photon counting devices on numerous space EUV (extreme ultraviolet) missions. Although there are other choices for EUV photon detectors, the characteristic features of MCP detectors such as their light weight, low dark current, and high spatial resolution make them more desirable for space applications than any other detector. In addition, it is known that the photocathode can be tailored to increase the quantum detection efficiency (QDE) especially for longer UV wavelengths (100-150 nm). There are many types of photocathode materials available, typically alkali halides. In this study, we report on the EUV (50-150 nm) QDE evaluations for MCPs that were coated with Au, MgF(2), CsI, and KBr. We confirmed that CsI and KBr show 2-100 times higher QDEs than the bare photocathode MCPs, while Au and MgF(2) show reduced QDEs. In addition, the optimal geometrical parameters for the CsI deposition were also studied experimentally. The best CsI thickness was found to be 150 nm, and it should be deposited on the inner wall of the channels only where the EUV photons initially impinge. We will also discuss the techniques and procedures for reducing the degradation of the photocathode while it is being prepared on the ground before being deployed in space, as adopted by JAXA's EXCEED mission which will be launched in 2013.
Pixel Stability in the Hubble Space Telescope WFC3/UVIS Detector
NASA Astrophysics Data System (ADS)
Bourque, Matthew; Baggett, Sylvia M.; Borncamp, David; Desjardins, Tyler D.; Grogin, Norman A.; Wide Field Camera 3 Team
2018-06-01
The Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Ultraviolet-Visible (UVIS) detector has acquired roughly 12,000 dark images since the installation of WFC3 in 2009, as part of a daily monitoring program to measure the instrinsic dark current of the detector. These images have been reconfigured into 'pixel history' images in which detector columns are extracted from each dark and placed into a new time-ordered array, allowing for efficient analysis of a given pixel's behavior over time. We discuss how we measure each pixel's stability, as well as plans for a new Data Quality (DQ) flag to be introduced in a future release of the WFC3 calibration pipeline (CALWF3) for flagging pixels that are deemed unstable.
Neutron dosimetric measurements in shuttle and MIR.
Reitz, G
2001-06-01
Detector packages consisting of thermoluminescence detectors (TLD), nuclear emulsions and plastic track detectors were exposed at identical positions inside MIR space station and on shuttle flights inside Spacelab and Spacehab during different phases of the solar cycle. The objectives of the investigations are to provide data on charge and energy spectra of heavy ions, and the contribution of events with low-energy deposit (protons, electrons, gamma, etc.) to the dose, as well as the contribution of secondaries, such as nuclear disintegration stars and neutrons. For neutron dosimetry 6LiF (TLD600) and 7LiF (TLD700) chips were used both of which have almost the same response to gamma rays but different response to neutrons. Neutrons in space are produced mainly in evaporation and knock-on processes with energies mainly of 1-10 MeV and up to several 100 MeV, respectively. The energy spectrum undergoes continuous changes toward greater depth in the attenuating material until an equilibrium is reached. In equilibrium, the spectrum is a wide continuum extending down to thermal energies to which the 6LiF is sensitive. Based on the difference of absorbed doses in the 6LiF and 7LiF chips, thermal neutron fluxes from 1 to 2.3 cm-2 s-1 are calculated using the assumption that the maximum induced dose in TLD600 for 1 neutron cm-2 is 1.6 x 10(-10) Gy (Horowitz and Freeman, Nucl. Instr. and Meth. 157 (1978) 393). It is assumed that the flux of high-energy neutrons is at least of that quantity. Tissue doses were calculated taking as a mean ambient absorbed dose per neutron 6 x10(-12) Gy cm2 (for a10 MeV neutron). The neutron equivalent doses for the above-mentioned fluxes are 52 micro Gy d-1 and 120 micro Gy d-1. In recent experiments, a personal neutron dosimeter was integrated into the dosimeter packages. First results of this dosimeter which is based on nuclear track detectors with converter foils are reported. For future measurements, a scintillator counter with anticoincidence logic is under development. c2001 Elsevier Science Ltd. All rights reserved.
A dynamic model of the radiation-belt electron phase-space density based on POLAR/HIST measurements
NASA Astrophysics Data System (ADS)
Vassiliadis, D.; Green, J. C.
2007-12-01
The response of the energetic-electron phase-space density (PSD) in the radiation belts is subject to a delicate combination of acceleration and loss processes which are strongly determined by the magnetospheric configuration and field disturbance level. We quantify the response of the density to stormtime fields as observed by the HIST detector on board POLAR. Several distinct modes are identified, characterized by peak second- and third- adiabatic invariants and peak delay time. The modes represent quasiadiabatic transport due to ring current activity; high L* (~6), day-long acceleration linked to ULF wave-particle interaction; and low-L* (~3), minute- to hour-long acceleration interpreted to be due to transient inductive fields or VLF wave-particle interaction. The net transport due to these responses is not always or everywhere diffusive, therefore we quantify the degree of departure from diffusive transport for specific storm intervals and radial ranges. Taken together the response modes comprise a dynamic, nonlinear model which allows us to better understand the historic variability of the high-energy tail of the electron distribution in the inner magnetosphere.
Single photon detection of 1.5 THz radiation with the quantum capacitance detector
NASA Astrophysics Data System (ADS)
Echternach, P. M.; Pepper, B. J.; Reck, T.; Bradford, C. M.
2018-01-01
Far-infrared spectroscopy can reveal secrets of galaxy evolution and heavy-element enrichment throughout cosmic time, prompting astronomers worldwide to design cryogenic space telescopes for far-infrared spectroscopy. The most challenging aspect is a far-infrared detector that is both exquisitely sensitive (limited by the zodiacal-light noise in a narrow wavelength band, λ/Δλ 1,000) and array-able to tens of thousands of pixels. We present the quantum capacitance detector, a superconducting device adapted from quantum computing applications in which photon-produced free electrons in a superconductor tunnel into a small capacitive island embedded in a resonant circuit. The quantum capacitance detector has an optically measured noise equivalent power below 10-20 W Hz-1/2 at 1.5 THz, making it the most sensitive far-infrared detector ever demonstrated. We further demonstrate individual far-infrared photon counting, confirming the excellent sensitivity and suitability for cryogenic space astrophysics.
Development and tests of x-ray multifoil optical system for 1D imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pína, Ladislav; Hudec, René; Inneman, Adolf J.; Baca, Tomas; Blazek, M.; Platkevic, M.; Sieger, Ladislav; Doubravova, Daniela; McEntaffer, Randall L.; Schultz, Ted B.; Dániel, Vladimír.
2016-09-01
The proposed wide-field optical system has not been used yet. Described novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is necessary in cases where the intensity of impinging X-ray radiation is below the sensitivity of the detector without optic. Generally this is the case of very low light phenomena, or e.g. monitoring astrophysical objects in space. Namely, such optical system could find applications in laboratory spectroscopy systems or in a rocket space experiment. Designed wide-field optical system combined with Timepix X-ray detector is described together with experimental results obtained during laboratory tests.
Das, R K; Li, Z; Perera, H; Williamson, J F
1996-06-01
Practical dosimeters in brachytherapy, such as thermoluminescent dosimeters (TLD) and diodes, are usually calibrated against low-energy megavoltage beams. To measure absolute dose rate near a brachytherapy source, it is necessary to establish the energy response of the detector relative to that of the calibration energy. The purpose of this paper is to assess the accuracy of Monte Carlo photon transport (MCPT) simulation in modelling the absolute detector response as a function of detector geometry and photon energy. We have exposed two different sizes of TLD-100 (LiF chips) and p-type silicon diode detectors to calibrated 60Co, HDR source (192Ir) and superficial x-ray beams. For the Scanditronix electron-field diode, the relative detector response, defined as the measured detector readings per measured unit of air kerma, varied from 38.46 V cGy-1 (40 kVp beam) to 6.22 V cGy-1 (60Co beam). Similarly for the large and small chips the same quantity varied from 2.08-3.02 nC cGy-1 and 0.171-0.244 nC cGy-1, respectively. Monte Carlo simulation was used to calculate the absorbed dose to the active volume of the detector per unit air kerma. If the Monte Carlo simulation is accurate, then the absolute detector response, which is defined as the measured detector reading per unit dose absorbed by the active detector volume, and is calculated by Monte Carlo simulation, should be a constant. For the diode, the absolute response is 5.86 +/- 0.15 (V cGy-1). For TLDs of size 3 x 3 x 1 mm3 the absolute response is 2.47 +/- 0.07 (nC cGy-1) and for TLDs of 1 x 1 x 1 mm3 it is 0.201 +/- 0.008 (nC cGy-1). From the above results we can conclude that the absolute response function of detectors (TLDs and diodes) is directly proportional to absorbed dose by the active volume of the detector and is independent of beam quality.
Exploring the Birth and Evolution of the Universe: How Detectors Have Revolutionized Space Astronomy
NASA Technical Reports Server (NTRS)
Moseley, Samuel H.
2012-01-01
The past century has seen tremendous advances in the capability of instruments used for astronomical imaging and spectroscopy. Capabilities of instruments have expanded in many dimensions; the scale of telescopes has grown tremendously, the wavelengths used for astronomy have grown from visible light to the full electromagnetic spectrum, extending from gamma rays to low frequency radio waves. Additional advances have been enabled by the availability of space facilities, which eliminate the effects of the earths atmosphere and magnetosphere, and allow cooling of instruments to avoid instrumental thermal radiation. Even with all these advances, the increase in capability of detection systems has produced truly revolutionary improvements in capability. Today, I will describe the advances in astronomical detection from the photographic plates of the early 20th century to the giant high efficiency focal planes being developed for modern space and ground based astronomical instrument. I will review the demanding performance requirements set by space astronomy, and show how the detector community has risen to the challenge in producing high performance detectors for the Hubble Space Telescope, the Spitzer Space Telescope, and the James Webb Space Telescope, now under development.
Whittemore, Stephen Richard
2013-09-10
Imaging systems include a detector and a spatial light modulator (SLM) that is coupled so as to control image intensity at the detector based on predetermined detector limits. By iteratively adjusting SLM element values, image intensity at one or all detector elements or portions of an imaging detector can be controlled to be within limits. The SLM can be secured to the detector at a spacing such that the SLM is effectively at an image focal plane. In some applications, the SLM can be adjusted to impart visible or hidden watermarks to images or to reduce image intensity at one or a selected set of detector elements so as to reduce detector blooming
Effect of space exposure on pyroelectric infrared detectors
NASA Technical Reports Server (NTRS)
Robertson, James B.; Clark, Ivan O.
1991-01-01
Twenty pyroelectric type infrared detectors were flown onboard the Long Duration Exposure Facility (LDEF). The detector chips were of three different pyroelectric materials: lithium-tantalate, strontium-barium-niobate, and triglycine-sulfide. The experiment was passive; no measurements were taken during the flight. Performance of the detectors was measured before and after flight. Postflight measurements revealed that detectors made of lithium-tantalate and strontium-barium-niobate suffered no measureable loss in performance. Detectors made of triglycine-sulfide suffered complete loss of performance, but so did the control samples of the same material. Repoling of the triglycine-sulfide failed to revive the detectors.
Enhancing Army S&T Lessons from Project Hindsight Revisited
2007-01-01
Stinger–POST was equipped with a dual wave length detector assembly: one detector that operated at the mid- infrared and another detector that...as well reduce power and save space. • The Javelin CLU’s IR detectors require cooling to a very low temperature to increase the signal-to- noise ...The detectors are made of an alloy of cadmium-tellurium and mercury-tellurium (termed mercury cadmium telluride or HgCdTe ). Development of the 2D
Mercuric iodine room temperature gamma-ray detectors
NASA Technical Reports Server (NTRS)
Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.
1990-01-01
high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.
Twenty Years of Rad-Hard K14 SPAD in Space Projects
Michálek, Vojtěch; Procházka, Ivan; Blažej, Josef
2015-01-01
During last two decades, several photon counting detectors have been developed in our laboratory. One of the most promising detector coming from our group silicon K14 Single Photon Avalanche Diode (SPAD) is presented with its valuable features and space applications. Based on the control electronics, it can be operated in both gated and non-gated mode. Although it was designed for photon counting detection, it can be employed for multiphoton detection as well. With respect to control electronics employed, the timing jitter can be as low as 20 ps RMS. Detection efficiency is about 40 % in range of 500 nm to 800 nm. The detector including gating and quenching circuitry has outstanding timing stability. Due to its radiation resistivity, the diode withstands 100 krad gamma ray dose without parameters degradation. Single photon detectors based on K14 SPAD were used for planetary altimeter and atmospheric lidar in MARS92/96 and Mars Surveyor ’98 space projects, respectively. Recent space applications of K14 SPAD comprises LIDAR and mainly time transfer between ground stations and artificial satellites. These include Laser Time Transfer, Time Transfer by Laser Link, and European Laser Timing projects. PMID:26213945
3D detectors with high space and time resolution
NASA Astrophysics Data System (ADS)
Loi, A.
2018-01-01
For future high luminosity LHC experiments it will be important to develop new detector systems with increased space and time resolution and also better radiation hardness in order to operate in high luminosity environment. A possible technology which could give such performances is 3D silicon detectors. This work explores the possibility of a pixel geometry by designing and simulating different solutions, using Sentaurus Tecnology Computer Aided Design (TCAD) as design and simulation tool, and analysing their performances. A key factor during the selection was the generated electric field and the carrier velocity inside the active area of the pixel.
NASA Technical Reports Server (NTRS)
Wise, Stephanie A.; Buckley, John D.; Randolf, Henry W.; Verbelyi, Darren; Haertling, Gene H.; Hooker, Matthew W.; Selim, Raouf; Caton, Randall
1992-01-01
Thick films of superconductive material on low thermal conductivity substrates (e.g., yttria-stabilized zirconia and fused silica) are considered as a replacement for the existing electrical connections between the detector array and data acquisition and storage electronics in the cryogenic detector systems being developed by NASA. The paper describes some of the design constraints on the superconducting device and presents results of a preliminary analysis of the effects of vibration, gamma irradiation, and long-term exposure to high vacuum and liquid nitrogen encountered in operating such a device in space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theiler, James; Grosklos, Guen
We examine the properties and performance of kernelized anomaly detectors, with an emphasis on the Mahalanobis-distance-based kernel RX (KRX) algorithm. Although the detector generally performs well for high-bandwidth Gaussian kernels, it exhibits problematic (in some cases, catastrophic) performance for distances that are large compared to the bandwidth. By comparing KRX to two other anomaly detectors, we can trace the problem to a projection in feature space, which arises when a pseudoinverse is used on the covariance matrix in that feature space. Here, we show that a regularized variant of KRX overcomes this difficulty and achieves superior performance over a widemore » range of bandwidths.« less
Information on a Photon: Free-Space Quantum Communication (InPho: FSQC)
2015-10-06
3 5 kHz . 9 InPho: FSQCSuperconducting nanowire detectors InPho Breakthrough – Develop 8 channel SiW superconducting... nanowire detectors optimized for 710 nm in collaboration with NIST Status report (6/4/14): Cryostat constructed, chill-down tests, detectors...similar jitter with custom circuit vs. MPD circuit allows for higher key rate and photon efficiency 27 InPho: FSQCSuperconducting nanowire detectors
NASA Astrophysics Data System (ADS)
Granja, Carlos; Polansky, Stepan; Vykydal, Zdenek; Pospisil, Stanislav; Owens, Alan; Kozacek, Zdenek; Mellab, Karim; Simcak, Marek
2016-06-01
The Space Application of Timepix based Radiation Monitor (SATRAM) is a spacecraft platform radiation monitor on board the Proba-V satellite launched in an 820 km altitude low Earth orbit in 2013. The is a technology demonstration payload is based on the Timepix chip equipped with a 300 μm silicon sensor with signal threshold of 8 keV/pixel to low-energy X-rays and all charged particles including minimum ionizing particles. For X-rays the energy working range is 10-30 keV. Event count rates can be up to 106 cnt/(cm2 s) for detailed event-by-event analysis or over 1011 cnt/(cm2 s) for particle-counting only measurements. The single quantum sensitivity (zero-dark current noise level) combined with per-pixel spectrometry and micro-scale pattern recognition analysis of single particle tracks enables the composition (particle type) and spectral characterization (energy loss) of mixed radiation fields to be determined. Timepix's pixel granularity and particle tracking capability also provides directional sensitivity for energetic charged particles. The payload detector response operates in wide dynamic range in terms of absorbed dose starting from single particle doses in the pGy level, particle count rate up to 106-10 /cm2/s and particle energy loss (threshold at 150 eV/μm). The flight model in orbit was successfully commissioned in 2013 and has been sampling the space radiation field in the satellite environment along its orbit at a rate of several frames per minute of varying exposure time. This article describes the design and operation of SATRAM together with an overview of the response and resolving power to the mixed radiation field including summary of the principal data products (dose rate, equivalent dose rate, particle-type count rate). The preliminary evaluation of response of the embedded Timepix detector to space radiation in the satellite environment is presented together with first results in the form of a detailed visualization of the mixed radiation field at the position of the payload and resulting spatial- and time-correlated radiation maps of cumulative dose rate along the satellite orbit.
2016-07-06
The work reported in this paper is a part of on-going studies to clarify how and to what extent soil electromagnetic properties affect the...metallic sphere buried in a non-conducting soil half-space with frequency-dependent complex magnetic susceptibility. The sphere is chosen as a simple...prototype for the small metal parts in low-metal landmines, while soil with dispersive magnetic susceptibility is a good model for some soils that are
Near contact phenomena and transient effects in far infrared photoconductors
NASA Technical Reports Server (NTRS)
Haegel, Nancy M.
1989-01-01
A combination of experimental and modeling work is summarized in two areas: first, the calculation of excess free carrier and space charge distributions near contacts and their effects on device resistivity, and second, the characterization of a slow transient response (tau approx. 1 sec) in Ge:Be detectors which is due to trapping associated with Be(+) formation. In both cases, analytical models, based on continuity and rate equations, have been developed to enable the application of these findings to a wide variety of photoconductor materials.
Solutions of the heat conduction equation in multilayers for photothermal deflection experiments
NASA Technical Reports Server (NTRS)
Mcgahan, William A.; Cole, K. D.
1992-01-01
Analytical expressions for temperature and laser beam deflection in multilayer medium is derived using Green function techniques. The approach is based on calculation of the normal component of heat fluxes across the boundaries, from which either the beam deflections or the temperature anywhere in space can be found. A general expression for the measured signals for the case of four-quadrant detection is also presented and compared with previous calculations of detector response for finite probe beams.
Non-sky-averaged sensitivity curves for space-based gravitational-wave observatories
NASA Astrophysics Data System (ADS)
Vallisneri, Michele; Galley, Chad R.
2012-06-01
The signal-to-noise ratio (SNR) is used in gravitational-wave observations as the basic figure of merit for detection confidence and, together with the Fisher matrix, for the amount of physical information that can be extracted from a detected signal. SNRs are usually computed from a sensitivity curve, which describes the gravitational-wave amplitude needed by a monochromatic source of given frequency to achieve a threshold SNR. Although the term ‘sensitivity’ is used loosely to refer to the detector’s noise spectral density, the two quantities are not the same: the sensitivity includes also the frequency- and orientation-dependent response of the detector to gravitational waves and takes into account the duration of observation. For interferometric space-based detectors similar to LISA, which are sensitive to long-lived signals and have constantly changing position and orientation, exact SNRs need to be computed on a source-by-source basis. For convenience, most authors prefer to work with sky-averaged sensitivities, accepting inaccurate SNRs for individual sources and giving up control over the statistical distribution of SNRs for source populations. In this paper, we describe a straightforward end-to-end recipe to compute the non-sky-averaged sensitivity of interferometric space-based detectors of any geometry. This recipe includes the effects of spacecraft motion and of seasonal variations in the partially subtracted confusion foreground from Galactic binaries, and it can be used to generate a sampling distribution of sensitivities for a given source population. In effect, we derive error bars for the sky-averaged sensitivity curve, which provide a stringent statistical interpretation for previously unqualified statements about sky-averaged SNRs. As a worked-out example, we consider isotropic and Galactic-disk populations of monochromatic sources, as observed with the ‘classic LISA’ configuration. We confirm that the (standard) inverse-rms average sensitivity for the isotropic population remains the same whether or not the LISA orbits are included in the computation. However, detector motion tightens the distribution of sensitivities, so for 50% of sources the sensitivity is within 30% of its average. For the Galactic-disk population, the average and the distribution of the sensitivity for a moving detector turn out to be similar to the isotropic case.
