Sample records for detectors current capabilities

  1. Evaluating the Performance of a Commercial Silicon Drift Detector for X-ray Microanalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenik, Edward A

    2011-01-01

    Silicon drift detectors (SDDs) are rapidly becoming the energy dispersive spectrometer (EDS) of choice, especially for scanning electron microscopy x-ray microanalysis. The complementary features of large active areas (i.e., high collection angle) and high count rate capability of these detector contribute to their popularity, as well as the absence of liquid nitrogen cooling and good energy resolution of these detectors. The performance of an EDAX Apollo 40 SDD on a JEOL 6500F SEM is discussed. The larger detector resulted in an significant increase (~3.5x) in geometric collection efficiency compared to the original 10mm2 Si(Li) detector that it replaced. The SEMmore » can provide high beam currents (up to 200nA in some conditions) at small probe diameters. The high count rate capability of the SDD and the high current capability of the SEM compliment each other and provide excellent EDS analytical capabilities for both single point and spectrum imaging applications.« less

  2. Cryogenic, high-resolution x-ray detector with high count rate capability

    DOEpatents

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Hiller, Larry J.; Barfknecht, Andrew T.

    2003-03-04

    A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.

  3. Scientific Benefit of Enlarging Gravitational Wave Detector Networks

    NASA Astrophysics Data System (ADS)

    Chu, Qi; Wen, Linqing; Blair, David

    2012-06-01

    Localising the sources of gravitational waves (GWs) in the sky is crucial to observing the electromagnetic counterparts of GW sources. The localisation capability is poor by a single GW detector yet can be improved by adding more detectors to the detector network. In this paper we review recent studies on scientific benefits of global detector networks and focus on their localisation capability. We employ Wen-Chen's formula to compare this merit of current and future detector networks for localising gravitational wave bursts. We find that the addition of a new detector located in Japan, or India, or Australia will increase angular resolution 3~5 fold with respect to current LIGO-Virgo network, and that the angular resolution improvement by adding a single detector in Australia is comparable to that achieved by adding detectors in both India and Japan. A six-site network achieves a 11-fold improvement in angular resolution compared with the existing three-site network.

  4. High-Sensitivity Fast Neutron Detector KNK-2-8M

    NASA Astrophysics Data System (ADS)

    Koshelev, A. S.; Dovbysh, L. Ye.; Ovchinnikov, M. A.; Pikulina, G. N.; Drozdov, Yu. M.; Chuklyaev, S. V.; Pepyolyshev, Yu. N.

    2017-12-01

    The design of the fast neutron detector KNK-2-8M is outlined. The results of he detector study in the pulse counting mode with pulses from 238U nuclei fission in the radiator of the neutron-sensitive section and in the current mode with separation of functional section currents are presented. The possibilities of determination of the effective number of 238U nuclei in the radiator of the neutron-sensitive section are considered. The diagnostic capabilities of the detector in the counting mode are demonstrated, as exemplified by the analysis of reference data on characteristics of neutron fields in the BR-1 reactor hall. The diagnostic capabilities of the detector in the current mode are demonstrated, as exemplified by the results of measurements of 238U fission intensity in the power startup of the BR-K1 reactor in the fission pulse generation mode with delayed neutrons and the detector placed in the reactor cavity in conditions of large-scale variation of the reactor radiation fields.

  5. Analysis of Measurements for Solid State Lidar Development

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1996-01-01

    A Detector Characterization Facility (DCF), capable of measuring 2-micron detection devices and evaluating heterodyne receivers, was developed at the Marshall Space Flight Center. The DCF is capable of providing all the necessary detection parameters for design, development, and calibration of coherent and incoherent solid state laser radar (lidar) systems. The coherent lidars in particular require an accurate knowledge of detector heterodyne quantum efficient, nonlinearity properties, and voltage-current relationship as a function of applied optical power. At present, no detector manufacturer provides these qualities or adequately characterizes their detectors for heterodyne detection operation. In addition, the detector characterization facility measures the detectors DC and AC quantum efficiencies noise equivalent power and frequency response up to several GHz. The DCF is also capable of evaluating various heterodyne detection schemes such as balanced detectors and fiber optic interferometers. The design and analyses of measurements for the DCF were preformed over the previous year and a detailed description of its design and capabilities was provided in the NASA report NAS8-38609/DO77. It should also be noted that the DCF design was further improved to allow for the characterization of diffractive andholographical optical elements and other critical components of coherent lidar systems.

  6. Radiation hard blocked tunneling band {GaAs}/{AlGaAs} superlattice long wavelength infrared detectors

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Wen, C. P.; Reiner, P.; Tu, C. W.; Hou, H. Q.

    1996-09-01

    We have developed a novel multiple quantum well (MQW) long wavelength infrared (LWIR) detector which can operate in a photovoltaic detection mode with an intrinsic event discrimination (IED) capability. The detector was constructed using the {GaAs}/{AlGaAs} MQW technology to form a blocked tunneling band superlattice structure with a 10.2 micron wavelength and 2.2 micron bandwidth. The detector exhibited Schottky junction and photovoltaic detection characteristics with extremely low dark current and low noise as a result of a built-in tunneling current blocking layer structure. In order to enhance quantum efficiency, a built-in electric field was created by grading the doping concentration of each quantum well in the MQW region. The peak responsivity of the detector was 0.4 amps/W with a measured detectivity of 6.0 × 10 11 Jones. The external quantum efficiency was measured to be 4.4%. The detector demonstrated an excellent intrinsic event discrimination capability due to the presence of a p-type GaAs hole collector layer, which was grown on top of the n-type electron emitter region of the MQW detector. The best results show that an infrared signal which is as much as 100 times smaller than coincident nuclear radiation induced current can be distinguished and extracted from the noise signal. With this hole collector structure, our detector also demonstrated two-color detection.

  7. Design philosophy of the Jet Propulsion Laboratory infrared detector test facility

    NASA Technical Reports Server (NTRS)

    Burns, R.; Blessinger, M. A.

    1983-01-01

    To support the development of advanced infrared remote sensing instrumentation using line and area arrays, a test facility has been developed to characterize the detectors. The necessary performance characteristics of the facility were defined by considering current and projected requirements for detector testing. The completed facility provides the desired level of detector testing capability as well as providing ease of human interaction.

  8. X-ray position detector and implementation in a mirror pointing servo system

    DOEpatents

    Rabedeau, Thomas A.; Van Campen, Douglas G.; Stefan, Peter M.

    2016-04-05

    An X-ray beam position and stability detector is provided having a first metal blade collinear with a second metal blade, where an edge of the first metal blade is opposite an edge of the second metal blade, where the first metal blade edge and the second metal blade edge are disposed along a centerline with respect to each other, where the metal blades are capable of photoelectron emission when exposed to an x-ray beam, a metal coating on the metal blades that is capable of enhancing the photoelectron emission, or suppressing energy-resonant contaminants, or enhancing the photoelectron emission and suppressing energy-resonant contaminants, a background shielding element having an electrode capable of suppressing photoelectron emission from spurious x-rays not contained in an x-ray beam of interest, and a photoelectron emission detector having an amplifier capable of detecting the photoelectron emission as a current signal.

  9. XRCF Testing Capabilities

    NASA Technical Reports Server (NTRS)

    Reily, Cary; Kegely, Jeff; Burdine, Robert (Technical Monitor)

    2001-01-01

    The Space Optics Manufacturing Technology Center's X-ray Calibration Facility has been recently modified to test Next Generation Space Telescope (NGST) developmental mirrors at cryogenic temperatures (35 degrees Kelvin) while maintaining capability for performance testing of x-ray optics and detectors. The facility's current cryo-optical testing capability and potential modifications for future support of NGST will be presented.

  10. Gas electron multiplier (GEM) enhanced ionization chamber for fluorescence detector

    NASA Astrophysics Data System (ADS)

    Shaban, E. H.; Siddons, D. P.; Kuczewski, A.

    2007-11-01

    Detecting dilute elements in thin materials using extended X-ray absorption fluorescence spectroscopy (EXAFS) method requires a detector capable of high count rate and low noise. For detection of dilute elements, the fluorescence signal amplitude is often overcome by the presence of noise or background interference. In this paper we have used a gas ionization chamber enhanced by a gas electron multiplier (GEM) to amplify the primary ionized electrons due to the X-ray fluorescence of a dilute element. The GEM provides an essentially noise free electron amplification of the signal primary photoelectrons. It provides a larger output current prior to the electronic amplification, allowing a lower gain amplifier with lower electronic circuit noise contribution and hence improved S/ N ratio. In addition, since the signal is produced only by electrons, and not from ion motion, the detector is capable of recording rapidly changing signals. Iron in an arbitrary tree leaf was used as a test sample. This sample was measured using our detector SUBRSAB, and also with Lytle and passivated implanted planar silicon (PIPS) detectors. An improvement in the signal amplitude by a factor of 20 and a factor of 2 are recorded for the proposed detector with respect to the Lytle and PIPS detectors, respectively. Although the gain in signal over the PIPS detector is small for this detector, its lack of sensitivity to light and its low and temperature-independent dark current are further advantages.

  11. High Frequency Amplitude Detector for GMI Magnetic Sensors

    PubMed Central

    Asfour, Aktham; Zidi, Manel; Yonnet, Jean-Paul

    2014-01-01

    A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI) sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted. PMID:25536003

  12. Long range alpha particle detector

    DOEpatents

    MacArthur, Duncan W.; Wolf, Michael A.; McAtee, James L.; Unruh, Wesley P.; Cucchiara, Alfred L.; Huchton, Roger L.

    1993-01-01

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  13. Long range alpha particle detector

    DOEpatents

    MacArthur, D.W.; Wolf, M.A.; McAtee, J.L.; Unruh, W.P.; Cucchiara, A.L.; Huchton, R.L.

    1993-02-02

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  14. Light-weight analyzer for odor recognition

    DOEpatents

    Vass, Arpad A; Wise, Marcus B

    2014-05-20

    The invention provides a light weight analyzer, e.g., detector, capable of locating clandestine graves. The detector utilizes the very specific and unique chemicals identified in the database of human decompositional odor. This detector, based on specific chemical compounds found relevant to human decomposition, is the next step forward in clandestine grave detection and will take the guess-work out of current methods using canines and ground-penetrating radar, which have historically been unreliable. The detector is self contained, portable and built for field use. Both visual and auditory cues are provided to the operator.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Madison Theresa; Bates, Cameron Russell; Mckigney, Edward Allen

    Accurate detector modeling is a requirement to design systems in many non-proliferation scenarios; by determining a Detector’s Response Function (DRF) to incident radiation, it is possible characterize measurements of unknown sources. DRiFT is intended to post-process MCNP® output and create realistic detector spectra. Capabilities currently under development include the simulation of semiconductor, gas, and (as is discussed in this work) scintillator detector physics. Energy spectra and pulse shape discrimination (PSD) trends for incident photon and neutron radiation have been reproduced by DRiFT.

  16. Vision 20/20: Single photon counting x-ray detectors in medical imaging

    PubMed Central

    Taguchi, Katsuyuki; Iwanczyk, Jan S.

    2013-01-01

    Photon counting detectors (PCDs) with energy discrimination capabilities have been developed for medical x-ray computed tomography (CT) and x-ray (XR) imaging. Using detection mechanisms that are completely different from the current energy integrating detectors and measuring the material information of the object to be imaged, these PCDs have the potential not only to improve the current CT and XR images, such as dose reduction, but also to open revolutionary novel applications such as molecular CT and XR imaging. The performance of PCDs is not flawless, however, and it seems extremely challenging to develop PCDs with close to ideal characteristics. In this paper, the authors offer our vision for the future of PCD-CT and PCD-XR with the review of the current status and the prediction of (1) detector technologies, (2) imaging technologies, (3) system technologies, and (4) potential clinical benefits with PCDs. PMID:24089889

  17. Direct conversion semiconductor detectors in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Gu, Yi; Levin, Craig S.

