RAVE—a Detector-independent vertex reconstruction toolkit
NASA Astrophysics Data System (ADS)
Waltenberger, Wolfgang; Mitaroff, Winfried; Moser, Fabian
2007-10-01
A detector-independent toolkit for vertex reconstruction (RAVE ) is being developed, along with a standalone framework (VERTIGO ) for testing, analyzing and debugging. The core algorithms represent state of the art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available. VERTIGO = "vertex reconstruction toolkit and interface to generic objects".
The RAVE/VERTIGO vertex reconstruction toolkit and framework
NASA Astrophysics Data System (ADS)
Waltenberger, W.; Mitaroff, W.; Moser, F.; Pflugfelder, B.; Riedel, H. V.
2008-07-01
A detector-independent toolkit for vertex reconstruction (RAVE1) is being developed, along with a standalone framework (VERTIGO2) for testing, analyzing and debugging. The core algorithms represent state-of-the-art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available.
Medical Imaging Inspired Vertex Reconstruction at LHC
NASA Astrophysics Data System (ADS)
Hageböck, S.; von Toerne, E.
2012-12-01
Three-dimensional image reconstruction in medical applications (PET or X-ray CT) utilizes sophisticated filter algorithms to linear trajectories of coincident photon pairs or x-rays. The goal is to reconstruct an image of an emitter density distribution. In a similar manner, tracks in particle physics originate from vertices that need to be distinguished from background track combinations. In this study it is investigated if vertex reconstruction in high energy proton collisions may benefit from medical imaging methods. A new method of vertex finding, the Medical Imaging Vertexer (MIV), is presented based on a three-dimensional filtered backprojection algorithm. It is compared to the open-source RAVE vertexing package. The performance of the vertex finding algorithms is evaluated as a function of instantaneous luminosity using simulated LHC collisions. Tracks in these collisions are described by a simplified detector model which is inspired by the tracking performance of the LHC experiments. At high luminosities (25 pileup vertices and more), the medical imaging approach finds vertices with a higher efficiency and purity than the RAVE “Adaptive Vertex Reconstructor” algorithm. It is also much faster if more than 25 vertices are to be reconstructed because the amount of CPU time rises linearly with the number of tracks whereas it rises quadratically for the adaptive vertex fitter AVR.
NASA Astrophysics Data System (ADS)
Bailey, D.; Devetak, E.; Grimes, M.; Harder, K.; Hillert, S.; Jackson, D.; Pinto Jayawardena, T.; Jeffery, B.; Lastovicka, T.; Lynch, C.; Martin, V.; Walsh, R.; Allport, P.; Banda, Y.; Buttar, C.; Cheplakov, A.; Cussans, D.; Damerell, C.; De Groot, N.; Fopma, J.; Foster, B.; Galagedera, S.; Gao, R.; Gillman, A.; Goldstein, J.; Greenshaw, T.; Halsall, R.; Hawes, B.; Hayrapetyan, K.; Heath, H.; John, J.; Johnson, E.; Kundu, N.; Laing, A.; Lastovicka-Medin, G.; Lau, W.; Li, Y.; Lintern, A.; Mandry, S.; Murray, P.; Nichols, A.; Nomerotski, A.; Page, R.; Parkes, C.; Perry, C.; O'Shea, V.; Sopczak, A.; Stefanov, K.; Tabassam, H.; Thomas, S.; Tikkanen, T.; Turchetta, R.; Tyndel, M.; Velthuis, J.; Villani, G.; Wijnen, T.; Woolliscroft, T.; Worm, S.; Yang, S.; Zhang, Z.
2009-11-01
The precision measurements envisaged at the International Linear Collider (ILC) depend on excellent instrumentation and reconstruction software. The correct identification of heavy flavour jets, placing unprecedented requirements on the quality of the vertex detector, will be central for the ILC programme. This paper describes the LCFIVertex software, which provides tools for vertex finding and for identification of the flavour and charge of the leading hadron in heavy flavour jets. These tools are essential for the ongoing optimisation of the vertex detector design for linear colliders such as the ILC. The paper describes the algorithms implemented in the LCFIVertex package as well as the scope of the code and its performance for a typical vertex detector design.
Track and vertex reconstruction: From classical to adaptive methods
Strandlie, Are; Fruehwirth, Rudolf
2010-04-15
This paper reviews classical and adaptive methods of track and vertex reconstruction in particle physics experiments. Adaptive methods have been developed to meet the experimental challenges at high-energy colliders, in particular, the CERN Large Hadron Collider. They can be characterized by the obliteration of the traditional boundaries between pattern recognition and statistical estimation, by the competition between different hypotheses about what constitutes a track or a vertex, and by a high level of flexibility and robustness achieved with a minimum of assumptions about the data. The theoretical background of some of the adaptive methods is described, and it is shown that there is a close connection between the two main branches of adaptive methods: neural networks and deformable templates, on the one hand, and robust stochastic filters with annealing, on the other hand. As both classical and adaptive methods of track and vertex reconstruction presuppose precise knowledge of the positions of the sensitive detector elements, the paper includes an overview of detector alignment methods and a survey of the alignment strategies employed by past and current experiments.
ATLAS strategy for primary vertex reconstruction during Run-2 of the LHC
NASA Astrophysics Data System (ADS)
Borissov, G.; Casper, D.; Grimm, K.; Pagan Griso, S.; Egholm Pedersen, L.; Prokofiev, K.; Rudolph, M.; Wharton, A.
2015-12-01
The reconstruction of vertices corresponding to proton-proton collisions in ATLAS is an essential element of event reconstruction used in many performance studies and physics analyses. During Run-1 of the LHC, ATLAS has employed an iterative approach to vertex finding. In order to improve the flexibility of the algorithm and ensure continued performance for very high numbers of simultaneous collisions in Run-2 of the LHC and beyond, a new approach to seeding vertex finding has been developed inspired by image reconstruction techniques. This note provides a brief outline of how reconstructed tracks are used to create an image of likely vertex collisions in an event, describes the implementation in the ATLAS software, and presents some preliminary results of the performance of the algorithm in simulation approximating early Run-2 conditions.
Description and performance of track and primary-vertex reconstruction with the CMS tracker
Chatrchyan, Serguei
2014-10-16
A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tbar t events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of pT > 0.9GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5. Themore » inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of pT = 100GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in pT, and respectively, 10μm and 30μm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10–12μm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung.« less
Description and performance of track and primary-vertex reconstruction with the CMS tracker
Chatrchyan, Serguei
2014-10-16
A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tbar t events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of p_{T} > 0.9GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p_{T} = 100GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in p_{T}, and respectively, 10μm and 30μm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10–12μm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung.
Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector
NASA Astrophysics Data System (ADS)
Rescigno, R.; Finck, Ch.; Juliani, D.; Spiriti, E.; Baudot, J.; Abou-Haidar, Z.; Agodi, C.; Alvarez, M. A. G.; Aumann, T.; Battistoni, G.; Bocci, A.; Böhlen, T. T.; Boudard, A.; Brunetti, A.; Carpinelli, M.; Cirrone, G. A. P.; Cortes-Giraldo, M. A.; Cuttone, G.; De Napoli, M.; Durante, M.; Gallardo, M. I.; Golosio, B.; Iarocci, E.; Iazzi, F.; Ickert, G.; Introzzi, R.; Krimmer, J.; Kurz, N.; Labalme, M.; Leifels, Y.; Le Fevre, A.; Leray, S.; Marchetto, F.; Monaco, V.; Morone, M. C.; Oliva, P.; Paoloni, A.; Patera, V.; Piersanti, L.; Pleskac, R.; Quesada, J. M.; Randazzo, N.; Romano, F.; Rossi, D.; Rousseau, M.; Sacchi, R.; Sala, P.; Sarti, A.; Scheidenberger, C.; Schuy, C.; Sciubba, A.; Sfienti, C.; Simon, H.; Sipala, V.; Tropea, S.; Vanstalle, M.; Younis, H.
2014-12-01
Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available. Experimental data are necessary to benchmark Monte Carlo simulations for their use in hadrontherapy. The purpose of the FIRST experiment is to study nuclear fragmentation processes of ions with kinetic energy in the range from 100 to 1000 MeV/u. Tracks are reconstructed using information from a pixel silicon detector based on the CMOS technology. The performances achieved using this device for hadrontherapy purpose are discussed. For each reconstruction step (clustering, tracking and vertexing), different methods are implemented. The algorithm performances and the accuracy on reconstructed observables are evaluated on the basis of simulated and experimental data.
Lim, Chi Wan; Su, Yi; Yeo, Si Yong; Ng, Gillian Maria; Nguyen, Vinh Tan; Zhong, Liang; Tan, Ru San; Poh, Kian Keong; Chai, Ping
2014-01-01
We propose an automatic algorithm for the reconstruction of patient-specific cardiac mesh models with 1-to-1 vertex correspondence. In this framework, a series of 3D meshes depicting the endocardial surface of the heart at each time step is constructed, based on a set of border delineated magnetic resonance imaging (MRI) data of the whole cardiac cycle. The key contribution in this work involves a novel reconstruction technique to generate a 4D (i.e., spatial–temporal) model of the heart with 1-to-1 vertex mapping throughout the time frames. The reconstructed 3D model from the first time step is used as a base template model and then deformed to fit the segmented contours from the subsequent time steps. A method to determine a tree-based connectivity relationship is proposed to ensure robust mapping during mesh deformation. The novel feature is the ability to handle intra- and inter-frame 2D topology changes of the contours, which manifests as a series of merging and splitting of contours when the images are viewed either in a spatial or temporal sequence. Our algorithm has been tested on five acquisitions of cardiac MRI and can successfully reconstruct the full 4D heart model in around 30 minutes per subject. The generated 4D heart model conforms very well with the input segmented contours and the mesh element shape is of reasonably good quality. The work is important in the support of downstream computational simulation activities. PMID:24743555
Strube, Jan; Graf, Norman; /SLAC
2006-03-03
This document describes the implementation of the topological vertex finding algorithm ZVTOP within the org.lcsim reconstruction and analysis framework. At the present date, Java vertexing tools allow users to perform topological vertexing on tracks that have been obtained from a Fast MC simulation. An implementation that will be able to handle fully reconstructed events is being designed from the ground up for longevity and maintainability.
Salyer, K E; Gendler, E; Squier, C A
1997-05-01
The successful use of cortical demineralized perforated bone in the treatment of extensive skeletal defects in children is exemplified by this case involving Siamese twins joined at the skull vertex. Four years following extensive skull reconstruction using demineralized perforated bone, an examination revealed successful calvarial reconstruction in one twin. The other twin required additional implants of demineralized perforated bone to fill in defects. However, a histologic examination taken following this additional procedure revealed that these implants neither caused tissue reaction over a 4-year period, nor showed signs of resorption. Bony remodeling and new bone formation were in progress. Compared with other bone substitutes, demineralized perforated bone has proven to be effective in the treatment of large skull defects in children. PMID:9145145
The CDF silicon vertex tracker
A. Cerri et al.
2000-10-10
Real time pattern recognition is becoming a key issue in many position sensitive detector applications. The CDF collaboration is building SVT: a specialized electronic device designed to perform real time track reconstruction using the silicon vertex detector (SVX II). This will strongly improve the CDF capability of triggering on events containing b quarks, usually characterized by the presence of a secondary vertex. SVT is designed to reconstruct in real time charged particles trajectories using data coming from the Silicon Vertex detector and the Central Outer Tracker drift chamber. The SVT architecture and algorithm have been specially tuned to minimize processing time without degrading parameter resolution.
Khachatryan, Vardan; et al.
2011-03-01
A measurement of the angular correlations between beauty and anti-beauty hadrons (B B-bar) produced in pp collisions at a centre-of-mass energy of 7 TeV at the CERN LHC is presented, probing for the first time the region of small angular separation. The B hadrons are identified by the presence of displaced secondary vertices from their decays. The B hadron angular separation is reconstructed from the decay vertices and the primary-interaction vertex. The differential B B-bar production cross section, measured from a data sample collected by CMS and corresponding to an integrated luminosity of 3.1 inverse picobarns, shows that a sizable fraction of the B B-bar pairs are produced with small opening angles. These studies provide a test of QCD and further insight into the dynamics of b b-bar production.
Lueth, V.
1992-07-01
The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10{sup {minus}13} s, among them the {tau} lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation.
Adler, J.; Bolton, T.; Bunnell, K.; Cassell, R.; Cheu, E.; Freese, T.; Grab, C.; Mazaheri, G.; Mir, R.; Odian, A.
1987-07-01
The design and construction of the new Mark III vertex chamber is described. Initial tests with cosmic rays prove the ability of track reconstruction and yield triplet resolutions below 50 ..mu..m at 3 atm using argon/ethane (50:50). Also performed are studies using a prototype of a pressurized wire vertex chamber with 8 mm diameter straw geometry. Spatial resolution of 35mm was obtained using dimethyl ether (DME) at 1 atm and 30 ..mu..m using argon/ethane (50/50 mixture) at 4 atm. Preliminary studies indicate the DME to adversely affect such materials as aluminized Mylar and Delrin.
Proposal for a CLEO precision vertex detector
Not Available
1991-01-01
Fermilab experiment E691 and CERN experiment NA32 have demonstrated the enormous power of precision vertexing for studying heavy quark physics. Nearly all collider experiments now have or are installing precision vertex detectors. This is a proposal for a precision vertex detector for CLEO, which will be the pre-eminent heavy quark experiment for at least the next 5 years. The purpose of a precision vertex detector for CLEO is to enhance the capabilities for isolating B, charm, and tau decays and to make it possible to measure the decay time. The precision vertex detector will also significantly improve strange particle identification and help with the tracking. The installation and use of this detector at CLEO is an important step in developing a vertex detector for an asymmetric B factory and therefore in observing CP violation in B decays. The CLEO environment imposes a number of unique conditions and challenges. The machine will be operating near the {gamma} (4S) in energy. This means that B's are produced with a very small velocity and travel a distance about {1/2} that of the expected vertex position resolution. As a consequence B decay time information will not be useful for most physics. On the other hand, the charm products of B decays have a higher velocity. For the long lived D{sup +} in particular, vertex information can be used to isolate the charm particle on an event-by-event basis. This helps significantly in reconstructing B's. The vertex resolution for D's from B's is limited by multiple Coulomb scattering of the necessarily rather low momentum tracks. As a consequence it is essential to minimize the material, as measured in radiation lengths, in the beam pip and the vertex detector itself. It is also essential to build the beam pipe and detector with the smallest possible radius.
Chen, Li; Shen, Cencheng; Vogelstein, Joshua T; Priebe, Carey E
2016-03-01
For random graphs distributed according to stochastic blockmodels, a special case of latent position graphs, adjacency spectral embedding followed by appropriate vertex classification is asymptotically Bayes optimal; but this approach requires knowledge of and critically depends on the model dimension. In this paper, we propose a sparse representation vertex classifier which does not require information about the model dimension. This classifier represents a test vertex as a sparse combination of the vertices in the training set and uses the recovered coefficients to classify the test vertex. We prove consistency of our proposed classifier for stochastic blockmodels, and demonstrate that the sparse representation classifier can predict vertex labels with higher accuracy than adjacency spectral embedding approaches via both simulation studies and real data experiments. Our results demonstrate the robustness and effectiveness of our proposed vertex classifier when the model dimension is unknown. PMID:26340770
The CDF silicon vertex trigger
B. Ashmanskas; A. Barchiesi; A. Bardi
2003-06-23
The CDF experiment's Silicon Vertex Trigger is a system of 150 custom 9U VME boards that reconstructs axial tracks in the CDF silicon strip detector in a 15 {mu}sec pipeline. SVT's 35 {mu}m impact parameter resolution enables CDF's Level 2 trigger to distinguish primary and secondary particles, and hence to collect large samples of hadronic bottom and charm decays. We review some of SVT's key design features. Speed is achieved with custom VLSI pattern recognition, linearized track fitting, pipelining, and parallel processing. Testing and reliability are aided by built-in logic state analysis and test-data sourcing at each board's input and output, a common inter-board data link, and a universal ''Merger'' board for data fan-in/fan-out. Speed and adaptability are enhanced by use of modern FPGAs.
Measurement of Rb Using a Vertex Mass Tag
NASA Astrophysics Data System (ADS)
Abe, K.; Abe, K.; Akagi, T.; Allen, N. J.; Ash, W. W.; Aston, D.; Baird, K. G.; Baltay, C.; Band, H. R.; Barakat, M. B.; Baranko, G.; Bardon, O.; Barklow, T. L.; Bashindzhagyan, G. L.; Bazarko, A. O.; Ben-David, R.; Benvenuti, A. C.; Bilei, G. M.; Bisello, D.; Blaylock, G.; Bogart, J. R.; Bolen, B.; Bolton, T.; Bower, G. R.; Brau, J. E.; Breidenbach, M.; Bugg, W. M.; Burke, D.; Burnett, T. H.; Burrows, P. N.; Busza, W.; Calcaterra, A.; Caldwell, D. O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Chou, A.; Church, E.; Cohn, H. O.; Coller, J. A.; Cook, V.; Cotton, R.; Cowan, R. F.; Coyne, D. G.; Crawford, G.; D'Oliveira, A.; Damerell, C. J.; Daoudi, M.; de Groot, N.; de Sangro, R.; dell'Orso, R.; Dervan, P. J.; Dima, M.; Dong, D. N.; Du, P. Y.; Dubois, R.; Eisenstein, B. I.; Elia, R.; Etzion, E.; Fahey, S.; Falciai, D.; Fan, C.; Fernandez, J. P.; Fero, M. J.; Frey, R.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hart, E. L.; Harton, J. L.; Hasan, A.; Hasegawa, Y.; Hasuko, K.; Hedges, S. J.; Hertzbach, S. S.; Hildreth, M. D.; Huber, J.; Huffer, M. E.; Hughes, E. W.; Hwang, H.; Iwasaki, Y.; Jackson, D. J.; Jacques, P.; Jaros, J. A.; Jiang, Z. Y.; Johnson, A. S.; Johnson, J. R.; Johnson, R. A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Kang, H. J.; Karliner, I.; Kawahara, H.; Kendall, H. W.; Kim, Y. D.; King, M. E.; King, R.; Kofler, R. R.; Krishna, N. M.; Kroeger, R. S.; Labs, J. F.; Langston, M.; Lath, A.; Lauber, J. A.; Leith, D. W.; Lia, V.; Liu, M. X.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H. L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T. W.; Maruyama, T.; Masuda, H.; Mazzucato, E.; McKemey, A. K.; Meadows, B. T.; Messner, R.; Mockett, P. M.; Moffeit, K. C.; Moore, T. B.; Muller, D.; Nagamine, T.; Narita, S.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Oishi, N.; Onoprienko, D.; Osborne, L. S.; Panvini, R. S.; Park, C. H.; Park, H.; Pavel, T. J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K. T.; Plano, R. J.; Prepost, R.; Prescott, C. Y.; Punkar, G. D.; Quigley, J.; Ratcliff, B. N.; Reeves, T. W.; Reidy, J.; Reinertsen, P. L.; Rensing, P. E.; Rochester, L. S.; Rowson, P. C.; Russell, J. J.; Saxton, O. H.; Schalk, T.; Schindler, R. H.; Schumm, B. A.; Schwiening, J.; Sen, S.; Serbo, V. V.; Shaevitz, M. H.; Shank, J. T.; Shapiro, G.; Sherden, D. J.; Shmakov, K. D.; Simopoulos, C.; Sinev, N. B.; Smith, S. R.; Smy, M. B.; Snyder, J. A.; Staengle, H.; Stamer, P.; Steiner, H.; Steiner, R.; Strauss, M. G.; Su, D.; Suekane, F.; Sugiyama, A.; Suzuki, S.; Swartz, M.; Szumilo, A.; Takahashi, T.; Taylor, F. E.; Torrence, E.; Trandafir, A. I.; Turk, J. D.; Usher, T.; Va'Vra, J.; Vannini, C.; Vella, E.; Venuti, J. P.; Verdier, R.; Verdini, P. G.; Wagner, D. L.; Wagner, S. R.; Waite, A. P.; Watts, S. J.; Weidemann, A. W.; Weiss, E. R.; Whitaker, J. S.; White, S. L.; Wickens, F. J.; Williams, D. C.; Williams, S. H.; Willocq, S.; Wilson, R. J.; Wisniewski, W. J.; Woods, M.; Word, G. B.; Wyss, J.; Yamamoto, R. K.; Yamartino, J. M.; Yang, X.; Yashima, J.; Yellin, S. J.; Young, C. C.; Yuta, H.; Zapalac, G.; Zdarko, R. W.; Zhou, J.
1998-01-01
We report a new measurement of Rb = γZ0-->bb¯/γZ0-->hadrons using a double tag technique, where the b hemisphere selection is based on the reconstructed mass of the B hadron decay vertex. The measurement was performed using a sample of 130×103 hadronic Z0 events, collected with the SLD detector at SLC. The method utilizes the 3D vertexing abilities of the CCD pixel vertex detector and the small stable SLC beams to obtain a high b-tagging efficiency and purity. We obtain Rb = 0.2142+/-0.0034\\(stat\\)+/-0.0015\\(syst\\)+/-0.0002\\(Rc\\).
Proposal for a CLEO precision vertex detector. [Progress report, 1991
Not Available
1991-12-31
Fermilab experiment E691 and CERN experiment NA32 have demonstrated the enormous power of precision vertexing for studying heavy quark physics. Nearly all collider experiments now have or are installing precision vertex detectors. This is a proposal for a precision vertex detector for CLEO, which will be the pre-eminent heavy quark experiment for at least the next 5 years. The purpose of a precision vertex detector for CLEO is to enhance the capabilities for isolating B, charm, and tau decays and to make it possible to measure the decay time. The precision vertex detector will also significantly improve strange particle identification and help with the tracking. The installation and use of this detector at CLEO is an important step in developing a vertex detector for an asymmetric B factory and therefore in observing CP violation in B decays. The CLEO environment imposes a number of unique conditions and challenges. The machine will be operating near the {gamma} (4S) in energy. This means that B`s are produced with a very small velocity and travel a distance about {1/2} that of the expected vertex position resolution. As a consequence B decay time information will not be useful for most physics. On the other hand, the charm products of B decays have a higher velocity. For the long lived D{sup +} in particular, vertex information can be used to isolate the charm particle on an event-by-event basis. This helps significantly in reconstructing B`s. The vertex resolution for D`s from B`s is limited by multiple Coulomb scattering of the necessarily rather low momentum tracks. As a consequence it is essential to minimize the material, as measured in radiation lengths, in the beam pip and the vertex detector itself. It is also essential to build the beam pipe and detector with the smallest possible radius.
Proper Interval Vertex Deletion
NASA Astrophysics Data System (ADS)
Villanger, Yngve
Deleting a minimum number of vertices from a graph to obtain a proper interval graph is an NP-complete problem. At WG 2010 van Bevern et al. gave an O((14k + 14) k + 1 kn 6) time algorithm by combining iterative compression, branching, and a greedy algorithm. We show that there exists a simple greedy O(n + m) time algorithm that solves the Proper Interval Vertex Deletion problem on \\{claw,net,allowbreak tent,allowbreak C_4,C_5,C_6\\}-free graphs. Combining this with branching on the forbidden structures claw,net,tent,allowbreak C_4,C_5, and C 6 enables us to get an O(kn 6 6 k ) time algorithm for Proper Interval Vertex Deletion, where k is the number of deleted vertices.
Vertex Detector Cable Considerations
Cooper, William E.; /Fermilab
2009-02-01
Vertex detector cable requirements are considered within the context of the SiD concept. Cable material should be limited so that the number of radiation lengths represented is consistent with the material budget. In order to take advantage of the proposed accelerator beam structure and allow cooling by flow of dry gas, 'pulsed power' is assumed. Potential approaches to power distribution, cable paths, and cable design for operation in a 5 T magnetic field are described.
NASA Astrophysics Data System (ADS)
Dannheim, D.
2015-03-01
The precision physics needs at TeV-scale linear electron-positron colliders (ILC and CLIC) require a vertex-detector system with excellent flavour-tagging capabilities through a measurement of displaced vertices. This is essential, for example, for an explicit measurement of the Higgs decays to pairs of b-quarks, c-quarks and gluons. Efficient identification of top quarks in the decay t → Wb will give access to the ttH-coupling measurement. In addition to those requirements driven by physics arguments, the CLIC bunch structure calls for hit timing at the few-ns level. As a result, the CLIC vertex-detector system needs to have excellent spatial resolution, full geometrical coverage extending to low polar angles, extremely low material budget, low occupancy facilitated by time-tagging, and sufficient heat removal from sensors and readout. These considerations challenge current technological limits. A detector concept based on hybrid pixel-detector technology is under development for the CLIC vertex detector. It comprises fast, low-power and small-pitch readout ASICs implemented in 65 nm CMOS technology (CLICpix) coupled to ultra-thin planar or active HV-CMOS sensors via low-mass interconnects. The power dissipation of the readout chips is reduced by means of power pulsing, allowing for a cooling system based on forced gas flow. This contribution reviews the requirements and design optimisation for the CLIC vertex detector and gives an overview of recent R&D achievements in the domains of sensors, readout and detector integration.
Biricodar. Vertex Pharmaceuticals.
Dey, Saibal
2002-05-01
Vertex is developing biricodar as a chemosensitizing agent designed to restore the effectiveness of chemotherapeutic agents in tumor multidrug resistance. By November 1998, phase II trials had commenced for biricodar, in combination with chemotherapy, for five common cancer indications: breast, ovarian, soft-tissue sarcomas, small cell lung cancer and prostate cancer. Phase II trials were ongoing in January 2002. By March 2000, Vertex was the sole developer of biricodar, as an agreement made in 1996 with BioChem Pharma (now Shire Pharmaceuticals), for the development and marketing of biricodar in Canada was terminated. Biricodar is the free base compound, which also has a citrate salt analog known as VX-710-3. Vertex has published three patents, WO-09615101, WO-09636630 and WO-09736869, disclosing derivatives of biricodar that are claimed for the treatment of multidrug resistant protein and P-glycoprotein-mediated multidrug resistant tumors. In January 2002, a Banc of America analyst report forecast that biricodar had a 30% chance of reaching the market with a launch date in the second half of 2005, with peak sales estimated at $250 million. PMID:12090559
The CDF online Silicon Vertex Tracker
NASA Astrophysics Data System (ADS)
Ashmanskas, W.; Bardi, A.; Bari, M.; Belforte, S.; Berryhill, J.; Bogdan, M.; Carosi, R.; Cerri, A.; Chlachidze, G.; Culbertson, R.; Dell'Orso, M.; Donati, S.; Fiori, I.; Frisch, H. J.; Galeotti, S.; Giannetti, P.; Glagolev, V.; Moneta, L.; Morsani, F.; Nakaya, T.; Passuello, D.; Punzi, G.; Rescigno, M.; Ristori, L.; Sanders, H.; Sarkar, S.; Semenov, A.; Shochet, M.; Speer, T.; Spinella, F.; Wu, X.; Yang, U.; Zanello, L.; Zanetti, A. M.
2002-06-01
The CDF Online Silicon Vertex Tracker (SVT) reconstructs 2D tracks by linking hit positions measured by the Silicon Vertex Detector to the Central Outer Chamber tracks found by the eXtremely Fast Tracker (XFT). The system has been completely built and assembled and it is now being commissioned using the first CDF run II data. The precision measurement of the track impact parameter will allow triggering on B hadron decay vertices and thus investigating important areas in the B sector, like CP violation and B s mixing. In this paper we briefly review the architecture and the tracking algorithms implemented in the SVT and we report on the performance of the system achieved in the early phase of CDF run II.
The CDF online silicon vertex tracker
W. Ashmanskas et al.
2001-11-02
The CDF Online Silicon Vertex Tracker reconstructs 2-D tracks by linking hit positions measured by the Silicon Vertex Detector to the Central Outer Chamber tracks found by the eXtremely Fast Tracker. The system has been completely built and assembled and it is now being commissioned using the first CDF run II data. The precision measurement of the track impact parameter will allow triggering on B hadron decay vertices and thus investigating important areas in the B sector, like CP violation and B{sub s} mixing. In this paper we briefly review the architecture and the tracking algorithms implemented in the SVT and we report on the performance of the system achieved in the early phase of CDF run II.
Studies of vertex tracking with SOI pixel sensors for future lepton colliders
NASA Astrophysics Data System (ADS)
Battaglia, Marco; Contarato, Devis; Denes, Peter; Liko, Dietrich; Mattiazzo, Serena; Pantano, Devis
2012-07-01
This paper presents a study of vertex tracking with a beam hodoscope consisting of three layers of monolithic pixel sensors in SOI technology on high-resistivity substrate. We study the track extrapolation accuracy, two-track separation and vertex reconstruction accuracy in π- Cu interactions with 150 and 300 GeV/c pions at the CERN SPS. Results are discussed in the context of vertex tracking at future lepton colliders.
SVT: an online silicon vertex tracker for the CDF upgrade
Bardi, A.; Belforte, S.; Berryhill, J.; CDF Collaboration
1997-07-01
The SVT is an online tracker for the CDF upgrade which will reconstruct 2D tracks using information from the Silicon VerteX detector (SVXII) and Central Outer Tracker (COT). The precision measurement of the track impact parameter will then be used to select and record large samples of B hadrons. We discuss the overall architecture, algorithms, and hardware implementation of the system.
Magnetic wormholes and vertex operators
Singh, H. )
1994-10-15
We consider wormhole solutions in 2+1 Euclidean dimensions. A duality transformation is introduced to derive a new action from the magnetic wormhole action of Gupta, Hughes, Preskill, and Wise. The classical solution is presented. The vertex operators corresponding to the wormhole are derived. Conformally coupled scalars and spinors are considered in the wormhole background and the vertex operators are computed.
Silicon vertex tracker: a fast precise tracking trigger for CDF
NASA Astrophysics Data System (ADS)
Ashmanskas, W.; Bardi, A.; Bari, M.; Belforte, S.; Berryhill, J.; Bogdan, M.; Cerri, A.; Clark, A. G.; Chlanchidze, G.; Condorelli, R.; Culbertson, R.; Dell'Orso, M.; Donati, S.; Frisch, H. J.; Galeotti, S.; Giannetti, P.; Glagolev, V.; Leger, A.; Meschi, E.; Morsani, F.; Nakaya, T.; Punzi, G.; Ristori, L.; Sanders, H.; Semenov, A.; Signorelli, G.; Shochet, M.; Speer, T.; Spinella, F.; Wilson, P.; Wu, Xin; Zanetti, A. M.
2000-06-01
The Silicon Vertex Tracker (SVT), currently being built for the CDF II experiment, is a hardware device that reconstructs 2-D tracks online using measurements from the Silicon Vertex Detector (SVXII) and the Central Outer Tracker (COT). The precise measurement of the impact parameter of the SVT tracks will allow, for the first time in a hadron collider environment, to trigger on events containing B hadrons that are very important for many studies, such as CP violation in the b sector and searching for new heavy particles decaying to b b¯ . In this report we describe the overall architecture, algorithms and the hardware implementation of the SVT.
The STAR Vertex Position Detector
NASA Astrophysics Data System (ADS)
Llope, W. J.; Zhou, J.; Nussbaum, T.; Hoffmann, G. W.; Asselta, K.; Brandenburg, J. D.; Butterworth, J.; Camarda, T.; Christie, W.; Crawford, H. J.; Dong, X.; Engelage, J.; Eppley, G.; Geurts, F.; Hammond, J.; Judd, E.; McDonald, D. L.; Perkins, C.; Ruan, L.; Scheblein, J.; Schambach, J. J.; Soja, R.; Xin, K.; Yang, C.
2014-09-01
The 2×3 channel pseudo Vertex Position Detector (pVPD) in the STAR experiment at RHIC has been upgraded to a 2×19 channel detector in the same acceptance, called the Vertex Position Detector (VPD). This detector is fully integrated into the STAR trigger system and provides the primary input to the minimum-bias trigger in Au+Au collisions. The information from the detector is used both in the STAR Level-0 trigger and offline to measure the location of the primary collision vertex along the beam pipe and the event "start time" needed by other fast-timing detectors in STAR. The offline timing resolution of single detector channels in full-energy Au+Au collisions is ~100 ps, resulting in a start time resolution of a few tens of picoseconds and a resolution on the primary vertex location of ~1 cm.
A neural network z-vertex trigger for Belle II
NASA Astrophysics Data System (ADS)
Neuhaus, S.; Skambraks, S.; Abudinen, F.; Chen, Y.; Feindt, M.; Frühwirth, R.; Heck, M.; Kiesling, C.; Knoll, A.; Paul, S.; Schieck, J.
2015-05-01
We present the concept of a track trigger for the Belle II experiment, based on a neural network approach, that is able to reconstruct the z (longitudinal) position of the event vertex within the latency of the first level trigger. The trigger will thus be able to suppress a large fraction of the dominating background from events outside of the interaction region. The trigger uses the drift time information of the hits from the Central Drift Chamber (CDC) of Belle II within narrow cones in polar and azimuthal angle as well as in transverse momentum (sectors), and estimates the z-vertex without explicit track reconstruction. The preprocessing for the track trigger is based on the track information provided by the standard CDC trigger. It takes input from the 2D (r — φ) track finder, adds information from the stereo wires of the CDC, and finds the appropriate sectors in the CDC for each track in a given event. Within each sector, the z-vertex of the associated track is estimated by a specialized neural network, with a continuous output corresponding to the scaled z-vertex. The input values for the neural network are calculated from the wire hits of the CDC.
Vertex detection at the Tevatron
Amidei, D. ); Shepard, P. ); Tkaczyk, S. )
1991-01-11
Addition of vertex detectors to CDF and D0 will facilitate a rich program of beauty physics at the Tevatron, and may enable tags of B and {tau} which facilitate searches for top and other heavy objects. We also address the operational considerations of triggering and radiation protection, and speculate on possible directions for upgrades. 9 refs., 7 figs.
A Novel Vertex Affinity for Community Detection
Yoo, Andy; Sanders, Geoffrey; Henson, Van; Vassilevski, Panayot
2015-10-05
We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.
Refining the shifted topological vertex
Drissi, L. B.; Jehjouh, H.; Saidi, E. H.
2009-01-15
We study aspects of the refining and shifting properties of the 3d MacMahon function C{sub 3}(q) used in topological string theory and BKP hierarchy. We derive the explicit expressions of the shifted topological vertex S{sub {lambda}}{sub {mu}}{sub {nu}}(q) and its refined version T{sub {lambda}}{sub {mu}}{sub {nu}}(q,t). These vertices complete results in literature.
STAR Vertex Detector Upgrade Development
Greiner, Leo C.; Matis, Howard S.; Stezelberger, Thorsten; Vu,Chinh Q.; Wieman, Howard; Szelezniak, Michal; Sun, Xiangming
2008-01-28
We report on the development and prototyping efforts undertaken with the goal of producing a micro-vertex detector for the STAR experiment at the RHIC accelerator at BNL. We present the basic detector requirements and show a sensor development path, conceptual mechanical design candidates and readout architecture. Prototyping and beam test results with current generation MimoSTAR-2 sensors and a readout system featuring FPGA based on-the-fly hit finding and data sparsification are also presented.
NASA Astrophysics Data System (ADS)
Alipour Tehrani, Niloufar
2016-07-01
A vertex detector concept is under development for the proposed multi-TeV linear e+e- Compact Linear Collider (CLIC). To perform precision physics measurements in a challenging environment, the CLIC vertex detector pushes the technological requirements to the limits. This paper reviews the requirements for the CLIC vertex detector and gives an overview of recent R&D achievements in the domains of sensor, readout, powering and cooling.
The LHCb VERTEX LOCATOR performance and VERTEX LOCATOR upgrade
NASA Astrophysics Data System (ADS)
Rodríguez Pérez, P.
2012-12-01
LHCb is an experiment dedicated to the study of new physics in the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. The Vertex Locator (VELO) is the silicon detector surrounding the LHCb interaction point. The detector operates in a severe and highly non-uniform radiation environment. The small pitch and analogue readout result in a best single hit precision of 4 μm. The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a trigger-less system operating at 40 MHz event rate. The vertex detector will have to cope with radiation levels up to 1016 1 MeVneq/cm2, more than an order of magnitude higher than those expected at the current experiment. A solution is under development with a pixel detector, based on the Timepix/Medipix family of chips with 55 x 55 μm pixels. In addition a micro-strip solution is also under development, with finer pitch, higher granularity and lower mass than the current detector. The current status of the VELO will be described together with recent testbeam results.
The CDF Silicon Vertex Detector
Tkaczyk, S.; Carter, H.; Flaugher, B.
1993-09-01
A silicon strip vertex detector was designed, constructed and commissioned at the CDF experiment at the Tevatron collider at Fermilab. The mechanical design of the detector, its cooling and monitoring are presented. The front end electronics employing a custom VLSI chip, the readout electronics and various components of the SVX system are described. The system performance and the experience with the operation of the detector in the radiation environment are discussed. The device has been taking colliding beams data since May of 1992, performing at its best design specifications and enhancing the physics program of CDF.
Torus Knots and the Topological Vertex
NASA Astrophysics Data System (ADS)
Jockers, Hans; Klemm, Albrecht; Soroush, Masoud
2014-08-01
We propose a class of toric Lagrangian A-branes on the resolved conifold that is suitable to describe torus knots on S 3. The key role is played by the transformation, which generates a general torus knot from the unknot. Applying the topological vertex to the proposed A-branes, we rederive the colored HOMFLY polynomials for torus knots, in agreement with the Rosso and Jones formula. We show that our A-model construction is mirror symmetric to the B-model analysis of Brini, Eynard and Mariño. Compared to the recent proposal by Aganagic and Vafa for knots on S 3, we demonstrate that the disk amplitude of the A-brane associated with any knot is sufficient to reconstruct the entire B-model spectral curve. Finally, the construction of toric Lagrangian A-branes is generalized to other local toric Calabi-Yau geometries, which paves the road to study knots in other three-manifolds such as lens spaces.
Irregular vertex operators for irregular conformal blocks
NASA Astrophysics Data System (ADS)
Polyakov, Dimitri; Rim, Chaiho
2016-05-01
We construct the free field representation of irregular vertex operators of arbitrary rank which generates simultaneous eigenstates of positive modes of Virasoro and W symmetry generators. The irregular vertex operators turn out to be the exponentials of combinations of derivatives of Liouville or Toda fields, creating irregular coherent states. We compute examples of correlation functions of these operators and study their operator algebra.
Linear radiosity approximation using vertex radiosities
Max, N. Lawrence Livermore National Lab., CA ); Allison, M. )
1990-12-01
Using radiosities computed at vertices, the radiosity across a triangle can be approximated by linear interpolation. We develop vertex-to-vertex form factors based on this linear radiosity approximation, and show how they can be computed efficiently using modern hardware-accelerated shading and z-buffer technology. 9 refs., 4 figs.
String vertex operators and cosmic strings
NASA Astrophysics Data System (ADS)
Skliros, Dimitri; Hindmarsh, Mark
2011-12-01
We construct complete sets of (open and closed string) covariant coherent state and mass eigenstate vertex operators in bosonic string theory. This construction can be used to study the evolution of fundamental cosmic strings as predicted by string theory, and is expected to serve as a self-contained prototype toy model on which realistic cosmic superstring vertex operators can be based. It is also expected to be useful for other applications where massive string vertex operators are of interest. We pay particular attention to all the normalization constants, so that these vertices lead directly to unitary S-matrix elements.
Vertex finding with deformable templates at LHC
NASA Astrophysics Data System (ADS)
Stepanov, Nikita; Khanov, Alexandre
1997-02-01
We present a novel vertex finding technique. The task is formulated as a discrete-continuous optimisation problem in a way similar to the deformable templates approach for the track finding. Unlike the track finding problem, "elastic hedgehogs" rather than elastic arms are used as deformable templates. They are initialised by a set of procedures which provide zero level approximation for vertex positions and track parameters at the vertex point. The algorithm was evaluated using the simulated events for the LHC CMS detector and demonstrated good performance.
Quantum algebraic approach to refined topological vertex
NASA Astrophysics Data System (ADS)
Awata, H.; Feigin, B.; Shiraishi, J.
2012-03-01
We establish the equivalence between the refined topological vertex of Iqbal-Kozcaz-Vafa and a certain representation theory of the quantum algebra of type W 1+∞ introduced by Miki. Our construction involves trivalent intertwining operators Φ and Φ* associated with triples of the bosonic Fock modules. Resembling the topological vertex, a triple of vectors ∈ {mathbb{Z}^2} is attached to each intertwining operator, which satisfy the Calabi-Yau and smoothness conditions. It is shown that certain matrix elements of Φ and Φ* give the refined topological vertex C λ μν ( t, q) of Iqbal-Kozcaz-Vafa. With another choice of basis, we recover the refined topological vertex C λ μ ν ( q, t) of Awata-Kanno. The gluing factors appears correctly when we consider any compositions of Φ and Φ*. The spectral parameters attached to Fock spaces play the role of the Kähler parameters.
Twisted Logarithmic Modules of Vertex Algebras
NASA Astrophysics Data System (ADS)
Bakalov, Bojko
2016-07-01
Motivated by logarithmic conformal field theory and Gromov-Witten theory, we introduce a notion of a twisted module of a vertex algebra under an arbitrary (not necessarily semisimple) automorphism. Its main feature is that the twisted fields involve the logarithm of the formal variable. We develop the theory of such twisted modules and, in particular, derive a Borcherds identity and commutator formula for them. We investigate in detail the examples of affine and Heisenberg vertex algebras.
Upgrade of the LHCb Vertex Locator
NASA Astrophysics Data System (ADS)
Leflat, A.
2014-08-01
The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a trigger-less system operating at 40 MHz. All data reduction algorithms will be executed in a high-level software farm, with access to all event information. This will enable the detector to run at luminosities of 1-2 × 1033/cm2/s and probe physics beyond the Standard Model in the heavy sector with unprecedented precision. The upgraded VELO must be low mass, radiation hard and vacuum compatible. It must be capable of fast pattern recognition and track reconstruction and will be required to drive data to the outside world at speeds of up to 2.5 Tbit/s. This challenge is being met with a new Vertex Locator (VELO) design based on hybrid pixel detectors positioned to within 5 mm of the LHC colliding beams. The sensors have 55 × 55 μm square pixels and the VELOPix ASIC which is being developed for the readout is based on the Timepix/Medipix family of chips. The hottest ASIC will have to cope with pixel hit rates of up to 900 MHz. The material budget will be optimised with the use of evaporative CO2 coolant circulating in microchannels within a thin silicon substrate. Microchannel cooling brings many advantages: very efficient heat transfer with almost no temperature gradients across the module, no CTE mismatch with silicon components, and low material contribution. This is a breakthrough technology being developed for LHCb. LHCb is also focussing effort on the construction of a lightweight foil to separate the primary and secondary LHC vacua, the development of high speed cables and radiation qualification of the module. The 40 MHz readout will also bring significant conceptual changes to the way in which the upgrade trigger is operated. Work is in progress to incorporate momentum and impact parameter information into the trigger at the earliest possible stage, using the fast pattern recognition capabilities of the upgraded detector. The current status of the VELO upgrade will
The silicon vertex detector of HERA-B
Moshous, Basil
1998-02-01
HERA-B is an experiment to study CP violation in the B system using an internal target at the DESY HERA proton ring(820 GeV). The main goal is to measure the asymmetry in the 'gold plated' decays of B{sup 0}, B-bar{sup 0}{yields}J/{psi}K{sub s}{sup 0} yielding a measurement of the angle {beta} of the unitarity triangle. From the semileptonic decay channels of the b, b-bar-hadron produced in association with the B{sup 0},B-bar{sup 0} can be used to tag the flavor of the B{sup 0}. The purpose of the Vertex Detector System is to provide the track coordinates for reconstructing the J/{psi}{yields}e{sup +}e{sup -}, {mu}{sup +}{mu}{sup -} secondary decay vertices and the impact parameters of all tagging particles.
Taxonomy of the sixteen-vertex models
Boukraa, S.; Maillard, J.M. )
1992-07-20
In this paper a classification of the subcases of the sixteen-vertex model compatible with the infinite symmetry group generated by the inversion relations of the model is performed. The elliptic parametrization of these models is recalled, emphasizing the subvarieties of the parameter space for which this parametrization degenerates into a rational one. This situation corresponds to the vanishing of some discriminant and is deeply related to the critical and disorder manifolds for these models. The authors concentrate on subcases of the sixteen-vertex model for which factorizations of this discriminant occur, allowing further exact calculations.
Measurement of the B+- lifetime and top quark identification using secondary vertex b-tagging
Schwartzman, Ariel G
2004-02-01
This dissertation presents a preliminary measurement of the B{sup {+-}} lifetime through the full reconstruction of its decay chain, and the identification of top quark production in the electron plus jets channel using the displaced vertex b-tagging method. Its main contribution is the development, implementation and optimization of the Kalman filter algorithm for vertex reconstruction, and of the displaced vertex technique for tagging jets arising from b quark fragmentation, both of which have now become part of the standard D0 reconstruction package. These two algorithms fully exploit the new state-of-the-art tracking detectors, recently installed as part of the Run 2 D0 upgrade project. The analysis is based on data collected during Run 2a at the Fermilab Tevatron p{bar p} Hadron Collider up to April 2003, corresponding to an integrated luminosity of 60 pb{sup -1}. The measured B meson lifetime of {tau} = 1.57 {+-} 0.18 ps is in agreement with the current world average, with a competitive level of precision expected when the full data sample becomes available.
(q, t) identities and vertex operators
NASA Astrophysics Data System (ADS)
Iqbal, Amer; Qureshi, Babar A.; Shabbir, Khurram
2016-03-01
Using vertex operators acting on fermionic Fock space we prove certain identities, which depend on a number of parameters, generalizing and refining the Nekrasov-Okounkov identity. These identities provide exact product representation for the instanton partition function of certain five-dimensional quiver gauge theories. This product representation also clearly displays the modular transformation properties of the gauge theory partition function.
Lifetime tests for MAC vertex chamber
Nelson, H.N.
1986-07-01
A vertex chamber for MAC was proposed to increase precision in the measurement of the B hadron and tau lepton lifetimes. Thin-walled aluminized mylar drift tubes were used for detector elements. A study of radiation hardness was conducted under the conditions of the proposed design using different gases and different operating conditions. (LEW)
New Solution of Vertex Type Tetrahedron Equations
NASA Astrophysics Data System (ADS)
Mangazeev, V. V.; Sergeev, S. M.; Stroganov, Yu. G.
In this letter we formulate a new N-state spin integrable model on a three-dimensional lattice with spins interacting round each elementary cube of the lattice. This model can also be reformulated as a vertex type model. Weight functions of the model satisfy tetrahedron equations.
Battaglia, Marco; Bussat, Jean-Marie; Contarato, Devis; Denes,Peter; Glesener, Lindsay; Greiner, Leo; Hooberman, Benjamin; Shuman,Derek; Tompkins, Lauren; Vu, Chinh; Bisello, Dario; Giubilato, Piero; Pantano, Devis; Costa, Marco; La Rosa, Alessandro; Bolla, Gino; Bortoletto, Daniela; Children, Isaac
2007-10-01
This document summarizes past achievements, current activities and future goals of the R&D program aimed at the design, prototyping and characterization of a full detector module, equipped with monolithic pixel sensors, matching the requirements for the Vertex Tracker at the ILC. We provide a plan of activities to obtain a demonstrator multi-layered vertex tracker equipped with sensors matching the ILC requirements and realistic lightweight ladders in FY11, under the assumption that ILC detector proto-collaborations will be choosing technologies and designs for the Vertex Tracker by that time. The R&D program discussed here started at LBNL in 2004, supported by a Laboratory Directed R&D (LDRD) grant and by funding allocated from the core budget of the LBNL Physics Division and from the Department of Physics at UC Berkeley. Subsequently additional funding has been awarded under the NSF-DOE LCRD program and also personnel have become available through collaborative research with other groups. The aim of the R&D program carried out by our collaboration is to provide a well-integrated, inclusive research effort starting from physics requirements for the ILC Vertex Tracker and addressing Si sensor design and characterization, engineered ladder design, module system issues, tracking and vertex performances and beam test validation. The broad scope of this program is made possible by important synergies with existing know-how and concurrent programs both at LBNL and at the other collaborating institutions. In particular, significant overlaps with LHC detector design, SLHC R&D as well as prototyping for the STAR upgrade have been exploited to optimize the cost per deliverable of our program. This activity is carried out as a collaborative effort together with Accelerator and Fusion Research, the Engineering and the Nuclear Science Divisions at LBNL, INFN and the Department of Physics in Padova, Italy, INFN and the Department of Physics in Torino, Italy and the Department
Some Results on Incremental Vertex Cover Problem
NASA Astrophysics Data System (ADS)
Dai, Wenqiang
In the classical k-vertex cover problem, we wish to find a minimum weight set of vertices that covers at least k edges. In the incremental version of the k-vertex cover problem, we wish to find a sequence of vertices, such that if we choose the smallest prefix of vertices in the sequence that covers at least k edges, this solution is close in value to that of the optimal k-vertex cover solution. The maximum ratio is called competitive ratio. Previously the known upper bound of competitive ratio was 4α, where α is the approximation ratio of the k-vertex cover problem. And the known lower bound was 1.36 unless P = NP, or 2 - ɛ for any constant ɛ assuming the Unique Game Conjecture. In this paper we present some new results for this problem. Firstly we prove that, without any computational complexity assumption, the lower bound of competitive ratio of incremental vertex cover problem is φ, where φ=sqrt{5}+1/2≈ 1.618 is the golden ratio. We then consider the restricted versions where k is restricted to one of two given values(Named 2-IVC problem) and one of three given values(Named 3-IVC problem). For 2-IVC problem, we give an algorithm to prove that the competitive ratio is at most φα. This incremental algorithm is also optimal for 2-IVC problem if we are permitted to use non-polynomial time. For the 3-IVC problem, we give an incremental algorithm with ratio factor (1+sqrt{2})α.
First LHC beam induced tracks reconstructed in the LHCb VELO
NASA Astrophysics Data System (ADS)
Parkes, C.; Borghi, S.; Bates, A.; Eklund, L.; Gersabeck, M.; Marinho, F.; Rakotomiaramanana, B.; Rodrigues, E.; Szumlak, T.; Affolder, A.; Bowcock, T.; Casse, G.; Donleavy, S.; Hennessy, K.; Huse, T.; Hutchcroft, D.; Mylroie-Smith, J.; Noor, A.; Patel, G.; Rinnert, K.; Smith, N. A.; Shears, T.; Tobin, M.; John, M.; Bay, A.; Frei, R.; Haefeli, G.; Keune, A.; Anderson, J.; McNulty, R.; Traynor, S.; Basiladze, S.; Leflat, A.; Artuso, M.; Borgia, A.; Lefeuvre, G.; Mountain, R.; Wang, J.; Akiba, K.; van Beuzekom, M.; Jans, E.; Ketel, T.; Mous, I.; Papadelis, A.; Van Lysebetten, A.; Verlaat, B.; de Vries, H.; Behrendt, O.; Buytaert, J.; de Capua, S.; Collins, P.; Ferro-Luzzi, M.
2009-06-01
The Vertex Locator of the LHCb experiment has been used to fully reconstruct beam induced tracks at the LHC. A beam of protons was collided with a beam absorber during the LHC synchronisation test of the anti-clockwise beam on the weekend 22nd-24th August 2008. The resulting particles have been observed by the Vertex Locator. The LHCb Vertex Locator is a silicon micro-strip detector containing 21 planes of modules. Tracks were observed passing through up to 19 modules (38 silicon sensors). A total of over 700 tracks were reconstructed, and are being used to study the calibration and alignment of the detector.
Internal Alignment of the SLD Vertex Detector
Jackson, D.J.; Wickens, F.J.; Su, D.; /SLAC
2007-12-03
The tracking resolution and vertex finding capabilities of the SLD experiment depended upon a precise knowledge of the location and orientation of the elements of the SLD pixel vertex detector (VXD3) in 3D space. At the heart of the procedure described here to align the 96 CCDs is the matrix inversion technique of singular value decomposition (SVD). This tool was employed to unfold the detector geometry corrections from the track data in the VXD3. The algorithm was adapted to perform an optimal {chi}{sup 2} minimization by careful treatment of the track hit residual measurement errors. The tracking resolution obtained with the aligned geometry achieved the design performance. Comments are given on how this method could be used for other trackers.
The Construction of Spin Foam Vertex Amplitudes
NASA Astrophysics Data System (ADS)
Bianchi, Eugenio; Hellmann, Frank
2013-01-01
Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barrett, Crane, Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.
Michael H.L.S. Wang
2001-11-05
BTeV is a B-physics experiment that expects to begin collecting data at the C0 interaction region of the Fermilab Tevatron in the year 2006. Its primary goal is to achieve unprecedented levels of sensitivity in the study of CP violation, mixing, and rare decays in b and c quark systems. In order to realize this, it will employ a state-of-the-art first-level vertex trigger (Level 1) that will look at every beam crossing to identify detached secondary vertices that provide evidence for heavy quark decays. This talk will briefly describe the BTeV detector and trigger, focus on the software and hardware aspects of the Level 1 vertex trigger, and describe work currently being done in these areas.
Optimized Vertex Method and Hybrid Reliability
NASA Technical Reports Server (NTRS)
Smith, Steven A.; Krishnamurthy, T.; Mason, B. H.
2002-01-01
A method of calculating the fuzzy response of a system is presented. This method, called the Optimized Vertex Method (OVM), is based upon the vertex method but requires considerably fewer function evaluations. The method is demonstrated by calculating the response membership function of strain-energy release rate for a bonded joint with a crack. The possibility of failure of the bonded joint was determined over a range of loads. After completing the possibilistic analysis, the possibilistic (fuzzy) membership functions were transformed to probability density functions and the probability of failure of the bonded joint was calculated. This approach is called a possibility-based hybrid reliability assessment. The possibility and probability of failure are presented and compared to a Monte Carlo Simulation (MCS) of the bonded joint.
Vertex detectors and the linear collider
NASA Astrophysics Data System (ADS)
Damerell, C. J. S.
2006-11-01
We review the physics requirements for the ILC vertex detectors, which lead to the specification of silicon pixel sensors arranged as nested barrels, possibly augmented by endcap detectors for enhanced coverage of small polar angles. We describe how the detector requirements are a natural outgrowth of 25 years development of CCD-based vertex detectors in fixed-target and colliding beam experiments, culminating in the 307 Mpixel SLD vertex detector. We discuss how the technology has recently branched out into about a dozen architectures which might be made to work at the ILC, where the main challenge is to increase the effective readout rate by about a factor 1000 compared to conventional CCDs, while preserving the small pixels (˜20 μm) and low-power dissipation. Preserving gaseous cooling as at SLD opens the door to layer thicknesses as low as 0.1% X0. Finally, we consider how best to manage electromagnetic interference associated with the beam wakefields and other RF sources during the bunch train. In conclusion, we suggest a strategy for moving on from the present rich R&D programmes to optimal detectors for the startup of the ILC physics programme.
Spin wave Feynman diagram vertex computation package
NASA Astrophysics Data System (ADS)
Price, Alexander; Javernick, Philip; Datta, Trinanjan
Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.
Complex growing networks with intrinsic vertex fitness
Bedogne, C.; Rodgers, G. J.
2006-10-15
One of the major questions in complex network research is to identify the range of mechanisms by which a complex network can self organize into a scale-free state. In this paper we investigate the interplay between a fitness linking mechanism and both random and preferential attachment. In our models, each vertex is assigned a fitness x, drawn from a probability distribution {rho}(x). In Model A, at each time step a vertex is added and joined to an existing vertex, selected at random, with probability p and an edge is introduced between vertices with fitnesses x and y, with a rate f(x,y), with probability 1-p. Model B differs from Model A in that, with probability p, edges are added with preferential attachment rather than randomly. The analysis of Model A shows that, for every fixed fitness x, the network's degree distribution decays exponentially. In Model B we recover instead a power-law degree distribution whose exponent depends only on p, and we show how this result can be generalized. The properties of a number of particular networks are examined.
Tracking and Vertexing for the Heavy Photon Search Experiment
NASA Astrophysics Data System (ADS)
Uemura, Sho; HPS Collaboration
2015-04-01
The Heavy Photon Search (HPS) requires precision tracking and vertexing of e+e- pairs against a high background in a difficult experimental environment. The silicon vertex tracker (SVT) for HPS uses actively cooled silicon microstrip sensors with fast readout electronics. To maximize acceptance and vertex resolution with a relatively small detector, the SVT operates directly downstream of the target, close to the beam line, and inside of a dipole magnet. This talk presents the design and performance of the HPS SVT.
Complete LQG propagator. II. Asymptotic behavior of the vertex
Alesci, Emanuele; Rovelli, Carlo
2008-02-15
In a previous article we have shown that there are difficulties in obtaining the correct graviton propagator from the loop-quantum-gravity dynamics defined by the Barrett-Crane vertex amplitude. Here we show that a vertex amplitude that depends nontrivially on the intertwiners can yield the correct propagator. We give an explicit example of asymptotic behavior of a vertex amplitude that gives the correct full graviton propagator in the large distance limit.
Affine Vertex Operator Algebras and Modular Linear Differential Equations
NASA Astrophysics Data System (ADS)
Arike, Yusuke; Kaneko, Masanobu; Nagatomo, Kiyokazu; Sakai, Yuichi
2016-05-01
In this paper, we list all affine vertex operator algebras of positive integral levels whose dimensions of spaces of characters are at most 5 and show that a basis of the space of characters of each affine vertex operator algebra in the list gives a fundamental system of solutions of a modular linear differential equation. Further, we determine the dimensions of the spaces of characters of affine vertex operator algebras whose numbers of inequivalent simple modules are not exceeding 20.