Space imaging measurement system based on fixed lens and moving detector
NASA Astrophysics Data System (ADS)
Akiyama, Akira; Doshida, Minoru; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu
2006-08-01
We have developed the Space Imaging Measurement System based on the fixed lens and fast moving detector to the control of the autonomous ground vehicle. The space measurement is the most important task in the development of the autonomous ground vehicle. In this study we move the detector back and forth along the optical axis at the fast rate to measure the three-dimensional image data. This system is just appropriate to the autonomous ground vehicle because this system does not send out any optical energy to measure the distance and keep the safety. And we use the digital camera of the visible ray range. Therefore it gives us the cost reduction of the three-dimensional image data acquisition with respect to the imaging laser system. We can combine many pieces of the narrow space imaging measurement data to construct the wide range three-dimensional data. This gives us the improvement of the image recognition with respect to the object space. To develop the fast movement of the detector, we build the counter mass balance in the mechanical crank system of the Space Imaging Measurement System. And then we set up the duct to prevent the optical noise due to the ray not coming through lens. The object distance is derived from the focus distance which related to the best focused image data. The best focused image data is selected from the image of the maximum standard deviation in the standard deviations of series images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granja, Carlos, E-mail: carlos.granja@utef.cvut.cz; Polansky, Stepan
Detailed spatial- and time-correlated maps of the space radiation environment in Low Earth Orbit (LEO) are produced by the spacecraft payload SATRAM operating in open space on board the Proba-V satellite from the European Space Agency (ESA). Equipped with the hybrid semiconductor pixel detector Timepix, the compact radiation monitor payload provides the composition and spectral characterization of the mixed radiation field with quantum-counting and imaging dosimetry sensitivity, energetic charged particle tracking, directionality and energy loss response in wide dynamic range in terms of particle types, dose rates and particle fluxes. With a polar orbit (sun synchronous, 98° inclination) at themore » altitude of 820 km the payload samples the space radiation field at LEO covering basically the whole planet. First results of long-period data evaluation in the form of time-and spatially-correlated maps of total dose rate (all particles) are given.« less
NASA Technical Reports Server (NTRS)
Gersey, B. B.; Borak, T. B.; Guetersloh, S. B.; Zeitlin, C.; Miller, J.; Heilbronn, L.; Murakami, T.; Iwata, Y.; Chatterjee, A. (Principal Investigator)
2002-01-01
The radiation environment on board the space shuttle and the International Space Station includes high-Z and high-energy (HZE) particles that are part of the galactic cosmic radiation (GCR) spectrum. Iron-56 particles are considered to be one of the most biologically important parts of the GCR spectrum. Tissue-equivalent proportional counters (TEPCs) are used as active dosimeters on manned space flights. These TEPCs are further used to determine the average quality factor for each space mission. A TEPC simulating a 1-microm-diameter sphere of tissue was exposed as part of a particle spectrometer to (56)Fe particles at energies from 200-1000 MeV/nucleon. The response of TEPCs in terms of mean lineal energy, y(F), and dose mean lineal energy, y(D), as well as the energy deposited at different impact parameters through the detector was determined for six different incident energies of (56)Fe particles in this energy range. Calculations determined that charged-particle equilibrium was achieved for each of the six experiments. Energy depositions at different impact parameters were calculated using a radial dose distribution model, and the results were compared to experimental data.
Neutron light output response and resolution functions in EJ-309 liquid scintillation detectors
Enqvist, Andreas; Lawrence, Christopher C.; Wieger, Brian M.; ...
2013-03-26
Here, the neutron light output response functions and detector resolution functions were measured at Ohio University's tandem Van de Graaff generator for three cylindrical EJ-309 liquid scintillator cells, having dimensions 12.7(circle divide)-by-12.7, 7.6-by-7.6, and 7.6-by-5.1 cm. A 7.44 MeV deuteron beam was used on an Al-27 target generating a continuous spectrum over the energy range from a few hundred keV to over 10 MeV. The light output response functions are determined using an exponential fit. Detector resolution functions are obtained for the 12.7-by-12.7 and 7.6-by-7.6 cm detectors. It is demonstrated that the dependence on detector size is important for themore » light output response functions, but not to the same extent for the resolution function, even when photomultiplier tubes, detector material, and other detector characteristics are carefully matched.« less
Characterizing the response of a scintillator-based detector to single electrons.
Sang, Xiahan; LeBeau, James M
2016-02-01
Here we report the response of a high angle annular dark field scintillator-based detector to single electrons. We demonstrate that care must be taken when determining the single electron intensity as significant discrepancies can occur when quantifying STEM images with different methods. To account for the detector response, we first image the detector using very low beam currents (∼8fA), and subsequently model the interval between consecutive single electrons events. We find that single electrons striking the detector present a wide distribution of intensities, which we show is not described by a simple function. Further, we present a method to accurately account for the electrons within the incident probe when conducting quantitative imaging. The role detector settings play on determining the single electron intensity is also explored. Finally, we extend our analysis to describe the response of the detector to multiple electron events within the dwell interval of each pixel. Copyright © 2015 Elsevier B.V. All rights reserved.
Neutron - Alpha irradiation response of superheated emulsion detectors
NASA Astrophysics Data System (ADS)
Felizardo, M.; Morlat, T.; Girard, T. A.; Kling, A.; Fernandes, A. C.; Marques, J. G.; Carvalho, F.; Ramos, A. R.
2017-08-01
We report new experimental investigations of the response of single superheated emulsion detectors with small droplet (<30 μm radii) size distributions to both α- and neutron irradiations. Analysis of the results in terms of the underlying detector physics yields a toy model which reasonably reproduces the observations, and identifies the initial energy of the α in the liquid and distribution of droplet sizes as primarily responsible for the detector capacity to distinguish between nuclear recoil and α events.
Gas Scintillation Proportional Counters for High-Energy X-ray Astronomy
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail; Ramsey, Brian; Apple, Jeffery
2003-01-01
A focal plane array of high-pressure gas scintillation proportional counters (GSPC) for a balloon-borne hard-x-ray telescope is under development at the Marshall Space Flight Center. These detectors have an active area of approx. 20 sq cm, and are filled with a high pressure (10(exp 6) Pa) xenon-helium mixture. Imaging is via crossed-grid position-sensitive phototubes sensitive in the UV region. The performance of the GSPC is well matched to that of the telescopes x-ray optics which have response to 75 keV and a focal spot size of approx. 500 microns. The detector s energy resolution, 4% FWHM at 60 keV, is adequate for resolving the broad spectral lines of astrophysical importance and for accurate continuum measurements. Full details of the instrument and its performance will be provided.
Application of spherical diodes for megavoltage photon beams dosimetry.
Barbés, Benigno; Azcona, Juan D; Burguete, Javier; Martí-Climent, Josep M
2014-01-01
External beam radiation therapy (EBRT) usually uses heterogeneous dose distributions in a given volume. Designing detectors for quality control of these treatments is still a developing subject. The size of the detectors should be small to enhance spatial resolution and ensure low perturbation of the beam. A high uniformity in angular response is also a very important feature in a detector, because it has to measure radiation coming from all the directions of the space. It is also convenient that detectors are inexpensive and robust, especially to perform in vivo measurements. The purpose of this work is to introduce a new detector for measuring megavoltage photon beams and to assess its performance to measure relative dose in EBRT. The detector studied in this work was designed as a spherical photodiode (1.8 mm in diameter). The change in response of the spherical diodes is measured regarding the angle of incidence, cumulated irradiation, and instantaneous dose rate (or dose per pulse). Additionally, total scatter factors for large and small fields (between 1 × 1 cm(2) and 20 × 20 cm(2)) are evaluated and compared with the results obtained from some commercially available ionization chambers and planar diodes. Additionally, the over-response to low energy scattered photons in large fields is investigated using a shielding layer. The spherical diode studied in this work produces a high signal (150 nC/Gy for photons of nominal energy of 15 MV and 160 for 6 MV, after 12 kGy) and its angular dependence is lower than that of planar diodes: less than 5% between maximum and minimum in all directions, and 2% around one of the axis. It also has a moderated variation with accumulated dose (about 1.5%/kGy for 15 MV photons and 0.7%/kGy for 6 MV, after 12 kGy) and a low variation with dose per pulse (± 0.4%), and its behavior is similar to commercial diodes in total scatter factor measurements. The measurements of relative dose using the spherical diode described in this work show its feasibility for the dosimetry of megavoltage photon beams. A particularly important feature is its good angular response in the MV range. They would be good candidates for in vivo dosimetry, and quality assurance of VMAT and tomotherapy, and other modalities with beams irradiating from multiple orientations, such as Cyberknife and ViewRay, with minor modifications.
Modeling Charge Collection in Detector Arrays
NASA Technical Reports Server (NTRS)
Hardage, Donna (Technical Monitor); Pickel, J. C.
2003-01-01
A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the Next Generation Space Telescope (NGST) program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high fidelity spatial resolution. It is applicable to all detector geometries including monolithc charge coupled devices (CCDs), Active Pixel Sensors (APS) and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).
Identification of stopping ions in a silicon Timepix detector
NASA Astrophysics Data System (ADS)
Stoffle, Nicholas; Pinsky, Lawrence
2018-02-01
Timepix detectors are increasingly used in space-based applications. Such detectors are low power, low mass, and provide a wealth of information necessary for characterizing the ionizing radiation environment in space for both humans and hardware. Stopping ions are shown to contribute to the energy loss spectrum in a thin, pixelated, Timepix detector, and this energy loss is shown to contribute to the LET spectrum near 14 keV/micron. Bulk data also indicates the presence of Hydrogen isotopes in the energy loss spectra. Individual track analysis can be used to identify the stopping ions and the related energy and isotope through comparison with theoretical energy loss curves. While this calculation is specific to the Timepix, the impact of stopping ions on other instruments can be estimated using the insight gained from this approach.
NASA Astrophysics Data System (ADS)
Szabó, J.; Pálfalvi, J. K.; Strádi, A.; Bilski, P.; Swakoń, J.; Stolarczyk, L.
2018-04-01
One of the limiting factors of an astronaut's career is the dose received from space radiation. High energy protons, being the main components of the complex radiation field present on a spacecraft, give a significant contribution to the dose. To investigate the behavior of solid state nuclear track detectors (SSNTDs) if they are irradiated by such particles, SSNTD stacks containing carbon blocks were exposed to high energy proton beams (70, 100, 150 and 230 MeV) at the Proteus cyclotron, IFJ PAN -Krakow. The incident protons cannot be detected directly; however, tracks of secondary particles, recoils and fragments of the constituent atoms of the detector material and of the carbon radiator are formed. It was found that as the proton energy increases, the number of tracks induced in the PADC material by secondary particles decreases. From the measured geometrical parameters of the tracks the linear energy transfer (LET) spectrum and the dosimetric quantities were determined, applying appropriate calibration. In the LET spectra the LET range of the most important secondary particles could be identified and their abundance showed differences in the spectra if the detectors were short or long etched. The LET spectra obtained on the SSNTDs irradiated by protons were compared to LET spectra of detectors flown on the International Space Station (ISS): they were quite similar, resulting in a quality factor difference of only 5%. Thermoluminescent detectors (TLDs) were applied in each case to measure the dose from primary protons and other lower LET particles present in space. Comparing and analyzing the results of the TLD and SSNTD measurements, it was obtained that proton induced target fragments contributed to the total absorbed dose in 3.2% and to the dose equivalent in 14.2% in this particular space experiment.
Theocharous, E
2008-07-20
The nonlinearity characteristics of a commercially available deuterated L-alanine-doped triglycine sulfate (DLATGS) pyroelectric detector were experimentally investigated at high levels of illumination using the National Physical Laboratory detector linearity characterization facility. The detector was shown to exhibit a superlinear response at high levels of illumination. Moreover, the linearity factor was shown to depend on the area of the spot on the detector active area being illuminated, i.e., the incident irradiance. Possible reasons for the observed behavior are proposed and discussed. The temperature coefficient of the response of the DLATGS pyroelectric detector was measured and found to be higher than +2.5% degrees C(-1). This large and positive temperature coefficient of response is the most likely cause of the superlinear behavior of the DLATGS pyroelectric detector.
Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J; Grant, Alexander M; Chang, Chen-Ming; Glover, Gary; Levin, Craig S
2015-05-07
The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.
NASA Astrophysics Data System (ADS)
Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J.; Grant, Alexander M.; Chang, Chen-Ming; Glover, Gary; Levin, Craig S.
2015-05-01
The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.
Optical Communications With A Geiger Mode APD Array
2016-02-09
spurious fires from numerous sources, including crosstalk from other detectors in the same array . Additionally, after a 9 successful detection, the...be combined into arrays with large numbers of detectors , allowing for scaling of dynamic range with relatively little overhead on space and power...overall higher rate of dark counts than a single detector , this is more than compensated for by the extra detectors . A sufficiently large APD array could
NASA Astrophysics Data System (ADS)
Elabd, H.; Villani, T. S.; Tower, J. R.
1982-11-01
Monolithic 32 x 64 and 64 x 128 palladium silicide (Pd2Si) interline transfer IRCCDs sensitive in the 1-3.5 pm spectral band have been developed. This silicon imager exhibits a low response nonuniformity of typically 0.2-1.6% rms, and has been operated in the temperature range between 40-140K. Spectral response measurements of test Pd2Si p-type Si devices yield quantum efficiencies of 7.9% at 1.25 μm, 5.6% at 1.65 μm and 2.2% at 2.22 μm. Improvement in quantum efficiency is expected by optimizing the different structural parameters of the Pd2Si detectors. The spectral response of the Pd2Si detectors fit a modified Fowler emission model. The measured photo-electric barrier height for the Pd2Si detector is ≍0.34 eV and the measured quantum efficiency coefficient, C1, is 19%/eV. The dark current level of Pd2Si Schottky barrier focal plane arrays (FPAs) is sufficiently low to enable operation at intermediate tem-peratures at TV frame rates. Typical dark current level measured at 120K on the FPA is 2 nA/cm2. The Pd2Si Schottky barrier imaging technology has been developed for satellite sensing of earth resources. The operating temperature of the Pd2Si FPA is compatible with passive cooler performance. In addition, high density Pd2Si Schottky barrier FPAs are manufactured with high yield and therefore represent an economical approach to short wavelength IR imaging. A Pd2Si Schottky barrier image sensor for push-broom multispectral imaging in the 1.25, 1.65, and 2.22 μm bands is being studied. The sensor will have two line arrays (dual band capability) of 512 detectors each, with 30 μm center-to-center detector spacing. The device will be suitable for chip-to-chip abutment, thus providing the capability to produce large, multiple chip focal planes with contiguous, in-line sensors.
Design and status of the detector block for the ISO-SWS
NASA Technical Reports Server (NTRS)
Luinge, W.; Beintema, D. A.; Haser, L.; Katterloher, R.; Ploeger, G.
1989-01-01
The Short Wave Spectrometer (SWS) is one of the two spectrometers for the Infrared Space Observatory (ISO). It consists of a pair of grating spectrometers and a Fabry-Perot interferometer. Together, the grating spectrometers cover the wavelength range 2.4 to 45 microns, at a resolution between 1000 and 2000. The Fabry-Perot interferometer, in series with one of the grating spectrometers, provides a resolution of about 20,000 at the wavelengths between 15 and 35 microns. The SWS is being built by the Space Research Organization of the Netherlands and the Max Planck Institute for Extraterrestrial Physics in Garching, Germany. The spectrometer has 52 discrete detectors, most of which are bulk detectors. In the design of the spectrometer, the main emphasis is on the sensitivity of the individual channels, rather than on the number of detectors. This was one of the main reasons to select non-destructive read-out circuits, with a separate heated-JFET pre-amplifier for each individual detector. The signals are amplified and filtered in parallel. The engineering tests on the SWS detector block have not yet been completed. The design of the detector block is described and the present problem areas are indicated.
NASA Astrophysics Data System (ADS)
Dudak, J.; Zemlicka, J.; Karch, J.; Hermanova, Z.; Kvacek, J.; Krejci, F.
2017-01-01
Photon counting detectors Timepix are known for their unique properties enabling X-ray imaging with extremely high contrast-to-noise ratio. Their applicability has been recently further improved since a dedicated technique for assembling large area Timepix detector arrays was introduced. Despite the fact that the sensitive area of Timepix detectors has been significantly increased, the pixel pitch is kept unchanged (55 microns). This value is much larger compared to widely used and popular X-ray imaging cameras utilizing scintillation crystals and CCD-based read-out. On the other hand, photon counting detectors provide steeper point-spread function. Therefore, with given effective pixel size of an acquired radiography, Timepix detectors provide higher spatial resolution than X-ray cameras with scintillation-based devices unless the image is affected by penumbral blur. In this paper we take an advance of steep PSF of photon counting detectors and test the possibility to improve the quality of computed tomography reconstruction using finer sampling of reconstructed voxel space. The achieved results are presented in comparison with data acquired under the same conditions using a commercially available state-of-the-art CCD X-ray camera.
NASA Astrophysics Data System (ADS)
Mazur, J. E.; Guild, T. B.; Crain, W.; Crain, S.; Holker, D.; Quintana, S.; O'Brien, T. P., III; Kelly, M. A.; Barnes, R. J.; Sotirelis, T.
2017-12-01
The Responsive Environmental Assessment Commercial Hosting (REACH) project uses radiation dosimeters on a commercial satellite constellation in low Earth orbit to provide unprecedented spatial and time sampling of space weather radiation hazards. The spatial and time scales of natural space radiation environments coupled with constraints for the hosting accommodation drove the instrumentation requirements and the plan for the final orbital constellation. The project has delivered a total of thirty two radiation dosimeter instruments for launch with each instrument containing two dosimeters with different passive shielding and electronic thresholds to address proton-induced single-event effects, vehicle charging, and total ionizing dose. There are two REACH instruments currently operating with four more planned for launch by the time of the 2017 meeting. Our aim is to field a long-lived system of highly-capable radiation detectors to monitor the hazards of single-event effects, total ionizing dose, and spacecraft charging with maximized spatial coverage and with minimal time latency. We combined a robust detection technology with a commercial satellite hosting to produce a new demonstration for satellite situational awareness and for other engineering and science applications.
NASA Technical Reports Server (NTRS)
Mcmaster, L. R.; Peterson, S. T.; Hughes, F. M. (Inventor)
1973-01-01
A meteoroid detector is described which uses, a cold cathode discharge tube with a gas-pressurized cell in space for recording a meteoroid puncture of the cell and for determining the size of the puncture.
Independent Testing of JWST Detector Prototypes
NASA Technical Reports Server (NTRS)
Figer, D. F.; Rauscher, B. J.; Regan, M. W.; Balleza, J.; Bergeron, L.; Morse, E.; Stockman, H. S.
2003-01-01
The Independent Detector Testing Laboratory (IDTL) is jointly operated by the Space Telescope Science Institute (STScI) and the Johns Hopkins University (MU), and is assisting the James Webb Space Telescope (JWST) mission in choosing and operating the best near-infrared detectors under a NASA Grant. The JWST is the centerpiece of the NASA Office of Space Science theme, the Astronomical Search for Origins, and the highest priority astronomy project for the next decade, according to the National Academy of Science. JWST will need to have the sensitivity to see the first light in the Universe to determine how galaxies formed in the web of dark matter that existed when the Universe was in its infancy (z approx. 10 - 20). To achieve this goal, the JWST Project must pursue an aggressive technology program and advance infrared detectors to performance levels beyond what is now possible. As part of this program, NASA has selected the IDTL to verify comparative performance between prototype JWST detectors developed by Rockwell Scientific (HgCdTe) and Raytheon (InSb). The IDTL is charged with obtaining an independent assessment of the ability of these two competing technologies to achieve the demanding specifications of the JWST program within the 0.6 - 5 approx. mum bandpass and in an ultra-low background (less than 0.01 e'/s/pixel) environment. We describe results from the JWST Detector Characterization Project that is being performed in the IDTL. In this project, we are measuring first-order detector parameters, i.e. dark current, read noise, QE, intra-pixel sensitivity, linearity, as functions of temperature, well size, and operational mode.
Independent Testing of JWST Detector Prototypes
NASA Technical Reports Server (NTRS)
Figer, Donald F.; Rauscher, Bernie J.; Regan, Michael W.; Morse, Ernie; Balleza, Jesus; Bergeron, Louis; Stockman, H. S.