    2015-05-01

    Semiconductor detectors are playing an increasing role in ongoing research to improve image resolution, contrast, and quantitative accuracy in preclinical applications of positron emission tomography (PET). These detectors serve as a medium for direct detection of annihilation photons. Early clinical translation of this technology has shown improvements in image quality and tumor delineation for head and neck cancers, relative to conventional scintillator-based systems. After a brief outline of the basics of PET imaging and the physical detection mechanisms for semiconductor detectors, an overview of ongoing detector development work is presented. The capabilities of semiconductor-based PET systems and the current state of these devices are discussed.

  18. X-ray imaging detectors for synchrotron and XFEL sources

    PubMed Central

    Hatsui, Takaki; Graafsma, Heinz

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors. PMID:25995846

  19. Numerical Device Modeling, Analysis, and Optimization of Extended-SWIR HgCdTe Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Schuster, J.; DeWames, R. E.; DeCuir, E. A.; Bellotti, E.; Dhar, N.; Wijewarnasuriya, P. S.

    2016-09-01

    Imaging in the extended short-wavelength infrared (eSWIR) spectral band (1.7-3.0 μm) for astronomy applications is an area of significant interest. However, these applications require infrared detectors with extremely low dark current (less than 0.01 electrons per pixel per second for certain applications). In these detectors, sources of dark current that may limit the overall system performance are fundamental and/or defect-related mechanisms. Non-optimized growth/device processing may present material point defects within the HgCdTe bandgap leading to Shockley-Read-Hall dominated dark current. While realizing contributions to the dark current from only fundamental mechanisms should be the goal for attaining optimal device performance, it may not be readily feasible with current technology and/or resources. In this regard, the U.S. Army Research Laboratory performed physics-based, two- and three-dimensional numerical modeling of HgCdTe photovoltaic infrared detectors designed for operation in the eSWIR spectral band. The underlying impetus for this capability and study originates with a desire to reach fundamental performance limits via intelligent device design.

  20. Spectroscopic micro-tomography of metallic-organic composites by means of photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Pichotka, M.; Jakubek, J.; Vavrik, D.

    2015-12-01

    The presumed capabilities of photon counting detectors have aroused major expectations in several fields of research. In the field of nuclear imaging ample benefits over standard detectors are to be expected from photon counting devices. First of all a very high contrast, as has by now been verified in numerous experiments. The spectroscopic capabilities of photon counting detectors further allow material decomposition in computed tomography and therefore inherently adequate beam hardening correction. For these reasons measurement setups featuring standard X-ray tubes combined with photon counting detectors constitute a possible replacement of the much more cost intensive tomographic setups at synchrotron light-sources. The actual application of photon counting detectors in radiographic setups in recent years has been impeded by a number of practical issues, above all by restrictions in the detectors size. Currently two tomographic setups in Czech Republic feature photon counting large-area detectors (LAD) fabricated in Prague. The employed large area hybrid pixel-detector assemblies [1] consisting of 10×10/10×5 Timepix devices have a surface area of 143×143 mm2 / 143×71,5 mm2 respectively, suitable for micro-tomographic applications. In the near future LAD devices featuring the Medipix3 readout chip as well as heavy sensors (CdTe, GaAs) will become available. Data analysis is obtained by a number of in house software tools including iterative multi-energy volume reconstruction.In this paper tomographic analysis of of metallic-organic composites is employed to illustrate the capabilities of our technology. Other than successful material decomposition by spectroscopic tomography we present a method to suppress metal artefacts under certain conditions.

  1. Exploratory Corrugated Infrared Hot-Electron Transistor Arrays

    DTIC Science & Technology

    2009-02-01

    quantum well infrared photodetector ( QWIP ) structure. This improvement is consistent with the hot-electron distributions created by the thermal and...the designed value. This higher barrier height can be attributed to the finite p-type doping density in the material. 15. SUBJECT TERMS QWIP ...infrared photodetector ( QWIP ) sensor in a small exploratory array format, which is capable of suppressing the detector dark current. The new detector

  2. Gaseous Electron Multiplier (GEM) Detectors

    NASA Astrophysics Data System (ADS)

    Gnanvo, Kondo

    2017-09-01

    Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Recent advances in photolithography and micro processing techniques have enabled the transition from Multi Wire Proportional Chambers (MWPCs) and Drift Chambers to a new family of gaseous detectors refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGDs combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Gas Electron Multiplier (GEMs) is a well-established MPGD technology invented by F. Sauli at CERN in 1997 and deployed various high energy physics (HEP) and nuclear NP experiment for tracking systems of current and future NP experiments. GEM detector combines an exceptional high rate capability (1 MHz / mm2) and robustness against harsh radiation environment with excellent position and timing resolution performances. Recent breakthroughs over the past decade have allowed the possibility for large area GEMs, making them cost effective and high-performance detector candidates to play pivotal role in current and future particle physics experiments. After a brief introduction of the basic principle of GEM technology, I will give a brief overview of the GEM detectors used in particle physics experiments over the past decades and especially in the NP community at Thomas Jefferson National Laboratory (JLab) and Brookhaven National Laboratory (BNL). I will follow by a review of state of the art of the new GEM development for the next generation of colliders such as Electron Ion Collider (EIC) or High Luminosity LHC and future Nuclear Physics experiments. I will conclude with a presentation of the CERN-based RD51 collaboration established in 2008 and its major achievements regarding technological developments and applications of MPGDs.

  3. Delayed gamma-ray spectroscopy with lanthanum bromide detector for non-destructive assay of nuclear material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favalli, Andrea; Iliev, Metodi; Ianakiev, Kiril

    High-energy delayed γ-ray spectroscopy is a potential technique for directly assaying spent fuel assemblies and achieving the safeguards goal of quantifying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Requirements for the γ-ray detection system, up to ~6 MeV, can be summarized as follows: high efficiency at high γ-ray energies, high energy resolution, good linearity between γ-ray energy and output signal amplitude, ability to operate at very high count rates, and ease of use in industrial environments such as nuclear facilities. High Purity Germanium Detectors (HPGe) are the state of the artmore » and provide excellent energy resolution but are limited in their count rate capability. Lanthanum Bromide (LaBr 3) scintillation detectors offer significantly higher count rate capabilities at lower energy resolution. Thus, LaBr 3 detectors may be an effective alternative for nuclear spent-fuel applications, where count-rate capability is a requirement. This paper documents the measured performance of a 2” (length) × 2” (diameter) of LaBr3 scintillation detector system, coupled to a negatively biased PMT and a tapered active high voltage divider, with count-rates up to ~3 Mcps. An experimental methodology was developed that uses the average current from the PMT’s anode and a dual source method to characterize the detector system at specific very high count rate values. Delayed γ-ray spectra were acquired with the LaBr 3 detector system at the Idaho Accelerator Center, Idaho State University, where samples of ~3g of 235U were irradiated with moderated neutrons from a photo-neutron source. Results of the spectroscopy characterization and analysis of the delayed γ-ray spectra acquired indicate the possible use of LaBr3 scintillation detectors when high count rate capability may outweigh the lower energy resolution.« less

  4. Delayed gamma-ray spectroscopy with lanthanum bromide detector for non-destructive assay of nuclear material

    DOE PAGES

    Favalli, Andrea; Iliev, Metodi; Ianakiev, Kiril; ...

    2017-10-09

    High-energy delayed γ-ray spectroscopy is a potential technique for directly assaying spent fuel assemblies and achieving the safeguards goal of quantifying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Requirements for the γ-ray detection system, up to ~6 MeV, can be summarized as follows: high efficiency at high γ-ray energies, high energy resolution, good linearity between γ-ray energy and output signal amplitude, ability to operate at very high count rates, and ease of use in industrial environments such as nuclear facilities. High Purity Germanium Detectors (HPGe) are the state of the artmore » and provide excellent energy resolution but are limited in their count rate capability. Lanthanum Bromide (LaBr 3) scintillation detectors offer significantly higher count rate capabilities at lower energy resolution. Thus, LaBr 3 detectors may be an effective alternative for nuclear spent-fuel applications, where count-rate capability is a requirement. This paper documents the measured performance of a 2” (length) × 2” (diameter) of LaBr3 scintillation detector system, coupled to a negatively biased PMT and a tapered active high voltage divider, with count-rates up to ~3 Mcps. An experimental methodology was developed that uses the average current from the PMT’s anode and a dual source method to characterize the detector system at specific very high count rate values. Delayed γ-ray spectra were acquired with the LaBr 3 detector system at the Idaho Accelerator Center, Idaho State University, where samples of ~3g of 235U were irradiated with moderated neutrons from a photo-neutron source. Results of the spectroscopy characterization and analysis of the delayed γ-ray spectra acquired indicate the possible use of LaBr3 scintillation detectors when high count rate capability may outweigh the lower energy resolution.« less

  5. Delayed gamma-ray spectroscopy with lanthanum bromide detector for non-destructive assay of nuclear material

    NASA Astrophysics Data System (ADS)

    Favalli, Andrea; Iliev, Metodi; Ianakiev, Kiril; Hunt, Alan W.; Ludewigt, Bernhard

    2018-01-01

    High-energy delayed γ-ray spectroscopy is a potential technique for directly assaying spent fuel assemblies and achieving the safeguards goal of quantifying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Requirements for the γ-ray detection system, up to ∼6 MeV, can be summarized as follows: high efficiency at high γ-ray energies, high energy resolution, good linearity between γ-ray energy and output signal amplitude, ability to operate at very high count rates, and ease of use in industrial environments such as nuclear facilities. High Purity Germanium Detectors (HPGe) are the state of the art and provide excellent energy resolution but are limited in their count rate capability. Lanthanum Bromide (LaBr3) scintillation detectors offer significantly higher count rate capabilities at lower energy resolution. Thus, LaBr3 detectors may be an effective alternative for nuclear spent-fuel applications, where count-rate capability is a requirement. This paper documents the measured performance of a 2" (length) × 2" (diameter) of LaBr3 scintillation detector system, coupled to a negatively biased PMT and a tapered active high voltage divider, with count-rates up to ∼3 Mcps. An experimental methodology was developed that uses the average current from the PMT's anode and a dual source method to characterize the detector system at specific very high count rate values. Delayed γ-ray spectra were acquired with the LaBr3 detector system at the Idaho Accelerator Center, Idaho State University, where samples of ∼3g of 235U were irradiated with moderated neutrons from a photo-neutron source. Results of the spectroscopy characterization and analysis of the delayed γ-ray spectra acquired indicate the possible use of LaBr3 scintillation detectors when high count rate capability may outweigh the lower energy resolution.

  6. Compound semiconductor detectors for X-ray astronomy: Spectroscopic measurements and material characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bavdaz, M.; Kraft, S.; Peacock, A.

    1998-12-31

    The use of some specific compound semiconductors in the fabrication of high energy X-ray detectors shows significant potential for X-ray astrophysics space missions. The authors are currently investigating three high purity crystals--CdZnTe, GaAs and TlBr--as the basis for future hard X-ray detectors (above 10 keV). In this paper the authors present the first results on CdZnTe and GaAs based detectors and evaluate the factors currently still constraining the performance. Energy resolutions (FWHM) of 0.9 keV and 1.1 keV at 14 keV and 60 keV, respectively, have been obtained with an epitaxial GaAs detector, while 0.7 keV and 1.5 keV FWHMmore » were measured at the same energies with a CdZnTe detector. Based on these results it is clear, that the next generation of X-ray astrophysics missions now in the planning phase may well consider extending the photon energy range up to {approximately} 100 keV by use of efficient detectors with reasonable spectroscopic capabilities.« less

  7. What can be learned from a future supernova neutrino detection?

    NASA Astrophysics Data System (ADS)

    Horiuchi, Shunsaku; Kneller, James P.

    2018-04-01

    This year marks the 30th anniversary of the only supernova from which we have detected neutrinos—SN 1987A. The 20 or so neutrinos that were detected were mined to great depth in order to determine the events that occurred in the explosion and to place limits upon all manner of neutrino properties. Since 1987 the scale and sensitivity of the detectors capable of identifying neutrinos from a Galactic supernova have grown considerably so that current generation detectors are capable of detecting of order 10 000 neutrinos for a supernova at the Galactic Center. Next generation detectors will increase that yield by another order of magnitude. Simultaneous with the growth of neutrino detection capability, our understanding of how massive stars explode and how the neutrino interacts with hot and dense matter has also increased by a tremendous degree. The neutrino signal will contain much information on all manner of physics of interest to a wide community. In this review we describe the expected features of the neutrino signal, the detectors which will detect it, and the signatures one might try to look for in order to get at this physics.