Complete LQG propagator: Difficulties with the Barrett-Crane vertex
Alesci, Emanuele; Rovelli, Carlo
2007-11-15
Some components of the graviton two-point function have been recently computed in the context of loop quantum gravity, using the spinfoam Barrett-Crane vertex. We complete the calculation of the remaining components. We find that, under our assumptions, the Barrett-Crane vertex does not yield the correct long-distance limit. We argue that the problem is general and can be traced to the intertwiner independence of the Barrett-Crane vertex, and therefore to the well-known mismatch between the Barrett-Crane formalism and the standard canonical spin networks. In another paper we illustrate the asymptotic behavior of a vertex amplitude that can correct this difficulty.
RESEARCH NOTE FROM COLLABORATION: Adaptive vertex fitting
NASA Astrophysics Data System (ADS)
Waltenberger, Wolfgang; Frühwirth, Rudolf; Vanlaer, Pascal
2007-12-01
Vertex fitting frequently has to deal with both mis-associated tracks and mis-measured track errors. A robust, adaptive method is presented that is able to cope with contaminated data. The method is formulated as an iterative re-weighted Kalman filter. Annealing is introduced to avoid local minima in the optimization. For the initialization of the adaptive filter a robust algorithm is presented that turns out to perform well in a wide range of applications. The tuning of the annealing schedule and of the cut-off parameter is described using simulated data from the CMS experiment. Finally, the adaptive property of the method is illustrated in two examples.
Babar Silicon Vertex Tracker: Status and Prospects
Re, V.; Bondioli, M.; Bruinsma, M.; Curry, S.; Kirkby, D.; Berryhill, J.; Burke, S.; Callahan, D.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hale, D.; Kyre, S.; Richman, J.; Stoner, J.; Verkerke, W.; Beck, T.; Eisner, A.M.; Kroseberg, J.; Lockman, W.S.; Nesom, G.; /INFN, Pavia /Pavia U. /UC, Irvine /UC, Santa Barbara /UC, Santa Cruz /INFN, Ferrara /Ferrara U. /LBL, Berkeley /Maryland U. /INFN, Milan /Milan U. /NIKHEF, Amsterdam /INFN, Pisa /Pisa U. /Princeton U. /UC, Riverside /SLAC /INFN, Turin /Turin U. /INFN, Trieste /Trieste U.
2006-04-27
The BABAR Silicon Vertex Tracker (SVT) has been efficiently operated for six years since the start of data taking in 1999. Due to higher than expected background levels some unforeseen effects have appeared. We discuss: a shift in the pedestal for the channels of the AToM readout chips that are most exposed to radiation; an anomalous increase in the bias leakage current for the modules in the outer layers. Estimates of future radiation doses and occupancies are shown together with the extrapolated detector performance and lifetime, in light of the new observations.
Construction of the CDF silicon vertex detector
Skarha, J.; Barnett, B.; Boswell, C.; Snider, F.; Spies, A.; Tseng, J.; Vejcik, S. ); Carter, H.; Flaugher, B.; Gonzales, B.; Hrycyk, M.; Nelson, C.; Segler, S.; Shaw, T.; Tkaczyk, S.; Turner, K.; Wesson, T. ); Carithers, W.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneider, O.; Wester
1992-04-01
Technical details and methods used in constructing the CDF silicon vertex detector are presented. This description includes a discussion of the foam-carbon fiber composite structure used to silicon microstrip detectors and the procedure for achievement of 5 {mu}m detector alignment. The construction of the beryllium barrel structure, which houses the detector assemblies, is also described. In addition, the 10 {mu}m placement accuracy of the detectors in the barrel structure is discussed and the detector cooling and mounting systems are described. 12 refs.
Design of a secondary-vertex trigger system
Husby, D.; Chew, P.; Sterner, K.; Selove, W.
1995-06-01
For the selection of beauty and charm events with high efficiency at the Tevatron, a secondary-vertex trigger system is under design. It would operate on forward-geometry events. The system would use on-line tracking of all tracks in the vertex detector, to identify events with clearly detached secondary vertices.
Drift chamber vertex detectors for SLC/LEP
Hayes, K.G.
1987-03-01
The short but measurable lifetimes of the b and c quarks and the tau lepton have motivated the development of high precision tracking detectors capable of providing information on the decay vertex topology of events containing these particles. This paper reviews the OPAL, L3, and MARK II experiments vertex drift chambers.
Total vertex irregularity strength of trees with maximum degree four
NASA Astrophysics Data System (ADS)
Susilawati, Baskoro, Edy Tri; Simanjuntak, Rinovia
2016-02-01
Let G(V, E) be a simple graph. For a labeling ϕ : V (G) ∪ E(G) → {1, 2, …, k} the weight of a vertex x is defined as wt(x) = ϕ(x) + ∑y∈N(x) ϕ (xy), where N(x) is the set of neighbors of x and y. The labeling ϕ is called a vertex irregular total k-labeling if for every pair of distinct vertices x and y we have wt(x) ≠ wt(y). The minimum k for which the graph G has a vertex irregular total k-labeling is called the total vertex irregularity strength of G and is denoted by tvs(G). In this paper, we determine total vertex irregularity strengths of trees with maximum degree four and a subdivision of a double-star.
C-Graded vertex algebras and conformal flow
Laber, Rob; Mason, Geoffrey
2014-01-15
We consider C-graded vertex algebras, which are vertex algebras V with a C-grading such that V is an admissible V-module generated by “lowest weight vectors.” We show that such vertex algebras have a “good” representation theory in the sense that there is a Zhu algebra A(V) and a bijection between simple admissible V-modules and simple A(V)-modules. We also consider pseudo vertex operator algebras (PVOAs), which are C-graded vertex algebras with a conformal vector such that the homogeneous subspaces of V are generalized eigenspaces for L(0); essentially, these are VOAs that lack any semisimplicity or integrality assumptions on L(0). As a motivating example, we show that deformation of the conformal structure (conformal flow) of a strongly regular VOA (e.g., a lattice theory, or Wess-Zumino-Witten model) is a path in a space whose points are PVOAs.
Twisted vertex algebras, bicharacter construction and boson-fermion correspondences
Anguelova, Iana I.
2013-12-15
The boson-fermion correspondences are an important phenomena on the intersection of several areas in mathematical physics: representation theory, vertex algebras and conformal field theory, integrable systems, number theory, cohomology. Two such correspondences are well known: the types A and B (and their super extensions). As a main result of this paper we present a new boson-fermion correspondence of type D-A. Further, we define a new concept of twisted vertex algebra of order N, which generalizes super vertex algebra. We develop the bicharacter construction which we use for constructing classes of examples of twisted vertex algebras, as well as for deriving formulas for the operator product expansions, analytic continuations, and normal ordered products. By using the underlying Hopf algebra structure we prove general bicharacter formulas for the vacuum expectation values for two important groups of examples. We show that the correspondences of types B, C, and D-A are isomorphisms of twisted vertex algebras.
Vertex detector for a linear beauty factory
NASA Astrophysics Data System (ADS)
Gratta, G.; Zaccardelli, C.
1988-02-01
A very high resolution vertex detector to help in B meson identification both tagging on the B decay length and antitagging on the D decay length; reduce the combinatorial problems for charged tracks; measure lifetimes study B(0) B bar (0) mixing as a function of time for both Bd and Bs systems; study time dependent asymmetries due to CP violation; look for DD bar mixing; and detect phenomena which could become reachable with the new regime of luminosity is proposed. The detector is based on 3 coaxial layers of silicon pixel devices, each made of 10 flat detectors arranged cylindrically. Mechanics and vacuum of the system are outlined, along with control electronics and alignment.
Evaluation of new spin foam vertex amplitudes
NASA Astrophysics Data System (ADS)
Khavkine, Igor
2009-06-01
The Christensen-Egan algorithm is extended and generalized to efficiently evaluate new spin foam vertex amplitudes proposed by Engle, Pereira and Rovelli and Freidel and Krasnov, with or without (factored) boundary states. A concrete pragmatic proposal is made for comparing the different models using uniform methodologies, applicable to the behavior of large spin asymptotics and of expectation values of specific semiclassical observables. The asymptotics of the new models exhibit non-oscillatory, power-law decay similar to that of the Barrett-Crane model, though with different exponents. Also, an analysis of the semiclassical wave packet propagation problem indicates that the Magliaro, Rovelli and Perini's conjecture of good semiclassical behavior of the new models does not hold for generic factored states, which neglect spin-spin correlations.
Interaction vertex for classical spinning particles
NASA Astrophysics Data System (ADS)
Rempel, Trevor; Freidel, Laurent
2016-08-01
We consider a model of the classical spinning particle in which the coadjoint orbits of the Poincaré group are parametrized by two pairs of canonically conjugate four-vectors, one representing the standard position and momentum variables, and the other encoding the spinning degrees of freedom. This "dual phase space model" is shown to be a consistent theory of both massive and massless particles and allows for coupling to background fields such as electromagnetism. The on-shell action is derived and shown to be a sum of two terms, one associated with motion in spacetime, and the other with motion in "spin space." Interactions between spinning particles are studied, and a necessary and sufficient condition for consistency of a three-point vertex is established.
Compton scattering vertex for massive scalar QED
Bashir, A.; Concha-Sanchez, Y.; Delbourgo, R.; Tejeda-Yeomans, M. E.
2009-08-15
We investigate the Compton scattering vertex of charged scalars and photons in scalar quantum electrodynamics (SQED). We carry out its nonperturbative construction consistent with Ward-Fradkin-Green-Takahashi identity which relates 3-point vertices to the 4-point ones. There is an undetermined part which is transverse to one or both the external photons, and needs to be evaluated through perturbation theory. We present in detail how the transverse part at the 1-loop order can be evaluated for completely general kinematics of momenta involved in covariant gauges and dimensions. This involves the calculation of genuine 4-point functions with three massive propagators, the most nontrivial integrals reported in this paper. We also discuss possible applications of our results.
Bashir, A.; Gutierrez-Guerrero, L. X.; Tejeda-Yeomans, M. E
2008-07-02
There has been growing evidence that the infra-red enhancement of the form factors defining the quark-gluon vertex plays an important role both in dynamical chiral symmetry breaking and confinement, thus providing an intrinsic link between the the two inherently non-perturbative phenomena. Both lattice and Schwinger-Dyson equation studies have begun to calculate these form factors in various kinematical regimes of momenta involved. A natural consistency check for these studies is that they should match onto the perturbative predictions for large momenta where non-perturbative effects mellow down. In this article, we study this matching by carrying out a numerical analysis of the one loop result for the central Ball-Chiu form factor.
Performance of the LHCb Vertex Locator
NASA Astrophysics Data System (ADS)
Aaij, R.; Affolder, A.; Akiba, K.; Alexander, M.; Ali, S.; Appleby, R. B.; Artuso, M.; Bates, A.; Bay, A.; Behrendt, O.; Benton, J.; van Beuzekom, M.; Bjørnstad, P. M.; Bogdanova, G.; Borghi, S.; Borgia, A.; Bowcock, T. J. V.; van den Brand, J.; Brown, H.; Buytaert, J.; Callot, O.; Carroll, J.; Casse, G.; Collins, P.; De Capua, S.; Doets, M.; Donleavy, S.; Dossett, D.; Dumps, R.; Eckstein, D.; Eklund, L.; Farinelli, C.; Farry, S.; Ferro-Luzzi, M.; Frei, R.; Garofoli, J.; Gersabeck, M.; Gershon, T.; Gong, A.; Gong, H.; Gordon, H.; Haefeli, G.; Harrison, J.; Heijne, V.; Hennessy, K.; Hulsbergen, W.; Huse, T.; Hutchcroft, D.; Jaeger, A.; Jalocha, P.; Jans, E.; John, M.; Keaveney, J.; Ketel, T.; Korolev, M.; Kraan, M.; Laštovička, T.; Lafferty, G.; Latham, T.; Lefeuvre, G.; Leflat, A.; Liles, M.; van Lysebetten, A.; MacGregor, G.; Marinho, F.; McNulty, R.; Merkin, M.; Moran, D.; Mountain, R.; Mous, I.; Mylroie-Smith, J.; Needham, M.; Nikitin, N.; Noor, A.; Oblakowska-Mucha, A.; Papadelis, A.; Pappagallo, M.; Parkes, C.; Patel, G. D.; Rakotomiaramanana, B.; Redford, S.; Reid, M.; Rinnert, K.; Rodrigues, E.; Saavedra, A. F.; Schiller, M.; Schneider, O.; Shears, T.; Silva Coutinho, R.; Smith, N. A.; Szumlak, T.; Thomas, C.; van Tilburg, J.; Tobin, M.; Velthuis, J.; Verlaat, B.; Viret, S.; Volkov, V.; Wallace, C.; Wang, J.; Webber, A.; Whitehead, M.; Zverev, E.
2014-09-01
The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment. The performance of the detector during the first years of its physics operation is reviewed. The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7 mm from the LHC beam for physics data taking. The performance and stability of these characteristic features of the detector are described, and details of the material budget are given. The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described. The system performance is fully characterised. The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 μm is achieved at the optimal track angle. The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 0.5%, and the detector has less than 1% of faulty strips. The proximity of the detector to the beam means that the inner regions of the n+-on-n sensors have undergone space-charge sign inversion due to radiation damage. The VELO performance parameters that drive the experiment's physics sensitivity are also given. The track finding efficiency of the VELO is typically above 98% and the modules have been aligned to a precision of 1 μm for translations in the plane transverse to the beam. A primary vertex resolution of 13 μm in the transverse plane and 71 μm along the beam axis is achieved for vertices with 25 tracks. An impact parameter resolution of less than 35 μm is achieved for particles with transverse momentum greater than 1 GeV/c.
Locking mechanisms in degree-4 vertex origami structures
NASA Astrophysics Data System (ADS)
Fang, Hongbin; Li, Suyi; Xu, Jian; Wang, K. W.
2016-04-01
Origami has emerged as a potential tool for the design of mechanical metamaterials and metastructures whose novel properties originate from their crease patterns. Most of the attention in origami engineering has focused on the wellknown Miura-Ori, a folded tessellation that is flat-foldable for folded sheet and stacked blocks. This study advances the state of the art and expands the research field to investigate generic degree-4 vertex (4-vertex) origami, with a focus on facet-binding. In order to understand how facet-binding attributes to the mechanical properties of 4-vertex origami structures, geometries of the 4-vertex origami cells are analyzed and analytically expressed. Through repeating and stacking 4-vertex cells, origami sheets and stacked origami blocks can be constructed. Geometry analyses discover four mechanisms that will lead to the self-locking of 4-vertex origami cells, sheets, and stacked blocks: in-cell facet-binding, inlayer facet-binding, inter-layer facet binding, and in-layer and inter-layer facet-bindings. These mechanisms and the predicted self-locking phenomena are verified through 3D simulations and prototype experiments. Finally, this paper briefly introduces the unusual mechanical properties caused by the locking of 4-vertex origami structures. The research reported in this paper could foster a new breed of self-locking structures with various engineering applications.
A two-level fanout system for the CDF silicon vertex tracker
A. Bardi et al.
2001-11-02
The Fanout system is part of the Silicon Vertex Tracker, a new trigger processor designed to reconstruct charged particle trajectories at Level 2 of the CDF trigger, with a latency of 10 {micro}s and an event rate up to 100 kHz. The core of SVT is organized as 12 identical slices, which process in parallel the data from the 12 independent azimuthal wedges of the Silicon Vertex Detector (SVXII). Each SVT slice links the digitized pulse heights found within one SVXII wedge to the tracks reconstructed by the Level 1 fast track finder (XFT) in the corresponding 30{sup o} angular region of the Central Outer Tracker. Since the XFT tracks are transmitted to SVT as a single data stream, their distribution to the proper SVT slices requires dedicated fanout logic. The Fanout system has been implemented as a multi-board project running on a common 20 MHz clock. Track fanout is performed in two steps by one ''Fanout A'' and two ''Fanout B'' boards. The architecture, design, and implementation of this system are described.
The formation of a yield-surface vertex in rock
Olsson, W.A.
1992-01-01
Microstructural models of deformation of polycrystalline materials suggest that inelastic deformation leads to the formation of a corner or vertex at the current load point. This vertex can cause the response to non-proportional loading to be more compliant than predicted by the smooth yield-surface idealization. Combined compression-torsion experiments on Tennessee marble indicate that a vertex forms during inelastic flow. An important implication is that strain localization by bifurcation occurs earlier than predicted by bifurcation analysis using isotropic hardening.
On Vertex Covering Transversal Domination Number of Regular Graphs
Vasanthi, R.; Subramanian, K.
2016-01-01
A simple graph G = (V, E) is said to be r-regular if each vertex of G is of degree r. The vertex covering transversal domination number γvct(G) is the minimum cardinality among all vertex covering transversal dominating sets of G. In this paper, we analyse this parameter on different kinds of regular graphs especially for Qn and H3,n. Also we provide an upper bound for γvct of a connected cubic graph of order n ≥ 8. Then we try to provide a more stronger relationship between γ and γvct. PMID:27119089
Quark-gluon vertex model and lattice-QCD data
Bhagwat, M.S.; Tandy, P.C.
2004-11-01
A model for the dressed-quark-gluon vertex, at zero gluon momentum, is formed from a nonperturbative extension of the two Feynman diagrams that contribute at one loop in perturbation theory. The required input is an existing ladder-rainbow model Bethe-Salpeter kernel from an approach based on the Dyson-Schwinger equations; no new parameters are introduced. The model includes an Ansatz for the triple-gluon vertex. Two of the three vertex amplitudes from the model provide a pointwise description of the recent quenched-lattice-QCD data. An estimate of the effects of quenching is made.
Superstring vertex operators in type IIB matrix model
Kitazawa, Yoshihisa; Nagaoka, Satoshi
2008-06-15
We clarify the relation between the vertex operators in type IIB matrix model and superstring. Green-Schwarz light-cone closed superstring theory is obtained from IIB matrix model on two-dimensional noncommutative backgrounds. Superstring vertex operators should be reproduced from those of IIB matrix model through this connection. Indeed, we confirm that supergravity vertex operators in IIB matrix model on the two-dimensional backgrounds reduce to those in superstring theory. Noncommutativity plays an important role in our identification. Through this correspondence, we can reproduce superstring scattering amplitudes from IIB matrix model.
Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality
NASA Astrophysics Data System (ADS)
Wölfle, Peter; Abrahams, Elihu
2016-02-01
We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation laws following from local symmetries. The generators considered are the spin density and particle density. It is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging, the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the diverging quasiparticle effective mass.
The vertex scan: an important component of cranial computed tomography.
Wing, S D; Osborn, A G; Wing, R W
1978-04-01
Physicians who monitor cranial computed tomography occasionally omit the most superior aspects of the brain and calvarium because of time limitations and overloaded scanning schedules. In addition, standardized CT reporting forms as well training literature distributed by some manufacturers support the concept that a complete CT series consists of three scan pairs. Omission of a vertex scan pair results in failure to visualize 10%-15% of the brain volume. We have reviewed the results of 2,000 consecutive CT studies to determine the number and variety of pathologic entities that would have been missed had a vertex scan not been obtained. The most significant or sole abnormality was present on the vertex scan alone in 3% of the cases. Examples are presented. A true vertex levels should be obtained in every routine CT examination. PMID:416693
Efficient variants of the vertex space domain decomposition algorithm
Chan, T.F.; Shao, J.P. . Dept. of Mathematics); Mathew, T.P. . Dept. of Mathematics)
1994-11-01
Several variants of the vertex space algorithm of Smith for two-dimensional elliptic problems are described. The vertex space algorithm is a domain decomposition method based on nonoverlapping subregions, in which the reduced Schur complement system on the interface is solved using a generalized block Jacobi-type preconditioner, with the blocks corresponding to the vertex space, edges, and a coarse grid. Two kinds of approximations are considered for the edge and vertex space subblocks, one based on Fourier approximation, and another based on an algebraic probing technique in which sparse approximations to these subblocks are computed. The motivation is to improve the efficiency of the algorithm without sacrificing the optimal convergence rate. Numerical and theoretical results on the performance of these algorithms, including variants of an algorithm of Bramble, Pasciak, and Schatz are presented.
Dynamical Vertex Approximation for the Hubbard Model
NASA Astrophysics Data System (ADS)
Toschi, Alessandro
A full understanding of correlated electron systems in the physically relevant situations of three and two dimensions represents a challenge for the contemporary condensed matter theory. However, in the last years considerable progress has been achieved by means of increasingly more powerful quantum many-body algorithms, applied to the basic model for correlated electrons, the Hubbard Hamiltonian. Here, I will review the physics emerging from studies performed with the dynamical vertex approximation, which includes diagrammatic corrections to the local description of the dynamical mean field theory (DMFT). In particular, I will first discuss the phase diagram in three dimensions with a special focus on the commensurate and incommensurate magnetic phases, their (quantum) critical properties, and the impact of fluctuations on electronic lifetimes and spectral functions. In two dimensions, the effects of non-local fluctuations beyond DMFT grow enormously, determining the appearance of a low-temperature insulating behavior for all values of the interaction in the unfrustrated model: Here the prototypical features of the Mott-Hubbard metal-insulator transition, as well as the existence of magnetically ordered phases, are completely overwhelmed by antiferromagnetic fluctuations of exponentially large extension, in accordance with the Mermin-Wagner theorem. Eventually, by a fluctuation diagnostics analysis of cluster DMFT self-energies, the same magnetic fluctuations are identified as responsible for the pseudogap regime in the holed-doped frustrated case, with important implications for the theoretical modeling of the cuprate physics.
Linear Time Vertex Partitioning on Massive Graphs
Mell, Peter; Harang, Richard; Gueye, Assane
2016-01-01
The problem of optimally removing a set of vertices from a graph to minimize the size of the largest resultant component is known to be NP-complete. Prior work has provided near optimal heuristics with a high time complexity that function on up to hundreds of nodes and less optimal but faster techniques that function on up to thousands of nodes. In this work, we analyze how to perform vertex partitioning on massive graphs of tens of millions of nodes. We use a previously known and very simple heuristic technique: iteratively removing the node of largest degree and all of its edges. This approach has an apparent quadratic complexity since, upon removal of a node and adjoining set of edges, the node degree calculations must be updated prior to choosing the next node. However, we describe a linear time complexity solution using an array whose indices map to node degree and whose values are hash tables indicating the presence or absence of a node at that degree value. This approach also has a linear growth with respect to memory usage which is surprising since we lowered the time complexity from quadratic to linear. We empirically demonstrate linear scalability and linear memory usage on random graphs of up to 15000 nodes. We then demonstrate tractability on massive graphs through execution on a graph with 34 million nodes representing Internet wide router connectivity. PMID:27336059
Upgrade of the Belle Silicon Vertex Detector
NASA Astrophysics Data System (ADS)
Friedl, M.; Belle SVD Collaboration
2010-11-01
The Belle experiment at KEK (Tsukuba, Japan) was inaugurated in 1999 and has delivered excellent physics results since then, which were, for example, recognized in the Nobel Prize award 2008 to Kobayashi and Masukawa. An overall luminosity of 895 fb -1 has been recorded as of December 2008, and the present system will be running until 1 ab -1 is achieved. After that, a major upgrade is foreseen for both the KEK-B machine and the Belle detector. Already in 2004, the Letter of Intent for KEK Super B Factory was published. Intermediate steps of upgrade were considered for the Silicon Vertex Detector (SVD), which performs very well but already got close to its limit regarding the occupancy in the innermost layer and dead time. Eventually it was decided to keep the existing SVD2 system until 1 ab -1 and completely replace the silicon detector as well as its readout system for Super-Belle. The future SVD will be composed of double-sided silicon sensors as the present detector, but equipped with faster readout electronics, namely the APV25 chips originally made for CMS at CERN. Moreover, it will be enlarged by two additional layers and equipped with a double layer of DEPFET pixel detectors surrounding the beam pipe. The silicon sensors will be fabricated from 6 in. wafers (compared to the current 4 in. types) and the readout chain will be completely replaced, including front-end, repeaters and the back-end electronics in the counting house.
The vertex detector for the Lepton/Photon Collaboration
Sullivan, J.P.; Boissevain, J.G.; Fox, D.; van Hecke, H.; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E.
1991-12-31
The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two concentric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity {eta} distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed.
The 21st International Workshop on Vertex Detectors
NASA Astrophysics Data System (ADS)
The 21st International Workshop on Vertex Detectors was held in Jeju, Korea from Sept. 16 to Sept. 21, 2012. The progress on silicon based vertexing and tracking detectors and related technologies is reviewed in this conference. The conference covers performance results and operational issues of LHC silicon detectors, radiation hard technologies, electronics, new silicon detector developments, device and detector simulation and upgrades of present detectors.
Braided Tensor Categories and Extensions of Vertex Operator Algebras
NASA Astrophysics Data System (ADS)
Huang, Yi-Zhi; Kirillov, Alexander; Lepowsky, James
2015-08-01
Let V be a vertex operator algebra satisfying suitable conditions such that in particular its module category has a natural vertex tensor category structure, and consequently, a natural braided tensor category structure. We prove that the notions of extension (i.e., enlargement) of V and of commutative associative algebra, with uniqueness of unit and with trivial twist, in the braided tensor category of V-modules are equivalent.
The vertex detector for the Lepton/Photon collaboration
Sullivan, J.P.; Boissevain, J.G.; Fox, D.; Hecke, H. van; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E.
1991-12-31
The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two con- centric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity ({nu}) distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed.
ERIC Educational Resources Information Center
Childers, Annie Burns; Vidakovic, Draga
2014-01-01
This paper explores sixty-six students' personal meaning and interpretation of the vertex of a quadratic function in relation to their understanding of quadratic functions in two different representations, algebraic and word problem. Several categories emerged from students' personal meaning of the vertex including vertex as maximum or…
An upwind vertex centred Finite Volume solver for Lagrangian solid dynamics
NASA Astrophysics Data System (ADS)
Aguirre, Miquel; Gil, Antonio J.; Bonet, Javier; Lee, Chun Hean
2015-11-01
A vertex centred Jameson-Schmidt-Turkel (JST) finite volume algorithm was recently introduced by the authors (Aguirre et al., 2014 [1]) in the context of fast solid isothermal dynamics. The spatial discretisation scheme was constructed upon a Lagrangian two-field mixed (linear momentum and the deformation gradient) formulation presented as a system of conservation laws [2-4]. In this paper, the formulation is further enhanced by introducing a novel upwind vertex centred finite volume algorithm with three key novelties. First, a conservation law for the volume map is incorporated into the existing two-field system to extend the range of applications towards the incompressibility limit (Gil et al., 2014 [5]). Second, the use of a linearised Riemann solver and reconstruction limiters is derived for the stabilisation of the scheme together with an efficient edge-based implementation. Third, the treatment of thermo-mechanical processes through a Mie-Grüneisen equation of state is incorporated in the proposed formulation. For completeness, the study of the eigenvalue structure of the resulting system of conservation laws is carried out to demonstrate hyperbolicity and obtain the correct time step bounds for non-isothermal processes. A series of numerical examples are presented in order to assess the robustness of the proposed methodology. The overall scheme shows excellent behaviour in shock and bending dominated nearly incompressible scenarios without spurious pressure oscillations, yielding second order of convergence for both velocities and stresses.
The η ' g* g(*) vertex including the η '-meson mass
NASA Astrophysics Data System (ADS)
Ali, A.; Parkhomenko, A. Ya
2003-10-01
The η^' g^* g^{(*)} effective vertex function is calculated in the QCD hard-scattering approach, taking into account the η^'-meson mass. We work in the approximation in which only one non-leading Gegenbauer moment for both the quark-antiquark and the gluonic light-cone distribution amplitudes for the η^'-meson is kept. The vertex function with one off-shell gluon is shown to have the form (valid for \\vert q_1^2 \\vert > m_{η^'^2) F_{η^' g^* g} (q_1^2, 0, m_{η^'^2) = m_{η^'^2 H(q_1^2)/(q_1^2 - m_{η^'^2), where H( q 1 2) is a slowly varying function, derived analytically in this paper. The resulting vertex function is in agreement with the phenomenologically inferred form of this vertex obtained from an analysis of the CLEO data on the η^'-meson energy spectrum in the decay Upsilon(1S) to η^' X. We also present an interpolating formula for the vertex function F_{η^' g^* g} (q_1^2, 0, m_{η^'^2) for the space-like region of the virtuality q 1 2, which satisfies the QCD anomaly normalization for on-shell gluons and the perturbative QCD result for the gluon virtuality \\vert q_1^2\\vert gtrsim 2 GeV2.
Progress with vertex detector sensors for the International Linear Collider
NASA Astrophysics Data System (ADS)
Worm, S.; Banda, Y.; Bowdery, C.; Buttar, C.; Clarke, P.; Cussans, D.; Damerell, C.; Davies, G.; Devetak, E.; Fopma, J.; Foster, B.; Gao, R.; Gillman, A. R.; Goldstein, J.; Greenshaw, T.; Grimes, M.; Harder, K.; Hawes, B.; Heath, H.; Hillert, S.; Jeffery, B.; Johnson, E.; Kundu, N.; Martin, V.; Murray, P.; Nichols, A.; Nomerotski, A.; O'Shea, V.; Parkes, C.; Perry, C.; Woolliscroft, T.; Sopczak, A.; Stefanov, K.; Thomas, S.; Tikkanen, T.; Yang, S.; Zhang, Z.
2007-12-01
In the past year, the Linear Collider Flavour Identification (LCFI) Collaboration has taken significant steps towards having a sensor suitable for use in the silicon vertex detector of the International Linear Collider (ILC). The goal of the collaboration is to develop the sensors, electronic systems and mechanical support structures necessary for the construction of a high performance vertex detector and to investigate the contribution such a vertex detector can make to the physics accessible at the ILC. Particular highlights include the delivery and testing of both a second-generation column parallel CCD (CP-CCD), design of the next-generation readout ASIC (CPR2a) and a dedicated ASIC for driving the CP-CCD. This paper briefly describes these and other highlights.
Stress singularities at the vertex of a cylindrically anisotropic wedge
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.; Boduroglu, H.
1980-01-01
The plane elasticity problem for a cylindrically anisotropic solid is formulated. The form of the solution for an infinite wedge shaped domain with various homogeneous boundary conditions is derived and the nature of the stress singularity at the vertex of the wedge is studied. The characteristic equations giving the stress singularity and the angular distribution of the stresses around the vertex of the wedge are obtained for three standard homogeneous boundary conditions. The numerical examples show that the singular behavior of the stresses around the vertex of an anisotropic wedge may be significantly different from that of the isotropic material. Some of the results which may be of practical importance are that for a half plane the stress state at r = 0 may be singular and for a crack the power of stress singularity may be greater or less than 1/2.
Beam test of silicon strip sensors for the ZEUS micro vertex detector
NASA Astrophysics Data System (ADS)
Bauerdick, L. A. T.; Borsato, E.; Burgard, C.; Carli, T.; Carlin, R.; Casaro, M.; Chiochia, V.; Dal Corso, F.; Dannheim, D.; Garfagnini, A.; Kappes, A.; Klanner, R.; Koffeman, E.; Koppitz, B.; Kötz, U.; Maddox, E.; Milite, M.; Moritz, M.; Ng, J. S. T.; Petrucci, M. C.; Redondo, I.; Rautenberg, J.; Tiecke, H.; Turcato, M.; Velthuis, J. J.; Weber, A.
2003-04-01
For the HERA upgrade, the ZEUS experiment has designed and installed a high precision Micro Vertex Detector (MVD) using single sided μ-strip sensors with capacitive charge division. The sensors have a readout pitch of 120 μm, with five intermediate strips ( 20 μm strip pitch). An extensive test program has been carried out at the DESY-II testbeam facility. In this paper we describe the setup developed to test the ZEUS MVD sensors and the results obtained on both irradiated and non-irradiated single sided μ-strip detectors with rectangular and trapezoidal geometries. The performances of the sensors coupled to the readout electronics (HELIX chip, version 2.2) have been studied in detail, achieving a good description by a Monte Carlo simulation. Measurements of the position resolution as a function of the angle of incidence are presented, focusing in particular on the comparison between standard and newly developed reconstruction algorithms.
Test results of the Data Handling Processor for the DEPFET Pixel Vertex Detector
NASA Astrophysics Data System (ADS)
Lemarenko, M.; Hemperek, T.; Krüger, H.; Koch, M.; Lütticke, F.; Marinas, C.; Wermes, N.
2013-01-01
In the new Belle II detector, which is currently under construction at the SuperKEKB accelerator, a two layer pixel detector will be introduced to improve the vertex reconstruction in a ultra high luminosity environment. The pixel detector will be produced using the DEPFET technology. A new ASIC (Data Handling Processor or DHP) designed to steer the readout process, pre-process and compress the raw data has been developed. The DHP will be directly bump bonded to the balcony of the all-silicon DEPFET module. The current chip prototype has been produced in CMOS 90 nm. Its test results, including the data processing quality, the signal integrity of the gigabit transmission lines will be presented here. For the final chip, which will be produced using CMOS 65 nm, single event upset (SEU) cross sections were measured. An additional chip, containing memory blocks to be tested, was submitted and produced using this technology.
q-vertex operator from 5D Nekrasov function
NASA Astrophysics Data System (ADS)
Itoyama, H.; Oota, T.; Yoshioka, R.
2016-08-01
The five-dimensional AGT correspondence implies the connection between the q-deformed Virasoro block and the 5d Nekrasov partition function. In this paper, we determine a q-deformation of the four-point block in the Coulomb gas representation from the 5d Nekrasov function, and obtain an expression of the q-deformed vertex operator. If we use only one kind of the q-vertex operators, one of the insertion points of them must be modified in order to hold the 2d/5d correspondence.
Simulations of silicon vertex tracker for star experiment at RHIC
Odyniec, G.; Cebra, D.; Christie, W.; Naudet, C.; Schroeder, L.; Wilson, W.; Liko, D.; Cramer, J.; Prindle, D.; Trainor, T.; Braithwaite, W.
1991-12-31
The first computer simulations to optimize the Silicon Vertex Tracker (SVT) designed for the STAR experiment at RHIC are presented. The physics goals and the expected complexity of the events at RHIC dictate the design of a tracking system for the STAR experiment. The proposed tracking system will consist of a silicon vertex tracker (SVT) to locate the primary interaction and secondary decay vertices and to improve the momentum resolution, and a time projection chamber (TPC), positioned inside a solenoidal magnet, for continuous tracking.
Tests of track segment and vertex finding with neural networks
Denby, B.; Lessner, E. ); Lindsey, C.S. )
1990-04-01
Feed forward neural networks have been trained, using back-propagation, to find the slopes of simulated track segments in a straw chamber and to find the vertex of tracks from both simulated and real events in a more conventional drift chamber geometry. Network architectures, training, and performance are presented. 12 refs., 7 figs.
Vertex detector technology for the SSC (Superconducting Super Collider)
Skubic, P.; Kalbfleisch, G.; Kaplan, D.; Kuehler, J.; Lambrecht, M. ); Arens, J.; Jernigan, G. . Space Sciences Lab.); Attias, H.; Karchin, P.; Ross, W.; Sinnott, J.; Utku, S. ); Barger, K.; McCliment, E. ); Collins, T.; Kramer, G.; Worley, S. (Hughes Aircraft Co., Carlsbad, C
1990-12-01
An overview of a SSC R D program for silicon vertex detector development is presented. The current test program with silicon microstrip and pixel detectors is discussed and selected results of beam tests are presented including measurements of position resolution as a function of angle of incidence. Plans for future tests are also discussed. 10 refs., 4 figs.
Symmetric point quartic gluon vertex and momentum subtraction
NASA Astrophysics Data System (ADS)
Gracey, J. A.
2014-07-01
We compute the full one loop correction to the quartic vertex of QCD at the fully symmetric point. This allows us to define a new momentum subtraction (MOM) scheme in the class of schemes introduced by Celmaster and Gonsalves. Hence using properties of the renormalization group equation, the two loop renormalization group functions for this scheme are given.
A Cohomology Theory of Grading-Restricted Vertex Algebras
NASA Astrophysics Data System (ADS)
Huang, Yi-Zhi
2014-04-01
We introduce a cohomology theory of grading-restricted vertex algebras. To construct the correct cohomologies, we consider linear maps from tensor powers of a grading-restricted vertex algebra to "rational functions valued in the algebraic completion of a module for the algebra," instead of linear maps from tensor powers of the algebra to a module for the algebra. One subtle complication arising from such functions is that we have to carefully address the issue of convergence when we compose these linear maps with vertex operators. In particular, for each , we have an inverse system of nth cohomologies and an additional nth cohomology of a grading-restricted vertex algebra V with coefficients in a V-module W such that is isomorphic to the inverse limit of the inverse system . In the case of n = 2, there is an additional second cohomology denoted by which will be shown in a sequel to the present paper to correspond to what we call square-zero extensions of V and to first order deformations of V when W = V.
Hypoelectronic 8-11-Vertex Irida- and Rhodaboranes.
Roy, Dipak Kumar; Borthakur, Rosmita; Prakash, Rini; Bhattacharya, Somnath; Jagan, Rajamony; Ghosh, Sundargopal
2016-05-16
A series of novel isocloso-diiridaboranes [(Cp*Ir)2B6H6], 1, 2; [1,7-(Cp*Ir)2B8H8], 4; [1,4-(Cp*Ir)2B8H8], 5; [(Cp*Ir)2B9H9], 8; isonido-[(Cp*Ir)2B7H7], 3; and 10-vertex cluster [5,7-(Cp*Ir)2B8H12], 6 (Cp* = η(5)-C5Me5) have been isolated and structurally characterized from the pyrolysis of [Cp*IrCl2]2 and BH3·thf. On the other hand, the corresponding rhodium system afforded 10- and 11-vertices clusters [5-(Cp*Rh)B9H13)], 7, and [(Cp*Rh)2B9H9], 9, respectively. Clusters 1 and 2 are topological isomers. The geometry of 1 is dodecahedral, similar to that of its parent borane [B8H8](2-), in which two of the [BH] vertices are replaced by two [Cp*Ir] fragments. The geometry of 2 can be derived from a nine-vertex tricapped trigonal prism by removing one of the capped vertices. Compounds 4 and 5 are 10-vertex isocloso clusters based on a 10-vertex bicapped square antiprism structure. The only difference between them is the presence of a metal-metal bond in 5. The solid-state structures of 8 and 9 attain an 11-vertex geometry in which a unique six-membered B6H6 moiety is bonded to the metal center. In addition, quantum-chemical calculations have been used to provide further insight into the electronic structure and stability of the clusters. All the compounds have been characterized by IR and (1)H, (11)B, and (13)C NMR spectroscopy in solution, and the solid-state structures were established by X-ray crystallographic analysis. PMID:27139525
Proposed proper Engle-Pereira-Rovelli-Livine vertex amplitude
NASA Astrophysics Data System (ADS)
Engle, Jonathan
2013-04-01
As established in a prior work of the author, the linear simplicity constraints used in the construction of the so-called “new” spin-foam models mix three of the five sectors of Plebanski theory as well as two dynamical orientations, and this is the reason for multiple terms in the asymptotics of the Engle-Pereira-Rovelli-Livine vertex amplitude as calculated by Barrett et al. Specifically, the term equal to the usual exponential of i times the Regge action corresponds to configurations either in sector (II+) with positive orientation or sector (II-) with negative orientation. The presence of the other terms beyond this cause problems in the semiclassical limit of the spin-foam model when considering multiple 4-simplices due to the fact that the different terms for different 4-simplices mix in the semiclassical limit, leading in general to a non-Regge action and hence non-Regge and nongravitational configurations persisting in the semiclassical limit. To correct this problem, we propose to modify the vertex so its asymptotics include only the one term of the form eiSRegge. To do this, an explicit classical discrete condition is derived that isolates the desired gravitational sector corresponding to this one term. This condition is quantized and used to modify the vertex amplitude, yielding what we call the “proper Engle-Pereira-Rovelli-Livine vertex amplitude.” This vertex still depends only on standard SU(2) spin-network data on the boundary, is SU(2) gauge-invariant, and is linear in the boundary state, as required. In addition, the asymptotics now consist in the single desired term of the form eiSRegge, and all degenerate configurations are exponentially suppressed. A natural generalization to the Lorentzian signature is also presented.
Operator Product Formulas in the Algebraic Approach of the Refined Topological Vertex
NASA Astrophysics Data System (ADS)
Cai, Li-Qiang; Wang, Li-Fang; Wu, Ke; Yang, Jie
2013-02-01
The refined topological vertex of Iqbal—Kozçaz—Vafa has been investigated from the viewpoint of the quantum algebra of type W1+∞ by Awata, Feigin, and Shiraishi. They introduced the trivalent intertwining operator Φ which is normal ordered along with some prefactors. We manage to establish formulas from the infinite operator product of the vertex operators and the generalized ones to restore this prefactor, and obtain an explicit formula for the vertex realization of the topological vertex as well as the refined topological vertex.
Vertex detectors: The state of the art and future prospects
Damerell, C.J.S.
1997-01-01
We review the current status of vertex detectors (tracking microscopes for the recognition of charm and bottom particle decays). The reasons why silicon has become the dominant detector medium are explained. Energy loss mechanisms are reviewed, as well as the physics and technology of semiconductor devices, emphasizing the areas of most relevance for detectors. The main design options (microstrips and pixel devices, both CCD`s and APS`s) are discussed, as well as the issue of radiation damage, which probably implies the need to change to detector media beyond silicon for some vertexing applications. Finally, the evolution of key performance parameters over the past 15 years is reviewed, and an attempt is made to extrapolate to the likely performance of detectors working at the energy frontier ten years from now.
An unenumerative DNA computing model for vertex coloring problem.
Xu, Jin; Qiang, Xiaoli; Yang, Yan; Wang, Baoju; Yang, Dongliang; Luo, Liang; Pan, Linqiang; Wang, Shudong
2011-06-01
The solution space exponential explosion caused by the enumeration of the candidate solutions maybe is the biggest obstacle in DNA computing. In the paper, a new unenumerative DNA computing model for graph vertex coloring problem is presented based on two techniques: 1) ordering the vertex sequence for a given graph in such a way that any two consecutive labeled vertices i and i+1 should be adjacent in the graph as much as possible; 2) reducing the number of encodings representing colors according to the construture of the given graph. A graph with 12 vertices without triangles is solved and its initial solution space includes only 283 DNA strands, which is 0.0532 of 3(12) (the worst complexity). PMID:21742570
Vertex Exponents of Two-Colored Extremal Ministrong Digraphs
NASA Astrophysics Data System (ADS)
Suwilo, Saib
2011-06-01
The exponent of a vertex v in a two-colored digraph D(2) is the smallest positive integer h+k such that for each vertex x in D(2) there is a walk of length h+k consisting of h red arcs and k blue arcs. Let D(2) be a primitive two-colored extremalministrong digraphon n vertices. If D(2) has one blue arc, the exponent of the vertices of D(2) lieson the interval [n2-5n+8,n2-3n+1]. If D(2) has two blue arcs, the exponent of the vertices in D(2) lies on the interval [n2-4n+4,n2-n].
Development of pixel detectors for SSC vertex tracking
Kramer, G. . Electro-Optical and Data Systems Group); Atlas, E.L.; Augustine, F.; Barken, O.; Collins, T.; Marking, W.L.; Worley, S.; Yacoub, G.Y. ) Shapiro, S.L. ); Arens, J.F.; Jernigan, J.G. . Space Sciences Lab.); Nygren,
1991-04-01
A description of hybrid PIN diode arrays and a readout architecture for their use as a vertex detector in the SSC environment is presented. Test results obtained with arrays having 256 {times} 256 pixels, each 30 {mu}m square, are also presented. The development of a custom readout for the SSC will be discussed, which supports a mechanism for time stamping hit pixels, storing their xy coordinates, and storing the analog information within the pixel. The peripheral logic located on the array, permits the selection of those pixels containing interesting data and their coordinates to be selectively read out. This same logic also resolves ambiguous pixel ghost locations and controls the pixel neighbor read out necessary to achieve high spatial resolution. The thermal design of the vertex tracker and the proposed signal processing architecture will also be discussed. 5 refs., 13 figs., 3 tabs.
Worldline calculation of the three-gluon vertex
Ahmadiniaz, N.; Schubert, C.
2012-10-23
The three-gluon vertex is a basic object of interest in nonabelian gauge theory. At the one-loop level, it has been calculated and analyzed by a number of authors. Here we use the worldline formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in terms of field strength tensors. We verify its equivalence with previously obtained representations, and explain the relation of its structure to the low-energy effective action. The sum rule found by Binger and Brodsky for the scalar, spinor and gluon loop contributions in the present approach relates to worldline supersymmetry.
Factorized domain wall partition functions in trigonometric vertex models
NASA Astrophysics Data System (ADS)
Foda, O.; Wheeler, M.; Zuparic, M.
2007-10-01
We obtain factorized domain wall partition functions for two sets of trigonometric vertex models: (1) the N-state Deguchi Akutsu models, for N \\in \\{2, 3, 4\\} (and conjecture the result for all N>=5), and (2) the sl(r+1|s+1) Perk Schultz models, for \\{r, s \\in \\mathbb {N}\\} , where (given the symmetries of these models) the result is independent of {r,s}.
Automatically generated algorithms for the vertex coloring problem.
Contreras Bolton, Carlos; Gatica, Gustavo; Parada, Víctor
2013-01-01
The vertex coloring problem is a classical problem in combinatorial optimization that consists of assigning a color to each vertex of a graph such that no adjacent vertices share the same color, minimizing the number of colors used. Despite the various practical applications that exist for this problem, its NP-hardness still represents a computational challenge. Some of the best computational results obtained for this problem are consequences of hybridizing the various known heuristics. Automatically revising the space constituted by combining these techniques to find the most adequate combination has received less attention. In this paper, we propose exploring the heuristics space for the vertex coloring problem using evolutionary algorithms. We automatically generate three new algorithms by combining elementary heuristics. To evaluate the new algorithms, a computational experiment was performed that allowed comparing them numerically with existing heuristics. The obtained algorithms present an average 29.97% relative error, while four other heuristics selected from the literature present a 59.73% error, considering 29 of the more difficult instances in the DIMACS benchmark. PMID:23516506
Organization mechanism and counting algorithm on vertex-cover solutions
NASA Astrophysics Data System (ADS)
Wei, Wei; Zhang, Renquan; Niu, Baolong; Guo, Binghui; Zheng, Zhiming
2015-04-01
Counting the solution number of combinational optimization problems is an important topic in the study of computational complexity, which is concerned with Vertex-Cover in this paper. First, we investigate organizations of Vertex-Cover solution spaces by the underlying connectivity of unfrozen vertices and provide facts on the global and local environment. Then, a Vertex-Cover Solution Number Counting Algorithm is proposed and its complexity analysis is provided, the results of which fit very well with the simulations and have a better performance than those by 1-RSB in the neighborhood of c = e for random graphs. Based on the algorithm, variation and fluctuation on the solution number the statistics are studied to reveal the evolution mechanism of the solution numbers. Furthermore, the marginal probability distributions on the solution space are investigated on both the random graph and scale-free graph to illustrate the different evolution characteristics of their solution spaces. Thus, doing solution number counting based on the graph expression of the solution space should be an alternative and meaningful way to study the hardness of NP-complete and #P-complete problems and the appropriate algorithm design can help to achieve better approximations of solving combinational optimization problems and the corresponding counting problems.
Recurrence relations of higher spin BPST vertex operators for open strings
NASA Astrophysics Data System (ADS)
Fu, Chih-Hao; Lee, Jen-Chi; Tan, Chung-I.; Yang, Yi
2013-08-01
We calculate higher-spin Brower-Polchinski-Strassler-Tan (BPST) vertex operators for an open bosonic string and express these operators in terms of a Kummer function of the second kind. We derive an infinite number of recurrence relations among BPST vertex operators of different string states. These recurrence relations among BPST vertex operators lead to the recurrence relations among Regge string scattering amplitudes discovered recently.
The eight-vertex model with quasi-periodic boundary conditions
NASA Astrophysics Data System (ADS)
Niccoli, G.; Terras, V.
2016-01-01
We study the inhomogeneous eight-vertex model (or equivalently the XYZ Heisenberg spin-1/2 chain) with all kinds of integrable quasi-periodic boundary conditions: periodic, {σ }x-twisted, {σ }y-twisted or {σ }z-twisted. We show that in all these cases but the periodic one with an even number of sites {N}, the transfer matrix of the model is related, by the vertex-IRF transformation, to the transfer matrix of the dynamical six-vertex model with antiperiodic boundary conditions, which we have recently solved by means of Sklyanin's separation of variables approach. We show moreover that, in all the twisted cases, the vertex-IRF transformation is bijective. This allows us to completely characterize, from our previous results on the antiperiodic dynamical six-vertex model, the twisted eight-vertex transfer matrix spectrum (proving that it is simple) and eigenstates. We also consider the periodic case for {N} odd. In this case we can define two independent vertex-IRF transformations, both not bijective, and by using them we show that the eight-vertex transfer matrix spectrum is doubly degenerate, and that it can, as well as the corresponding eigenstates, also be completely characterized in terms of the spectrum and eigenstates of the dynamical six-vertex antiperiodic transfer matrix. In all these cases we can adapt to the eight-vertex case the reformulations of the dynamical six-vertex transfer matrix spectrum and eigenstates that had been obtained by T-Q functional equations, where the Q-functions are elliptic polynomials with twist-dependent quasi-periods. Such reformulations enable one to characterize the eight-vertex transfer matrix spectrum by the solutions of some Bethe-type equations, and to rewrite the corresponding eigenstates as the multiple action of some operators on a pseudo-vacuum state, in a similar way as in the algebraic Bethe ansatz framework.
EMC studies for the vertex detector of the Belle II experiment
NASA Astrophysics Data System (ADS)
Thalmeier, R.; Iglesias, M.; Arteche, F.; Echeverria, I.; Friedl, M.; Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Cervenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kiesling, C.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnicka, P.; Lanceri, L.; Lettenbicher, J.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Moser, H. G.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaia, I.; Rizzo, G.; Rozanska, M.; Rummel, S.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.
2016-01-01
The upgrade of the Belle II experiment plans to use a vertex detector based on two different technologies, DEPFET pixel (PXD) technology and double side silicon microstrip (SVD) technology. The vertex electronics are characterized by the topology of SVD bias that forces to design a sophisticated grounding because of the floating power scheme. The complex topology of the PXD power cable bundle may introduce some noise inside the vertex area. This paper presents a general overview of the EMC issues present in the vertex system, based on EMC tests on an SVD prototype and a study of noise propagation in the PXD cable bundle based on Multi-conductor transmission line theory.
Studies for a 10 μs, thin, high resolution CMOS pixel sensor for future vertex detectors
NASA Astrophysics Data System (ADS)
Voutsinas, G.; Amar-Youcef, S.; Baudot, J.; Bertolone, G.; Brogna, A.; Chon-Sen, N.; Claus, G.; Colledani, C.; Dorokhov, A.; Dozière, G.; Dulinski, W.; Degerli, Y.; De Masi, R.; Deveaux, M.; Gelin, M.; Goffe, M.; Hu-Guo, Ch.; Himmi, A.; Jaaskelainen, K.; Koziel, M.; Morel, F.; Müntz, C.; Orsini, F.; Santos, C.; Schrader, C.; Specht, M.; Stroth, J.; Valin, I.; Wagner, F. M.; Winter, M.
2011-06-01
Future high energy physics (HEP) experiments require detectors with unprecedented performances for track and vertex reconstruction. These requirements call for high precision sensors, with low material budget and short integration time. The development of CMOS sensors for HEP applications was initiated at IPHC Strasbourg more than 10 years ago, motivated by the needs for vertex detectors at the International Linear Collider (ILC) [R. Turchetta et al, NIM A 458 (2001) 677]. Since then several other applications emerged. The first real scale digital CMOS sensor MIMOSA26 equips Flavour Tracker at RHIC, as well as for the microvertex detector of the CBM experiment at FAIR. MIMOSA sensors may also offer attractive performances for the ALICE upgrade at LHC. This paper will demonstrate the substantial performance improvement of CMOS sensors based on a high resistivity epitaxial layer. First studies for integrating the sensors into a detector system will be addressed and finally the way to go to a 10 μs readout sensor will be discussed.
Barnes, Christopher P
2005-03-01
The D0 detector underwent a major upgrade to maximize its ability to fully exploit Run II at the Fermilab Tevatron, the world's highest energy collider. The upgrade included a completely new central tracking system with an outer scintillating fiber tracker and an inner silicon vertex detector all within a 2T superconducting solenoid. This thesis describes the development of high level trigger algorithms including vertexing, impact parameter significance and invariant mass, that utilize tracks from these detectors. One of the main physics goals of Run II is the observation of B{sub s} oscillations. This measurement, which cannot be performed at the B factories, will significantly constrain the ''unitarity triangle'' associated with Cp violation and so probe the Standard Model of particle physics. Furthermore this is an interesting measurement as the study of mixing in meson systems has a long history for revealing new physics. The second part of this thesis presents a study of the hadronic decay B{sub s} {yields} D{sub s}{pi}. This important mode provides the best proper time resolution for B{sub s} mixing and is reconstructed for the first time at D0. Projections on the sensitivity to B{sub s} oscillations are then presented.
Vertex Operators Arising from Jacobi-Trudi Identities
NASA Astrophysics Data System (ADS)
Jing, Naihuan; Rozhkovskaya, Natasha
2016-01-01
We give an interpretation of the boson-fermion correspondence as a direct consequence of the Jacobi-Trudi identity. This viewpoint enables us to construct from a generalized version of the Jacobi-Trudi identity the action of a Clifford algebra on the polynomial algebras that arrive as analogues of the algebra of symmetric functions. A generalized Giambelli identity is also proved to follow from that identity. As applications, we obtain explicit formulas for vertex operators corresponding to characters of the classical Lie algebras, shifted Schur functions, and generalized Schur symmetric functions associated to linear recurrence relations.
LETTER TO THE EDITOR: Vertex instabilities in foams and emulsions
NASA Astrophysics Data System (ADS)
Weaire, D.; Phelan, R.
1996-01-01
Plateau's rules, which are the basis of most descriptions of foam structure, include one which dictates that junctions of more than four Plateau borders are always unstable. This has been rigorously proved by Taylor for the idealized mathematical model in which the borders are reduced to lines of infinitesimal thickness. Nevertheless we here present a mathematical analysis which shows that a symmetric eightfold vertex is metastable, even for arbitrarily thin Plateau borders. This paradoxical result, contrary to conventional wisdom, was first suggested by computer simulations and some simple experiments.
Low-Mass Materials and Vertex Detector Systems
Cooper, William E.
2014-01-01
Physics requirements set the material budget and the precision and sta bility necessary in low - mass vertex detector sy s tems . Operational considerations, along with physics requirements , set the operating environment to be provided and determine the heat to be removed. Representative materials for fulfilling those requirements are described and properties of the materials are tabulated. A figure of merit is proposed to aid in material selection. Multi - layer structures are examined as a method to allow material to be used effectively, thereby reducing material contributions. Fin ally, comments are made on future directions to be considered in using present materials effectively and in developing new materials.
and as Vertex Operator Extensionsof Dual Affine Algebras
NASA Astrophysics Data System (ADS)
Bowcock, P.; Feigin, B. L.; Semikhatov, A. M.; Taormina, A.
We discover a realisation of the affine Lie superalgebra and of the exceptional affine superalgebra as vertex operator extensions of two algebras with ``dual'' levels (and an auxiliary level-1 algebra). The duality relation between the levels is . We construct the representation of on a sum of tensor products of , , and modules and decompose it into a direct sum over the spectral flow orbit. This decomposition gives rise to character identities, which we also derive. The extension of the construction to is traced to the properties of embeddings into and their relation with the dual pairs. Conversely, we show how the representations are constructed from representations.
3D circuit integration for Vertex and other detectors
Yarema, Ray; /Fermilab
2007-09-01
High Energy Physics continues to push the technical boundaries for electronics. There is no area where this is truer than for vertex detectors. Lower mass and power along with higher resolution and radiation tolerance are driving forces. New technologies such as SOI CMOS detectors and three dimensional (3D) integrated circuits offer new opportunities to meet these challenges. The fundamentals for SOI CMOS detectors and 3D integrated circuits are discussed. Examples of each approach for physics applications are presented. Cost issues and ways to reduce development costs are discussed.
First results with prototype ISIS devices for ILC vertex detector
NASA Astrophysics Data System (ADS)
Damerell, C.; Zhang, Z.; Gao, R.; John John, Jaya; Li, Y.; Nomerotski, A.; Holland, A.; Seabroke, G.; Havranek, M.; Stefanov, K.; Kar-Roy, A.; Bell, R.; Burt, D.; Pool, P.
2010-12-01
The vertex detectors at the International Linear Collider (ILC) (there will be two of them, one for each of two general purpose detectors) will certainly be built with silicon pixel detectors, either monolithic or perhaps vertically integrated. However, beyond this general statement, there is a wide range of options supported by active R&D programmes all over the world. Pixel-based vertex detectors build on the experience at the SLAC large detector (SLD) operating at the SLAC linear collider (SLC), where a 307 Mpixel detector permitted the highest physics performance at LEP or SLC. For ILC, machine conditions demand much faster readout than at SLC, something like 20 time slices during the 1 ms bunch train. The approach of the image sensor with in-situ storage (ISIS) is unique in offering this capability while avoiding the undesirable requirement of 'pulsed power'. First results from a prototype device that approaches the pixel size of 20 μm square, needed for physics, are reported. The dimensional challenge is met by using a 0.18 μm imaging CMOS process, instead of a conventional CCD process.