2004-01-01
The Independent Detector Testing Laboratory (IDTL) is jointly operated by the Space Telescope Science Institute (STScI) and the Johns Hopkins University (JHU), and is assisting the James Webb Space Telescope (JWST) mission in choosing and operating the best near-infrared detectors. The JWST is the centerpiece of the NASA Office of Space Science theme, the Astronomical Search for Origins, and the highest priority astronomy project for the next decade, according to the National Academy of Science. JWST will need to have the sensitivity to see the first light in the Universe to determine how galaxies formed in the web of dark matter that existed when the Universe was in its infancy (z is approximately 10-20). To achieve this goal, the JWST Project must pursue an aggressive technology program and advance infrared detectors to performance levels beyond what is now possible. As part of this program, NASA has selected the IDTL to verify comparative performance between prototype JWST detectors developed by Rockwell Scientific (HgCdTe) and Raytheon (InSb). The IDTL is charged with obtaining an independent assessment of the ability of these two competing technologies to achieve the demanding specifications of the JWST program within the 0.6-5 micron bandpass and in an ultra-low background (less than 0.01 e(-)/s/pixel) environment. We describe results from the JWST Detector Characterization Project that is being performed in the LDTL. In this project, we are measuring first-order detector parameters, i.e. dark current, read noise, QE, intra-pixel sensitivity, linearity, as functions of temperature, well size, and operational mode.
Ultrasonic Detectors Safely Identify Dangerous, Costly Leaks
NASA Technical Reports Server (NTRS)
2013-01-01
In 1990, NASA grounded its space shuttle fleet. The reason: leaks detected in the hydrogen fuel systems of the Space Shuttles Atlantis and Columbia. Unless the sources of the leaks could be identified and fixed, the shuttles would not be safe to fly. To help locate the existing leaks and check for others, Kennedy Space Center engineers used portable ultrasonic detectors to scan the fuel systems. As a gas or liquid escapes from a leak, the resulting turbulence creates ultrasonic noise, explains Gary Mohr, president of Elmsford, New York-based UE Systems Inc., a long-time leader in ultrasonic detector technologies. "In lay terms, the leak is like a dog whistle, and the detector is like the dog ear." Because the ultrasound emissions from a leak are highly localized, they can be used not only to identify the presence of a leak but also to help pinpoint a leak s location. The NASA engineers employed UE s detectors to examine the shuttle fuel tanks and solid rocket boosters, but encountered difficulty with the devices limited range-certain areas of the shuttle proved difficult or unsafe to scan up close. To remedy the problem, the engineers created a long-range attachment for the detectors, similar to "a zoom lens on a camera," Mohr says. "If you are on the ground, and the leak is 50 feet away, the detector would now give you the same impression as if you were only 25 feet away." The enhancement also had the effect of reducing background noise, allowing for a clearer, more precise detection of a leak s location.
Maximov, Vadim; Maximova, Elena; Damjanović, Ilija; Maximov, Paul
2014-09-01
Responses of direction-selective and orientation-selective motion detectors were recorded extracellularly from the axon terminals of ganglion cells in the superficial layers of the tectum opticum of immobilized goldfish, Carassius gibelio (Bloch, 1782). Color stripes or edges moving on some color background (presented on the CRT monitor with known emission spectra of its phosphors) served as stimuli. It was shown that stimuli of any color can be more or less matched with the background by varying their intensities what is indicative of color blindness of the motion detectors. Sets of stimuli which matched the background proved to represent planes in the three-dimensional color space of the goldfish. A relative contribution of different types of cones to the spectral sensitivity was estimated according to orientation of the plane of color matches. The spectral sensitivity of any motion detector was shown to be determined mainly by long-wave cones with a weak negative (opponent) contributions of middle-wave and/or short-wave ones. This resulted in reduced sensitivity in the blue-green end of the spectrum, what may be considered as an adaptation to the aquatic environment where, because of the substantial light scattering of a blue-green light, acute vision is possible only in a red region of the spectrum.
Monolithic CMOS imaging x-ray spectrometers
NASA Astrophysics Data System (ADS)
Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.
2014-07-01
The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and spectrally resolved without saturation. We present details of our camera design and device performance with particular emphasis on those aspects of interest to single photon counting x-ray astronomy. These features include read noise, x-ray spectral response and quantum efficiency. Funding for this work has been provided in large part by NASA Grant NNX09AE86G and a grant from the Betty and Gordon Moore Foundation.
Detector arrays for low-background space infrared astronomy
NASA Technical Reports Server (NTRS)
Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.
1986-01-01
The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratory test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.
Detector arrays for low-background space infrared astronomy
NASA Technical Reports Server (NTRS)
Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.
1986-01-01
The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratary test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.
NASA Technical Reports Server (NTRS)
1978-01-01
An early warning fire detection sensor developed for NASA's Space Shuttle Orbiter is being evaluated as a possible hazard prevention system for mining operations. The incipient Fire Detector represents an advancement over commercially available smoke detectors in that it senses and signals the presence of a fire condition before the appearance of flame and smoke, offering an extra margin of safety.
46 CFR 76.27-15 - Operation and installation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... audible alarm in the engine room. (b) The detectors, the detecting cabinet and alarms shall be of an approved type. (c) In general, the detectors, shall be rated not lower than 135 degrees F. and not higher than 165 degrees F. However, in spaces where a high ambient temperature may be expected, detectors...
Code of Federal Regulations, 2014 CFR
2014-10-01
... fire detector and control unit must be of a type specifically approved by the Commandant (CG-ENG). (b) No fire-alarm circuit for the engine room may contain a fire detector for any other space. (c) The number and placement of fire detectors must be approved by the cognizant OCMI. [CGD 82-004 and CGD 86-074...
Code of Federal Regulations, 2011 CFR
2011-10-01
... fire detector and control unit must be of a type specifically approved by the Commandant (CG-521). (b) No fire-alarm circuit for the engine room may contain a fire detector for any other space. (c) The number and placement of fire detectors must be approved by the cognizant OCMI. [CGD 82-004 and CGD 86-074...
46 CFR 76.27-15 - Operation and installation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... audible alarm in the engine room. (b) The detectors, the detecting cabinet and alarms shall be of an approved type. (c) In general, the detectors, shall be rated not lower than 135 degrees F. and not higher than 165 degrees F. However, in spaces where a high ambient temperature may be expected, detectors...
46 CFR 76.27-15 - Operation and installation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... audible alarm in the engine room. (b) The detectors, the detecting cabinet and alarms shall be of an approved type. (c) In general, the detectors, shall be rated not lower than 135 degrees F. and not higher than 165 degrees F. However, in spaces where a high ambient temperature may be expected, detectors...
Code of Federal Regulations, 2010 CFR
2010-10-01
... fire detector and control unit must be of a type specifically approved by the Commandant (CG-521). (b) No fire-alarm circuit for the engine room may contain a fire detector for any other space. (c) The number and placement of fire detectors must be approved by the cognizant OCMI. [CGD 82-004 and CGD 86-074...
Code of Federal Regulations, 2013 CFR
2013-10-01
... fire detector and control unit must be of a type specifically approved by the Commandant (CG-ENG). (b) No fire-alarm circuit for the engine room may contain a fire detector for any other space. (c) The number and placement of fire detectors must be approved by the cognizant OCMI. [CGD 82-004 and CGD 86-074...
Code of Federal Regulations, 2012 CFR
2012-10-01
... fire detector and control unit must be of a type specifically approved by the Commandant (CG-ENG). (b) No fire-alarm circuit for the engine room may contain a fire detector for any other space. (c) The number and placement of fire detectors must be approved by the cognizant OCMI. [CGD 82-004 and CGD 86-074...
46 CFR 76.27-15 - Operation and installation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... audible alarm in the engine room. (b) The detectors, the detecting cabinet and alarms shall be of an approved type. (c) In general, the detectors, shall be rated not lower than 135 degrees F. and not higher than 165 degrees F. However, in spaces where a high ambient temperature may be expected, detectors...
Development of IR imaging at IRnova
NASA Astrophysics Data System (ADS)
Martijn, Henk; Asplund, Carl; Malm, Hedda; Smuk, Sergiy; Höglund, Linda; Gustafsson, Oscar; Hammar, Mattias; Hellström, Staffan
2009-05-01
Historically IRnova has exclusively been a company, focused on manufacturing of QWIP detectors. Nowadays, besides continuous improvements of the performance of QWIP FPAs and development of new formats IRnova is involved in development of QWIP detectors for special applications and has started the development of the next generation infrared detectors, as well. In the light of the development of new formats we validate experimentally theoretical calculations of the response of QWIPs for smaller pixel size. These results allow for the development of high performance megapixel QWIP FPA that exhibit the high uniformity and operability QWIP detectors are known for. QWIP is also being considered for space applications. The requirements on dark current and operating temperature are however much more stringent as compared to the terrestrial applications. We show ways to improve the material quality with as a result a higher detector operating temperature. IRnova is also looking at antimony-based strained superlattice material for the LWIR region together with partners at the IMAGIC centre of excellence. One of the ways to overcome the problem with surface currents is passivating overgrowth. We will report the status and results of overgrowing the detector mesas with AlGa(As)Sb in a MOVPE system. At the same centre of excellence a novel material concept is being developed for LWIR detection. This new material contains a superlattice of vertically aligned and electronically coupled InAs and GaSb quantum dots. Simulations show that it should be possible to have LWIR detection in this material. We will present the current status and report results in this research.
NASA Astrophysics Data System (ADS)
Moskal, P.; Zoń, N.; Bednarski, T.; Białas, P.; Czerwiński, E.; Gajos, A.; Kamińska, D.; Kapłon, Ł.; Kochanowski, A.; Korcyl, G.; Kowal, J.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Niedźwiecki, Sz.; Pałka, M.; Raczyński, L.; Rudy, Z.; Rundel, O.; Salabura, P.; Sharma, N. G.; Silarski, M.; Słomski, A.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Zieliński, M.
2015-03-01
A novel method of hit time and hit position reconstruction in scintillator detectors is described. The method is based on comparison of detector signals with results stored in a library of synchronized model signals registered for a set of well-defined positions of scintillation points. The hit position is reconstructed as the one corresponding to the signal from the library which is most similar to the measurement signal. The time of the interaction is determined as a relative time between the measured signal and the most similar one in the library. A degree of similarity of measured and model signals is defined as the distance between points representing the measurement- and model-signal in the multi-dimensional measurement space. Novelty of the method lies also in the proposed way of synchronization of model signals enabling direct determination of the difference between time-of-flights (TOF) of annihilation quanta from the annihilation point to the detectors. The introduced method was validated using experimental data obtained by means of the double strip prototype of the J-PET detector and 22Na sodium isotope as a source of annihilation gamma quanta. The detector was built out from plastic scintillator strips with dimensions of 5 mm×19 mm×300 mm, optically connected at both sides to photomultipliers, from which signals were sampled by means of the Serial Data Analyzer. Using the introduced method, the spatial and TOF resolution of about 1.3 cm (σ) and 125 ps (σ) were established, respectively.
Development of an inconel self powered neutron detector for in-core reactor monitoring
NASA Astrophysics Data System (ADS)
Alex, M.; Ghodgaonkar, M. D.
2007-04-01
The paper describes the development and testing of an Inconel600 (2 mm diameter×21 cm long) self-powered neutron detector for in-core neutron monitoring. The detector has 3.5 mm overall diameter and 22 cm length and is integrally coupled to a 12 m long mineral insulated cable. The performance of the detector was compared with cobalt and platinum detectors of similar dimensions. Gamma sensitivity measurements performed at the 60Co irradiation facility in 14 MR/h gamma field showed values of -4.4×10 -18 A/R/h/cm (-9.3×10 -24 A/ γ/cm 2-s/cm), -5.2×10 -18 A/R/h/cm (-1.133×10 -23 A/ γ/cm 2-s/cm) and 34×10 -18 A/R/h/cm (7.14×10 -23 A/ γ/cm 2-s/cm) for the Inconel, Co and Pt detectors, respectively. The detectors together with a miniature gamma ion chamber and fission chamber were tested in the in-core Apsara Swimming Pool type reactor. The ion chambers were used to estimate the neutron and gamma fields. With an effective neutron cross-section of 4b, the Inconel detector has a total sensitivity of 6×10 -23 A/nv/cm while the corresponding sensitivities for the platinum and cobalt detectors were 1.69×10 -22 and 2.64×10 -22 A/nv/cm. The linearity of the detector responses at power levels ranging from 100 to 200 kW was within ±5%. The response of the detectors to reactor scram showed that the prompt response of the Inconel detector was 0.95 while it was 0.7 and 0.95 for the platinum and cobalt self-powered detectors, respectively. The detector was also installed in the horizontal flux unit of 540 MW Pressurised Heavy Water Reactor (PHWR). The neutron flux at the detector location was calculated by Triveni code. The detector response was measured from 0.02% to 0.07% of full power and showed good correlation between power level and detector signals. Long-term tests and the dynamic response of the detector to shut down in PHWR are in progress.
MARTA: a high-energy cosmic-ray detector concept for high-accuracy muon measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abreu, P.; Andringa, S.; Assis, P.
A new concept for the direct measurement of muons in air showers is presented. The concept is based on resistive plate chambers (RPCs), which can directly measure muons with very good space and time resolution. The muon detector is shielded by placing it under another detector able to absorb and measure the electromagnetic component of the showers such as a water-Cherenkov detector, commonly used in air shower arrays. Here, the combination of the two detectors in a single, compact detector unit provides a unique measurement that opens rich possibilities in the study of air showers.
MARTA: a high-energy cosmic-ray detector concept for high-accuracy muon measurement
NASA Astrophysics Data System (ADS)
Abreu, P.; Andringa, S.; Assis, P.; Blanco, A.; Martins, V. Barbosa; Brogueira, P.; Carolino, N.; Cazon, L.; Cerda, M.; Cernicchiaro, G.; Colalillo, R.; Conceição, R.; Cunha, O.; de Almeida, R. M.; de Souza, V.; Diogo, F.; Dobrigkeit, C.; Espadanal, J.; Espirito-Santo, C.; Ferreira, M.; Ferreira, P.; Fonte, P.; Giaccari, U.; Gonçalves, P.; Guarino, F.; Lippmann, O. C.; Lopes, L.; Luz, R.; Maurizio, D.; Marujo, F.; Mazur, P.; Mendes, L.; Pereira, A.; Pimenta, Mario; Prado, R. R.; R̆ídký, J.; Sarmento, R.; Scarso, C.; Shellard, R.; Souza, J.; Tomé, B.; Trávníc̆ek, P.; Vícha, J.; Wolters, H.; Zas, E.
2018-04-01
A new concept for the direct measurement of muons in air showers is presented. The concept is based on resistive plate chambers (RPCs), which can directly measure muons with very good space and time resolution. The muon detector is shielded by placing it under another detector able to absorb and measure the electromagnetic component of the showers such as a water-Cherenkov detector, commonly used in air shower arrays. The combination of the two detectors in a single, compact detector unit provides a unique measurement that opens rich possibilities in the study of air showers.
Microscope mode secondary ion mass spectrometry imaging with a Timepix detector.
Kiss, Andras; Jungmann, Julia H; Smith, Donald F; Heeren, Ron M A
2013-01-01
In-vacuum active pixel detectors enable high sensitivity, highly parallel time- and space-resolved detection of ions from complex surfaces. For the first time, a Timepix detector assembly was combined with a secondary ion mass spectrometer for microscope mode secondary ion mass spectrometry (SIMS) imaging. Time resolved images from various benchmark samples demonstrate the imaging capabilities of the detector system. The main advantages of the active pixel detector are the higher signal-to-noise ratio and parallel acquisition of arrival time and position. Microscope mode SIMS imaging of biomolecules is demonstrated from tissue sections with the Timepix detector.
MARTA: a high-energy cosmic-ray detector concept for high-accuracy muon measurement
Abreu, P.; Andringa, S.; Assis, P.; ...
2018-04-24
A new concept for the direct measurement of muons in air showers is presented. The concept is based on resistive plate chambers (RPCs), which can directly measure muons with very good space and time resolution. The muon detector is shielded by placing it under another detector able to absorb and measure the electromagnetic component of the showers such as a water-Cherenkov detector, commonly used in air shower arrays. Here, the combination of the two detectors in a single, compact detector unit provides a unique measurement that opens rich possibilities in the study of air showers.
Search for space charge effects in the ICARUS T600 LAr-TPC
NASA Astrophysics Data System (ADS)
Torti, Marta
2016-11-01
Space charge in Liquid Argon Time Projection Chamber is due to the accumu- lation of positive ions, produced by ionizing tracks crossing the detector, which slowly flow toward the cathode. As a consequence, electric field distortions may arise, thus hindering the possibility to produce faithful 3D images of the ionizing events. The presence of space charge becomes relevant for large TPCs operating at surface or at shallow depths, where cosmic ray flux is high. These effects could interest the next phase of the ICARUS T600 detector, which will be deployed at shallow depths as a Far Detector for Short Baseline Neutrino experiment at FNAL dedicated to sterile neutrino searches. In 2001, the first ICARUS T600 module (T300) operated at surface in Pavia (Italy), recording cosmic ray data. In this work, a sample of cosmic muon tracks from the 2001 run was analyzed and results on space charge effects in LAr-TPCs are shown.
Discussion about photodiode architectures for space applications
NASA Astrophysics Data System (ADS)
Gravrand, O.; Destefanis, G.; Cervera, C.; Zanatta, J.-P.; Baier, N.; Ferron, A.; Boulade, O.
2017-11-01
Detection for space application is very demanding on the IR detector: all wavelengths, from visible-NIR (2- 3um cutoff) to LWIR (10-12.5um cutoff), even sometimes VLWIR (15um cutoff) may be of interest. Moreover, various scenarii are usually considered. Some are imaging applications where the focal plane array (FPA) is used as an optical element to sense an image. However, the FPA may also be used in spectrometric applications where light is triggered on the different pixels depending on its wavelength. In some cases, star pointing is another use of FPAs where the retina is used to sense the position of the satellite. In all those configurations, we might distinguish several categories of applications: • low flux applications where the FPA is staring at space and the detection occurs with only a few number of photons. • high flux applications where the FPA is usually staring at the earth. In this case, the black body emission of the earth and its atmosphere ensures usually a large number of photons to perform the detection. Those two different categories are highly dimensioning for the detector as it usually determines the level of dark current and quantum efficiency (QE) requirements. Indeed, high detection performance usually requires a large number of integrated photons such that high QE is needed for low flux applications, in order to limit the integration time as much as possible. Moreover, dark current requirement is also directly linked to the expected incoming flux, in order to limit as much as possible the SNR degradation due to dark charges vs photocharges. Note that in most cases, this dark current is highly depending on operating temperature which dominates detector consumption. A classical way to mitigate dark current is to cool down the detector to very low temperatures. This paper won't discuss the need for wavefront sensing where the number of detected photons is low because of a very narrow integration window. Rigorously, this kind of configuration is a low flux application but the need for speed distinguishes it from other low flux applications as it usually requires a different ROIC architecture and a photodiode optimized for high response speed.
New Detector Developments for Future UV Space Missions
NASA Astrophysics Data System (ADS)
Werner, Klaus; Kappelmann, Norbert
Ultraviolet (UV) astronomy is facing “dark ages”: After the shutdown of the Hubble Space Tele-scope only the WSO/UV mission will be operable in the UV wavelength region with efficient instruments. Improved optics and detectors are necessary for future successor missions to tackle new scientific goals. This drives our development of microchannel plate (MCP) UV-detectors with high quantum efficiency, high spatial resolution and low-power readout electronics. To enhance the quantum efficiency and the lifetime of the MCP detectors we are developing new cathodes and new anodes for these detectors. To achieve high quantum efficiency, we will use caesium-activated gallium nitride as semitransparent photocathodes with a much higher efficiency than default CsI/CsTe cathodes in this wavelength range. The new anodes will be cross-strip anodes with 64 horizontal and 64 vertical electrodes. This type of anode requires a lower gain and leads to an increased lifetime of the detector, compared to MCP detectors with other anode types. The heart of the new developed front-end-electronic for such type of anode is the so called “BEETLE chip”, which was designed by the MPI für Kernphysik Heidelberg for the LHCb ex-periment at CERN. This chip provides 128 input channels with charge-sensitive preamplifiers and shapers. Our design of the complete front-end readout electronics enables a total power con-sumption of less than 10 W. The MCP detector is intrinsically solar blind, single photon counting and has a very low read-out noise. To qualify this new type of detectors we are presently planning to build a small UV telescope for the usage on the German Technology Experimental Carrier (TET). Furthermore we are involved in the new German initiative for a Public Telescope, a space telescope equipped with an 80 cm mirror. One of the main instruments will be a high-resolution UV-Echelle Spectrograph that will be built by the University of Tübingen. The launch of this mission is scheduled for 2017.