  8. Onboard autonomous mineral detectors for Mars rovers

    NASA Astrophysics Data System (ADS)

    Gilmore, M. S.; Bornstein, B.; Castano, R.; Merrill, M.; Greenwood, J.

    2005-12-01

    Mars rovers and orbiters currently collect far more data than can be downlinked to Earth, which reduces mission science return; this problem will be exacerbated by future rovers of enhanced capabilities and lifetimes. We are developing onboard intelligence sufficient to extract geologically meaningful data from spectrometer measurements of soil and rock samples, and thus to guide the selection, measurement and return of these data from significant targets at Mars. Here we report on techniques to construct mineral detectors capable of running on current and future rover and orbital hardware. We focus on carbonate and sulfate minerals which are of particular geologic importance because they can signal the presence of water and possibly life. Sulfates have also been discovered at the Eagle and Endurance craters in Meridiani Planum by the Mars Exploration Rover (MER) Opportunity and at other regions on Mars by the OMEGA instrument aboard Mars Express. We have developed highly accurate artificial neural network (ANN) and Support Vector Machine (SVM) based detectors capable of identifying calcite (CaCO3) and jarosite (KFe3(SO4)2(OH)6) in the visible/NIR (350-2500 nm) spectra of both laboratory specimens and rocks in Mars analogue field environments. To train the detectors, we used a generative model to create 1000s of linear mixtures of library end-member spectra in geologically realistic percentages. We have also augmented the model to include nonlinear mixing based on Hapke's models of bidirectional reflectance spectroscopy. Both detectors perform well on the spectra of real rocks that contain intimate mixtures of minerals, rocks in natural field environments, calcite covered by Mars analogue dust, and AVIRIS hyperspectral cubes. We will discuss the comparison of ANN and SVM classifiers for this task, technical challenges (weathering rinds, atmospheric compositions, and computational complexity), and plans for integration of these detectors into both the Coupled Layer Architecture for Robotic Autonomy (CLARAty) system and the Onboard Autonomous Science Investigation System (OASIS) at JPL.

  9. Advance in multi-hit detection and quantization in atom probe tomography.

    PubMed

    Da Costa, G; Wang, H; Duguay, S; Bostel, A; Blavette, D; Deconihout, B

    2012-12-01

    The preferential retention of high evaporation field chemical species at the sample surface in atom-probe tomography (e.g., boron in silicon or in metallic alloys) leads to correlated field evaporation and pronounced pile-up effects on the detector. The latter severely affects the reliability of concentration measurements of current 3D atom probes leading to an under-estimation of the concentrations of the high-field species. The multi-hit capabilities of the position-sensitive time-resolved detector is shown to play a key role. An innovative method based on Fourier space signal processing of signals supplied by an advance delay-line position-sensitive detector is shown to drastically improve the time resolving power of the detector and consequently its capability to detect multiple events. Results show that up to 30 ions on the same evaporation pulse can be detected and properly positioned. The major impact of this new method on the quantization of chemical composition in materials, particularly in highly-doped Si(B) samples is highlighted.

  10. SOI metal-oxide-semiconductor field-effect transistor photon detector based on single-hole counting.

    PubMed

    Du, Wei; Inokawa, Hiroshi; Satoh, Hiroaki; Ono, Atsushi

    2011-08-01

    In this Letter, a scaled-down silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistor (MOSFET) is characterized as a photon detector, where photogenerated individual holes are trapped below the negatively biased gate and modulate stepwise the electron current flowing in the bottom channel induced by the positive substrate bias. The output waveforms exhibit clear separation of current levels corresponding to different numbers of trapped holes. Considering this capability of single-hole counting, a small dark count of less than 0.02 s(-1) at room temperature, and low operation voltage of 1 V, SOI MOSFET could be a unique photon-number-resolving detector if the small quantum efficiency were improved. © 2011 Optical Society of America

  11. The HEXITEC Hard X-Ray Pixelated CdTe Imager for Fast Solar Observations

    NASA Technical Reports Server (NTRS)

    Baumgartner, Wayne H.; Christe, Steven D.; Ryan, Daniel; Inglis, Andrew R.; Shih, Albert Y.; Gregory, Kyle; Wilson, Matt; Seller, Paul; Gaskin, Jessica; Wilson-Hodge, Colleen

    2016-01-01

    There is an increasing demand in solar and astrophysics for high resolution X-ray spectroscopic imaging. Such observations would present ground breaking opportunities to study the poorly understood high energy processes in our solar system and beyond, such as solar flares, X-ray binaries, and active galactic nuclei. However, such observations require a new breed of solid state detectors sensitive to high energy X-rays with fine independent pixels to sub-sample the point spread function (PSF) of the X-ray optics. For solar observations in particular, they must also be capable of handling very high count rates as photon fluxes from solar flares often cause pile up and saturation in present generation detectors. The Rutherford Appleton Laboratory (RAL) has recently developed a new cadmium telluride (CdTe) detector system, called HEXITEC (High Energy X-ray Imaging Technology). It is an 80 x 80 array of 250 micron independent pixels sensitive in the 2-200 keV band and capable of a high full frame read out rate of 10 kHz. HEXITEC provides the smallest independently read out CdTe pixels currently available, and are well matched to the few arcsecond PSF produced by current and next generation hard X-ray focusing optics. NASA's Goddard and Marshall Space Flight Centers are collaborating with RAL to develop these detectors for use on future space borne hard X-ray focusing telescopes. We show the latest results on HEXITEC's imaging capability, energy resolution, high read out rate, and reveal it to be ideal for such future instruments.

  12. Photon counting detector for the personal radiography inspection system "SIBSCAN"

    NASA Astrophysics Data System (ADS)

    Babichev, E. A.; Baru, S. E.; Grigoriev, D. N.; Leonov, V. V.; Oleynikov, V. P.; Porosev, V. V.; Savinov, G. A.

    2017-02-01

    X-ray detectors operating in the energy integrating mode are successfully used in many different applications. Nevertheless the direct photon counting detectors, having the superior parameters in comparison with the integrating ones, are rarely used yet. One of the reasons for this is the low value of the electrical signal generated by a detected photon. Silicon photomultiplier (SiPM) based scintillation counters have a high detection efficiency, high electronic gain and compact dimensions. This makes them a very attractive candidate to replace routinely used detectors in many fields. More than 10 years ago the digital scanning radiography system based on multistrip ionization chamber (MIC) was suggested at Budker Institute of Nuclear Physics. The detector demonstrates excellent radiation resistance and parameter stability after 5 year operations and an imaging of up to 1000 persons per day. Currently, the installations operate at several Russian airports and at subway stations in some cities. At the present time we design a new detector operating in the photon counting mode, having superior parameters than the gas one, based on scintillator - SiPM assemblies. This detector has close to zero noise, higher quantum efficiency and a count rate capability of more than 5 MHz per channel (20% losses), which leads to better image quality and improved detection capability. The suggested detector technology could be expanded to medical applications.

  13. Pulse-Shape Discrimination of Alpha Particles of Different Specific Energy-Loss With Parallel-Plate Avalanche Counters

    NASA Astrophysics Data System (ADS)

    Nakhostin, M.; Baba, M.

    2014-06-01

    Parallel-plate avalanche counters have long been recognized as timing detectors for heavily ionizing particles. However, these detectors suffer from a poor pulse-height resolution which limits their capability to discriminate between different ionizing particles. In this paper, a new approach for discriminating between charged particles of different specific energy-loss with avalanche counters is demonstrated. We show that the effect of the self-induced space-charge in parallel-plate avalanche counters leads to a strong correlation between the shape of output current pulses and the amount of primary ionization created by the incident charged particles. The correlation is then exploited for the discrimination of charged particles with different energy-losses in the detector. The experimental results obtained with α-particles from an 241Am α-source demonstrate a discrimination capability far beyond that achievable with the standard pulse-height discrimination method.

  14. Fluorescence lifetime microscopy with a time- and space-resolved single-photon counting detector

    PubMed Central

    Michalet, X.; Siegmund, O.H.W.; Vallerga, J.V.; Jelinsky, P.; Pinaud, F. F.; Millaud, J.E.; Weiss, S.

    2017-01-01

    We have recently developed a wide-field photon-counting detector (the H33D detector) having high-temporal and high-spatial resolutions and capable of recording up to 500,000 photons per sec. Its temporal performance has been previously characterized using solutions of fluorescent materials with different lifetimes, and its spatial resolution using sub-diffraction objects (beads and quantum dots). Here we show its application to fluorescence lifetime imaging of live cells and compare its performance to a scanning confocal TCSPC approach. With the expected improvements in photocathode sensitivity and increase in detector throughput, this technology appears as a promising alternative to the current lifetime imaging solutions. PMID:29449756

  15. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...

  16. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...

  17. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...

  18. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...

  19. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...

  20. Single and double grid long-range alpha detectors

    DOEpatents

    MacArthur, Duncan W.; Allander, Krag S.

    1993-01-01

    Alpha particle detectors capable of detecting alpha radiation from distant sources. In one embodiment, a voltage is generated in a single electrically conductive grid while a fan draws air containing air molecules ionized by alpha particles through an air passage and across the conductive grid. The current in the conductive grid can be detected and used for measurement or alarm. Another embodiment builds on this concept and provides an additional grid so that air ions of both polarities can be detected. The detector can be used in many applications, such as for pipe or duct, tank, or soil sample monitoring.

  1. Single and double grid long-range alpha detectors

    DOEpatents

    MacArthur, D.W.; Allander, K.S.

    1993-03-16

    Alpha particle detectors capable of detecting alpha radiation from distant sources. In one embodiment, a voltage is generated in a single electrically conductive grid while a fan draws air containing air molecules ionized by alpha particles through an air passage and across the conductive grid. The current in the conductive grid can be detected and used for measurement or alarm. Another embodiment builds on this concept and provides an additional grid so that air ions of both polarities can be detected. The detector can be used in many applications, such as for pipe or duct, tank, or soil sample monitoring.

  2. Position resolution simulations for the inverted-coaxial germanium detector, SIGMA

    NASA Astrophysics Data System (ADS)

    Wright, J. P.; Harkness-Brennan, L. J.; Boston, A. J.; Judson, D. S.; Labiche, M.; Nolan, P. J.; Page, R. D.; Pearce, F.; Radford, D. C.; Simpson, J.; Unsworth, C.

    2018-06-01

    The SIGMA Germanium detector has the potential to revolutionise γ-ray spectroscopy, providing superior energy and position resolving capabilities compared with current large volume state-of-the-art Germanium detectors. The theoretical position resolution of the detector as a function of γ-ray interaction position has been studied using simulated detector signals. A study of the effects of RMS noise at various energies has been presented with the position resolution ranging from 0.33 mm FWHM at Eγ = 1 MeV, to 0.41 mm at Eγ = 150 keV. An additional investigation into the effects pulse alignment have on pulse shape analysis and in turn, position resolution has been performed. The theoretical performance of SIGMA operating in an experimental setting is presented for use as a standalone detector and as part of an ancillary system.

  3. Testing Mylar Multi-Gap Resistive Plate Chambers

    NASA Astrophysics Data System (ADS)

    Towell, Cecily; EIC PID Consortium Collaboration

    2016-09-01

    Quantum Chromodynamics (QCD) is the fundamental theory that successfully explains strong force interactions. To continue the effective study of QCD in nuclear structure, plans are being made to construct an Electron Ion Collider (EIC). Part of the preparation for the EIC includes continued detector development to push beyond their current capabilities. This includes Time of Flight (TOF) detectors, which are used for particle identification. Multi-Gap Resistive Plate Chambers (mRPCs) are a type of TOF detector that typically use glass to make small gas gaps within the detector to produce fast signals when a high energy particle goes through the detector. These extremely thin gaps of 0.2mm are key in achieving the excellent timing resolution capability of these detectors. A new mRPC design is being tested with the goal of reaching a timing resolution of 10ps. This design uses sheets of mylar in place of the glass so that the width of the dividers is smaller, thus vastly increasing the number of gas gaps. Multiple versions of this mylar mRPC have been made and tested. The methods for producing these mRPCs and their performance will be discussed. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.