Stochastic Higher Spin Vertex Models on the Line
NASA Astrophysics Data System (ADS)
Corwin, Ivan; Petrov, Leonid
2016-04-01
We introduce a four-parameter family of interacting particle systems on the line, which can be diagonalized explicitly via a complete set of Bethe ansatz eigenfunctions, and which enjoy certain Markov dualities. Using this, for the systems started in step initial data, we write down nested contour integral formulas for moments and Fredholm determinant formulas for Laplace-type transforms. Taking various choices or limits of parameters, this family degenerates to many of the known exactly solvable models in the Kardar-Parisi-Zhang universality class, as well as leads to many new examples of such models. In particular, asymmetric simple exclusion process, the stochastic six-vertex model, q-totally asymmetric simple exclusion process and various directed polymer models all arise in this manner. Our systems are constructed from stochastic versions of the R-matrix related to the six-vertex model. One of the key tools used here is the fusion of R-matrices and we provide a probabilistic proof of this procedure.
Salgado, Christopher J.; Chim, Harvey; Tang, Jennifer C.; Monstrey, Stan J.; Mardini, Samir
2011-01-01
A variety of surgical options exists for penile reconstruction. The key to success of therapy is holistic management of the patient, with attention to the psychological aspects of treatment. In this article, we review reconstructive modalities for various types of penile defects inclusive of partial and total defects as well as the buried penis, and also describe recent basic science advances, which may promise new options for penile reconstruction. PMID:22851914
CCpi0 Event Reconstruction at MiniBooNE
Nelson, Robert H.; /Colorado U.
2009-09-01
We describe the development of a fitter to reconstruct {nu}{sub {mu}} induced Charged-Current single {pi}{sup 0} (CC{pi}{sup 0}) events in an oil Cerenkov detector (CH{sub 2}). These events are fit using a generic muon and two photon extended track hypothesis from a common event vertex. The development of ring finding and particle identification are described. Comparisons between data and Monte Carlo are presented for a few kinematic distributions.
The refined topological vertex and its applications in physics and mathematics
NASA Astrophysics Data System (ADS)
Kozcaz, Can
We define a refined topological vertex which depends in addition on a parameter, which physically corresponds to extending the self-dual graviphoton field strength to a more general configuration. Using this refined topological vertex we compute, using geometric engineering, a two-parameter (equivariant) instanton expansion of gauge theories which reproduce the results of Nekrasov.
A high-order vertex-based central ENO finite-volume scheme for three-dimensional compressible flows
Charest, Marc R.J.; Canfield, Thomas R.; Morgan, Nathaniel R.; Waltz, Jacob; Wohlbier, John G.
2015-03-11
High-order discretization methods offer the potential to reduce the computational cost associated with modeling compressible flows. However, it is difficult to obtain accurate high-order discretizations of conservation laws that do not produce spurious oscillations near discontinuities, especially on multi-dimensional unstructured meshes. A novel, high-order, central essentially non-oscillatory (CENO) finite-volume method that does not have these difficulties is proposed for tetrahedral meshes. The proposed unstructured method is vertex-based, which differs from existing cell-based CENO formulations, and uses a hybrid reconstruction procedure that switches between two different solution representations. It applies a high-order k-exact reconstruction in smooth regions and a limited linear reconstruction when discontinuities are encountered. Both reconstructions use a single, central stencil for all variables, making the application of CENO to arbitrary unstructured meshes relatively straightforward. The new approach was applied to the conservation equations governing compressible flows and assessed in terms of accuracy and computational cost. For all problems considered, which included various function reconstructions and idealized flows, CENO demonstrated excellent reliability and robustness. Up to fifth-order accuracy was achieved in smooth regions and essentially non-oscillatory solutions were obtained near discontinuities. The high-order schemes were also more computationally efficient for high-accuracy solutions, i.e., they took less wall time than the lower-order schemes to achieve a desired level of error. In one particular case, it took a factor of 24 less wall-time to obtain a given level of error with the fourth-order CENO scheme than to obtain the same error with the second-order scheme.
A high-order vertex-based central ENO finite-volume scheme for three-dimensional compressible flows
Charest, Marc R.J.; Canfield, Thomas R.; Morgan, Nathaniel R.; Waltz, Jacob; Wohlbier, John G.
2015-03-11
High-order discretization methods offer the potential to reduce the computational cost associated with modeling compressible flows. However, it is difficult to obtain accurate high-order discretizations of conservation laws that do not produce spurious oscillations near discontinuities, especially on multi-dimensional unstructured meshes. A novel, high-order, central essentially non-oscillatory (CENO) finite-volume method that does not have these difficulties is proposed for tetrahedral meshes. The proposed unstructured method is vertex-based, which differs from existing cell-based CENO formulations, and uses a hybrid reconstruction procedure that switches between two different solution representations. It applies a high-order k-exact reconstruction in smooth regions and a limited linearmore » reconstruction when discontinuities are encountered. Both reconstructions use a single, central stencil for all variables, making the application of CENO to arbitrary unstructured meshes relatively straightforward. The new approach was applied to the conservation equations governing compressible flows and assessed in terms of accuracy and computational cost. For all problems considered, which included various function reconstructions and idealized flows, CENO demonstrated excellent reliability and robustness. Up to fifth-order accuracy was achieved in smooth regions and essentially non-oscillatory solutions were obtained near discontinuities. The high-order schemes were also more computationally efficient for high-accuracy solutions, i.e., they took less wall time than the lower-order schemes to achieve a desired level of error. In one particular case, it took a factor of 24 less wall-time to obtain a given level of error with the fourth-order CENO scheme than to obtain the same error with the second-order scheme.« less
NASA Astrophysics Data System (ADS)
Janiš, Václav; Pokorný, Vladislav
2012-12-01
We propose a renormalization scheme of the Kubo formula for the electrical conductivity with multiple backscatterings contributing to the electron-hole irreducible vertex derived from the asymptotic limit to high spatial dimensions. We use this vertex to represent the two-particle Green function via a symmetrized Bethe-Salpeter equation in momentum space. We further utilize the dominance of a pole in the irreducible vertex to an approximate diagonalization of the Bethe-Salpeter equation and a non-perturbative representation of the electron-hole correlation function. The latter function is then used to derive a compact representation for the electrical conductivity at zero temperature without the necessity to evaluate separately the Drude term and vertex corrections. The electrical conductivity calculated in this way remains nonnegative also in the strongly disordered regime where the localization effects become significant and the negative vertex corrections in the standard Kubo formula overweight the Drude term.
Garaffa, Giulio; Sansalone, Salvatore; Ralph, David J
2013-01-01
During the most recent years, a variety of new techniques of penile reconstruction have been described in the literature. This paper focuses on the most recent advances in male genital reconstruction after trauma, excision of benign and malignant disease, in gender reassignment surgery and aphallia with emphasis on surgical technique, cosmetic and functional outcome. PMID:22426595
Defrise, Michel; Gullberg, Grant T.
2006-04-05
We give an overview of the role of Physics in Medicine andBiology in development of tomographic reconstruction algorithms. We focuson imaging modalities involving ionizing radiation, CT, PET and SPECT,and cover a wide spectrum of reconstruction problems, starting withclassical 2D tomogra tomography in the 1970s up to 4D and 5D problemsinvolving dynamic imaging of moving organs.
Image reconstruction from fan-beam projections on less than a short scan.
Noo, Frédéric; Defrise, Michel; Clackdoyle, Rolf; Kudo, Hiroyuki
2002-07-21
This work is concerned with 2D image reconstruction from fan-beam projections. It is shown that exact and stable reconstruction of a given region-of-interest in the object does not require all lines passing through the object to be measured. Complete (non-truncated) fan-beam projections provide sufficient information for reconstruction when 'every line passing through the region-of-interest intersects the vertex path in a non-tangential way'. The practical implications of this condition are discussed and a new filtered-backprojection algorithm is derived for reconstruction. Experiments with computer-simulated data are performed to support the mathematical results. PMID:12171338
The silicon vertex detector of the Belle II experiment
NASA Astrophysics Data System (ADS)
Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C. W.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaya, I.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.
2016-07-01
The silicon vertex detector of the Belle II experiment, structured in a lantern shape, consists of four layers of ladders, fabricated from two to five silicon sensors. The APV25 readout ASIC chips are mounted on one side of the ladder to minimize the signal path for reducing the capacitive noise; signals from the sensor backside are transmitted to the chip by bent flexible fan-out circuits. The ladder is assembled using several dedicated jigs. Sensor motion on the jig is minimized by vacuum chucking. The gluing procedure provides such a rigid foundation that later leads to the desired wire bonding performance. The full ladder with electrically functional sensors is consistently completed with a fully developed assembly procedure, and its sensor offsets from the design values are found to be less than 200 μm. The potential functionality of the ladder is also demonstrated by the radioactive source test.
D. phi. vertex drift chamber construction and test results
Clark, A.R.; Goozen, F.; Grudberg, P.; Klopfenstein, C.; Kerth, L.T.; Loken, S.C.; Oltman, E.; Strovink, M.; Trippe, T.G.
1991-05-01
A jet-cell based vertex chamber has been built for the D{O} experiment at Fermilab and operated in a test beam there. Low drift velocity and diffusion properties were achieved using CO{sub 2}(95%)-ethane(5%) at atmospheric pressure. The drift velocity is found to be consistent with (9.74+8.68( E -1.25)) {mu}m/nsec where E is the electric field strength in (kV/cm < E z 1.6 kV/cm.) An intrinsic spatial resolution of 60 {mu}m or better for drift distances greater than 2 mm is measured. The track pair efficiency is estimated to be better than 90% for separations greater than 630 {mu}m. 8 refs., 6 figs., 1 tab.
Performance of the CLAS12 Silicon Vertex Tracker modules
Antonioli, Mary Ann; Boiarinov, Serguie; Bonneau, Peter R.; Elouadrhiri, Latifa; Eng, Brian J.; Gotra, Yuri N.; Kurbatov, Evgeny O.; Leffel, Mindy A.; Mandal, Saptarshi; McMullen, Marc E.; Merkin, Mikhail M.; Raydo, Benjamin J.; Teachey, Robert W,; Tucker, Ross J.; Ungaro, Maurizio; Yegneswaran, Amrit S.; Ziegler, Veronique
2013-12-01
For the 12 GeV upgrade, the CLAS12 experiment has designed a Silicon Vertex Tracker (SVT) using single sided microstrip sensors fabricated by Hamamatsu. The sensors have graded angle design to minimize dead areas and a readout pitch of 156{micro}m, with intermediate strip. Double sided SVT module hosts three daisy-chained sensors on each side with a full strip length of 33 cm. There are 512 channels per module read out by four Fermilab Silicon Strip Readout (FSSR2) chips featuring data driven architecture, mounted on a rigid-flex hybrid. Modules are assembled on the barrel using unique cantilevered geometry to minimize the amount of material in the tracking volume. Design and performance of the SVT modules are presented, focusing on results of electrical measurements.
Performance of the CLAS12 Silicon Vertex Tracker modules
NASA Astrophysics Data System (ADS)
Antonioli, M. A.; Boiarinov, S.; Bonneau, P.; Elouadrhiri, L.; Eng, B.; Gotra, Y.; Kurbatov, E.; Leffel, M.; Mandal, S.; McMullen, M.; Merkin, M.; Raydo, B.; Teachey, W.; Tucker, R.; Ungaro, M.; Yegneswaran, A.; Ziegler, V.
2013-12-01
For the 12 GeV upgrade, the CLAS12 experiment has designed a Silicon Vertex Tracker (SVT) using single sided microstrip sensors fabricated by Hamamatsu. The sensors have graded angle design to minimize dead areas and a readout pitch of 156 μm, with intermediate strip. Double sided SVT module hosts three daisy-chained sensors on each side with a full strip length of 33 cm. There are 512 channels per module read out by four Fermilab Silicon Strip Readout (FSSR2) chips featuring data driven architecture, mounted on a rigid-flex hybrid. Modules are assembled on the barrel using unique cantilevered geometry to minimize the amount of material in the tracking volume. Design and performance of the SVT modules are presented, focusing on results of electrical measurements.
The CDF Silicon Vertex Detector for Run II
R. Rossin
2004-01-06
The 8 layer, 720k channel CDF Run II silicon detector is an essential part of the heavy flavor tagging and forward tracking capabilities of the CDF experiment. A summary of the experience in commissioning and operating this double-sided detector during the first 2 years of Run II is presented. The performances of the silicon in term of resolution, efficiency are also described. The results of the studies of radiation damage and the expected operational limits are discussed. A short description of the SVT, the Level 2 Silicon Vertex Trigger, one of the major upgrades related to the new silicon device is also presented. Finally, some of the many physics results achieved by means of the new Silicon+SVT machinery are also reviewed.
Vertex Algebras, Kac-Moody Algebras, and the Monster
NASA Astrophysics Data System (ADS)
Borcherds, Richard E.
1986-05-01
It is known that the adjoint representation of any Kac-Moody algebra A can be identified with a subquotient of a certain Fock space representation constructed from the root lattice of A. I define a product on the whole of the Fock space that restricts to the Lie algebra product on this subquotient. This product (together with a infinite number of other products) is constructed using a generalization of vertex operators. I also construct an integral form for the universal enveloping algebra of any Kac-Moody algebra that can be used to define Kac-Moody groups over finite fields, some new irreducible integrable representations, and a sort of affinization of any Kac-Moody algebra. The ``Moonshine'' representation of the Monster constructed by Frenkel and others also has products like the ones constructed for Kac-Moody algebras, one of which extends the Griess product on the 196884-dimensional piece to the whole representation.
Statistical physics of hard combinatorial optimization: Vertex cover problem
NASA Astrophysics Data System (ADS)
Zhao, Jin-Hua; Zhou, Hai-Jun
2014-07-01
Typical-case computation complexity is a research topic at the boundary of computer science, applied mathematics, and statistical physics. In the last twenty years, the replica-symmetry-breaking mean field theory of spin glasses and the associated message-passing algorithms have greatly deepened our understanding of typical-case computation complexity. In this paper, we use the vertex cover problem, a basic nondeterministic-polynomial (NP)-complete combinatorial optimization problem of wide application, as an example to introduce the statistical physical methods and algorithms. We do not go into the technical details but emphasize mainly the intuitive physical meanings of the message-passing equations. A nonfamiliar reader shall be able to understand to a large extent the physics behind the mean field approaches and to adjust the mean field methods in solving other optimization problems.
Cutaneous paraganglioma of the vertex in a child.
Kim; Lee, Il Jae; Park, Myong Chul; Kim, Joo Hyoung; Lim, Hyoseob
2012-07-01
Paraganglioma is a neuroendocrine neoplasm that may develop at various body sites, including the head, neck, thorax, and abdomen. Approximately 85% of paragangliomas develop on the abdomen, 12% develop on the chest, and only 3% develop on the head and neck. These tumors are found in locations that parallel the sympathetic chain ganglion in the thoracolumbar regions and parasympathetic nervous system in craniosacral regions, and all head and neck paragangliomas arise from the parasympathetic nervous system. Although the skin has a rich neural network, it is devoid of ganglia. There has been only 1 report of a paraganglioma on the scalp of a child. We describe a 3-year-old child with a primary cutaneous paraganglioma of the vertex scalp and review the literature on paragangliomas. PMID:22801173
The silicon strip vertex detector of the Belle II experiment
NASA Astrophysics Data System (ADS)
Onuki, Yoshiyuki
2014-11-01
The Belle II upgrade of the Belle experiment will extend the search for physics beyond the standard model. The upgrade is currently under construction, and foreseen to complete in time for the physics run scheduled for 2016. The vertex detector of the Belle II comprises two types of silicon detectors: the pixel detector (PXD) and the strip detector (SVD) using double-sided silicon strip detector (DSSD). One of the most characteristic features of the SVD is a unique chip-on-sensor scheme which enabling good signal-to-noise (S/N) ratio while reducing the material budget. This paper describes the implementation of the scheme, status and future prospects of the Belle II SVD.
Emergent reduced dimensionality by vertex frustration in artificial spin ice
NASA Astrophysics Data System (ADS)
Gilbert, Ian; Lao, Yuyang; Carrasquillo, Isaac; O'Brien, Liam; Watts, Justin D.; Manno, Michael; Leighton, Chris; Scholl, Andreas; Nisoli, Cristiano; Schiffer, Peter
2016-02-01
Reducing the dimensionality of a physical system can have a profound effect on its properties, as in the ordering of low-dimensional magnetic materials, phonon dispersion in mercury chain salts, sliding phases, and the electronic states of graphene. Here we explore the emergence of quasi-one-dimensional behaviour in two-dimensional artificial spin ice, a class of lithographically fabricated nanomagnet arrays used to study geometrical frustration. We extend the implementation of artificial spin ice by fabricating a new array geometry, the so-called tetris lattice. We demonstrate that the ground state of the tetris lattice consists of alternating ordered and disordered bands of nanomagnetic moments. The disordered bands can be mapped onto an emergent thermal one-dimensional Ising model. Furthermore, we show that the level of degeneracy associated with these bands dictates the susceptibility of island moments to thermally induced reversals, thus establishing that vertex frustration can reduce the relevant dimensionality of physical behaviour in a magnetic system.
Vertex Sensitivity in the Schwinger-Dyson Equations of QCD
David J. Wilson, Michael R. Pennington
2012-01-01
The nonperturbative gluon and ghost propagators in Landau gauge QCD are obtained using the Schwinger-Dyson equation approach. The propagator equations are solved in Euclidean space using Landau gauge with a range of vertex inputs. Initially we solve for the ghost alone, using a model gluon input, which leads us to favour a finite ghost dressing in the nonperturbative region. In order to then solve the gluon and ghost equations simultaneously, we find that non-trivial vertices are required, particularly for the gluon propagator in the small momentum limit. We focus on the properties of a number vertices and how these differences influence the final solutions. The self-consistent solutions we obtain are all qualitatively similar and contain a mass-like term in the gluon propagator dressing in agreement with related studies, supporting the long-held proposal of Cornwall.
DellaCroce, Frank J; Wolfe, Emily T
2013-04-01
As diagnostic technology has progressed and the understanding of the disease process has evolved, the number of mastectomies performed in the United States has increased. Breast reconstructive techniques have commensurately become more sophisticated along the same timeline. The result is that those facing mastectomy have the potential to simultaneously retain physical beauty and wholeness. Only 33% of women who are otherwise candidates for immediate reconstruction at the time of mastectomy choose reconstruction. Patients generally have a high level of satisfaction with the option they choose, contributing to a feeling of overall recovery and physical and emotional wholeness. PMID:23464695
Characterizing general scale-free networks by vertex-degree sequences
NASA Astrophysics Data System (ADS)
Xiao, Wenjun; Lai, Zhengwen; Chen, Guanrong
2015-11-01
Many complex networks possess a scale-free vertex-degree distribution in a power-law form of c k-γ , where k is the vertex-degree variable and c and γ are constants. To better understand the mechanism of the power-law formation in scale-free networks, it is important to understand and analyze their vertex-degree sequences. We had shown before that, for a scale-free network of size N , if its vertex-degree sequence is k1
Quark-gluon vertex dressing and meson masses beyond ladder-rainbow truncation
Hrayr Matevosyan; Anthony Thomas; Peter Tandy
2007-04-01
We include a generalized infinite class of quark-gluon vertex dressing diagrams in a study of how dynamics beyond the ladder-rainbow truncation influences the Bethe-Salpeter description of light quark pseudoscalar and vector mesons. The diagrammatic specification of the vertex is mapped into a corresponding specification of the Bethe-Salpeter kernel, which preserves chiral symmetry. This study adopts the algebraic format afforded by the simple interaction kernel used in previous work on this topic. The new feature of the present work is that in every diagram summed for the vertex and the corresponding Bethe-Salpeter kernel, each quark-gluon vertex is required to be the self-consistent vertex solution. We also adopt from previous work the effective accounting for the role of the explicitly non-Abelian three gluon coupling in a global manner through one parameter determined from recent lattice-QCD data for the vertex. With the more consistent vertex used here, the error in ladder-rainbow truncation for vector mesons is never more than 10% as the current quark mass is varied from the u/d region to the b region.
Quark-gluon vertex dressing and meson masses beyond ladder-rainbow truncation
Matevosyan, Hrayr H.; Thomas, Anthony W.; Tandy, Peter C.
2007-04-15
We include a generalized infinite class of quark-gluon vertex dressing diagrams in a study of how dynamics beyond the ladder-rainbow truncation influences the Bethe-Salpeter description of light-quark pseudoscalar and vector mesons. The diagrammatic specification of the vertex is mapped into a corresponding specification of the Bethe-Salpeter kernel, which preserves chiral symmetry. This study adopts the algebraic format afforded by the simple interaction kernel used in previous work on this topic. The new feature of the present work is that in every diagram summed for the vertex and the corresponding Bethe-Salpeter kernel, each quark-gluon vertex is required to be the self-consistent vertex solution. We also adopt from previous work the effective accounting for the role of the explicitly non-Abelian three-gluon coupling in a global manner through one parameter determined from recent lattice-QCD data for the vertex. Within the current model, the more consistent dressed vertex limits the ladder-rainbow truncation error for vector mesons to be never more than 10% as the current quark mass is varied from the u/d region to the b region.
... Tissue taken from a donor is called an allograft. The procedure is usually performed with the help ... This increases the chance you may have a meniscus tear. ACL reconstruction may be used for these ...
A MAPS based vertex detector for the STAR experiment at RHIC
Anderssen, E; Ritter, H G; Schambach, J; Sun, X; Szelezniak, M; Thomas, J; Vu, C; Wieman, H
2011-09-11
The STAR experiment at RHIC is in the process of upgrading the inner detector region of the experiment to improve the vertex resolution. We describe the current design of a MAPS based vertex detector, which is the innermost and highest resolution detector of the set of three planned upgrade detectors. This detector will enable the identification of decay vertices displaced from the interaction vertex by 100-150 {micro}m and extend the capabilities of the STAR detector in the heavy flavor domain. We present selected detector design characteristics and prototyping results, which help to validate the design in preparation for the construction of the detector.
On the inclusive gluon jet production from the triple pomeron vertex in the perturbative QCD
NASA Astrophysics Data System (ADS)
Braun, M. A.
2006-11-01
Single and double inclusive cross-sections for gluon jet production from within the triple pomeron vertex are studied in the reggeized gluon technique in the QCD with Nc→∞. It is shown that to satisfy the AGK rules the vertex has to be fully symmetric in all four reggeized gluons which form the two final pomerons. The single inclusive cross-sections are found for different cuttings of the triple pomeron vertex. They sum to the expression obtained by Kovchegov and Tuchin in the color dipole picture. The found double inclusive cross-sections satisfy the AGK rules.
Baraër, F; Darsonval, V; Lejeune, F; Bochot-Hermouet, B; Rousseau, P
2013-10-01
The eyebrow is an essential anatomical area, from a social point of view, so its reconstruction, in case of skin defect, must be as meticulous as possible, with the less residual sequela. Capillary density extremely varies from one person to another and the different methods of restoration of this area should absolutely take this into consideration. We are going to review the various techniques of reconstruction, according to the sex and the surface to cover. PMID:23896574
Bosonization of Bosons in Vertex Operator Representations of Affine Kac-Moody Algebras
NASA Astrophysics Data System (ADS)
Sakamoto, M.
1990-08-01
It is shown that various compactified closed string theories on orbifolds and tori are connected with one another through the change of bases of affine Kac-Moody algebras in vertex operator representations.
G-equivariant φ-coordinated quasi modules for quantum vertex algebras
NASA Astrophysics Data System (ADS)
Li, Haisheng
2013-05-01
This is a paper in a series to study quantum vertex algebras and their relations with various quantum algebras. In this paper, we introduce a notion of T-type quantum vertex algebra and a notion of G-equivariant ϕ-coordinated quasi module for a T-type quantum vertex algebra with an automorphism group G. We refine and extend several previous results and we obtain a commutator formula for G-equivariant ϕ-coordinated quasi modules. As an illustrating example, we study a special case of the deformed Virasoro algebra {V}ir_{p,q} with q = -1, to which we associate a Clifford vertex superalgebra and its G-equivariant ϕ-coordinated quasi modules.
A spin glass approach to the directed feedback vertex set problem
NASA Astrophysics Data System (ADS)
Zhou, Hai-Jun
2016-07-01
A directed graph (digraph) is formed by vertices and arcs (directed edges) from one vertex to another. A feedback vertex set (FVS) is a set of vertices that contains at least one vertex of every directed cycle in this digraph. The directed feedback vertex set problem aims at constructing a FVS of minimum cardinality. This is a fundamental cycle-constrained hard combinatorial optimization problem with wide practical applications. In this paper we construct a spin glass model for the directed FVS problem by converting the global cycle constraints into local arc constraints, and study this model through the replica-symmetric (RS) mean field theory of statistical physics. We then implement a belief propagation-guided decimation (BPD) algorithm for single digraph instances. The BPD algorithm slightly outperforms the simulated annealing algorithm on large random graph instances. The RS mean field results and algorithmic results can be further improved by working on a more restrictive (and more difficult) spin glass model.
G-equivariant {phi}-coordinated quasi modules for quantum vertex algebras
Li, Haisheng
2013-05-15
This is a paper in a series to study quantum vertex algebras and their relations with various quantum algebras. In this paper, we introduce a notion of T-type quantum vertex algebra and a notion of G-equivariant {phi}-coordinated quasi module for a T-type quantum vertex algebra with an automorphism group G. We refine and extend several previous results and we obtain a commutator formula for G-equivariant {phi}-coordinated quasi modules. As an illustrating example, we study a special case of the deformed Virasoro algebra Vir{sub p,q} with q=-1, to which we associate a Clifford vertex superalgebra and its G-equivariant {phi}-coordinated quasi modules.
Fast unmixing of multispectral optoacoustic data with vertex component analysis
NASA Astrophysics Data System (ADS)
Luís Deán-Ben, X.; Deliolanis, Nikolaos C.; Ntziachristos, Vasilis; Razansky, Daniel
2014-07-01
Multispectral optoacoustic tomography enhances the performance of single-wavelength imaging in terms of sensitivity and selectivity in the measurement of the biodistribution of specific chromophores, thus enabling functional and molecular imaging applications. Spectral unmixing algorithms are used to decompose multi-spectral optoacoustic data into a set of images representing distribution of each individual chromophoric component while the particular algorithm employed determines the sensitivity and speed of data visualization. Here we suggest using vertex component analysis (VCA), a method with demonstrated good performance in hyperspectral imaging, as a fast blind unmixing algorithm for multispectral optoacoustic tomography. The performance of the method is subsequently compared with a previously reported blind unmixing procedure in optoacoustic tomography based on a combination of principal component analysis (PCA) and independent component analysis (ICA). As in most practical cases the absorption spectrum of the imaged chromophores and contrast agents are known or can be determined using e.g. a spectrophotometer, we further investigate the so-called semi-blind approach, in which the a priori known spectral profiles are included in a modified version of the algorithm termed constrained VCA. The performance of this approach is also analysed in numerical simulations and experimental measurements. It has been determined that, while the standard version of the VCA algorithm can attain similar sensitivity to the PCA-ICA approach and have a robust and faster performance, using the a priori measured spectral information within the constrained VCA does not generally render improvements in detection sensitivity in experimental optoacoustic measurements.
Real time dynamic behavior of vertex frustrated artificial spin ice
NASA Astrophysics Data System (ADS)
Lao, Yuyang; Sklenar, Joseph; Gilbert, Ian; Carrasquilo, Isaac; Scholl, Andreas; Young, Anthony; Nisoli, Cristiano; Schiffer, Peter
Artificial spin ice systems comprise two dimensional arrays of nanoscale single domain ferromagnets designed to have frustrated interactions among the moments. By decimating islands from the common square artificial spin ice, one can design lattices with so called `vertex frustration'. In such lattices, the geometry prevents all vertices from occupying local ground states simultaneously. Using Photoemission Electron Microscopy (PEEM), we access the real time thermally induced dynamics of the moment behavior in those lattices. Operating at a proper temperature, the moment direction of each island fluctuates with a sufficiently slow frequency that it can be resolvable by acquiring successive PEEM images. We can extract information regarding the collective excitations of the moments and understand how they reflect the frustration of lattice. Supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division under Grant No. DE-SC0010778. The work of C.N. was carried out under the auspices of the US Department of Energy at LANL under Contract no. DE-AC52-06NA253962. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract no. DE-AC02-05CH11231.
Status and upgrade of the LHCb Vertex Locator
NASA Astrophysics Data System (ADS)
Gersabeck, M.
2014-06-01
The LHCb Vertex Locator (VELO) is the detector responsible for the detection of heavy hadrons through their flight distance. The performance of the VELO during its three years of operation during the LHC physics runs is presented, focussing on the latest studies. The primary results presented are the first observation of type-inversion at the LHC; a comparison of n-type and p-type silicon in operation; and the observation of a radiation-induced charge loss effect due to the presence of a second metal layer. The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a trigger-less system operating at 40 MHz. The upgraded VELO must be light weight, radiation hard, and compatible with LHC vacuum requirements. The material budget will be optimised with the use of evaporative CO2 coolant circulating in micro-channels within a thin silicon substrate. The current status of the VELO upgrade will be described together with a presentation of recent test results, and a discussion of the R&D on alternative solutions which has been carried out within the LHCb VELO upgrade programme.
Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector
NASA Astrophysics Data System (ADS)
Tehrani, N. Alipour; Arfaoui, S.; Benoit, M.; Dannheim, D.; Dette, K.; Hynds, D.; Kulis, S.; Perić, I.; Petrič, M.; Redford, S.; Sicking, E.; Valerio, P.
2016-07-01
The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor, where efficiencies of greater than 99% have been achieved at -60 V substrate bias, with a single hit resolution of 6.1 μm . Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.
Novel integrated CMOS pixel structures for vertex detectors
Kleinfelder, Stuart; Bieser, Fred; Chen, Yandong; Gareus, Robin; Matis, Howard S.; Oldenburg, Markus; Retiere, Fabrice; Ritter, Hans Georg; Wieman, Howard H.; Yamamoto, Eugene
2003-10-29
Novel CMOS active pixel structures for vertex detector applications have been designed and tested. The overriding goal of this work is to increase the signal to noise ratio of the sensors and readout circuits. A large-area native epitaxial silicon photogate was designed with the aim of increasing the charge collected per struck pixel and to reduce charge diffusion to neighboring pixels. The photogate then transfers the charge to a low capacitance readout node to maintain a high charge to voltage conversion gain. Two techniques for noise reduction are also presented. The first is a per-pixel kT/C noise reduction circuit that produces results similar to traditional correlated double sampling (CDS). It has the advantage of requiring only one read, as compared to two for CDS, and no external storage or subtraction is needed. The technique reduced input-referred temporal noise by a factor of 2.5, to 12.8 e{sup -}. Finally, a column-level active reset technique is explored that suppresses kT/C noise during pixel reset. In tests, noise was reduced by a factor of 7.6 times, to an estimated 5.1 e{sup -} input-referred noise. The technique also dramatically reduces fixed pattern (pedestal) noise, by up to a factor of 21 in our tests. The latter feature may possibly reduce pixel-by-pixel pedestal differences to levels low enough to permit sparse data scan without per-pixel offset corrections.
A vertex trigger based on cylindrical multiwire proportional chambers
NASA Astrophysics Data System (ADS)
Becker, J.; Bösiger, K.; Lindfeld, L.; Müller, K.; Robmann, P.; Schmitt, S.; Schmitz, C.; Steiner, S.; Straumann, U.; Szeker, K.; Truöl, P.; Urban, M.; Vollhardt, A.; Werner, N.; Baumeister, D.; Löchner, S.; Hildebrandt, M.
2008-02-01
This article describes the technical implementation and the performance of the z-vertex trigger (CIP2k), which is part of the H1-experiment at HERA. The HERA storage ring and collider was designed to investigate electron (and positron) proton scattering at a center-of-mass energy of 320 GeV. To improve the sensitivity for detecting non-standard model physics and other high momentum transfer phenomena, the HERA ring has been ungraded between 2000 and 2003 to increase the specific luminosity for the experiments. In order to cope with the increased event and background rate the experiments were upgraded, too. The CIP2k trigger system is based on a set of five cylindrical multiwire proportional chambers with cathode pad readout, and allows to distinguish between events induced by beam background and ep-interactions at the first trigger stage. The trigger decision is calculated dead-time free with a latency of 1.5 μs in parallel to the beam clock at 10.4 MHz. The trigger-logic is realized in large field programmable gate arrays (FPGA) using the hardware description language Verilog. The system is operational since October 2003. It suppresses background events with high efficiency and provides event timing information, as designed.
Readout Electronics for the Forward Vertex Detector at PHENIX
NASA Astrophysics Data System (ADS)
Phillips, Michael
2010-11-01
The PHENIX experiment at RHIC at Brookhaven National Laboratory has been providing high quality physics data for over 10 years. The current PHENIX physics program will be significantly enhanced by addition of the Forward Silicon Vertex upgrade detector (FVTX) in the acceptance of existing muon arm detectors. The proposed tracker is planned to be put into operation in 2012. Each arm of the FVTX detector consist of 4 discs of silicon strip sensors combined with FPHX readout chips, designed at FNAL. The full detector consists of over 1 million active mini-strip channels with instantaneous bandwidth topping 3.4 Tb/s. The FPHX chip utilizes data push architecture with 2 serial output streams at 200 MHz. The readout electronics design consists of Read-Out Cards (ROC) located in the vicinity of the detector and Front End Modules (FEM) located in the Counting House. ROC boards combine the data from several chips, synchronizes data streams and send them to FEM over a Fiber Optics Link. The data are buffered in the FEM and then sent to a standard PHENIX DAQ interface upon Level-1 trigger request. We will present the current status of the readout electronics development and testing, including tests with data from production wedges.
CDF Run IIb Silicon Vertex Detector DAQ Upgrade
S. Behari et al.
2003-12-18
The CDF particle detector operates in the beamline of the Tevatron proton-antiproton collider at Fermilab, Batavia, IL. The Tevatron is expected to undergo luminosity upgrades (Run IIb) in the future, resulting in a higher number of interactions per beam crossing. To operate in this dense radiation environment, an upgrade of CDF's silicon vertex detector (SVX) subsystem and a corresponding upgrade of its VME-based DAQ system has been explored. Prototypes of all the Run IIb SVX DAQ components have been constructed, assembled into a test stand and operated successfully using an adapted version of CDF's network-capable DAQ software. In addition, a PCI-based DAQ system has been developed as a fast and inexpensive tool for silicon detector and DAQ component testing in the production phase. In this paper they present an overview of the Run IIb silicon DAQ upgrade, emphasizing the new features and improvements incorporated into the constituent VME boards, and discuss a PCI-based DAQ system developed to facilitate production tests.
Hubble Space Telescope secondary mirror vertex radius/conic constant test
NASA Technical Reports Server (NTRS)
Parks, Robert
1991-01-01
The Hubble Space Telescope backup secondary mirror was tested to determine the vertex radius and conic constant. Three completely independent tests (to the same procedure) were performed. Similar measurements in the three tests were highly consistent. The values obtained for the vertex radius and conic constant were the nominal design values within the error bars associated with the tests. Visual examination of the interferometric data did not show any measurable zonal figure error in the secondary mirror.
3-point off-shell vertex in scalar QED in arbitrary gauge and dimension
Bashir, A.; Concha-Sanchez, Y.; Delbourgo, R.
2007-09-15
We calculate the complete one-loop off-shell three-point scalar-photon vertex in arbitrary gauge and dimension for scalar quantum electrodynamics. Explicit results are presented for the particular cases of dimensions 3 and 4 both for massive and massless scalars. We then propose nonperturbative forms of this vertex that coincide with the perturbative answer to order e{sup 2}.
Vertex evoked potentials in a rating-scale detection task - Relation to signal probability
NASA Technical Reports Server (NTRS)
Squires, K. C.; Squires, N. K.; Hillyard, S. A.
1975-01-01
Results of vertex-evoked potential studies conducted to determine how decision confidence level and decision probability interact to determine P3 amplitude for both signal-present and signal-absent decisions. They support the contention that the form of the vertex-evoked response is closely correlated with the subject's psychophysical response regarding the presence or absence of a threshold-level signal.
Structural information content of networks: graph entropy based on local vertex functionals.
Dehmer, Matthias; Emmert-Streib, Frank
2008-04-01
In this paper we define the structural information content of graphs as their corresponding graph entropy. This definition is based on local vertex functionals obtained by calculating j-spheres via the algorithm of Dijkstra. We prove that the graph entropy and, hence, the local vertex functionals can be computed with polynomial time complexity enabling the application of our measure for large graphs. In this paper we present numerical results for the graph entropy of chemical graphs and discuss resulting properties. PMID:18243802
Retroreflector for GRACE follow-on: Vertex vs. point of minimal coupling.
Schütze, Daniel; Müller, Vitali; Stede, Gunnar; Sheard, Benjamin S; Heinzel, Gerhard; Danzmann, Karsten; Sutton, Andrew J; Shaddock, Daniel A
2014-04-21
The GRACE Follow-On mission will monitor fluctuations in Earth's geoid using, for the first time, a Laser Ranging Interferometer to measure intersatellite distance changes. We have investigated the coupling between spacecraft rotation and the intersatellite range measurement that is incurred due to manufacturing and assembly tolerances of the Triple Mirror Assembly (TMA), a precision retroreflector to ensure alignment between in- and outgoing laser beams. The three TMA mirror planes intersect in a virtual vertex to which satellite displacements are referenced. TMA manufacturing tolerances degrade this ideal vertex, however, a Point of Minimal Coupling (PMC) between spacecraft rotation and displacement exists. This paper presents the experimental location of the PMC under pitch and yaw rotations for a prototype TMA. Rotations are performed using a hexapod, while displacements are monitored with heterodyne laser interferometry to verify the PMC position. Additionally, the vertex of the three TMA mirror planes is measured using a Coordinate Measuring Machine and compared to the PMC position. In the pitch and yaw axes, the biggest deviation between TMA vertex and PMC was 50 ± 64 μm. Thus, within the measurement uncertainties, no difference between TMA vertex and PMC could be observed. This is a key piece of information for integration of the TMA into the spacecraft: It is sufficient to use the readily-available TMA vertex location to ensure minimal rotation-to-displacement coupling during the mission. PMID:24787821
Constructing scalar-photon three point vertex in massless quenched scalar QED
NASA Astrophysics Data System (ADS)
Fernández-Rangel, L. Albino; Bashir, Adnan; Gutiérrez-Guerrero, L. X.; Concha-Sánchez, Y.
2016-03-01
Nonperturbative studies of Schwinger-Dyson equations require their infinite, coupled tower to be truncated in order to reduce them to a practically solvable set. In this connection, a physically acceptable Ansatz for the three point vertex is the most favorite choice. Scalar quantum electrodynamics (sQED) provides a simple and neat platform to address this problem. The most general form of the three point scalar-photon vertex can be expressed in terms of only two independent form factors, a longitudinal and a transverse one. Ball and Chiu have demonstrated that the longitudinal vertex is fixed by requiring the Ward-Fradkin-Green-Takahashi identity while the transverse vertex remains undetermined. In massless quenched sQED, we construct the transverse part of the nonperturbative scalar-photon vertex. This construction (i) ensures multiplicative renormalizability of the scalar propagator in keeping with the Landau-Khalatnikov-Fradkin transformations, (ii) has the same transformation properties as the bare vertex under charge conjugation, parity and time reversal, (iii) has no kinematic singularities and (iv) reproduces the one-loop asymptotic result in the weak coupling regime of the theory.
NASA Astrophysics Data System (ADS)
Li, Gang; Wentzell, Nils; Pudleiner, Petra; Thunström, Patrik; Held, Karsten
2016-04-01
We present an efficient implementation of the parquet formalism that respects the asymptotic structure of the vertex functions at both single- and two-particle levels in momentum and frequency space. We identify the two-particle reducible vertex as the core function that is essential for the construction of the other vertex functions. This observation stimulates us to consider a two-level parameter reduction for this function to simplify the solution of the parquet equations. The resulting functions, which depend on fewer arguments, are coined "kernel functions." With the use of the kernel functions, the open boundary of various vertex functions in Matsubara-frequency space can be faithfully satisfied. We justify our implementation by accurately reproducing the dynamical mean-field theory results from momentum-independent parquet calculations. The high-frequency asymptotics of the single-particle self-energy and the two-particle vertex are correctly reproduced, which turns out to be essential for the self-consistent determination of the parquet solutions. The current implementation is also feasible for the dynamical vertex approximation.
ERIC Educational Resources Information Center
Moss, Pamela A.
2007-01-01
In response to Lissitz and Samuelsen (2007), the author reconstructs the historical arguments for the more comprehensive unitary concept of validity and the principles of scientific inquiry underlying it. Her response is organized in terms of four questions: (a) How did validity in educational measurement come to be conceptualized as unitary, and…
Lesavoy, M.A.
1985-05-01
Vaginal reconstruction can be an uncomplicated and straightforward procedure when attention to detail is maintained. The Abbe-McIndoe procedure of lining the neovaginal canal with split-thickness skin grafts has become standard. The use of the inflatable Heyer-Schulte vaginal stent provides comfort to the patient and ease to the surgeon in maintaining approximation of the skin graft. For large vaginal and perineal defects, myocutaneous flaps such as the gracilis island have been extremely useful for correction of radiation-damaged tissue of the perineum or for the reconstruction of large ablative defects. Minimal morbidity and scarring ensue because the donor site can be closed primarily. With all vaginal reconstruction, a compliant patient is a necessity. The patient must wear a vaginal obturator for a minimum of 3 to 6 months postoperatively and is encouraged to use intercourse as an excellent obturator. In general, vaginal reconstruction can be an extremely gratifying procedure for both the functional and emotional well-being of patients.
ERIC Educational Resources Information Center
Helisek, Harriet; Pratt, Donald
1994-01-01
Presents a project in which students monitor their use of trash, input and analyze information via a database and computerized graphs, and "reconstruct" extinct or endangered animals from recyclable materials. The activity was done with second-grade students over a period of three to four weeks. (PR)
TECHNICAL DESIGN REPORT OF THE FORWARD SILICON VERTEX (FVTX)
PHENIX EXPERIMENT; OBRIEN,E.; PAK, R.; DREES, K.A.
2007-08-01
The main goal of the RHIC heavy ion program is the discovery of the novel ultra-hot high-density state of matter predicted by the fundamental theory of strong interactions and created in collisions of heavy nuclei, the Quark-Gluon Plasma (QGP). From measurements of the large elliptic flow of light mesons and baryons and their large suppression at high transverse momentum pT that have been made at RHIC, there is evidence that new degrees of freedom, characteristic of a deconfined QCD medium, drive the dynamics of nucleus-nucleus collisions. It has been recognized, however, that the potential of light quarks and gluons to characterize the properties of the QGP medium is limited and the next phase of the RHIC program calls for the precise determination of its density, temperature, opacity and viscosity using qualitatively new probes, such as heavy quarks. We propose the construction of two Forward Silicon Vertex Trackers (FVTX) for the PHENIX experiment that will directly identify and distinguish charm and beauty decays within the acceptance of the muon spectrometers. The FVTX will provide this essential coverage over a range of forward and backward rapidities (1.2 < |y| < 2.4)--a rapidity range coverage which not only brings significantly larger acceptance to PHENIX but which is critical for separating cold nuclear matter effects from QGP effects and is critical for measuring the proton spin contributions over a significant fraction of the kinematic range of interest. In addition, the FVTX will provide greatly reduced background and improved mass resolution for dimuon events, culminating in the first measurements of the {upsilon}{prime} and Drell-Yan at RHIC. These same heavy flavor and dimuon measurements in p+p collisions will allow us to place significant constraints on the gluon and sea quark contributions to the proton's spin and to make fundamentally new tests of the Sivers function universality.
ACL reconstruction - discharge
Anterior cruciate ligament reconstruction - discharge; ACL reconstruction - discharge ... had surgery to reconstruct your anterior cruciate ligament (ACL). The surgeon drilled holes in the bones of ...
Breast Reconstruction After Mastectomy
... around the cancer removed (lumpectomy or breast-conserving surgery) might not need reconstruction, but sometimes they do. Breast reconstruction is done by a plastic surgeon. Should I have breast reconstruction? Breast reconstruction ...
The MAPS based PXL vertex detector for the STAR experiment
NASA Astrophysics Data System (ADS)
Contin, G.; Anderssen, E.; Greiner, L.; Schambach, J.; Silber, J.; Stezelberger, T.; Sun, X.; Szelezniak, M.; Vu, C.; Wieman, H.; Woodmansee, S.
2015-03-01
The Heavy Flavor Tracker (HFT) was installed in the STAR experiment for the 2014 heavy ion run of RHIC. Designed to improve the vertex resolution and extend the measurement capabilities in the heavy flavor domain, the HFT is composed of three different silicon detectors based on CMOS monolithic active pixels (MAPS), pads and strips respectively, arranged in four concentric cylinders close to the STAR interaction point. The two innermost HFT layers are placed at a radius of 2.7 and 8 cm from the beam line, respectively, and accommodate 400 ultra-thin (50 μ m) high resolution MAPS sensors arranged in 10-sensor ladders to cover a total silicon area of 0.16 m2. Each sensor includes a pixel array of 928 rows and 960 columns with a 20.7 μ m pixel pitch, providing a sensitive area of ~ 3.8 cm2. The architecture is based on a column parallel readout with amplification and correlated double sampling inside each pixel. Each column is terminated with a high precision discriminator, is read out in a rolling shutter mode and the output is processed through an integrated zero suppression logic. The results are stored in two SRAM with ping-pong arrangement for a continuous readout. The sensor features 185.6 μ s readout time and 170 mW/cm2 power dissipation. The detector is air-cooled, allowing a global material budget as low as 0.39% on the inner layer. A novel mechanical approach to detector insertion enables effective installation and integration of the pixel layers within an 8 hour shift during the on-going STAR run.In addition to a detailed description of the detector characteristics, the experience of the first months of data taking will be presented in this paper, with a particular focus on sensor threshold calibration, latch-up protection procedures and general system operations aimed at stabilizing the running conditions. Issues faced during the 2014 run will be discussed together with the implemented solutions. A preliminary analysis of the detector performance
Design and performance of the SLD Vertex Detector, a 120 Mpixel tracking system
Agnew, G.D.; Cotton, R.; Damerell, C.J.S.
1992-03-01
This paper describes the design, construction, and initial operation of the SLD Vertex Detector, the first device to employ charge coupled devices (CCDs) on a large scale in a high energy physics experiment. The Vertex Detector comprises 480 CCDs, with a total of 120 Mpixels. Each pixel functions as an independent particle detecting element, providing space point measurements of charged particle tracks with a typical precision of 5 {mu}m in each co-ordinate. The CCDs are arranged in four concentric cylinders just outside the beam pipe which surrounds the e{sup +}e{sup {minus}} collision point of the SLAC Linear Collider (SLC). The Vertex Detector is a powerful tool for distinguishing secondary vertex tracks, produced by decay in flight of heavy flavour hadrons or tau leptons, from tracks produced at the primary event vertex. Because the colliding beam environment imposes severe constraints on the design of such a detector, a six year R&D programme was needed to develop solutions to a number of problems. The requirements include a low-mass structure (to minimise multiple scattering) both for mechanical support and to provide signal paths for the CCDS; operation at low temperature with a high degree of mechanical stability; and relatively high speed CCD readout, signal processing, and data sparsification. The lessons learned through the long R&D period should be useful for the construction of large arrays of CCDs or smart pixel devices in the future, in a number of areas of science and technology.
Unhappy vertices in artificial spin ice: new degeneracies from vertex frustration
NASA Astrophysics Data System (ADS)
Morrison, Muir J.; Nelson, Tammie R.; Nisoli, Cristiano
2013-04-01
In 1935, Pauling estimated the residual entropy of water ice with remarkable accuracy by considering the degeneracy of the ice rule solely at the vertex level. Indeed, his estimate works well for both the three-dimensional pyrochlore lattice and the two-dimensional six-vertex model, solved by Lieb in 1967. A similar estimate can be done for the honeycomb artificial spin. Indeed, its pseudo-ice rule, like the ice rule in Pauling and Lieb's systems, simply extends to the global ground state a degeneracy which is already present in the vertices. Unfortunately, the anisotropy of the magnetic interaction limits the design of inherently degenerate vertices in artificial spin ice, and the honeycomb is the only degenerate array produced so far. In this paper we show how to engineer artificial spin ice in a virtually infinite variety of degenerate geometries built out of non-degenerate vertices. In this new class of vertex models, the residual entropy follows not from a freedom of choice at the vertex level, but from the nontrivial relative arrangement of the vertices themselves. In such arrays not all of the vertices can be chosen in their lowest energy configuration. They are therefore vertex-frustrated and contain unhappy vertices. This can lead to residual entropy and to a variety of exotic states, such as sliding phases, smectic phases and emerging chirality. These new geometries will finally allow for the fabrication of many novel, extensively degenerate versions of artificial spin ice.
The Vertex Version of Weighted Wiener Number for Bicyclic Molecular Structures
Gao, Wei; Wang, Weifan
2015-01-01
Graphs are used to model chemical compounds and drugs. In the graphs, each vertex represents an atom of molecule and edges between the corresponding vertices are used to represent covalent bounds between atoms. We call such a graph, which is derived from a chemical compound, a molecular graph. Evidence shows that the vertex-weighted Wiener number, which is defined over this molecular graph, is strongly correlated to both the melting point and boiling point of the compounds. In this paper, we report the extremal vertex-weighted Wiener number of bicyclic molecular graph in terms of molecular structural analysis and graph transformations. The promising prospects of the application for the chemical and pharmacy engineering are illustrated by theoretical results achieved in this paper. PMID:26640513
Application of laser differential confocal technique in back vertex power measurement for phoropters
NASA Astrophysics Data System (ADS)
Li, Fei; Li, Lin; Ding, Xiang; Liu, Wenli
2012-10-01
A phoropter is one of the most popular ophthalmic instruments used in optometry and the back vertex power (BVP) is one of the most important parameters to evaluate the refraction characteristics of a phoropter. In this paper, a new laser differential confocal vertex-power measurement method which takes advantage of outstanding focusing ability of laser differential confocal (LDC) system is proposed for measuring the BVP of phoropters. A vertex power measurement system is built up. Experimental results are presented and some influence factor is analyzed. It is demonstrated that the method based on LDC technique has higher measurement precision and stronger environmental anti-interference capability compared to existing methods. Theoretical analysis and experimental results indicate that the measurement error of the method is about 0.02m-1.
Vertex evoked potentials in a rating-scale detection task: Relation to signal probability
NASA Technical Reports Server (NTRS)
Squires, K. C.; Squires, N. K.; Hillyard, S. A.
1974-01-01
Vertex evoked potentials were recorded from human subjects performing in an auditory detection task with rating scale responses. Three values of a priori probability of signal presentation were tested. The amplitudes of the N1 and P3 components of the vertex potential associated with correct detections of the signal were found to be systematically related to the strictness of the response criterion and independent of variations in a priori signal probability. No similar evoked potential components were found associated with signal absent judgements (misses and correct rejections) regardless of the confidence level of the judgement or signal probability. These results strongly support the contention that the form of the vertex evoked response is closely correlated with the subject's psychophysical decision regarding the presence or absence of a threshold level signal.
The Vertex Version of Weighted Wiener Number for Bicyclic Molecular Structures.
Gao, Wei; Wang, Weifan
2015-01-01
Graphs are used to model chemical compounds and drugs. In the graphs, each vertex represents an atom of molecule and edges between the corresponding vertices are used to represent covalent bounds between atoms. We call such a graph, which is derived from a chemical compound, a molecular graph. Evidence shows that the vertex-weighted Wiener number, which is defined over this molecular graph, is strongly correlated to both the melting point and boiling point of the compounds. In this paper, we report the extremal vertex-weighted Wiener number of bicyclic molecular graph in terms of molecular structural analysis and graph transformations. The promising prospects of the application for the chemical and pharmacy engineering are illustrated by theoretical results achieved in this paper. PMID:26640513
Huh, Yong; Yu, Kiyun; Park, Woojin
2016-01-01
This paper proposes a method to detect corresponding vertex pairs between planar tessellation datasets. Applying an agglomerative hierarchical co-clustering, the method finds geometrically corresponding cell-set pairs from which corresponding vertex pairs are detected. Then, the map transformation is performed with the vertex pairs. Since these pairs are independently detected for each corresponding cell-set pairs, the method presents improved matching performance regardless of locally uneven positional discrepancies between dataset. The proposed method was applied to complicated synthetic cell datasets assumed as a cadastral map and a topographical map, and showed an improved result with the F-measures of 0.84 comparing to a previous matching method with the F-measure of 0.48. PMID:27348229
Migdal's theorem and electron-phonon vertex corrections in Dirac materials
NASA Astrophysics Data System (ADS)
Roy, Bitan; Sau, Jay D.; Das Sarma, S.
2014-04-01
Migdal's theorem plays a central role in the physics of electron-phonon interactions in metals and semiconductors, and has been extensively studied theoretically for parabolic band electronic systems in three-, two-, and one-dimensional systems over the last fifty years. In the current work, we theoretically study the relevance of Migdal's theorem in graphene and Weyl semimetals which are examples of 2D and 3D Dirac materials, respectively, with linear and chiral band dispersion. Our work also applies to 2D and 3D topological insulator systems. In Fermi liquids, the renormalization of the electron-phonon vertex scales as the ratio of sound (vs) to Fermi (vF) velocity, which is typically a small quantity. In two- and three-dimensional quasirelativistic systems, such as undoped graphene and Weyl semimetals, the one loop electron-phonon vertex renormalization, which also scales as η =vs/vF as η →0, is, however, enhanced by an ultraviolet logarithmic divergent correction, arising from the linear, chiral Dirac band dispersion. Such enhancement of the electron-phonon vertex can be significantly softened due to the logarithmic increment of the Fermi velocity, arising from the long range Coulomb interaction, and therefore, the electron-phonon vertex correction does not have a logarithmic divergence at low energy. Otherwise, the Coulomb interaction does not lead to any additional renormalization of the electron-phonon vertex. Therefore, electron-phonon vertex corrections in two- and three-dimensional Dirac fermionic systems scale as vs/vF0, where vF0 is the bare Fermi velocity, and small when vs≪vF0. These results, although explicitly derived for the intrinsic undoped systems, should hold even when the chemical potential is tuned away from the Dirac points.
NASA Astrophysics Data System (ADS)
Chakrabarti, Amitabha; Chakraborti, Anirban; Jedidi, Aymen
2010-12-01
We study quantum entanglements induced on product states by the action of 8-vertex braid matrices, rendered unitary with purely imaginary spectral parameters (rapidity). The unitarity is displayed via the 'canonical factorization' of the coefficients of the projectors spanning the basis. This adds one more new facet to the famous and fascinating features of the 8-vertex model. The double periodicity and the analytic properties of the elliptic functions involved lead to a rich structure of the 3-tangle quantifying the entanglement. We thus explore the complex relationship between topological and quantum entanglement.
NASA Astrophysics Data System (ADS)
Ishimoto, Yukitaka; Morishita, Yoshihiro
2014-11-01
In order to describe two-dimensionally packed cells in epithelial tissues both mathematically and physically, there have been developed several sorts of geometrical models, such as the vertex model, the finite element model, the cell-centered model, and the cellular Potts model. So far, in any case, pressures have not neatly been dealt with and the curvatures of the cell boundaries have been even omitted through their approximations. We focus on these quantities and formulate them in the vertex model. Thus, a model with the curvatures is constructed, and its algorithm for simulation is provided. The possible extensions and applications of this model are also discussed.
Effective vertex of quark production in collision of a Reggeized quark and gluon
NASA Astrophysics Data System (ADS)
Kozlov, M. G.; Reznichenko, A. V.
2015-12-01
We calculate the effective vertex of the quark production in the collision of a Reggeized quark and a Reggeized gluon in the next-to-leading order (NLO). The vertex in question is the missing component of the multi-Regge NLO amplitudes with the quark and gluon exchanges in the ti channels. This multi-Regge form of the amplitudes is the important hypothesis which was recently proved for the gluon exchanges only and remains unverified within the next-to-leading-logarithmic approximation (NLA) for the general case including the quark exchanges. Our calculation allows one to develop the bootstrap approach to the quark Reggeization proof in NLA.
Constraint on the QED vertex from the mass anomalous dimension {gamma}{sub {ital m}}=1
Bashir, A.; Pennington, M.R.
1996-04-01
We discuss the structure of the nonperturbative fermion-boson vertex in quenched QED. We show that it is possible to construct a vertex which not only ensures that the fermion propagator is multiplicatively renormalizable, obeys the appropriate Ward-Takahashi identity, reproduces perturbation theory for weak couplings, and guarantees that the critical coupling at which the mass is dynamically generated is gauge independent but also makes sure that the value for the anomalous dimension for the mass function is strictly 1, as Holdom and Mahanta have proposed. {copyright} {ital 1996 The American Physical Society.}
NLO vertex for a forward jet plus a rapidity gap at high energies
Hentschinski, Martin; Madrigal Martínez, José Daniel; Murdaca, Beatrice; Vera, Agustín Sabio
2015-04-10
We present the calculation of the forward jet vertex associated to a rapidity gap (coupling of a hard pomeron to the jet) in the BFKL formalism at next-to-leading order (NLO). Real emission contributions are computed via Lipatov’s effective action. The NLO jet vertex turns out to be finite within collinear factorization and allows, together with the NLO non-forward gluon Green’s function, to perform NLO studies of jet production in diffractive events (e.g. Mueller-Tang dijets)
Consequences Of Fully Dressing Quark-Gluon Vertex Function With Two-Point Gluon Lines
Hrayr Matevosyan; Anthony Thomas; Peter Tandy
2007-06-18
We extend recent studies of the effects of quark-gluon vertex dressing upon the solutions of the Dyson-Schwinger equation for the quark propagator. A momentum delta function is used to represent the dominant infrared strength of the effective gluon propagator so that the resulting integral equations become algebraic. The guark-gluon vertex is constructed from the complete set of diagrams involving only 2-point gluon lines. The additional diagrams, including those with crossed gluon lines, are shown to make an important contribution to the DSE solutions for the quark propagator, because of their large color factors and the rapid growth in their number.