Multi-anode microchannel arrays - New detectors for imaging and spectroscopy in space
NASA Technical Reports Server (NTRS)
Timothy, J. G.; Bybee, R. L.
1983-01-01
Consideration is given to the construction and operation of multi-anode microchannel array detector systems having formats as large as 256 x 1024 pixels. Such arrays are being developed for imaging and spectroscopy at soft X-ray, ultraviolet and visible wavelengths from balloons, sounding rockets and space probes. Both discrete-anode and coincidence-anode arrays are described. Two types of photocathode structures are evaluated: an opaque photocathode deposited directly on the curved-channel MCP and an activated cathode deposited on a proximity-focused mesh. Future work will include sensitivity optimization in the different wavelength regions and the development of detector tubes with semitransparent proximity-focused photocathodes.
Cryogenic and radiation-hard asic for interfacing large format NIR/SWIR detector arrays
NASA Astrophysics Data System (ADS)
Gao, Peng; Dupont, Benoit; Dierickx, Bart; Müller, Eric; Verbruggen, Geert; Gielis, Stijn; Valvekens, Ramses
2017-11-01
For scientific and earth observation space missions, weight and power consumption is usually a critical factor. In order to obtain better vehicle integration, efficiency and controllability for large format NIR/SWIR detector arrays, a prototype ASIC is designed. It performs multiple detector array interfacing, power regulation and data acquisition operations inside the cryogenic chambers. Both operation commands and imaging data are communicated via the SpaceWire interface which will significantly reduce the number of wire goes in and out the cryogenic chamber. This "ASIC" prototype is realized in 0.18um CMOS technology and is designed for radiation hardness.
LYRA, solar uv radiometer on the technology demonstration platform PROBA-2
NASA Astrophysics Data System (ADS)
Stockman, Y.; Hochedez, J.-F.; Schmutz, W.; BenMoussa, A.; Defise, J.-M.; Denis, F.; D'Olieslaeger, M.; Dominique, M.; Haenen, K.; Halain, J.-P.; Koller, S.; Koizumi, S.; Mortet, V.; Rochus, P.; Schühle, U.; Soltani, A.; Theissen, A.
2017-11-01
LYRA is a solar radiometer part of the PROBA 2 micro satellite payload. LYRA will monitor the solar irradiance in four soft X-Ray - VUV passbands. They have been chosen for their relevance to Solar Physics, Aeronomy and SpaceWeather: 1/ Lyman Alpha channel, 2/ Herzberg continuum range, 3/ Aluminium filter channel (including He II at 30.4 nm) and 4/ Zirconium filter channel. The radiometric calibration is traceable to synchrotron source standards. The stability will be monitored by on-board calibration sources (LEDs), which allow us to distinguish between potential degradations of the detectors and filters. Additionally, a redundancy strategy maximizes the accuracy and the stability of the measurements. LYRA will benefit from wide bandgap detectors based on diamond: it will be the first space assessment of revolutionary UV detectors. Diamond sensors make the instruments radiation-hard and solar-blind (insensitive to visible light) and therefore, make dispensable visible light blocking filters. To correlate the data of this new detector technology, well known technology, such as Si detectors are also embarked. The SWAP EUV imaging telescope will operate next to LYRA on PROBA-2. Together, they will provide a high performance solar monitor for operational space weather nowcasting and research. LYRA demonstrates technologies important for future missions such as the ESA Solar Orbiter.
NASA Astrophysics Data System (ADS)
McBeth, Rafe A.
Space radiation exposure to astronauts will need to be carefully monitored on future missions beyond low earth orbit. NASA has proposed an updated radiation risk framework that takes into account a significant amount of radiobiological and heavy ion track structure information. These models require active radiation detection systems to measure the energy and ion charge Z. However, current radiation detection systems cannot meet these demands. The aim of this study was to investigate several topics that will help next generation detection systems meet the NASA objectives. Specifically, this work investigates the required spatial resolution to avoid coincident events in a detector, the effects of energy straggling and conversion of dose from silicon to water, and methods for ion identification (Z) using machine learning. The main results of this dissertation are as follows: 1. Spatial resolution on the order of 0.1 cm is required for active space radiation detectors to have high confidence in identifying individual particles, i.e., to eliminate coincident events. 2. Energy resolution of a detector system will be limited by energy straggling effects and the conversion of dose in silicon to dose in biological tissue (water). 3. Machine learning methods show strong promise for identification of ion charge (Z) with simple detector designs.
Looe, Hui Khee; Harder, Dietrich; Poppe, Björn
2017-02-07
The lateral dose response function is a general characteristic of the volume effect of a detector used for photon dosimetry in a water phantom. It serves as the convolution kernel transforming the true absorbed dose to water profile, which would be produced within the undisturbed water phantom, into the detector-measured signal profile. The shape of the lateral dose response function characterizes (i) the volume averaging attributable to the detector's size and (ii) the disturbance of the secondary electron field associated with the deviation of the electron density of the detector material from the surrounding water. In previous work, the characteristic dependence of the shape of the lateral dose response function upon the electron density of the detector material was studied for 6 MV photons by Monte Carlo simulation of a wall-less voxel-sized detector (Looe et al 2015 Phys. Med. Biol. 60 6585-07). This study is here continued for 60 Co gamma rays and 15 MV photons in comparison with 6 MV photons. It is found (1) that throughout these photon spectra the shapes of the lateral dose response functions are retaining their characteristic dependence on the detector's electron density, and (2) that their energy-dependent changes are only moderate. This appears as a practical advantage because the lateral dose response function can then be treated as practically invariant across a clinical photon beam in spite of the known changes of the photon spectrum with increasing distance from the beam axis.
Traceable terahertz power measurement from 1 THz to 5 THz.
Steiger, Andreas; Kehrt, Mathias; Monte, Christian; Müller, Ralf
2013-06-17
The metrology institute in Germany, the Physikalisch-Technische Bundesanstalt (PTB), calibrates the spectral responsivity of THz detectors at 2.52 THz traceable to International System of Units. The Terahertz detector calibration facility is equipped with a standard detector calibrated against a cryogenic radiometer at this frequency. In order to extend this service to a broader spectral range in the THz region a new standard detector was developed. This detector is based on a commercial thermopile detector. Its absorber was modified and characterized by spectroscopic methods with respect to its absorptance and reflectance from 1 THz to 5 THz and at the wavelength of a helium-neon laser in the visible spectral range. This offers the possibility of tracing back the THz power responsivity scale to the more accurate responsivity scale in the visible spectral range and thereby to reduce the uncertainty of detector calibrations in the THz range significantly.
Design and performance of the collective Thomson scattering receiver at ASDEX Upgrade.
Furtula, V; Salewski, M; Leipold, F; Michelsen, P K; Korsholm, S B; Meo, F; Moseev, D; Nielsen, S K; Stejner, M; Johansen, T
2012-01-01
Here we present the design of the fast-ion collective Thomson scattering receiver for millimeter wave radiation installed at ASDEX Upgrade, a tokamak for fusion plasma experiments. The receiver can detect spectral power densities of a few eV against the electron cyclotron emission background on the order of 100 eV under presence of gyrotron stray radiation that is several orders of magnitude stronger than the signal to be detected. The receiver down converts the frequencies of scattered radiation (100-110 GHz) to intermediate frequencies (IF) (4.5-14.5 GHz) by heterodyning. The IF signal is divided into 50 IF channels tightly spaced in frequency space. The channels are terminated by square-law detector diodes that convert the signal power into DC voltages. We present measurements of the transmission characteristics and performance of the main receiver components operating at mm-wave frequencies (notch, bandpass, and lowpass filters, a voltage-controlled variable attenuator, and an isolator), the down-converter unit, and the IF components (amplifiers, bandpass filters, and detector diodes). Furthermore, we determine the performance of the receiver as a unit through spectral response measurements and find reasonable agreement with the expectation based on the individual component measurements.
Calibration of photo sensors for the space-based cosmic ray telescope JEM-EUSO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karus, Michael
2015-02-24
In order to unveil the mystery of ultra-high energy cosmic rays (UHECRs), the planned fluorescence telescope JEM-EUSO (Extreme Universe Space Observatory on-board Japanese Experiment Module) will observe extensive air showers induced by UHECRs from the International Space Station (ISS) orbit with a huge acceptance. The JEM-EUSO instrument consists of Fresnel optics and a focal surface detector with 5000 multi-anode photomultiplier tubes (MAPMTs), 300000 channels in total. For fluorescence detection of cosmic rays it is essential to calibrate the detector pre-flight with utmost precision and to monitor the performance of the detector throughout the whole mission time. For that purpose amore » calibration stand on-ground was built to measure precisely the performance of Hamamatsu 64 pixel MAPMTs that are planned to be used for JEM-EUSO. To investigate the suitability of alternative detector devices, further research is done with state-of-the-art silicon photomultipliers (SiPMs), namely Hamamatsu multi-pixel photon counters (MPPCs). These will also be tested in the calibration stand and their performance can be compared to conventional photomultiplier tubes.« less
Interfacing Issues in Microcooling of Optical Detectors in Space Applications
NASA Astrophysics Data System (ADS)
Derking, J. H.; ter Brake, H. J. M.; Linder, M.; Rogalla, H.
2010-04-01
Miniature Joule-Thomson coolers were developed at the University of Twente and are able to cool to 100 K with a typical cooling power of 10 to 20 mW. These coolers have a high potential for space applications in cooling small optical detectors for future earth observation and science missions. Under contract of the European Space Agency, we investigate on-chip detector cooling for the temperature range 70 K-250 K. To identify the detectors that can be cooled by a JT microcooler, a literature survey was performed. Following this survey, we selected a micro digital CMOS image sensor. A conceptual design of this cooler-sensor system is made. Among various techniques, indium soldering and silver paint are chosen for the bonding of the silicon sensor to the glass microcooler. Electrical connections from the sensor to the outside will be realized by structuring them in a thin layer of gold that is sputtered on the outside of the cooler to minimize the radiative heat load. For the electrical connections between the sensor and the structured leads, aluminum or gold bond wires will be used.
Integrated receiver for heterodyne detection dedicated to space applications
NASA Astrophysics Data System (ADS)
Fleury, Joel; Girard, Olivier; Royer, Michel; Bidaud, Michel
1998-10-01
This paper is devoted to the presentation of an Integrator Dewar Cooling Assembly dedicated to high frequency space applications. SAGEM SA has been a manufacturer of IR InSb and HgCdTe detectors for a long time. These detectors cover a large spectral range. The capability to use HgCdTe photovoltaic detectors for heterodyne applications at 10.6 micrometers has been demonstrated in the frame of ESA and CNES contracts. SAGEM SA has recently developed a new concept of heterodyne receiver, totally integrated, operating at variable temperatures down to 77K, using HgCdTe or InSb photovoltaic detectors. This receiver is an innovative product due to its small volume, its low weight and its low electrical consumption. The miniaturization of this product the latter to be used in space applications, specially for the earth observation missions. The performance of such a receiver with respect of the electrical bandwidth is presented in order to compare it with a receiver for terrestrial or airborne applications based on the use of a laboratory HF dewar.
NASA Astrophysics Data System (ADS)
Szabó, J.; Pálfalvi, J. K.
2012-12-01
The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008-2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.
Stability of the Helical TomoTherapy Hi·Art II detector for treatment beam irradiations
Schombourg, Karin; Bochud, François
2014-01-01
The Hi·Art II Helical TomoTherapy (HT) unit is equipped with a built‐in onboard MVCT detector used for patient imaging and beam monitoring. Our aim was to study the detector stability for treatment beam measurements. We studied the MVCT detector response with the 6 MV photon beam over time, throughout short‐term (during an irradiation) and long‐term (two times 50 days) periods. Our results show a coefficient of variation ≤1% for detector chambers inside the beam (excluding beam gradients) for short‐ and long‐term response of the MVCT detector. Larger variations were observed in beam gradients and an influence of the X‐ray target where degradation was found. The results assume that an ‘air scan’ procedure is performed daily to recalibrate the detector with the imaging beam. On short term, the detector response stability is comparable to other devices. Long‐term measurements during two 50‐day periods show a good reproducibility. PACS numbers: 87.55.ne, 87.55.Qr PMID:25493514
Theocharous, E; Theocharous, S P; Lehman, J H
2013-11-20
A novel pyroelectric detector consisting of a vertically aligned nanotube array on thin silicon (VANTA/Si) bonded to a 60 μm thick crystal of LiTaO₃ has been fabricated. The performance of the VANTA/Si-coated pyroelectric detector was evaluated using National Physical Laboratory's (NPL's) detector-characterization facilities. The relative spectral responsivity of the detector was found to be spectrally flat in the 0.8-24 μm wavelength range, in agreement with directional-hemispherical reflectance measurements of witness samples of the VANTA. The spatial uniformity of response of the test detector exhibited good uniformity, although the nonuniformity increased with increasing modulation frequency. The nonuniformity may be assigned either to the dimensions of the VANTA or the continuity of the bond between the VANTA/Si coating and the pyroelectric crystal substrate. The test detector exhibited a small superlinear response, which is similar to that of pyroelectric detectors coated with good quality gold-black coatings.
Definition of a near real time microbiological monitor for space vehicles
NASA Technical Reports Server (NTRS)
Kilgore, Melvin V., Jr.; Zahorchak, Robert J.; Arendale, William F.
1989-01-01
Efforts to identify the ideal candidate to serve as the biological monitor on the space station Freedom are discussed. The literature review, the evaluation scheme, descriptions of candidate monitors, experimental studies, test beds, and culture techniques are discussed. Particular attention is given to descriptions of five candidate monitors or monitoring techniques: laser light scattering, primary fluorescence, secondary fluorescence, the volatile product detector, and the surface acoustic wave detector.
Precise measurement of cosmic ray fluxes with the AMS-02 experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecchi, Manuela, E-mail: manuela.vecchi@ifsc.usp.br
2015-12-17
The AMS-02 detector is a large acceptance magnetic spectrometer operating onboard the International Space Station since May 2011. The main goals of the detector are the search for antimatter and dark matter in space, as well as the measurement of cosmic ray composition and flux. In this document we present precise measurements of cosmic ray positrons, electrons and protons, collected during the first 30 months of operations.
Compact Full-Field Ion Detector System for SmallSats Beyond LEO
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Clark, Pamela E.; McNeil, Roger R.
2014-01-01
NASA Glenn Research Center (GRC) is applying its expertise and facilities in harsh environment instrumentation to develop a Compact Full-Field Ion Detector System (CFIDS). The CFIDS is designed to be an extremely compact, low cost instrument, capable of being flown on a wide variety of deep space platforms, to provide multi-directional, comprehensive (composition, velocity, and direction) in-situ measurements of heavy ions in space plasma environments.
1994-02-03
The objective of this facility is to investigate the potential of space grown semiconductor materials by the vapor transport technique and develop powdered metal and ceramic sintering techniques in microgravity. The materials processed or developed in the SEF have potential application for improving infrared detectors, nuclear particle detectors, photovoltaic cells, bearing cutting tools, electrical brushes and catalysts for chemical production. Flown on STS-60 Commercial Center: Consortium for Materials Development in Space - University of Alabama Huntsville (UAH)
Overview of RICOR tactical cryogenic refrigerators for space missions
NASA Astrophysics Data System (ADS)
Riabzev, Sergey; Filis, Avishai; Livni, Dorit; Regev, Itai; Segal, Victor; Gover, Dan
2016-05-01
Cryogenic refrigerators represent a significant enabling technology for Earth and Space science enterprises. Many of the space instruments require cryogenic refrigeration to enable the use of advanced detectors to explore a wide range of phenomena from space. RICOR refrigerators involved in various space missions are overviewed in this paper, starting in 1994 with "Clementine" Moon mission, till the latest ExoMars mission launched in 2016. RICOR tactical rotary refrigerators have been incorporated in many space instruments, after passing qualification, life time, thermal management testing and flight acceptance. The tactical to space customization framework includes an extensive characterization and qualification test program to validate reliability, the design of thermal interfacing with a detector, vibration export control, efficient heat dissipation in a vacuum environment, robustness, mounting design, compliance with outgassing requirements and strict performance screening. Current RICOR development is focused on dedicated ultra-long-life, highly reliable, space cryogenic refrigerator based on a Pulse Tube design
A method to describe inelastic gamma field distribution in neutron gamma density logging.
Zhang, Feng; Zhang, Quanying; Liu, Juntao; Wang, Xinguang; Wu, He; Jia, Wenbao; Ti, Yongzhou; Qiu, Fei; Zhang, Xiaoyang
2017-11-01
Pulsed neutron gamma density logging (NGD) is of great significance for radioprotection and density measurement in LWD, however, the current methods have difficulty in quantitative calculation and single factor analysis for the inelastic gamma field distribution. In order to clarify the NGD mechanism, a new method is developed to describe the inelastic gamma field distribution. Based on the fast-neutron scattering and gamma attenuation, the inelastic gamma field distribution is characterized by the inelastic scattering cross section, fast-neutron scattering free path, formation density and other parameters. And the contribution of formation parameters on the field distribution is quantitatively analyzed. The results shows the contribution of density attenuation is opposite to that of inelastic scattering cross section and fast-neutron scattering free path. And as the detector-spacing increases, the density attenuation gradually plays a dominant role in the gamma field distribution, which means large detector-spacing is more favorable for the density measurement. Besides, the relationship of density sensitivity and detector spacing was studied according to this gamma field distribution, therefore, the spacing of near and far gamma ray detector is determined. The research provides theoretical guidance for the tool parameter design and density determination of pulsed neutron gamma density logging technique. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nonlinearity and pixel shifting effects in HXRG infrared detectors
NASA Astrophysics Data System (ADS)
Plazas, A. A.; Shapiro, C.; Smith, R.; Rhodes, J.; Huff, E.
2017-04-01
We study the nonlinearity (NL) in the conversion from charge to voltage in infrared detectors (HXRG) for use in precision astronomy. We present laboratory measurements of the NL function of a H2RG detector and discuss the accuracy to which it would need to be calibrated in future space missions to perform cosmological measurements through the weak gravitational lensing technique. In addition, we present an analysis of archival data from the infrared H1RG detector of the Wide Field Camera 3 in the Hubble Space Telescope that provides evidence consistent with the existence of a sensor effect analogous to the ``brighter-fatter'' effect found in Charge-Coupled Devices. We propose a model in which this effect could be understood as shifts in the effective pixel boundaries, and discuss prospects of laboratory measurements to fully characterize this effect.
The pyroelectric properties of TGS for application in infrared detection
NASA Technical Reports Server (NTRS)
Kroes, R. L.; Reiss, D.
1981-01-01
The pyroelectric property of triglycine sulfate and its application in the detection of infrared radiation are described. The detectivities of pyroelectric detectors and other types of infrared detectors are compared. The thermal response of a pyroelectric detector element and the resulting electrical response are derived in terms of the material parameters. The noise sources which limit the sensitivity of pyroelectric detectors are described, and the noise equivalent power for each noise source is given as a function of frequency and detector area.
Heat Transfer Issues in Thin-Film Thermal Radiation Detectors
NASA Technical Reports Server (NTRS)
Barry, Mamadou Y.
1999-01-01
The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, such as the contact resistance between the layers of the detector, and is suitable for use in parameter estimation. It was found that the responsivity of the detector can increase significantly due to the presence of contact resistance between the layers of the detector. Also presented is the effect of doping the thermal impedance layer of the detector with conducting particles in order to electrically link the two junctions of the detector. It was found that the responsivity and the time response of the doped detector decrease significantly in this case. The corresponding decrease of the electrical resistance of the doped thermal impedance layer is not sufficient to significantly improve the electrical performance of the detector. Finally, the "roughness effect" is shown to be unable to explain the decrease in the thermal conductivity often reported for thin-film layers.
Tunnel effect measuring systems and particle detectors
NASA Technical Reports Server (NTRS)
Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)
1994-01-01
Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.