  4. Performance of 20:1 multiplexer for large area charge readouts in directional dark matter TPC detectors

    NASA Astrophysics Data System (ADS)

    Ezeribe, A. C.; Robinson, M.; Robinson, N.; Scarff, A.; Spooner, N. J. C.; Yuriev, L.

    2018-02-01

    More target mass is required in current TPC based directional dark matter detectors for improved detector sensitivity. This can be achieved by scaling up the detector volumes, but this results in the need for more analogue signal channels. A possible solution to reducing the overall cost of the charge readout electronics is to multiplex the signal readout channels. Here, we present a multiplexer system in expanded mode based on LMH6574 chips produced by Texas Instruments, originally designed for video processing. The setup has a capability of reducing the number of readouts in such TPC detectors by a factor of 20. Results indicate that the important charge distribution asymmetry along an ionization track is retained after multiplexed signals are demultiplexed.

  5. An Improved NDE (Non-Destructive Evaluation) Capability for Aerospace Components.

    DTIC Science & Technology

    1984-12-21

    proposed design will use the scintillator/fiber-optic Reticon detector which was investigated in the eperimental studies discussed above. The x rays...practical operation. Experimental studies of a microfocal x-ray source and the SFRD pinpointed current proklems and capabilities. A conceptual design ...authors would like to acknowledge the following important contributions to this effort: Chuck Isaacson for his help in the design and implementation of

  6. Exploring the potential of short-baseline physics at Fermilab

    NASA Astrophysics Data System (ADS)

    Miranda, O. G.; Pasquini, Pedro; Tórtola, M.; Valle, J. W. F.

    2018-05-01

    We study the capabilities of the short-baseline neutrino program at Fermilab to probe the unitarity of the lepton mixing matrix. We find the sensitivity to be slightly better than the current one. Motivated by the future DUNE experiment, we have also analyzed the potential of an extra liquid Argon near detector in the LBNF beamline. Adding such a near detector to the DUNE setup will substantially improve the current sensitivity on nonunitarity. This would help to remove C P degeneracies due to the new complex phase present in the neutrino mixing matrix. We also study the sensitivity of our proposed setup to light sterile neutrinos for various configurations.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberson, G P; Logan, C M

    We have estimated interference from external background radiation for a computed tomography (CT) scanner. Our intention is to estimate the interference that would be expected for the high-resolution SkyScan 1072 desk-top x-ray microtomography system. The SkyScan system uses a Microfocus x-ray source capable of a 10-{micro}m focal spot at a maximum current of 0.1 mA and a maximum energy of 130 kVp. All predictions made in this report assume using the x-ray source at the smallest spot size, maximum energy, and operating at the maximum current. Some of the systems basic geometry that is used for these estimates are: (1)more » Source-to-detector distance: 250 mm, (2) Minimum object-to-detector distance: 40 mm, and (3) Maximum object-to-detector distance: 230 mm. This is a first-order, rough estimate of the quantity of interference expected at the system detector caused by background radiation. The amount of interference is expressed by using the ratio of exposure expected at the detector of the CT system. The exposure values for the SkyScan system are determined by scaling the measured values of an x-ray source and the background radiation adjusting for the difference in source-to-detector distance and current. The x-ray source that was used for these measurements was not the SkyScan Microfocus x-ray tube. Measurements were made using an x-ray source that was operated at the same applied voltage but higher current for better statistics.« less

  8. Sofradir latest developments for infrared space detectors

    NASA Astrophysics Data System (ADS)

    Chorier, Philippe; Delannoy, Anne

    2011-06-01

    Sofradir is one of the leading companies that develop and produce infrared detectors. Space applications have become a significant activity and Sofradir relies now on 20 years of experience in development and production of MCT infrared detectors of 2nd and 3rd generation for space applications. Thanks to its capabilities and experience, Sofradir is now able to offer high reliability infrared detectors for space applications. These detectors cover various kinds of applications like hyperspectral observation, earth observations for meteorological or scientific purpose and science experiments. In this paper, we present a review of latest Sofradir's development for infrared space applications. A presentation of Sofradir infrared detectors answering hyperspectral needs from visible up to VLWIR waveband will be made. In addition a particular emphasis will be placed on the different programs currently running, with a presentation of the associated results as they relate to performances and qualifications for space use.

  9. Alternating current long range alpha particle detector

    DOEpatents

    MacArthur, Duncan W.; McAtee, James L.

    1993-01-01

    An alpha particle detector, utilizing alternating currents, whcih is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.

  10. Alternating current long range alpha particle detector

    DOEpatents

    MacArthur, D.W.; McAtee, J.L.

    1993-02-16

    An alpha particle detector, utilizing alternating currents, which is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.

  11. Designing a Modern Low Cost Muon Detector to Teach Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Press, Carly; Kotler, Julia

    2016-09-01

    In an effort to make it possible for small institutions to train students in nuclear physics, an attempt is made to design a low cost cosmic ray muon detector (perhaps under 600 dollars) capable of measuring flux vs. solid angle and muon lifetime. In order to expose students to current particle detection technologies, silicon photomultipliers will be coupled with plastic scintillator to provide the signals, and an Arduino, Raspberry Pi, or National Instruments device will interface with the detector. Once designed and built, prototypes of the detector will be used in outreach to K-12 students in the Allentown, PA area. This material is based upon work supported by the National Science Foundation under Grant No. 1507841.

  12. Borehole Muon Detector Development

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Flygare, J.; Kouzes, R.; Lintereur, A.; Yamaoka, J. A. K.; Varner, G. S.

    2015-12-01

    Increasing atmospheric CO2 concentrations have spurred investigation into carbon sequestration methods. One of the possibilities being considered, storing super-critical CO2 in underground reservoirs, has drawn more attention and pilot projects are being supported worldwide. Monitoring of the post-injection fate of CO2 is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We propose here to develop a 4-D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Muon detection is a relatively mature field of particle physics and there are many muon detector designs, though most are quite large and not designed for subsurface measurements. The primary technical challenge preventing deployment of this technology in the subsurface is the lack of miniaturized muon-tracking detectors capable of fitting in standard boreholes and that will resist the harsh underground conditions. A detector with these capabilities is being developed by a collaboration supported by the U.S. Department of Energy. Current simulations based on a Monte Carlo modeling code predict that the incoming muon angle can be resolved with an error of approximately two degrees, using either underground or sea level spectra. The robustness of the design comes primarily from the use of scintillating rods as opposed to drift tubes. The rods are arrayed in alternating layers to provide a coordinate scheme. Preliminary testing and measurements are currently being performed to test and enhance the performance of the scintillating rods, in both a laboratory and a shallow underground facility. The simulation predictions and data from the experiments will be presented.

  13. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    PubMed Central

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-01-01

    Abstract Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources. PMID:25589504

  14. The Optical Emission and Absorption Properties of Silicon-Germanium Superlattice Structures Grown on Non-Conventional Silicon Substrate Orientation

    DTIC Science & Technology

    1994-08-01

    evidence needed to someday design and build a silicon- based infrared detector that can efficiently detect light at normal incidence. I chose to...detector a. spectral response b. dark current c. qutiantuam efficiency MAKE DEVICE Figure 1. A simple schematic diagram describing a basic materials... based . If we can extend the capabilities of silicon into the near infrared (iR), the nation would be well- positioned to exploit our advantage in this

  15. Current and Future Research at DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandel, M.; Baramsai, B.; Bredeweg, T. A.

    2015-05-28

    An overview of the current experimental program on measurements of neutron capture and neutron induced fission at the Detector for Advanced Neutron Capture Experiments (DANCE) is presented. Three major projects are currently under way: 1) high precision measurements of neutron capture cross sections on Uranium isotopes, 2) research aimed at studies of the short-lived actinide isomer production in neutron capture on 235U and 3) measurements of correlated data of fission observables. New projects include developments of auxiliary detectors to improve the capability of DANCE. We are building a compact, segmented NEUtron detector Array at DANCE (NEUANCE), which will be installedmore » in the central cavity of the DANCE array. It will thus provide experimental information on prompt fission neutrons in coincidence with the prompt fission gamma-rays measured by 160 BaF 2 crystals of DANCE. Additionally, unique correlated data will be obtained for neutron capture and neutron-induced fission using the DANCE-NEUANCE experimental set up in the future.« less

  16. Capacitor-type micrometeoroid detectors

    NASA Technical Reports Server (NTRS)

    Wortman, J. J.; Griffis, D. P.; Bryan, S. R.; Kinard, W.

    1986-01-01

    The metal oxide semiconductor (MOS) capacitor micrometeroid detector consists of a thin dielectric capacitor fabricated on a silicon wafer. In operation, the device is charged to a voltage level sufficiently near breakdown that micrometeoroid impacts will cause dielectric deformation or heating and subsequent arc-over at the point of impact. Each detector is capable of recording multiple impacts because of the self-healing characteristics of the device. Support instrumentation requirements consist of a voltage source and pulse counters that monitor the pulse of recharging current following every impact. An investigation has been conducted in which 0.5 to 5 micron diameter carbonized iron spheres traveling at velocities of 4 to 10 Km/sec were impacted on to detectors with either a dielectric thickness of 0.4 or 1.0 micron. This study demonstrated that an ion microprobe tuned to sufficiently high resolution can detect Fe remaining on the detector after the impact. Furthermore, it is also possible to resolve Fe ion images free of mass interferences from Si, for example, giving its spatial distribution after impact. Specifically this technique has shown that significant amounts of impacting particles remain in the crater and near it which can be analyzed for isotopic content. Further testing and calibration could lead to quantitive analysis. This study has shown that the capacitor type micrometeroid detector is capable of not only time and flux measurements but can also be used for isotopic analysis.

  17. Verification of Dosimetry Measurements with Timepix Pixel Detectors for Space Applications

    NASA Technical Reports Server (NTRS)

    Kroupa, M.; Pinsky, L. S.; Idarraga-Munoz, J.; Hoang, S. M.; Semones, E.; Bahadori, A.; Stoffle, N.; Rios, R.; Vykydal, Z.; Jakubek, J.; hide

    2014-01-01

    The current capabilities of modern pixel-detector technology has provided the possibility to design a new generation of radiation monitors. Timepix detectors are semiconductor pixel detectors based on a hybrid configuration. As such, the read-out chip can be used with different types and thicknesses of sensors. For space radiation dosimetry applications, Timepix devices with 300 and 500 microns thick silicon sensors have been used by a collaboration between NASA and University of Houston to explore their performance. For that purpose, an extensive evaluation of the response of Timepix for such applications has been performed. Timepix-based devices were tested in many different environments both at ground-based accelerator facilities such as HIMAC (Heavy Ion Medical Accelerator in Chiba, Japan), and at NSRL (NASA Space Radiation Laboratory at Brookhaven National Laboratory in Upton, NY), as well as in space on board of the International Space Station (ISS). These tests have included a wide range of the particle types and energies, from protons through iron nuclei. The results have been compared both with other devices and theoretical values. This effort has demonstrated that Timepix-based detectors are exceptionally capable at providing accurate dosimetry measurements in this application as verified by the confirming correspondence with the other accepted techniques.

  18. Recent Development of TlBr Gamma-Ray Detectors

    NASA Astrophysics Data System (ADS)

    Hitomi, Keitaro; Tada, Tsutomu; Kim, Seong-Yun; Wu, Yan; Tanaka, Tomonobu; Shoji, Tadayoshi; Yamazaki, Hiromichi; Ishii, Keizo

    2011-08-01

    Planar detectors, strip detectors, and double-sided strip detectors were fabricated from TlBr crystals grown by the traveling molten zone method using zone-purified material. The detector performance including the leakage current, energy resolutions, and timing performance were evaluated in order to assess the capability of the detectors for PET and SPECT applications. The TlBr detectors exhibited excellent spectroscopic performance at room temperature. An energy resolution of 3.4% FWHM at 511 keV was obtained from a TlBr planar detector 1 mm thick. A TlBr strip detector 1 mm thick with four anode strip electrodes exhibited almost uniform detector performance over the strips with the average energy resolution of 4.4% FWHM at 511 keV. A TlBr double-sided strip detector exhibited an energy resolution of 6.3% FWHM for 122 keV gamma-rays. Coincidence timing spectra between a TlBr planar detector and a BaF2 scintillation detector were recorded at room temperature. Timing resolutions of 14 ns and 24 ns were obtained from TlBr detectors 0.5 mm and 1 mm thick, respectively. By cooling the detector to 0° C, an improved timing resolution of 12 ns was obtained from a TlBr detector 1 mm thick.