Srikrishna, S V; Shekar, P S; Shetty, N
1998-12-01
Surgical reconstruction of the trachea is a relatively complex procedure. We had 20 cases of tracheal stenosis. We have a modest experience of 16 tracheal reconstructions for acquired tracheal stenosis. Two patients underwent laser treatment while another two died before any intervention. The majority of these cases were a result of prolonged ventilation (14 cases), following organophosphorous poisoning (11 cases), Guillain-Barré syndrome, bullet injury, fat embolism and surprisingly only one tumor, a case of mucoepidermoid carcinoma, who had a very unusual presentation. There were 12 males and 4 females in this series, age ranging from 12-35 years. The duration of ventilation ranged from 1-21 days and the interval from decannulation to development of stridor was between 5-34 days. Six of them were approached by the cervical route, 5 by thoracotomy and cervical approach, 2 via median sternotomy and 3 by thoracotomy alone. Five of them required an additional laryngeal drop and 1 required pericardiotomy and release of pulmonary veins to gain additional length. The excised segments of trachea measured 3 to 5 cms in length. All were end to end anastomosis with interrupted Vicryl sutures. We have had no experience with stents or prosthetic tubes. Three patients developed anastomotic leaks which were controlled conservatively. Almost all of them required postoperative tracheo-bronchial suctioning with fibreoptic bronchoscope. We had one death in this series due to sepsis. PMID:9914459
Control and data acquisition electronics for the CDF Silicon Vertex Detector
Turner, K.J.; Nelson, C.A.; Shaw, T.M.; Wesson, T.R.
1991-11-01
A control and data acquisition system has been designed for the CDF Silicon Vertex Detector (SVX) at Fermilab. The system controls the operation of the SVX Rev D integrated circuit (SVX IC) that is used to instrument a 46,000 microstrip silicon detector. The system consists of a Fastbus Sequencer, a Crate Controller and Digitizer modules. 11 refs., 6 figs., 3 tabs.
Selective attention and the auditory vertex potential. 1: Effects of stimulus delivery rate
NASA Technical Reports Server (NTRS)
Schwent, V. L.; Hillyard, S. A.; Galambos, R.
1975-01-01
Enhancement of the auditory vertex potentials with selective attention to dichotically presented tone pips was found to be critically sensitive to the range of inter-stimulus intervals in use. Only at the shortest intervals was a clear-cut enhancement of the latency component to stimuli observed for the attended ear.
Silicon drift devices for track and vertex detection at the SSC
Chen, W.; Kraner, H.; Li, Z.; Ng, C.; Radeka, V.; Rehak, P.; Rescia, S. ); Clark, J.; Henderson, S.; Hsu, L.; Oliver, J.; Wilson, R. ); Clemen, M.; Humanic, T.; Kraus, D.; Vilkelis, G.; Yu, B. ); McDonald, K.; Lu, C.; Wall, M. ); Vacchi, A. ); Bert
1990-01-01
We report on the recent progress in the study of Semiconductor Drift (Memory) Detectors intended for an inner tracking and vertexing system for the SSC. The systematic studies and the calibration of the existing detectors and the simulated performance in the actual SSC environment are highlighted. 5 refs., 22 figs., 1 tab.
Emptiness Formation Probability of the Six-Vertex Model and the Sixth Painlevé Equation
NASA Astrophysics Data System (ADS)
Kitaev, A. V.; Pronko, A. G.
2016-07-01
We show that the emptiness formation probability of the six-vertex model with domain wall boundary conditions at its free-fermion point is a {τ}-function of the sixth Painlevé equation. Using this fact we derive asymptotics of the emptiness formation probability in the thermodynamic limit.
SPY: A monitoring system for the silicon vertex detector of CDF
Bedeschi, F.; Galeotti, S.; Gherarducci, F.; Mariotti, M.; Morsani, F.; Passuello, D.; Tartarelli, F.; Grieco, G.M.; Nelson, C.; Tkaczyk, S.; Harber, C.; Ristori, L.; Bailey, M.; Sciacca, G.F.; Turini, N.; Cei, M.
1993-12-01
The authors describe the basic principles and the fundamentals of the design of the system of monitoring the CDF silicon vertex detector. Also described are some results and possible future developments of this promising way of checking complex detectors with high amount of channels.
Spin-glass phase transitions and minimum energy of the random feedback vertex set problem.
Qin, Shao-Meng; Zeng, Ying; Zhou, Hai-Jun
2016-08-01
A feedback vertex set (FVS) of an undirected graph contains vertices from every cycle of this graph. Constructing a FVS of sufficiently small cardinality is very difficult in the worst cases, but for random graphs this problem can be efficiently solved by converting it into an appropriate spin-glass model [H.-J. Zhou, Eur. Phys. J. B 86, 455 (2013)EPJBFY1434-602810.1140/epjb/e2013-40690-1]. In the present work we study the spin-glass phase transitions and the minimum energy density of the random FVS problem by the first-step replica-symmetry-breaking (1RSB) mean-field theory. For both regular random graphs and Erdös-Rényi graphs, we determine the inverse temperature β_{l} at which the replica-symmetric mean-field theory loses its local stability, the inverse temperature β_{d} of the dynamical (clustering) phase transition, and the inverse temperature β_{s} of the static (condensation) phase transition. These critical inverse temperatures all change with the mean vertex degree in a nonmonotonic way, and β_{d} is distinct from β_{s} for regular random graphs of vertex degrees K>60, while β_{d} are identical to β_{s} for Erdös-Rényi graphs at least up to mean vertex degree c=512. We then derive the zero-temperature limit of the 1RSB theory and use it to compute the minimum FVS cardinality. PMID:27627285
Operation of the CDF Silicon Vertex Detector with colliding beams at Fermilab
Bedeschi, F.; Bolognesi, V.; Dell`Agnello, S.; Galeotti, S.; Grieco, G.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Ristori, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F.; Bailey, M.W.; Garfinkel, A.F.; Kruse, M.C.; Shaw, N.M.; Carithers, W.C.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneider, O.; Wester, W.; Wong, M.; Yao, W.; Carter, H.; Flaugher, B.; Nelson, C.; Segler, S.; Shaw, T.; Tkaczyk, S.; Turner, K.; Wesson, T.R.; Barnett, B.; Boswell, C.; Skarha, J.; Snider, F.D.; Spies, A.; Tseng, J.; Vejcik, S.; Amidei, D.; Derwent, P.F.; Song, T.Y.; Dunn, A.; Gold, M.; Matthews, J.; Bacchetta, N.; Azzi, P.; Bisello, D.; Busetto, G.; Castro, A.; Loreti, M.; Pescara, L.; Tipton, P.; Watts, G.
1992-10-01
In this paper we briefly describe the main features of the CDF Silicon Vertex Detector (SVX) and discuss its performance during actual colliding beam operation at the Fermilab Tevatron. Details on S/N ratio, alignment, resolution and efficiency are given.
Vertex-Edge Graphs: An Essential Topic in High School Geometry
ERIC Educational Resources Information Center
Hart, Eric W.
2008-01-01
This article provides an overview of vertex-edge graphs as an essential topic in the high school mathematics curriculum, including rationale, recommendations, and sample applications. A classroom-ready activity with full teacher notes is also included. (Contains 1 table and 9 figures.)
Improvements to ATLAS track reconstruction for Run II
NASA Astrophysics Data System (ADS)
Cairo, Valentina Maria Martina
2016-07-01
Run II of the LHC will provide new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. A major change to the Inner Detector layout during the shutdown period has been the installation of the Insertable B-Layer, a fourth pixel layer located at a radius of 33 mm. This contribution discusses improvements to track reconstruction developed during the two year shutdown of the LHC. These include novel techniques developed to improve the performance in the dense cores of jets, optimisation for the expected conditions, and a big software campaign which lead to more than a factor of three decrease in the CPU time needed to process each recorded event.
Estrada, Jess; Lugo, Christopher A; McArthur, Scott G; Lavallo, Vincent
2016-01-31
A phosphine containing a 10-vertex carborane anion substituent and its subsequent ligation to a Rh(I) carbonyl complex is reported. The complex is characterized by NMR spectroscopy and a single crystal X-ray diffraction study. In addition, the inductive effects of both 10 and 12 vertex C-functionalized closo-carborane anions are elucidated via I.R. analysis of the CO stretching frequencies of two Rh carbonyl complexes. Unlike C-functionalized neutral o-carborane the 10 and 12-vertex carborane anions are both strong electron donor substituents. PMID:26671630
Conformal symmetry and differential regularization of the three-gluon vertex
NASA Astrophysics Data System (ADS)
Freedman, Daniel Z.; Grignani, Gianluca; Johnson, Kenneth; Rius, Nuria
1992-08-01
The conformal symmetry of the QCD Lagrangian for massless quarks is broken both by renormalization effects and the gauge fixing procedure. Renormalized primitive divergent amplitudes have the property that their form away from the overall coincident point singularity is fully determined by the bare Lagrangian, and scale dependence is restricted to δ-functions at the singularity. If gauge fixing could be ignored, one would expect these amplitudes to be conformal invariant for non-coincident points. We find that the one-loop three-gluon vertex function Г μvp(x, y, z) is conformal invariant in this sense, if calculated in the background field formalism using the Feynman gauge for internal gluons. It is not vet clear why the expected breaking due to gauge fixing is absent. The conformal property implies that the gluon, ghost, and quark loop contributions to Г μvp are each purely numerical combinations of two universal conformal tensors Dμvp( x, y, z) and Cμvp( x, y, z) whose explicit form is given in the text. Only Dμvp has an ultraviolet divergence, although Cμvp requires a careful definition to resolve the expected ambiguity of a formally linearly divergent quantity. Regularization is straightforward and leads to a renormalized vertex function which satisfies the required Ward identity, and from which the beta function is easily obtained. Exact conformal invariance is broken in higher-loop orders, but we outline a speculative scenario in which the perturbative structure of the vertex function is determined from a conformal invariant primitive core by interplay of the renormalization group equation and Ward identities. Other results which are relevant to the conformal property include the following: (1) An analytic calculation shows that the linear deviation from the Feynman gauge is not conformal invariant, and a separate computation using symbolic manipulation confirms that among Dμbμ background gauges, only the Feynman gauge is conformal invariant. (2
Computational analysis of three-dimensional epithelial morphogenesis using vertex models
Du, XinXin; Osterfield, Miriam; Shvartsman, Stanislav Y.
2014-01-01
The folding of epithelial sheets, accompanied by cell shape changes and rearrangements, gives rise to three-dimensional structures during development. Recently, some aspects of epithelial morphogenesis have been modeled using vertex models, in which each cell is approximated by a polygon; however, these models have been largely confined to two dimensions. Here, we describe an adaptation of these models in which the classical two-dimensional vertex model is embedded in three dimensions. This modification allows for the construction of complex three-dimensional shapes from simple sheets of cells. We describe algorithmic, computational, and biophysical aspects of our model, with the view that it may be useful for formulating and testing hypotheses regarding the mechanical forces underlying a wide range of morphogenetic processes. PMID:25410646
Numerical Study of the Ghost-Ghost-Gluon Vertex on the Lattice
Mihara, A.; Cucchieri, A.; Mendes, T.
2004-12-02
It is well known that, in Landau gauge, the renormalization function of the ghost-ghost-gluon vertex Z-tilde1 (p2) is finite and constant, at least to all orders of perturbation theory. On the other hand, a direct non-perturbative verification of this result using numerical simulations of lattice QCD is still missing. Here we present a preliminary numerical study of the ghost-ghost-gluon vertex and of its corresponding renormalization function using Monte Carlo simulations in SU(2) lattice Landau gauge. Data were obtained in 4 dimensions for lattice couplings {beta} = 2.2, 2.3, 2.4 and lattice sides N = 4, 8, 16.
Vertex epidural hematoma: A rare cause of post-traumatic headache and a diagnostic challenge
Navarro, Juliano Nery; Alves, Raphael Vicente
2016-01-01
Background: Vertex epidural hematomas (VEH) account for only 8% of all epidural hematomas. However, these traumatic injuries may be underestimated or overlooked altogether when only computed tomography (CT) scans are used for diagnosis. The vertex may be a potential anatomic “blind spot” on this radiological method. In such cases, magnetic resonance (MRI) offers a great diagnostic aid. Case Description: This manuscript reports a patient of a head trauma who developed progressive and intractable headache. MRI made the diagnosis of progressive VEH and highlighted the detachment of the superior sagittal sinus by the hematoma. Surgical treatment, because of the refractory clinical findings, was performed with good postoperative recovery. Conclusion: Multiple trauma patients with progressive and refractory headache should have their head CT thoroughly reviewed and, if necessary, be investigated with MRI.
Static transport properties of random alloys: Vertex corrections in conserving approximations
NASA Astrophysics Data System (ADS)
Turek, I.
2016-06-01
The theoretical formulation and numerical evaluation of the vertex corrections in multiorbital techniques of theories of electronic properties of random alloys are analyzed. It is shown that current approaches to static transport properties within the so-called conserving approximations lead to the inversion of a singular matrix as a direct consequence of the Ward identity relating the vertex corrections to one-particle self-energies. We propose a simple removal of the singularity for quantities (operators) with vanishing average values for electron states at the Fermi energy, such as the velocity or the spin torque; the proposed scheme is worked out in detail in the self-consistent Born approximation and the coherent-potential approximation. Applications involve calculations of the residual resistivity for various random alloys, including spin-polarized and relativistic systems, treated on an ab initio level, with particular attention paid to the role of different symmetries (inversion of space and time).
Application of an Electron-Tube Technique to the VENUS Vertex Chamber
NASA Astrophysics Data System (ADS)
Ohama, Taro
2001-09-01
This paper presents a new method to design and analyze drift chambers which are commonly used in high-energy physics experiments. The method is based on an analogy of the electron-tube theory; in particular, it treats the drift chamber with a grid wire plane as a “triode ion tube” filled with a gas. This method provides an analytical way in which to calculate the potential and/or charge of electrodes (wires) and the electric fields between them. The method also gives a semianalytic means to derive “X-T” relations in a chamber, and to calculate expected signal forms. This method has been developed specifically for designing a vertex chamber installed in the VENUS detector at the TRISTAN e+e- collider. The anode signal forms actually obtained by the VENUS vertex chamber are found to agree well with the predictions by this method.
Vertex centrality as a measure of information flow in Italian Corporate Board Networks
NASA Astrophysics Data System (ADS)
Grassi, Rosanna
2010-06-01
The aim of this article is to investigate the governance models of companies listed on the Italian Stock Exchange by using a network approach, which describes the interlinks between boards of directors. Following mainstream literature, I construct a weighted graph representing the listed companies (vertices) and their relationships (weighted edges), the Corporate Board Network; I then apply three different vertex centrality measures: degree, betweenness and flow betweenness. What emerges from the network construction and by applying the degree centrality is a structure with a large number of connections but not particularly dense, where the presence of a small number of highly connected nodes (hubs) is evident. Then I focus on betweenness and flow betweenness; indeed I expect that these centrality measures may give a representation of the intensity of the relationship between companies, capturing the volume of information flowing from one vertex to another. Finally, I investigate the possible scale-free structure of the network.
Tomsett, Richard J; Ainsworth, Matt; Thiele, Alexander; Sanayei, Mehdi; Chen, Xing; Gieselmann, Marc A; Whittington, Miles A; Cunningham, Mark O; Kaiser, Marcus
2015-07-01
Local field potentials (LFPs) sampled with extracellular electrodes are frequently used as a measure of population neuronal activity. However, relating such measurements to underlying neuronal behaviour and connectivity is non-trivial. To help study this link, we developed the Virtual Electrode Recording Tool for EXtracellular potentials (VERTEX). We first identified a reduced neuron model that retained the spatial and frequency filtering characteristics of extracellular potentials from neocortical neurons. We then developed VERTEX as an easy-to-use Matlab tool for simulating LFPs from large populations (>100,000 neurons). A VERTEX-based simulation successfully reproduced features of the LFPs from an in vitro multi-electrode array recording of macaque neocortical tissue. Our model, with virtual electrodes placed anywhere in 3D, allows direct comparisons with the in vitro recording setup. We envisage that VERTEX will stimulate experimentalists, clinicians, and computational neuroscientists to use models to understand the mechanisms underlying measured brain dynamics in health and disease. PMID:24863422
A FASTBUS flash ADC system for the Mark II vertex chamber
Barker, L.
1988-10-01
This is a description of a flash ADC system built for the Mark II experiment at the Stanford Linear Accelerator Center (SLAC). This system was designed for use in the experiment's vertex chamber where signals could occur over a relatively long time, approximately 10 microseconds. This long time, coupled with fast cable amplifiers, necessitated an alternate design approach than was used with a dE/dX FASTBUS flash ADC design. 1 ref., 6 figs.
Insights into the Quark-Gluon Vertex from Lattice QCD and Meson Spectroscopy
NASA Astrophysics Data System (ADS)
Rojas, E.; El-Bennich, B.; de Melo, J. P. B. C.; Paracha, M. Ali.
2015-09-01
By comparing successful quark-gluon vertex interaction models with the corresponding interaction extracted from lattice-QCD data on the quark's propagator, we identify common qualitative features which could be important to tune future interaction models beyond the rainbow ladder approximation. Clearly, a quantitative comparison is conceptually not simple, but qualitatively the results suggest that a realistic interaction should be relatively broad with a strong support at about 0.4-0.6 GeV and infrared-finite.
NASA Astrophysics Data System (ADS)
Galler, Anna; Gunacker, Patrik; Tomczak, Jan; Thunström, Patrik; Held, Karsten
Recently, approaches such as the dynamical vertex approximation (D ΓA) or the dual-fermion method have been developed. These diagrammatic approaches are going beyond dynamical mean field theory (DMFT) by including nonlocal electronic correlations on all length scales as well as the local DMFT correlations. Here we present our efforts to extend the D ΓA methodology to ab-initio materials calculations (ab-initio D ΓA). Our approach is a unifying framework which includes both GW and DMFT-type of diagrams, but also important nonlocal correlations beyond, e.g. nonlocal spin fluctuations. In our multi-band implementation we are using a worm sampling technique within continuous-time quantum Monte Carlo in the hybridization expansion to obtain the DMFT vertex, from which we construct the reducible vertex function using the two particle-hole ladders. As a first application we show results for transition metal oxides. Support by the ERC project AbinitioDGA (306447) is acknowledged.
NASA Astrophysics Data System (ADS)
Stanitzki, M.; SPiDeR Collaboration, www. spider. ac. uk
2011-09-01
We present test results from the "TPAC" and "F ORTIS" sensors produced using the 180 nm CMOS INMAPS process. The TPAC sensor has a 50 μm pixel size with advanced in-pixel electronics. Although TPAC was developed for digital electromagnetic calorimetry, the technology can be readily extended to tracking and vertexing applications where highly granular pixels with in-pixel intelligence are required. By way of example, a variant of the TPAC sensor has been proposed for the Super B vertex detector. The F ORTIS sensor is a prototype with several pixel variants to study the performance of a four transistors (4T) architecture and is the first sensor of this type tested for particle physics applications. TPAC and F ORTIS sensors have been fabricated with some of the processing innovations available in INMAPS such as deep p-wells and high-resistivity epitaxial layers. The performance of these sensor variants has been measured both in the laboratory and at test beams and results showing significant improvements due to these innovations are presented. We have recently manufactured the "C HERWELL" sensor, building on the experience with both TPAC and F ORTIS and making use of the 4T approach. C HERWELL is designed for tracking and vertexing and has an integrated ADC and targets very low-noise performance. The principal features of C HERWELL are described.
Regge vertex for quark production in the central rapidity region in the next-to-leading order
NASA Astrophysics Data System (ADS)
Kozlov, M. G.; Reznichenko, A. V.
2016-03-01
The effective vertex for quark production in the interaction of a Reggeized quark and a Reggeized gluon is calculated in the next-to-leading order (NLO). The resulting vertex is the missing component of the NLO multi-Regge amplitude featuring quark and gluon exchanges in the t channels. This calculation will make it possible to develop in future the bootstrap approach to proving quark Reggeization in the next-to-leading logarithmic approximation.
Neuromagnetic source reconstruction
Lewis, P.S.; Mosher, J.C.; Leahy, R.M.
1994-12-31
In neuromagnetic source reconstruction, a functional map of neural activity is constructed from noninvasive magnetoencephalographic (MEG) measurements. The overall reconstruction problem is under-determined, so some form of source modeling must be applied. We review the two main classes of reconstruction techniques-parametric current dipole models and nonparametric distributed source reconstructions. Current dipole reconstructions use a physically plausible source model, but are limited to cases in which the neural currents are expected to be highly sparse and localized. Distributed source reconstructions can be applied to a wider variety of cases, but must incorporate an implicit source, model in order to arrive at a single reconstruction. We examine distributed source reconstruction in a Bayesian framework to highlight the implicit nonphysical Gaussian assumptions of minimum norm based reconstruction algorithms. We conclude with a brief discussion of alternative non-Gaussian approachs.
Breast Reconstruction after Mastectomy
Schmauss, Daniel; Machens, Hans-Günther; Harder, Yves
2016-01-01
Breast cancer is the leading cause of cancer death in women worldwide. Its surgical approach has become less and less mutilating in the last decades. However, the overall number of breast reconstructions has significantly increased lately. Nowadays, breast reconstruction should be individualized at its best, first of all taking into consideration not only the oncological aspects of the tumor, neo-/adjuvant treatment, and genetic predisposition, but also its timing (immediate versus delayed breast reconstruction), as well as the patient’s condition and wish. This article gives an overview over the various possibilities of breast reconstruction, including implant- and expander-based reconstruction, flap-based reconstruction (vascularized autologous tissue), the combination of implant and flap, reconstruction using non-vascularized autologous fat, as well as refinement surgery after breast reconstruction. PMID:26835456
Head and face reconstruction is surgery to repair or reshape deformities of the head and face (craniofacial). ... How surgery for head and face deformities (craniofacial reconstruction) ... and the person's condition. Surgical repairs involve the ...
... Birth defects and deformities from conditions such as cleft lip or palate , craniosynostosis , Apert syndrome Deformities caused by ... Orbital-craniofacial surgery; Facial reconstruction Images Skull Skull Cleft lip repair - series Craniofacial reconstruction - series References Baker SR. ...
Methods of Voice Reconstruction
Chen, Hung-Chi; Kim Evans, Karen F.; Salgado, Christopher J.; Mardini, Samir
2010-01-01
This article reviews methods of voice reconstruction. Nonsurgical methods of voice reconstruction include electrolarynx, pneumatic artificial larynx, and esophageal speech. Surgical methods of voice reconstruction include neoglottis, tracheoesophageal puncture, and prosthesis. Tracheoesophageal puncture can be performed in patients with pedicled flaps such as colon interposition, jejunum, or gastric pull-up or in free flaps such as perforator flaps, jejunum, and colon flaps. Other flaps for voice reconstruction include the ileocolon flap and jejunum. Laryngeal transplantation is also reviewed. PMID:22550443
Reoperative midface reconstruction.
Acero, Julio; García, Eloy
2011-02-01
Reoperative reconstruction of the midface is a challenging issue because of the complexity of this region and the severity of the aesthetic and functional sequela related to the absence or failure of a primary reconstruction. The different situations that can lead to the indication of a reoperative reconstructive procedure after previous oncologic ablative procedures in the midface are reviewed. Surgical techniques, anatomic problems, and limitations affecting the reoperative reconstruction in this region of the head and neck are discussed. PMID:21126882
Event Reconstruction for Many-core Architectures using Java
NASA Astrophysics Data System (ADS)
Graf, Norman A.
2011-12-01
Although Moore's Law remains technically valid, the performance enhancements in computing which traditionally resulted from increased CPU speeds ended years ago. Chip manufacturers have chosen to increase the number of core CPUs per chip instead of increasing clock speed. Unfortunately, these extra CPUs do not automatically result in improvements in simulation or reconstruction times. To take advantage of this extra computing power requires changing how software is written. Event reconstruction is globally serial, in the sense that raw data has to be unpacked first, channels have to be clustered to produce hits before those hits are identified as belonging to a track or shower, tracks have to be found and fit before they are vertexed, etc. However, many of the individual procedures along the reconstruction chain are intrinsically independent and are perfect candidates for optimization using multi-core architecture. Threading is perhaps the simplest approach to parallelizing a program and Java includes a powerful threading facility built into the language. We have developed a fast and flexible reconstruction package (org.lcsim) written in Java that has been used for numerous physics and detector optimization studies. In this paper we present the results of our studies on optimizing the performance of this toolkit using multiple threads on many-core architectures.
Event Reconstruction for Many-core Architectures using Java
Graf, Norman A.; /SLAC
2012-04-19
Although Moore's Law remains technically valid, the performance enhancements in computing which traditionally resulted from increased CPU speeds ended years ago. Chip manufacturers have chosen to increase the number of core CPUs per chip instead of increasing clock speed. Unfortunately, these extra CPUs do not automatically result in improvements in simulation or reconstruction times. To take advantage of this extra computing power requires changing how software is written. Event reconstruction is globally serial, in the sense that raw data has to be unpacked first, channels have to be clustered to produce hits before those hits are identified as belonging to a track or shower, tracks have to be found and fit before they are vertexed, etc. However, many of the individual procedures along the reconstruction chain are intrinsically independent and are perfect candidates for optimization using multi-core architecture. Threading is perhaps the simplest approach to parallelizing a program and Java includes a powerful threading facility built into the language. We have developed a fast and flexible reconstruction package (org.lcsim) written in Java that has been used for numerous physics and detector optimization studies. In this paper we present the results of our studies on optimizing the performance of this toolkit using multiple threads on many-core architectures.
Design and construction of a Vertex Chamber and measurement of the average B-Hadron lifetime
Nelson, H.N.
1987-10-01
Four parameters describe the mixing of the three quark generations in the Standard Model of the weak charged current interaction. These four parameters are experimental inputs to the model. A measurement of the mean lifetime of hadrons containing b-quarks, or B-Hadrons, constrains the magnitudes of two of these parameters. Measurement of the B-Hadron lifetime requires a device that can measure the locations of the stable particles that result from B-Hadron decay. This device must function reliably in an inaccessible location, and survive high radiation levels. We describe the design and construction of such a device, a gaseous drift chamber. Tubes of 6.9 mm diameter, having aluminized mylar walls of 100 ..mu..m thickness are utilized in this Vertex Chamber. It achieves a spatial resolution of 45 ..mu..m, and a resolution in extrapolation to the B-Hadron decay location of 87 ..mu..m. Its inner layer is 4.6 cm from e/sup +/e/sup -/ colliding beams. The Vertex Chamber is situated within the MAC detector at PEP. We have analyzed botht he 94 pb/sup -1/ of integrated luminosity accumulated at ..sqrt..s = 29 GeV with the Vertex Chamber in place as well as the 210 pb/sup -1/ accumulated previously. We require a lepton with large momentum transverse to the event thrust axis to obtain a sample of events enriched in B-Hadron decays. The distribution of signed impact parameters of all tracks in these events is used to measure the B-Hadron flight distance, and hence lifetime. 106 refs., 79 figs., 20 tabs.
LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS
Almquist, Zack W.; Butts, Carter T.
2015-01-01
Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach. PMID:26120218
Vertex dynamics simulations of viscosity-dependent deformation during tissue morphogenesis.
Okuda, Satoru; Inoue, Yasuhiro; Eiraku, Mototsugu; Adachi, Taiji; Sasai, Yoshiki
2015-04-01
In biological development, multiple cells cooperate to form tissue morphologies based on their mechanical interactions; namely active force generation and passive viscoelastic response. In particular, the dynamic processes of tissue deformations are governed by the viscous properties of the tissues. These properties are spatially inhomogeneous because they depend on the tissue constituents, such as cytoplasm, cytoskeleton, basement membrane and extracellular matrix. The multicellular mechanics of tissue morphogenesis have been investigated in vertex dynamics models. However, conventional models are applicable only to quasi-static deformation processes, which do not account for tissue viscosities. We propose a vertex dynamics model that simulates the viscosity-dependent dynamic deformation processes during tissue morphogenesis. By incorporating local velocity fields into the governing equation of vertex movements, the model turns Galilean invariant. In addition, the viscous properties of tissue components are newly expressed by formulating friction forces on vertices as functions of the relative velocities among the vertices. The advantages of the proposed model are examined by epithelial growth simulations under the employed condition for quasi-static processes. As a result, the epithelial vesicle simulated by the proposed model is linearly elongated with nearly free stress, while that simulated by the conventional model is undulated with compressive residual stress. Therefore, the proposed model is able to reflect the timescale of deformations by satisfying Galilean invariance. Next, the applicability of the proposed model is assessed in epithelial growth simulations of viscous extracellular materials. In this test, the epithelial vesicles are deformed into tubular shapes by oriented cell divisions, and their morphologies are extremely sensitive to extracellular viscosity. Therefore, the dynamic deformations in the proposed model depend on the viscous properties
Autologous Microvascular Breast Reconstruction
Ramakrishnan, Venkat
2013-01-01
Autologous microvascular breast reconstruction is widely accepted as a key component of breast cancer treatment. There are two basic donor sites; the anterior abdominal wall and the thigh/buttock region. Each of these regions provides for a number of flaps that are successfully utilised in breast reconstruction. Refinement of surgical technique and the drive towards minimising donor site morbidity whilst maximising flap vascularity in breast reconstruction has seen an evolution towards perforator based flap reconstructions, however myocutaneous flaps are still commonly practiced. We review herein the current methods of autologous microvascular breast reconstruction. PMID:23362474
The symmetric six-vertex model and the Segre cubic threefold
NASA Astrophysics Data System (ADS)
Martins, M. J.
2015-08-01
In this paper we investigate the mathematical properties of the integrability of the symmetric six-vertex model towards the view of algebraic geometry. We show that the algebraic variety originated from Baxter’s commuting transfer method is birationally isomorphic to a ubiquitous threefold known as Segre cubic primal. This relation makes it possible to present the most generic solution for the Yang-Baxter triple associated to this lattice model. The respective R-matrix and Lax operators are parameterized by three independent affine spectral variables.
The Form Factors of the Gauge-Invariant Three-Gluon Vertex
Binger, Michael; Brodsky, Stanley J.
2006-02-24
The gauge-invariant three-gluon vertex obtained from the pinch technique is characterized by thirteen nonzero form factors, which are given in complete generality for unbroken gauge theory at one loop. The results are given in d dimensions using both dimensional regularization and dimensional reduction, including the effects of massless gluons and arbitrary representations of massive gauge bosons, fermions, and scalars. We find interesting relations between the functional forms of the contributions from gluons, quarks, and scalars. These relations hold only for the gauge-invariant pinch technique vertex and are d-dimensional incarnations of supersymmetric nonrenormalization theorems which include finite terms. The form factors are shown to simplify for N = 1, 2, and 4 supersymmetry in various dimensions. In four-dimensional non-supersymmetric theories, eight of the form factors have the same functional form for massless gluons, quarks, and scalars, when written in a physically motivated tensor basis. For QCD, these include the tree-level tensor structure which has prefactor {beta}{sub 0} = (11N{sub c}-2N{sub f})/3, another tensor with prefactor 4N{sub c} - N{sub f}, and six tensors with N{sub c} - N{sub f}. In perturbative calculations our results lead naturally to an effective coupling for the three-gluon vertex, {tilde {alpha}}(k{sub 1}{sup 2}, k{sub 2}{sup 2}, k{sub 3}{sup 2}), which depends on three momenta and gives rise to an effective scale Q{sub eff}{sup 2} (k{sub 1}{sup 2}, k{sub 2}{sup 2}, k{sub 3}{sup 2}) which governs the behavior of the vertex. The effects of nonzero internal masses M are important and have a complicated threshold and pseudo-threshold structure. A three-scale effective number of flavors N{sub F}(k{sub 1}{sup 2}/M{sup 2}, k{sub 2}{sup 2}/M{sup 2}, k{sub 3}{sup 2}/M{sup 2}) is defined. The results of this paper are an important part of a gauge-invariant dressed skeleton expansion and a related multi-scale analytic renormalization scheme
Nisoli, Cristiano; Li, Jiie; Ke, Xianglin; Lammert, Paul E; Schiffer, Peter; Crespi, Vincent H
2009-01-01
Frustrated arrays of interacting single-domain nanomagnets provide important model systems for statistical mechanics, because they map closely onto well-studied vertex models and are amenable to direct imaging and custom engineering. Although these systems are manifestly athermal, they demonstrate that the statistical properties of both hexagonal and square lattices can be described by an effective temperature based on the magnetostatic energy of the arrays. This temperature has predictive power for the moment configurations and is intimately related to how the moments are driven by an oscillating external field.
Plateau rules O.K.? (Vertex instabilities in foams and emulsions)
NASA Astrophysics Data System (ADS)
Weaire, Denis; Phelan, Robert
1996-03-01
Plateau's rules, which are the basis of most descriptions of foam structure, include one which dictates that junctions of more than four Plateau borders are always unstable. This has been rigorously proved by Taylor (1976) footnote Taylor, J.E., 1976, Ann. Math., 103, 489 for the idealised mathematical model in which the borders are reduced to lines of infinitesimal thickness. Nevertheless we here present a mathematical analysis which shows that a symmetric eightfold vertex is metastable, even for arbitrarily thin Plateau borders. This paradoxical result, contrary to conventional wisdom, was first suggested by computer simulations and some simple experiments.
TGV32: A 32-channel preamplifier chip for the multiplicity vertex detector at PHENIX
Britton, C.L. Jr.; Ericson, M.N.; Frank, S.S.
1997-12-31
The TGV32, a 32-channel preamplifier-multiplicity discriminator chip for the Multiplicity Vertex Detector (MVD) at PHENIX, is a unique silicon preamplifier in that it provides both an analog output for storage in an analog memory and a weighted summed-current output for conversion to a channel multiplicity count. The architecture and test results of the chip are presented. Details about the design of the preamplifier, discriminator, and programmable digital-analog converters (DACs) performance as well as the process variations are presented. The chip is fabricated in a 1.2-{micro}m, n-well, CMOS process.
On the construction of integrated vertex in the pure spinor formalism in curved background
NASA Astrophysics Data System (ADS)
Mikhailov, Andrei
2016-06-01
We have previously described a way of describing the relation between unintegrated and integrated vertex operators in AdS5 ×S5 which uses the interpretation of the BRST cohomology as a Lie algebra cohomology and integrability properties of the AdS background. Here we clarify some details of that description, and develop a similar approach for an arbitrary curved background with nondegenerate RR bispinor. For an arbitrary curved background, the sigma-model is not integrable. However, we argue that a similar construction still works using an infinite-dimensional Lie algebroid.
{kappa}K{sup +{pi}-} vertex in light cone QCD sum rules
Baytemir, G.; Sarac, Y.; Yilmaz, O.
2010-05-01
In this work we study the {kappa}K{sup +{pi}-} vertex in the framework of light cone QCD sum rules. We predict the coupling constant g{sub {kappa}K}{sup +}{sub {pi}}{sup -} to be g{sub {kappa}K}{sup +}{sub {pi}}{sup -}=(6.0{+-}1.0) GeV and estimate the scalar f{sub 0}-{sigma} mixing angle from the experimental ratio g{sup 2}({kappa}{yields}K{pi})/g{sup 2}({sigma}{yields}{pi}{pi}).
An investigation of cell centered and cell vertex multigrid schemes for the Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Radespiel, R.; Swanson, R. C.
1989-01-01
Two efficient and robust finite-volume multigrid schemes for solving the Navier-Stokes equations are investigated. These schemes employ either a cell centered or a cell vertex discretization technique. An explicit Runge-Kutta algorithm is used to advance the solution in time. Acceleration techniques are applied to obtain faster steady-state convergence. Accuracy and convergence of the schemes are examined. Computational results for transonic airfoil flows are essentially the same, even for a coarse mesh. Both schemes exhibit good convergence rates for a broad range of artificial dissipation coefficients.
Wong, Yuen Onn; Smith, Mark D; Peryshkov, Dmitry V
2016-05-10
An unusual 12-vertex-closo-C2 B10 /12-vertex-nido-C2 B10 biscarborane cluster was synthesized through an unprecedented regioselective metal-free B-H activation by a sterically hindered P(III) center under mild conditions accompanied by cage-opening rearrangement. A combination of the electron-accepting properties of a carborane cage and steric enforcement of close interatomic contacts represent a new synthetic strategy for the activation of strong B-H bonds in carboranes. PMID:26990216
NASA Astrophysics Data System (ADS)
Di Pietro, V.; Brinkmann, K.-Th.; Riccardi, A.; Ritman, J.; Rivetti, A.; Rolo, M. D.; Stockmanns, T.; Zambanini, A.
2016-03-01
The bar PANDA (Antiproton Annihilation at Darmstadt) experiment foresees many detectors for tracking, particle identification and calorimetry. Among them, the innermost is the MVD (Micro Vertex Detector) responsible for a precise tracking and the reconstruction of secondary vertices. This detector will be built from both hybrid pixel (two inner barrels and six forward disks) and double-sided micro strip (two outer barrels and outer rim of the last two disks) silicon sensors. A time-based approach has been chosen for the readout ASIC of the strip sensors. The PASTA (bar PANDA Strip ASIC) chip aims at high resolution time-stamping and charge information through the Time over Threshold (ToT) technique. It benefits from a Time to Digital Converter (TDC) allowing a time bin width down to 50 ps. The analog front-end was designed to serve both n-type and p-type strips and the performed simulations show remarkable performances in terms of linearity and electronic noise. The TDC consists of an analog interpolator, a digital local controller, and a digital global controller as the common back-end for all of the 64 channels.
Neubert, Aleš; Fripp, Jurgen; Engstrom, Craig; Schwarz, Daniel; Weber, Marc-André; Crozier, Stuart
2015-12-01
Many medical image processing techniques rely on accurate shape modeling of anatomical features. The presence of shape abnormalities challenges traditional processing algorithms based on strong morphological priors. In this work, a sparse shape reconstruction from a statistical shape model is presented. It combines the advantages of traditional statistical shape models (defining a 'normal' shape space) and previously presented sparse shape composition (providing localized descriptors of anomalies). The algorithm was incorporated into our image segmentation and classification software. Evaluation was performed on simulated and clinical MRI data from 22 sciatica patients with intervertebral disc herniation, containing 35 herniated and 97 normal discs. Moderate to high correlation (R=0.73) was achieved between simulated and detected herniations. The sparse reconstruction provided novel quantitative features describing the herniation morphology and MRI signal appearance in three dimensions (3D). The proposed descriptors of local disc morphology resulted to the 3D segmentation accuracy of 1.07±1.00mm (mean absolute vertex-to-vertex mesh distance over the posterior disc region), and improved the intervertebral disc classification from 0.888 to 0.931 (area under receiver operating curve). The results show that the sparse shape reconstruction may improve computer-aided diagnosis of pathological conditions presenting local morphological alterations, as seen in intervertebral disc herniation. PMID:26060085
A New Event Reconstruction Algorithm for Super-Kamiokande Water Cherenkov Detector
NASA Astrophysics Data System (ADS)
Tobayama, Shimpei
2012-10-01
Super-Kamiokande is the world's largest water Cherenkov particle detector located underground in Kamioka-mine, Gifu, Japan. The detector has been used for proton decay search, and observation of atmospheric, solar and supernova neutrinos. It also serves as the far detector for T2K long baseline neutrino oscillation experiment. The detector consists of a cylindrical tank filled with 50kt of ultra-pure water, and an array of 11,000 photomultiplier tubes (PMT) installed on the tank's inner wall record the time and intensity of the Cherenkov light emitted by charged particles traveling in the water. Using the information from the PMTs, particle type, interaction vertex, direction and momentum can be reconstructed. A new reconstruction algorithm is being developed which performs a simultaneous maximum likelihood determination of such parameters. Through Monte Carlo studies, it was found that the new algorithm has a significantly better particle identification performance and vertex/momentum resolutions, compared to the existing reconstruction software. In this talk, an outline of the new algorithm, its performance and implications on physics analyses will be presented.
NASA Astrophysics Data System (ADS)
Chen, Hsian-Yang; Lam, Ching Hung
2014-06-01
In this paper, we construct explicitly certain moonshine type vertex operator algebras generated by a set of Ising vectors I such that (1) for any e ≠ f ∈ I, the subVOA VOA(e, f) generated by e and f is isomorphic to either U2B or U3C; and (2) the subgroup generated by the corresponding Miyamoto involutions {τe | e ∈ I} is isomorphic to the Weyl group of a root system of type An, Dn, E6, E7 or E8. The structures of the corresponding vertex operator algebras and their Griess algebras are also studied. In particular, the central charge of these vertex operator algebras are determined.
Symmetry classes of alternating sign matrices in a nineteen-vertex model
NASA Astrophysics Data System (ADS)
Hagendorf, Christian; Morin-Duchesne, Alexi
2016-05-01
The nineteen-vertex model of Fateev and Zamolodchikov on a periodic lattice with an anti-diagonal twist is investigated. Its inhomogeneous transfer matrix is shown to have a simple eigenvalue, with the corresponding eigenstate displaying intriguing combinatorial features. Similar results were previously found for the same model with a diagonal twist. The eigenstate for the anti-diagonal twist is explicitly constructed using the quantum separation of variables technique. A number of sum rules and special components are computed and expressed in terms of Kuperberg’s determinants for partition functions of the inhomogeneous six-vertex model. The computations of some components of the special eigenstate for the diagonal twist are also presented. In the homogeneous limit, the special eigenstates become eigenvectors of the Hamiltonians of the integrable spin-one XXZ chain with twisted boundary conditions. Their sum rules and special components for both twists are expressed in terms of generating functions arising in the weighted enumeration of various symmetry classes of alternating sign matrices (ASMs). These include half-turn symmetric ASMs, quarter-turn symmetric ASMs, vertically symmetric ASMs, vertically and horizontally perverse ASMs and double U-turn ASMs. As side results, new determinant and pfaffian formulas for the weighted enumeration of various symmetry classes of alternating sign matrices are obtained.
14-Vertex Heteroboranes with 14 Skeletal Electron Pairs: An Experimental and Computational Study.
Robertson, Alasdair P M; Beattie, Nicholas A; Scott, Greig; Man, Wing Y; Jones, John J; Macgregor, Stuart A; Rosair, Georgina M; Welch, Alan J
2016-07-18
Three isomers of [(Cp*Ru)2 C2 B10 H12 ], the first examples of 14-vertex heteroboranes containing 14-skeletal electron pairs, have been synthesized by the direct electrophilic insertion of a {Cp*Ru(+) } fragment into the anion [4-Cp*-4,1,6-RuC2 B10 H12 ](-) . All three compounds have the same unique polyhedral structure having an approximate Cs symmetry and featuring a four-atom trapezoidal face. X-ray diffraction studies could confidently identify only one of the two cage C atoms in each structure. The other C atom position has been established by a combination of i) best fitting of computed and experimental (11) B and (1) H NMR chemical shifts, and ii) consideration of the lowest computed energy for series of isomers studied by DFT calculations. In all three isomers, one cage C atom occupies a degree-4 vertex on the short parallel edge of the trapezium. PMID:27254776
Design of the cooling systems for the multiplicity and vertex detector
Bernardin, J.D.; Cunningham, R.
1997-11-01
The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is being constructed to investigate a phase of matter termed the quark-gluon plasma. The plasma will be produced through the collision of two heavy ions. The multiplicity and vertex detector (MVD) located in the center of PHENIX will characterize the events, determine the collision point, and act as a central trigger. This report presents the final mechanical designs of the cooling systems for the Multiplicity and Vertex Detector (MVD). In particular, the design procedure and layouts are discussed for two different air cooling systems for the multichip modules and MVD enclosure, and a liquid cooling system for the low dropout voltage regulators. First of all, experimental prototype cooling system test results used to drive the final mechanical designs are summarized and discussed. Next, the cooling system requirements and design calculation for the various subsystem components are presented along with detailed lists of supply vendors, components, and costs. Finally, safety measures incorporated in the final mechanical design and operation procedures for each of the subsystems are detailed.
Deptuch, Grzegorz; Christian, David; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab
2008-12-01
3D-Integrated Circuit technology enables higher densities of electronic circuitry per unit area without the use of nanoscale processes. It is advantageous for mixed mode design with precise analog circuitry because processes with conservative feature sizes typically present lower process dispersions and tolerate higher power supply voltages, resulting in larger separation of a signal from the noise floor. Heterogeneous wafers (different foundries or different process families) may be combined with some 3D integration methods, leading to the optimization of each tier in the 3D stack. Tracking and vertexing in future High-Energy Physics (HEP) experiments involves construction of detectors composed of up to a few billions of channels. Readout electronics must record the position and time of each measurement with the highest achievable precision. This paper reviews a prototype of the first 3D readout chip for HEP, designed for a vertex detector at the International Linear Collider. The prototype features 20 x 20 {micro}m{sup 2} pixels, laid out in an array of 64 x 64 elements and was fabricated in a 3-tier 0.18 {micro}m Fully Depleted SOI CMOS process at MIT-Lincoln Laboratory. The tests showed correct functional operation of the structure. The chip performs a zero-suppressed readout. Successive submissions are planned in a commercial 3D bulk 0.13 {micro}m CMOS process to overcome some of the disadvantages of an FDSOI process.
Estimating Vertex Measures in Social Networks by Sampling Completions of RDS Trees
Khan, Bilal; Dombrowski, Kirk; Curtis, Ric; Wendel, Travis
2015-01-01
This paper presents a new method for obtaining network properties from incomplete data sets. Problems associated with missing data represent well-known stumbling blocks in Social Network Analysis. The method of “estimating connectivity from spanning tree completions” (ECSTC) is specifically designed to address situations where only spanning tree(s) of a network are known, such as those obtained through respondent driven sampling (RDS). Using repeated random completions derived from degree information, this method forgoes the usual step of trying to obtain final edge or vertex rosters, and instead aims to estimate network-centric properties of vertices probabilistically from the spanning trees themselves. In this paper, we discuss the problem of missing data and describe the protocols of our completion method, and finally the results of an experiment where ECSTC was used to estimate graph dependent vertex properties from spanning trees sampled from a graph whose characteristics were known ahead of time. The results show that ECSTC methods hold more promise for obtaining network-centric properties of individuals from a limited set of data than researchers may have previously assumed. Such an approach represents a break with past strategies of working with missing data which have mainly sought means to complete the graph, rather than ECSTC's approach, which is to estimate network properties themselves without deciding on the final edge set. PMID:25838988
Vertex-element models for anisotropic growth of elongated plant organs
Fozard, John A.; Lucas, Mikaël; King, John R.; Jensen, Oliver E.
2013-01-01
New tools are required to address the challenge of relating plant hormone levels, hormone responses, wall biochemistry and wall mechanical properties to organ-scale growth. Current vertex-based models (applied in other contexts) can be unsuitable for simulating the growth of elongated organs such as roots because of the large aspect ratio of the cells, and these models fail to capture the mechanical properties of cell walls in sufficient detail. We describe a vertex-element model which resolves individual cells and includes anisotropic non-linear viscoelastic mechanical properties of cell walls and cell division whilst still being computationally efficient. We show that detailed consideration of the cell walls in the plane of a 2D simulation is necessary when cells have large aspect ratio, such as those in the root elongation zone of Arabidopsis thaliana, in order to avoid anomalous transverse swelling. We explore how differences in the mechanical properties of cells across an organ can result in bending and how cellulose microfibril orientation affects macroscale growth. We also demonstrate that the model can be used to simulate growth on realistic geometries, for example that of the primary root apex, using moderate computational resources. The model shows how macroscopic root shape can be sensitive to fine-scale cellular geometries. PMID:23847638
The NLO jet vertex in the small-cone approximation for kt and cone algorithms
NASA Astrophysics Data System (ADS)
Colferai, D.; Niccoli, A.
2015-04-01
We determine the jet vertex for Mueller-Navelet jets and forward jets in the small-cone approximation for two particular choices of jet algoritms: the kt algorithm and the cone algorithm. These choices are motivated by the extensive use of such algorithms in the phenomenology of jets. The differences with the original calculations of the small-cone jet vertex by Ivanov and Papa, which is found to be equivalent to a formerly algorithm proposed by Furman, are shown at both analytic and numerical level, and turn out to be sizeable. A detailed numerical study of the error introduced by the small-cone approximation is also presented, for various observables of phenomenological interest. For values of the jet "radius" R = 0 .5, the use of the small-cone approximation amounts to an error of about 5% at the level of cross section, while it reduces to less than 2% for ratios of distributions such as those involved in the measure of the azimuthal decorrelation of dijets.
Bachacou, Henri
2004-12-01
A measurement of the t{bar t} pair production cross section is presented using 162 pb{sup -1} of data collected by the CDF experiment during Run II at the Tevatron. t{bar t} events in the lepton+jets channel are isolated by identifying electrons and muons, reconstructing jets and transverse missing energy, and identifying b jets with a secondary vertex tagging algorithm. The efficiency of the algorithm is measured in a control sample using a novel technique that is less dependent on the simulation. For a top quark mass of 175 GeV/c{sup 2}, a cross section of {sigma}{sub t{bar t}} = 5.6{sub -1.1}{sup +1.2}(stat.){sub -0.6}{sup +0.9}(syst.)pb is measured.
NASA Astrophysics Data System (ADS)
Alkofer, Reinhard; Fischer, Christian S.; Llanes-Estrada, Felipe J.; Schwenzer, Kai
2009-01-01
The infrared behavior of the quark-gluon vertex of quenched Landau gauge QCD is studied by analyzing its Dyson-Schwinger equation. Building on previously obtained results for Green functions in the Yang-Mills sector, we analytically derive the existence of power-law infrared singularities for this vertex. We establish that dynamical chiral symmetry breaking leads to the self-consistent generation of components of the quark-gluon vertex forbidden when chiral symmetry is forced to stay in the Wigner-Weyl mode. In the latter case the running strong coupling assumes an infrared fixed point. If chiral symmetry is broken, either dynamically or explicitly, the running coupling is infrared divergent. Based on a truncation for the quark-gluon vertex Dyson-Schwinger equation which respects the analytically determined infrared behavior, numerical results for the coupled system of the quark propagator and vertex Dyson-Schwinger equation are presented. The resulting quark mass function as well as the vertex function show only a very weak dependence on the current quark mass in the deep infrared. From this we infer by an analysis of the quark-quark scattering kernel a linearly rising quark potential with an almost mass independent string tension in the case of broken chiral symmetry. Enforcing chiral symmetry does lead to a Coulomb type potential. Therefore, we conclude that chiral symmetry breaking and confinement are closely related. Furthermore, we discuss aspects of confinement as the absence of long-range van der Waals forces and Casimir scaling. An examination of experimental data for quarkonia provides further evidence for the viability of the presented mechanism for quark confinement in the Landau gauge.
3D scanning modeling method application in ancient city reconstruction
NASA Astrophysics Data System (ADS)
Ren, Pu; Zhou, Mingquan; Du, Guoguang; Shui, Wuyang; Zhou, Pengbo
2015-07-01
With the development of optical engineering technology, the precision of 3D scanning equipment becomes higher, and its role in 3D modeling is getting more distinctive. This paper proposed a 3D scanning modeling method that has been successfully applied in Chinese ancient city reconstruction. On one hand, for the existing architectures, an improved algorithm based on multiple scanning is adopted. Firstly, two pieces of scanning data were rough rigid registered using spherical displacers and vertex clustering method. Secondly, a global weighted ICP (iterative closest points) method is used to achieve a fine rigid registration. On the other hand, for the buildings which have already disappeared, an exemplar-driven algorithm for rapid modeling was proposed. Based on the 3D scanning technology and the historical data, a system approach was proposed for 3D modeling and virtual display of ancient city.
The master T-operator for vertex models with trigonometric R-matrices as a classical τ-function
NASA Astrophysics Data System (ADS)
Zabrodin, A. V.
2013-01-01
We apply the recently proposed construction of the master T-operator to integrable vertex models and the associated quantum spin chains with trigonometric R-matrices. The master T-operator is a generating function for commuting transfer matrices of integrable vertex models depending on infinitely many parameters. It also turns out to be the τ-function of an integrable hierarchy of classical soliton equations in the sense that it satisfies the same bilinear Hirota equations. We characterize the class of solutions of the Hirota equations that correspond to eigenvalues of the master T-operator and discuss its relation to the classical Ruijsenaars-Schneider system of particles.
Holds, John B
2016-05-01
Lower eyelid defects are common, and a systematic approach to reconstruction of the lower eyelid is required. Attention to the bilaminar eyelid anatomy and canthal support structures, with efforts to maintain functionally important structures, such as the lacrimal canalicular system, is vital to appropriate lower eyelid reconstruction. Techniques of advancement and rotation flaps and grafting of skin and mucosa are mainstays of lower eyelid reconstruction. An appropriate armamentarium of techniques allows for optimal surgical results. PMID:27105804
Dy, Christopher J; Daluiski, Aaron
2013-05-01
Flexor pulley reconstruction is a challenging surgery. Injuries often occur after traumatic lacerations or forceful extension applied to an acutely flexed finger. Surgical treatment is reserved for patients with multiple closed pulley ruptures, persistent pain, or dysfunction after attempted nonoperative management of a single pulley rupture, or during concurrent or staged flexor tendon repair or reconstruction. If the pulley cannot be repaired primarily, pulley reconstruction can be performed using graft woven into remnant pulley rim or looping graft around the phalanx. Regardless of the reconstructive technique, the surgeon should emulate the length, tension, and glide of the native pulley. PMID:23660059
Yadav, Prabha
2013-01-01
Whatever is excisable, is reconstructable! “You excise, we will reconstruct” are the confident words of reconstructive surgeons today. Reconstruction with multiple flaps has become routine. Radial artery (FRAF), Antero lateral thigh (ALT) and Fibula osteo cutaneous flap (FFOCF) are three most popular free flaps which can reconstruct any defect with excellent asthetics and performance. Radial Artery provides thin, pliable innervated skin; ALT large amount of skin & bulk; and FFOCF strong 22 to 25 centimetres of bone and reliable skin paddle. Free flap survival has gone to 98% in most of the renouned institutes and is an established escalator in management of defects. PMID:24501464
CMS reconstruction improvements for the tracking in large pileup events
NASA Astrophysics Data System (ADS)
Rovere, M.
2015-12-01
The CMS tracking code is organized in several levels, known as iterative steps, each optimized to reconstruct a class of particle trajectories, as the ones of particles originating from the primary vertex or displaced tracks from particles resulting from secondary vertices. Each iterative step consists of seeding, pattern recognition and fitting by a kalman filter, and a final filtering and cleaning. Each subsequent step works on hits not yet associated to a reconstructed particle trajectory. The CMS tracking code is continuously evolving to make the reconstruction computing load compatible with the increasing instantaneous luminosity of LHC, resulting in a large number of primary vertices and tracks per bunch crossing. The major upgrade put in place during the present LHC Long Shutdown will allow the tracking code to comply with the conditions expected during RunII and the much larger pileup. In particular, new algorithms that are intrinsically more robust in high occupancy conditions were developed, iterations were re-designed (including new ones, dedicated to specific physics objects), code optimizations were deployed and new software techniques were used. The speed improvement has been achieved without significant reduction in term of physics performance. The methods and the results are presented and the prospects for future applications are discussed.
Analytical reconstruction formula for one-dimensional Compton camera
Basko, R.; Zeng, G.L.; Gullberg, G.T.
1996-12-31
The Compton camera has been proposed as an alternative to the Anger camera in SPECT. The advantage of the Compton camera is its high geometric efficiency due to electronic collimation. The Compton camera collects projections that are integrals over cone surfaces. Although some progress has been made toward image reconstruction from cone projections, at present no filtered backprojection algorithm exists. This paper investigates a simpler 2D version of the imaging problem. An analytical formula is developed for 2D reconstruction from data acquired by a 1D Compton camera that consists of two linear detectors, one behind the other. Coincidence photon detection allows the localization of the 2D source distribution to two lines in the shape of a {open_quotes}V{close_quotes} with the vertex on the front detector. A set of {open_quotes}V{close_quotes} projection data can be divided into subsets whose elements can be viewed as line-integrals of the original image added with its mirrored shear transformation. If the detector has infinite extent, reconstruction of the original image is possible using data from only one such subset. Computer simulations were performed to verify the newly developed algorithm.
ERIC Educational Resources Information Center
Phillips, David; And Others
This report describes the main questions that various international agencies must address in order to reconstruct education in countries that have experienced crisis. "Crisis" is defined as war, natural disaster, and extreme political and economic upheaval. Many of the problems of educational reconstruction with which the Allies contended in…
ERIC Educational Resources Information Center
Lybarger, Scott; Smith, Craig R.
1996-01-01
Reconstructs Lloyd Bitzer's situational model to serve as a guide for the generation of multiperspectival critical assessments of rhetorical discourse. Uses two of President Bush's speeches on the drug crisis to illustrate how the reconstructed model can account for such modern problems as multiple audiences, perceptions, and exigencies. (PA)
The CMS Reconstruction Software
NASA Astrophysics Data System (ADS)
Lange, David J.; CMS Collaboration
2011-12-01
We report on the status and plans for the event reconstruction software of the CMS experiment. The CMS reconstruction algorithms are the basis for a wide range of data analysis approaches currently under study by the CMS collaboration using the first high-energy run of the LHC. These algorithms have been primarily developed and validated using simulated data samples, and are now being commissioned with LHC proton-proton collision data samples. The CMS reconstruction is now operated routinely on all events triggered by the CMS detector, both in a close to real-time prompt reconstruction processing and in frequent passes over the full recorded CMS data set. We discuss the overall software design, development cycle, computational requirements and performance, recent operational performance, and planned improvements of the CMS reconstruction software.