Tunnel effect measuring systems and particle detectors
NASA Technical Reports Server (NTRS)
Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)
1993-01-01
Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.
Toroidal magnetic detector for high resolution measurement of muon momenta
Bonanos, P.
1992-01-07
A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.
Toroidal magnetic detector for high resolution measurement of muon momenta
Bonanos, Peter
1992-01-01
A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity.
Cosmic dust or other similar outer-space particles location detector
NASA Technical Reports Server (NTRS)
Aver, S.
1973-01-01
Cosmic dust may be serious radiation hazard to man and electronic equipment caught in its path. Dust detector uses two operational amplifiers and offers narrower areas for collection of cosmic dust. Detector provides excellent resolution as result of which recording of particle velocities as well as positions of their impact are more accurately determined.
46 CFR 38.15-10 - Leak detection systems-T/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... sense cargo leaks. The detectors shall be located within the space so as to permit the sensing of an... paragraph (b) of this section. The detectors shall be fitted in the following compartments: (1) Between the... indicate both on the bridge and at the cargo control station. Sampling of each detector shall be at least...
46 CFR 38.15-10 - Leak detection systems-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... sense cargo leaks. The detectors shall be located within the space so as to permit the sensing of an... paragraph (b) of this section. The detectors shall be fitted in the following compartments: (1) Between the... indicate both on the bridge and at the cargo control station. Sampling of each detector shall be at least...
46 CFR 38.15-10 - Leak detection systems-T/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... sense cargo leaks. The detectors shall be located within the space so as to permit the sensing of an... paragraph (b) of this section. The detectors shall be fitted in the following compartments: (1) Between the... indicate both on the bridge and at the cargo control station. Sampling of each detector shall be at least...
46 CFR 38.15-10 - Leak detection systems-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... sense cargo leaks. The detectors shall be located within the space so as to permit the sensing of an... paragraph (b) of this section. The detectors shall be fitted in the following compartments: (1) Between the... indicate both on the bridge and at the cargo control station. Sampling of each detector shall be at least...
46 CFR 38.15-10 - Leak detection systems-T/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... sense cargo leaks. The detectors shall be located within the space so as to permit the sensing of an... paragraph (b) of this section. The detectors shall be fitted in the following compartments: (1) Between the... indicate both on the bridge and at the cargo control station. Sampling of each detector shall be at least...
Characterisation of a new carbon nanotube detector coating for solar absolute radiometers
NASA Astrophysics Data System (ADS)
Remesal Oliva, A.; Finsterle, W.; Walter, B.; Schmutz, W.
2018-02-01
A new sprayable carbon nanotube coating for bolometric detectors aims to increase the absorptance compared to regular space qualified black paints. In collaboration with the National Institute of Standards and Technology (NIST), we have characterized the optical properties and mechanical and thermal stability of the carbon nanotube coating inside conical shaped cavity detectors.
NASA Technical Reports Server (NTRS)
Woeller, F. H.; Kojiro, D. R.; Carle, G. C.
1984-01-01
The present investigation is concerned with a miniature metastable ionization detector featuring an unconventional electrode configuration, whose performance characteristics parallel those of traditional design. The ionization detector is to be incorporated in a flight gas chromatograph (GC) for use in the Space Shuttle. The design of the detector is discussed, taking into account studies which verified the sensitivity of the detector. The triaxial design of the detector is compared with a flat-plate style. The obtained results show that the principal goal of developing a miniature, highly sensitive ionization detector for flight applications was achieved. Improved fabrication techniques will utilize glass-to-metal seals and brazing procedures.
System for detecting special nuclear materials
Jandel, Marian; Rusev, Gencho Yordanov; Taddeucci, Terry Nicholas
2015-07-14
The present disclosure includes a radiological material detector having a convertor material that emits one or more photons in response to a capture of a neutron emitted by a radiological material; a photon detector arranged around the convertor material and that produces an electrical signal in response to a receipt of a photon; and a processor connected to the photon detector, the processor configured to determine the presence of a radiological material in response to a predetermined signature of the electrical signal produced at the photon detector. One or more detectors described herein can be integrated into a detection system that is suited for use in port monitoring, treaty compliance, and radiological material management activities.
Particle Detectors in the Theory of Quantum Fields on Curved Spacetimes
NASA Astrophysics Data System (ADS)
Cant, John Fraser
This work discusses aspects of a fundamental problem in the theory of quantum fields on curved spacetimes--that of giving physical meaning to the particle representations of the theory. In particular, the response of model particle detectors is analysed in detail. Unruh (1976) first introduced the idea of a model particle detector in order to give an operational definition to particles. He found that even in flat spacetime, the excitation of a particle detector does not necessarily correspond to the presence of an energy carrier--an accelerating detector will excite in response to the zero-energy state of the Minkowski vacuum. The central question I consider in this work is --where does the energy for the excitation of the accelerating detector come from? The accepted response has been that the accelerating force provides the energy. Evaluating the energy carried by the (conformally-invariant massless scalar) field after the interaction with the detector, however, I find that the detector excitation is compensated by an equal but opposite emission of negative energy. This result suggests that there may be states of lesser energy than that of the Minkowski vacuum. To resolve this paradox, I argue that the emission of a detector following a more realistic trajectory than that of constant acceleration--one that starts and finishes in inertial motion--will in total be positive, although during periods of constant acceleration the detector will still emit negative energy. The Minkowski vacuum retains its status as the field state of lowest energy. The second question I consider is the response of Unruh's detector in curved spacetime--is it possible to use such a detector to measure the energy carried by the field? In the particular case of a detector following a Killing trajectory, I find that there is a response to the energy of the field, but that there is also an inherent 'noise'. In a two dimensional model spacetime, I show that this 'noise' depends on the detector's acceleration and on the curvature of the spacetime, thereby encompassing previous results of Unruh (1976) and of Gibbons & Hawking (1977).
Two-Photon-Absorption Scheme for Optical Beam Tracking
NASA Technical Reports Server (NTRS)
Ortiz, Gerardo G.; Farr, William H.
2011-01-01
A new optical beam tracking approach for free-space optical communication links using two-photon absorption (TPA) in a high-bandgap detector material was demonstrated. This tracking scheme is part of the canonical architecture described in the preceding article. TPA is used to track a long-wavelength transmit laser while direct absorption on the same sensor simultaneously tracks a shorter-wavelength beacon. The TPA responsivity was measured for silicon using a PIN photodiode at a laser beacon wavelength of 1,550 nm. As expected, the responsivity shows a linear dependence with incident power level. The responsivity slope is 4.5 x 10(exp -7) A/W2. Also, optical beam spots from the 1,550-nm laser beacon were characterized on commercial charge coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) imagers with as little as 13.7 microWatts of optical power (see figure). This new tracker technology offers an innovative solution to reduce system complexity, improve transmit/receive isolation, improve optical efficiency, improve signal-to-noise ratio (SNR), and reduce cost for free-space optical communications transceivers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stelljes, T.S.; Looe, H.K.; Poppe, B.
Purpose: To present a general definition of the fill factor realistically characterizing the “field coverage”, i.e. the MLC misalignment detection capabilities of a detector array. Methods: According to Gago-Arias et al.{sup 1} the fill factor of a 2D array is defined as the ratio of the area enclosed by the FWHM of the fluence response function KM(x) of a single detector and its cell area defined by the detector spacing. More generally - accounting also for the possible overlap between FWHM’s of neighboured detectors - the fill factor is here defined as that fraction of the sum of the detectormore » cell areas in which a defined MLC misalignment is detectable when the induced percentage signal changes exceed a detection threshold d. Ideally the generalized fill factor may reach 100 %. With user code EGS-chamber and a 2 MeV photon slit beam 0.25 mm wide, both types of the fill factor were calculated for an array with total cell area 100 cm{sup 2} for chamber widths 1–9 mm, using =1mm, d=5%. Results: For single chamber width 5 mm, fill factors were 0.49 (FWHM) and 0.61 (generalized). For chamber width 2 mm the FWHM fill factor was 0.13 whereas the generalized fill factor was 0.32. For chamber widths above 7 mm, the FWHM fill factor exceeds unity, and the general fill factor is exactly 1.00. Conclusions: An updated fill factor definition is introduced which, as a generalization of the FWHM-based definition, more closely estimates the performance of small array chambers and gives a realistic value in the case of overlapping sensitive areas of neighboured chambers. References:{sup 1}A. Gago-Arias, L. Brualla-Gonzalez, D.M. Gonzalez-Castano, F. Gomez, M.S. Garcia, V.L. Vega, J.M. Sueiro, J. Pardo-Montero, “Evaluation of chamber response function influence on IMRT verification using 2D commercial detector arrays,” Phys. Med. Biol. 57, 2005–2020 (2012)« less
NASA Astrophysics Data System (ADS)
Joshi, Tenzing H. Y.; Quiter, Brian J.; Maltz, Jonathan S.; Bandstra, Mark S.; Haefner, Andrew; Eikmeier, Nicole; Wagner, Eric; Luke, Tanushree; Malchow, Russell; McCall, Karen
2017-07-01
The Airborne Radiological Enhanced-sensor System (ARES) includes a prototype helicopter-borne CsI(Na) detector array that has been developed as part of the DHS Domestic Nuclear Detection Office Advanced Technology Demonstration. The detector system geometry comprises two pairs of 23-detector arrays designed to function as active masks, providing additional angular resolution of measured gamma rays in the roll dimension. Experimental measurements, using five radioisotopes (137Cs, 60Co, 241Am, 131I, and 99mTc), were performed to map the detector response in both roll and pitch dimensions. This paper describes the acquisition and analysis of these characterization measurements, calculation of the angular response of the ARES system, and how this response function is used to improve aerial detection and localization of radiological and nuclear threat sources.
Study of solid state photomultiplier
NASA Technical Reports Server (NTRS)
Hays, K. M.; Laviolette, R. A.
1987-01-01
Available solid state photomultiplier (SSPM) detectors were tested under low-background, low temperature conditions to determine the conditions producing optimal sensitivity in a space-based astronomy system such as a liquid cooled helium telescope in orbit. Detector temperatures varied between 6 and 9 K, with background flux ranging from 10 to the 13th power to less than 10 to the 6th power photons/square cm-s. Measured parameters included quantum efficiency, noise, dark current, and spectral response. Experimental data were reduced, analyzed, and combined with existing data to build the SSPM data base included herein. The results were compared to analytical models of SSPM performance where appropriate models existed. Analytical models presented here were developed to be as consistent with the data base as practicable. Significant differences between the theory and data are described. Some models were developed or updated as a result of this study.
Avalanche photodiode based time-of-flight mass spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Livi, Stefano A.; Desai, Mihir I.
2015-08-15
This study reports on the performance of Avalanche Photodiodes (APDs) as a timing detector for ion Time-of-Flight (TOF) mass spectroscopy. We found that the fast signal carrier speed in a reach-through type APD enables an extremely short timescale response with a mass or energy independent <2 ns rise time for <200 keV ions (1−40 AMU) under proper bias voltage operations. When combined with a microchannel plate to detect start electron signals from an ultra-thin carbon foil, the APD comprises a novel TOF system that successfully operates with a <0.8 ns intrinsic timing resolution even using commercial off-the-shelf constant-fraction discriminators. Bymore » replacing conventional total-energy detectors in the TOF-Energy system, APDs offer significant power and mass savings or an anti-coincidence background rejection capability in future space instrumentation.« less
Mechanisms of the passage of dark currents through Cd(Zn)Te semi-insulating crystals
NASA Astrophysics Data System (ADS)
Sklyarchuk, V.; Fochuk, P.; Rarenko, I.; Zakharuk, Z.; Sklyarchuk, O.; Nykoniuk, Ye.; Rybka, A.; Kutny, V.; Bolotnikov, A. E.; James, R. B.
2014-09-01
We investigated the passage of dark currents through semi-insulating crystals of Cd(Zn)Te with weak n-type conductivity that are used widely as detectors of ionizing radiation. The crystals were grown from a tellurium solution melt at 800 оС by the zone-melting method, in which a polycrystalline rod in a quartz ampoule was moved through a zone heater at a rate of 2 mm per day. The synthesis of the rod was carried out at ~1150 оС. We determined the important electro-physical parameters of this semiconductor, using techniques based on a parallel study of the temperature dependence of current-voltage characteristics in both the ohmic and the space-charge-limited current regions. We established in these crystals the relationship between the energy levels and the concentrations of deep-level impurity states, responsible for dark conductivity and their usefulness as detectors.
Design Studies for a Far Infrared Absolute Spectrometer for the Cosmic Background Explorer
NASA Technical Reports Server (NTRS)
Johnson, N. J. E.
1980-01-01
Unrelenting symmetry of design is required to assure the thermal balance of a cryogenically cooled, rapid scan interferometer spectrometer to be mounted in vacuum with the Cosmic Background Explorer liquid helium dewar. The instrument receives inputs from Winston cone optical flux collectors, one open to space and a second coupled to a black body reference source. A differential instrument, the spectrometer produces outputs corresponding to the Fourier transform of the spectral radiance difference between the two inputs. The two outputs are sensed by four detectors, two optimized for shorter wavelength response, and two optimized for longer wavelengths. The optical design, detector and signal channel, system sensitivity, mechanics, thermal control and cryogenics, electronics and power systems, command and control, calibration, system test requirements, and the instrument interface are discussed. Recommendations for continued work are indicated for the superconducting reflective horns, the motor bearing and drive, and design detail.
46 CFR 28.325 - Fire detection systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... space must be equipped with an independent modular smoke detector or a smoke actuated fire detecting... detector must meet UL 217 and be listed as a “Single Station Smoke Detector—Also suitable for use in...
46 CFR 28.325 - Fire detection systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... space must be equipped with an independent modular smoke detector or a smoke actuated fire detecting... detector must meet UL 217 and be listed as a “Single Station Smoke Detector—Also suitable for use in...
46 CFR 28.325 - Fire detection systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... space must be equipped with an independent modular smoke detector or a smoke actuated fire detecting... detector must meet UL 217 and be listed as a “Single Station Smoke Detector—Also suitable for use in...
46 CFR 28.325 - Fire detection systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... space must be equipped with an independent modular smoke detector or a smoke actuated fire detecting... detector must meet UL 217 and be listed as a “Single Station Smoke Detector—Also suitable for use in...
46 CFR 28.325 - Fire detection systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... space must be equipped with an independent modular smoke detector or a smoke actuated fire detecting... detector must meet UL 217 and be listed as a “Single Station Smoke Detector—Also suitable for use in...
Gamma-ray Irradiation Effects on InAs/GaSb-based nBn IR Detector
2011-01-01
very low noise performance. When properly passivated, conventional mercury cadmium telluride ( MCT )?based infrared detectors have been shown to...Gamma-ray Irradiation Effects on InAs/GaSb-based nBn IR Detector Vincent M. Cowan*1, Christian P. Morath1, Seth M. Swift1, Stephen Myers2...2Center for High Technology Materials, University of New Mexico, Albuquerque, NM 87106, USA ABSTRACT IR detectors operated in a space environment are
The Bright Future of Gravitational Wave Astronomy
NASA Astrophysics Data System (ADS)
Gonzalez, Gabriela
2008-04-01
These are exciting times in the search for gravitational waves. Gravitational waves are expected from many different astrophysical sources: brief transients from violent events like supernova explosions and collisions of neutron stars and black holes, coalescence of compact binary systems, continuous waves from rotating systems, and stochastic signals from cosmological origin or unresolved transients. The LIGO gravitational wave detectors have achieved unprecedented sensitivity to gravitational waves, and other detectors around the world are expected to reach similar sensitivities. The LIGO Scientific Collaboration (LSC) has recently completed their most sensitive observation run to date with LIGO and GEO detectors, including several months of joint observations with the European VIRGO detector. The LIGO Laboratory and the LSC, as well as the Virgo Collaboration, are actively preparing for operating enhanced detectors in the very near future. The next decade will see the construction and commissioning of Advanced LIGO and VIRGO, and quite possibly the launch of the space-based LISA mission, starting for sure then, if not earlier, a new era for gravitational wave astronomy. Plans for a world-wide network of ground based detectors involving more detectors in Europe, Japan and Australia are becoming more concrete. The future of gravitational wave astronomy is bright indeed! In this talk, will briefly describe the present status of the ground and space based detector projects and discuss the science we may expect to do with the detectors (and detections!) we will have in the upcoming era of gravitational wave astronomy.
The Focal Surface of the JEM-EUSO Telescope
NASA Technical Reports Server (NTRS)
Kawasaki, Yoshiya
2007-01-01
Extreme Universe Space Observatory onboard JEM/EP (JEM-EUSO) is a space mission to study extremely high-energy cosmic rays. The JEM-EUSO instrument is a wide-angle refractive telescope in near-ultraviolet wavelength region to observe time-resolved atmospheric fluorescence images of the extensive air showers from the International Space Station. The focal surface is a spherical curved surface, and its area amounts to about 4.5 square m. The focal surface detector is covered with about 6,000 multi-anode photomultipliers (MAPMTs). The focal surface detector consists of Photo-Detector-Modules, each of which consists of 9 Elementary Cells (ECs). The EC contains 4 units of the MAPMTs. Therefore, about 1,500 ECs or about 160 PDMS are arranged on the whole of the focal surface of JEM- EUSO. The EC is a basic unit of the front-end electronics. The PDM is a, basic unit of the data acquisition system
Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors.
Gair, Jonathan R; Vallisneri, Michele; Larson, Shane L; Baker, John G
2013-01-01
We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10 -5 - 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.
Fast response pyroelectric detector-preamplifier assembled device
NASA Astrophysics Data System (ADS)
Bai, PiJi; Tai, Yunjian; Liu, Huiping
2008-03-01
The pyroelectric detector is wide used for its simple structure and high performance to price ratio. It has been used in thermal detecting, infrared spectrum and laser testing. When the pyroelectric detector was applied in practice, fast reponse speed is need. For improving the response speed of the pyroelectric detector some specific technology has been used in the preamplifier schematic. High sense and fast response character of the pyroelectric detector-preamplifier assembled device had been achieved. When the device is applied in acute concussion condition, it must survive from the acute concussion condition testing. For it reliability some specific technology was used in the device fabricating procedure. At last the performance parameter testing result and simulation application condition result given in this paper show the performance of the pyroelectric detector-preamplifier assembled device had achieved the advance goal.
Development of a multi-element microdosimetric detector based on a thick gas electron multiplier
NASA Astrophysics Data System (ADS)
Anjomani, Z.; Hanu, A. R.; Prestwich, W. V.; Byun, S. H.
2017-03-01
A prototype multi-element gaseous microdosimetric detector was developed using the Thick Gas Electron Multiplier (THGEM) technique. The detector aims at measuring neutron and gamma-ray dose rates for weak neutron-gamma radiation fields. The multi-element design was employed to increase the neutron detection efficiency. The prototype THGEM multi-element detector consists of three layers of tissue equivalent plastic hexagons and each layer houses a hexagonal array of seven cylindrical gas cavity elements with equal heights and diameters of 17 mm. The final detector structure incorporates 21 gaseous volumes. Owing to the absence of wire electrodes, the THGEM multi-element detector offers flexible and convenient fabrication. The detector responses to neutron and gamma-ray were investigated using the McMaster Tandetron 7Li(p,n) neutron source. The dosimetric performance of the detector is presented in contrast to the response of a commercial tissue equivalent proportional counter. Compared to the standard TEPC response, the detector gave a consistent microdosimetric response with an average discrepancy of 8 % in measured neutron absorbed dose. An improvement of a factor of 3.0 in neutron detection efficiency has been accomplished with only a small degradation in energy resolution. However, its low energy cut off is about 6 keV/μm, which is not sufficient to measure the gamma-ray dose. This problem will be addressed by increasing the electron multiplication gain using double THGEM layers.