  19. Spatially-resolved HPGe Gamma-ray Spectroscopy of Swipe Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Benjamin S.; VanDevender, Brent A.; Wood, Lynn S.

    Measurement of swipe samples is a critical element of the National Technical Nuclear Forensics (NTNF) mission. A unique, portable, germanium gamma imager (GeGI-s) from PHDS Co may provide complementary information to current techniques for swipe sample screening. The GeGI-s is a modified version of the commercial GeGI-4, a planar HPGe detector, capable of several million counts per second across the whole detector. The GeGI-s detector is a prototype of a commercial off-the-shelf high rate GeGI. The high rate capability allows high-activity samples be placed directly on the face of the detector. Utilizing the high energy resolution and pixelization of themore » detector, the GeGI-s can generate isotope specific spatial maps of the materials on the swipe sample. To prove this technology is viable for such mapping, the GeGI-s detector response to spatially distributed events must be well characterized. The detection efficiency as a function of location has been characterized to understand the non-uniformities presented as a collimated photon beam was rastered vertically and horizontally across the face of the detector. The detection efficiency as a function of location has been characterized to understand the non-uniformities presented as a collimated photon beam was rastered vertically and horizontally across the face of the detector. The response was found to be primarily uniform and symmetric, however two causes of non-uniformity were found. Both of these causes can ultimately be corrected for in off-line data analysis.« less

  20. Pulsed, high-current, in-line reversal electron attachment detector

    NASA Technical Reports Server (NTRS)

    Bernius, Mark T.; Chutjian, Ara

    1989-01-01

    A new, pulsed, high-current, in-line reversal electron attachment ionizer/detector is described. The ionizer is capable of delivering a beam of electrons into an electrostatic mirror field to form a planar wall of electrons having zero kinetic energy. Electron attachment to a molecular target at the reversal point produces either parent or fragment negative ions through a zero-energy (s-wave) state. The atomic or molecular ion is pulsed out of the attachment region approximately 2 microsec after the electrons are pulsed off, and focused onto the entrance plane of a quadrupole mass analyzer. The sensitivity of the apparatus is preliminarily assessed, and its higher-energy behavior with regard to molecular attachment and ionization is described.

  1. Development of a High Dynamic Range Pixel Array Detector for Synchrotrons and XFELs

    NASA Astrophysics Data System (ADS)

    Weiss, Joel Todd

    Advances in synchrotron radiation light source technology have opened new lines of inquiry in material science, biology, and everything in between. However, x-ray detector capabilities must advance in concert with light source technology to fully realize experimental possibilities. X-ray free electron lasers (XFELs) place particularly large demands on the capabilities of detectors, and developments towards diffraction-limited storage ring sources also necessitate detectors capable of measuring very high flux [1-3]. The detector described herein builds on the Mixed Mode Pixel Array Detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging, and the Adaptive Gain Integrating Pixel Detector (AGIPD) developed for the European XFEL by a collaboration between Deustsches Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg, and the University of Bonn, led by Heinz Graafsma [4, 5]. The feasibility of combining adaptive gain with charge removal techniques to increase dynamic range in XFEL experiments is assessed by simulating XFEL scatter with a pulsed infrared laser. The strategy is incorporated into pixel prototypes which are evaluated with direct current injection to simulate very high incident x-ray flux. A fully functional 16x16 pixel hybrid integrating x-ray detector featuring several different pixel architectures based on the prototypes was developed. This dissertation describes its operation and characterization. To extend dynamic range, charge is removed from the integration node of the front-end amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is thereby shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a sustained flux >1011 x-rays/pixel/second. In addition, digitization of residual analog signals allows sensitivity for single x-rays or low flux signals. Pixel high flux linearity is evaluated by direct exposure to an unattenuated synchrotron source x-ray beam and flux measurements of more than 1010 9.52 keV x-rays/pixel/s are made. Detector sensitivity to small signals is evaluated and dominant sources of error are identified. These new pixels boast multiple orders of magnitude improvement in maximum sustained flux over the MM-PAD, which is capable of measuring a sustained flux in excess of 108 x-rays/pixel/second while maintaining sensitivity to smaller signals, down to single x-rays.

  2. Capabilities of CdTe-Based Detectors With {mathrm {MoO}}_{x} Contacts for Detection of X- and gamma -Radiation

    NASA Astrophysics Data System (ADS)

    Maslyanchuk, O. L.; Solovan, M. M.; Brus, V. V.; Kulchynsky, V. V.; Maryanchuk, P. D.; Fodchuk, I. M.; Gnatyuk, V. A.; Aoki, T.; Potiriadis, C.; Kaissas, Y.

    2017-05-01

    The charge transport mechanism and spectrometric properties of the X-ray and γ-ray detectors, fabricated by the deposition of molybdenum oxide thin films onto semi-insulating p-CdTe crystals were studied. The current transport processes in the Mo-MoOx/p-CdTe/MoOx-Mo structure are well described in the scope of the carrier's generation in the space-charge region and the space-charge-limited current models. The lifetime of charge carriers, the energy of hole traps, and the density of discrete trapping centers were determined from the comparison of the experimental data and calculations. Spectrometric properties of Mo-MoOx/p-CdTe/MoOx-Mo structures were also investigated. It is shown that the investigated heterojunctions have demonstrated promising characteristics for practical application in X-ray and γ-ray detector fabrication.

  3. Asymmetric Data Acquisition System for an Endoscopic PET-US Detector

    NASA Astrophysics Data System (ADS)

    Zorraquino, Carlos; Bugalho, Ricardo; Rolo, Manuel; Silva, Jose C.; Vecklans, Viesturs; Silva, Rui; Ortigão, Catarina; Neves, Jorge A.; Tavernier, Stefaan; Guerra, Pedro; Santos, Andres; Varela, João

    2016-02-01

    According to current prognosis studies of pancreatic cancer, survival rate nowadays is still as low as 6% mainly due to late detections. Taking into account the location of the disease within the body and making use of the level of miniaturization in radiation detectors that can be achieved at the present time, EndoTOFPET-US collaboration aims at the development of a multimodal imaging technique for endoscopic pancreas exams that combines the benefits of high resolution metabolic information from time-of- flight (TOF) positron emission tomography (PET) with anatomical information from ultrasound (US). A system with such capabilities calls for an application-specific high-performance data acquisition system (DAQ) able to control and readout data from different detectors. The system is composed of two novel detectors: a PET head extension for a commercial US endoscope placed internally close to the region-of-interest (ROI) and a PET plate placed over the patient's abdomen in coincidence with the PET head. These two detectors will send asymmetric data streams that need to be handled by the DAQ system. The approach chosen to cope with these needs goes through the implementation of a DAQ capable of performing multi-level triggering and which is distributed across two different on-detector electronics and the off-detector electronics placed inside the reconstruction workstation. This manuscript provides an overview on the design of this innovative DAQ system and, based on results obtained by means of final prototypes of the two detectors and DAQ, we conclude that a distributed multi-level triggering DAQ system is suitable for endoscopic PET detectors and it shows potential for its application in different scenarios with asymmetric sources of data.

  4. SiC As An Energetic Particle Detector

    NASA Technical Reports Server (NTRS)

    Yan, F.; Hicks, J.; Shappirio, Mark D.; Brown, S.; Smith, C.; Xin, X.; Zhao, J. H.

    2005-01-01

    Several new technologies have been introduced recently in the region of semiconductor material for solid state detectors (SSD). Of particular interest is silicon carbide (SIC) since its band gap is larger than that of pure silicon, reducing its dark current and making SIC capable of operating at high temperatures and more tolerant of radiation damage. But the trade off is that a higher band gap also means fewer electron hole pairs generated, and thus a smaller signal, for detecting incident radiation. To determine what the lower limit of SiC detectors to energetic particles is, we irradiated a SiC diode with particles ranging in energy from 50 keV to 1.6 MeV and masses from 1 to 16 amu. We found that the SiC detectors sensitivity was comparable to that of pure silicon, with the SiC detector being able to measure particles down to 50 keV/amu and possibly lower.

  5. Identifying and quantifying short-lived fission products from thermal fission of HEU using portable HPGe detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, Bruce D.; Finn, Erin C.; Friese, Judah I.

    2013-03-01

    Due to the emerging potential for trafficking of special nuclear material, research programs are investigating current capabilities of commercially available portable gamma ray detection systems. Presented in this paper are the results of three different portable high-purity germanium (HPGe) detectors used to identify short-lived fission products generated from thermal neutron interrogation of small samples of highly enriched uranium. Samples were irradiated at the Washington State University (WSU) Nuclear Radiation Center’s 1MW TRIGA reactor. The three portable, HPGe detectors used were the ORTEC MicroDetective, the ORTEC Detective, and the Canberra Falcon. Canberra’s GENIE-2000 software was used to analyze the spectral datamore » collected from each detector. Ultimately, these three portable detectors were able to identify a large range of fission products showing potential for material discrimination.« less

  6. Visible and Ultraviolet Detectors for High Earth Orbit and Lunar Observatories

    NASA Technical Reports Server (NTRS)

    Woodgate, Bruce E.

    1989-01-01

    The current status of detectors for the visible and UV for future large observatories in earth orbit and the moon is briefly reviewed. For the visible, CCDs have the highest quantum efficiency, but are subject to contamination of the data by cosmic ray hits. For the moon, the level of hits can be brought down to that at the earth's surface by shielding below about 20 meters of rock. For high earth orbits above the geomagnetic shield, CCDs might be able to be used by combining many short exposures and vetoing the cosmic ray hits, otherwise photoemissive detectors will be necessary. For the UV, photoemissive detectors will be necessary to reject the visible; to use CCDs would require the development of UV-efficient filters which reject the visible by many orders of magnitude. Development of higher count rate capability would be desirable for photoemissive detectors.

  7. Vacuum-Ultraviolet Photovoltaic Detector.

    PubMed

    Zheng, Wei; Lin, Richeng; Ran, Junxue; Zhang, Zhaojun; Ji, Xu; Huang, Feng

    2018-01-23

    Over the past two decades, solar- and astrophysicists and material scientists have been researching and developing new-generation semiconductor-based vacuum ultraviolet (VUV) detectors with low power consumption and small size for replacing traditional heavy and high-energy-consuming microchannel-detection systems, to study the formation and evolution of stars. However, the most desirable semiconductor-based VUV photovoltaic detector capable of achieving zero power consumption has not yet been achieved. With high-crystallinity multistep epitaxial grown AlN as a VUV-absorbing layer for photogenerated carriers and p-type graphene (with unexpected VUV transmittance >96%) as a transparent electrode to collect excited holes, we constructed a heterojunction device with photovoltaic detection for VUV light. The device exhibits an encouraging VUV photoresponse, high external quantum efficiency (EQE) and extremely fast tempera response (80 ns, 10 4 -10 6 times faster than that of the currently reported VUV photoconductive devices). This work has provided an idea for developing zero power consumption and integrated VUV photovoltaic detectors with ultrafast and high-sensitivity VUV detection capability, which not only allows future spacecraft to operate with longer service time and lower launching cost but also ensures an ultrafast evolution of interstellar objects.

  8. SoLid Detector Technology

    NASA Astrophysics Data System (ADS)

    Labare, Mathieu

    2017-09-01

    SoLid is a reactor anti-neutrino experiment where a novel detector is deployed at a minimum distance of 5.5 m from a nuclear reactor core. The purpose of the experiment is three-fold: to search for neutrino oscillations at a very short baseline; to measure the pure 235U neutrino energy spectrum; and to demonstrate the feasibility of neutrino detectors for reactor monitoring. This report presents the unique features of the SoLid detector technology. The technology has been optimised for a high background environment resulting from low overburden and the vicinity of a nuclear reactor. The versatility of the detector technology is demonstrated with a 288 kg detector prototype which was deployed at the BR2 nuclear reactor in 2015. The data presented includes both reactor on, reactor off and calibration measurements. The measurement results are compared with Monte Carlo simulations. The 1.6t SoLid detector is currently under construction, with an optimised design and upgraded material technology to enhance the detector capabilities. Its deployement on site is planned for the begin of 2017 and offers the prospect to resolve the reactor anomaly within about two years.