Form factor of the B meson off-shell for the vertex B{sub s}*BK
Cerqueira, A. Jr.; Bracco, M. E.
2010-11-12
In this work we evaluate the coupling constant and the form factor for the vertex B{sub s}*BK using the QCD Sum Rules. In this case we consider the B meson off shell. The only theoretical evaluation for the coupling constant was made using the Heavy Hadron Chiral Perturbation Theory (HHChPT) and we made comparison with this result.
A vertex-based finite-volume algorithm for the Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Chakrabartty, S. K.; Dhanalakshmi, K.
1993-07-01
A vertex-based, finite-volume algorithm has been developed to solve the Reynolds-averaged Navier-Stokes equations without thin-layer approximation. An explicit, five-stage Runge-Kutta, time-stepping scheme has been used for time integration along with different acceleration techniques to reach the steady state. A code employing multi-block grid structure has been developed. This code can accept any type of grid topology. As test cases, the turbulent flow past RAE-2822 and NACA-0012 airfoils, and the laminar flow past a cropped delta wing at ten degrees angle of attack have been computed and the results compared with available numerical and experimental results. The Baldwin-Lomax turbulence model has been used in the case of turbulent flows.
ILCRoot tracker and vertex detector response to MARS15 simulated backgrounds in muon collider
Terentiev, N.K.; Di Benedetto, V.; Gatto, C.; Mazzacane, A.; Mokhov, N.V.; Striganov, S.I.; /Fermilab
2011-10-01
Results from a simulation of the background for a muon collider, and the response of a silicon tracking detector to this background are presented. The background caused by decays of the 750-GeV muon beams was simulated using the MARS15 program, which included the infrastructure of the beam line elements near the detector and the 10{sup o} nozzles that shield the detector from this background. The ILCRoot framework, along with the Geant4 program, was used to simulate the response of the tracker and vertex silicon detectors to the muon-decay background remaining after the shielding nozzles. Results include the hit distributions in these detectors, the fractions of type-specific background particles producing these hits and illustrate the use of timing of the hits to suppress the muon beam background.
Software Development for the Commissioning of the Jefferson Lab Hall B Silicon Vertex Tracker
NASA Astrophysics Data System (ADS)
Ruger, Justin; Ziegler, Veronique; Gotra, Yuri; Gavalian, Gagik
2015-04-01
One of the new additions to Hall B at the Thomas Jefferson National Accelerator Facility is a Silicon Vertex Tracker system that includes 4 regions with 10, 14, 18, 24 sectors of double-sided modules. Recently, the SVT hardware group has completed construction and installation of regions one and two on a cosmic ray test stand. This test setup will be used to preform the first cosmic ray efficiency analysis of the SVT with the availability of 8 measurement layers. In order to study efficiency and module performance, a set of software packages had to be written to decode, analyze and provide feedback on the output from data acquisition. This talk will provide an overview of the software validation suite designed and developed for Hall B and a report on its current utilization for SVT cosmic data analysis.
Direct measurements of Ab and Ac using vertex and kaon charge tags at the SLAC detector.
Abe, Koya; Abe, Kenji; Abe, T; Adam, I; Akimoto, H; Aston, D; Baird, K G; Baltay, C; Band, H R; Barklow, T L; Bauer, J M; Bellodi, G; Berger, R; Blaylock, G; Bogart, J R; Bower, G R; Brau, J E; Breidenbach, M; Bugg, W M; Burke, D; Burnett, T H; Burrows, P N; Calcaterra, A; Cassell, R; Chou, A; Cohn, H O; Coller, J A; Convery, M R; Cook, V; Cowan, R F; Crawford, G; Damerell, C J S; Daoudi, M; Dasu, S; de Groot, N; de Sangro, R; Dong, D N; Doser, M; Dubois, R; Erofeeva, I; Eschenburg, V; Etzion, E; Fahey, S; Falciai, D; Fernandez, J P; Flood, K; Frey, R; Hart, E L; Hasuko, K; Hertzbach, S S; Huffer, M E; Huynh, X; Iwasaki, M; Jackson, D J; Jacques, P; Jaros, J A; Jiang, Z Y; Johnson, A S; Johnson, J R; Kajikawa, R; Kalelkar, M; Kang, H J; Kofler, R R; Kroeger, R S; Langston, M; Leith, D W G; Lia, V; Lin, C; Mancinelli, G; Manly, S; Mantovani, G; Markiewicz, T W; Maruyama, T; McKemey, A K; Messner, R; Moffeit, K C; Moore, T B; Morii, M; Muller, D; Murzin, V; Narita, S; Nauenberg, U; Neal, H; Nesom, G; Oishi, N; Onoprienko, D; Osborne, L S; Panvini, R S; Park, C H; Peruzzi, I; Piccolo, M; Piemontese, L; Plano, R J; Prepost, R; Prescott, C Y; Ratcliff, B N; Reidy, J; Reinertsen, P L; Rochester, L S; Rowson, P C; Russell, J J; Saxton, O H; Schalk, T; Schumm, B A; Schwiening, J; Serbo, V V; Shapiro, G; Sinev, N B; Snyder, J A; Staengle, H; Stahl, A; Stamer, P; Steiner, H; Su, D; Suekane, F; Sugiyama, A; Suzuki, A; Swartz, M; Taylor, F E; Thom, J; Torrence, E; Usher, T; Va'vra, J; Verdier, R; Wagner, D L; Waite, A P; Walston, S; Weidemann, A W; Weiss, E R; Whitaker, J S; Williams, S H; Willocq, S; Wilson, R J; Wisniewski, W J; Wittlin, J L; Woods, M; Wright, T R; Yamamoto, R K; Yashima, J; Yellin, S J; Young, C C; Yuta, H
2005-03-11
Exploiting the manipulation of the SLAC Linear Collider electron-beam polarization, we present precise direct measurements of the parity-violation parameters A(c) and A(b) in the Z-boson-c-quark and Z-boson-b-quark coupling. Quark-antiquark discrimination is accomplished via a unique algorithm that takes advantage of the precise SLAC Large Detector charge coupled device vertex detector, employing the net charge of displaced vertices as well as the charge of kaons that emanate from those vertices. From the 1996-1998 sample of 400 000 Z decays, produced with an average beam polarization of 73.4%, we find A(c)=0.673+/-0.029(stat)+/-0.023(syst) and A(b)=0.919+/-0.018(stat)+/-0.017(syst). PMID:15783953
Vertex potentials evoked during auditory signal detection - Relation to decision criteria
NASA Technical Reports Server (NTRS)
Squires, K. C.; Hillyard, S. A.; Lindsay, P. H.
1973-01-01
Vertex potentials were recorded from eight subjects performing in an auditory threshold detection task with rating scale responses. The amplitudes and latencies of both the N1 and the late positive (P3) components were found to vary systematically with the criterion level of the decision. These changes in the waveshape of the N1 component were comparable to those produced by varying the signal intensity in a passive condition, but the late positive component in the active task was not similarly related to the passively evoked P2 component. It was suggested that the N1 and P3 components represent distinctive aspects of the decision process, with N1 signifying the quantity of signal information received and P3 reflecting the certainty of the decision based upon that information.
Castro, H.; Gomez, B.; Rivera, F.; Sanabria, J.-C.; Yager, P.; Barsotti, E.; Bowden, M.; Childress, S.; Lebrun, P.; Morfin, J.; Roberts, L.A.; /Fermilab /Florida U. /Houston U. /IIT /Iowa U. /Northeastern U. /Northern Illinois U. /Ohio State U. /Oklahoma U. /Pennsylvania U.
1989-01-01
The authors propose a program of research and development into the detector systems needed for a B-physics experiment at the Fermilab p-{bar p} Collider. The initial emphasis is on the critical issues of vertexting, tracking, and data acquisition in the high-multiplicity, high-rate collider environment. R and D for the particle-identification systems (RICH counters, TRD's, and EM calorimeter) will be covered in a subsequent proposal. To help focus their efforts in a timely manner, they propose the first phase of the R and D should culminate in a system test at the C0 collider intersect during the 1990-1991 run: a small fraction of the eventual vertex detector would be used to demonstrate that secondary-decay vertices can be found at a hadron collider. The proposed budget for the r and D program is $800k in 1989, $1.5M in 1990, and $1.6M in 1991.
Nuclear vertex constants and asymptotic normalization coefficients for the tritium nucleus
Babenko, V. A.; Petrov, N. M.
2009-12-15
The properties of the nuclear vertex constant for virtual triton decay to a deuteron and a neutron (T {sup {yields}} d + n) are investigated along with the properties of the asymptotic normalization coefficient defined for the triton wave function and related to this constant. These quantities are calculated numerically on the basis of an equation that relates the asymptotic normalization coefficient to the triton effective radius {rho}{sub T}, which was introduced in the present study. The values of G{sub T}{sup 2} = 1.244(68) fm and C{sub T}{sup 2} = 2.958(162) found from our calculations are in good agreement with experimental and theoretical estimates obtained for these quantities in other studies. Physical properties of the triton virtual state are also discussed.
Impairment of perceptual closure in autism for vertex- but not edge-defined object images.
Dehaqani, Mohammad-Reza A; Zarei, Mehdi Alizadeh; Vahabie, Abdol-Hossein; Esteky, Hossein
2016-08-01
One of the characteristics of autism spectrum disorder (ASD) is atypical sensory processing and perceptual integration. Here, we used an object naming task to test the significance of deletion of vertices versus extended contours (edges) in naming fragmented line drawings of natural objects in typically developing and ASD children. The basic components of a fragmented image in perceptual closure need to be integrated to make a coherent visual perception. When vertices were missing and only edges were visible, typically developing and ASD subjects performed similarly. But typically developing children performed significantly better than ASD children when only vertex information was visible. These results indicate impairment of binding vertices but not edges to form a holistic representation of an object in children with ASD. PMID:27548088
Vertex-Atom-Dependent Rectification in Triangular h-BNC/Triangular Graphene Heterojunctions
NASA Astrophysics Data System (ADS)
Wang, Lihua; Zhao, Jianguo; Zhang, Zizhen; Ding, Bingjun; Guo, Yong
2016-08-01
First-principles calculations have shown dramatically unexpected rectifying regularities in particular heterojunction configurations with triangular hexagonal boron-nitride-carbon ( h-BNC) and triangular graphene (TG) sandwiched between two armchair graphene nanoribbon electrodes. When the triangular h-BNC and TG are linked by vertex atoms of nitrogen and carbon (boron and carbon), forward (reverse) rectifying performance can be observed. Moreover, for a certain linking mode, the larger the elemental proportion p (where p = N_{{{boron}} + {{nitrogen}}} /N_{{{boron}} + {{nitrogen}} + {{carbon}}} ) in the h-BNC, the larger the ratio for forward (reverse) rectification. A mechanism for these rectification behaviors is suggested. The findings provide insights into control of rectification behaviors in TG-based nanodevices.
Norton's Trace Formulae for the Griess Algebraof a Vertex Operator Algebra with Larger Symmetry
NASA Astrophysics Data System (ADS)
Matsuo, Atsushi
Formulae expressing the trace of the composition of several (up to five) adjoint actions of elements of the Griess algebra of a vertex operator algebra are derived under certain assumptions on the action of the automorphism group. They coincide, when applied to the moonshine module V , with the trace formulae obtained in a different way by S. Norton, and the spectrum of some idempotents related to 2A, 2B, 3A and 4A elements of the Monster is determined by the representation theory of the Virasoro algebra at c= 1/2, the W3 algebra at c= 4/5 or the W4 algebra at c= 1. The generalization to the trace function on the whole space is also given for the composition of two adjoint actions, which can be used to compute the McKay-Thompson series for a 2A involution of the Monster.
A cell-vertex multigrid method for the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Radespiel, R.
1989-01-01
A cell-vertex scheme for the Navier-Stokes equations, which is based on central difference approximations and Runge-Kutta time stepping, is described. Using local time stepping, implicit residual smoothing, a multigrid method, and carefully controlled artificial dissipative terms, very good convergence rates are obtained for a wide range of two- and three-dimensional flows over airfoils and wings. The accuracy of the code is examined by grid refinement studies and comparison with experimental data. For an accurate prediction of turbulent flows with strong separations, a modified version of the nonequilibrium turbulence model of Johnson and King is introduced, which is well suited for an implementation into three-dimensional Navier-Stokes codes. It is shown that the solutions for three-dimensional flows with strong separations can be dramatically improved, when a nonequilibrium model of turbulence is used.
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Bansal, Bhupesh; Branicio, Paulo S.; Kalia, Rajiv K.; Nakano, Aiichiro; Sharma, Ashish; Vashishta, Priya
2006-09-01
State-of-the-art molecular dynamics (MD) simulations generate massive datasets involving billion-vertex chemical bond networks, which makes data mining based on graph algorithms such as K-ring analysis a challenge. This paper proposes an algorithm to improve the efficiency of ring analysis of large graphs, exploiting properties of K-rings and spatial correlations of vertices in the graph. The algorithm uses dual-tree expansion (DTE) and spatial hash-function tagging (SHAFT) to optimize computation and memory access. Numerical tests show nearly perfect linear scaling of the algorithm. Also a parallel implementation of the DTE + SHAFT algorithm achieves high scalability. The algorithm has been successfully employed to analyze large MD simulations involving up to 500 million atoms.
Five-vertex Archimedean surface tessellation by lanthanide-directed molecular self-assembly
Écija, David; Urgel, José I.; Papageorgiou, Anthoula C.; Joshi, Sushobhan; Auwärter, Willi; Seitsonen, Ari P.; Klyatskaya, Svetlana; Ruben, Mario; Fischer, Sybille; Vijayaraghavan, Saranyan; Reichert, Joachim; Barth, Johannes V.
2013-01-01
The tessellation of the Euclidean plane by regular polygons has been contemplated since ancient times and presents intriguing aspects embracing mathematics, art, and crystallography. Significant efforts were devoted to engineer specific 2D interfacial tessellations at the molecular level, but periodic patterns with distinct five-vertex motifs remained elusive. Here, we report a direct scanning tunneling microscopy investigation on the cerium-directed assembly of linear polyphenyl molecular linkers with terminal carbonitrile groups on a smooth Ag(111) noble-metal surface. We demonstrate the spontaneous formation of fivefold Ce–ligand coordination motifs, which are planar and flexible, such that vertices connecting simultaneously trigonal and square polygons can be expressed. By tuning the concentration and the stoichiometric ratio of rare-earth metal centers to ligands, a hierarchic assembly with dodecameric units and a surface-confined metal–organic coordination network yielding the semiregular Archimedean snub square tiling could be fabricated. PMID:23576764
Influence of vertex weight on cooperative behavior in a spatial snowdrift game
NASA Astrophysics Data System (ADS)
Xia, C. Y.; Zhao, J.; Wang, J.; Wang, Y. L.; Zhang, H.
2011-08-01
In this paper the vertex weight is introduced into a snowdrift game to study the evolution of cooperative behavior. Compared with the snowdrift game in a traditional square lattice without any weight, cooperation can be promoted under three types of weight distribution: uniform, exponential and power-law distribution. For an intermediate cost-to-benefit ratio (r), in particular, the facilitation effect of cooperation is obvious. Moreover, the influence of undulation amplitude of weight distribution and the noise strength of strategy selection on cooperative behavior are also investigated. They exhibit a nontrivial phenomenon as a function of r. The results are helpful in analyzing and understanding the emergence of collective cooperation that is found widely in many natural and social systems.
Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement.
Schuetz, Philipp; Caflisch, Amedeo
2008-04-01
Identifying strongly connected substructures in large networks provides insight into their coarse-grained organization. Several approaches based on the optimization of a quality function, e.g., the modularity, have been proposed. We present here a multistep extension of the greedy algorithm (MSG) that allows the merging of more than one pair of communities at each iteration step. The essential idea is to prevent the premature condensation into few large communities. Upon convergence of the MSG a simple refinement procedure called "vertex mover" (VM) is used for reassigning vertices to neighboring communities to improve the final modularity value. With an appropriate choice of the step width, the combined MSG-VM algorithm is able to find solutions of higher modularity than those reported previously. The multistep extension does not alter the scaling of computational cost of the greedy algorithm. PMID:18517695
Design and performance of beam test electronics for the PHENIX Multiplicity Vertex Detector
Britton, C.L. Jr.; Bryan, W.L.; Emery, M.S.
1996-12-31
The system architecture and test results of the custom circuits and beam test system for the Multiplicity-Vertex Detector (MVD) for the PHENIX detector collaboration at the Relativistic Heavy Ion Collider (RHIC) are presented in this paper. The final detector per-channel signal processing chain will consist of a preamplifier-gain stage, a current-mode summed multiplicity discriminator, a 64-deep analog memory (simultaneous read-write), a post-memory analog correlator, and a 10-bit 5 {mu}s ADC. The Heap Manager provides all timing control, data buffering, and data formatting for a single 256-channel multi-chip module (MCM). Each chip set is partitioned into 32-channel sets. Beam test (16-cell deep memory) performance for the various blocks will be presented as well as the ionizing radiation damage performance of the 1.2 {mu} n-well CMOS process used for preamplifier fabrication.
NASA Technical Reports Server (NTRS)
Schwent, V. L.; Hillyard, S. A.; Galambos, R.
1975-01-01
A randomized sequence of tone bursts was delivered to subjects at short inter-stimulus intervals with the tones originating from one of three spatially and frequency specific channels. The subject's task was to count the tones in one of the three channels at a time, ignoring the other two, and press a button after each tenth tone. In different conditions, tones were given at high and low intensities and with or without a background white noise to mask the tones. The N sub 1 component of the auditory vertex potential was found to be larger in response to attended channel tones in relation to unattended tones. This selective enhancement of N sub 1 was minimal for loud tones presented without noise and increased markedly for the lower tone intensity and in noise added conditions.
Vertex intrinsic fitness: How to produce arbitrary scale-free networks
Servedio, Vito D.P.; Caldarelli, Guido; Butta, Paolo
2004-11-01
We study a recent model of random networks based on the presence of an intrinsic character of the vertices called fitness. The vertex fitnesses are drawn from a given probability distribution density. The edges between pairs of vertices are drawn according to a linking probability function depending on the fitnesses of the two vertices involved. We study here different choices for the probability distribution densities and the linking functions. We find that, irrespective of the particular choices, the generation of scale-free networks is straightforward. We then derive the general conditions under which scale-free behavior appears. This model could then represent a possible explanation for the ubiquity and robustness of such structures.
First Look at Heavy-Light Mesons with a Dressed Quark-Gluon Vertex
NASA Astrophysics Data System (ADS)
Gómez-Rocha, María; Hilger, Thomas; Krassnigg, Andreas
2015-09-01
Following up on earlier work, we investigate possible effects of a dressed quark-gluon vertex in heavy-light mesons. In particular, we study corrections to the popular rainbow-ladder truncation of the Dyson-Schwinger-Bethe-Salpeter equation system. We adopt a simple interaction kernel which reduces the resulting set of coupled integral equations to a set of coupled algebraic equations, which are solved numerically. In this way, we extend previous studies to quark-antiquark systems with unequal current-quark masses, at first for the pseudoscalar case, and investigate the resulting set of problems and solutions. We attempt to find patterns in—as well as to quantify corrections to—the rainbow-ladder truncation. In addition, we open this approach to phenomenological predictions of the heavy quark symmetry.
Front-end module readout and control electronics for the PHENIX Multiplicity Vertex Detector
Ericson, M.N.; Allen, M.D.; Boissevain, J.
1997-11-01
Front-end module (FEM) readout and control are implemented as modular, high-density, reprogrammable functions in the PHENIX Multiplicity Vertex Detector. FEM control is performed by the heap manager, an FPGA-based circuit in the FEM unit. Each FEM has 256 channels of front-end electronics, readout, and control, all located on an MCM. Data readout, formatting, and control are performed by the heap manager along with 4 interface units that reside outside the MVD detector cylinder. This paper discusses the application of a generic heap manager and the addition of 4 interface module types to meet the specific control and data readout needs of the MVD. Unit functioning, interfaces, timing, data format, and communication rates will be discussed in detail. In addition, subsystem issues regarding mode control, serial architecture and functions, error handling, and FPGA implementation and programming will be presented.
A bottom collider vertex detector design, Monte-Carlo simulation and analysis package
Lebrun, P.
1990-10-01
A detailed simulation of the BCD vertex detector is underway. Specifications and global design issues are briefly reviewed. The BCD design based on double sided strip detector is described in more detail. The GEANT3-based Monte-Carlo program and the analysis package used to estimate detector performance are discussed in detail. The current status of the expected resolution and signal to noise ratio for the golden'' CP violating mode B{sub d} {yields} {pi}{sup +}{pi}{sup {minus}} is presented. These calculations have been done at FNAL energy ({radical}s = 2.0 TeV). Emphasis is placed on design issues, analysis techniques and related software rather than physics potentials. 20 refs., 46 figs.
New limits on anomalous contributions to the W t b vertex
NASA Astrophysics Data System (ADS)
Birman, J. L.; Déliot, F.; Fiolhais, M. C. N.; Onofre, A.; Pease, C. M.
2016-06-01
The latest and most precise top quark measurements at the LHC and Tevatron are used to establish new limits on the W t b vertex. Recent results on the measurements of the W -boson helicity fractions and single top quark production cross section are combined in order to establish new limits at 95% CL (confidence level). The allowed regions for these limits are presented, for the first time, in three-dimensional graphics, for both real and imaginary components of the different anomalous couplings, providing a new perspective on the impact of the combination of different physics observables. These results are also combined with the prospected future measurement of the single top quark production cross section and W -boson helicity fractions at the LHC.
Assembly procedure for the silicon pixel ladder for PHENIX silicon vertex tracker.
Onuki, Y.; PHENIX Collaboration, et al.
2009-05-08
The silicon vertex tracker (VTX) will be installed in the summer of 2010 to enhance the physics capabilities of the Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) experiment at Brookhaven National Laboratory. The VTX consists of two types of silicon detectors: a pixel detector and a strip detector. The pixel detector consists of 30 pixel ladders placed on the two inner cylindrical layers of the VTX. The ladders are required to be assembled with high precision, however, they should be assembled in both cost and time efficient manner. We have developed an assembly bench for the ladder with several assembly fixtures and a quality assurance (Q/A) system using a 3D measurement machine. We have also developed an assembly procedure for the ladder, including a method for dispensing adhesive uniformly and encapsulation of bonding wires. The developed procedures were adopted in the assembly of the first pixel ladder and satisfy the requirements.
Zhu, Youlong; Wan, Shun; Jin, Yinghua; Zhang, Wei
2015-11-01
Two novel porous 2D covalent organic frameworks (COFs) with periodically heterogeneous pore structures were successfully synthesized through desymmetrized vertex design strategy. Condensation of C(2v) symmetric 5-(4-formylphenyl)isophthalaldehyde or 5-((4-formylphenyl)ethylene)isophthalaldehyde with linear hydrazine linker under the solvothermal or microwave heating conditions yields crystalline 2D COFs, HP-COF-1 and HP-COF-2, with high specific surface areas and dual pore structures. PXRD patterns and computer modeling study, together with pore size distribution analysis confirm that each of the resulting COFs exhibits two distinctively different hexagonal pores. The structures were characterized by FT-IR, solid state (13)C NMR, gas adsorption, SEM, TEM, and theoretical simulations. Such rational design and synthetic strategy provide new possibilities for preparing highly ordered porous polymers with heterogeneous pore structures. PMID:26478274
NASA Astrophysics Data System (ADS)
Yan, Jiawei; Ke, Youqi
2016-07-01
Electron transport properties of nanoelectronics can be significantly influenced by the inevitable and randomly distributed impurities/defects. For theoretical simulation of disordered nanoscale electronics, one is interested in both the configurationally averaged transport property and its statistical fluctuation that tells device-to-device variability induced by disorder. However, due to the lack of an effective method to do disorder averaging under the nonequilibrium condition, the important effects of disorders on electron transport remain largely unexplored or poorly understood. In this work, we report a general formalism of Green's function based nonequilibrium effective medium theory to calculate the disordered nanoelectronics. In this method, based on a generalized coherent potential approximation for the Keldysh nonequilibrium Green's function, we developed a generalized nonequilibrium vertex correction method to calculate the average of a two-Keldysh-Green's-function correlator. We obtain nine nonequilibrium vertex correction terms, as a complete family, to express the average of any two-Green's-function correlator and find they can be solved by a set of linear equations. As an important result, the averaged nonequilibrium density matrix, averaged current, disorder-induced current fluctuation, and averaged shot noise, which involve different two-Green's-function correlators, can all be derived and computed in an effective and unified way. To test the general applicability of this method, we applied it to compute the transmission coefficient and its fluctuation with a square-lattice tight-binding model and compared with the exact results and other previously proposed approximations. Our results show very good agreement with the exact results for a wide range of disorder concentrations and energies. In addition, to incorporate with density functional theory to realize first-principles quantum transport simulation, we have also derived a general form of
A MAPS Based Micro-Vertex Detector for the STAR Experiment
Schambach, Joachim; Anderssen, Eric; Contin, Giacomo; Greiner, Leo; Silber, Joe; Stezelberger, Thorsten; Sun, Xiangming; Szelezniak, Michal; Videbaek, Flemming; Vu, Chinh; et al
2015-06-18
For the 2014 heavy ion run of RHIC a new micro-vertex detector called the Heavy Flavor Tracker (HFT) was installed in the STAR experiment. The HFT consists of three detector subsystems with various silicon technologies arranged in 4 approximately concentric cylinders close to the STAR interaction point designed to improve the STAR detector’s vertex resolution and extend its measurement capabilities in the heavy flavor domain. The two innermost HFT layers are placed at radii of 2.8 cm and 8 cm from the beam line. These layers are constructed with 400 high resolution sensors based on CMOS Monolithic Active Pixel Sensormore » (MAPS) technology arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors to cover a total silicon area of 0.16 m2. Each sensor of this PiXeL (“PXL”) sub-detector combines a pixel array of 928 rows and 960 columns with a 20.7 μm pixel pitch together with front-end electronics and zero-suppression circuitry in one silicon die providing a sensitive area of ~3.8 cm2. This sensor architecture features 185.6 μs readout time and 170 mW/cm2 power dissipation. This low power dissipation allows the PXL detector to be air-cooled, and with the sensors thinned down to 50 μm results in a global material budget of only 0.4% radiation length per layer. A novel mechanical approach to detector insertion allows us to effectively install and integrate the PXL sub-detector within a 12 hour period during an on-going multi-month data taking period. The detector requirements, architecture and design, as well as the performance after installation, are presented in this paper.« less
A MAPS Based Micro-Vertex Detector for the STAR Experiment
Schambach, Joachim; Anderssen, Eric; Contin, Giacomo; Greiner, Leo; Silber, Joe; Stezelberger, Thorsten; Sun, Xiangming; Szelezniak, Michal; Videbaek, Flemming; Vu, Chinh; Wieman, Howard; Woodmansee, Sam
2015-06-18
For the 2014 heavy ion run of RHIC a new micro-vertex detector called the Heavy Flavor Tracker (HFT) was installed in the STAR experiment. The HFT consists of three detector subsystems with various silicon technologies arranged in 4 approximately concentric cylinders close to the STAR interaction point designed to improve the STAR detector’s vertex resolution and extend its measurement capabilities in the heavy flavor domain. The two innermost HFT layers are placed at radii of 2.8 cm and 8 cm from the beam line. These layers are constructed with 400 high resolution sensors based on CMOS Monolithic Active Pixel Sensor (MAPS) technology arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors to cover a total silicon area of 0.16 m^{2}. Each sensor of this PiXeL (“PXL”) sub-detector combines a pixel array of 928 rows and 960 columns with a 20.7 μm pixel pitch together with front-end electronics and zero-suppression circuitry in one silicon die providing a sensitive area of ~3.8 cm^{2}. This sensor architecture features 185.6 μs readout time and 170 mW/cm^{2} power dissipation. This low power dissipation allows the PXL detector to be air-cooled, and with the sensors thinned down to 50 μm results in a global material budget of only 0.4% radiation length per layer. A novel mechanical approach to detector insertion allows us to effectively install and integrate the PXL sub-detector within a 12 hour period during an on-going multi-month data taking period. The detector requirements, architecture and design, as well as the performance after installation, are presented in this paper.
NASA Astrophysics Data System (ADS)
Mellbin, Y.; Hallberg, H.; Ristinmaa, M.
2015-06-01
A mesoscale model of microstructure evolution is formulated in the present work by combining a crystal plasticity model with a graph-based vertex algorithm. This provides a versatile formulation capable of capturing finite-strain deformations, development of texture and microstructure evolution through recrystallization. The crystal plasticity model is employed in a finite element setting and allows tracing of stored energy build-up in the polycrystal microstructure and concurrent reorientation of the crystal lattices in the grains. This influences the progression of recrystallization as nucleation occurs at sites with sufficient stored energy and since the grain boundary mobility and energy is allowed to vary with crystallographic misorientation across the boundaries. The proposed graph-based vertex model describes the topological changes to the grain microstructure and keeps track of the grain inter-connectivity. Through homogenization, the macroscopic material response is also obtained. By the proposed modeling approach, grain structure evolution at large deformations as well as texture development are captured. This is in contrast to most other models of recrystallization which are usually limited by assumptions of one or the other of these factors. In simulation examples, the model is in the present study shown to capture the salient features of dynamic recrystallization, including the effects of varying initial grain size and strain rate on the transitions between single-peak and multiple-peak oscillating flow stress behavior. Also the development of recrystallization texture and the influence of different assumptions on orientation of recrystallization nuclei are investigated. Further, recrystallization kinetics are discussed and compared to classical JMAK theory. To promote computational efficiency, the polycrystal plasticity algorithm is parallelized through a GPU implementation that was recently proposed by the authors.
A MAPS Based Micro-Vertex Detector for the STAR Experiment
NASA Astrophysics Data System (ADS)
Schambach, Joachim; Anderssen, Eric; Contin, Giacomo; Greiner, Leo; Silber, Joe; Stezelberger, Thorsten; Sun, Xiangming; Szelezniak, Michal; Videbaek, Flemming; Vu, Chinh; Wieman, Howard; Woodmansee, Sam
For the 2014 heavy ion run of RHIC a new micro-vertex detector called the Heavy Flavor Tracker (HFT) was installed in the STAR experiment. The HFT consists of three detector subsystems with various silicon technologies arranged in 4 approximately concentric cylinders close to the STAR interaction point designed to improve the STAR detector's vertex resolution and extend its measurement capabilities in the heavy flavor domain. The two innermost HFT layers are placed at radii of 2.8 cm and 8 cm from the beam line. These layers are constructed with 400 high resolution sensors based on CMOS Monolithic Active Pixel Sensor (MAPS) technology arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors to cover a total silicon area of 0.16 m2. Each sensor of this PiXeL ("PXL") sub-detector combines a pixel array of 928 rows and 960 columns with a 20.7 μm pixel pitch together with front-end electronics and zero-suppression circuitry in one silicon die providing a sensitive area of ˜3.8 cm2. This sensor architecture features 185.6 μs readout time and 170 mW/cm2 power dissipation. This low power dissipation allows the PXL detector to be air-cooled, and with the sensors thinned down to 50 μm results in a global material budget of only 0.4% radiation length per layer. A novel mechanical approach to detector insertion allows us to effectively install and integrate the PXL sub-detector within a 12 hour period during an on-going multi-month data taking period. The detector requirements, architecture and design, as well as the performance after installation, are presented in this paper.
Keyhole Flap Nipple Reconstruction
Cash, Camille G.; Iman, Al-Haj; Spiegel, Aldona J.; Cronin, Ernest D.
2016-01-01
Summary: Nipple-areola reconstruction is often one of the final but most challenging aspects of breast reconstruction. However, it is an integral and important component of breast reconstruction because it transforms the mound into a breast. We performed 133 nipple-areola reconstructions during a period of 4 years. Of these reconstructions, 76 of 133 nipple-areola complexes were reconstructed using the keyhole flap technique. The tissue used for the keyhole dermoadipose flap technique include transverse rectus abdominus myocutaneous flaps (60/76), latissimus dorsi flaps (15/76), or mastectomy skin flaps after tissue expanders (1/76). The average patient follow-up was 17 months. The design of the flap is based on a keyhole configuration. The base of the flap determines the width of the future nipple, whereas the length of the flap determines the projection. We try to match the projection of the contralateral nipple if present. The keyhole flap is simple to construct yet reliable. It provides good symmetry and projection and avoids the creation of new scars. The areola is then tattooed approximately 3 months after the nipple reconstruction.
Keyhole Flap Nipple Reconstruction.
Chen, Joseph I; Cash, Camille G; Iman, Al-Haj; Spiegel, Aldona J; Cronin, Ernest D
2016-05-01
Nipple-areola reconstruction is often one of the final but most challenging aspects of breast reconstruction. However, it is an integral and important component of breast reconstruction because it transforms the mound into a breast. We performed 133 nipple-areola reconstructions during a period of 4 years. Of these reconstructions, 76 of 133 nipple-areola complexes were reconstructed using the keyhole flap technique. The tissue used for the keyhole dermoadipose flap technique include transverse rectus abdominus myocutaneous flaps (60/76), latissimus dorsi flaps (15/76), or mastectomy skin flaps after tissue expanders (1/76). The average patient follow-up was 17 months. The design of the flap is based on a keyhole configuration. The base of the flap determines the width of the future nipple, whereas the length of the flap determines the projection. We try to match the projection of the contralateral nipple if present. The keyhole flap is simple to construct yet reliable. It provides good symmetry and projection and avoids the creation of new scars. The areola is then tattooed approximately 3 months after the nipple reconstruction. PMID:27579228
Nasal reconstruction after epithelioma.
Rodríguez-Camps, S
2001-01-01
In this paper we present our procedure for the treatment, histopathological diagnosis, and resection of skin cancer in the nasal pyramid and its subsequent reconstruction. Because we are dealing with the most important anatomical feature of the face our goal is an aesthetic reconstruction [2,4] according to the anatomical subunits criterion of Burget [3]. First, a histopathological diagnosis is made to determine the nature of the tumor. Then, we proceed with the resection according to the Mohs Micrographic Surgery [1,5,7]. Then we begin with the first step of the nasal reconstruction. PMID:11568830
Evolutionary reconstruction of networks
NASA Astrophysics Data System (ADS)
Ipsen, Mads; Mikhailov, Alexander S.
2002-10-01
Can a graph specifying the pattern of connections of a dynamical network be reconstructed from statistical properties of a signal generated by such a system? In this model study, we present a Metropolis algorithm for reconstruction of graphs from their Laplacian spectra. Through a stochastic process of mutations and selection, evolving test networks converge to a reference graph. Applying the method to several examples of random graphs, clustered graphs, and small-world networks, we show that the proposed stochastic evolution allows exact reconstruction of relatively small networks and yields good approximations in the case of large sizes.
Advances in Tracheal Reconstruction
Salna, Michael; Waddell, Thomas K.; Hofer, Stefan O.
2014-01-01
Summary: A recent revival of global interest for reconstruction of long-segment tracheal defects, which represents one of the most interesting and complex problems in head and neck and thoracic reconstructive surgery, has been witnessed. The trachea functions as a conduit for air, and its subunits including the epithelial layer, hyaline cartilage, and segmental blood supply make it particularly challenging to reconstruct. A myriad of attempts at replacing the trachea have been described. These along with the anatomy, indications, and approaches including microsurgical tracheal reconstruction will be reviewed. Novel techniques such as tissue-engineering approaches will also be discussed. Multiple attempts at replacing the trachea with synthetic scaffolds have been met with failure. The main lesson learned from such failures is that the trachea must not be treated as a “simple tube.” Understanding the anatomy, developmental biology, physiology, and diseases affecting the trachea are required for solving this problem. PMID:25426361
Breast Reconstruction After Mastectomy
... Women who have autologous tissue reconstruction may need physical therapy to help them make up for weakness experienced ... 127(1):15–22. [PubMed Abstract] Monteiro M. Physical therapy implications following the TRAM procedure. Physical Therapy. 1997; ...
Breast Reconstruction and Prosthesis
... feel of the breast after a mastectomy. A plastic surgeon can do it at the same time ... want breast reconstruction. • Have you talked with your plastic surgeon about your options? You may not be ...
Reconstruction of Mandibular Defects
Chim, Harvey; Salgado, Christopher J.; Mardini, Samir; Chen, Hung-Chi
2010-01-01
Defects requiring reconstruction in the mandible are commonly encountered and may result from resection of benign or malignant lesions, trauma, or osteoradionecrosis. Mandibular defects can be classified according to location and extent, as well as involvement of mucosa, skin, and tongue. Vascularized bone flaps, in general, provide the best functional and aesthetic outcome, with the fibula flap remaining the gold standard for mandible reconstruction. In this review, we discuss classification and approach to reconstruction of mandibular defects. We also elaborate upon four commonly used free osteocutaneous flaps, inclusive of fibula, iliac crest, scapula, and radial forearm. Finally, we discuss indications and use of osseointegrated implants as well as recent advances in mandibular reconstruction. PMID:22550439
Overview of Image Reconstruction
Marr, R. B.
1980-04-01
Image reconstruction (or computerized tomography, etc.) is any process whereby a function, f, on R^{n} is estimated from empirical data pertaining to its integrals, ∫f(x) dx, for some collection of hyperplanes of dimension k < n. The paper begins with background information on how image reconstruction problems have arisen in practice, and describes some of the application areas of past or current interest; these include radioastronomy, optics, radiology and nuclear medicine, electron microscopy, acoustical imaging, geophysical tomography, nondestructive testing, and NMR zeugmatography. Then the various reconstruction algorithms are discussed in five classes: summation, or simple back-projection; convolution, or filtered back-projection; Fourier and other functional transforms; orthogonal function series expansion; and iterative methods. Certain more technical mathematical aspects of image reconstruction are considered from the standpoint of uniqueness, consistency, and stability of solution. The paper concludes by presenting certain open problems. 73 references. (RWR)
NASA Astrophysics Data System (ADS)
Zhu, Hong-Ming; Pen, Ue-Li; Yu, Yu; Er, Xinzhong; Chen, Xuelei
2016-05-01
The gravitational coupling of a long-wavelength tidal field with small-scale density fluctuations leads to anisotropic distortions of the locally measured small-scale matter correlation function. Since the local correlation function is known to be statistically isotropic in the absence of such tidal interactions, the tidal distortions can be used to reconstruct the long-wavelength tidal field and large-scale density field in analogy with the cosmic microwave background lensing reconstruction. In this paper we present the theoretical framework of cosmic tidal reconstruction and test the reconstruction in numerical simulations. We find that the density field on large scales can be reconstructed with good accuracy and the cross-correlation coefficient between the reconstructed density field and the original density field is greater than 0.9 on large scales (k ≲0.1 h /Mpc ), with the filter scale ˜1.25 Mpc /h . This is useful in the 21 cm intensity mapping survey, where the long-wavelength radial modes are lost due to a foreground subtraction process.
Microsurgical breast reconstruction.
Avraham, Tomer; Clavin, Nicolas; Mehrara, Babak J
2008-01-01
Breast cancer, the most common cancer diagnosed in American women, often necessitates mastectomy. Many studies have demonstrated improved quality of life and well-being after breast reconstruction. Numerous techniques are available for breast reconstruction including tissue expander implants and autologous tissues. Microsurgical tissue transfer involves the use of excess skin and fat (flaps) from a remote location to reconstruct the breast. Most often, tissues are transferred from the abdomen and buttocks. Less commonly, thigh flaps are used. These operations can provide durable, esthetic reconstructions. In addition, advances in microsurgical techniques have improved operative success rates to the range of 99%. The selection of an appropriate flap for microsurgical breast reconstruction is multifactorial and is based on patient and oncologic factors. These factors include patient comorbidities, body habitus/availability of donor tissues, cancer stage, and the need for postoperative adjuvant radiation therapy, as well as the risk of cancer in the contralateral breast. Appropriate choice of flap and surgical technique can minimize the risk of operative complications. Additionally, several large series have established that microsurgical breast reconstruction has no impact on survival, or locoregional/distant recurrence rates. PMID:18677132
The Reconstruction Problem Revisited
NASA Technical Reports Server (NTRS)
Suresh, Ambaby
1999-01-01
The role of reconstruction in avoiding oscillations in upwind schemes is reexamined, with the aim of providing simple, concise proofs. In one dimension, it is shown that if the reconstruction is any arbitrary function bounded by neighboring cell averages and increasing within a cell for increasing data, the resulting scheme is monotonicity preserving, even though the reconstructed function may have overshoots and undershoots at the cell edges and is in general not a monotone function. In the special case of linear reconstruction, it is shown that merely bounding the reconstruction between neighboring cell averages is sufficient to obtain a monotonicity preservinc,y scheme. In two dimensions, it is shown that some ID TVD limiters applied in each direction result in schemes that are not positivity preserving, i.e. do not give positive updates when the data are positive. A simple proof is given to show that if the reconstruction inside the cell is bounded by the neighboring cell averages (including corner neighbors), then the scheme is positivity preserving. A new limiter that enforces this condition but is not as dissipative as the Minmod limiter is also presented.
PROPOSAL FOR A SILICON VERTEX TRACKER (VTX) FOR THE PHENIX EXPERIMENT.
AKIBA,Y.
2004-03-30
We propose the construction of a Silicon Vertex Tracker (VTX) for the PHENIX experiment at RHIC. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometers. Our prime motivation is to provide precision measurements of heavy-quark production (charm and beauty) in A+A, p(d)+A, and polarized p+p collisions. These are key measurements for the future RHIC program, both for the heavy ion program as it moves from the discovery phase towards detailed investigation of the properties of the dense nuclear medium created in heavy ion collisions, and for the exploration of the nucleon spin-structure functions. In addition, the VTX will also considerably improve other measurements with PHENIX. The main physics topics addressed by the VTX are: (1) Hot and dense strongly interacting matter--Potential enhancement of charm production; Open beauty production; Flavor dependence of jet quenching and QCD energy loss; Accurate charm reference for quarkonium; Thermal dilepton radiation; High p{sub T} phenomena with light flavors above 10-15 GeV/c in p{sub T}; and Upsilon spectroscopy in the e{sup +}e{sup -} decay channel. (2) Gluon spin structure of the nucleon--{Delta}G/G with charm; {Delta}G/G with beauty; and x dependence of {Delta}G/G with {gamma}-jet correlations. (3) Nucleon structure in nuclei--Gluon shadowing over broad x-range. With the present PHENIX detector, heavy-quark production has been measured indirectly through the observation of single electrons. These measurements are inherently limited in accuracy by systematic uncertainties resulting from the large electron background from Dalitz decays and photon conversions. In particular, the statistical nature of the analysis does not allow for a model-independent separation of the charm and beauty contributions. The VTX detector will provide vertex tracking with a resolution of <50 {micro}m over a large coverage both in rapidity (|{eta}| < 1.2) and in azimuthal angle ({Delta}{phi} {approx
Synthesis and structural characterization of 14-vertex germa-, stanna-, and plumba-carboranes.
Zheng, Fangrui; Xie, Zuowei
2014-04-01
This article reports the synthesis and structures of several 14-vertex germa-, stanna-, and plumba-carboranes of the MC2B11 system. The reaction of GeCl2·dioxane, SnCl2 or Pb(OAc)2 with [8,9-(CH2)3-8,9-C2B11H11][Na2] in THF gave, after recrystallization from bidentate ligands such as bipyridine, 4,4'-dimethyl-2,2'-bipyridine, phenantroline and 1,2-bis(diphenylphosphino)ethane (dppe), eight 14-vertex p-block metallacarboranes 2,3-(CH2)3-1-(2',2''-bipyridine)-1,2,3-GeC2B11H11 (1), 2,3-(CH2)3-1-(4',4''-dimethyl-bipyridine)-1,2,3-GeC2B11H11 (2), 2,3-(CH2)3-1-(1',10'-phenantroline)-1,2,3-GeC2B11H11 (3), 2,3-(CH2)3-1-(2',2''-bipyridine)-1,2,3-SnC2B11H11 (4), 2,3-(CH2)3-1-(4',4''-dimethyl-bipyridine)-1,2,3-SnC2B11H11 (5), 2,3-(CH2)3-1-(1',10'-phenantroline)-1,2,3-SnC2B11H11 (6), 2,3-(CH2)3-1-(dppe)-1,2,3-SnC2B11H11 (7) and 2,3-(CH2)3-1-(2',2''-bipyridine)-1,2,3-PbC2B11H11 (8) in high isolated yields. Single-crystal X-ray analyses reveal that they adopt a distorted-bicapped-hexagonal antiprism geometry, in which the p-block metal atom slips away from the above center of the C2B4 bonding face towards the boron side, leading to an η(4) bonding mode. The results suggest that [nido-8,9-(CH2)3-8,9-C2B11H11](2-) is a redox inactive species and a good π-ligand for transition metals and p-block elements. PMID:24162337
NASA Technical Reports Server (NTRS)
Kuan, Gary M.; Dekens, Frank G.
2006-01-01
The Space Interferometry Mission (SIM) is a microarcsecond interferometric space telescope that requires picometer level precision measurements of its truss and interferometer baselines. Single-gauge metrology errors due to non-ideal physical characteristics of corner cubes reduce the angular measurement capability of the science instrument. Specifically, the non-common vertex error (NCVE) of a shared vertex, double corner cube introduces micrometer level single-gauge errors in addition to errors due to dihedral angles and reflection phase shifts. A modified SIM Kite Testbed containing an articulating double corner cube is modeled and the results are compared to the experimental testbed data. The results confirm modeling capability and viability of calibration techniques.
NASA Astrophysics Data System (ADS)
Takada, Yasutami; Higuchi, Takatoshi
1995-11-01
The Green's-function techniques, especially the one developed in the preceding paper [Takada, Phys. Rev. B 52, 12 708 (1995)], are employed to calculate the electron-phonon vertex part as well as the electronic self-energy exactly on both real- and imaginary-frequency axes in the electron-phonon Holstein model with the on-site Coulomb repulsion in the limit in which the intramolecular phonon energy ω0 is much larger than the electronic bandwidth. The rigorous vertex part is found to diverge at the frequencies at which an electron is locked by such local phonons with an infinitely strong effective coupling. Characteristic frequencies of this divergence, which are not equal to multiples of ω0, are calculated as a function of the electron-phonon bare coupling constant. Our results for the self-energy are checked successfully with the exact ones obtained by the Lang-Firsov canonical transformation.
NASA Astrophysics Data System (ADS)
Salas, Jesús; Sokal, Alan D.
2011-09-01
We study, using transfer-matrix methods, the partition-function zeros of the square-lattice q-state Potts antiferromagnet at zero temperature (= square-lattice chromatic polynomial) for the boundary conditions that are obtained from an m× n grid with free boundary conditions by adjoining one new vertex adjacent to all the sites in the leftmost column and a second new vertex adjacent to all the sites in the rightmost column. We provide numerical evidence that the partition-function zeros are becoming dense everywhere in the complex q-plane outside the limiting curve {B}_{infty}(sq) for this model with ordinary (e.g. free or cylindrical) boundary conditions. Despite this, the infinite-volume free energy is perfectly analytic in this region.
Gao, Yun; Hu, Naihong; Zhang, Honglian
2015-01-15
In this paper, we define the two-parameter quantum affine algebra for type G{sub 2}{sup (1)} and give the (r, s)-Drinfeld realization of U{sub r,s}(G{sub 2}{sup (1)}), as well as establish and prove its Drinfeld isomorphism. We construct and verify explicitly the level-one vertex representation of two-parameter quantum affine algebra U{sub r,s}(G{sub 2}{sup (1)}), which also supports an evidence in nontwisted type G{sub 2}{sup (1)} for the uniform defining approach via the two-parameter τ-invariant generating functions proposed in Hu and Zhang [Generating functions with τ-invariance and vertex representations of two-parameter quantum affine algebras U{sub r,s}(g{sup ^}): Simply laced cases e-print http://arxiv.org/abs/1401.4925 ].
Coracoclavicular Ligament Reconstruction
Li, Qi; Hsueh, Pei-ling; Chen, Yun-feng
2014-01-01
Abstract Operative intervention is recommended for complete acromioclavicular (AC) joint dislocation to restore AC stability, but the best operative technique is still controversial. Twelve fresh-frozen male cadaveric shoulders (average age, 62.8 ± 7.8 years) were equally divided into endobutton versus the modified Weaver-Dunn groups. Each potted scapula and clavicle was fixed in a custom made jig to allow translation and load to failure testing using a Zwick BZ2.5/TS1S material testing machine (Zwick/Roell Co, Germany). A systematic review of 21 studies evaluating reconstructive methods for coracoclavicular or AC joints using a cadaveric model was also performed. From our biomechanical study, after ligament reconstruction, the triple endobutton technique demonstrated superior, anterior, and posterior displacements similar to that of the intact state (P > 0.05). In the modified Weaver-Dunn reconstruction group, however, there was significantly greater anterior (P < 0.001) and posterior (P = 0.003) translation after ligament reconstruction. In addition, there was no significant difference after reconstruction between failure load of the triple endobutton group and that of the intact state (686.88 vs 684.9 N, P > 0.05), whereas the failure load after the modified Weaver-Dunn reconstruction was decreased compared with the intact state (171.64 vs 640.86 N, P < 0.001). From our systematic review of 21 studies, which involved comparison of the modified Weaver-Dunn technique with other methods, the majority showed that the modified Weaver-Dunn procedure had significantly (P < .05) greater laxity than other methods including the endobutton technique. The triple endobutton reconstruction proved superior to the modified Weaver-Dunn technique in restoration of AC joint stability and strength. Triple endobutton reconstruction of the coracoclavicular ligament is superior to the modified Weaver-Dunn reconstruction in controlling both superior and
Augmented Likelihood Image Reconstruction.
Stille, Maik; Kleine, Matthias; Hägele, Julian; Barkhausen, Jörg; Buzug, Thorsten M
2016-01-01
The presence of high-density objects remains an open problem in medical CT imaging. Data of projections passing through objects of high density, such as metal implants, are dominated by noise and are highly affected by beam hardening and scatter. Reconstructed images become less diagnostically conclusive because of pronounced artifacts that manifest as dark and bright streaks. A new reconstruction algorithm is proposed with the aim to reduce these artifacts by incorporating information about shape and known attenuation coefficients of a metal implant. Image reconstruction is considered as a variational optimization problem. The afore-mentioned prior knowledge is introduced in terms of equality constraints. An augmented Lagrangian approach is adapted in order to minimize the associated log-likelihood function for transmission CT. During iterations, temporally appearing artifacts are reduced with a bilateral filter and new projection values are calculated, which are used later on for the reconstruction. A detailed evaluation in cooperation with radiologists is performed on software and hardware phantoms, as well as on clinically relevant patient data of subjects with various metal implants. Results show that the proposed reconstruction algorithm is able to outperform contemporary metal artifact reduction methods such as normalized metal artifact reduction. PMID:26208310
The vertex-positive scalp potential evoked by faces and by objects.
Jeffreys, D A; Tukmachi, E S
1992-01-01
The influence of stimulus form on the scalp-recorded "vertex positive peak" (VPP) evoked by images of faces (Jeffreys 1989a) was studied in seven subjects. In separate experiments, we recorded the responses to 2D images of: (1) many different depictions of human faces; (2) the heads of several different species; (3) many familiar non-face objects; and (4) stimuli where the configuration of objects were modified to produce an "illusory" or "non-contextual" subjective impression of a face. The results showed that every facial representation, including the "illusory" stimuli, and most of the non-face objects, evoked a VPP of corresponding form and scalp distribution. The object-evoked VPPs, however, were always smaller and usually later than those evoked by the faces. VPPs of longer latency but often comparable amplitude were also recorded for impoverished compared to well-defined facial representations; and for most non-human compared to human faces. Very consistent responses were recorded to repeated presentations of the same stimulus for the same subject, but there was considerable variation in latency as well as amplitude (but not form) of the VPP evoked under identical experimental conditions for different subjects. These response properties of the VPP, suggest that its underlying physiological generators are sensitive to basic configural properties of the visual stimulus; and also the face- and object-related information are processed in the same brain area(s), although not necessarily by the same physiological mechanisms. PMID:1459236
Mode and modulation characteristics for microsquare lasers with a vertex output waveguide
NASA Astrophysics Data System (ADS)
Long, Heng; Huang, YongZhen; Yang, YueDe; Zou, LingXiu; Xiao, JinLong; Xiao, ZhiXiong
2015-11-01
The mode and high-speed modulation characteristics are investigated for a microsquare laser with a side length of 16 μm and a 2-μm-wide output waveguide connected to one vertex. The longitudinal and transverse mode characteristics are analyzed by numerical simulation and light ray model, and compared with the lasing spectra for the microsquare laser. Up to the fifth transverse mode is observed clearly from the lasing spectra. Single mode operation with the side mode suppression ratio of 41 dB is realized at the injection current of 24 mA, and the maximum output power of 0.53 (0.18) mW coupled into the multiple (single) mode fiber is obtained at the current of 35 mA, for the microsquare laser at the temperature of 288 K. Furthermore, a flat small-signal modulation response is reached with the 3-dB bandwidth of 16.2 GHz and the resonant peak of 3.6 dB at the bias current of 34 mA. The K-factor of 0.22 ns is obtained by fitting the damping factor versus the resonant frequency, which implies a maximum intrinsic 3-dB bandwidth of 40 GHz.
Garny, M.; Hohenegger, A.; Kartavtsev, A.; Lindner, M.
2009-12-15
The generation of a baryon asymmetry via leptogenesis is usually studied by means of classical kinetic equations whose applicability to processes in the hot and expanding early universe is questionable. The approximations implied by the state-of-the-art description can be tested in a first-principle approach based on nonequilibrium field theory techniques. Here, we apply the Schwinger-Keldysh/Kadanoff-Baym formalism to a simple toy model of leptogenesis. We find that, within the toy model, medium effects increase the vertex contribution to the CP-violating parameter. At high temperatures it is a few times larger than in vacuum and asymptotically reaches the vacuum value as the temperature decreases. Contrary to the results obtained earlier in the framework of thermal field theory, the corrections are only linear in the particle number densities. An important feature of the Kadanoff-Baym formalism is that it is free of the double-counting problem, i.e. no need for real intermediate state subtraction arises. In particular, this means that the structure of the equations automatically ensures that the asymmetry vanishes in equilibrium. These results give a first glimpse into a number of new and interesting effects that can be studied in the framework of nonequilibrium field theory.
Vertex Movement for Mission Status Graphics: A Polar-Star Display
NASA Technical Reports Server (NTRS)
Trujillo, Anna
2002-01-01
Humans are traditionally bad monitors, especially over long periods of time on reliable systems, and they are being called upon to do this more and more as systems become further automated. Because of this, there is a need to find a way to display the monitoring information to the human operator in such a way that he can notice pertinent deviations in a timely manner. One possible solution is to use polar-star displays that will show deviations from normal in a more salient manner. A polar-star display uses a polygon's vertices to report values. An important question arises, though, of how the vertices should move. This experiment investigated two particular issues of how the vertices should move: (1) whether the movement of the vertices should be continuous or discrete and (2) whether the parameters that made up each vertex should always move in one direction regardless of parameter sign or move in both directions indicating parameter sign. The results indicate that relative movement direction is best. Subjects performed better with this movement type and they subjectively preferred it to the absolute movement direction. As for movement type, no strong preferences were shown.
Graphical method for deriving an effective interaction with a new vertex function
Suzuki, K.; Okamoto, R.; Kumagai, H.; Fujii, S.
2011-02-15
Introducing a new vertex function, Z(E), of an energy variable E, we derive a new equation for the effective interaction. The equation is obtained by replacing the Q box in the Krenciglowa-Kuo (KK) method with Z(E). This new approach can be viewed as an extension of the KK method. We show that this equation can be solved both in iterative and noniterative ways. We observe that the iteration procedure with Z(E) brings about fast convergence compared to the usual KK method. It is shown that, as in the KK approach, the procedure of calculating the effective interaction can be reduced to determining the true eigenvalues of the original Hamiltonian H and they can be obtained as the positions of intersections of graphs generated from Z(E). We find that this graphical method yields always precise results and reproduces any of the true eigenvalues of H. The calculation in the present approach can be made regardless of overlaps with the model space and energy differences between unperturbed energies and the eigenvalues of H. We find also that Z(E) is a well-behaved function of E and has no singularity. These characteristics of the present approach ensure stability in actual calculations and would be helpful to resolve some difficulties due to the presence of poles in the Q box. Performing test calculations, we verify numerically theoretical predictions made in the present approach.
Fabrication of vertex drift chamber with 1.75mm drift length
NASA Astrophysics Data System (ADS)
Sakuma, F.; En'yo, H.; Tabaru, T.; Yokkaichi, S.; Ishino, M.; Mihara, S.; Ozawa, K.; Hamagaki, H.; Funahashi, H.; Kitaguchi, M.; Miyashita, T.; Murakami, T.; Muto, R.; Naruki, M.; Sato, H. D.; Yamada, S.; Yoshimura, Y.; Kanda, H.; Chiba, J.; Ieiri, M.; Sasaki, O.; Sekimoto, M.; Tanaka, K. H.; Nomachi, M.