Liu, Xuejin; Persson, Mats; Bornefalk, Hans; Karlsson, Staffan; Xu, Cheng; Danielsson, Mats; Huber, Ben
2015-07-01
Variations among detector channels in computed tomography can lead to ring artifacts in the reconstructed images and biased estimates in projection-based material decomposition. Typically, the ring artifacts are corrected by compensation methods based on flat fielding, where transmission measurements are required for a number of material-thickness combinations. Phantoms used in these methods can be rather complex and require an extensive number of transmission measurements. Moreover, material decomposition needs knowledge of the individual response of each detector channel to account for the detector inhomogeneities. For this purpose, we have developed a spectral response model that binwise predicts the response of a multibin photon-counting detector individually for each detector channel. The spectral response model is performed in two steps. The first step employs a forward model to predict the expected numbers of photon counts, taking into account parameters such as the incident x-ray spectrum, absorption efficiency, and energy response of the detector. The second step utilizes a limited number of transmission measurements with a set of flat slabs of two absorber materials to fine-tune the model predictions, resulting in a good correspondence with the physical measurements. To verify the response model, we apply the model in two cases. First, the model is used in combination with a compensation method which requires an extensive number of transmission measurements to determine the necessary parameters. Our spectral response model successfully replaces these measurements by simulations, saving a significant amount of measurement time. Second, the spectral response model is used as the basis of the maximum likelihood approach for projection-based material decomposition. The reconstructed basis images show a good separation between the calcium-like material and the contrast agents, iodine and gadolinium. The contrast agent concentrations are reconstructed with more than 94% accuracy.
Liu, Xuejin; Persson, Mats; Bornefalk, Hans; Karlsson, Staffan; Xu, Cheng; Danielsson, Mats; Huber, Ben
2015-01-01
Abstract. Variations among detector channels in computed tomography can lead to ring artifacts in the reconstructed images and biased estimates in projection-based material decomposition. Typically, the ring artifacts are corrected by compensation methods based on flat fielding, where transmission measurements are required for a number of material-thickness combinations. Phantoms used in these methods can be rather complex and require an extensive number of transmission measurements. Moreover, material decomposition needs knowledge of the individual response of each detector channel to account for the detector inhomogeneities. For this purpose, we have developed a spectral response model that binwise predicts the response of a multibin photon-counting detector individually for each detector channel. The spectral response model is performed in two steps. The first step employs a forward model to predict the expected numbers of photon counts, taking into account parameters such as the incident x-ray spectrum, absorption efficiency, and energy response of the detector. The second step utilizes a limited number of transmission measurements with a set of flat slabs of two absorber materials to fine-tune the model predictions, resulting in a good correspondence with the physical measurements. To verify the response model, we apply the model in two cases. First, the model is used in combination with a compensation method which requires an extensive number of transmission measurements to determine the necessary parameters. Our spectral response model successfully replaces these measurements by simulations, saving a significant amount of measurement time. Second, the spectral response model is used as the basis of the maximum likelihood approach for projection-based material decomposition. The reconstructed basis images show a good separation between the calcium-like material and the contrast agents, iodine and gadolinium. The contrast agent concentrations are reconstructed with more than 94% accuracy. PMID:26839904
NASA Technical Reports Server (NTRS)
Davidson, Frederic M.; Sun, Xiaoli
1993-01-01
This interim report consists of four separate reports from our research on the receivers of NASA's Gravity And Magnetic Experiment Satellite (GAMES). The first report is entitled 'Analysis of phase estimation bias of GAMES receiver due to Doppler shift.' The second report is 'Background radiation on GAMES fine ranging detector from the moon, the planets, and the stars.' The third report is 'Background radiation on GAMES receivers from the ocean sun glitter and the direct sun.' The fourth report is 'GAMES receiver performance versus background radiation power on the detectors.'
Fabrication of Pop-up Detector Arrays on Si Wafers
NASA Technical Reports Server (NTRS)
Li, Mary J.; Allen, Christine A.; Gordon, Scott A.; Kuhn, Jonathan L.; Mott, David B.; Stahle, Caroline K.; Wang, Liqin L.
1999-01-01
High sensitivity is a basic requirement for a new generation of thermal detectors. To meet the requirement, close-packed, two-dimensional silicon detector arrays have been developed in NASA Goddard Space Flight Center. The goal of the task is to fabricate detector arrays configured with thermal detectors such as infrared bolometers and x-ray calorimeters to use in space fliGht missions. This paper focuses on the fabrication and the mechanical testing of detector arrays in a 0.2 mm pixel size, the smallest pop-up detectors being developed so far. These array structures, nicknamed "PUDS" for "Pop-Up Detectors", are fabricated on I pm thick, single-crystal, silicon membranes. Their designs have been refined so we can utilize the flexibility of thin silicon films by actually folding the silicon membranes to 90 degrees in order to obtain close-packed two-dimensional arrays. The PUD elements consist of a detector platform and two legs for mechanical support while also serving as electrical and thermal paths. Torsion bars and cantilevers connecting the detector platform to the legs provide additional flexures for strain relief. Using micro-electromechanical structure (MEMS) fabrication techniques, including photolithography, anisotropic chemical etching, reactive-ion etching, and laser dicing, we have fabricated PLTD detector arrays of fourteen designs with a variation of four parameters including cantilever length, torsion bar length and width, and leg length. Folding tests were conducted to test mechanical stress distribution for the array structures. We obtained folding yields and selected optimum design parameters to reach minimal stress levels. Computer simulation was also employed to verify mechanical behaviors of PUDs in the folding process. In addition, scanning electron microscopy was utilized to examine the flatness of detectors and the alignment of detector pixels in arrays. The fabrication of thermistors and heaters on the pop-up detectors is under way, preparing us for the next step of the experiment, the thermal test.
Direct Write Printing on Thin and Flexible Substrates for Space Applications
NASA Technical Reports Server (NTRS)
Paquette, Beth
2016-01-01
This presentation describes the work done on direct-write printing conductive traces for a flexible detector application. A Repeatability Plan was established to define detector requirements, material and printer selections, printing facilities, and tests to verify requirements are met. Designs were created for the detector, and printed using an aerosol jet printer. Testing for requirement verification is ongoing.
1970-09-01
This 1970 photograph shows Skylab's Dual X-Ray Telescopes, an Apollo Telescope Mount facility. It was designed to gather solar radiation data in the x-ray region of the solar spectrum and provide information on physical processes within the solar atmosphere. In support of the two primary telescopes, auxiliary instruments provided a continuous record of the total x-ray flux in two bands. A flare detector was also provided at the control console as an aid to astronauts for monitoring solar activity. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.
1973-01-01
This chart details Skylab's Dual X-Ray Telescopes, one of eight Apollo Telescope Mount facilities. It was designed to gather solar radiation data in the x-ray region of the solar spectrum and provide information on physical processes within the solar atmosphere. In support of the two primary telescopes, auxiliary instruments provided a continuous record of the total x-ray flux in two bands. A flare detector was also provided at the control console as an aid to astronauts for monitoring solar activity. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.
Statistical relative gain calculation for Landsat 8
NASA Astrophysics Data System (ADS)
Anderson, Cody; Helder, Dennis L.; Jeno, Drake
2017-09-01
The Landsat 8 Operational Land Imager (OLI) is an optical multispectral push-broom sensor with a focal plane consisting of over 7000 detectors per spectral band. Each of the individual imaging detectors contributes one column of pixels to an image. Any difference in the response between neighboring detectors may result in a visible stripe or band in the imagery. An accurate estimate of each detector's relative gain is needed to account for any differences between detector responses. This paper describes a procedure for estimating relative gains which uses normally acquired Earth viewing statistics.
Detector Suspended in Free Space
2014-03-17
This image shows one of the NASA detectors from the BICEP2 project, developed in collaboration with the NSF. The sensors were used to make the first detection of gravitational waves in the ancient background light from the early universe.
Calibration uncertainty for Advanced LIGO's first and second observing runs
NASA Astrophysics Data System (ADS)
Cahillane, Craig; Betzwieser, Joe; Brown, Duncan A.; Goetz, Evan; Hall, Evan D.; Izumi, Kiwamu; Kandhasamy, Shivaraj; Karki, Sudarshan; Kissel, Jeff S.; Mendell, Greg; Savage, Richard L.; Tuyenbayev, Darkhan; Urban, Alex; Viets, Aaron; Wade, Madeline; Weinstein, Alan J.
2017-11-01
Calibration of the Advanced LIGO detectors is the quantification of the detectors' response to gravitational waves. Gravitational waves incident on the detectors cause phase shifts in the interferometer laser light which are read out as intensity fluctuations at the detector output. Understanding this detector response to gravitational waves is crucial to producing accurate and precise gravitational wave strain data. Estimates of binary black hole and neutron star parameters and tests of general relativity require well-calibrated data, as miscalibrations will lead to biased results. We describe the method of producing calibration uncertainty estimates for both LIGO detectors in the first and second observing runs.
Generation-recombination noise in extrinsic photoconductive detectors
NASA Technical Reports Server (NTRS)
Brukilacchio, T. J.; Skeldon, M. D.; Boyd, R. W.
1984-01-01
A theory of generation-recombination noise is presented and applied to the analysis of the performance limitations of extrinsic photoconductive detectors. The theory takes account both of the photoinduced generation of carriers and of thermal generation that is due to the finite temperature of the detector. Explicit formulas are derived that relate the detector response time, responsivity, and noise equivalent power to the material properties of the photoconductor (such as the presence of compensating impurities) and to the detector's operating conditions, such as its temperature and the presence of background radiation. The detector's performance is shown to degrade at high background levels because of saturation effects.
Bellei, Francesco; Cartwright, Alyssa P; McCaughan, Adam N; Dane, Andrew E; Najafi, Faraz; Zhao, Qingyuan; Berggren, Karl K
2016-02-22
This paper describes the construction of a cryostat and an optical system with a free-space coupling efficiency of 56.5% ± 3.4% to a superconducting nanowire single-photon detector (SNSPD) for infrared quantum communication and spectrum analysis. A 1K pot decreases the base temperature to T = 1.7 K from the 2.9 K reached by the cold head cooled by a pulse-tube cryocooler. The minimum spot size coupled to the detector chip was 6.6 ± 0.11 µm starting from a fiber source at wavelength, λ = 1.55 µm. We demonstrated photon counting on a detector with an 8 × 7.3 µm2 area. We measured a dark count rate of 95 ± 3.35 kcps and a system detection efficiency of 1.64% ± 0.13%. We explain the key steps that are required to improve further the coupling efficiency.
A Low Nuclear Recoil Energy Threshold for Dark Matter Search with CRESST-III Detectors
NASA Astrophysics Data System (ADS)
Mancuso, M.; Angloher, G.; Bauer, P.; Bento, A.; Bucci, C.; Canonica, L.; D'Addabbo, A.; Defay, X.; Erb, A.; von Feilitzsch, Franz; Ferreiro Iachellini, N.; Gorla, P.; Gütlein, A.; Hauff, D.; Jochum, J.; Kiefer, M.; Kluck, H.; Kraus, H.; Lanfranchi, J. C.; Langenkämper, A.; Loebell, J.; Mondragon, E.; Münster, A.; Pagliarone, C.; Petricca, F.; Potzel, W.; Pröbst, F.; Puig, R.; Reindl, F.; Rothe, J.; Schäffner, K.; Schieck, J.; Schipperges, V.; Schönert, S.; Seidel, W.; Stahlberg, M.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Tanzke, A.; Thi, H. H. Trinh; Türkoglu, C.; Uffinger, M.; Ulrich, A.; Usherov, I.; Wawoczny, S.; Willers, M.; Wüstrich, M.
2018-05-01
The CRESST-III experiment (Cryogenic Rare Events Search with Superconducting Thermometers), located at the underground facility Laboratori Nazionali del Gran Sasso in Italy, uses scintillating CaWO_4 crystals as cryogenic calorimeters to search for direct dark matter interactions in detectors. A large part of the parameter space for spin-independent scattering off nuclei remains untested for dark matter particles with masses below a few GeV/c^2 , despite many naturally motivated theoretical models for light dark matter particles. The CRESST-III detectors are designed to achieve the performance required to probe the low-mass region of the parameter space with a sensitivity never reached before. In this paper, new results on the performance and an overview of the CRESST-III detectors will be presented, emphasizing the results about the low-energy threshold for nuclear recoil of CRESST-III Phase 1 which started collecting data in August 2016.
Automated response matching for organic scintillation detector arrays
NASA Astrophysics Data System (ADS)
Aspinall, M. D.; Joyce, M. J.; Cave, F. D.; Plenteda, R.; Tomanin, A.
2017-07-01
This paper identifies a digitizer technology with unique features that facilitates feedback control for the realization of a software-based technique for automatically calibrating detector responses. Three such auto-calibration techniques have been developed and are described along with an explanation of the main configuration settings and potential pitfalls. Automating this process increases repeatability, simplifies user operation, enables remote and periodic system calibration where consistency across detectors' responses are critical.
Accurate and efficient modeling of the detector response in small animal multi-head PET systems.
Cecchetti, Matteo; Moehrs, Sascha; Belcari, Nicola; Del Guerra, Alberto
2013-10-07
In fully three-dimensional PET imaging, iterative image reconstruction techniques usually outperform analytical algorithms in terms of image quality provided that an appropriate system model is used. In this study we concentrate on the calculation of an accurate system model for the YAP-(S)PET II small animal scanner, with the aim to obtain fully resolution- and contrast-recovered images at low levels of image roughness. For this purpose we calculate the system model by decomposing it into a product of five matrices: (1) a detector response component obtained via Monte Carlo simulations, (2) a geometric component which describes the scanner geometry and which is calculated via a multi-ray method, (3) a detector normalization component derived from the acquisition of a planar source, (4) a photon attenuation component calculated from x-ray computed tomography data, and finally, (5) a positron range component is formally included. This system model factorization allows the optimization of each component in terms of computation time, storage requirements and accuracy. The main contribution of this work is a new, efficient way to calculate the detector response component for rotating, planar detectors, that consists of a GEANT4 based simulation of a subset of lines of flight (LOFs) for a single detector head whereas the missing LOFs are obtained by using intrinsic detector symmetries. Additionally, we introduce and analyze a probability threshold for matrix elements of the detector component to optimize the trade-off between the matrix size in terms of non-zero elements and the resulting quality of the reconstructed images. In order to evaluate our proposed system model we reconstructed various images of objects, acquired according to the NEMA NU 4-2008 standard, and we compared them to the images reconstructed with two other system models: a model that does not include any detector response component and a model that approximates analytically the depth of interaction as detector response component. The comparisons confirm previous research results, showing that the usage of an accurate system model with a realistic detector response leads to reconstructed images with better resolution and contrast recovery at low levels of image roughness.
Accurate and efficient modeling of the detector response in small animal multi-head PET systems
NASA Astrophysics Data System (ADS)
Cecchetti, Matteo; Moehrs, Sascha; Belcari, Nicola; Del Guerra, Alberto
2013-10-01
In fully three-dimensional PET imaging, iterative image reconstruction techniques usually outperform analytical algorithms in terms of image quality provided that an appropriate system model is used. In this study we concentrate on the calculation of an accurate system model for the YAP-(S)PET II small animal scanner, with the aim to obtain fully resolution- and contrast-recovered images at low levels of image roughness. For this purpose we calculate the system model by decomposing it into a product of five matrices: (1) a detector response component obtained via Monte Carlo simulations, (2) a geometric component which describes the scanner geometry and which is calculated via a multi-ray method, (3) a detector normalization component derived from the acquisition of a planar source, (4) a photon attenuation component calculated from x-ray computed tomography data, and finally, (5) a positron range component is formally included. This system model factorization allows the optimization of each component in terms of computation time, storage requirements and accuracy. The main contribution of this work is a new, efficient way to calculate the detector response component for rotating, planar detectors, that consists of a GEANT4 based simulation of a subset of lines of flight (LOFs) for a single detector head whereas the missing LOFs are obtained by using intrinsic detector symmetries. Additionally, we introduce and analyze a probability threshold for matrix elements of the detector component to optimize the trade-off between the matrix size in terms of non-zero elements and the resulting quality of the reconstructed images. In order to evaluate our proposed system model we reconstructed various images of objects, acquired according to the NEMA NU 4-2008 standard, and we compared them to the images reconstructed with two other system models: a model that does not include any detector response component and a model that approximates analytically the depth of interaction as detector response component. The comparisons confirm previous research results, showing that the usage of an accurate system model with a realistic detector response leads to reconstructed images with better resolution and contrast recovery at low levels of image roughness.
NASA Technical Reports Server (NTRS)
Parker, Bradford H.; Stahle, C. M.; Barthelmy, S. D.; Parsons, A. M.; Tueller, J.; VanSant, J. T.; Munoz, B. F.; Snodgrass, S. J.; Mullinix, R. E.
1999-01-01
One of the critical challenges for large area cadmium zinc telluride (CdZnTe) detector arrays is obtaining material capable of uniform imaging and spectroscopic response. Two complementary nondestructive techniques for characterizing bulk CdZnTe have been developed to identify material with a uniform response. The first technique, infrared transmission imaging, allows for rapid visualization of bulk defects. The second technique, x-ray spectral mapping, provides a map of the material spectroscopic response when it is configured as a planar detector. The two techniques have been used to develop a correlation between bulk defect type and detector performance. The correlation allows for the use of infrared imaging to rapidly develop wafer mining maps. The mining of material free of detrimental defects has the potential to dramatically increase the yield and quality of large area CdZnTe detector arrays.
Is vacuum ultraviolet detector a concentration or a mass dependent detector?
Liu, Huian; Raffin, Guy; Trutt, Guillaume; Randon, Jérôme
2017-12-29
The vacuum ultraviolet detector (VUV) is a very effective tool for chromatogram deconvolution and peak identification, and can also be used for quantification. To avoid quantitative issues in relation to time drift, such as variation of peak area or peak height, the detector response type has to be well defined. Due to the make-up flow and pressure regulation of make-up, the detector response (height of the peak) and peak area appeared to be dependent on experimental conditions such as inlet pressure and make-up pressure. Even if for some experimental conditions, VUV looks like mass-flow sensitive detector, it has been demonstrated that VUV is a concentration sensitive detector. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Barrentine, Emily Margaret
In this thesis the development of a Transition-Edge Hot-Electron Microbolometer (THM) is presented. This detector will have the capacity to make sensitive and broadband astrophysical observations when deployed in large detector arrays in future ground- or space-based instruments, over frequencies ranging from 30-300 GHz (10-1 mm). This thesis focuses on the development of the THM for observations of the Cosmic Microwave Background (CMB), and specifically for observations of the CMB polarization signal. The THM is a micron-sized bolometer that is fabricated photolithographically. It consists of a superconducting Molybdenum/Gold Transition-Edge Sensor (TES) and a thin-film semi-metal Bismuth microwave absorber, both of which are deposited directly on the substrate. The THM employs the decoupling between electrons and phonons at low temperatures (˜100-300 mK) to provide thermal isolation for the bolometer. The devices are read out with Superconducting Quantum Interference Devices (SQUIDs). In this thesis a summary of the thermal and electrical models for the THM detector is presented. The physical processes within the detector, with particular attention to electron-phonon decoupling, and the lateral proximity effect between the superconducting leads and the TES, are also discussed. This understanding of the detector and these models are used to interpret measurements of thermal conductance, noise, responsivity and the transition behaviour of a variety of THM test devices. The optimization of the THM design, based on these models and measurements, is also discussed, and the thesis concludes with a presentation of the recommended THM design for CMB applications. In addition, a planar-microwave circuit design and a quasi-optical scheme for coupling microwave radiation to the THM detector are presented.
Hybrid Monte Carlo/deterministic methods for radiation shielding problems
NASA Astrophysics Data System (ADS)
Becker, Troy L.
For the past few decades, the most common type of deep-penetration (shielding) problem simulated using Monte Carlo methods has been the source-detector problem, in which a response is calculated at a single location in space. Traditionally, the nonanalog Monte Carlo methods used to solve these problems have required significant user input to generate and sufficiently optimize the biasing parameters necessary to obtain a statistically reliable solution. It has been demonstrated that this laborious task can be replaced by automated processes that rely on a deterministic adjoint solution to set the biasing parameters---the so-called hybrid methods. The increase in computational power over recent years has also led to interest in obtaining the solution in a region of space much larger than a point detector. In this thesis, we propose two methods for solving problems ranging from source-detector problems to more global calculations---weight windows and the Transform approach. These techniques employ sonic of the same biasing elements that have been used previously; however, the fundamental difference is that here the biasing techniques are used as elements of a comprehensive tool set to distribute Monte Carlo particles in a user-specified way. The weight window achieves the user-specified Monte Carlo particle distribution by imposing a particular weight window on the system, without altering the particle physics. The Transform approach introduces a transform into the neutron transport equation, which results in a complete modification of the particle physics to produce the user-specified Monte Carlo distribution. These methods are tested in a three-dimensional multigroup Monte Carlo code. For a basic shielding problem and a more realistic one, these methods adequately solved source-detector problems and more global calculations. Furthermore, they confirmed that theoretical Monte Carlo particle distributions correspond to the simulated ones, implying that these methods can be used to achieve user-specified Monte Carlo distributions. Overall, the Transform approach performed more efficiently than the weight window methods, but it performed much more efficiently for source-detector problems than for global problems.