  9. The Future of Single- to Multi-band Detector Technologies: Review

    NASA Technical Reports Server (NTRS)

    Abedin, M. Nurul; Bhat, Ishwara; Gunapala, Sarath D.; Bandara, Sumith V.; Refaat, Tamer F.; Sandford, Stephen P.; Singh, Upendra N.

    2006-01-01

    Using classical optical components such as filters, prisms and gratings to separate the desired wavelengths before they reach the detectors results in complex optical systems composed of heavy components. A simpler system will result by utilizing a single optical system and a detector that responds separately to each wavelength band. Therefore, a continuous endeavors to develop the capability to reliably fabricate detector arrays that respond to multiple wavelength regions. In this article, we will review the state-of-the-art single and multicolor detector technologies over a wide spectral-range, for use in space-based and airborne remote sensing applications. Discussions will be focused on current and the most recently developed focal plane arrays (FPA) in addition to emphasizing future development in UV-to-Far infrared multicolor FPA detectors for next generation space-based instruments to measure water vapor and greenhouse gases. This novel detector component will make instruments designed for these critical measurements more efficient while reducing complexity and associated electronics and weight. Finally, we will discuss the ongoing multicolor detector technology efforts at NASA Langley Research Center, Jet Propulsion Laboratory, Rensselaer Polytechnic Institute, and others.

  10. Quantum dot single-photon switches of resonant tunneling current for discriminating-photon-number detection

    PubMed Central

    Weng, Qianchun; An, Zhenghua; Zhang, Bo; Chen, Pingping; Chen, Xiaoshuang; Zhu, Ziqiang; Lu, Wei

    2015-01-01

    Low-noise single-photon detectors that can resolve photon numbers are used to monitor the operation of quantum gates in linear-optical quantum computation. Exactly 0, 1 or 2 photons registered in a detector should be distinguished especially in long-distance quantum communication and quantum computation. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual quantum-dots (QDs) coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches- which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). Proposed electron-injecting operation fills electrons into coupled QDs which turn “photon-switches” to “OFF” state and make the detector ready for multiple-photons detection. With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished. PMID:25797442

  11. Quantum dot single-photon switches of resonant tunneling current for discriminating-photon-number detection.

    PubMed

    Weng, Qianchun; An, Zhenghua; Zhang, Bo; Chen, Pingping; Chen, Xiaoshuang; Zhu, Ziqiang; Lu, Wei

    2015-03-23

    Low-noise single-photon detectors that can resolve photon numbers are used to monitor the operation of quantum gates in linear-optical quantum computation. Exactly 0, 1 or 2 photons registered in a detector should be distinguished especially in long-distance quantum communication and quantum computation. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual quantum-dots (QDs) coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches- which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). Proposed electron-injecting operation fills electrons into coupled QDs which turn "photon-switches" to "OFF" state and make the detector ready for multiple-photons detection. With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished.

  12. Linearized Optically Phase-Modulated Fiber Optic Links for Microwave Signal Transport

    DTIC Science & Technology

    2009-03-03

    detectors (with internal 50- Ohm resistors) capable of 40-mA dc current per detector. With this link, the linearized SFDR would improve to 133 dB/Hz4/5...the IF) limitation on the signal. All calculations consider the 3dB power loss from the hybrid combiner and 6dB loss from parallel 50- Ohm resistors...283. [25] M. Nazarathy, J. Berger, A. Ley , I. Levi, and Y. Kagan, “Externally Modulated 80 Channel Am Catv Fiber-to-feeder Distribution System Over

  13. Status and Plan for The Upgrade of The CMS Pixel Detector

    NASA Astrophysics Data System (ADS)

    Lu, Rong-Shyang; CMS Collaboration

    2016-04-01

    The silicon pixel detector is the innermost component of the CMS tracking system and plays a crucial role in the all-silicon CMS tracker. While the current pixel tracker is designed for and performing well at an instantaneous luminosity of up to 1 ×1034cm-2s-1, it can no longer be operated efficiently at significantly higher values. Based on the strong performance of the LHC accelerator, it is anticipated that peak luminosities of two times the design luminosity are likely to be reached before 2018 and perhaps significantly exceeded in the running period until 2022, referred to as LHC Run 3. Therefore, an upgraded pixel detector, referred to as the phase 1 upgrade, is planned for the year-end technical stop in 2016. With a new pixel readout chip (ROC), an additional fourth layer, two additional endcap disks, and a significantly reduced material budget the upgraded pixel detector will be able to sustain the efficiency of the pixel tracker at the increased requirements imposed by high luminosities and pile-up. The main new features of the upgraded pixel detector will be an ultra-light mechanical design, a digital readout chip with higher rate capability and a new cooling system. These and other design improvements, along with results of Monte Carlo simulation studies for the expected performance of the new pixel detector, will be discussed and compared to those of the current CMS detector.

  14. Joint Chemical Agent Detector (JCAD): the future of chemical agent detection

    NASA Astrophysics Data System (ADS)

    Laljer, Charles E.; Owen, Jeffery L.

    2002-06-01

    The Joint Chemical Agent Detector (JCAD) will provide state of the art chemical warfare agent detection capability to ground vehicle operators. Intelligence sources estimate that over twenty counties have active chemical weapons programs. The spread of chemical weapons to third world nations, coupled with the potential for US involvement in these areas in an operational or support capacity, increases the probability that the Joint Services may encounter chemical agents and toxic industrial materials anywhere in the world. Currently, fielded chemical agent detectors are bulky, labor intensive, and subject to false readings. No legacy detector is sensitive enough to provide detection and warning of the low dose hazards associated with miosis contamination. The JCAD will provide a small, lightweight chemical agent detector for vehicle interiors, aircraft, individual personnel, shipboard, and fixed site locations. The system provides a common detection components across multi-service platforms. This common detector system will allow the Joint Services to use the same operational and support concept for more efficient utilization of resources. The JCAD will detect, identify, quantify, and warn of the presence of chemical agents prior to onset of miosis. Upon detection of chemical agents, the detector will provide local and remote audible and visual alarms to the operators. Advance warning will provide the vehicle crew with the time necessary to protect themselves from the lethal effects of chemical agents. The JCAD will also be capable of being upgraded to protect against future chemical agent threats. The JCAD will provide the vehicle operators with the warning necessary to survive and fight in a chemical warfare agent threat environment.

  15. ZnO:Zn/6LiF scintillator-A low afterglow alternative to ZnS:Ag/6LiF for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Sykora, G. Jeff; Schooneveld, Erik M.; Rhodes, Nigel J.

    2018-03-01

    Current ZnS:Ag/6LiF based scintillation detectors are often count rate limited by the long lifetime afterglow in the scintillator. Despite this drawback, new instruments at neutron scattering facilities, like ISIS in the UK, would still like to use ZnS:Ag/6LiF detectors due to their low gamma sensitivity, high light output, simplicity of detector design and relatively inexpensive production. One particular advantage of ZnS:Ag/6LiF detectors is their ability to provide strong pulse shape discrimination between neutrons and gammas. Despite the advantages of these detectors, it is becoming clear that new and upgraded instruments will be limited by the count rate capability of ZnS:Ag/6LiF, so an alternative scintillator technology with equivalent simplicity is being sought. ZnO:Zn/6LiF is investigated here as a low afterglow alternative to ZnS:Ag/6LiF. Basic scintillation properties of ZnO:Zn are studied and are discussed. Pulse shape discrimination between neutrons and gammas is explored and taken advantage of through simple single photon counting methods. A further step toward a realistic detector for neutron scattering is also taken by fiber coupling the ZnO:Zn/6LiF to a PMT. In an initial study of this fiber coupled configuration, 60Co gamma sensitivity of ∼ 7 × 10-6 is shown and improvements in count rate capability of at least a factor of 6 over ZnS:Ag/6LiF based neutron detectors are demonstrated.

  16. The Phase-2 electronics upgrade of the ATLAS liquid argon calorimeter system

    NASA Astrophysics Data System (ADS)

    Vachon, B.

    2018-03-01

    The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile-up is expected to increase to up to 200 events per proton bunch-crossing. The current readout of the ATLAS liquid argon calorimeters does not provide sufficient buffering and bandwidth capabilities to accommodate the hardware triggers requirements imposed by these harsh conditions. Furthermore, the expected total radiation doses are beyond the qualification range of the current front-end electronics. For these reasons an almost complete replacement of the front-end and off-detector readout system is foreseen for the 182,468 readout channels. The new readout system will be based on a free-running architecture, where calorimeter signals are amplified, shaped and digitized by on-detector electronics, then sent at 40 MHz to the off-detector electronics for further processing. Results from the design studies on the performance of the components of the readout system are presented, as well as the results of the tests of the first prototypes.

  17. Ultra-high-mass mass spectrometry with charge discrimination using cryogenic detectors

    DOEpatents

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Benner, W. Henry

    1999-01-01

    An ultra-high-mass time-of-flight mass spectrometer using a cryogenic particle detector as an ion detector with charge discriminating capabilities. Cryogenic detectors have the potential for significantly improving the performance and sensitivity of time-of-flight mass spectrometers, and compared to ion multipliers they exhibit superior sensitivity for high-mass, slow-moving macromolecular ions and can be used as "stop" detectors in time-of-flight applications. In addition, their energy resolving capability can be used to measure the charge state of the ions. Charge discrimination is very valuable in all time-of-flight mass spectrometers. Using a cryogenically-cooled Nb-Al.sub.2 O.sub.3 -Nb superconductor-insulator-superconductor (SIS) tunnel junction (STJ) detector operating at 1.3 K as an ion detector in a time-of-flight mass spectrometer for large biomolecules it was found that the STJ detector has charge discrimination capabilities. Since the cryogenic STJ detector responds to ion energy and does not rely on secondary electron production, as in the conventionally used microchannel plate (MCP) detectors, the cryogenic detector therefore detects large molecular ions with a velocity-independent efficiency approaching 100%.

  18. Abstract ID: 242 Simulation of a Fast Timing Micro-Pattern Gaseous Detector for TOF-PET.

    PubMed

    Radogna, Raffaella; Verwilligen, Piet

    2018-01-01

    Micro-Pattern Gas Detectors (MPGDs) are a new generation of gaseous detectors that have been developed thanks to advances in micro-structure technology. The main features of the MPGDs are: high rate capability (>50 MHz/cm 2 ); excellent spatial resolution (down to 50 μm); good time resolution (down to 3 ns); reduced radiation length, affordable costs, and possible flexible geometries. A new detector layout has been recently proposed that aims at combining both the high spatial resolution and high rate capability (100 MHz/cm 2 ) of the current state-of-the-art MPGDs with a high time resolution. This new type of MPGD is named the Fast Timing MPGD (FTM) detector [1,2]. The FTM developed for detecting charged particles can potentially reach sub-millimeter spatial resolution and 100 ps time resolution. This contribution introduces a Fast Timing MPGD technology optimized to detect photons, as an innovative PET imaging detector concept and emphases the importance of full detector simulation to guide the design of the detector geometry. The design and development of a new FTM, combining excellent time and spatial resolution, while exploiting the advantages of a reasonable energy resolution, will be a boost for the design of affordable TOF-PET scanner with improved image contrast. The use of such an affordable gas detector allows to instrument large areas in a cost-effective way, and to increase in image contrast for shorter scanning times (lowering the risk for the patient) and better diagnosis of the disease. In this report a dedicated simulation study is performed to optimize the detector design in the contest of the INFN project MPGD-Fatima. Results are obtained with ANSYS, COMSOL, GARFIELD++ and GEANT4 simulation tools. The final detector layout will be trade-off between fast time and good energy resolution. Copyright © 2017.