2001-10-01
The fabrication and the performance of the vertex drift chamber for the KEK-PS E325 are presented. The chamber consists of 3 layers of hexagonal drift cells with sides 3.02mm or 2.02mm long, depending on the region of polar angle coverage. The smallest drift length is only 1.75mm long. Such a geometry is realized with normal feed-through technics on the alminum frame by grounding cathodes and applying high voltages on anodes. The drift cells surround the targets at radii of 100 mm and 200 mm covering the polar angle region of 6 degrees to 141 degrees. The chamber is operated under 10^9/sec primary beam intensity, and the minimum distance between the beam and the sense wires is only 21mm. The chamber uses Amplifier-Shaper-Discriminator ICs (SONY CXA3183Q) for read-out, which are developed for Thin Gap Chamber for the ATLAS mun detector. In the presentation, we will report details of the chamber design and the measured performance.
Vertex-connectivity in periodic graphs and underlying nets of crystal structures.
Eon, Jean Guillaume
2016-05-01
Periodic nets used to describe the combinatorial topology of crystal structures have been required to be 3-connected by some authors. A graph is n-connected when deletion of less than n vertices does not disconnect it. n-Connected graphs are a fortiari n-coordinated but the converse is not true. This article presents an analysis of vertex-connectivity in periodic graphs characterized through their labelled quotient graph (LQG) and applied to a definition of underlying nets of crystal structures. It is shown that LQGs of p-periodic graphs (p ≥ 2) that are 1-connected or 2-connected, but not 3-connected, are contractible in the sense that they display, respectively, singletons or pairs of vertices separating dangling or linker components with zero net voltage over every cycle. The contraction operation that substitutes vertices and edges, respectively, for dangling components and linkers yields a 3-connected graph with the same periodicity. 1-Periodic graphs can be analysed in the same way through their LQGs but the result may not be 3-connected. It is claimed that long-range topological properties of periodic graphs are respected by contraction so that contracted graphs can represent topological classes of crystal structures, be they rods, layers or three-dimensional frameworks. PMID:27126114
Controllability and observability analysis for vertex domination centrality in directed networks
NASA Astrophysics Data System (ADS)
Wang, Bingbo; Gao, Lin; Gao, Yong; Deng, Yue; Wang, Yu
2014-06-01
Topological centrality is a significant measure for characterising the relative importance of a node in a complex network. For directed networks that model dynamic processes, however, it is of more practical importance to quantify a vertex's ability to dominate (control or observe) the state of other vertices. In this paper, based on the determination of controllable and observable subspaces under the global minimum-cost condition, we introduce a novel direction-specific index, domination centrality, to assess the intervention capabilities of vertices in a directed network. Statistical studies demonstrate that the domination centrality is, to a great extent, encoded by the underlying network's degree distribution and that most network positions through which one can intervene in a system are vertices with high domination centrality rather than network hubs. To analyse the interaction and functional dependence between vertices when they are used to dominate a network, we define the domination similarity and detect significant functional modules in glossary and metabolic networks through clustering analysis. The experimental results provide strong evidence that our indices are effective and practical in accurately depicting the structure of directed networks.
Controllability and observability analysis for vertex domination centrality in directed networks.
Wang, Bingbo; Gao, Lin; Gao, Yong; Deng, Yue; Wang, Yu
2014-01-01
Topological centrality is a significant measure for characterising the relative importance of a node in a complex network. For directed networks that model dynamic processes, however, it is of more practical importance to quantify a vertex's ability to dominate (control or observe) the state of other vertices. In this paper, based on the determination of controllable and observable subspaces under the global minimum-cost condition, we introduce a novel direction-specific index, domination centrality, to assess the intervention capabilities of vertices in a directed network. Statistical studies demonstrate that the domination centrality is, to a great extent, encoded by the underlying network's degree distribution and that most network positions through which one can intervene in a system are vertices with high domination centrality rather than network hubs. To analyse the interaction and functional dependence between vertices when they are used to dominate a network, we define the domination similarity and detect significant functional modules in glossary and metabolic networks through clustering analysis. The experimental results provide strong evidence that our indices are effective and practical in accurately depicting the structure of directed networks. PMID:24954137
Measurement of the Non-common Vertex Error of a Double Corner Cube
NASA Technical Reports Server (NTRS)
Azizi, Alireza; Marcin, Martin; Moore, Douglas; Moser, Steve; Negron, John; Paek, Eung-Gi; Ryan, Daniel; Abramovici, Alex; Best, Paul; Crossfield, Ian; Nemati, Bijan; Neville, Tim; Platt, B.; Wayne, Leonard
2006-01-01
The Space Interferometry Mission (SIM) requires the control of the optical path of each interferometer with picometer accuracy. Laser metrology gauges are used to measure the path lengths to the fiiducial corner cubes at the siderostats. Due to the geometry of SIM a single corner cube does not have sufficient acceptance angle to work with all the gauges. Therefore SIM employs a double corner cube. Current fabrication methods are in fact not capable of producing such a double corner cube with vertices having sufficient commonality. The plan for SIM is to measure the non-commonalty of the vertices and correct for the error in orbit. SIM requires that the non-common vertex error (NCVE) of the double corner cube to be less than 6 (mu)m. The required accuracy for the knowledge of the NCVE is less than 1 (mu)m. This paper explains a method of measuring non-common vertices of a brassboard double corner cube with sub-micron accuracy. The results of such a measurement will be presented.
PROPOSAL FOR A SILICON VERTEX TRACKER (VTX) FOR THE PHENIX EXPERIMENT
AKIBA,Y.
2004-10-01
We propose the construction of a Silicon Vertex Tracker (VTX) for the PHENIX experiment at RHIC. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometers. Our prime motivation is to provide precision measurements of heavy-quark production (charm and beauty) in A+A, p(d)+A, and polarized p+p collisions. These are key measurements for the future RHIC program, both for the heavy ion program as it moves from the discovery phase towards detailed investigation of the properties of the dense nuclear medium created in heavy ion collisions, and for the exploration of the nucleon spin-structure functions. In addition, the VTX will also considerably improve other measurements with PHENIX. The main physics topics addressed by the VTX are: (1) Hot and dense strongly interacting matter--(a) Potential enhancement of charm production, (b) Open beauty production, (c) Flavor dependence of jet quenching and QCD energy loss, (d) Accurate charm reference for quarkonium, (e) Thermal dilepton radiation, (f) High p{sub T} phenomena with light flavors above 10-15 GeV/c in p{sub T}, and (g) Upsilon spectroscopy in the e{sup +}e{sup -} decay channel. (2) Gluon spin structure of the nucleon--(a) {Delta}G/G with charm, (b) {Delta}G/G with beauty, and (c) x dependence of {Delta}G/G with {gamma}-jet correlations. (3) Nucleon structure in nuclei--Gluon shadowing over broad x-range.
Lessons Learned From BaBar Silicon Vertex Tracker, Limits, And Future Perspectives of the Detector
Re, V.; Kirkby, D.; Bruinsma, M.; Curry, S.; Berryhill, J.; Burke, S.; Callahan, D.; Campagnari, C.; Dahmes, B.; Hale, D.; Hart, P.; Kyre, S.; Levy, S.; Long, O.; Mazur, M.; Richman, J.; Stoner, J.; Verkerke, W.; Beck, T.; Eisner, A.M.; Kroseberg, J.; /UC, Santa Cruz /Ferrara U. /INFN, Ferrara /NIKHEF, Amsterdam /LBL, Berkeley /Maryland U. /Milan U. /INFN, Milan /Pavia U. /Pisa, Scuola Normale Superiore /INFN, Pisa /Princeton U. /SLAC /Stanford U., Phys. Dept. /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Wisconsin U., Madison
2006-02-17
The silicon vertex tracker (SVT) of the BaBar experiment at PEP-II is described. This is the crucial device for the measurement of the meson decay vertices to extract charge-conjugation parity (CP) asymmetries. It consists of five layers of double-sided ac-coupled silicon strip detectors, read out by a full-custom integrated circuit, capable of simultaneous acquisition, digitization, and transmission of data. It represents the core of the BaBar tracking system, providing position measurements with a precision of 10 m (inner layers) and 30 m (outer layers). The relevant performances of the SVT are presented, and the experience acquired during the construction, installation, and the first five years of data-taking is described. Innovative solutions are highlighted, like the sophisticated alignment procedure, imposed by the design of the silicon tracker, integrated in the beamline elements and mechanically separated from the other parts of BaBar. The harshness of the background conditions in the interaction region required several studies on the radiation damage of the sensors and the front-end chips, whose results are presented. Over the next five years the luminosity is predicted to increase by a factor three, leading to radiation and occupancy levels significantly exceeding the detector design. Extrapolation of future radiation doses and occupancies is shown together with the expected detector performance and lifetime. Upgrade scenarios to deal with the increased luminosity and backgrounds are discussed.
Classical integrable systems and soliton equations related to eleven-vertex R-matrix
NASA Astrophysics Data System (ADS)
Levin, A.; Olshanetsky, M.; Zotov, A.
2014-10-01
In our recent paper we suggested a natural construction of the classical relativistic integrable tops in terms of the quantum R-matrices. Here we study the simplest case - the 11-vertex R-matrix and related gl2 rational models. The corresponding top is equivalent to the 2-body Ruijsenaars-Schneider (RS) or the 2-body Calogero-Moser (CM) model depending on its description. We give different descriptions of the integrable tops and use them as building blocks for construction of more complicated integrable systems such as Gaudin models and classical spin chains (periodic and with boundaries). The known relation between the top and CM (or RS) models allows to rewrite the Gaudin models (or the spin chains) in the canonical variables. Then they assume the form of n-particle integrable systems with 2n constants. We also describe the generalization of the top to 1+1 field theories. It allows us to get the Landau-Lifshitz type equation. The latter can be treated as non-trivial deformation of the classical continuous Heisenberg model. In a similar way the deformation of the principal chiral model is described.
Readout, first- and second-level triggers of the new Belle silicon vertex detector
NASA Astrophysics Data System (ADS)
Friedl, M.; Abe, R.; Abe, T.; Aihara, H.; Asano, Y.; Aso, T.; Bakich, A.; Browder, T.; Chang, M. C.; Chao, Y.; Chen, K. F.; Chidzik, S.; Dalseno, J.; Dowd, R.; Dragic, J.; Everton, C. W.; Fernholz, R.; Fujii, H.; Gao, Z. W.; Gordon, A.; Guo, Y. N.; Haba, J.; Hara, K.; Hara, T.; Harada, Y.; Haruyama, T.; Hasuko, K.; Hayashi, K.; Hazumi, M.; Heenan, E. M.; Higuchi, T.; Hirai, H.; Hitomi, N.; Igarashi, A.; Igarashi, Y.; Ikeda, H.; Ishino, H.; Itoh, K.; Iwaida, S.; Kaneko, J.; Kapusta, P.; Karawatzki, R.; Kasami, K.; Kawai, H.; Kawasaki, T.; Kibayashi, A.; Koike, S.; Korpar, S.; Križan, P.; Kurashiro, H.; Kusaka, A.; Lesiak, T.; Limosani, A.; Lin, W. C.; Marlow, D.; Matsumoto, H.; Mikami, Y.; Miyake, H.; Moloney, G. R.; Mori, T.; Nakadaira, T.; Nakano, Y.; Natkaniec, Z.; Nozaki, S.; Ohkubo, R.; Ohno, F.; Okuno, S.; Onuki, Y.; Ostrowicz, W.; Ozaki, H.; Peak, L.; Pernicka, M.; Rosen, M.; Rozanska, M.; Sato, N.; Schmid, S.; Shibata, T.; Stamen, R.; Stanič, S.; Steininger, H.; Sumisawa, K.; Suzuki, J.; Tajima, H.; Tajima, O.; Takahashi, K.; Takasaki, F.; Tamura, N.; Tanaka, M.; Taylor, G. N.; Terazaki, H.; Tomura, T.; Trabelsi, K.; Trischuk, W.; Tsuboyama, T.; Uchida, K.; Ueno, K.; Ueno, K.; Uozaki, N.; Ushiroda, Y.; Vahsen, S.; Varner, G.; Varvell, K.; Velikzhanin, Y. S.; Wang, C. C.; Wang, M. Z.; Watanabe, M.; Watanabe, Y.; Yamada, Y.; Yamamoto, H.; Yamashita, Y.; Yamashita, Y.; Yamauchi, M.; Yanai, H.; Yang, R.; Yasu, Y.; Yokoyama, M.; Ziegler, T.; Žontar, D.
2004-12-01
A major upgrade of the Silicon Vertex Detector (SVD 2.0) of the Belle experiment at the KEKB factory was installed along with new front-end and back-end electronics systems during the summer shutdown period in 2003 to cope with higher particle rates, improve the track resolution and meet the increasing requirements of radiation tolerance. The SVD 2.0 detector modules are read out by VA1TA chips which provide "fast or" (hit) signals that are combined by the back-end FADCTF modules to coarse, but immediate level 0 track trigger signals at rates of several tens of a kHz. Moreover, the digitized detector signals are compared to threshold lookup tables in the FADCTFs to pass on hit information on a single strip basis to the subsequent level 1.5 trigger system, which reduces the rate below the kHz range. Both FADCTF and level 1.5 electronics make use of parallel real-time processing in Field Programmable Gate Arrays (FPGAs), while further data acquisition and event building is done by PC farms running Linux. The new readout system hardware is described and the first results obtained with cosmics are shown.
A CMOS pixel sensor prototype for the outer layers of linear collider vertex detector
NASA Astrophysics Data System (ADS)
Zhang, L.; Morel, F.; Hu-Guo, C.; Himmi, A.; Dorokhov, A.; Hu, Y.
2015-01-01
The International Linear Collider (ILC) expresses a stringent requirement for high precision vertex detectors (VXD). CMOS pixel sensors (CPS) have been considered as an option for the VXD of the International Large Detector (ILD), one of the detector concepts proposed for the ILC. MIMOSA-31 developed at IPHC-Strasbourg is the first CPS integrated with 4-bit column-level ADC for the outer layers of the VXD, adapted to an original concept minimizing the power consumption. It is composed of a matrix of 64 rows and 48 columns. The pixel concept combines in-pixel amplification with a correlated double sampling (CDS) operation in order to reduce the temporal noise and fixed pattern noise (FPN). At the bottom of the pixel array, each column is terminated with a self-triggered analog-to-digital converter (ADC). The ADC design was optimized for power saving at a sampling frequency of 6.25 MS/s. The prototype chip is fabricated in a 0.35 μm CMOS technology. This paper presents the details of the prototype chip and its test results.
Modeling one-mode projection of bipartite networks by tagging vertex information
NASA Astrophysics Data System (ADS)
Qiao, Jian; Meng, Ying-Ying; Chen, Hsinchun; Huang, Hong-Qiao; Li, Guo-Ying
2016-09-01
Traditional one-mode projection models are less informative than their original bipartite networks. Hence, using such models cannot control the projection's structure freely. We proposed a new method for modeling the one-mode projection of bipartite networks, which thoroughly breaks through the limitations of the available one-mode projecting methods by tagging the vertex information of bipartite networks in their one-mode projections. We designed a one-mode collaboration network model by using the method presented in this paper. The simulation results show that our model matches three real networks very well and outperforms the available collaboration network models significantly, which reflects the idea that our method is ideal for modeling one-mode projection models of bipartite graphs and that our one-mode collaboration network model captures the crucial mechanisms of the three real systems. Our study reveals that size growth, individual aging, random collaboration, preferential collaboration, transitivity collaboration and multi-round collaboration are the crucial mechanisms of collaboration networks, and the lack of some of the crucial mechanisms is the main reason that the other available models do not perform as well as ours.
Statistical approaches to nonstationary EEGs for the detection of slow vertex responses.
Fujikake, M; Ninomija, S P; Fujita, H
1989-06-01
A slow vertex response (SVR) is an electric auditory evoked response used for an objective hearing power test. One of the aims of an objective hearing power test is to find infants whose hearing is less than that of normal infants. Early medical treatment is important for infants with a loss of hearing so that they do not have retarded growth. To measure SVRs, we generally use the averaged summation method of an electroencephalogram (EEG), because the signal-to-noise ratio (SVR to EEG and etc.) is very poor. To increase the reliability and stability of measured SVRs, and at the same time, to make the burden of testing light, it is necessary to device an effective measurement method of SVR. Two factors must be considered: (1) SVR waveforms change following the changes of EEGs caused by sleeping and (2) EEGs are considered as nonstationary data in prolonged measurement. In this paper, five statistical methods are used on two different models; a stationary model and a nonstationary model. Through the comparison of waves obtained by each method, we will clarify the statistical characteristics of the original data (EEGs including SVRs), and consider the conditions that effect the measurement method of an SVR. PMID:2794816
Towards a 10 μs, thin and high resolution pixelated CMOS sensor system for future vertex detectors
NASA Astrophysics Data System (ADS)
De Masi, R.; Amar-Youcef, S.; Baudot, J.; Bertolone, G.; Brogna, A.; Chon-Sen, N.; Claus, G.; Colledani, C.; Degerli, Y.; Deveaux, M.; Dorokhov, A.; Doziére, G.; Dulinski, W.; Gelin, M.; Goffe, M.; Fontaine, J. C.; Hu-Guo, Ch.; Himmi, A.; Jaaskelainen, K.; Koziel, M.; Morel, F.; Müntz, C.; Orsini, F.; Santos, C.; Schrader, C.; Specht, M.; Stroth, J.; Valin, I.; Voutsinas, G.; Wagner, F. M.; Winter, M.
2011-02-01
The physics goals of many high energy experiments require a precise determination of decay vertices, imposing severe constraints on vertex detectors (readout speed, granularity, material budget,…). The IPHC-IRFU collaboration developed a sensor architecture to comply with these requirements. The first full scale CMOS sensor was realised and equips the reference planes of the EUDET beam telescope. Its architecture is being adapted to the needs of the STAR (RHIC) and CBM (FAIR) experiments. It is a promising candidate for the ILC experiments and the ALICE detector upgrade (LHC). A substantial improvement to the CMOS sensor performances, especially in terms of radiation hardness, should come from a new fabrication technology with depleted sensitive volume. A prototype sensor was fabricated to explore the benefits of the technology. The crucial system integration issue is also currently being addressed. In 2009 the PLUME collaboration was set up to investigate the feasibility and performances of a light double sided ladder equipped with CMOS sensors, aimed primarily for the ILC vertex detector but also of interest for other applications such as the CBM vertex detector.
An explicit realization of logarithmic modules for the vertex operator algebra W[sub p,p[sup ʹ
NASA Astrophysics Data System (ADS)
Adamović, Dražen; Milas, Antun
2012-07-01
By extending the methods used in our earlier work, in this paper, we present an explicit realization of logarithmic W_{p,p^' }}-modules that have L(0) nilpotent rank three. This was achieved by combining the techniques developed in [D. Adamović and A. Milas, "Lattice construction of logarithmic modules for certain vertex algebras," Selecta Math., New Ser. 15, 535-561 (2009), 10.1007/s00029-009-0009-z; e-print arXiv:0902.3417] with the theory of local systems of vertex operators.[J. Lepowsky and H. Li, Introduction to Vertex Operator Algebras and Their Representations, Progress in Mathematics Vol. 227 (Birkhäuser, Boston, 2003)] In addition, we also construct a new type of extension of W_{p,p^' }}, denoted by V. Our results confirm several claims in the physics literature regarding the structure of projective covers of certain irreducible representations in the principal block. This approach can be applied to other models defined via a pair screenings.
Adaptive iterative reconstruction
NASA Astrophysics Data System (ADS)
Bruder, H.; Raupach, R.; Sunnegardh, J.; Sedlmair, M.; Stierstorfer, K.; Flohr, T.
2011-03-01
It is well known that, in CT reconstruction, Maximum A Posteriori (MAP) reconstruction based on a Poisson noise model can be well approximated by Penalized Weighted Least Square (PWLS) minimization based on a data dependent Gaussian noise model. We study minimization of the PWLS objective function using the Gradient Descent (GD) method, and show that if an exact inverse of the forward projector exists, the PWLS GD update equation can be translated into an update equation which entirely operates in the image domain. In case of non-linear regularization and arbitrary noise model this means that a non-linear image filter must exist which solves the optimization problem. In the general case of non-linear regularization and arbitrary noise model, the analytical computation is not trivial and might lead to image filters which are computationally very expensive. We introduce a new iteration scheme in image space, based on a regularization filter with an anisotropic noise model. Basically, this approximates the statistical data weighting and regularization in PWLS reconstruction. If needed, e.g. for compensation of the non-exactness of backprojector, the image-based regularization loop can be preceded by a raw data based loop without regularization and statistical data weighting. We call this combined iterative reconstruction scheme Adaptive Iterative Reconstruction (AIR). It will be shown that in terms of low-contrast visibility, sharpness-to-noise and contrast-to-noise ratio, PWLS and AIR reconstruction are similar to a high degree of accuracy. In clinical images the noise texture of AIR is also superior to the more artificial texture of PWLS.
Espinoza, Gabriela Mabel; Prost, Angela Michelle
2016-05-01
Reconstruction of the upper eyelid is complicated because the eyelid must retain mobility, flexibility, function, and a suitable mucosal surface over the delicate cornea. Defects of the upper eyelid may be due to congenital defects or traumatic injury or follow oncologic resection. This article focuses on reconstruction due to loss of tissue. Multiple surgeries may be needed to reach the desired results, addressing loss of tissue and then loss of function. Each defect is unique and the laxity and availability of surrounding tissue vary. Knowing the most common techniques for repair assists surgeons in the multifaceted planning that takes place. PMID:27105803
Reconstructing Community History
ERIC Educational Resources Information Center
Shields, Amy
2004-01-01
History is alive and well in Lebanon, Missouri. Students in this small town in the southwest region of the state went above and beyond the community's expectations on this special project. This article describes this historical journey which began when students in a summer mural class reconstructed a mural that was originally created by a…
Reconstructing Glaciers on Mars
NASA Astrophysics Data System (ADS)
Hubbard, A., II; Brough, S.; Hubbard, B. P.
2015-12-01
Mars' mid-latitudes host a substantial volume of ice, equivalent to a ~1 - 2.5 m-thick global layer or the sum of Earth's glaciers and ice caps outside of Antarctica and Greenland. These deposits are the remnants of what is believed to have been a once far larger 'ice age', culminating in a last martian glacial maximum. Despite the identification of >1,300 glacier-like forms (GLFs) - the first order component of Mars' glacial landsystem - in Mars' mid-latitudes, little is known about their composition, dynamics or former extent. Here, we reconstruct the former 3D extent of a well-studied GLF located in eastern Hellas Planitia. We combine high-resolution geomorphic and topographic data, obtained from the High-Resolution Imaging Science Experiment (HiRISE) camera, to reconstruct the GLF's former limits. We then apply a perfect plasticity rheological model, to generate multiple flow-parallel ice-surface transects. These are combined with the GLF's boundary to guide interpolation using ArcGIS' 'Topo to Raster' function to produce a continuous 3D surface for the reconstructed former GLF. Our results indicate that, since its reconstructed 'recent maximum' extent, the GLF's volume has reduced by 0.31 km3 and its area by 6.85 km2, or 70%. On-going research is addressing the degree to which this change is typical of Mars' full GLF population.
Reconstructive Middle Ear Surgery
Ruby, R.R.F.; Ballagh, R.H.
1992-01-01
Conductive hearing loss is a common cause of deafness and disability, particularly in children and young adults. This article presents a brief overview of the various methods currently available for reconstructing the tympanic membrane and middle ear ossicular chain, including some comments as to their indications and limitations. Schematic diagrams showing these techniques illustrate the various types of repair described. PMID:21221356
Breast reconstruction - natural tissue
... muscle flap; TRAM; Latissimus muscle flap with a breast implant; DIEP flap; DIEAP flap; Gluteal free flap; ... If you are having breast reconstruction at the same time as mastectomy, the surgeon may do either of the following: Skin-sparing mastectomy. This means ...
Reconstructing Playschool Experiences
ERIC Educational Resources Information Center
Einarsdottir, Johanna
2011-01-01
The current study was conducted with groups of first grade children (aged six years) in two primary schools in Reykjavik in an endeavour to ascertain how they recalled and reconstructed their playschool experiences. The children's playschool teachers were co-researchers participating in the data generation; they were, at the same time participants…
Siegert, Ralf; Magritz, Ralph
2008-01-01
Reconstructive and aesthetic surgery of the auricle is one of the most challenging and diverse tasks in plastic head and neck surgery. Injuries, defects and malformations require multiple different techniques, some of which are standardized, other situations require huge experience and artistic creativity. It is a specialty that will never become monotone. PMID:22073078
Reconstructing Progressive Education
ERIC Educational Resources Information Center
Kaplan, Andy
2013-01-01
The work of Colonel Francis W. Parker, the man whom Dewey called "the father of progressive education," provides a starting point for reconstructing the loose ambiguities of progressive education into a coherent social and educational philosophy. Although progressives have claimed their approach is more humane and sensitive to children, we need…
Stability of climate reconstructions
NASA Astrophysics Data System (ADS)
Lohmann, Gerrit; Rimbu, Norel; Wagner, Axel; Dima, Mihai
2014-05-01
Reconstruction of climate mode indices using proxy data as predictors is limited due to non-stationarity in atmospheric teleconnections. In this paper a method is presented to identify stable predictors for the reconstruction of the Arctic Oscillation (AO) index. Using the 20th Century reanalysis data, the AO index is calculated for the last 140 years and correlated with global two meter temperature, precipitation, and sea surface temperature anomalies in various moving windows. The stability of the correlation was checked in every point of the global grids. Anomalies from the regions where the correlation of the AO index is stable are used as stable predictors for the AO index. It is shown that the predictors identified through our analysis lead to proper AO reconstructions. Statistical analysis of a global climate simulation covering the last millennium reveals that the stability correlation map of model AO and temperature are very similar to the corresponding observed correlation stability map. It is shown that the stability correlation maps of the AO, as derived from the model, are insensitive to different climate forcing and can be used to systematically select stable predictors for the AO reconstruction during the last millennium and most likely for the late Holocene. Finally, several high resolution proxy data from the stable regions are selected and used for a reconstruction of the AO index during the last three centuries. We argue that selection of proxy data from the stable regions of AO teleconnections leads to a suitable AO reconstruction. Furthermore, the hypothesis of stable teleconnections is tested using atmospheric circulation model experiments. For climate conditions with other ice sheet distributions on the Northern Hemisphere, such as the last glacial maximum climate, considerable changes are detected in the atmospheric variability pattern compared to the present day. Correlation maps of pseudo proxy records over Europe, the Red Sea area, and
LHCb Vertex Locator: Performance and radiation damage in LHC Run 1 and preparation for Run 2
NASA Astrophysics Data System (ADS)
Szumlak, T.; Obła˛kowska-Mucha, A.
2016-07-01
LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the Large Hadron Collider (LHC) at CERN. Heavy hadrons are identified through their flight distance in the Vertex Locator (VELO). The VELO comprises 42 modules made of two n+-on-n 300 μm thick half-disc silicon sensors with R- and Φ-measuring micro-strips. In order to allow retracting the detector, the VELO is installed as two movable halves containing 21 modules each. The detectors are operated in a secondary vacuum and are cooled by a bi-phase CO2 cooling system. During data taking in LHC Run 1 the LHCb VELO has operated with an extremely high efficiency and excellent performance. The track finding efficiency is typically greater than 98%. An impact parameter resolution of less than 35 μm is achieved for particles with transverse momentum greater than 1 GeV/c. An overview of all important performance parameters will be given. The VELO sensors have received a large and non-uniform radiation dose of up to 1.2 ×1014 1 MeV neutron equivalent cm-2 during the first LHC run. Silicon type-inversion has been observed in regions close to the interaction point. The preparations for LHC Run 2 are well under way and the VELO has already recorded tracks from injection line tests. The current status and plans for new operational procedures addressing the non-uniform radiation damage are shortly discussed.
Channeled spectropolarimetry using iterative reconstruction
NASA Astrophysics Data System (ADS)
Lee, Dennis J.; LaCasse, Charles F.; Craven, Julia M.
2016-05-01
Channeled spectropolarimeters (CSP) measure the polarization state of light as a function of wavelength. Conventional Fourier reconstruction suffers from noise, assumes the channels are band-limited, and requires uniformly spaced samples. To address these problems, we propose an iterative reconstruction algorithm. We develop a mathematical model of CSP measurements and minimize a cost function based on this model. We simulate a measured spectrum using example Stokes parameters, from which we compare conventional Fourier reconstruction and iterative reconstruction. Importantly, our iterative approach can reconstruct signals that contain more bandwidth, an advancement over Fourier reconstruction. Our results also show that iterative reconstruction mitigates noise effects, processes non-uniformly spaced samples without interpolation, and more faithfully recovers the ground truth Stokes parameters. This work offers a significant improvement to Fourier reconstruction for channeled spectropolarimetry.
Preparing for Breast Reconstruction Surgery
... after breast reconstruction surgery Preparing for breast reconstruction surgery Your surgeon can help you know what to ... The plan for follow-up Costs Understanding your surgery costs Health insurance policies often cover most or ...
Controversies in Parotid Defect Reconstruction.
Tamplen, Matthew; Knott, P Daniel; Fritz, Michael A; Seth, Rahul
2016-08-01
Reconstruction of the parotid defect is a complex topic that encompasses restoration of both facial form and function. The reconstructive surgeon must consider facial contour, avoidance of Frey syndrome, skin coverage, tumor surveillance, potential adjuvant therapy, and facial reanimation when addressing parotid defects. With each defect there are several options within the reconstructive ladder, creating controversies regarding optimal management. This article describes surgical approaches to reconstruction of parotid defects, highlighting areas of controversy. PMID:27400838
Algebraic reconstruction techniques for spectral reconstruction in diffuse optical tomography
Brendel, Bernhard; Ziegler, Ronny; Nielsen, Tim
2008-12-01
Reconstruction in diffuse optical tomography (DOT) necessitates solving the diffusion equation, which is nonlinear with respect to the parameters that have to be reconstructed. Currently applied solving methods are based on the linearization of the equation. For spectral three-dimensional reconstruction, the emerging equation system is too large for direct inversion, but the application of iterative methods is feasible. Computational effort and speed of convergence of these iterative methods are crucial since they determine the computation time of the reconstruction. In this paper, the iterative methods algebraic reconstruction technique (ART) and conjugated gradients (CGs) as well as a new modified ART method are investigated for spectral DOT reconstruction. The aim of the modified ART scheme is to speed up the convergence by considering the specific conditions of spectral reconstruction. As a result, it converges much faster to favorable results than conventional ART and CG methods.
Stochastic reconstruction of sandstones
Manwart; Torquato; Hilfer
2000-07-01
A simulated annealing algorithm is employed to generate a stochastic model for a Berea sandstone and a Fontainebleau sandstone, with each a prescribed two-point probability function, lineal-path function, and "pore size" distribution function, respectively. We find that the temperature decrease of the annealing has to be rather quick to yield isotropic and percolating configurations. A comparison of simple morphological quantities indicates good agreement between the reconstructions and the original sandstones. Also, the mean survival time of a random walker in the pore space is reproduced with good accuracy. However, a more detailed investigation by means of local porosity theory shows that there may be significant differences of the geometrical connectivity between the reconstructed and the experimental samples. PMID:11088546
LOFAR sparse image reconstruction
NASA Astrophysics Data System (ADS)
Garsden, H.; Girard, J. N.; Starck, J. L.; Corbel, S.; Tasse, C.; Woiselle, A.; McKean, J. P.; van Amesfoort, A. S.; Anderson, J.; Avruch, I. M.; Beck, R.; Bentum, M. J.; Best, P.; Breitling, F.; Broderick, J.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; de Gasperin, F.; de Geus, E.; de Vos, M.; Duscha, S.; Eislöffel, J.; Engels, D.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hoeft, M.; Hörandel, J.; van der Horst, A.; Juette, E.; Karastergiou, A.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; Mulcahy, D. D.; Munk, H.; Norden, M. J.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pietka, G.; Pizzo, R.; Polatidis, A. G.; Renting, A.; Röttgering, H.; Rowlinson, A.; Schwarz, D.; Sluman, J.; Smirnov, O.; Stappers, B. W.; Steinmetz, M.; Stewart, A.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; Thoudam, S.; Toribio, C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wijnholds, S. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.; Zensus, A.
2015-03-01
Context. The LOw Frequency ARray (LOFAR) radio telescope is a giant digital phased array interferometer with multiple antennas distributed in Europe. It provides discrete sets of Fourier components of the sky brightness. Recovering the original brightness distribution with aperture synthesis forms an inverse problem that can be solved by various deconvolution and minimization methods. Aims: Recent papers have established a clear link between the discrete nature of radio interferometry measurement and the "compressed sensing" (CS) theory, which supports sparse reconstruction methods to form an image from the measured visibilities. Empowered by proximal theory, CS offers a sound framework for efficient global minimization and sparse data representation using fast algorithms. Combined with instrumental direction-dependent effects (DDE) in the scope of a real instrument, we developed and validated a new method based on this framework. Methods: We implemented a sparse reconstruction method in the standard LOFAR imaging tool and compared the photometric and resolution performance of this new imager with that of CLEAN-based methods (CLEAN and MS-CLEAN) with simulated and real LOFAR data. Results: We show that i) sparse reconstruction performs as well as CLEAN in recovering the flux of point sources; ii) performs much better on extended objects (the root mean square error is reduced by a factor of up to 10); and iii) provides a solution with an effective angular resolution 2-3 times better than the CLEAN images. Conclusions: Sparse recovery gives a correct photometry on high dynamic and wide-field images and improved realistic structures of extended sources (of simulated and real LOFAR datasets). This sparse reconstruction method is compatible with modern interferometric imagers that handle DDE corrections (A- and W-projections) required for current and future instruments such as LOFAR and SKA.
Reconstruction of vaginal agenesis.
Ozkan, Ozlenen; Erman Akar, Münire; Ozkan, Omer; Doğan, N Utku
2011-06-01
Vaginal ageneses are by no means rare anomalies. Complete Mullerian agenesis is the most common reason for vaginal agenesis requiring reconstruction. Patients usually present with pain, hematocolpos, or hematometra in puberty, and later with amenorrhea and dyspareunia. Detailed information is given here regarding etiologies, timing of surgery, and current treatment options for vaginal agenesis. Outcomes and short- and long-term complications of recent treatment options are also discussed. PMID:21372677
[Reconstruction of pulpectomized teeth].
Colon, P; Picard, B
1990-04-01
The general principles governing the choice of materials for reconstruction of devitalized teeth are determined on the basis of mechanical and biological imperatives as well as degradation phenomena. In describing the various techniques for clinical implementation, particular emphasis is placed on the imperatives and limitations of each protocol. A decisive factor in the durability of restorations is their homogeneity, as well as the clinical conditions under which they are performed. PMID:2135782
Secondary femoropopliteal reconstruction.
Whittemore, A D; Clowes, A W; Couch, N P; Mannick, J A
1981-01-01
Retrospective analysis of the authors' experience with 109 primary femoropopliteal bypass vein grafts that failed allows description of three distinct modes of failure. Within 30 days of surgery, failure resulted primarily from technical or judgmental errors. The development of stenotic lesions within the vein graft caused a second group of failures during the first year after bypass. The third group most commonly failed due to progression of peripheral atherosclerosis a year or more following original bypass. No correlation was found, however, between the mode of failure and results of secondary femoropopliteal-tibial reconstruction, which yielded an overall 50% five-year cumulative limb salvage rate. The results indicate that this salvage rate can be anticipated regardless of the number of secondary operations required. The highest long-term patency rate was achieved when frequent postoperative follow-up examinations allowed recognition of graft failure prior to total occlusion. Under such circumstances a simple vein patch of stenotic lesions yielded an 85% five-year graft patency. Following actual thrombosis, however, the highest five-year patency rate was achieved when reconstruction was performed using a new vein graft; saphenous vein and arm vein were equally effective. When prosthetic material was used, no secondary graft remained patent beyond three years. Finally, when a proximal or distal portion of the original vein graft proved adequate in caliber following thrombectomy, it could be successfully incorporated in a secondary reconstruction with the expectation of a 50% five-year limb salvage rate. No statistically significant difference was found in salvage rates among each of the patient groups representing the three common modes of graft failure. This finding, coupled with an acceptable 2.5% operative mortality rate, provides justification for an aggressive approach toward secondary femoropopliteal reconstruction. Images Fig. 1a. Fig. 1c. PMID:7458449
Kinky tomographic reconstruction
Hanson, K.M.; Cunningham, G.S.; Bilisoly, R.L.
1996-05-01
We address the issue of how to make decisions about the degree of smoothness demanded of a flexible contour used to model the boundary of a 2D object. We demonstrate the use of a Bayesian approach to set the strength of the smoothness prior for a tomographic reconstruction problem. The Akaike Information Criterion is used to determine whether to allow a kink in the contour.
Paleoproductivity Reconstructions Using Radiolarians
NASA Astrophysics Data System (ADS)
Lazarus, D. B.
2003-12-01
This talk reviews the use of radiolarian assemblages in paleoproductivity reconstruction. Molina-Cruz and CLIMAP co-workers first identified a distinct radiolarian assemblage whose modern geographic distribution closely matched that of an upwelling region (eastern Pacific Peru-Chile). Nigrini and Caulet subsequently identified additional species largely endemic to various upwelling environments. They applied this in the form of an Upwelling Radiolarian Index (URI) in down-core studies of upwelling history. Recently, Jacot des Combes and Weinheimer have used published distributions of living radiolarians in the water-column to assign fossil taxa to surface vs subsurface groups. They used ratios of thermocline to surface taxa (e.g., the Thermocline to Surface Radiolarian Index, or TSRI), which measures relative enhancement of thermocline to surface radiolarian production in regions of upwelling, to reconstruct past ocean productivity. Both methods appear to perform well, although neither is always reliable. Both the URI and TSRI methods are based on a small number of taxa (ca. 10 each), although biogeographic and water depth information are now available for ca. 100 living species. The use of additional taxa should make reconstructions more robust by reducing the effects of single species ecology, and making index values less sensitive to evolutionary changes in taxa over Neogene time intervals. Taxonomic assemblage reconstructions of productivity have some inherent advantages over bulk flux proxies, being less sensitive to preservation problems or the age model employed. Radiolarian assemblages are particularly useful in upwelling regions where carbonate fossils are poorly preserved. All are however limited by our sparse knowledge of the ecology of the various species used. Among the major microfossil groups, radiolarian ecology and biology are in particular relatively poorly known; even the descriptive taxonomy of living species is not yet complete. Despite these
Bayesian image reconstruction in astronomy
NASA Astrophysics Data System (ADS)
Nunez, Jorge; Llacer, Jorge
1990-09-01
This paper presents the development and testing of a new iterative reconstruction algorithm for astronomy. A maximum a posteriori method of image reconstruction in the Bayesian statistical framework is proposed for the Poisson-noise case. The method uses the entropy with an adjustable 'sharpness parameter' to define the prior probability and the likelihood with 'data increment' parameters to define the conditional probability. The method makes it possible to obtain reconstructions with neither the problem of the 'grey' reconstructions associated with the pure Bayesian reconstructions nor the problem of image deterioration, typical of the maximum-likelihood method. The present iterative algorithm is fast and stable, maintains positivity, and converges to feasible images.
Investigation of the D*s2(2573)+D+K0 vertex via QCD sum rules
NASA Astrophysics Data System (ADS)
Sarac, Y.; Azizi, K.; Sundu, H.
2014-12-01
In this work the D*s2(2573)+D+K0 vertex is studied and the coupling constant corresponding to the D*s2(2573)+ → D+K0 transition is calculated. The calculation is performed using three point QCD sum rules method and the value of the coupling constant is obtained as gD*s2DK = (12.85 ± 3.85) GeV-1. The coupling constant is also used to calculate the decay width and the branching ratio of the considered transition.
NASA Astrophysics Data System (ADS)
Bleher, Pavel; Liechty, Karl
2009-02-01
This is a continuation of the papers of Bleher and Fokin (Commun. Math. Phys., 268:223-284, 2006) and of Bleher and Liechty (Commun. Math. Phys., 286:777-801, 2009), in which the large n asymptotics is obtained for the partition function Z n of the six-vertex model with domain wall boundary conditions in the disordered and ferroelectric phases, respectively. In the present paper we obtain the large n asymptotics of Z n on the critical line between these two phases.
NASA Astrophysics Data System (ADS)
Abe, K.; Abe, K.; Akagi, T.; Allen, N. J.; Ash, W. W.; Aston, D.; Baird, K. G.; Baltay, C.; Band, H. R.; Barakat, M. B.; Baranko, G.; Bardon, O.; Barklow, T. L.; Bashindzhagyan, G. L.; Bazarko, A. O.; Ben-David, R.; Benvenuti, A. C.; Bilei, G. M.; Bisello, D.; Blaylock, G.; Bogart, J. R.; Bolen, B.; Bolton, T.; Bower, G. R.; Brau, J. E.; Breidenbach, M.; Bugg, W. M.; Burke, D.; Burnett, T. H.; Burrows, P. N.; Busza, W.; Calcaterra, A.; Caldwell, D. O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Chou, A.; Church, E.; Cohn, H. O.; Coller, J. A.; Cook, V.; Cotton, R.; Cowan, R. F.; Coyne, D. G.; Crawford, G.; D'Oliveira, A.; Damerell, C. J.; Daoudi, M.; de Sangro, R.; dell'Orso, R.; Dervan, P. J.; Dima, M.; Dong, D. N.; Du, P. Y.; Dubois, R.; Eisenstein, B. I.; Elia, R.; Etzion, E.; Fahey, S.; Falciai, D.; Fan, C.; Fernandez, J. P.; Fero, M. J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hart, E. L.; Harton, J. L.; Hasan, A.; Hasegawa, Y.; Hasuko, K.; Hedges, S. J.; Hertzbach, S. S.; Hildreth, M. D.; Huber, J.; Huffer, M. E.; Hughes, E. W.; Hwang, H.; Iwasaki, Y.; Jackson, D. J.; Jacques, P.; Jaros, J. A.; Johnson, A. S.; Johnson, J. R.; Johnson, R. A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Kang, H. J.; Karliner, I.; Kawahara, H.; Kendall, H. W.; Kim, Y. D.; King, M. E.; King, R.; Kofler, R. R.; Krishna, N. M.; Kroeger, R. S.; Labs, J. F.; Langston, M.; Lath, A.; Lauber, J. A.; Leith, D. W.; Lia, V.; Liu, M. X.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H. L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T. W.; Maruyama, T.; Masuda, H.; Mazzucato, E.; McKemey, A. K.; Meadows, B. T.; Messner, R.; Mockett, P. M.; Moffeit, K. C.; Moore, T. B.; Muller, D.; Nagamine, T.; Narita, S.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L. S.; Panvini, R. S.; Park, C. H.; Park, H.; Pavel, T. J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K. T.; Plano, R. J.; Prepost, R.; Prescott, C. Y.; Punkar, G. D.; Quigley, J.; Ratcliff, B. N.; Reeves, T. W.; Reidy, J.; Reinertsen, P. L.; Rensing, P. E.; Rochester, L. S.; Rowson, P. C.; Russell, J. J.; Saxton, O. H.; Schalk, T.; Schindler, R. H.; Schumm, B. A.; Sen, S.; Serbo, V. V.; Shaevitz, M. H.; Shank, J. T.; Shapiro, G.; Sherden, D. J.; Shmakov, K. D.; Simopoulos, C.; Sinev, N. B.; Smith, S. R.; Smy, M. B.; Snyder, J. A.; Stamer, P.; Steiner, H.; Steiner, R.; Strauss, M. G.; Su, D.; Suekane, F.; Sugiyama, A.; Suzuki, S.; Swartz, M.; Szumilo, A.; Takahashi, T.; Taylor, F. E.; Torrence, E.; Trandafir, A. I.; Turk, J. D.; Usher, T.; Va'Vra, J.; Vannini, C.; Vella, E.; Venuti, J. P.; Verdier, R.; Verdini, P. G.; Wagner, D. L.; Wagner, S. R.; Waite, A. P.; Watts, S. J.; Weidemann, A. W.; Weiss, E. R.; Whitaker, J. S.; White, S. L.; Wickens, F. J.; Williams, D. A.; Williams, D. C.; Williams, S. H.; Willocq, S.; Wilson, R. J.; Wisniewski, W. J.; Woods, M.; Word, G. B.; Wyss, J.; Yamamoto, R. K.; Yamartino, J. M.; Yang, X.; Yashima, J.; Yellin, S. J.; Young, C. C.; Yuta, H.; Zapalac, G.; Zdarko, R. W.; Zhou, J.
1997-07-01
The lifetimes of B+ and B0 mesons are measured using a sample of 150 000 hadronic Z0 decays collected by the SLD experiment at the SLAC Linear Collider between 1993 and 1995. Two analyses are presented in which the decay length and charge of the B meson are reconstructed. The first method uses a novel topological vertexing technique while the second uses semi-inclusively reconstructed semileptonic decays. The topological analysis yields a sample of 6033 (3665) charged (neutral) vertices with good charge purity, whereas the semileptonic analysis yields a smaller sample of 634 (584) charged (neutral) decays with excellent charge purity. Combining the results from both analyses, we find τB+ = 1.66+/-0.06\\(stat\\)+/-0.05\\(syst\\) ps, τB0 = 1.64+/-0.08\\(stat\\)+/-0.08\\(syst\\) ps, and τB+/τB0 = 1.01+/-0.07\\(stat\\)+/-0.06\\(syst\\).
Determination of A FB b at the Z pole using inclusive charge reconstruction and lifetime tagging
NASA Astrophysics Data System (ADS)
DELPHI Collaboration
2005-03-01
A novel high precision method measures the b-quark forward-backward asymmetry at the Z pole on a sample of 3,560,890 hadronic events collected with the DELPHI detector in 1992 to 2000. An enhanced impact parameter tag provides a high purity b sample. For event hemispheres with a reconstructed secondary vertex the charge of the corresponding quark or anti-quark is determined using a neural network which combines in an optimal way the full available charge information from the vertex charge, the jet charge and from identified leptons and hadrons. The probability of correctly identifying b-quarks and anti-quarks is measured on the data themselves comparing the rates of double hemisphere tagged like-sign and unlike-sign events. The b-quark forward-backward asymmetry is determined from the differential asymmetry, taking small corrections due to hemisphere correlations and background contributions into account. The results for different centre-of-mass energies are: A_{FB}^{{b}} (89.449 GeV) = 0.0637 ± 0.0143(stat.) ± 0.0017(syst.)
Deng, Qingqiong; Zhou, Mingquan; Wu, Zhongke; Shui, Wuyang; Ji, Yuan; Wang, Xingce; Liu, Ching Yiu Jessica; Huang, Youliang; Jiang, Haiyan
2016-02-01
Craniofacial reconstruction recreates a facial outlook from the cranium based on the relationship between the face and the skull to assist identification. But craniofacial structures are very complex, and this relationship is not the same in different craniofacial regions. Several regional methods have recently been proposed, these methods segmented the face and skull into regions, and the relationship of each region is then learned independently, after that, facial regions for a given skull are estimated and finally glued together to generate a face. Most of these regional methods use vertex coordinates to represent the regions, and they define a uniform coordinate system for all of the regions. Consequently, the inconsistence in the positions of regions between different individuals is not eliminated before learning the relationships between the face and skull regions, and this reduces the accuracy of the craniofacial reconstruction. In order to solve this problem, an improved regional method is proposed in this paper involving two types of coordinate adjustments. One is the global coordinate adjustment performed on the skulls and faces with the purpose to eliminate the inconsistence of position and pose of the heads; the other is the local coordinate adjustment performed on the skull and face regions with the purpose to eliminate the inconsistence of position of these regions. After these two coordinate adjustments, partial least squares regression (PLSR) is used to estimate the relationship between the face region and the skull region. In order to obtain a more accurate reconstruction, a new fusion strategy is also proposed in the paper to maintain the reconstructed feature regions when gluing the facial regions together. This is based on the observation that the feature regions usually have less reconstruction errors compared to rest of the face. The results demonstrate that the coordinate adjustments and the new fusion strategy can significantly improve the
NASA Astrophysics Data System (ADS)
Yan, Jiawei; Ke, Youqi
In realistic nanoelectronics, disordered impurities/defects are inevitable and play important roles in electron transport. However, due to the lack of effective quantum transport method, the important effects of disorders remain poorly understood. Here, we report a generalized non-equilibrium vertex correction (NVC) method with coherent potential approximation to treat the disorder effects in quantum transport simulation. With this generalized NVC method, any averaged product of two single-particle Green's functions can be obtained by solving a set of simple linear equations. As a result, the averaged non-equilibrium density matrix and various important transport properties, including averaged current, disordered induced current fluctuation and the averaged shot noise, can all be efficiently computed in a unified scheme. Moreover, a generalized form of conditionally averaged non-equilibrium Green's function is derived to incorporate with density functional theory to enable first-principles simulation. We prove the non-equilibrium coherent potential equals the non-equilibrium vertex correction. Our approach provides a unified, efficient and self-consistent method for simulating non-equilibrium quantum transport through disorder nanoelectronics. Shanghaitech start-up fund.
An ultra-low power self-timed column-level ADC for a CMOS pixel sensor based vertex detector
NASA Astrophysics Data System (ADS)
Zhang, L.; Wang, M.
2014-11-01
The International Large Detector (ILD) is a detector concept for the future linear collider experiment. The vertex detector is the key tool to achieve high precision measurements for flavor tagging, which puts stringent requirements on the CMOS pixel sensors. Due to the cooling systems which deteriorate the material budget and increase the multiple scattering, it is important to reduce the power consumption. This paper presents an ultra-low power self-timed column-level ADC for the CMOS pixel sensors, aiming to equip the outer layers of the vertex detector. The ADC was designed to operate in two modes (active and idle) adapted to the low hit density in the outer layers. The architecture employs an enhanced sample-and-hold circuit and a self-timed technique. The total power consumption with a 3-V supply is 225μW during idle mode, which is the most frequent situation. This value rises to 425μW in the case of the active mode. It occupies an area of 35 × 590μm2.
Kiani, Farooq A.
2005-01-01
Density functional theory computations were carried out for 11-vertex nido-p-block-hetero(carba)boranes and -borates containing silicon, germanium, tin, arsenic, antimony, sulfur, selenium and tellurium heteroatoms. A set of quantitative values called “estimated energy penalties” was derived by comparing the energies of two reference structures that differ with respect to one structural feature only. These energy penalties behave additively, i.e., they allow us to reproduce the DFT-computed relative stabilities of 11-vertex nido-heteroboranes in general with good accuracy and to predict the thermodynamic stabilities of unknown structures easily. Energy penalties for neighboring heteroatoms (HetHet and HetHet′) decrease down the group and increase along the period (indirectly proportional to covalent radii). Energy penalties for a five- rather than four-coordinate heteroatom, [Het5k(1) and Het5k(2)], generally, increase down group 14 but decrease down group 16, while there are mixed trends for group 15 heteroatoms. The sum of HetHet′ energy penalties results in different but easily predictable open-face heteroatom positions in the thermodynamically most stable mixed heterocarbaboranes and -borates with more than two heteroatoms. Figure Correlation of HetHet′ and HetC increments with covalent radii of group 15 heteroatoms Electronic Supplementary Material Supplementary material is available for this article at http://dx.doi.org/10.1007/10.1007/s00894-005-0037-3 and is accessible for authorized users. PMID:16261297
Charge shielding in the In-situ Storage Image Sensor for a vertex detector at the ILC
NASA Astrophysics Data System (ADS)
Zhang, Z.; Stefanov, K. D.; Bailey, D.; Banda, Y.; Buttar, C.; Cheplakov, A.; Cussans, D.; Damerell, C.; Devetak, E.; Fopma, J.; Foster, B.; Gao, R.; Gillman, A.; Goldstein, J.; Greenshaw, T.; Grimes, M.; Halsall, R.; Harder, K.; Hawes, B.; Hayrapetyan, K.; Heath, H.; Hillert, S.; Jackson, D.; Pinto Jayawardena, T.; Jeffery, B.; John, J.; Johnson, E.; Kundu, N.; Laing, A.; Lastovicka, T.; Lau, W.; Li, Y.; Lintern, A.; Lynch, C.; Mandry, S.; Martin, V.; Murray, P.; Nichols, A.; Nomerotski, A.; Page, R.; Parkes, C.; Perry, C.; O'Shea, V.; Sopczak, A.; Tabassam, H.; Thomas, S.; Tikkanen, T.; Velthuis, J.; Walsh, R.; Woolliscroft, T.; Worm, S.
2009-08-01
The Linear Collider Flavour Identification (LCFI) collaboration has successfully developed the first prototype of a novel particle detector, the In-situ Storage Image Sensor (ISIS). This device ideally suits the challenging requirements for the vertex detector at the future International Linear Collider (ILC), combining the charge storing capabilities of the Charge-Coupled Devices (CCD) with readout commonly used in CMOS imagers. The ISIS avoids the need for high-speed readout and offers low power operation combined with low noise, high immunity to electromagnetic interference and increased radiation hardness compared to typical CCDs. The ISIS is one of the most promising detector technologies for vertexing at the ILC. In this paper we describe the measurements on the charge-shielding properties of the p-well, which is used to protect the storage register from parasitic charge collection and is at the core of device's operation. We show that the p-well can suppress the parasitic charge collection by almost two orders of magnitude, satisfying the requirements for the application.
NASA Astrophysics Data System (ADS)
Katanin, A.
2016-01-01
In this paper, we consider the possibility of chiral (charge or spin density wave) symmetry breaking in graphene due to long-range Coulomb interaction by comparing the results of the Bethe-Salpeter and functional renormalization-group approaches. The former approach performs a summation of ladder diagrams in the particle-hole channel and reproduces the results of the Schwinger-Dyson approach for the critical interaction strength of the quantum phase transition. The renormalization-group approach combines the effect of different channels and allows to study the role of vertex corrections. The critical interaction strength, which is necessary to induce the symmetry breaking in the latter approach, is found in the static approximation to be αc=e2/(ɛ vF) ≈1.05 without considering the Fermi velocity renormalization, and αc=3.7 with accounting the renormailzation of the Fermi velocity. The latter value is expected to be, however, reduced, when the dynamic screening effects are taken into account, yielding the critical interaction, which may be comparable to the one in freely suspended graphene. We show that the vertex corrections are crucially important to obtain the mentioned values of critical interactions.
Photometric Lunar Surface Reconstruction
NASA Technical Reports Server (NTRS)
Nefian, Ara V.; Alexandrov, Oleg; Morattlo, Zachary; Kim, Taemin; Beyer, Ross A.
2013-01-01
Accurate photometric reconstruction of the Lunar surface is important in the context of upcoming NASA robotic missions to the Moon and in giving a more accurate understanding of the Lunar soil composition. This paper describes a novel approach for joint estimation of Lunar albedo, camera exposure time, and photometric parameters that utilizes an accurate Lunar-Lambertian reflectance model and previously derived Lunar topography of the area visualized during the Apollo missions. The method introduced here is used in creating the largest Lunar albedo map (16% of the Lunar surface) at the resolution of 10 meters/pixel.
Evolutionary tree reconstruction
NASA Technical Reports Server (NTRS)
Cheeseman, Peter; Kanefsky, Bob
1990-01-01
It is described how Minimum Description Length (MDL) can be applied to the problem of DNA and protein evolutionary tree reconstruction. If there is a set of mutations that transform a common ancestor into a set of the known sequences, and this description is shorter than the information to encode the known sequences directly, then strong evidence for an evolutionary relationship has been found. A heuristic algorithm is described that searches for the simplest tree (smallest MDL) that finds close to optimal trees on the test data. Various ways of extending the MDL theory to more complex evolutionary relationships are discussed.
Line profile reconstruction: validation and comparison of reconstruction methods
NASA Astrophysics Data System (ADS)
Tsai, Ming-Yi; Yost, Michael G.; Wu, Chang-Fu; Hashmonay, Ram A.; Larson, Timothy V.
Currently, open path Fourier transform infrared (OP-FTIR) spectrometers have been applied in some fenceline monitoring, but their use has been limited because path-integrated concentration measurements typically only provide an estimate of the average concentration. We present a series of experiments that further explore the use of path-integrated measurements to reconstruct various pollutant distributions along a linear path. Our experiments were conducted in a ventilation chamber using an OP-FTIR instrument to monitor a tracer-gas release over a fenceline configuration. These experiments validate a line profile method (1-D reconstruction). Additionally, we expand current reconstruction techniques by applying the Bootstrap to our measurements. We compared our reconstruction results to our point samplers using the concordance correlation factor (CCF). Of the four different release types, three were successfully reconstructed with CCFs greater than 0.9. The difficult reconstruction involved a narrow release where the pollutant was limited to one segment of the segmented beampath. In general, of the three reconstruction methods employed, the average of the bootstrapped reconstructions was found to have the highest CCFs when compared to the point samplers. Furthermore, the bootstrap method was the most flexible and allowed a determination of the uncertainty surrounding our reconstructions.
Mandibular Reconstruction Based on the Concept of Double Arc Reconstruction.
Sarukawa, Shunji; Noguchi, Tadahide; Kamochi, Hideaki; Sunaga, Ataru; Uda, Hirokazu; Nishino, Hiroshi; Sugawara, Yasushi
2015-09-01
The natural mandible has 2 arcs, the marginal arc and the occlusal arc. The marginal arc is situated along the lower margin of the mandible and affects the contour of the lower third of the face. The occlusal arc is situated along the dental arc and affects the stability of prosthodontics. The gap between these 2 arcs widens in the molar area. Our developed concept of "double arc reconstruction" involves making these 2 arcs for the reconstructed mandible. For the double-barrel fibula reconstruction, 2 bone segments are used to make both arcs. For reconstructions using the iliac crest, the double arc is made by inclination of the top of the bone graft toward the lingual side. Ten patients underwent double arc reconstruction: 2 underwent reconstruction with the double-barrel fibula, and 8 underwent reconstruction with the iliac crest. Four patients had a removable denture prosthesis, 1 had an osseointegrated dental implant, and 5 did not require further prosthodontic treatment. The shape of the reconstructed mandible after double arc reconstruction resembles the native mandible, and masticatory function is good with the use of a dental implant or removable denture prosthesis, or even without prosthodontics. PMID:26335321
NASA Astrophysics Data System (ADS)
Forcella, V.; Mussio, L.