Diamond Scattering Detectors for Compton Telescopes
NASA Astrophysics Data System (ADS)
Bloser, Peter
The objective of the proposed work is to demonstrate the suitability of artificial singlecrystal diamond detectors (SCDDs) for use as the scattering medium in Compton telescopes for medium-energy gamma-ray astronomy. SCDDs offer the possibility of position and energy resolution comparable to those of silicon solid-state detectors (SSDs), combined with efficiency and timing resolution so-far only achievable using fast scintillators. When integrated with a calorimeter composed of fast inorganic scintillator, such as CeBr3, read out by silicon photomultipliers (SiPMs), SCDDs will enable a compact and efficient Compton telescope using time-of-flight (ToF) discrimination to achieve low background and high sensitivity. This detector development project will be a collaboration between the University of New Hampshire (UNH) and Southwest Research Institute (SwRI). The proposed work represents an innovative combination of detector technologies originally conceived separately for high-energy astronomy (fast scintillators read out by SiPMs; UNH) and space plasma/particle physics (SCDDs; SwRI). Recently SwRI has demonstrated that SCDDs fabricated using chemical vapor deposition (CVD) show good energy resolution ( 7 keV FWHM), comparable to silicon SSDs, with much faster time response ( ns rise time) due to higher electron/hole mobilities. They are also temperature- and lightinsensitive, and radiation hard. In addition, diamond is low-Z, composed entirely of carbon, but relatively high-density (3.5 g cm-3) compared to silicon or organic scintillator. SCDDs are therefore an intriguing possibility for a new Compton scattering element: if patterned with mm-sized readout electrodes and combined with a fast inorganic scintillator calorimeter, SCDDs could enable a compact but efficient Compton telescope with superior angular and energy resolution, while maintaining ToF background rejection. Such an instrument offers the exciting potential for unprecedented sensitivity, especially at energies < 1 - 2 MeV, on a small-scale mission utilizing recently available SmallSat buses (payload mass <100 kg). We propose to demonstrate this by constructing and testing a small proof-of-concept prototype and, based on its performance, using Monte Carlo simulations to explore the possibilities of furthering MeV science using relatively small-scale space missions.
Integrated infrared detector arrays for low-background applications
NASA Technical Reports Server (NTRS)
Mccreight, C. R.; Goebel, J. H.
1982-01-01
Advanced infrared detector and detector array technology is being developed and characterized for future NASA space astronomy applications. Si:Bi charge-injection-device arrays have been obtained, and low-background sensitivities comparable to that of good discrete detectors have been measured. Intrinsic arrays are being assessed, and laboratory and telescope data have been collected on a monolithic InSb CCD array. For wavelengths longer than 30 microns, improved Ge:Ga detectors have been produced, and steps have been taken to prove the feasibility of an integrated extrinsic germanium array. Other integrated arrays and cryogenic components are also under investigation.
Jeong, Tae Won; Singh, P K; Scullion, C; Ahmed, H; Kakolee, K F; Hadjisolomou, P; Alejo, A; Kar, S; Borghesi, M; Ter-Avetisyan, S
2016-08-01
The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.
NASA Astrophysics Data System (ADS)
Jeong, Tae Won; Singh, P. K.; Scullion, C.; Ahmed, H.; Kakolee, K. F.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.; Ter-Avetisyan, S.
2016-08-01
The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.
Highly-Sensitive Thin Film THz Detector Based on Edge Metal-Semiconductor-Metal Junction.
Jeon, Youngeun; Jung, Sungchul; Jin, Hanbyul; Mo, Kyuhyung; Kim, Kyung Rok; Park, Wook-Ki; Han, Seong-Tae; Park, Kibog
2017-12-04
Terahertz (THz) detectors have been extensively studied for various applications such as security, wireless communication, and medical imaging. In case of metal-insulator-metal (MIM) tunnel junction THz detector, a small junction area is desirable because the detector response time can be shortened by reducing it. An edge metal-semiconductor-metal (EMSM) junction has been developed with a small junction area controlled precisely by the thicknesses of metal and semiconductor films. The voltage response of the EMSM THz detector shows the clear dependence on the polarization angle of incident THz wave and the responsivity is found to be very high (~2,169 V/W) at 0.4 THz without any antenna and signal amplifier. The EMSM junction structure can be a new and efficient way of fabricating the nonlinear device THz detector with high cut-off frequency relying on extremely small junction area.
NASA Astrophysics Data System (ADS)
Padula, Francis; Cao, Changyong
2014-09-01
The Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS) Sea Surface Temperature (SST) Environmental Data Record (EDR) team observed an anomalous striping pattern in the SST data. To assess possible causes due to the detector-level Spectral Response Functions (SRFs), a study was conducted to compare the radiometric response of the detector-level and operation band averaged SRFs of VIIRS bands M15 & M16 using simulated blackbody radiance data and clear-sky ocean radiances under different atmospheric conditions. It was concluded that the SST product is likely impacted by small differences in detector-level SRFs, and that if users require optimal system performance detector-level processing is recommended. Future work will investigate potential SDR product improvements through detector-level processing in support of the generation of Suomi NPP VIIRS climate quality SDRs.
NASA Astrophysics Data System (ADS)
Ade, N.; Nam, T. L.; Mhlanga, S. H.
2013-05-01
Although the near-tissue equivalence of diamond allows the direct measurement of dose for clinical applications without the need for energy-corrections, it is often cited that diamond detectors require pre-irradiation, a procedure necessary to stabilize the response or sensitivity of a diamond detector before dose measurements. In addition it has been pointed out that the relative dose measured with a diamond detector requires dose rate dependence correction and that the angular dependence of a detector could be due to its mechanical design or to the intrinsic angular sensitivity of the detection process. While the cause of instability of response has not been meticulously investigated, the issue of dose rate dependence correction is uncertain as some studies ignored it but reported good results. The aims of this study were therefore to investigate, in particular (1) the major cause of the unstable response of diamond detectors requiring pre-irradiation; (2) the influence of dose rate dependence correction in relative dose measurements; and (3) the angular dependence of the diamond detectors. The study was conducted with low-energy X-rays and electron therapy beams on HPHT and CVD synthesized diamonds. Ionization chambers were used for comparative measurements. Through systematic investigations, the major cause of the unstable response of diamond detectors requiring the recommended pre-irradiation step was isolated and attributed to the presence and effects of ambient light. The variation in detector's response between measurements in light and dark conditions could be as high as 63% for a CVD diamond. Dose rate dependence parameters (Δ values) of 0.950 and 1.035 were found for the HPHT and CVD diamond detectors, respectively. Without corrections based on dose rate dependence, the relative differences between depth-doses measured with the diamond detectors and a Markus chamber for exposures to 7 and 14 MeV electron beams were within 2.5%. A dose rate dependence correction using the Δ values obtained seemed to worsen the performance of the HPHT sample (up to about 3.3%) but it had a marginal effect on the performance of the CVD sample. In addition, the angular response of the CVD diamond detector was shown to be comparable with that of a cylindrical chamber. This study concludes that once the responses of the diamond detectors have been stabilised and they are properly shielded from ambient light, pre-irradiation prior to each measurement is not required. Also, the relative dose measured with the diamond detectors do not require dose rate dependence corrections as the required correction is only marginal and could have no dosimetric significance.
Detection of dust particles in the coma of Halley's Comet by the Foton detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anisimov, S.I.; Kariagin, V.P.; Kudriashov, V.A.
The first results of direct measurements of the characteristics of dust particles with mass m of greater than 10 to the -9th g by the Foton detector, carried on the VEGA 1 and VEGA 2 space vehicles, are reported. The nature of the changes in the dust flux along the trajectory of the space probe is reported. The mass distribution of the dust particles is also reported. 7 references.
Compact Full-Field Ion Detector System for CubeSat Science Beyond LEO
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Clark, Pamela E.
2013-01-01
NASA Glenn Research Center (GRC) is applying its expertise and facilities in harsh environment instrumentation to develop a Compact Full-Field Ion Detector System (CFIDS). The CFIDS is designed to be an extremely compact, low cost instrument, capable of being flown on a wide variety of deep space platforms, to provide comprehensive (composition, velocity, and direction) in situ measurements of heavy ions in space plasma environments with higher fidelity, than previously available.
A generic readout system for astrophysical detectors
NASA Astrophysics Data System (ADS)
Doumayrou, E.; Lortholary, M.
2012-09-01
We have developed a generic digital platform to fulfill the needs for the development of new detectors in astrophysics, which is used in lab, for ground-based telescopes instruments and also in prototype versions for space instruments development. This system is based on hardware FPGA electronic board (called MISE) together with software on a PC computer (called BEAR). The MISE board generates the fast clocking which reads the detectors thanks to a programmable digital sequencer and performs data acquisition, buffering of digitalized pixels outputs and interfaces with others boards. The data are then sent to the PC via a SpaceWire or Usb link. The BEAR software sets the MISE board up, makes data acquisition and enables the visualization, processing and the storage of data in line. These software tools are made of C++ and Labview (NI) on a Linux OS. MISE and BEAR make a generic acquisition architecture, on which dedicated analog boards are plugged, so that to accommodate with detectors specificity: number of pixels, the readout channels and frequency, analog bias and clock interfaces. We have used this concept to build a camera for the P-ARTEMIS project including a 256 pixels sub-millimeter bolometer detector at 10Kpixel/s (SPIE 7741-12 (2010)). For the EUCLID project, a lab camera is now working for the test of CCDs 4Mpixels at 4*200Kpixel/s. Another is working for the testing of new near infrared detectors (NIR LFSA for the ESA TRP program) 110Kpixels at 2*100Kpixels/s. Other projects are in progress for the space missions PLATO and SPICA.
APD Response Time Measurements for Future TOF-E Systems
NASA Astrophysics Data System (ADS)
Starkey, M. J.; Ogasawara, K.; Dayeh, M. A.; Desai, M. I.
2017-12-01
In space physics, the ability to detect ions is crucial to understanding plasma distributions in the solar wind. This usually typically requires the determination of the particle's mass, charge, and total energy. Current ion detection schemes are implemented in three sequential parts; an electrostatic analyzer for energy per charge (E/Q) measurements, a time-of-flight (TOF) for mass per charge (M/Q) measurements, and a solid-state detector (SSD) for total energy (E) measurements. Recent work has suggested the use of avalanche photodiode detectors (APD) for a simultaneous TOF and total energy (TOF-E) measurement system, which would replace traditional SSDs, simplify design, and reduce costs. Although TOF based ion spectrometry typically requires timing resolution of <1ns, the timing profile for ion detection by APDs is not well understood. In this study we examine the timing profile of 3 different APDs for ion measurements over a suprathermal energy range of 50-300 keV. The three APDs differ by their doping type (N or P) and their detector thickness (30 μm or 150 μm). We find that APD P30, which is P doped and 30μm thick, provides the fastest rise times of the three APDs. Furthermore, these rise times are species independent and less than 1 ns. Our study shows that APDs are capable of sub-nanosecond response times for low energy ions and thus supports the future use of APDs in replacing SSDs in some TOF-E systems.
Design considerations for near-infrared filter photometry: effects of noise sources and selectivity.
Tarumi, Toshiyasu; Amerov, Airat K; Arnold, Mark A; Small, Gary W
2009-06-01
Optimal filter design of two-channel near-infrared filter photometers is investigated for simulated two-component systems consisting of an analyte and a spectrally overlapping interferent. The degree of overlap between the analyte and interferent bands is varied over three levels. The optimal design is obtained for three cases: a source or background flicker noise limited case, a shot noise limited case, and a detector noise limited case. Conventional photometers consist of narrow-band optical filters with their bands located at discrete wavelengths. However, the use of broadband optical filters with overlapping responses has been proposed to obtain as much signal as possible from a weak and broad analyte band typical of near-infrared absorptions. One question regarding the use of broadband optical filters with overlapping responses is the selectivity achieved by such filters. The selectivity of two-channel photometers is evaluated on the basis of the angle between the analyte and interferent vectors in the space spanned by the relative change recorded for each of the two detector channels. This study shows that for the shot noise limited or detector noise limited cases, the slight decrease in selectivity with the use of broadband optical filters can be compensated by the higher signal-to-noise ratio afforded by the use of such filters. For the source noise limited case, the best quantitative results are obtained with the use of narrow-band non-overlapping optical filters.
Cross delay line sensor characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, Israel J; Remelius, Dennis K; Tiee, Joe J
There exists a wealth of information in the scientific literature on the physical properties and device characterization procedures for complementary metal oxide semiconductor (CMOS), charge coupled device (CCD) and avalanche photodiode (APD) format detectors. Numerous papers and books have also treated photocathode operation in the context of photomultiplier tube (PMT) operation for either non imaging applications or limited night vision capability. However, much less information has been reported in the literature about the characterization procedures and properties of photocathode detectors with novel cross delay line (XDL) anode structures. These allow one to detect single photons and create images by recordingmore » space and time coordinate (X, Y & T) information. In this paper, we report on the physical characteristics and performance of a cross delay line anode sensor with an enhanced near infrared wavelength response photocathode and high dynamic range micro channel plate (MCP) gain (> 10{sup 6}) multiplier stage. Measurement procedures and results including the device dark event rate (DER), pulse height distribution, quantum and electronic device efficiency (QE & DQE) and spatial resolution per effective pixel region in a 25 mm sensor array are presented. The overall knowledge and information obtained from XDL sensor characterization allow us to optimize device performance and assess capability. These device performance properties and capabilities make XDL detectors ideal for remote sensing field applications that require single photon detection, imaging, sub nano-second timing response, high spatial resolution (10's of microns) and large effective image format.« less
Wallace, Nathan D; Ceguerra, Anna V; Breen, Andrew J; Ringer, Simon P
2018-06-01
Atom probe tomography is a powerful microscopy technique capable of reconstructing the 3D position and chemical identity of millions of atoms within engineering materials, at the atomic level. Crystallographic information contained within the data is particularly valuable for the purposes of reconstruction calibration and grain boundary analysis. Typically, analysing this data is a manual, time-consuming and error prone process. In many cases, the crystallographic signal is so weak that it is difficult to detect at all. In this study, a new automated signal processing methodology is demonstrated. We use the affine properties of the detector coordinate space, or the 'detector stack', as the basis for our calculations. The methodological framework and the visualisation tools are shown to be superior to the standard method of crystallographic pole visualisation directly from field evaporation images and there is no requirement for iterations between a full real-space initial tomographic reconstruction and the detector stack. The mapping approaches are demonstrated for aluminium, tungsten, magnesium and molybdenum. Implications for reconstruction calibration, accuracy of crystallographic measurements, reliability and repeatability are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Task-based design of a synthetic-collimator SPECT system used for small animal imaging.
Lin, Alexander; Kupinski, Matthew A; Peterson, Todd E; Shokouhi, Sepideh; Johnson, Lindsay C
2018-05-07
In traditional multipinhole SPECT systems, image multiplexing - the overlapping of pinhole projection images - may occur on the detector, which can inhibit quality image reconstructions due to photon-origin uncertainty. One proposed system to mitigate the effects of multiplexing is the synthetic-collimator SPECT system. In this system, two detectors, a silicon detector and a germanium detector, are placed at different distances behind the multipinhole aperture, allowing for image detection to occur at different magnifications and photon energies, resulting in higher overall sensitivity while maintaining high resolution. The unwanted effects of multiplexing are reduced by utilizing the additional data collected from the front silicon detector. However, determining optimal system configurations for a given imaging task requires efficient parsing of the complex parameter space, to understand how pinhole spacings and the two detector distances influence system performance. In our simulation studies, we use the ensemble mean-squared error of the Wiener estimator (EMSE W ) as the figure of merit to determine optimum system parameters for the task of estimating the uptake of an 123 I-labeled radiotracer in three different regions of a computer-generated mouse brain phantom. The segmented phantom map is constructed by using data from the MRM NeAt database and allows for the reduction in dimensionality of the system matrix which improves the computational efficiency of scanning the system's parameter space. To contextualize our results, the Wiener estimator is also compared against a region of interest estimator using maximum-likelihood reconstructed data. Our results show that the synthetic-collimator SPECT system outperforms traditional multipinhole SPECT systems in this estimation task. We also find that image multiplexing plays an important role in the system design of the synthetic-collimator SPECT system, with optimal germanium detector distances occurring at maxima in the derivative of the percent multiplexing function. Furthermore, we report that improved task performance can be achieved by using an adaptive system design in which the germanium detector distance may vary with projection angle. Finally, in our comparative study, we find that the Wiener estimator outperforms the conventional region of interest estimator. Our work demonstrates how this optimization method has the potential to quickly and efficiently explore vast parameter spaces, providing insight into the behavior of competing factors, which are otherwise very difficult to calculate and study using other existing means. © 2018 American Association of Physicists in Medicine.
Cosmic Ray Energetics and Mass (CREAM)
NASA Technical Reports Server (NTRS)
Coutu, Stephane
2005-01-01
The CREAM instrument was flown on a Long Duration Balloon in Antarctica in December 2004 and January 2005, achieving a flight duration record of nearly 42 days. It detected and recorded cosmic ray primary particles ranging in type from hydrogen to iron nuclei and in energy from 1 TeV to several hundred TeV. With the data collected we will have the world's best measurement of the energy spectra and mass composition of nuclei in the primary cosmic ray flux at these energies, close to the astrophysical knee . The instrument utilized a thin calorimeter, a transition radiation detector and a timing charge detector, which also provided time-of-flight information. The responsibilities of our group have been with the timing charge detector (TCD), and with the data acquisition electronics and ground station support equipment. The TCD utilized fast scintillators to measure the charge of the primary cosmic ray before any interactions could take place within the calorimeter. The data acquisition electronics handled the output of the various detectors, in a fashion fully integrated with the payload bus. A space-qualified flight computer controlled the acquisition, and was used for preliminary trigger information processing and decision making. Ground support equipment was used to monitor the health of the payload, acquire and archive the data transmitted to the ground, and to provide real-time control of the instrument in flight.
Backshort-Under-Grid arrays for infrared astronomy
NASA Astrophysics Data System (ADS)
Allen, C. A.; Benford, D. J.; Chervenak, J. A.; Chuss, D. T.; Miller, T. M.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.
2006-04-01
We are developing a kilopixel, filled bolometer array for space infrared astronomy. The array consists of three individual components, to be merged into a single, working unit; (1) a transition edge sensor bolometer array, operating in the milliKelvin regime, (2) a quarter-wave backshort grid, and (3) superconducting quantum interference device multiplexer readout. The detector array is designed as a filled, square grid of suspended, silicon bolometers with superconducting sensors. The backshort arrays are fabricated separately and will be positioned in the cavities created behind each detector during fabrication. The grids have a unique interlocking feature machined into the walls for positioning and mechanical stability. The spacing of the backshort beneath the detector grid can be set from ˜30 300 μm, by independently adjusting two process parameters during fabrication. The ultimate goal is to develop a large-format array architecture with background-limited sensitivity, suitable for a wide range of wavelengths and applications, to be directly bump bonded to a multiplexer circuit. We have produced prototype two-dimensional arrays having 8×8 detector elements. We present detector design, fabrication overview, and assembly technologies.
Technology Development for High Efficiency Optical Communications
NASA Technical Reports Server (NTRS)
Farr, William H.
2012-01-01
Deep space optical communications is a significantly more challenging operational domain than near Earth space optical communications, primarily due to effects resulting from the vastly increased range between transmitter and receiver. The NASA Game Changing Development Program Deep Space Optical Communications Project is developing four key technologies for the implementation of a high efficiency telecommunications system that will enable greater than 10X the data rate of a state-of-the-art deep space RF system (Ka-band) for similar transceiver mass and power burden on the spacecraft. These technologies are a low mass spacecraft disturbance isolation assembly, a flight qualified photon counting detector array, a high efficiency flight laser amplifier and a high efficiency photon counting detector array for the ground-based receiver.