  19. Fast and High Dynamic Range Imaging with Superconducting Tunnel Junction Detectors

    NASA Astrophysics Data System (ADS)

    Matsuo, Hiroshi

    2014-08-01

    We have demonstrated a combined test of the submillimeter-wave SIS photon detectors and GaAs-JFET cryogenic integrated circuits. A relatively large background photo-current can be read out by fast-reset integrating amplifiers. An integration time of 1 ms enables fast frame rate readout and large dynamic range imaging, with an expected dynamic range of 8,000 in 1 ms. Ultimate fast and high dynamic range performance of superconducting tunnel junction detectors (STJ) will be obtained when photon counting capabilities are employed. In the terahertz frequencies, when input photon rate of 100 MHz is measured, the photon bunching gives us enough timing resolution to be used as phase information of intensity fluctuation. Application of photon statistics will be a new tool in the terahertz frequency region. The design parameters of STJ terahertz photon counting detectors are discussed.

  20. Harsh-Environment Solid-State Gamma Detector for Down-hole Gas and Oil Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Sandvik; Stanislav Soloviev; Emad Andarawis

    2007-08-10

    The goal of this program was to develop a revolutionary solid-state gamma-ray detector suitable for use in down-hole gas and oil exploration. This advanced detector would employ wide-bandgap semiconductor technology to extend the gamma sensor's temperature capability up to 200 C as well as extended reliability, which significantly exceeds current designs based on photomultiplier tubes. In Phase II, project tasks were focused on optimization of the final APD design, growing and characterizing the full scintillator crystals of the selected composition, arranging the APD device packaging, developing the needed optical coupling between scintillator and APD, and characterizing the combined elements asmore » a full detector system preparing for commercialization. What follows is a summary report from the second 18-month phase of this program.« less

  1. Towards time-of-flight PET with a semiconductor detector.

    PubMed

    Ariño-Estrada, Gerard; Mitchell, Gregory S; Kwon, Sun Il; Du, Junwei; Kim, Hadong; Cirignano, Leonard J; Shah, Kanai S; Cherry, Simon R

    2018-02-16

    The feasibility of using Cerenkov light, generated by energetic electrons following 511 keV photon interactions in the semiconductor TlBr, to obtain fast timing information for positron emission tomography (PET) was evaluated. Due to its high refractive index, TlBr is a relatively good Cerenkov radiator and with its wide bandgap, has good optical transparency across most of the visible spectrum. Coupling an SiPM photodetector to a slab of TlBr (TlBr-SiPM) yielded a coincidence timing resolution of 620 ps FWHM between the TlBr-SiPM detector and a LFS reference detector. This value improved to 430 ps FWHM by applying a high pulse amplitude cut based on the TlBr-SiPM and reference detector signal amplitudes. These results are the best ever achieved with a semiconductor PET detector and already approach the performance required for time-of-flight. As TlBr has higher stopping power and better energy resolution than the conventional scintillation detectors currently used in PET scanners, a hybrid TlBr-SiPM detector with fast timing capability becomes an interesting option for further development.

  2. Towards time-of-flight PET with a semiconductor detector

    NASA Astrophysics Data System (ADS)

    Ariño-Estrada, Gerard; Mitchell, Gregory S.; Kwon, Sun Il; Du, Junwei; Kim, Hadong; Cirignano, Leonard J.; Shah, Kanai S.; Cherry, Simon R.

    2018-02-01

    The feasibility of using Cerenkov light, generated by energetic electrons following 511 keV photon interactions in the semiconductor TlBr, to obtain fast timing information for positron emission tomography (PET) was evaluated. Due to its high refractive index, TlBr is a relatively good Cerenkov radiator and with its wide bandgap, has good optical transparency across most of the visible spectrum. Coupling an SiPM photodetector to a slab of TlBr (TlBr-SiPM) yielded a coincidence timing resolution of 620 ps FWHM between the TlBr-SiPM detector and a LFS reference detector. This value improved to 430 ps FWHM by applying a high pulse amplitude cut based on the TlBr-SiPM and reference detector signal amplitudes. These results are the best ever achieved with a semiconductor PET detector and already approach the performance required for time-of-flight. As TlBr has higher stopping power and better energy resolution than the conventional scintillation detectors currently used in PET scanners, a hybrid TlBr-SiPM detector with fast timing capability becomes an interesting option for further development.

  3. A direct electron detector for time-resolved MeV electron microscopy

    DOE PAGES

    Vecchione, T.; Denes, P.; Jobe, R. K.; ...

    2017-03-15

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here in this paper, we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixelmore » noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less

  4. A direct electron detector for time-resolved MeV electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecchione, T.; Denes, P.; Jobe, R. K.

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μmμm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The uniquemore » capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less

  5. A direct electron detector for time-resolved MeV electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecchione, T.; Denes, P.; Jobe, R. K.

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here in this paper, we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixelmore » noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less

  6. The GlueX DIRC detector

    NASA Astrophysics Data System (ADS)

    Barbosa, F.; Bessuille, J.; Chudakov, E.; Dzhygadlo, R.; Fanelli, C.; Frye, J.; Hardin, J.; Kelsey, J.; Patsyuk, M.; Schwarz, C.; Schwiening, J.; Stevens, J.; Shepherd, M.; Whitlatch, T.; Williams, M.

    2017-12-01

    The GlueX DIRC (Detection of Internally Reflected Cherenkov light) detector is being developed to upgrade the particle identification capabilities in the forward region of the GlueX experiment at Jefferson Lab. The GlueX DIRC will utilize four existing decommissioned BaBar DIRC bar boxes, which will be oriented to form a plane roughly 4 m away from the fixed target of the experiment. A new photon camera has been designed that is based on the SuperB FDIRC prototype. The full GlueX DIRC system will consist of two such cameras, with the first planned to be built and installed in 2017. We present the current status of the design and R&D, along with the future plans of the GlueX DIRC detector.

  7. Design, construction, and evaluation of new high resolution medical imaging detector/systems

    NASA Astrophysics Data System (ADS)

    Jain, Amit

    Increasing need of minimally invasive endovascular image guided interventional procedures (EIGI) for accurate and successful treatment of vascular disease has set a quest for better image quality. Current state of the art detectors are not up to the mark for these complex procedures due to their inherent limitations. Our group has been actively working on the design and construction of a high resolution, region of interest CCD-based X-ray imager for some time. As a part of that endeavor, a Micro-angiographic fluoroscope (MAF) was developed to serve as a high resolution, ROI X-ray imaging detector in conjunction with large lower resolution full field of view (FOV) state-of-the-art x-ray detectors. The newly developed MAF is an indirect x-ray imaging detector capable of providing real-time images with high resolution, high sensitivity, no lag and low instrumentation noise. It consists of a CCD camera coupled to a light image intensifier (LII) through a fiber optic taper. The CsI(Tl) phosphor serving as the front end is coupled to the LII. For this work, the MAF was designed and constructed. The linear system cascade theory was used to evaluate the performance theoretically. Linear system metrics such as MTF and DQE were used to gauge the detector performance experimentally. The capabilities of the MAF as a complete system were tested using generalized linear system metrics. With generalized linear system metrics the effects of finite size focal spot, geometric magnification and the presence of scatter are included in the analysis and study. To minimize the effect of scatter, an anti-scatter grid specially designed for the MAF was also studied. The MAF was compared with the flat panel detector using signal-to-noise ratio and the two dimensional linear system metrics. The signal-to-noise comparison was carried out to point out the effect of pixel size and Point Spread Function of the detector. The two dimensional linear system metrics were used to investigate the comparative performance of both the detectors in similar simulated clinical neuro-vascular conditions. The last part of this work presents a unique quality of the MAF: operation in single photon mode. The successful operation of the MAF was demonstrated with considerable improvement in spatial and contrast resolution over conventional energy integrating mode. The work presented shows the evolution of a high resolution, high sensitivity, and region of interest x-ray imaging detector as an attractive and capable x-ray imager for the betterment of complex EIGI procedures. The capability of single photon counting mode imaging provides the potential for additional uses of the MAF including the possibility of use in dual modality imaging with radionuclide sources as well as x-rays.

  8. A microfabricated, low dark current a-Se detector for measurement of microplasma optical emission in the UV for possible use on-site

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Karim, Karim S.; Karanassios, Vassili

    2013-05-01

    Traditionally, samples are collected on-site (i.e., in the field) and are shipped to a lab for chemical analysis. An alternative is offered by using portable chemical analysis instruments that can be used on-site (i.e., in the field). Many analytical measurements by optical emission spectrometry require use of light-sources and of spectral lines that are in the Ultra-Violet (UV, ~200 nm - 400 nm wavelength) region of the spectrum. For such measurements, a portable, battery-operated, fiber-optic spectrometer equipped with an un-cooled, linear, solid-state detector may be used. To take full advantage of the advanced measurement capabilities offered by state-of-the-art solid-state detectors, cooling of the detector is required. But cooling and other thermal management hamper portability and use on-site because they add size and weight and they increase electrical power requirements. To address these considerations, an alternative was implemented, as described here. Specifically, a microfabricated solid-state detector for measurement of UV photons will be described. Unlike solid-state detectors developed on crystalline Silicon, this miniaturized and low-cost detector utilizes amorphous Selenium (a-Se) as its photosensitive material. Due to its low dark current, this detector does not require cooling, thus it is better suited for portable use and for chemical measurements on-site. In this paper, a microplasma will be used as a light-source of UV photons for the a-Se detector. For example, spectra acquired using a microplasma as a light-source will be compared with those obtained with a portable, fiber-optic spectrometer equipped with a Si-based 2080-element detector. And, analytical performance obtained by introducing ng-amounts of analytes into the microplasma will be described.

  9. β-DECAY Studies at Triumf and Future Opportunities with Griffin

    NASA Astrophysics Data System (ADS)

    Garnsworthy, A. B.; Ball, G. C.; Bender, P. C.; Churchman, R.; Close, A.; Glister, J.; Hackman, G.; Ketelhut, S.; Krücken, R.; Sjue, S. K. L.; Tardiff, E.; Garrett, P. E.; Demand, G. A.; Dunlop, R.; Finlay, P.; Hadinia, B.; Leach, K.; Michetti-Wilson, J.; Rand, E. T.; Svensson, C. E.; Andreoiu, C.; Ashley, R.; Chester, A.; Cross, D.; Starosta, K.; Wang, Z.; Zganjar, E. F.

    2013-03-01

    The 8π spectrometer at TRIUMF-ISAC-I and a powerful suite of ancillary detectors support a wide program of research in the fields of nuclear structure, nuclear astrophysics and fundamental symmetries with low-energy radioactive beams.Work is underway to upgrade the Ge detectors and DAQ aspects of the facility to a new state-of-the-art γ-ray spectrometer, GRIFFIN, which will become operational in 2014. GRIFFIN will constitute an increase in the γ-γ efficiency of close to a factor of 300 over the current setup and extend the capabilities for investigations of exotic nuclei produced at ISAC.

  10. Microchannel plate detector technology potential for LUVOIR and HabEx

    NASA Astrophysics Data System (ADS)

    Siegmund, O. H. W.; Ertley, C.; Vallerga, J. V.; Schindhelm, E. R.; Harwit, A.; Fleming, B. T.; France, K. C.; Green, J. C.; McCandliss, S. R.; Harris, W. M.

    2017-08-01

    Microchannel plate (MCP) detectors have been the detector of choice for ultraviolet (UV) instruments onboard many NASA missions. These detectors have many advantages, including high spatial resolution (<20 μm), photon counting, radiation hardness, large formats (up to 20 cm), and ability for curved focal plane matching. Novel borosilicate glass MCPs with atomic layer deposition combine extremely low backgrounds, high strength, and tunable secondary electron yield. GaN and combinations of bialkali/alkali halide photocathodes show promise for broadband, higher quantum efficiency. Cross-strip anodes combined with compact ASIC readout electronics enable high spatial resolution over large formats with high dynamic range. The technology readiness levels of these technologies are each being advanced through research grants for laboratory testing and rocket flights. Combining these capabilities would be ideal for UV instruments onboard the Large UV/Optical/IR Surveyor (LUVOIR) and the Habitable Exoplanet Imaging Mission (HABEX) concepts currently under study for NASA's Astrophysics Decadal Survey.