2011-09-01
This paper deals with the reconstruction of a building, starting from a point cloud. The shape of this building is a non-stellar concave and multi-connected structure, composed of sowns and chains. A sown is the representation of a horizontal plane formed by dense points. A chain is a planar loop modeled by rare points. CCTV structure is defined only by the three orthogonal Cartesian coordinates. The reconstruction uses a sequence of procedures and the desired output is a consistent 3D model. The first procedure is devoted to attributing points to their voxel and to estimating the three values needed afterwards. The second procedure is devoted to analyzing clusters vertically and horizontally, to preliminarily distinguishing chains from sowns and to generating relational matching. The third procedure is devoted to building closed loops between all chains and all their projections on sowns. The fourth procedure is devoted to connecting points with triangles. The fifth procedure, still being implemented, is devoted to interpolating triangles with triangular splines.
Reconstruction in Fourier space
NASA Astrophysics Data System (ADS)
Burden, A.; Percival, W. J.; Howlett, C.
2015-10-01
We present a fast iterative fast Fourier transform (FFT) based reconstruction algorithm that allows for non-parallel redshift-space distortions (RSDs). We test our algorithm on both N-body dark matter simulations and mock distributions of galaxies designed to replicate galaxy survey conditions. We compare solenoidal and irrotational components of the redshift distortion and show that an approximation of this distortion leads to a better estimate of the real-space potential (and therefore faster convergence) than ignoring the RSD when estimating the displacement field. Our iterative reconstruction scheme converges in two iterations for the mock samples corresponding to Baryon Oscillation Spectroscopic Survey CMASS Data Release 11 when we start with an approximation of the RSD. The scheme takes six iterations when the initial estimate, measured from the redshift-space overdensity, has no RSD correction. Slower convergence would be expected for surveys covering a larger angle on the sky. We show that this FFT based method provides a better estimate of the real-space displacement field than a configuration space method that uses finite difference routines to compute the potential for the same grid resolution. Finally, we show that a lognormal transform of the overdensity, used as a proxy for the linear overdensity, is beneficial in estimating the full displacement field from a dense sample of tracers. However, the lognormal transform of the overdensity does not perform well when estimating the displacements from sparser simulations with a more realistic galaxy density.
Biomaterials for craniofacial reconstruction
Neumann, Andreas; Kevenhoerster, Kevin
2011-01-01
Biomaterials for reconstruction of bony defects of the skull comprise of osteosynthetic materials applied after osteotomies or traumatic fractures and materials to fill bony defects which result from malformation, trauma or tumor resections. Other applications concern functional augmentations for dental implants or aesthetic augmentations in the facial region. For ostheosynthesis, mini- and microplates made from titanium alloys provide major advantages concerning biocompatibility, stability and individual fitting to the implant bed. The necessity of removing asymptomatic plates and screws after fracture healing is still a controversial issue. Risks and costs of secondary surgery for removal face a low rate of complications (due to corrosion products) when the material remains in situ. Resorbable osteosynthesis systems have similar mechanical stability and are especially useful in the growing skull. The huge variety of biomaterials for the reconstruction of bony defects makes it difficult to decide which material is adequate for which indication and for which site. The optimal biomaterial that meets every requirement (e.g. biocompatibility, stability, intraoperative fitting, product safety, low costs etc.) does not exist. The different material types are (autogenic) bone and many alloplastics such as metals (mainly titanium), ceramics, plastics and composites. Future developments aim to improve physical and biological properties, especially regarding surface interactions. To date, tissue engineered bone is far from routine clinical application. PMID:22073101
Parallel ptychographic reconstruction
Nashed, Youssef S. G.; Vine, David J.; Peterka, Tom; Deng, Junjing; Ross, Rob; Jacobsen, Chris
2014-01-01
Ptychography is an imaging method whereby a coherent beam is scanned across an object, and an image is obtained by iterative phasing of the set of diffraction patterns. It is able to be used to image extended objects at a resolution limited by scattering strength of the object and detector geometry, rather than at an optics-imposed limit. As technical advances allow larger fields to be imaged, computational challenges arise for reconstructing the correspondingly larger data volumes, yet at the same time there is also a need to deliver reconstructed images immediately so that one can evaluate the next steps to take in an experiment. Here we present a parallel method for real-time ptychographic phase retrieval. It uses a hybrid parallel strategy to divide the computation between multiple graphics processing units (GPUs) and then employs novel techniques to merge sub-datasets into a single complex phase and amplitude image. Results are shown on a simulated specimen and a real dataset from an X-ray experiment conducted at a synchrotron light source. PMID:25607174
NASA Technical Reports Server (NTRS)
Desai, Prasun N.; Qualls, Garry D.
2008-01-01
An overview of the reconstruction analyses performed for the Stardust capsule entry is described. The results indicate that the actual entry was very close to the pre-entry predictions. The capsule landed 8.1 km north-northwest of the desired target at Utah Test and Training Range. Analyses of infrared video footage and radar range data (obtained from tracking stations) during the descent show that drogue parachute deployment was 4.8 s later than the pre-entry prediction, while main parachute deployment was 19.3 s earlier than the pre-set timer indicating that main deployment was actually triggered by the backup baroswitch. Reconstruction of a best estimated trajectory revealed that the aerodynamic drag experienced by the capsule during hypersonic flight was within 1% of pre-entry predications. Observations of the heatshield support the pre-entry estimates of small hypersonic angles of attack, since there was very little, if any, charring of the shoulder region or the aftbody. Through this investigation, an overall assertion can be made that all the data gathered from the Stardust capsule entry were consistent with flight performance close to nominal pre-entry predictions. Consequently, the design principles and methodologies utilized for the flight dynamics, aerodynamics, and aerothermodynamics analyses have been corroborated.
Stereoscopic liver surface reconstruction
Karwan, Adam; Rudnicki, Jerzy; Wróblewski, Tadeusz
2012-01-01
The paper presents a practical approach to measuring liver motion, both respiratory and laparoscopic, with a tool guided in the operating room. The presented method is based on standard operating room equipment, i.e. rigid laparoscopic cameras and a single incision laparoscopic surgery trocar. The triangulation algorithm is used and stereo correspondence points are marked manually by two independent experts. To calibrate the cameras two perpendicular chessboards, a pinhole camera model and a Tsai algorithm are used. The data set consists of twelve real liver surgery video sequences: ten open surgery and two laparoscopic, gathered from different patients. The setup equipment and methodology are presented. The proposed evaluation method based on both calibration points of the chessboard reconstruction and measurements made by the Polaris Vicra tracking system are used as a reference system. In the analysis stage we focused on two specific goals, measuring respiration and laparoscopic tool guided liver motions. We have presented separate examples for left and right liver lobes. It is possible to reconstruct liver motion using the SILS trocar. Our approach was made without additional position or movement sensors. Diffusion of cameras and laser for distance measurement seems to be less practical for in vivo laparoscopic data, but we do not exclude exploring such sensors in further research. PMID:23256023
High-order ENO schemes for unstructured meshes based on least-squares reconstruction
Ollivier-Gooch, C.F.
1997-03-01
High-order accurate schemes for conservation laws for unstructured meshes are not nearly so well advanced as such schemes for structured meshes. Consequently, little or nothing is known about the possible practical advantages of high-order discretization on unstructured meshes. This article is part of an ongoing effort to develop high-order schemes for unstructured meshes to the point where meaningful information can be obtained about the trade-offs involved in using spatial discretizations of higher than second-order accuracy on unstructured meshes. This article describes a high-order accurate ENO reconstruction scheme, called DD-L{sub 2}-ENO, for use with vertex-centered upwind flow solution algorithms on unstructured meshes. The solution of conservation equations in this context can be broken naturally into three phases: (1) solution reconstruction, in which a polynomial approximation of the solution is obtained in each control volume. (2) Flux integration around each control volume, using an appropriate flux function and a quadrature rule with accuracy commensurate with that of the reconstruction. (3) Time evolution, which may be implicit, explicit, multigrid, or some hybrid.
Autologous gastrointestinal reconstruction.
Bianchi, A
1995-02-01
The patient with short bowel syndrome is essentially unable to absorb sufficient nutrients. This is caused by either short mucosal contact time, insufficient mucosal surface area (enterocyte mass), or a combination of the two. Management consists primarily in sustaining health and growth by intravenous nutrition and in enhancing the natural intestinal adaptation response. Surgery in the form of autologous gastrointestinal reconstruction (AGIR) is designed to redistribute the patient's own residual absorptive bowel to enhance adaptation and, possibly, to increase the absorptive mucosal surface by neomucosal growth. The alternative and ultimate fallback procedure in the management of intestinal failure is bowel transplantation, with its associated serious immunosuppression-related complications. Imaginative AGIR techniques provide new hope for the future. PMID:7728509
Metrological digital audio reconstruction
Fadeyev; Vitaliy , Haber; Carl
2004-02-19
Audio information stored in the undulations of grooves in a medium such as a phonograph record may be reconstructed, with little or no contact, by measuring the groove shape using precision metrology methods coupled with digital image processing and numerical analysis. The effects of damage, wear, and contamination may be compensated, in many cases, through image processing and analysis methods. The speed and data handling capacity of available computing hardware make this approach practical. Two examples used a general purpose optical metrology system to study a 50 year old 78 r.p.m. phonograph record and a commercial confocal scanning probe to study a 1920's celluloid Edison cylinder. Comparisons are presented with stylus playback of the samples and with a digitally re-mastered version of an original magnetic recording. There is also a more extensive implementation of this approach, with dedicated hardware and software.
Reconstruction Using Witness Complexes
Oudot, Steve Y.
2010-01-01
We present a novel reconstruction algorithm that, given an input point set sampled from an object S, builds a one-parameter family of complexes that approximate S at different scales. At a high level, our method is very similar in spirit to Chew’s surface meshing algorithm, with one notable difference though: the restricted Delaunay triangulation is replaced by the witness complex, which makes our algorithm applicable in any metric space. To prove its correctness on curves and surfaces, we highlight the relationship between the witness complex and the restricted Delaunay triangulation in 2d and in 3d. Specifically, we prove that both complexes are equal in 2d and closely related in 3d, under some mild sampling assumptions. PMID:21643440
Reconstruction Using Witness Complexes.
Guibas, Leonidas J; Oudot, Steve Y
2008-10-01
We present a novel reconstruction algorithm that, given an input point set sampled from an object S, builds a one-parameter family of complexes that approximate S at different scales. At a high level, our method is very similar in spirit to Chew's surface meshing algorithm, with one notable difference though: the restricted Delaunay triangulation is replaced by the witness complex, which makes our algorithm applicable in any metric space. To prove its correctness on curves and surfaces, we highlight the relationship between the witness complex and the restricted Delaunay triangulation in 2d and in 3d. Specifically, we prove that both complexes are equal in 2d and closely related in 3d, under some mild sampling assumptions. PMID:21643440
NASA Astrophysics Data System (ADS)
Lee, Chung-Min
This thesis focuses on the mathematical analysis of the optical phase reconstruction problem. Phase information of light waves has played an important role in many optical applications. However, the phase function of a light wave cannot be measured directly. In 1983, Teague proposed the idea of an intensity senor for measuring phase functions of light waves. It uses an elliptic partial differential equation called the Transport of Intensity Equation (TIE), which relates intensity to the phase function of a light wave. Teague's study was followed by Roddier and others. When intensity decreases to zero at the boundary, the equation has singularity since the diffusion coefficient vanishes. In 1996, Gureyev and Nugent claimed that no boundary conditions are needed for getting a unique solution of the TIE in this singular case. We present in this thesis the theoretical analysis of the necessity of boundary conditions for solving the TIE. A hybrid theoretical-numerical boundary condition is also derived for solving the TIE numerically in the case of vanishing intensity at the boundary. Numerical tests and optical simulations over discs verified the potency of this theoretical-numerical hybrid boundary condition and the algorithm. Another approach studied is the Weighted Least Action Principle (WLAP), which is proposed by Rubinstein and Wolansky in the year 2004. The WLAP states a variational principle for finding the light rays mapping between two planes using the intensity profiles on the planes, and it writes the problem of phase reconstruction in the functional form. Minimizing the associated functional, we obtain the ray mapping of the light wave in question. The phase function can be derived from the optimized ray mapping. A numerical algorithm was designed to carry out the process. Simulations and tests are reported to show the feasibility of the methods proposed.
Reconstructing the Alcatraz escape
NASA Astrophysics Data System (ADS)
Baart, F.; Hoes, O.; Hut, R.; Donchyts, G.; van Leeuwen, E.
2014-12-01
In the night of June 12, 1962 three inmates used a raft made of raincoatsto escaped the ultimate maximum security prison island Alcatraz in SanFrancisco, United States. History is unclear about what happened tothe escapees. At what time did they step into the water, did theysurvive, if so, where did they reach land? The fate of the escapees has been the subject of much debate: did theymake landfall on Angel Island, or did the current sweep them out ofthe bay and into the cold pacific ocean? In this presentation, we try to shed light on this historic case using avisualization of a high-resolution hydrodynamic simulation of the San Francisco Bay, combined with historical tidal records. By reconstructing the hydrodynamic conditions and using a particle based simulation of the escapees we show possible scenarios. The interactive model is visualized using both a 3D photorealistic and web based visualization. The "Escape from Alcatraz" scenario demonstrates the capabilities of the 3Di platform. This platform is normally used for overland flooding (1D/2D). The model engine uses a quad tree structure, resulting in an order of magnitude speedup. The subgrid approach takes detailed bathymetry information into account. The inter-model variability is tested by comparing the results with the DFlow Flexible Mesh (DFlowFM) San Francisco Bay model. Interactivity is implemented by converting the models from static programs to interactive libraries, adhering to the Basic ModelInterface (BMI). Interactive models are more suitable for answeringexploratory research questions such as this reconstruction effort. Although these hydrodynamic simulations only provide circumstantialevidence for solving the mystery of what happened during the foggy darknight of June 12, 1962, it can be used as a guidance and provides aninteresting testcase to apply interactive modelling.
Ptychographic reconstruction of attosecond pulses
NASA Astrophysics Data System (ADS)
Lucchini, M.; Brügmann, M. H.; Ludwig, A.; Gallmann, L.; Keller, U.; Feurer, T.
2015-11-01
We demonstrate a new attosecond pulse reconstruction modality which uses an algorithm that is derived from ptychography. In contrast to other methods, energy and delay sampling are not correlated, and as a result, the number of electron spectra to record is considerably smaller. Together with the robust algorithm, this leads to a more precise and fast convergence of the reconstruction.
An update on penile reconstruction
Garaffa, Giulio; Raheem, Amr Abdel; Ralph, David John
2011-01-01
Penile reconstruction still represents a formidable challenge for the urologist. In this review, the most recent advances in penile reconstruction after trauma, excision of benign and malignant disease and in patients with micropenis, aphallia or female to male gender dysphoria are reported. PMID:21540867
Image Contrast in Holographic Reconstructions
ERIC Educational Resources Information Center
Russell, B. R.
1969-01-01
The fundamental concepts of holography are explained using elementary wave ideas. Discusses wavefront reconstruction and contrast in hemigraphic images. The consequence of recording only the intensity at a given surface and using an oblique reference wave is shown to be an incomplete reconstruction resulting in image of low contrast. (LC)
Nasal Reconstruction: Extending the Limits
Corsten, Marcus; Haack, Sebastian; Gubisch, Wolfgang M.; Fischer, Helmut
2016-01-01
Summary: Reconstructing the 3-dimensional structure of the nose requires the maintenance of its aesthetic form and function. Restoration of the correct dimension, projection, skin quality, symmetrical contour, and function remains problematic. Consequently, modern approaches of nasal reconstruction aim at rebuilding the units rather than just covering the defect. However, revising or redoing a failed or insufficient reconstruction remains very challenging and requires experience and creativity. Here, we present a very particular case with a male patient, who underwent 37 operations elsewhere and presented with a failed nasal reconstruction. We describe and illustrate the complex steps of the nasal rereconstruction, including the reconstruction of the forehead donor site, surgical delay procedures for lining, and the coverage with a third paramedian forehead flap. PMID:27536483
Nasal Reconstruction: Extending the Limits.
Rezaeian, Farid; Corsten, Marcus; Haack, Sebastian; Gubisch, Wolfgang M; Fischer, Helmut
2016-07-01
Reconstructing the 3-dimensional structure of the nose requires the maintenance of its aesthetic form and function. Restoration of the correct dimension, projection, skin quality, symmetrical contour, and function remains problematic. Consequently, modern approaches of nasal reconstruction aim at rebuilding the units rather than just covering the defect. However, revising or redoing a failed or insufficient reconstruction remains very challenging and requires experience and creativity. Here, we present a very particular case with a male patient, who underwent 37 operations elsewhere and presented with a failed nasal reconstruction. We describe and illustrate the complex steps of the nasal rereconstruction, including the reconstruction of the forehead donor site, surgical delay procedures for lining, and the coverage with a third paramedian forehead flap. PMID:27536483
Convex accelerated maximum entropy reconstruction
NASA Astrophysics Data System (ADS)
Worley, Bradley
2016-04-01
Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm - called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm - is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra.
Anatomic Anterior Cruciate Ligament Reconstruction
Murawski, Christopher D.; Wolf, Megan R.; Araki, Daisuke; Muller, Bart; Tashman, Scott
2013-01-01
Anatomic anterior cruciate ligament (ACL) reconstruction is common procedure performed by orthopedic surgeons, particularly in association with sports-related injuries. Whereas traditional reconstruction techniques used a single bundle graft that was typically placed in a non-anatomic position, a renewed interest in anatomy has facilitated the popularization of anatomic reconstruction techniques. Recently, a focus has been placed on individualizing ACL surgery based on each patient’s native anatomical characteristics (e.g., insertion site size, notch size, and shape), thereby dictating the ultimate procedure of choice. As subjective outcome measurements have demonstrated varying outcomes with respect to single- versus double-bundle ACL reconstruction, investigators have turned to more objective techniques, such as in vivo kinematics, as a means of evaluating joint motion and cartilage contact mechanics. Further investigation in this area may yield important information with regard to the potential progression to osteoarthritis after ACL reconstruction, including factors affecting or preventing it. PMID:26069663
Hu, Jue; Wu, Lijun; Kuttiyiel, Kurian A; Goodman, Kenneth R; Zhang, Chengxu; Zhu, Yimei; Vukmirovic, Miomir B; White, Michael G; Sasaki, Kotaro; Adzic, Radoslav R
2016-07-27
We describe a new class of core-shell nanoparticle catalysts having edges and vertexes covered by refractory metal oxide that preferentially segregates onto these catalyst sites. The monolayer shell is deposited on the oxide-free core atoms. The oxide on edges and vertexes induces high catalyst stability and activity. The catalyst and synthesis are exemplified by fabrication of Au nanoparticles doped by Ti atoms that segregate as oxide onto low-coordination sites of edges and vertexes. Pt monolayer shell deposited on Au sites has the mass and specific activities for the oxygen reduction reaction about 13 and 5 times higher than those of commercial Pt/C catalysts. The durability tests show no activity loss after 10 000 potential cycles from 0.6 to 1.0 V. The superior activity and durability of the Ti-Au@Pt catalyst originate from protective titanium oxide located at the most dissolution-prone edge and vertex sites and Au-supported active and stable Pt shell. PMID:27362731
Monitoring the data quality of the real-time event reconstruction in the ALICE High Level Trigger
NASA Astrophysics Data System (ADS)
Austrheim Erdal, Hege; Richther, Matthias; Szostak, Artur; Toia, Alberica
2012-12-01
ALICE is a dedicated heavy ion experiment at the CERN LHC. The ALICE High Level Trigger was designed to select events with desirable physics properties. Data from several of the major subdetectors in ALICE are processed by the HLT for real-time event reconstruction, for instance the Inner Tracking System, the Time Projection Chamber, the electromagnetc calorimeters, the Transition Radiation Detector and the muon spectrometer. The HLT reconstructs events in real-time and thus provides input for trigger algorithms. It is necessary to monitor the quality of the reconstruction where one focuses on track and event properties. Also, HLT implemented data compression for the TPC during the heavy ion data taking in 2011 to reduce the data rate from the ALICE detector. The key for the data compression is to store clusters (spacepoints) calculated by HLT rather than storing raw data. It is thus very important to monitor the cluster finder performance as a way to monitor the data compression. The data monitoring is divided into two stages. The first stage is performed during data taking. A part of the HLT production chain is dedicated to performing online monitoring and facilities are available in the HLT production cluster to have real-time access to the reconstructed events in the ALICE control room. This includes track and event properties, and in addition, this facility gives a way to display a small fraction of the reconstructed events in an online display. The second part of the monitoring is performed after the data has been transferred to permanent storage. After a post-process of the real-time reconstructed data, one can look in more detail at the cluster finder performance, the quality of the reconstruction of tracks, vertices and vertex position. The monitoring solution is presented in detail, with special attention to the heavy ion data taking of 2011.
Yamakawa, Youichi; Kontani, Hiroshi
2015-06-26
We present a microscopic derivation of the nematic charge-density wave (CDW) formation in cuprate superconductors based on the three-orbital d-p Hubbard model by introducing the vertex correction (VC) into the charge susceptibility. The CDW instability at q=(Δ(FS),0), (0,Δ(FS)) appears when the spin fluctuations are strong, due to the strong charge-spin interference represented by the VC. Here, Δ(FS) is the wave number between the neighboring hot spots. The obtained spin-fluctuation-driven CDW is expressed as the "intra-unit-cell orbital order" accompanied by the charge transfer between the neighboring atomic orbitals, which is actually observed by the scanning tunneling microscope measurements. We predict that the cuprate CDW and the nematic orbital order in Fe-based superconductors are closely related spin-fluctuation-driven phenomena. PMID:26197139
Zykunov, V. A.
2010-07-15
With an eye to future experiments at the Large Hadron Collider (LHC), O(aa{sub s}) QCD corrections to the Drell-Yan process are calculated for vertex functions and gluon bremsstrahlung. Use is made of fully differential cross sections, so that the result obtained in the present study can readily be applied in analyzing experimental data (in correcting data from future experiments at LHC). It is shown both analytically and numerically that the results are independent of unphysical parameters, including the parameter separating the regions of soft and hard gluons and the quark mass. A numerical analysis of radiative effects was performed by means of the FORTRAN code READY with allowance for the experimental cuts used at the Compact Muon Solenoid (CMS) detector
The domain wall partition function for the Izergin-Korepin nineteen-vertex model at a root of unity
NASA Astrophysics Data System (ADS)
Garbali, A.
2016-03-01
We study the domain wall partition function Z N for the {{U}q}≤ft(A2(2)\\right) (Izergin-Korepin) integrable nineteen-vertex model on a square lattice of size N. Z N is a symmetric function of two sets of parameters: horizontal {{\\zeta}1},..,{{\\zeta}N} and vertical {{z}1},..,{{z}N} rapidities. For generic values of the parameter q we derive the recurrence relation for the domain wall partition function relating Z N+1 to {{P}N}{{Z}N} , where P N is the proportionality factor in the recurrence, which is a polynomial symmetric in two sets of variables {{\\zeta}1},..,{{\\zeta}N} and {{z}1},..,{{z}N} . After setting q={{\\text{e}}\\text{iπ /3}} the recurrence relation simplifies and we solve it in terms of a Jacobi-Trudi-like determinant of polynomials generated by P N .
NASA Astrophysics Data System (ADS)
Aguirre, Miquel; Gil, Antonio J.; Bonet, Javier; Arranz Carreño, Aurelio
2014-02-01
A vertex centred Finite Volume algorithm is presented for the numerical simulation of fast transient dynamics problems involving large deformations. A mixed formulation based upon the use of the linear momentum, the deformation gradient tensor and the total energy as conservation variables is discretised in space using linear triangles and tetrahedra in two-dimensional and three-dimensional computations, respectively. The scheme is implemented using central differences for the evaluation of the interface fluxes in conjunction with the Jameson-Schmidt-Turkel (JST) artificial dissipation term. The discretisation in time is performed by using a Total Variational Diminishing (TVD) two-stage Runge-Kutta time integrator. The JST algorithm is adapted in order to ensure the preservation of linear and angular momenta. The framework results in a low order computationally efficient solver for solid dynamics, which proves to be very competitive in nearly incompressible scenarios and bending dominated applications.
NASA Astrophysics Data System (ADS)
Campbell, M.; Heijne, E. H. M.; Llopart, X.; Colas, P.; Giganon, A.; Giomataris, Y.; Chefdeville, M.; Colijn, A. P.; Fornaini, A.; van der Graaf, H.; Kluit, P.; Timmermans, J.; Visschers, J. L.; Schmitz, J.
2006-05-01
A small TPC has been read out by means of a Medipix2 chip as direct anode. A Micromegas foil was placed 50 μm above the chip, and electron multiplication occurred in the gap. With a He/isobutane 80/20 mixture, gas multiplication factors up to tens of thousands were achieved, resulting in an efficiency for detecting single electrons of better than 90%. With this new readout technology for gas-filled detectors we recorded many image frames containing 2D images with tracks from cosmic muons. Along these tracks, electron clusters were observed, as well as δ-rays. With a gas layer thickness of only 1 mm, the device could be applied as vertex detector, outperforming all Si-based detectors.
Revision Anterior Cruciate Ligament Reconstruction
Wilde, Jeffrey; Bedi, Asheesh; Altchek, David W.
2014-01-01
Context: Reconstruction of the anterior cruciate ligament (ACL) is one of the most common surgical procedures, with more than 200,000 ACL tears occurring annually. Although primary ACL reconstruction is a successful operation, success rates still range from 75% to 97%. Consequently, several thousand revision ACL reconstructions are performed annually and are unfortunately associated with inferior clinical outcomes when compared with primary reconstructions. Evidence Acquisition: Data were obtained from peer-reviewed literature through a search of the PubMed database (1988-2013) as well as from textbook chapters and surgical technique papers. Study Design: Clinical review. Level of Evidence: Level 4. Results: The clinical outcomes after revision ACL reconstruction are largely based on level IV case series. Much of the existing literature is heterogenous with regard to patient populations, primary and revision surgical techniques, concomitant ligamentous injuries, and additional procedures performed at the time of the revision, which limits generalizability. Nevertheless, there is a general consensus that the outcomes for revision ACL reconstruction are inferior to primary reconstruction. Conclusion: Excellent results can be achieved with regard to graft stability, return to play, and functional knee instability but are generally inferior to primary ACL reconstruction. A staged approach with autograft reconstruction is recommended in any circumstance in which a single-stage approach results in suboptimal graft selection, tunnel position, graft fixation, or biological milieu for tendon-bone healing. Strength-of-Recommendation Taxonomy (SORT): Good results may still be achieved with regard to graft stability, return to play, and functional knee instability, but results are generally inferior to primary ACL reconstruction: Level B. PMID:25364483
Blob-enhanced reconstruction technique
NASA Astrophysics Data System (ADS)
Castrillo, Giusy; Cafiero, Gioacchino; Discetti, Stefano; Astarita, Tommaso
2016-09-01
A method to enhance the quality of the tomographic reconstruction and, consequently, the 3D velocity measurement accuracy, is presented. The technique is based on integrating information on the objects to be reconstructed within the algebraic reconstruction process. A first guess intensity distribution is produced with a standard algebraic method, then the distribution is rebuilt as a sum of Gaussian blobs, based on location, intensity and size of agglomerates of light intensity surrounding local maxima. The blobs substitution regularizes the particle shape allowing a reduction of the particles discretization errors and of their elongation in the depth direction. The performances of the blob-enhanced reconstruction technique (BERT) are assessed with a 3D synthetic experiment. The results have been compared with those obtained by applying the standard camera simultaneous multiplicative reconstruction technique (CSMART) to the same volume. Several blob-enhanced reconstruction processes, both substituting the blobs at the end of the CSMART algorithm and during the iterations (i.e. using the blob-enhanced reconstruction as predictor for the following iterations), have been tested. The results confirm the enhancement in the velocity measurements accuracy, demonstrating a reduction of the bias error due to the ghost particles. The improvement is more remarkable at the largest tested seeding densities. Additionally, using the blobs distributions as a predictor enables further improvement of the convergence of the reconstruction algorithm, with the improvement being more considerable when substituting the blobs more than once during the process. The BERT process is also applied to multi resolution (MR) CSMART reconstructions, permitting simultaneously to achieve remarkable improvements in the flow field measurements and to benefit from the reduction in computational time due to the MR approach. Finally, BERT is also tested on experimental data, obtaining an increase of the
Porcelain three-dimensional shape reconstruction and its color reconstruction
NASA Astrophysics Data System (ADS)
Yu, Xiaoyang; Wu, Haibin; Yang, Xue; Yu, Shuang; Wang, Beiyi; Chen, Deyun
2013-01-01
In this paper, structured light three-dimensional measurement technology was used to reconstruct the porcelain shape, and further more the porcelain color was reconstructed. So the accurate reconstruction of the shape and color of porcelain was realized. Our shape measurement installation drawing is given. Because the porcelain surface is color complex and highly reflective, the binary Gray code encoding is used to reduce the influence of the porcelain surface. The color camera was employed to obtain the color of the porcelain surface. Then, the comprehensive reconstruction of the shape and color was realized in Java3D runtime environment. In the reconstruction process, the space point by point coloration method is proposed and achieved. Our coloration method ensures the pixel corresponding accuracy in both of shape and color aspects. The porcelain surface shape and color reconstruction experimental results completed by proposed method and our installation, show that: the depth range is 860 ˜ 980mm, the relative error of the shape measurement is less than 0.1%, the reconstructed color of the porcelain surface is real, refined and subtle, and has the same visual effect as the measured surface.
Vulvovaginal reconstruction for neoplastic disease.
Höckel, Michael; Dornhöfer, Nadja
2008-06-01
Current treatment of neoplastic disease that involves the external female genitalia aims to achieve local disease control, but not to restore form and function of these organs. Despite a growing trend to reduce the extent of surgical resection, impaired quality of life after surgery due to severe sexual dysfunction and disturbed body image is common. We postulate that the integration of surgical techniques for vulvar and vaginal reconstruction into primary treatment would improve aesthetic and functional results and therefore quality of life. We systematically searched the literature for surgical procedures designed and validated for vulvovaginal reconstruction. Various skin flaps, both with random vascularisation and those based on vascular territories (ie, axial pattern, fasciocutaneous, musculocutaneous, and bowel flaps), can restore important parts of vulvovaginal form and function with acceptable morbidity at the donor and recipient sites. Appropriate vulvovaginal reconstruction cannot be achieved by doing a few standardised procedures; rather, it necessitates specialists who are familiar with general principles of reconstructive surgery to master many techniques to select the optimum procedure for the individual patient. Vulvovaginal reconstructive surgery has limitations, particularly achievement of functional restoration in irradiated tissue. Physicians who treat women with neoplastic disease of the external genitalia should be aware of the current state of vulvovaginal reconstructive surgery. Prospective controlled clinical trials are warranted to assess the effect of vulvovaginal reconstruction on morbidity and quality of life after treatment. PMID:18510987
Reconstructive compounding for IVUS palpography.
Danilouchkine, Mikhail G; Mastik, Frits; van der Steen, Antonius F W
2009-12-01
This study proposes a novel algorithm for luminal strain reconstruction from sparse irregularly sampled strain measurements. It is based on the normalized convolution (NC) algorithm. The novel extension comprises the multilevel scheme, which takes into account the variable sampling density of the available strain measurements during the cardiac cycle. The proposed algorithm was applied to restore luminal strain values in intravascular ultrasound (IVUS) palpography. The procedure of reconstructing and averaging the strain values acquired during one cardiac cycle forms a technique, coined as reconstructive compounding. The accuracy of strain reconstruction was initially tested on the luminal strain map, computed from 3 in vivo IVUS pullbacks. The high quality of strain restoration was observed after systematically removing up to 90% of the initial elastographic measurements. The restored distributions accurately reproduced the original strain patterns and the error did not exceed 5%. The experimental validation of the reconstructed compounding technique was performed on 8 in vivo IVUS pullbacks. It demonstrated that the relative decrease in number of invalid strain estimates amounts to 92.05 +/- 6.03% and 99.17 +/- 0.92% for the traditional and reconstructive strain compounding schemes, respectively. In conclusion, implementation of the reconstructive compounding scheme boosts the diagnostic value of IVUS palpography. PMID:20040400
Facial Reconstruction and Rehabilitation.
Guntinas-Lichius, Orlando; Genther, Dane J; Byrne, Patrick J
2016-01-01
Extracranial infiltration of the facial nerve by salivary gland tumors is the most frequent cause of facial palsy secondary to malignancy. Nevertheless, facial palsy related to salivary gland cancer is uncommon. Therefore, reconstructive facial reanimation surgery is not a routine undertaking for most head and neck surgeons. The primary aims of facial reanimation are to restore tone, symmetry, and movement to the paralyzed face. Such restoration should improve the patient's objective motor function and subjective quality of life. The surgical procedures for facial reanimation rely heavily on long-established techniques, but many advances and improvements have been made in recent years. In the past, published experiences on strategies for optimizing functional outcomes in facial paralysis patients were primarily based on small case series and described a wide variety of surgical techniques. However, in the recent years, larger series have been published from high-volume centers with significant and specialized experience in surgical and nonsurgical reanimation of the paralyzed face that have informed modern treatment. This chapter reviews the most important diagnostic methods used for the evaluation of facial paralysis to optimize the planning of each individual's treatment and discusses surgical and nonsurgical techniques for facial rehabilitation based on the contemporary literature. PMID:27093062
Connor, Matthew P; Barrera, Jose E; Eller, Robert; McCusker, Scott; O'Connor, Peter
2013-02-01
We present a case of obstructive sleep apnea (OSA) that required multilevel surgical correction of the airway and literature review and discuss the role supraglottic laryngeal collapse can have in OSA. A 34-year-old man presented to a tertiary otolaryngology clinic for treatment of OSA. He previously had nasal and palate surgeries and a Repose tongue suspension. His residual apnea hypopnea index (AHI) was 67. He had a dysphonia associated with a true vocal cord paralysis following resection of a benign neck mass in childhood. He also complained of inspiratory stridor with exercise and intolerance to continuous positive airway pressure. Physical examination revealed craniofacial hypoplasia, full base of tongue, and residual nasal airway obstruction. On laryngoscopy, the paretic aryepiglottic fold arytenoid complex prolapsed into the laryngeal inlet with each breath. This was more pronounced with greater respiratory effort. Surgical correction required a series of operations including awake tracheostomy, supraglottoplasty, midline glossectomy, genial tubercle advancement, maxillomandibular advancement, and reconstructive rhinoplasty. His final AHI was 1.9. Our patient's supraglottic laryngeal collapse constituted an area of obstruction not typically evaluated in OSA surgery. In conjunction with treating nasal, palatal, and hypopharyngeal subsites, our patient's supraglottoplasty represented a key component of his success. This case illustrates the need to evaluate the entire upper airway in a complicated case of OSA. PMID:22965285
Bayesian reconstruction of projection reconstruction NMR (PR-NMR).
Yoon, Ji Won
2014-11-01
Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. PMID:25218584
Tomographic reconstruction of binary fields
NASA Astrophysics Data System (ADS)
Roux, Stéphane; Leclerc, Hugo; Hild, François
2012-09-01
A novel algorithm is proposed for reconstructing binary images from their projection along a set of different orientations. Based on a nonlinear transformation of the projection data, classical back-projection procedures can be used iteratively to converge to the sought image. A multiscale implementation allows for a faster convergence. The algorithm is tested on images up to 1 Mb definition, and an error free reconstruction is achieved with a very limited number of projection data, saving a factor of about 100 on the number of projections required for classical reconstruction algorithms.
Reconstruction techniques for optoacoustic imaging
NASA Astrophysics Data System (ADS)
Frenz, Martin; Koestli, Kornel P.; Paltauf, Guenther; Schmidt-Kloiber, Heinz; Weber, Heinz P.
2001-06-01
Optoacoustics is a method to gain information from inside a tissue. This is done by irradiating a tissue with a short light pulse, which generates a pressure distribution inside the tissue that mirrors the absorber distribution. The pressure distribution measured on the tissue-surface allows, by applying a back-projection method, to calculate a tomography image of the absorber distribution. This study presents a novel computational algorithm based on Fourier transform, which, at least in principle, yields an exact 3D reconstruction of the distribution of absorbed energy density inside turbid media. The reconstruction is based on 2D pressure distributions captured outside at different times. The FFT reconstruction algorithm is first tested in the back projection of simulated pressure transients of small model absorbers, and finally applied to reconstruct the distribution of artificial blood vessels in three dimensions.
Vermilion Reconstruction with Genital Mucosa
Weyandt, Gerhard H.; Woeckel, Achim; Kübler, Alexander C.
2016-01-01
Summary: Functional and aesthetical reconstruction, especially of the upper lip after ablative tumor surgery, can be very challenging. The skin of the lip might be sufficiently reconstructed by transpositional flaps from the nasolabial or facial area. Large defects of the lip mucosa, including the vestibule, are even more challenging due to the fact that flaps from the inner lining of the oral cavity often lead to functional impairments. We present a case of multiple vermilion and skin resections of the upper lip. At the last step, we had to resect even the whole vermilion mucosa, including parts of the oral mucosa of the vestibule, leaving a bare orbicularis oris muscle. To reconstruct the mucosal layer, we used a mucosal graft from the labia minora and placed it on the compromised lip and the former transpositional flaps for the reconstructed skin of the upper lip with very good functional and aesthetic results.
Penile reconstruction in the male
Garaffa, Giulio; Gentile, Vincenzo; Antonini, Gabriele; Tsafrakidis, Petros; Raheem, Amr Abdel; Ralph, David J.
2013-01-01
We describe and review the most recent techniques of male genital reconstruction, identifying relevant material with an unstructured PubMed-based search of previous reports, using the keywords ‘reconstruction’, ‘glans’, ‘shaft’, ‘lymphoedema’, ‘skin graft’, ‘scrotoplasty’, ‘urethroplasty’, and ‘penile prosthesis’. This search produced 22 reports that were analysed in this review. Split-thickness skin grafts are ideal for glans reconstruction, while full-thickness skin grafts should be used to cover defects on the shaft penis, as they tend to heal with less contracture. The radial artery-based free-flap phalloplasty is the technique of total phallic reconstruction associated with the highest satisfaction rates. Further research is required to identify an ideal reconstructive technique that would guarantee superior cosmetic and functional results, minimising donor site morbidity. PMID:26558091
Vermilion Reconstruction with Genital Mucosa.
Müller-Richter, Urs D A; Weyandt, Gerhard H; Woeckel, Achim; Kübler, Alexander C
2016-05-01
Functional and aesthetical reconstruction, especially of the upper lip after ablative tumor surgery, can be very challenging. The skin of the lip might be sufficiently reconstructed by transpositional flaps from the nasolabial or facial area. Large defects of the lip mucosa, including the vestibule, are even more challenging due to the fact that flaps from the inner lining of the oral cavity often lead to functional impairments. We present a case of multiple vermilion and skin resections of the upper lip. At the last step, we had to resect even the whole vermilion mucosa, including parts of the oral mucosa of the vestibule, leaving a bare orbicularis oris muscle. To reconstruct the mucosal layer, we used a mucosal graft from the labia minora and placed it on the compromised lip and the former transpositional flaps for the reconstructed skin of the upper lip with very good functional and aesthetic results. PMID:27579226
Technical basis for dose reconstruction
Anspaugh, L.R.
1996-12-31
The purpose of this paper is to consider two general topics: Technical considerations of why dose-reconstruction studies should or should not be performed and methods of dose reconstruction. The first topic is of general and growing interest as the number of dose-reconstruction studies increases, and one asks the question whether it is necessary to perform a dose reconstruction for virtually every site at which, for example, the Department of Energy (DOE) has operated a nuclear-related facility. And there is the broader question of how one might logically draw the line at performing or not performing dose-reconstruction (radiological and chemical) studies for virtually every industrial complex in the entire country. The second question is also of general interest. There is no single correct way to perform a dose-reconstruction study, and it is important not to follow blindly a single method to the point that cheaper, faster, more accurate, and more transparent methods might not be developed and applied. 90 refs., 4 tabs.
Technical basis for dose reconstruction
Anspaugh, L.R.
1996-01-31
The purpose of this paper is to consider two general topics: technical considerations of why dose-reconstruction studies should or should not be performed and methods of dose reconstruction. The first topic is of general and growing interest as the number of dose-reconstruction studies increases, and one asks the question whether it is necessary to perform a dose reconstruction for virtually every site at which, for example, the Department of Energy (DOE) has operated a nuclear-related facility. And there is the broader question of how one might logically draw the line at performing or not performing dose-reconstruction (radiological and chemical) studies for virtually every industrial complex in the entire country. The second question is also of general interest. There is no single correct way to perform a dose-reconstruction study, and it is important not to follow blindly a single method to the point that cheaper, faster, more accurate, and more transparent methods might not be developed and applied.
Costal Grafting in Mandibular Reconstruction
Bourlet, Jerôme; Château, Joseph; Jacquemart, Mathieu; Dufour, Clémence; Mojallal, Ali; Gleizal, Arnaud
2015-01-01
Background: Reconstruction of mandibular bone defect is a common indication in craniomaxillofacial surgery, and free fibular flap is the gold standard for this indication. However, there are alternatives; nonvascular bone grafting is one of them, and we present the costal grafting for mandibular reconstruction, a classic technique that is reliable, efficient, and produced less morbidity than the technique of using composite free flaps. Method: A 9-year retrospective review of 54 patients treated surgically for mandibular reconstruction was performed. The criterion mainly analyzed was graft survival. The surgical technique was described in detail. Results: A total of 54 patients with mandibular bone defect were identified. Five symphysis, 46 corpus, and 20 ramus defects were considered. These patients underwent reconstruction by costal grafting, and the engrafting was successful in 92.6% of cases. Dental rehabilitation with dental implants was realized in 70% of cases. Conclusions: The approach described in this article allowed the authors to obtain good results with costal grafting for mandibular reconstruction and dental rehabilitation. Costal grafting is a good alternative for fibula free flap in specific indications. Reconstruction of mandibular bone defect is a common indication in craniomaxillofacial surgery. Since the 1980s, the gold standard for these defects is the use of free fibular flap.1 In some cases, this technique is contradicted; the surgeon then has several possibilities for the use of free osteomyocutaneous flaps (iliac crest, scapula, and serrato-costal flaps).2–8 PMID:26893990
Lip Reconstruction after Tumor Ablation
Ebrahimi, Ali; Kalantar Motamedi, Mohammad Hossein; Ebrahimi, Azin; Kazemi, Mohammad; Shams, Amin; Hashemzadeh, Haleh
2016-01-01
Approximately 25% of all oral cavity carcinomas involve the lips, and the primary management of these lesions is complete surgical resection. Loss of tissue in the lips after resection is treated with a variety of techniques, depending on the extension and location of the defect. Here we review highly accepted techniques of lip reconstruction and some of new trials with significant clinical results. Reconstruction choice is primarily depend to size of the defect, localization of defect, elasticity of tissues. But patient’s age, comorbidities, and motivation are also important. According to the defect location and size, different reconstruction methods can be used. For defects involved less than 30% of lips, primary closures are sufficient. In defects with 35–70% lip involvement, the Karapandzic, Abbe, Estlander, McGregor or Gillies’ fan flaps or their modifications can be used. When lip remaining tissues are insufficient, cheek tissue can be used in Webster and Bernard advancement flaps and their various modifications. Deltopectoral or radial forearm free flaps can be options for large defects of the lip extending to the Jaws. To achieve best functional and esthetic results, surgeons should be able to choose most appropriate reconstruction method. Considering defects’ size and location, patients’ expects and surgeon’s ability and knowledge, a variety of flaps are presented in order to reconstruct defects resulted from tumor ablation. It’s necessary for surgeons to trace the recent innovations in lip reconstruction to offer best choices to patients. PMID:27308236
Alloplastic adjuncts in breast reconstruction
Cabalag, Miguel S.; Rostek, Marie; Miller, George S.; Chae, Michael P.; Quinn, Tam; Rozen, Warren M.
2016-01-01
Background There has been an increasing role of acellular dermal matrices (ADMs) and synthetic meshes in both single- and two-stage implant/expander breast reconstruction. Numerous alloplastic adjuncts exist, and these vary in material type, processing, storage, surgical preparation, level of sterility, available sizes and cost. However, there is little published data on most, posing a significant challenge to the reconstructive surgeon trying to compare and select the most suitable product. The aims of this systematic review were to identify, summarize and evaluate the outcomes of studies describing the use of alloplastic adjuncts for post-mastectomy breast reconstruction. The secondary aims were to determine their cost-effectiveness and analyze outcomes in patients who also underwent radiotherapy. Methods Using the PRSIMA 2009 statement, a systematic review was conducted to find articles reporting on the outcomes on the use of alloplastic adjuncts in post-mastectomy breast reconstruction. Multiple databases were searched independently by three authors (Cabalag MS, Miller GS and Chae MP), including: Ovid MEDLINE (1950 to present), Embase (1980 to 2015), PubMed and Cochrane Database of Systematic Reviews. Results Current published literature on available alloplastic adjuncts are predominantly centered on ADMs, both allogeneic and xenogeneic, with few outcome studies available for synthetic meshes. Outcomes on the 89 articles, which met the inclusion criteria, were summarized and analyzed. The reported outcomes on alloplastic adjunct-assisted breast reconstruction were varied, with most data available on the use of ADMs, particularly AlloDerm® (LifeCell, Branchburg, New Jersey, USA). The use of ADMs in single-stage direct-to-implant breast reconstruction resulted in lower complication rates (infection, seroma, implant loss and late revision), and was more cost effective when compared to non-ADM, two-stage reconstruction. The majority of studies demonstrated
Ulnar Collateral Ligament Reconstruction
Erickson, Brandon J.; Bach, Bernard R.; Cohen, Mark S.; Bush-Joseph, Charles A.; Cole, Brian J.; Verma, Nikhil N.; Nicholson, Gregory P.; Romeo, Anthony A.
2016-01-01
Background: Ulnar collateral ligament reconstruction (UCLR) is a common surgery performed in professional, collegiate, and high school athletes. Purpose: To report patient demographics, surgical techniques, and outcomes of all UCLRs performed at a single institution from 2004 to 2014. Study Design: Case series; Level of evidence, 4. Methods: All patients who underwent UCLR from January 1, 2004, through December 31, 2014, at a single institution were identified. Charts were reviewed to determine patient age, sex, date of surgery, sport played, athletic level, surgical technique, graft type, and complications. Data were collected prospectively, and patients were contacted via phone calls to obtain the return-to-sport rate, Conway-Jobe score, Andrews-Timmerman score, and Kerlan-Jobe Orthopaedic Clinic (KJOC) Shoulder and Elbow score. Continuous variable data were reported as weighted means, and categorical variable data were reported as frequencies with percentages. Results: A total of 187 patients (188 elbows) underwent UCLR during the study period (92% male; mean age, 19.6 ± 4.7 years; 78.2% right elbows). There were 165 baseball players (87.8% of all patients), 155 of whom were pitchers (82.5% of all patients). Ninety-seven (51.6%) were college athletes, 68 (36.2%) high school athletes, and 7 (3.7%) professional athletes at the time of surgery. The docking technique was used in 110 (58.5%) patients while the double-docking technique was used in 78 (41.5%). An ipsilateral palmaris longus graft was used in 110 (58.5%) patients while a hamstring autograft was used in 48 (25.5%) patients. The ulnar nerve was subcutaneously transposed in 79 (42%) patients. Clinical follow-up data were available on 85 patients. Mean follow-up was 60 ± 30.8 months. Overall, 94.1% of patients were able to return to sport and had a Conway-Jobe score of good/excellent while 4.3% had a score of fair. The mean KJOC score was 90.4 ± 6.7 and mean Andrews-Timmerman score was 92.5 ± 7
Study of cluster reconstruction and track fitting algorithms for CGEM-IT at BESIII
NASA Astrophysics Data System (ADS)
Guo, Yue; Wang, Liang-Liang; Ju, Xu-Dong; Wu, Ling-Hui; Xiu, Qing-Lei; Wang, Hai-Xia; Dong, Ming-Yi; Hu, Jing-Ran; Li, Wei-Dong; Li, Wei-Guo; Liu, Huai-Min; Qun, Ou-Yang; Shen, Xiao-Yan; Yuan, Ye; Zhang, Yao
2016-01-01
Considering the effects of aging on the existing Inner Drift Chamber (IDC) of BESIII, a GEM-based inner tracker, the Cylindrical-GEM Inner Tracker (CGEM-IT), is proposed to be designed and constructed as an upgrade candidate for the IDC. This paper introduces a full simulation package for the CGEM-IT with a simplified digitization model, and describes the development of software for cluster reconstruction and track fitting, using a track fitting algorithm based on the Kalman filter method. Preliminary results for the reconstruction algorithms which are obtained using a Monte Carlo sample of single muon events in the CGEM-IT, show that the CGEM-IT has comparable momentum resolution and transverse vertex resolution to the IDC, and a better z-direction resolution than the IDC. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (11205184, 11205182) and Joint Funds of National Natural Science Foundation of China (U1232201)
Performance of Tracking, b-tagging and Jet/MET reconstruction at the CMS High Level Trigger
NASA Astrophysics Data System (ADS)
Tosi, Mia
2015-12-01
The trigger systems of the LHC detectors play a crucial role in determining the physics capabilities of experiments. In 2015, the center-of-mass energy of proton-proton collisions will reach 13 TeV up to an unprecedented luminosity of 1 × 1034 cm-2s-1. A reduction of several orders of magnitude of the event rate is needed to reach values compatible with detector readout, offline storage and analysis capabilities. The CMS experiment has been designed with a two-level trigger system: the Level-1 Trigger (L1T), implemented on custom-designed electronics, and the High Level Trigger (HLT), a streamlined version of the offline reconstruction software running on a computer farm. A software trigger system requires a trade-off between the complexity of the algorithms, the sustainable output rate, and the selection efficiency. With the computing power available during the 2012 data taking the maximum reconstruction time at HLT was about 200 ms per event, at the nominal L1T rate of 100 kHz. Tracking algorithms are widely used in the HLT in the object reconstruction through particle-flow techniques as well as in the identification of b-jets and lepton isolation. Reconstructed tracks are also used to distinguish the primary vertex, which identifies the hard interaction process, from the pileup ones. This task is particularly important in the LHC environment given the large number of interactions per bunch crossing: on average 25 in 2012, and expected to be around 40 in Run II with a large contribution from out-of-time particles. In order to cope with tougher conditions the tracking and vertexing techniques used in 2012 have been largely improved in terms of timing and efficiency in order to keep the physics reach at the level of Run I conditions. We will present the performance of these newly developed algorithms, discussing their impact on the b-tagging performances as well as on the jet and missing transverse energy reconstruction.
[Vascular reconstruction in visceral transplantation surgery].
Olschewski, P; Seehofer, D; Öllinger, R; Pratschke, J
2016-02-01
Vascular reconstruction is obligatory in transplantation surgery. A differentiation is made between routine vascular reconstructions, which are required for all solid organ transplantations and special cases. Because of the shortage of organs it is often necessary to use organs with complex anatomical vascular prerequisites, which requires high vascular surgical expertise for individualized reconstruction. Non-routine reconstructions are often also necessary on the side of the recipient. This review article presents both the routine and exceptional types of reconstruction. PMID:26541451
NASA Astrophysics Data System (ADS)
Gómez-Rocha, M.; Hilger, T.; Krassnigg, A.
2016-04-01
We extend earlier investigations of heavy-light pseudoscalar mesons to the vector case, using a simple model in the context of the Dyson-Schwinger-Bethe-Salpeter approach. We investigate the effects of a dressed quark-gluon vertex in a systematic fashion and illustrate and attempt to quantify corrections beyond the phenomenologically very useful and successful rainbow-ladder truncation. In particular we investigate the dressed quark-photon vertex in such a setup and make a prediction for the experimentally as yet unknown mass of the Bc* , which we obtain at 6.334 GeV well in line with predictions from other approaches. Furthermore, we combine a comprehensive set of results from the theoretical literature. The theoretical average for the mass of the Bc* meson is 6.336 ±0.002 GeV .
Titanium template for scaphoid reconstruction.
Haefeli, M; Schaefer, D J; Schumacher, R; Müller-Gerbl, M; Honigmann, P
2015-06-01
Reconstruction of a non-united scaphoid with a humpback deformity involves resection of the non-union followed by bone grafting and fixation of the fragments. Intraoperative control of the reconstruction is difficult owing to the complex three-dimensional shape of the scaphoid and the other carpal bones overlying the scaphoid on lateral radiographs. We developed a titanium template that fits exactly to the surfaces of the proximal and distal scaphoid poles to define their position relative to each other after resection of the non-union. The templates were designed on three-dimensional computed tomography reconstructions and manufactured using selective laser melting technology. Ten conserved human wrists were used to simulate the reconstruction. The achieved precision measured as the deviation of the surface of the reconstructed scaphoid from its virtual counterpart was good in five cases (maximal difference 1.5 mm), moderate in one case (maximal difference 3 mm) and inadequate in four cases (difference more than 3 mm). The main problems were attributed to the template design and can be avoided by improved pre-operative planning, as shown in a clinical case. PMID:25167978
Mitra, A.N.; Yang, K.
1995-06-01
The momentum dependence of the off-shell {rho}-{omega} mixing amplitude is calculated through a two-quark loop diagram, using nonperturbative meson-quark vertex functions for the {rho} and {omega} mesons, as well as nonperturbative quark propagators. Both these quantities are generated self-consistently through an interlinked Bethe-Salpeter equation (BSE) cum Schwinger- Dyson equation (SDE) approach with a 3D support for the BSE kernel with two basic constants that are prechecked against a wide cross section of both meson and baryon spectra within a common structural framework for their respective 3D BSE`s. With the precalibration, the on-shell strength works out at {minus}2.434 {delta}({ital m}{sub {ital q}}{sup 2}) in units of the change in ``constituent mass squared,`` which is consistent with the {ital e}{sup +}{ital e}{sup {minus}} to {pi}{sup +}{pi}{sup {minus}} data for a {ital u}-{ital d} mass difference of 4 MeV, while the relative off-shell strength (0.99{plus_minus}0.01) lies midway between quark-loop and QCD-SR results. We also calculate the photon-mediated {rho}-{omega} propagator whose off-shell structure has an additional pole at {ital q}{sup 2}=0. The implications of these results vis-a-vis related investigations are discussed.
Power and area efficient 4-bit column-level ADC in a CMOS pixel sensor for the ILD vertex detector
NASA Astrophysics Data System (ADS)
Zhang, L.; Morel, F.; Hu-Guo, Ch; Hu, Y.
2013-01-01
A 48 × 64 pixels prototype CMOS pixel sensor (CPS) integrated with 4-bit column-level, self triggered ADCs for the outer layers of the ILD vertex detector (VTX) was developed and fabricated in a 0.35 μm CMOS process with a pixel pitch of 35 μm. The pixel concept combines in-pixel amplification with a correlated double sampling (CDS) operation. The ADCs accommodating the pixel read out in a rolling shutter mode complete the conversion by performing a multi-bit/step approximation. The design was optimised for power saving at sampling frequency. The prototype sensor is currently at the stage of being started testing and evaluation. So what is described is based on post simulation results rather than test data. This 4-bit ADC dissipates, at a 3-V supply and 6.25-MS/s sampling rate, 486 μW in its inactive mode, which is by far the most frequent. This value rises to 714 μW in case of the active mode. Its footprint amounts to 35 × 545 μm2.
NASA Astrophysics Data System (ADS)
Moortgat, Joachim; Firoozabadi, Abbas
2016-06-01
Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.
Buzatu, Adrian; /McGill U.
2006-08-01
Improving our ability to identify the top quark pair (t{bar t}) primary vertex (PV) on an event-by-event basis is essential for many analyses in the lepton-plus-jets channel performed by the Collider Detector at Fermilab (CDF) Collaboration. We compare the algorithm currently used by CDF (A1) with another algorithm (A2) using Monte Carlo simulation at high instantaneous luminosities. We confirm that A1 is more efficient than A2 at selecting the t{bar t} PV at all PV multiplicities, both with efficiencies larger than 99%. Event selection rejects events with a distance larger than 5 cm along the proton beam between the t{bar t} PV and the charged lepton. We find flat distributions for the signal over background significance of this cut for all cut values larger than 1 cm, for all PV multiplicities and for both algorithms. We conclude that any cut value larger than 1 cm is acceptable for both algorithms under the Tevatron's expected instantaneous luminosity improvements.
A Full Multi-Grid Method for the Solution of the Cell Vertex Finite Volume Cauchy-Riemann Equations
NASA Technical Reports Server (NTRS)
Borzi, A.; Morton, K. W.; Sueli, E.; Vanmaele, M.
1996-01-01
The system of inhomogeneous Cauchy-Riemann equations defined on a square domain and subject to Dirichlet boundary conditions is considered. This problem is discretised by using the cell vertex finite volume method on quadrilateral meshes. The resulting algebraic problem is overdetermined and the solution is defined in a least squares sense. By this approach a consistent algebraic problem is obtained which differs from the original one by O(h(exp 2)) perturbations of the right-hand side. A suitable cell-based convergent smoothing iteration is presented which is naturally linked to the least squares formulation. Hence, a standard multi-grid algorithm is reported which combines the given smoother and cell-based transfer operators. Some remarkable reduction properties of these operators are shown. A full multi-grid method is discussed which solves the discrete problem to the level of truncation error by employing one multi-grid cycle at each current level of discretisation. Experiments and applications of the full multi-grid scheme are presented.