Ye, Tao; Zhou, Fuqiang
2015-04-10
When imaged by detectors, space targets (including satellites and debris) and background stars have similar point-spread functions, and both objects appear to change as detectors track targets. Therefore, traditional tracking methods cannot separate targets from stars and cannot directly recognize targets in 2D images. Consequently, we propose an autonomous space target recognition and tracking approach using a star sensor technique and a Kalman filter (KF). A two-step method for subpixel-scale detection of star objects (including stars and targets) is developed, and the combination of the star sensor technique and a KF is used to track targets. The experimental results show that the proposed method is adequate for autonomously recognizing and tracking space targets.
[A Generator of Mono-energetic Electrons for Response Test of Charged Particle Detectors.].
Matsubayashi, Fumiyasu; Yoshida, Katsuhide; Maruyama, Koichi
2005-01-01
We designed and fabricated a generator of mono-energetic electrons for the response test of charged particle detectors, which is used to measure fragmented particles of the carbon beam for cancer therapy. Mono-energetic electrons are extracted from (90)Sr by analyzing the energy of beta rays in the generator with a magnetic field. We evaluated performance parameters of the generator such as the absolute energy, the energy resolution and the counting rates of extracted electrons. The generator supplies mono-energetic electrons from 0.5MeV to 1.7MeV with the energy resolution of 20% in FWHM at higher energies than 1.0MeV. The counting rate of electrons is 400cpm at the maximum when the activity of (90)Sr is 298kBq. The generator was used to measure responses of fragmented-particle detectors and to determine the threshold energy of the detectors. We evaluated the dependence of pulse height variation on the detector position and the threshold energy by using the generator. We concluded this generator is useful for the response test of general charged particle detectors.
Sensitivity analysis of a new SWIR-channel measuring tropospheric CH 4 and CO from space
NASA Astrophysics Data System (ADS)
Jongma, Rienk T.; Gloudemans, Annemieke M. S.; Hoogeveen, Ruud W. M.; Aben, Ilse; de Vries, Johan; Escudero-Sanz, Isabel; van den Oord, Gijsbertus; Levelt, Pieternel F.
2006-08-01
In preparation for future atmospheric space missions a consortium of Dutch organizations is performing design studies on a nadir viewing grating-based imaging spectrometer using OMI and SCIAMACHY heritage. The spectrometer measures selected species (O 3, NO II, HCHO, H IIO, SO II, aerosols (optical depth, type and absorption index), CO and CH4) with sensitivity down to the Earth's surface, thus addressing science issues on air quality and climate. It includes 3 UV-VIS channels continuously covering the 270-490 nm range, a NIR-channel covering the 710-775 nm range, and a SWIR-channel covering the 2305-2385 nm range. This instrument concept is, named TROPOMI, part of the TRAQ-mission proposal to ESA in response to the Call for Earth Explorer Ideas 2005, and, named TROPI, part of the CAMEO-proposal prepared for the US NRC decadal study-call on Earth science and applications from space. The SWIR-channel is optional in the TROPOMI/TRAQ instrument and included as baseline in the TROPI/CAMEO instrument. This paper focuses on derivation of the instrument requirements of the SWIR-channel by presenting the results of retrieval studies. Synthetic detector spectra are generated by the combination of a forward model and an instrument simulator that includes the properties of state-of-the-art detector technology. The synthetic spectra are input to the CO and CH 4 IMLM retrieval algorithm originally developed for SCIAMACHY. The required accuracy of the Level-2 SWIR data products defines the main instrument parameters like spectral resolution and sampling, telescope aperture, detector temperature, and optical bench temperature. The impact of selected calibration and retrieval errors on the Level-2 products has been characterized. The current status of the SWIR-channel optical design with its demanding requirements on ground-pixel size, spectral resolution, and signal-to-noise ratio will be presented.
2012-02-03
materials such as strained layer superlattice and HgCdTe . ___ ;,·~--·- 15. SUBJECT TERMS infrared , IR, detector , unipolar barrier, nBn 16. SECURITY...current and noise in infrared detectors . Unipolar barriers can be made in either of two types: hole-blocking or electron-blocking barriers. Our work has...SUPPLEMENTARY NOTES ---- - - .. 14. ABSTRACT A new type of infrared detector is designed and experimentally demonstrated, which uses "unipolar barriers
Summary Scientific Performance of EUCLID Detector Prototypes
NASA Technical Reports Server (NTRS)
Rauscher, Bernard J.
2011-01-01
NASA and the European Space Agency (ESA) plan to partner to build the EUCLID mission. EUCLID is a mission concept for studying the Dark Energy that is hypothesized to account for the accelerating cosmic expansion. For the past year, NASA has been building detector prototypes at Teledyne Imaging Sensors. This talk will summarize the measured scientific performance of these detector prototypes for astrophysical and cosmological applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filipuzzi, M; Garrigo, E; Venencia, C
2014-06-01
Purpose: To calculate the spatial response function of various radiation detectors, to evaluate the dependence on the field size and to analyze the small fields profiles corrections by deconvolution techniques. Methods: Crossline profiles were measured on a Novalis Tx 6MV beam with a HDMLC. The configuration setup was SSD=100cm and depth=5cm. Five fields were studied (200×200mm2,100×100mm2, 20×20mm2, 10×10mm2and 5×5mm2) and measured were made with passive detectors (EBT3 radiochromic films and TLD700 thermoluminescent detectors), ionization chambers (PTW30013, PTW31003, CC04 and PTW31016) and diodes (PTW60012 and IBA SFD). The results of passive detectors were adopted as the actual beam profile. To calculatemore » the detectors kernels, modeled by Gaussian functions, an iterative process based on a least squares criterion was used. The deconvolutions of the measured profiles were calculated with the Richardson-Lucy method. Results: The profiles of the passive detectors corresponded with a difference in the penumbra less than 0.1mm. Both diodes resolve the profiles with an overestimation of the penumbra smaller than 0.2mm. For the other detectors, response functions were calculated and resulted in Gaussian functions with a standard deviation approximate to the radius of the detector in study (with a variation less than 3%). The corrected profiles resolve the penumbra with less than 1% error. Major discrepancies were observed for cases in extreme conditions (PTW31003 and 5×5mm2 field size). Conclusion: This work concludes that the response function of a radiation detector is independent on the field size, even for small radiation beams. The profiles correction, using deconvolution techniques and response functions of standard deviation equal to the radius of the detector, gives penumbra values with less than 1% difference to the real profile. The implementation of this technique allows estimating the real profile, freeing from the effects of the detector used for the acquisition.« less
DAMPE: A gamma and cosmic ray observatory in space
NASA Astrophysics Data System (ADS)
D'Urso, D.; Dampe Collaboration
2017-05-01
DAMPE (DArk Matter Particle Explorer) is one of the five satellite missions in the framework of the Strategic Pioneer Research Program in Space Science of the Chinese Academy of Sciences (CAS). Launched on December 17th 2015 at 08:12 Beijing time, it is taking data into a sun-synchronous orbit, at the altitude of 500km. The main scientific objective of DAMPE is to detect electrons and photons in the range 5GeV-10TeV with unprecedented energy resolution, in order to identify possible Dark Matter signatures. It will also measure the flux of nuclei up to 100TeV with excellent energy resolution. The satellite is equipped with a powerful space telescope for high energy gamma-ray, electron and cosmic rays detection. It consists of a plastic scintillator strips detector (PSD) that serves as anti-coincidence detector, a silicon-tungsten tracker (STK), a BGO imaging calorimeter of about 32 radiation lengths, and a neutron detector. With its excellent photon detection capability and its detector performances (at 100GeV energy resolution ˜1% , angular resolution ˜0.1° , the DAMPE mission is well placed to make strong contributions to high-energy gamma-ray observations: it covers the gap between space and ground observation; it will allow to detect a line signature in the gamma-ray spectrum, if present, in the sub-TeV to TeV region; it will allow a high precision gamma-ray astronomy. A report on the mission goals and status will be discussed, together with in-orbit first data coming from space.
JWST Near-Infrared Detector Degradation: Finding the Problem, Fixing the Problem, and Moving Forward
NASA Technical Reports Server (NTRS)
Rauscher, Bernard J.; Stahle, Carl; Hill, Bob; Greenhouse, Matt; Beletic, James; Babu, Sachidananda; Blake, Peter; Cleveland, Keith; Cofie, Emmanuel; Eegholm, Bente;
2012-01-01
The James Webb Space Telescope (JWST) is the successor to the Hubble Space Telescope. JWST will be an infrared optimized telescope, with an approximately 6.5 m diameter primary mirror, that is located at the Sun-Earth L2 Lagrange point. Three of JWST's four science instruments use Teledyne HgCdTe HAWAII-2RG (H2RG) near infrared detector arrays. During 2010, the JWST Project noticed that a few of its 5 micron cutoff H2RG detectors were degrading during room temperature storage, and NASA chartered a "Detector Degradation Failure Review Board" (DD-FRB) to investigate. The DD-FRB determined that the root cause was a design flaw that allowed indium to interdiffuse with the gold contacts and migrate into the HgCdTe detector layer. Fortunately, Teledyne already had an improved design that eliminated this degradation mechanism. During early 2012, the improved H2RG design was qualified for flight and JWST began making additional H2RGs. In this article we present the two public DD-FRB "Executiye Summaries" that: (1) determined the root cause of the detector degradation and (2) defined tests to determine whether the existing detectors are qualified for flight. We supplement these with a brief introduction to H2RG detector arrays, and a discussion of how the JWST Project is using cryogenic storage to retard the degradation rate of the existing flight spare H2RGs.
Efficient Means of Detecting Neutral Atoms in Space
NASA Astrophysics Data System (ADS)
Zinicola, W. N.
2006-12-01
This summer, The Society of Physics Students granted me the opportunity to participate in an internship for The National Aeronautics and Space Administration (NASA) and The University of Maryland. Our chief interest was analyzing low energy neutral atoms that were created from random interactions of ions in space plasma. From detecting these neutrals one can project a image of what the plasma's composition is, and how this plasma changes through interactions with the solar wind. Presently, low energy neutral atom detectors have poor efficiency, typically in the range of 1%. Our goal was to increase this efficiency. To detect low energy neutrals we must first convert them from neutral molecules to negatively charged ions. Once converted, these "new" negatively charged ions can be easily detected and completely analyzed giving us information about their energy, mass, and instantaneous direction. The efficiency of the detector is drastically affected by the surface used for converting these neutrals. My job was first to create thin metal conversion surfaces. Then, using an X-ray photoelectron spectrometer, analyze atomic surface composition and gather work function values. Once the work function values were known we placed the surfaces in our neutral detector and measured their conversion efficiencies. Finally, a relation between the work function of the metal surface an its conversion efficiency was generated. With this relationship accurately measured one could use this information to help give suggestions on what surface would be the best to increase our detection efficiency. If we could increase the efficiency of these low energy neutral atom detectors by even 1% we would be able to decrease the size of the detector therefore making it cheaper and more applicable for space exploration.* * A special thanks to Dr. Michael Coplan of the University of Maryland for his support and guidance through all my research.
Wukong Sharpens Its Eyes and Unveils the Nature of Dark Matter
NASA Astrophysics Data System (ADS)
Cong, Kun-Lin
2016-07-01
Dark matter does not emit light or reflect electromagnetic radiation, but its existence can be inferred from the effects of measurements such as gravity and mass. Unveiling the nature of dark matter is one of the biggest mysteries of modern science. Exploration of dark matter could give scientists a clearer understanding of the past and future of galaxies and the universe. Chinese scientists have been engaged actively in dark matter research in recent years, and made some significant achievements in theoretical studies, numerical simulations, and experimental investigation. The Dark Matter Particles Explorer Satellite (DAMPE) was launched by LM launch vehicle on 17th December 2015. It was constructed as a scientific satellite that has four major parts - a plastic scintillator array detector, a silicon array detector, a BGO calorimeter and a neutron detector - together comprising about 76,000 minor detectors. The main scientific purpose of DAMPE is to investigate dark matter particle from deep space, via high resolution observation of gamma-rays and electrons spectra, and its space distribution. It will also help scientists study the transportation and acceleration of cosmic rays in the galaxy by measuring the energy spectra of heavy ions. DAMPE was dubbed Wukong after the Monkey King character from the Chinese classic legend Journey to the West. "Wu" means becoming aware of through the senses, and "Kong" refers to the space. The figurative meaning of "Wukong" is to know and comprehend the nature of the space. DAMPE is the most sensitive and accurate detectors designed for dark matter with the highest performance among the similar explorers. It will find the evidence that can certify the existence of dark matter.
Building large area CZT imaging detectors for a wide-field hard X-ray telescope—ProtoEXIST1
NASA Astrophysics Data System (ADS)
Hong, J.; Allen, B.; Grindlay, J.; Chammas, N.; Barthelemy, S.; Baker, R.; Gehrels, N.; Nelson, K. E.; Labov, S.; Collins, J.; Cook, W. R.; McLean, R.; Harrison, F.
2009-07-01
We have constructed a moderately large area (32cm), fine pixel (2.5 mm pixel, 5 mm thick) CZT imaging detector which constitutes the first section of a detector module (256cm) developed for a balloon-borne wide-field hard X-ray telescope, ProtoEXIST1. ProtoEXIST1 is a prototype for the High Energy Telescope (HET) in the Energetic X-ray imaging Survey Telescope (EXIST), a next generation space-borne multi-wavelength telescope. We have constructed a large (nearly gapless) detector plane through a modularization scheme by tiling of a large number of 2cm×2cm CZT crystals. Our innovative packaging method is ideal for many applications such as coded-aperture imaging, where a large, continuous detector plane is desirable for the optimal performance. Currently we have been able to achieve an energy resolution of 3.2 keV (FWHM) at 59.6 keV on average, which is exceptional considering the moderate pixel size and the number of detectors in simultaneous operation. We expect to complete two modules (512cm) within the next few months as more CZT becomes available. We plan to test the performance of these detectors in a near space environment in a series of high altitude balloon flights, the first of which is scheduled for Fall 2009. These detector modules are the first in a series of progressively more sophisticated detector units and packaging schemes planned for ProtoEXIST2 & 3, which will demonstrate the technology required for the advanced CZT imaging detectors (0.6 mm pixel, 4.5m area) required in EXIST/HET.
The Biostack Experiments I and II aboard Apollo 16 and 17.
Bucker, H
1974-01-01
The concept of the Biostack experiment has become practicable through European scientific collaboration and with help of NASA. The objectives of this experiment flown aboard Apollo 16 and 17 are to study the biological effects of individual heavy cosmic particles of high-energy loss (HZE) not available on earth; to study the influence of additional spaceflight factors; to get some knowledge on the mechanism by which HZE particles damage biological materials; to get information on the spectrum of charge and energy of the cosmic ions in the spacecraft; to estimate the radiation hazards for man in space. For this purpose the Biostack experiment comprises a widespread spectrum of biological objects, and various radiobiological end-points are under investigation. Bacterial spores, protozoa cysts, plant seeds, shrimp eggs, and insect eggs were included in the Biostack experiment packages together with different physical radiation detectors (nuclear emulsions, plastics, AgCl crystals, and LiF thermoluminescence dosimeters). By using special arrangements of biological objects and physical track detectors, individual evaluation of tracks was obtained allowing the identification of each penetrating particle in relation to the possible biological effects on its path. The response of the different biological objects to space flight and HZE ions bombardment was of different degree, presumably depending on the ability of the organism to replace the cells damaged by a hit. The results help to estimate the radiation hazard for astronauts during space missions of long duration.
NASA Tech Briefs, December 2013
NASA Technical Reports Server (NTRS)
2013-01-01
Topics include: Microwave Kinetic Inductance Detector With; Selective Polarization Coupling; Flexible Microstrip Circuits for; Superconducting Electronics; CFD Extraction Tool for TecPlot From DPLR Solutions; RECOVIR Software for Identifying Viruses; Enhanced Contact Graph Routing (ECGR) MACHETE Simulation Model; Orbital Debris Engineering Model (ORDEM) v.3; Scatter-Reducing Sounding Filtration Using a Genetic Algorithm and Mean Monthly Standard Deviation; Thermo-Mechanical Methodology for Stabilizing Shape Memory Alloy Response; Hermetic Seal Designs for Sample Return Sample Tubes; Silicon Alignment Pins: An Easy Way To Realize a Wafer-to-Wafer Alignment; Positive-Buoyancy Rover for Under Ice Mobility; Electric Machine With Boosted Inductance to Stabilize Current Control; International Space Station-Based Electromagnetic Launcher for Space Science Payloads; Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems; Data Quality Screening Service.
LISA: Astrophysics Out to z Approximately 10 with Low-Frequency Gravitational Waves
NASA Technical Reports Server (NTRS)
Stebbins, Robin T.
2008-01-01
This viewgraph presentation reviews the Laser Interferometer Space Antenna (LISA). LISA os a joint ESA-NASA project to design, build and operate a space-based gravitational wave detector. The 5 million Kilometer long detector will consist of three spacecraft orbiting the Sun in a triangular formation. Space-Time strains induced by gravitational waves are detected by measuring changes in the separation of fiducial masses with laser interferometry. LISA is expected to detect signals from merging massive black holes, compact stellar objects spiraling into super massive black holes in galactic nuclei, thousands of close binaries of compact objects in the Milky way and possible backgrounds of cosmological origin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weigand, Steven J.; Keane, Denis T.
The DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) built and currently manages sector 5 at the Advanced Photon Source (APS), Argonne National Laboratory. One of the principal techniques supported by DND-CAT is Small and Wide-Angle X-ray Scattering (SAXS/WAXS), with an emphasis on simultaneous data collection over a wide azimuthal and reciprocal space range using a custom SAXS/WAXS detector system. A new triple detector system is now in development, and we describe the key parameters and characteristics of the new instrument, which will be faster, more flexible, more robust, and will improve q-space resolution in a critical reciprocal space regime between the traditionalmore » WAXS and SAXS ranges.« less
Incomplete Detection of Nonclassical Phase-Space Distributions
NASA Astrophysics Data System (ADS)
Bohmann, M.; Tiedau, J.; Bartley, T.; Sperling, J.; Silberhorn, C.; Vogel, W.
2018-02-01
We implement the direct sampling of negative phase-space functions via unbalanced homodyne measurement using click-counting detectors. The negativities significantly certify nonclassical light in the high-loss regime using a small number of detectors which cannot resolve individual photons. We apply our method to heralded single-photon states and experimentally demonstrate the most significant certification of nonclassicality for only two detection bins. By contrast, the frequently applied Wigner function fails to directly indicate such quantum characteristics for the quantum efficiencies present in our setup without applying additional reconstruction algorithms. Therefore, we realize a robust and reliable approach to characterize nonclassical light in phase space under realistic conditions.
Gravitational-wave stochastic background from cosmic strings.
Siemens, Xavier; Mandic, Vuk; Creighton, Jolien
2007-03-16
We consider the stochastic background of gravitational waves produced by a network of cosmic strings and assess their accessibility to current and planned gravitational wave detectors, as well as to big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and pulsar timing constraints. We find that current data from interferometric gravitational wave detectors, such as Laser Interferometer Gravitational Wave Observatory (LIGO), are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds. Future more sensitive LIGO runs and interferometers such as Advanced LIGO and Laser Interferometer Space Antenna (LISA) will be able to explore substantial parts of the parameter space.
Response of timepix detector with GaAs:Cr and Si sensor to heavy ions
NASA Astrophysics Data System (ADS)
Abu Al Azm, S. M.; Chelkov, G.; Kozhevnikov, D.; Guskov, A.; Lapkin, A.; Leyva Fabelo, A.; Smolyanskiy, P.; Zhemchugov, A.
2016-05-01
The response of the Timepix detector to neon ions with kinetic energy 77 and 158.4 MeV has been studied at the cyclotron U-400M of the JINR Flerov Laboratory of Nuclear Reaction. Sensors produced from gallium arsenide compensated by chromium and from silicon are used for these measurements. While in Timepix detector with Si sensor the well-known so-called "volcano effect" observed, in Timepix detector with GaAs:Cr sensor such effect was completely absent. In the work the behavior of the Timepix detector with GaAs:Cr sensor under irradiation with heavy ions is described in comparison with the detector based on Si sensor. Also the possible reason for absence of "volcano" effect in GaAs:Cr detector is proposed.
Proton Electrostatic Analyzer.
1983-02-01
Detector Assembly ......................................... 11 2.2 Analyzer (Energy Selector) Assembly............................ 12 2.3 Collimator...Spectrometer assembly ........................................ 13 2.2 Base plate .................................................. 14 - ~ 2.3 Detector ... sensitive vehicle systems. Space objects undergo differential charging due to variations in physical properties among their surface regions. The rate and