Luboga, Samuel Abilemech; Luboobi, Livingstone; Mirembe, Florence
2016-01-01
Introduction. In Sub-Saharan Africa, excessive foetal head moulding is commonly associated with cephalopelvic disproportion and obstructed labour. This study set out to determine the associations of maternal pelvis height and maternal height with intrapartum foetal head moulding. Methods. This was a multisite secondary analysis of maternal birth records of mothers with singleton pregnancies ending in a spontaneous vertex delivery. A summary of the details of the pregnancy and delivery records were reviewed and analysed using multilevel logistic regression respect to foetal head moulding. The alpha level was set at P < 0.05. Results. 412 records were obtained, of which 108/385 (28%) observed foetal head moulding. There was a significant reduction in risk of foetal head moulding with increasing maternal height (Adj. IRR 0.97, P = 0.05), maternal pelvis height (Adj. IRR 0.88, P < 0.01), and raptured membranes (Adj. IRR 0.10, P < 0.01). There was a significant increased risk of foetal head moulding with increasing birth weight (Adj. IRR 1.90, P < 0.01) and duration of monitored active labour (Adj. IRR 1.21, P < 0.01) in the final model. Conclusion. This study showed that increasing maternal height and maternal pelvis height were associated with a significant reduction in intrapartum foetal head moulding. PMID:27034678
NASA Astrophysics Data System (ADS)
Tosi, Leandro; Roura-Bas, Pablo; Llois, Ana María; Manuel, Luis O.
2011-02-01
In the present work, we calculate the conductance through a single quantum dot weakly coupled to metallic contacts. We use the spin-1/2 Anderson model to describe the quantum dot, while considering a finite Coulomb repulsion. We solve the interacting system using the noncrossing approximation (NCA) and the one-crossing approximation (OCA). We obtain the linear response conductance as a function of temperature and energy position of the localized level. From the comparison of both approximations we extract the role of the vertex corrections, which are introduced in the OCA calculations and neglected in the NCA scheme. As a function of the energy position, we observe that the diagrams omitted within the NCA are really important for appropriately describing transport phenomena in Kondo systems as well as in the mixed valence regime. On the other hand, as a function of temperature, the corrections introduced by the OCA partly recover the universal scaling properties known from numerical approaches such as the numerical renormalization group.
Kizilersue, Ayse; Pennington, Michael R.
2009-06-15
In principle, calculation of a full Green's function in any field theory requires knowledge of the infinite set of multipoint Green's functions, unless one can find some way of truncating the corresponding Schwinger-Dyson equations. For the fermion and boson propagators in QED this requires an ansatz for the full 3-point vertex. Here we illustrate how the properties of gauge invariance, gauge covariance and multiplicative renormalizability impose severe constraints on this fermion-boson interaction, allowing a consistent truncation of the propagator equations. We demonstrate how these conditions imply that the 3-point vertex in the propagator equations is largely determined by the behavior of the fermion propagator itself and not by knowledge of the many higher-point functions. We give an explicit form for the fermion-photon vertex, which in the fermion and photon propagator fulfills these constraints to all orders in leading logarithms for massless QED, and accords with the weak coupling limit in perturbation theory at O({alpha}). This provides the first attempt to deduce nonperturbative Feynman rules for strong physics calculations of propagators in massless QED that ensure a more consistent truncation of the 2-point Schwinger-Dyson equations. The generalization to next-to-leading order and masses will be described in a longer publication.
The reconstruction of inflationary potentials
NASA Astrophysics Data System (ADS)
Lin, Jianmang; Gao, Qing; Gong, Yungui
2016-07-01
The observational data on the anisotropy of the cosmic microwave background constraints the scalar spectral tilt ns and the tensor to scalar ratio r which depend on the first and second derivatives of the inflaton potential. The information can be used to reconstruct the inflaton potential in the polynomial form up to some orders. However, for some classes of potentials, ns and r behave as ns(N) and r(N) universally in terms of the number of e-folds N. The universal behaviour of ns(N) can be used to reconstruct a class of inflaton potentials. By parametrizing one of the parameters ns(N), ɛ(N) and φ(N), and fitting the parameters in the models to the observational data, we obtain the constraints on the parameters and reconstruct the classes of the inflationary models which include the chaotic inflation, T-model, hilltop inflation, s-dual inflation, natural inflation and R2 inflation.
Wavefront reconstruction by modal decomposition.
Schulze, Christian; Naidoo, Darryl; Flamm, Daniel; Schmidt, Oliver A; Forbes, Andrew; Duparré, Michael
2012-08-27
We propose a new method to determine the wavefront of a laser beam based on modal decomposition by computer-generated holograms. The hologram is encoded with a transmission function suitable for measuring the amplitudes and phases of the modes in real-time. This yields the complete information about the optical field, from which the Poynting vector and the wavefront are deduced. Two different wavefront reconstruction options are outlined: reconstruction from the phase for scalar beams, and reconstruction from the Poynting vector for inhomogeneously polarized beams. Results are compared to Shack-Hartmann measurements that serve as a reference and are shown to reproduce the wavefront and phase with very high fidelity. PMID:23037024
SPIRE: the SPIDER reconstruction engine.
Baxter, William T; Leith, ArDean; Frank, Joachim
2007-01-01
SPIRE is a Python program written to modernize the user interaction with SPIDER, the image processing system for electron microscopical reconstruction projects. SPIRE provides a graphical user interface (GUI) to SPIDER for executing batch files of SPIDER commands. It also lets users quickly view the status of a project by showing the last batch files that were run, as well as the data files that were generated. SPIRE handles the flexibility of the SPIDER programming environment through configuration files: XML-tagged documents that describe the batch files, directory trees, and presentation of the GUI for a given type of reconstruction project. It also provides the capability to connect to a laboratory database, for downloading parameters required by batch files at the start of a project, and uploading reconstruction results at the end of a project. PMID:17055743
Upper Blepharoplasty for Areola Reconstruction
Friedrich, O. L.; Heil, J.; Golatta, M.; Domschke, C.; Sohn, C.; Blumenstein, M.
2013-01-01
Blepharoplasty is one of the most common rejuvenating facial plastic surgery procedures. The procedure has been described many times and has very few complications. The tissue removed from the upper eyelid during blepharoplasty can be used as a skin graft for areola reconstruction due to the tissueʼs similarity to the areolaʼs natural skin. The present study investigated the use of upper blepharoplasty for areola reconstruction. Criteria were patient satisfaction, objective measurements and the assessment of cosmesis by a panel of physicians. All eight patients included in the study were very satisfied with the cosmetic result. Objective measurements and assessment by a panel of physicians using photographs of the reconstructed nipple-areola complex showed very good aesthetic results. PMID:24771929
Reconstructing Ancient Forms of Life
NASA Technical Reports Server (NTRS)
Benner, Steven A.
1998-01-01
Progress in the past three months has occurred in two areas, reconstruction of ancestral proteins and improved understanding of chemical features that are likely to be universal in generic matter regardless of its genesis. Ancestral ribonucleases have been reconstructed, and an example has been developed that shows how physiological function can be assigned to in vitro behaviors observed in biological systems. Sequence data have been collected to permit the reconstruction of src homology 2 domains that underwent radiative divergence at the time of the radiative divergence of chordates. New studies have been completed that show how genetic matter (or its remnants) might be detected on Mars (or other non-terrean locations.) Last, the first in vitro selection experiments have been completed using a nucleoside library carrying positively charged functionality, illustrating the importance of non-standard nucleotides to those attempting to obtain evidence for an "RNA world" as an early episode of life on earth.
Oral reconstruction with submental flap
Rahpeyma, Amin; Khajehahmadi, Saeedeh
2013-01-01
Background: Submental flap is a useful technique for reconstruction of medium to large oral cavity defects. Hair bearing nature of this flap in men makes it less appropriate. Therefore, deepithelialized variant is introduced to overcome the problem of hair with this flap. Recently, application of this flap has been introduced in maxillofacial trauma patients. Materials and Methods: Deepithelialized orthograde submental flap is used for the reconstruction of oral cavity mucosal defects. Results: Four cases including two trauma patients and two squamous cell carcinomas (SCCs) of oral cavity were treated using deepithelialized orthograde submental flap. There were no complications in all four patients and secondary epithelialization occurred in raw surface of the flap which was exposed to oral cavity. Conclusion: Deepithelialized orthograde submental flap is very effective in reconstruction of oral cavity in men. The problem of hair is readily solved using this technique without jeopardizing flap blood supply. PMID:24205473
Using clustering for document reconstruction
NASA Astrophysics Data System (ADS)
Ukovich, Anna; Zacchigna, Alessandra; Ramponi, Giovanni; Schoier, Gabriella
2006-02-01
In the forensics and investigative science fields there may arise the need of reconstructing documents which have been destroyed by means of a shredder. In a computer-based reconstruction, the pieces are described by numerical features, which represent the visual content of the strips. Usually, the pieces of different pages have been mixed. We propose an approach for the reconstruction which performs a first clustering on the strips to ease the successive matching, be it manual (with the help of a computer) or automatic. A number of features, extracted by means of image processing algorithms, have been selected for this aim. The results show the effectiveness of the features and of the proposed clustering algorithm.
Shape Reconstruction from Generalized Projections
NASA Astrophysics Data System (ADS)
Viikinkoski, Matti
2016-01-01
In this thesis we develop methods for recovering the three-dimensional shape of an object from generalized projections. We particularly focus on the problems encountered when data are presented as discrete image fields. We demonstrate the usefulness of the Fourier transform in transferring the image data and shape model projections to a domain more suitable for gradient based optimization. To substantiate the general applicability of our methods to observational astronomy, we reconstruct shape models for several asteroids observed with adaptive optics, thermal infrared interferometry, or range-Doppler radar. The reconstructions are carried out with the ADAM software package that we have designed for general use.
[Reconstructions after periorbital burn injuries].
Klett, A; Rebane, R
2013-01-01
Nowadays burn patients who also have periocular symptoms are usually treated by reconstructive surgeons and the role of the ophthalmic surgeon has decreased.Although periocular complications occur in a minority of burned patients, they pose a greater challenge in surgical and non-surgical treatment. Chemical, electrical and thermal burns can lead to disfiguring scar formations and delayed treatment can lead to devastating ocular complications. Achieving a successful reconstruction requires a comprehensive approach, entailing many advanced techniques with an emphasis on preserving function and balancing intricate aesthetic requirements. The theory is illustrated in this article with clinical examples. PMID:23345146
Generalized orthogonal wavelet phase reconstruction.
Axtell, Travis W; Cristi, Roberto
2013-05-01
Phase reconstruction is used for feedback control in adaptive optics systems. To achieve performance metrics for high actuator density or with limited processing capabilities on spacecraft, a wavelet signal processing technique is advantageous. Previous derivations of this technique have been limited to the Haar wavelet. This paper derives the relationship and algorithms to reconstruct phase with O(n) computational complexity for wavelets with the orthogonal property. This has additional benefits for performance with noise in the measurements. We also provide details on how to handle the boundary condition for telescope apertures. PMID:23695316
Heminasal agenesis: a reconstructive challenge.
Fisher, Mark; Zelken, Jonathan; Redett, Richard J
2014-05-01
Heminasal agenesis is a rare congenital malformation often associated with deformities of the eyes and lacrimal system, midface, and proboscis lateralis. Reconstruction is especially challenging because of missing lining, cartilage, and skin. We present a case of heminasal agenesis in a 5-year-old girl with concomitant hypertelorism, coloboma of the eyelids, and maxillary hypoplasia. The patient underwent facial bipartition for hypertelorism correction and cantilever bone graft. A forehead flap was designed using an anaplastic model from the patient's twin sister. Cartilage harvested from the conchal bowl and rib provided alar and dorsal support. Reconstructive goals, timing, and options are discussed. PMID:24777004
The reconstructive microsurgery ladder in orthopaedics.
Tintle, Scott M; Levin, L Scott
2013-03-01
Since the advent of the operating microscope by Julius Jacobson in 1960, reconstructive microsurgery has become an integral part of extremity reconstruction and orthopaedics. During World War I, with the influx of severe extremity trauma Harold Gillies introduced the concept of the reconstructive ladder for wound closure. The concept of the reconstructive ladder goes from simple to complex means of attaining wound closure. Over the last half century microsurgery has continued to evolve and progress. We now have a microsurgical reconstructive ladder. The microsurgical reconstruction ladder is based upon the early work on revascularization and replantation extending through the procedures that are described in this article. PMID:23352571
Poethical: Breaking Ground for Reconstruction
ERIC Educational Resources Information Center
Krojer, Jo; Holge-Hazelton, Bibi
2008-01-01
Departing from a methodological experiment performed by the authors, this article reflects on and discusses issues of ethics and politics in poetic strategies of "representation". In relation to the experiment the article questions how to conceive the notion of connectedness between empirical time and the reconstruction of it in poststructuralist…
Reconstructing Indo-European Syllabification
ERIC Educational Resources Information Center
Byrd, Andrew Miles
2010-01-01
The chief concern of this dissertation is to investigate a fundamental, yet unsolved problem within the phonology of Proto-Indo-European (PIE): the process of syllabification. I show that by analyzing the much more easily reconstructable word-edge clusters we may predict which types of consonant clusters can occur word-medially, provided that we…
Tomographic reconstruction of polar plumes
NASA Astrophysics Data System (ADS)
Auchère, F.; Guennou, C.; Barbey, N.
2012-06-01
We present a tomographic reconstruction of polar plumes as observed in the Extreme Ultraviolet in January 2010. Plumes are elusive structures visible in polar coronal holes that may play an important role in the acceleration of the solar wind. However, despite numerous observations, little is irrefutably known about them. Because of line of sight effects, even their geometry is subject to debate. Are they genuine cylindrical features of the corona or are they only chance alignments along the line of sight? Tomography provides a means to reconstruct the volume of an optically thin object from a set of observations taken from different vantage points. In the case of the Sun, these are typically obtained by using a solar rotation worth of images, which limits the ability to reconstruct short lived structures. We present here a tomographic inversion of the solar corona obtained using only 6 days of data. This is achieved by using simultaneously three space telescopes (EUVI/STEREO and SWAP/PROBA2) in a very specific orbital configuration. The result is the shortest possible tomographic snapshot of polar plumes. The 3D reconstruction shows both quasi-cylindrical plumes and a network pattern that can mimic them by line of sight superimpositions. This suggests that the controversy on plume geometry is due to the coexistence of both types of structures.
Reconstruction: From the Students' Perspective.
ERIC Educational Resources Information Center
Schaeffer, Lys A.
1989-01-01
Presents two lesson plans for learning strategies employing the skills of empathy and reciprocity. The lessons cover the Black Codes developed during Reconstruction and the impeachment of Andrew Johnson. Lists objectives, instructional procedures, and makes suggestions for essay questions to be used in summative evaluation procedures. (KO)
Ulysses S. Grant and Reconstruction.
ERIC Educational Resources Information Center
Wilson, David L.
1989-01-01
Discusses the role played by Ulysses S. Grant during the four years of Reconstruction before he became President of the United States. Describes the dynamics of the relationship between Grant and Andrew Johnson. Points out that Grant's attitude of service to the laws created by Congress submerged his desire to create a new South. (KO)
PRISM3/GISS Topographic Reconstruction
Sohl, Linda E.; Chandler, Mark A.; Schmunk, Robert B.; Mankoff, Ken; Jonas, Jeffrey A.; Foley, Kevin M.; Dowsett, Harry J.
2009-01-01
The PRISM3/GISS topographic reconstruction is one of the global data sets incorporated into a new reconstruction for the mid-Piacenzian warm interval of the Pliocene, at about 3.3 to 3.0 Ma. The PRISM3/GISS topography-gridded data set is a digitization of a graphical reconstruction, provided at 2 deg x 2 deg resolution and based on updated paleoaltimetry data and a refined land/ocean mask. Mid-Piacenzian topography as shown in this data set is generally quite similar to modern topography, with three notable differences: (1) the coastline as shown is 25 meters higher than modern sea level, reflecting the hypothesized reduction in ice sheet volume; (2) Hudson Bay is filled in to low elevation, in the absence of evidence for submergence at that time; and (3) the West Antarctic ice sheet is absent, permitting open seaways to exist in Ellsworth and Marie Byrd Lands. Two alternate ice sheet configurations with corresponding vegetation schemes are available; one is a minor modification of the PRISM2 ice reconstruction, and one is derived from the British Antarctic Survey Ice Sheet Model (BAS ISM).
Reconstructing Death in Postmodern Society.
ERIC Educational Resources Information Center
Kastenbaum, Robert
1993-01-01
Examines interaction between emerging thanatological movement and its sociohistorical context. Notes that thanatology will take on new shape as individuals and society attempt to cope with postmodernistic forces and deconstructive mentality. Considers prospect for authentic solidarity against distress in reconstructed death system. (Author/NB)
Ancestral reconstruction of tick lineages.
Mans, Ben J; de Castro, Minique H; Pienaar, Ronel; de Klerk, Daniel; Gaven, Philasande; Genu, Siyamcela; Latif, Abdalla A
2016-06-01
Ancestral reconstruction in its fullest sense aims to describe the complete evolutionary history of a lineage. This depends on accurate phylogenies and an understanding of the key characters of each parental lineage. An attempt is made to delineate our current knowledge with regard to the ancestral reconstruction of the tick (Ixodida) lineage. Tick characters may be assigned to Core of Life, Lineages of Life or Edges of Life phenomena depending on how far back these characters may be assigned in the evolutionary Tree of Life. These include housekeeping genes, sub-cellular systems, heme processing (Core of Life), development, moulting, appendages, nervous and organ systems, homeostasis, respiration (Lineages of Life), specific adaptations to a blood-feeding lifestyle, including the complexities of salivary gland secretions and tick-host interactions (Edges of Life). The phylogenetic relationships of lineages, their origins and importance in ancestral reconstruction are discussed. Uncertainties with respect to systematic relationships, ancestral reconstruction and the challenges faced in comparative transcriptomics (next-generation sequencing approaches) are highlighted. While almost 150 years of information regarding tick biology have been assembled, progress in recent years indicates that we are in the infancy of understanding tick evolution. Even so, broad reconstructions can be made with relation to biological features associated with various lineages. Conservation of characters shared with sister and parent lineages are evident, but appreciable differences are present in the tick lineage indicating modification with descent, as expected for Darwinian evolutionary theory. Many of these differences can be related to the hematophagous lifestyle of ticks. PMID:26868413
Stability indicators in network reconstruction.
Filosi, Michele; Visintainer, Roberto; Riccadonna, Samantha; Jurman, Giuseppe; Furlanello, Cesare
2014-01-01
The number of available algorithms to infer a biological network from a dataset of high-throughput measurements is overwhelming and keeps growing. However, evaluating their performance is unfeasible unless a 'gold standard' is available to measure how close the reconstructed network is to the ground truth. One measure of this is the stability of these predictions to data resampling approaches. We introduce NetSI, a family of Network Stability Indicators, to assess quantitatively the stability of a reconstructed network in terms of inference variability due to data subsampling. In order to evaluate network stability, the main NetSI methods use a global/local network metric in combination with a resampling (bootstrap or cross-validation) procedure. In addition, we provide two normalized variability scores over data resampling to measure edge weight stability and node degree stability, and then introduce a stability ranking for edges and nodes. A complete implementation of the NetSI indicators, including the Hamming-Ipsen-Mikhailov (HIM) network distance adopted in this paper is available with the R package nettools. We demonstrate the use of the NetSI family by measuring network stability on four datasets against alternative network reconstruction methods. First, the effect of sample size on stability of inferred networks is studied in a gold standard framework on yeast-like data from the Gene Net Weaver simulator. We also consider the impact of varying modularity on a set of structurally different networks (50 nodes, from 2 to 10 modules), and then of complex feature covariance structure, showing the different behaviours of standard reconstruction methods based on Pearson correlation, Maximum Information Coefficient (MIC) and False Discovery Rate (FDR) strategy. Finally, we demonstrate a strong combined effect of different reconstruction methods and phenotype subgroups on a hepatocellular carcinoma miRNA microarray dataset (240 subjects), and we validate the
Genital reconstruction in exstrophy patients
Nerli, R. B.; Shirol, S. S.; Guntaka, Ajay; Patil, Shivagouda; Hiremath, Murigendra B.
2012-01-01
Introduction: Surgery for bladder exstrophy has been evolving over the last four to five decades. Because survival has become almost universal, the focus has changed in the exstrophy-epispadias complex to improving quality of life. The most prevalent problem in the long-term function of exstrophy patients is the sexual activity of the adolescent and adult males. The penis in exstrophy patients appears short because of marked congenital deficiency of anterior corporal tissue. Many patients approach for genital reconstruction to improve cosmesis as well as to correct chordee. We report our series of male patients seeking genital reconstruction following exstrophy repair in the past. Materials and Methods: Fourteen adolescent/adult male patients attended urology services during the period January 2000-December 2009 seeking genital reconstruction following exstrophy repair in the past. Results: Three patients underwent epispadias repair, four patients had chordee correction with cosmetic excision of skin tags and seven patients underwent chordee correction with penile lengthening. All patients reported satisfaction in the answered questionnaire. Patients undergoing penile lengthening by partial corporal dissection achieved a mean increase in length of 1.614 ± 0.279 cm dorsally and 1.543 ± 0.230 cm ventrally. The satisfactory rate assessed by the Short Form-36 (SF-36) showed that irrespective of the different genital reconstructive procedures done, the patients were satisfied with cosmetic and functional outcome. Conclusions: Surgical procedures have transformed the management in these patients with bladder exstrophy. Bladders can be safely placed within the pelvis, with most patients achieving urinary continence and cosmetically acceptable external genitalia. Genital reconstruction in the form of correction of chordee, excision of ugly skin tags and lengthening of penis can be performed to give the patients a satisfactory cosmetic and functional system. PMID:23204655
Karmanov, V. A.; Smirnov, A. V.; Mathiot, J.-F.
2007-02-15
In light-front dynamics, the regularization of amplitudes by traditional cutoffs imposed on the transverse and longitudinal components of particle momenta corresponds to restricting the integration volume by a nonrotationally invariant domain. The result depends not only on the size of this domain (i.e., on the cutoff values), but also on its orientation determined by the position of the light-front plane. Explicitly covariant formulation of light-front dynamics allows us to parametrize the latter dependence in a very transparent form. If we decompose the regularized amplitude in terms of independent invariant amplitudes, extra (nonphysical) terms should appear, with spin structures which explicitly depend on the orientation of the light-front plane. The number of form factors, i.e., the coefficients of this decomposition, therefore also increases. The spin-1/2 fermion self-energy is determined by three scalar functions, instead of the two standard ones, while for the elastic electromagnetic vertex the number of form factors increases from two to five. In the present paper we calculate perturbatively all these form factors in the Yukawa model. Then we compare the results obtained in the two following ways: (i) by using the light-front dynamics graph technique rules directly; (ii) by integrating the corresponding Feynman amplitudes in terms of the light-front variables. For each of these methods, we use two types of regularization: the transverse and longitudinal cutoffs, and the Pauli-Villars regularization. In the latter case, the dependence of amplitudes on the light-front plane orientation vanishes completely provided enough Pauli-Villars subtractions are made.
2015-01-01
Background Cellular processes are known to be modular and are realized by groups of proteins implicated in common biological functions. Such groups of proteins are called functional modules, and many community detection methods have been devised for their discovery from protein interaction networks (PINs) data. In current agglomerative clustering approaches, vertices with just a very few neighbors are often classified as separate clusters, which does not make sense biologically. Also, a major limitation of agglomerative techniques is that their computational efficiency do not scale well to large PINs. Finally, PIN data obtained from large scale experiments generally contain many false positives, and this makes it hard for agglomerative clustering methods to find the correct clusters, since they are known to be sensitive to noisy data. Results We propose a local similarity premetric, the relative vertex clustering value, as a new criterion allowing to decide when a node can be added to a given node's cluster and which addresses the above three issues. Based on this criterion, we introduce a novel and very fast agglomerative clustering technique, FAC-PIN, for discovering functional modules and protein complexes from a PIN data. Conclusions Our proposed FAC-PIN algorithm is applied to nine PIN data from eight different species including the yeast PIN, and the identified functional modules are validated using Gene Ontology (GO) annotations from DAVID Bioinformatics Resources. Identified protein complexes are also validated using experimentally verified complexes. Computational results show that FAC-PIN can discover functional modules or protein complexes from PINs more accurately and more efficiently than HC-PIN and CNM, the current state-of-the-art approaches for clustering PINs in an agglomerative manner. PMID:25734691
Lu Yuanming; Wang Ziqiang; Wen Xiaogang; Wang Zhenghan
2010-03-15
In the pattern-of-zeros approach to quantum Hall states, a set of data (n;m;S{sub a}|a=1,...,n;n,m,S{sub a} is n element of N) (called the pattern of zeros) is introduced to characterize a quantum Hall wave function. In this paper we find sufficient conditions on the pattern of zeros so that the data correspond to a valid wave function. Some times, a set of data (n;m;S{sub a}) corresponds to a unique quantum Hall state, while other times, a set of data corresponds to several different quantum Hall states. So in the latter cases, the pattern of zeros alone does not completely characterize the quantum Hall states. In this paper, we find that the following expanded set of data (n;m;S{sub a};c|a=1,...,n;n,m,S{sub a} is an element of N;c is an element of R) provides a more complete characterization of quantum Hall states. Each expanded set of data completely characterizes a unique quantum Hall state, at least for the examples discussed in this paper. The result is obtained by combining the pattern of zeros and Z{sub n} simple-current vertex algebra which describes a large class of Abelian and non-Abelian quantum Hall states PHI{sub Z{sub n}{sup sc}}. The more complete characterization in terms of (n;m;S{sub a};c) allows us to obtain more topological properties of those states, which include the central charge c of edge states, the scaling dimensions and the statistics of quasiparticle excitations.
Faber, Vance; Moore, James W.
1992-01-01
A network of interconnected processors is formed from a vertex symmetric graph selected from graphs .GAMMA..sub.d (k) with degree d, diameter k, and (d+1)!/(d-k+1)! processors for each d.gtoreq.k and .GAMMA..sub.d (k,-1) with degree 3-1, diameter k+1, and (d+1)!/(d-k+1)! processors for each d.gtoreq.k.gtoreq.4. Each processor has an address formed by one of the permutations from a predetermined sequence of letters chosen a selected number of letters at a time, and an extended address formed by appending to the address the remaining ones of the predetermined sequence of letters. A plurality of transmission channels is provided from each of the processors, where each processor has one less channel than the selected number of letters forming the sequence. Where a network .GAMMA..sub.d (k,-1) is provided, no processor has a channel connected to form an edge in a direction .delta..sub.1. Each of the channels has an identification number selected from the sequence of letters and connected from a first processor having a first extended address to a second processor having a second address formed from a second extended address defined by moving to the front of the first extended address the letter found in the position within the first extended address defined by the channel identification number. The second address is then formed by selecting the first elements of the second extended address corresponding to the selected number used to form the address permutations.
Ahmed, Iffat; Chishti, Uzma; Akhtar, Munazza; Ismail, Humaira
2016-01-01
Objective: To analyse the factors associated with Caesarean Section (CS) of Nulliparous, Term and Singleton pregnancies with Vertex presentation (NTSV) at a tertiary care hospital. Methods: In this unmatched retrospective case-control study, 212 NTSV patients were identified through computerized medical record systems; the data was collected through predesigned Performa by reviewing medical record charts. One hundred six CS and spontaneous vaginal deliveries (SVD) were taken as cases and controls. Results: The mean maternal age of cases (CS) was 26.64 (SD: 3.9) and of controls (SVD) was 26.7(SD: 3.9) years, whereas mean gestational age was 38.66±1.12 and 38.57±0.9 weeks for cases and controls respectively. Ninety per cent of women in the study group were delivered within 10 hours of active labour. Babies that weighed ≤3kg were 45% and >3kg were 55%. The possibility of being high risk was twice more among those delivered by CS. However, it was not statistically significant (p value 0.077). Labour was induced in 38% patients. The Odds of Induction of Labour (IOL) were two times more and delivering at night was three times more amongst CS. The likelihood of labour exceeding 10 hours was four times (81%) if the patient had a CS. Moreover 48% of the babies weighing >3kg were delivered through CS. Maternal age, high risk pregnancies, gender of baby and epidural analgesia were not statistically significant predictors of mode of delivery (MOD) in this study. Conclusion: Induction of Labour, night time delivery, prolonged labour and birth weight <3kg were found to be associated with the increased CS rate among NTSV. Therefore further research is required in order to address these factors and to reduce the increasing Caesarean Section. PMID:27182230
Doctors Report on Success of Throat Reconstruction
... fullstory_158217.html Doctors Report on Success of Throat Reconstruction Seven years after receiving metal stents, donated ... 2016 (HealthDay News) -- An American man who underwent throat reconstruction seven years ago has no swallowing problems ...
What to Expect After Breast Reconstruction Surgery
... Topic References What to expect after breast reconstruction surgery It’s important to have an idea of what ... regular mammograms. Possible risks during and after reconstruction surgery There are certain risks from any type of ...
Muon Reconstruction and Identification in CMS
Everett, A.
2010-02-10
We present the design strategies and status of the CMS muon reconstruction and identification identification software. Muon reconstruction and identification is accomplished through a variety of complementary algorithms. The CMS muon reconstruction software is based on a Kalman filter technique and reconstructs muons in the standalone muon system, using information from all three types of muon detectors, and links the resulting muon tracks with tracks reconstructed in the silicon tracker. In addition, a muon identification algorithm has been developed which tries to identify muons with high efficiency while maintaining a low probability of misidentification. The muon identification algorithm is complementary by design to the muon reconstruction algorithm that starts track reconstruction in the muon detectors. The identification algorithm accepts reconstructed tracks from the inner tracker and attempts to quantify the muon compatibility for each track using associated calorimeter and muon detector hit information. The performance status is based on detailed detector simulations as well as initial studies using cosmic muon data.
Reconstructing Deweyan Pragmatism: A Review Essay
ERIC Educational Resources Information Center
Neubert, Stefan
2009-01-01
In this essay Stefan Neubert argues that John Dewey was a philosopher of reconstruction and that the best use we can make of him today is to reconstruct his work in and for our own contexts. Neubert distinguishes three necessary and equally important components of the overall project of reconstructing Deweyan pragmatism: first, to make strong and…
Advances in breast reconstruction after mastectomy.
Edlich, Richard F; Winters, Kathryne L; Faulkner, Brent C; Bill, Timothy J; Lin, Kant Y
2005-01-01
Over the past 40 years, surgical reconstruction of the breast following mastectomy has become an important aspect of the cancer patient's rehabilitation process. While the surgical emphasis remains on a cure for the cancer, experience with breast reconstruction has not demonstrated any increased rate of cancer recurrence, even when reconstruction is performed immediately following tumor resection. Advances in surgical technique and biotechnology have made post-mastectomy reconstruction possible. The development of silicone gel and saline-filled implants as well as tissue expanders has revolutionized breast reconstruction. The elucidation of musculocutaneous flaps now provides the surgeon with the ability to transfer adequate quantities of vascularized tissue to reconstruct the surgical defects. The advent of microsurgical techniques has provided an additional reconstructive option, with free tissue transfer allowing the plastic surgeon to move musculocutaneous flaps from remote or distant sites to reconstruct the defect. The option of having the reconstruction immediately following the mastectomy procedure is now available to the patient. When reviewing the anatomy of the breast region, the surgeon must consider the mammary gland, its vascular supply, and its lymphatic system. The surgical techniques involved in reconstruction after mastectomy include the use of breast implants and tissue expansion, as well as reconstruction with autogenous tissues. Reconstruction with autogenous tissues includes the use of latissimus dorsi musculocutaneous flap, transverse rectus abdominus musculocutaneous flap, free flap transfer, as well as nipple-areola reconstruction. Breast reconstruction after mastectomy should be undertaken by a plastic and reconstructive surgeon with considerable training and experience with these diversified procedures. PMID:15777171
X-Ray Tomographic Reconstruction
Bonnie Schmittberger
2010-08-25
Tomographic scans have revolutionized imaging techniques used in medical and biological research by resolving individual sample slices instead of several superimposed images that are obtained from regular x-ray scans. X-Ray fluorescence computed tomography, a more specific tomography technique, bombards the sample with synchrotron x-rays and detects the fluorescent photons emitted from the sample. However, since x-rays are attenuated as they pass through the sample, tomographic scans often produce images with erroneous low densities in areas where the x-rays have already passed through most of the sample. To correct for this and correctly reconstruct the data in order to obtain the most accurate images, a program employing iterative methods based on the inverse Radon transform was written. Applying this reconstruction method to a tomographic image recovered some of the lost densities, providing a more accurate image from which element concentrations and internal structure can be determined.
Hologram synthesis for photorealistic reconstruction.
Janda, Martin; Hanák, Ivo; Onural, Levent
2008-12-01
Computation of diffraction patterns, and thus holograms, of scenes with photorealistic properties is a highly complicated and demanding process. An algorithm, based primarily on computer graphics methods, for computing full-parallax diffraction patterns of complicated surfaces with realistic texture and reflectivity properties is proposed and tested. The algorithm is implemented on single-CPU, multiple-CPU and GPU platforms. An alternative algorithm, which implements reduced occlusion diffraction patterns for much faster but somewhat lower quality results, is also developed and tested. The algorithms allow GPU-aided calculations and easy parallelization. Both numerical and optical reconstructions are conducted. The results indicate that the presented algorithms compute diffraction patterns that provide successful photorealistic reconstructions; the computation times are acceptable especially on the GPU implementations. PMID:19037400
Reconstruction of the Genesis Entry
NASA Technical Reports Server (NTRS)
Desai, Prasun N.; Qualls, Garry D.; Schoenenberger, Mark
2005-01-01
This paper provides an overview of the findings from a reconstruction analysis of the Genesis capsule entry. First, a comparison of the atmospheric properties (density and winds) encountered during the entry to the pre-entry profile is presented. The analysis that was performed on the video footage (obtained from the tracking stations at UTTR) during the descent is then described from which the Mach number at the onset of the capsule tumble was estimated following the failure of the drogue parachute deployment. Next, an assessment of the Genesis capsule aerodynamics that was extracted from the video footage is discussed, followed by a description of the capsule hypersonic attitude that must have occurred during the entry based on examination of the recovered capsule heatshield. Lastly, the entry trajectory reconstruction that was performed is presented.
Facial reconstruction in partial lipodystrophy.
Hurwitz, P J; Sarel, R
1982-03-01
Lipodystrophy is a rare disease characterized by progressive disappearance of the subcutaneous fat of the upper part of the body. Accompanying abnormalities of carbohydrate and lipid metabolism, diabetes, nephritis, and low levels of complement are frequent. The most striking clinical features are the extremely hollow cheeks, making the normal facial skeleton rather prominent. Very little has been reported on facial reconstruction in such patients. A 16-year-old girl is presented who was successfully reconstructed after the atrophic process arrested spontaneously. Bilateral dermal fat grafts from the buttocks were used in a one-stage procedure. Nine months later, when no more resorption of fat occurred, some trimming of the grafts was necessary. A good result was achieved. PMID:7103380
Direct reconstruction of dark energy.
Clarkson, Chris; Zunckel, Caroline
2010-05-28
An important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With so few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space. We present a new nonparametric method which can accurately reconstruct a wide variety of dark energy behavior with no prior assumptions about it. It is simple, quick and relatively accurate, and involves no expensive explorations of parameter space. The technique uses principal component analysis and a combination of information criteria to identify real features in the data, and tailors the fitting functions to pick up trends and smooth over noise. We find that we can constrain a large variety of w(z) models to within 10%-20% at redshifts z≲1 using just SNAP-quality data. PMID:20867085
Hanford Environmental Dose Reconstruction Project
Finch, S.M.
1990-09-01
This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at the Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms, environmental transport, environmental monitoring data, demographics, agriculture, food habits, environmental pathways and dose estimates. 3 figs.
Hanford Environmental Dose Reconstruction Project
Cannon, S.D.; Finch, S.M.
1992-10-01
The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.
Hanford Environmental Dose Reconstruction Project
Finch, S.M.; McMakin, A.H.
1992-01-01
The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.
Hanford Environmental Dose Reconstruction Project
Finch, S.M.; McMakin, A.H.
1991-01-01
The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.
Hanford Environmental Dose Reconstruction Project
Finch, S.M.; McMakin, A.H.
1992-02-01
The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.
Computed laminography and reconstruction algorithm
NASA Astrophysics Data System (ADS)
Que, Jie-Min; Cao, Da-Quan; Zhao, Wei; Tang, Xiao; Sun, Cui-Li; Wang, Yan-Fang; Wei, Cun-Feng; Shi, Rong-Jian; Wei, Long; Yu, Zhong-Qiang; Yan, Yong-Lian
2012-08-01
Computed laminography (CL) is an alternative to computed tomography if large objects are to be inspected with high resolution. This is especially true for planar objects. In this paper, we set up a new scanning geometry for CL, and study the algebraic reconstruction technique (ART) for CL imaging. We compare the results of ART with variant weighted functions by computer simulation with a digital phantom. It proves that ART algorithm is a good choice for the CL system.
Craniofacial reconstruction following oncologic resection.
Hanasono, Matthew M; Hofstede, Theresa M
2013-01-01
The ability to reliably reconstruct complex and sizable wounds has decreased the morbidity of skull base surgery substantially, preventing major complications and allowing treatment of tumors previously considered inoperable. Addressing facial nerve function with static and dynamic procedures as well as fabrication of craniofacial prostheses to replace delicate facial landmarks has further increased surgeons' ability to restore the appearance and function of the face. PMID:23174362
NASA Astrophysics Data System (ADS)
La Foy, Roderick; Vlachos, Pavlos
2011-11-01
An optimally designed MLOS tomographic reconstruction algorithm for use in 3D PIV and PTV applications is analyzed. Using a set of optimized reconstruction parameters, the reconstructions produced by the MLOS algorithm are shown to be comparable to reconstructions produced by the MART algorithm for a range of camera geometries, camera numbers, and particle seeding densities. The resultant velocity field error calculated using PIV and PTV algorithms is further minimized by applying both pre and post processing to the reconstructed data sets.
Accelerating Advanced MRI Reconstructions on GPUs
Stone, S.S.; Haldar, J.P.; Tsao, S.C.; Hwu, W.-m.W.; Sutton, B.P.; Liang, Z.-P.
2008-01-01
Computational acceleration on graphics processing units (GPUs) can make advanced magnetic resonance imaging (MRI) reconstruction algorithms attractive in clinical settings, thereby improving the quality of MR images across a broad spectrum of applications. This paper describes the acceleration of such an algorithm on NVIDIA’s Quadro FX 5600. The reconstruction of a 3D image with 1283 voxels achieves up to 180 GFLOPS and requires just over one minute on the Quadro, while reconstruction on a quad-core CPU is twenty-one times slower. Furthermore, relative to the true image, the error exhibited by the advanced reconstruction is only 12%, while conventional reconstruction techniques incur error of 42%. PMID:21796230
Reconstructing propagation networks with temporal similarity
Liao, Hao; Zeng, An
2015-01-01
Node similarity significantly contributes to the growth of real networks. In this paper, based on the observed epidemic spreading results we apply the node similarity metrics to reconstruct the underlying networks hosting the propagation. We find that the reconstruction accuracy of the similarity metrics is strongly influenced by the infection rate of the spreading process. Moreover, there is a range of infection rate in which the reconstruction accuracy of some similarity metrics drops nearly to zero. To improve the similarity-based reconstruction method, we propose a temporal similarity metric which takes into account the time information of the spreading. The reconstruction results are remarkably improved with the new method. PMID:26086198
Reconstructing propagation networks with temporal similarity.
Liao, Hao; Zeng, An
2015-01-01
Node similarity significantly contributes to the growth of real networks. In this paper, based on the observed epidemic spreading results we apply the node similarity metrics to reconstruct the underlying networks hosting the propagation. We find that the reconstruction accuracy of the similarity metrics is strongly influenced by the infection rate of the spreading process. Moreover, there is a range of infection rate in which the reconstruction accuracy of some similarity metrics drops nearly to zero. To improve the similarity-based reconstruction method, we propose a temporal similarity metric which takes into account the time information of the spreading. The reconstruction results are remarkably improved with the new method. PMID:26086198
Magnetic Reconstruction of PEGASUS Equilibria
NASA Astrophysics Data System (ADS)
Sontag, A. C.; Fonck, R. J.; Garstka, G. D.; Tritz, K. L.
2000-10-01
Magnetic equilibrium reconstruction on the PEGASUS Toroidal Experiment is a crucial tool to determine macroscopic plasma parameters such as geometry, l_i, beta, and edge q. To date, plasmas on the order of 0.1 MA with aspect ratios from 1.1 to 1.4, elongations from 1 to >3, l_is in the range 0.3 to 0.7, and β_ts on the order of 0.2 at toroidal fields less than 0.07 T have been analyzed with the TokaMac magnetic reconstruction code. To support a wide variety of diagnostic measurements and plasma profile models, a code using a nonlinear least-squares fitting routine coupled to a Grad-Shafranov solver has been developed. Induced currents are estimated using a time-evolving current filament model and are constrained during the reconstruction using wall mounted flux loops. A scan of model plasma parameters has been employed to determine a minimal array of magnetic diagnostics for accurately characterizing the plasma equilibrium and induced wall currents. This set includes a poloidal array of 13 magnetic pickup coils , 9 plasma flux loops, and a Rogowski loop for the toroidal plasma current.
Environment reconstruction for robot navigation
Bohn, S.; Thornton, E.
1994-04-01
The United State Department of Energy (DOE) is facing a large task in characterizing and remediating waste tanks and their contents. Because of the hazardous materials inside the waste tanks, all of the work must be done remotely. The purpose of this paper is to show how to reconstruct an enclosed environment from various scans of a Laser Range Finder (LRF). The reconstructed environment can then be used by a robot for path planning, and by an operator to monitor the progress of the waste remediation process. Environment reconstruction consists of two tasks: image processing and laser sculpting. The image processing task focuses first on reducing the quantity of low-confidence data and on smoothing random fluctuations in the data. Then the processed range data must be converted into an XYZ Cartesian coordinate space, a process for which we examined two methods. The first method is a geometrical transform of the LRF data. The second uses an artificial neural network to transform the data to XYZ coordinates. Once an XYZ data set is computed, laser sculpting can be performed. Laser sculpting employs a hierarchical tree structure formally called an octree. The octree structure allows efficient storage of volumetric data and the ability to fuse multiple data sets. Our research has allowed us to examine the difficulties of fusing multiple LRF scans into an octree and to develop algorithms for converting an octree structure into a representation of polygon surfaces.
PRP Augmentation for ACL Reconstruction
Di Matteo, Berardo; Kon, Elizaveta; Marcacci, Maurilio
2015-01-01
Current research is investigating new methods to enhance tissue healing to speed up recovery time and decrease the risk of failure in Anterior Cruciate Ligament (ACL) reconstructive surgery. Biological augmentation is one of the most exploited strategies, in particular the application of Platelet Rich Plasma (PRP). Aim of the present paper is to systematically review all the preclinical and clinical papers dealing with the application of PRP as a biological enhancer during ACL reconstructive surgery. Thirty-two studies were included in the present review. The analysis of the preclinical evidence revealed that PRP was able to improve the healing potential of the tendinous graft both in terms of histological and biomechanical performance. Looking at the available clinical evidence, results were not univocal. PRP administration proved to be a safe procedure and there were some evidences that it could favor the donor site healing in case of ACL reconstruction with patellar tendon graft and positively contribute to graft maturation over time, whereas the majority of the papers did not show beneficial effects in terms of bony tunnels/graft area integration. Furthermore, PRP augmentation did not provide superior functional results at short term evaluation. PMID:26064903
PRP Augmentation for ACL Reconstruction.
Andriolo, Luca; Di Matteo, Berardo; Kon, Elizaveta; Filardo, Giuseppe; Venieri, Giulia; Marcacci, Maurilio
2015-01-01
Current research is investigating new methods to enhance tissue healing to speed up recovery time and decrease the risk of failure in Anterior Cruciate Ligament (ACL) reconstructive surgery. Biological augmentation is one of the most exploited strategies, in particular the application of Platelet Rich Plasma (PRP). Aim of the present paper is to systematically review all the preclinical and clinical papers dealing with the application of PRP as a biological enhancer during ACL reconstructive surgery. Thirty-two studies were included in the present review. The analysis of the preclinical evidence revealed that PRP was able to improve the healing potential of the tendinous graft both in terms of histological and biomechanical performance. Looking at the available clinical evidence, results were not univocal. PRP administration proved to be a safe procedure and there were some evidences that it could favor the donor site healing in case of ACL reconstruction with patellar tendon graft and positively contribute to graft maturation over time, whereas the majority of the papers did not show beneficial effects in terms of bony tunnels/graft area integration. Furthermore, PRP augmentation did not provide superior functional results at short term evaluation. PMID:26064903
Photogrammetric Reconstruction with Bayesian Information
NASA Astrophysics Data System (ADS)
Masiero, A.; Fissore, F.; Guarnieri, A.; Pirotti, F.; Vettore, A.
2016-06-01
Nowadays photogrammetry and laser scanning methods are the most wide spread surveying techniques. Laser scanning methods usually allow to obtain more accurate results with respect to photogrammetry, but their use have some issues, e.g. related to the high cost of the instrumentation and the typical need of high qualified personnel to acquire experimental data on the field. Differently, photogrammetric reconstruction can be achieved by means of low cost devices and by persons without specific training. Furthermore, the recent diffusion of smart devices (e.g. smartphones) embedded with imaging and positioning sensors (i.e. standard camera, GNSS receiver, inertial measurement unit) is opening the possibility of integrating more information in the photogrammetric reconstruction procedure, in order to increase its computational efficiency, its robustness and accuracy. In accordance with the above observations, this paper examines and validates new possibilities for the integration of information provided by the inertial measurement unit (IMU) into the photogrammetric reconstruction procedure, and, to be more specific, into the procedure for solving the feature matching and the bundle adjustment problems.
Interface Reconstruction with Directional Walking
Yao, J
2009-05-22
Young's interface reconstruction with three-dimensional arbitrary mesh, in general, is rather tedious to implement compared to the case of a regular mesh. The main difficulty comes from the construction of a planar facet that bounds a certain volume inside a cell. Unlike the five basic configurations with a Cartesian mesh, there can be a great number of different configurations in the case of a general mesh. We represent a simple method that can derive the topology/geometry of the intersection of arbitrary planar objects in a uniform way. The method is based on a directional walking on the surface of objects, and links the intersection points with the paths of the walking naturally defining the intersection of objects. The method works in both two and three dimensions. The method does not take advantage of convexity, thus decomposition of an object is not necessary. Therefore, the solution with this method will have a reduced number of edges and less data storage, compared with methods that use shape decomposition. The treatment is general for arbitrary polyhedrons, and no look-up tables are needed. The same operation can easily be extended for curved geometry. The implementation of this new algorithm shall allow the interface reconstruction on an arbitrary mesh to be as simple as it is on a regular mesh. Furthermore, we exactly compute the integral of partial cell volume bounded by quadratic interface. Therefore, interface reconstruction with higher than second order accuracy can be achieved on an arbitrary mesh.
Reconstruction of FXR Beam Conditions
Nexen, W E; Scarpetti, R D; Zentler, J
2001-05-31
Beam-envelope radius, envelope angle, and beam emittance can be derived from measurements of beam radius for at least three different transport conditions. We have used this technique to reconstruct exit parameters from the FXR injector and accelerator. We use a diamagnetic loop (DML) to measure the magnetic moment of the high current beam. With no assumptions about radial profile, we can derive the beam mean squire radius from the moment under certain easily met conditions. Since it is this parameter which is required for the reconstruction, it is evident that the DML is the ideal diagnostic for this technique. The simplest application of this technique requires at least three shots for a reconstruction but in reality requires averaging over many more shots because of shot to shot variation. Since DML measurements do not interfere with the beam, single shot time resolved measurements of the beam parameters appear feasible if one uses an array of at least three DMLs separated by known transport conditions.
NASA Astrophysics Data System (ADS)
Murtazaev, A. K.; Babaev, A. B.; Ataeva, G. Ya.
2015-07-01
The effect of quenched-in nonmagnetic impurities on phase transitions in a two-dimensional diluted antiferromagnetic three-vertex Potts model on a triangular lattice has been investigated using the Monte Carlo method. The systems with linear dimensions L × L = N and L = 9-144 have been considered. It has been shown using the fourth-order Binder cumulant method that the introduction of a quenched-in disorder into a spin system described by the two-dimensional antiferromagnetic Potts model leads to a change from the first-order phase transition to the second-order phase transition.
Labarga, L.; Adolphsen, C.; Gratta, G.; Litke, A.; Turala, M.; Zaccardelli, C. . Inst. for Particle Physics); Breakstone, A.; Parker, S. ); Barnett, B.; Dauncey, P.; Drewer, D.; Matthews, J. ); Jacobsen, R.; Lueth, V. )
1989-12-01
A Silicon Strip Vertex Detector (SSVD) consisting of 36 independent silicon detector modules has been built for use in the Mark II detector at the SLAC Linear Collider (SLC). We discuss the performance of the individual modules and the stability and accuracy of their placement in the mechanical support. To gain operational experience at the SLC, we have assembled and placed inside the Mark II a telescope made of three Silicon Detector Modules. We present results from the first data run of the SLC on the overall performance of the Telescope, including backgrounds, charged particle tracking and spatial resolution. 7 refs., 10 figs.
Novales-Sanchez, H.; Toscano, J. J.
2008-01-01
The one-loop contribution of the two CP-violating components of the WW{gamma} vertex, {kappa}-tilde{sub {gamma}}W{sub {mu}}{sup +}W{sub {nu}}{sup -}F-tilde{sup {mu}}{sup {nu}} and ({lambda}-tilde{sub {gamma}}/m{sub W}{sup 2})W{sub {mu}}{sub {nu}}{sup +}W{sub {rho}}{sup -{nu}}F-tilde{sup {rho}}{sup {mu}}, on the electric dipole moment (EDM) of fermions is calculated using dimensional regularization and its impact at low energies reexamined in the light of the decoupling theorem. The Ward identities satisfied by these couplings are derived by adopting a SU{sub L}(2)xU{sub Y}(1)-invariant approach and their implications in radiative corrections discussed. Previous results on {kappa}-tilde{sub {gamma}}, whose bound is updated to |{kappa}-tilde{sub {gamma}}|<5.2x10{sup -5}, are reproduced, but disagreement with those existing for {lambda}-tilde{sub {gamma}} is found. In particular, the upper bound |{lambda}-tilde{sub {gamma}}|<1.9x10{sup -2} is found from the limit on the neutron EDM, which is more than 2 orders of magnitude less stringent than that of previous results. It is argued that this difference between the {kappa}-tilde{sub {gamma}} and {lambda}-tilde{sub {gamma}} bounds is the one that might be expected in accordance with the decoupling theorem. This argument is reinforced by analyzing carefully the low-energy behavior of the loop functions. The upper bounds on the W EDM, |d{sub W}|<6.2x10{sup -21} e{center_dot}cm, and the magnetic quadrupole moment, |Q-tilde{sub W}|<3x10{sup -36} e{center_dot}cm{sup 2}, are derived. The EDM of the second and third families of quarks and charged leptons are estimated. In particular, EDM as large as 10{sup -20} e{center_dot}cm and 10{sup -21} e{center_dot}cm are found for the t and b quarks, respectively.
NASA Astrophysics Data System (ADS)
Leicht, E. A.; Holme, Petter; Newman, M. E. J.
2006-02-01
We consider methods for quantifying the similarity of vertices in networks. We propose a measure of similarity based on the concept that two vertices are similar if their immediate neighbors in the network are themselves similar. This leads to a self-consistent matrix formulation of similarity that can be evaluated iteratively using only a knowledge of the adjacency matrix of the network. We test our similarity measure on computer-generated networks for which the expected results are known, and on a number of real-world networks.
Measurement of the B{sup +} and B{sup 0} lifetimes with topological vertexing at SLD
Abe, K.; Abe, K.; Abt, I.; SLD Collaboration
1996-07-01
The lifetimes of the B{sup +} (B{sub u}) and B{sup 0} (B{sub d}) mesons have been measured using a sample of 150,000 hadronic Z{sup 0} decays collected by the SLD experiment at the SLC between 1993 and 1995. The analysis reconstructs the decay length and charge of the B meson using a novel topological technique. This method results in a high statistics sample of 6,033 (3,665) charged (neutral) vertices. The ratio of B{sup +}:B{sup 0} decays in the charged (neutral) sample is 1.8:1 (1:2.3).
Reconstruction of Anacostia wetlands: success?
Hammerschlag, R.S.
2002-01-01
Historically, the tidal Anacostia River in Washington, D.C. had been an extensive system of freshwater tidal marshes replete with a full array of wetland vegetation dominated by wild rice. The local Nacochtank Indians had found the abundant fish and wildlife sufficient to sustain their daily lives. White man's intrusion upon the landscape gradually brought about deterioration of the natural (and associated cultural) system. Total demise followed mid-20th century dredge and fill channelization, which was conducted from the confluence of the Anacostia with the Potomac near the heart of Washington, D.C. to the terminus of the tidal regime at Bladensburg, Maryland. The National Park Service (NPS) became the manager for much of the land along the Anacostia, particularly the eastern bank. As part of its planning effort, the NPS envisioned returning portions of the Anacostia under its control to a natural system as a vignette. The concept was based on bringing back as comprehensive a collection of vegetation and wildlife as possible through the reestablishment of tidal marshes at Kenilworth and Kingman. The resultant wetlands were to be made accessible to the public both logistically and through a well designed interpretative program. In fact, this vision has been realized due to an impressive cooperative effort among a number of Federal and local agencies and organizations. In 1993, 32 acres of freshwater tidal marsh were reconstructed at Kenilworth. Based upon the 5-year monitoring program that has been in place since reconstruction, several generalizations may be made concerning the degree of success of the marsh reconstruction. Water quality in the marsh system and nearby tidal waters has not been noticeably improved. The poor quality may be clue to the overwhelmingly high loads (e.g., sediment, nutrients, etc.) brought in on the twice daily tidal cycle from the Anacostia and to the relatively small volume of water which actually interacts with the emergent marsh
Spiral scan long object reconstruction through PI line reconstruction.
Tam, K C; Hu, J; Sourbelle, K
2004-06-01
The response of a point object in a cone beam (CB) spiral scan is analysed. Based on the result, a reconstruction algorithm for long object imaging in spiral scan cone beam CT is developed. A region-of-interest (ROI) of the long object is scanned with a detector smaller than the ROI, and a portion of it can be reconstructed without contamination from overlaying materials. The top and bottom surfaces of the ROI are defined by two sets of PI lines near the two ends of the spiral path. With this novel definition of the top and bottom ROI surfaces and through the use of projective geometry, it is straightforward to partition the cone beam image into regions corresponding to projections of the ROI, the overlaying objects or both. This also simplifies computation at source positions near the spiral ends, and makes it possible to reduce radiation exposure near the spiral ends substantially through simple hardware collimation. Simulation results to validate the algorithm are presented. PMID:15248589
NuLat: 3D Event Reconstruction of a ROL Detector for Neutrino Detection and Background Rejection
NASA Astrophysics Data System (ADS)
Yokley, Zachary; NuLat Collaboration
2015-04-01
NuLat is a proposed very-short baseline reactor antineutrino experiment that employs a unique detector design, a Ragahavan Optical Lattice (ROL), developed for the LENS solar neutrino experiment. The 3D lattice provides high spatial and temporal resolution and allows for energy deposition in each voxel to be determined independently of other voxels, as well as the time sequence associated with each voxel energy deposition. This unique feature arises from two independent means to spatially locate energy deposits: via timing and via optical channeling. NuLat, the first application of a ROL detector targeting physics results, will measure the reactor antineutrino flux at very short baselines via inverse beta decay (IBD). The ROL design of NuLat makes possible the reconstruction of positron energy with little contamination due to the annihilation gammas which smear the positron energy resolution in a traditional detector. IBD events are cleanly tagged via temporal and spatial coincidence of neutron capture in the vertex voxel or nearest neighbors. This talk will present work on IBD event reconstruction in NuLat and its likely impact on sterile neutrino detection via operation in higher background locations enabled by its superior rejection of backgrounds. This research has been funded in part by the National Science Foundation on Award Numbers 1001394 and 1001078.
Reconstruction of coded aperture images
NASA Technical Reports Server (NTRS)
Bielefeld, Michael J.; Yin, Lo I.
1987-01-01
Balanced correlation method and the Maximum Entropy Method (MEM) were implemented to reconstruct a laboratory X-ray source as imaged by a Uniformly Redundant Array (URA) system. Although the MEM method has advantages over the balanced correlation method, it is computationally time consuming because of the iterative nature of its solution. Massively Parallel Processing, with its parallel array structure is ideally suited for such computations. These preliminary results indicate that it is possible to use the MEM method in future coded-aperture experiments with the help of the MPP.
Economics of abdominal wall reconstruction.
Bower, Curtis; Roth, J Scott
2013-10-01
The economic aspects of abdominal wall reconstruction are frequently overlooked, although understandings of the financial implications are essential in providing cost-efficient health care. Ventral hernia repairs are frequently performed surgical procedures with significant economic ramifications for employers, insurers, providers, and patients because of the volume of procedures, complication rates, the significant rate of recurrence, and escalating costs. Because biological mesh materials add significant expense to the costs of treating complex abdominal wall hernias, the role of such costly materials needs to be better defined to ensure the most cost-efficient and effective treatments for ventral abdominal wall hernias. PMID:24035086