  11. Developments towards the LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Cid Vidal, Xabier

    2016-09-01

    The Vertex Locator (VELO) is a silicon strip detector surrounding the interaction region of the LHCb experiment. The upgrade of the VELO is planned to be installed in 2019-2020, and the current detector will be replaced by a hybrid pixel system equipped with electronics capable of reading out at a rate of 40 MHz. The new detector is designed to withstand the radiation dose expected at an integrated luminosity of 50 fb-1. The detector will be composed of silicon pixel sensors, read out by the VeloPix ASIC that is being developed based on the TimePix/MediPix family. The prototype sensors for the VELO upgrade are being irradiated in five different facilities and the post-irradiation performance is being measured with testbeams, and in the lab. These proceedings present the VELO upgrade and briefly discuss the results of the sensor testing campaign.

  12. A two-dimensional intensified photodiode array for imaging spectroscopy

    NASA Technical Reports Server (NTRS)

    Tennyson, P. D.; Dymond, K.; Moos, H. W.; Feldman, P. D.; Mackey, E. F.

    1986-01-01

    The Johns Hopkins University is currently developing an instrument to fly aboard NASA's Space Shuttle as a Spartan payload in the late 1980s. This Spartan free flyer will obtain spatially resolved spectra of faint extended emission line objects in the wavelength range 750-1150 A at about 2-A resolution. The use of two-dimensional photon counting detectors will give simultaneous coverage of the 400 A spectral range and the 9 arc-minute spatial resolution along the spectrometer slit. The progress towards the flight detector is reported here with preliminary results from a laboratory breadboard detector, and a comparison with the one-dimensional detector developed for the Hopkins Ultraviolet Telescope. A hardware digital centroiding algorithm has been successfully implemented. The system is ultimately capable of 15-micron resolution in two dimensions at the image plane and can handle continuous counting rates of up to 8000 counts/s.

  13. Advanced energy-resolving imaging detectors for applications at pulsed neutron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feller, Bruce; White, Brian

    NOVA Scientific herein reports results from the DOE SBIR Phase IIB project. We continue to move forward to enhance the effectiveness of very high spatial and timing resolution MCP position-sensitive detectors into the epithermal or “above-thermal” neutron energy range – where NOVA’s neutron-sensitive NeuViewTM MCPs are already widely acknowledged as highly effective for cold and thermal neutron energies. As a result of these developments, these increasingly accepted neutron detection devices will be better able to perform energy-resolved neutron detection and imaging at the growing number of highly advanced pulsed neutron sources internationally, detecting individual neutrons with a spatial resolution ofmore » down to ~25 µm, and able to uniquely provide simultaneous ultrafast timing resolution of ~100 ns, for cold, thermal, and now into the epithermal range. The pulsed structure of the new and more powerful neutron beams, enables measurement of neutron energies through the time-of-flight (TOF) method. Moreover, these recent new pulsed sources have increasingly made available intense fluxes of epithermal neutrons - something previously unavailable with reactor-based neutron sources. The unique capability of MCP detectors to measure the energy of each detected neutron provides a capability to conduct experiments across a very broad neutron energy range simultaneously – encompassing cold up into the epithermal range of energies. Simultaneous detection of multiple Bragg edges, for example, can enable highly useful measurements in crystallographic structure, strain, phase, texture, and compositional distribution. Enhancement of the MCP epithermal neutron response resulting from this program, combined with an earlier and separate DOE-funded SBIR/STTR program to commercialize larger area (>100 cm 2) format cold and thermal neutron-sensitive MCP imaging detectors, has potential utility in being employed as large array detectors, replacing what is currently used in large neutron scattering facilities. Moreover, a current Phase II STTR (with Oak Ridge Lab) to substantially improve gamma ray discrimination in MCP neutron detectors, will provide further synergies as well. Work at DOE’s Argonne National Laboratory and its Atomic Layer Deposition (ALD) group, guided by NOVA in a ‘Work-For-Others’ arrangement, has continued to aid progress in this Phase IIB SBIR program – helping enhance the sensitivity of NOVA’s MCP cold and thermal neutron detectors deeper into the epithermal neutron energy range. Using atomic layer deposition (ALD), we have continued to refine the application of submicron oxide films of neutron absorbing elements along the inner microchannel walls of the detector. Also in Phase IIB, we continued an ongoing scientific collaboration in neutron testing and full characterization of ongoing improvements to the MCP detectors, working with the neutron facilities (SNS/HFIR) and staff of the Detector Group at Oak Ridge National Laboratory. Moreover, our recent marketing studies suggest that successful commercialization of neutron-sensitive MCP detectors, will require that we provide a ‘user-friendly, turnkey’ detector system. Major progress has been made in our commercial offering of the MCP neutron detector approach, both in ‘demountable’ UHV flange-based as well as in vacuum-sealed or hermetically encapsulated devices. Both of these formats offer as a readout method, a proximity mounted delay line anode (DLA) readout capable of ultrafast event time-tagging.« less

  14. High Resolution Energetic X-ray Imager (HREXI)

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a nIR telescope in spece, will enable GRBs to be used as probes of the formation of the first stars and structure in the Universe. HREXI on its own, with broad bandwidth and high spectral and spatial resolution, will extend both Galactic surveys for obscured young supernova remnants (44Ti sources) and for transients, black holes and flaring AGN and TDEs well at greatly increased sensitivity and spatial/spectral resolution than has been done with Swift or INTEGRAL. If the HREXI-1 technology is developed in the first year of this proposed effort, it could be used on the upcoming Brazil-US MIRAX telescope on the Lattes satellite, scheduled for a 2018 launch with imaging detector planes to be provided (under contract) by our group. Finally, the 3D stacking technology development proposed here for imaging detector arrays has broad application to Wide Field soft X-ray imaging, to CMB polarization mode (B mode) imaging detectors with very high detector-pixel count, and to Homeland Security.

  15. Improving photoelectron counting and particle identification in scintillation detectors with Bayesian techniques

    NASA Astrophysics Data System (ADS)

    Akashi-Ronquest, M.; Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Bodmer, M.; Boulay, M. G.; Broerman, B.; Buck, B.; Butcher, A.; Cai, B.; Caldwell, T.; Chen, M.; Chen, Y.; Cleveland, B.; Coakley, K.; Dering, K.; Duncan, F. A.; Formaggio, J. A.; Gagnon, R.; Gastler, D.; Giuliani, F.; Gold, M.; Golovko, V. V.; Gorel, P.; Graham, K.; Grace, E.; Guerrero, N.; Guiseppe, V.; Hallin, A. L.; Harvey, P.; Hearns, C.; Henning, R.; Hime, A.; Hofgartner, J.; Jaditz, S.; Jillings, C. J.; Kachulis, C.; Kearns, E.; Kelsey, J.; Klein, J. R.; Kuźniak, M.; LaTorre, A.; Lawson, I.; Li, O.; Lidgard, J. J.; Liimatainen, P.; Linden, S.; McFarlane, K.; McKinsey, D. N.; MacMullin, S.; Mastbaum, A.; Mathew, R.; McDonald, A. B.; Mei, D.-M.; Monroe, J.; Muir, A.; Nantais, C.; Nicolics, K.; Nikkel, J. A.; Noble, T.; O'Dwyer, E.; Olsen, K.; Orebi Gann, G. D.; Ouellet, C.; Palladino, K.; Pasuthip, P.; Perumpilly, G.; Pollmann, T.; Rau, P.; Retière, F.; Rielage, K.; Schnee, R.; Seibert, S.; Skensved, P.; Sonley, T.; Vázquez-Jáuregui, E.; Veloce, L.; Walding, J.; Wang, B.; Wang, J.; Ward, M.; Zhang, C.

    2015-05-01

    Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We describe a Bayesian technique that can identify the times of individual photoelectrons in a sampled PMT waveform without deconvolution, even when pileup is present. To demonstrate the technique, we apply it to the general problem of particle identification in single-phase liquid argon dark matter detectors. Using the output of the Bayesian photoelectron counting algorithm described in this paper, we construct several test statistics for rejection of backgrounds for dark matter searches in argon. Compared to simpler methods based on either observed charge or peak finding, the photoelectron counting technique improves both energy resolution and particle identification of low energy events in calibration data from the DEAP-1 detector and simulation of the larger MiniCLEAN dark matter detector.

  16. Calibration of large area Micromegas detectors using cosmic rays

    NASA Astrophysics Data System (ADS)

    Biebel, O.; Flierl, B.; Herrmann, M.; Hertenberger, R.; Klitzner, F.; Lösel, P.; Müller, R.; Valderanis, C.; Zibell, A.

    2017-06-01

    Currently m2-sized micropattern detectors with spatial resolution better than 100 μm and online trigger capability are of big interest for many experiments. Large size in combination with superb spatial resolution and trigger capability implicates that the construction of these detectors is highly sophisticated and imposes strict mechanical tolerances. We developed a method to survey assembled and working detectors on potential deviations of the micro pattern readout structures from design value as well as deformations of the whole detector, using cosmic muons in a tracking facility. The LMU Cosmic Ray Facility consists of two 8 m2 ATLAS Monitored Drift Tube chambers (MDT) for precision muon reference tracking and two segmented trigger hodoscopes with sub-ns time-resolution and additional 10 cm position information along the wires of the MDTs. It provides information on homogeneity in efficiency and pulse height of one or several micropattern detectors installed in between the MDTs. With an angular acceptance of -30° to +30° the comparison of the reference muon tracking with centroidal position determination or time projection chamber like track reconstruction in the micropattern detector allows for calibration in three dimensions. We present results of a m2-sized one-dimensional resistive strip Micromegas detector consisting of two readout boards with in total 2048 strips, read out by 16 APV25 front-end boards. This 16-fold segmentation along the precision direction in combination with a 10-fold segmentation in orthogonal direction by the resolution of the trigger hodoscope, allows for very detailed analysis of the 1 m2 detector under study by subdivision into 160 partitions, each being analyzed separately. We are able to disentangle deviations from the readout strip straightness and global deformation due to the small overpressure caused by the Ar:CO2 (93:7) gas mixture flux. We introduce the alignment and calibration procedure, report on homogeneity in efficiency and pulse height and present results on deformation and performance of the m2-sized Micromegas.

  17. Development of Ultra-Fast Silicon Detectors for 4D tracking

    NASA Astrophysics Data System (ADS)

    Staiano, A.; Arcidiacono, R.; Boscardin, M.; Dalla Betta, G. F.; Cartiglia, N.; Cenna, F.; Ferrero, M.; Ficorella, F.; Mandurrino, M.; Obertino, M.; Pancheri, L.; Paternoster, G.; Sola, V.

    2017-12-01

    In this contribution we review the progress towards the development of a novel type of silicon detectors suited for tracking with a picosecond timing resolution, the so called Ultra-Fast Silicon Detectors. The goal is to create a new family of particle detectors merging excellent position and timing resolution with GHz counting capabilities, very low material budget, radiation resistance, fine granularity, low power, insensitivity to magnetic field, and affordability. We aim to achieve concurrent precisions of ~ 10 ps and ~ 10 μm with a 50 μm thick sensor. Ultra-Fast Silicon Detectors are based on the concept of Low-Gain Avalanche Detectors, which are silicon detectors with an internal multiplication mechanism so that they generate a signal which is factor ~10 larger than standard silicon detectors. The basic design of UFSD consists of a thin silicon sensor with moderate internal gain and pixelated electrodes coupled to full custom VLSI chip. An overview of test beam data on time resolution and the impact on this measurement of radiation doses at the level of those expected at HL-LHC is presented. First I-V and C-V measurements on a new FBK sensor production of UFSD, 50 μm thick, with B and Ga, activated at two diffusion temperatures, with and without C co-implantation (in Low and High concentrations), and with different effective doping concentrations in the Gain layer, are shown. Perspectives on current use of UFSD in HEP experiments (UFSD detectors have been installed in the CMS-TOTEM Precision Protons Spectrometer for the forward physics tracking, and are currently taking data) and proposed applications for a MIP timing layer in the HL-LHC upgrade are briefly discussed.

  18. Implementation of a 4x8 NIR and CCD Mosaic Focal Plane Technology

    NASA Astrophysics Data System (ADS)

    Jelinsky, Patrick; Bebek, C. J.; Besuner, R. W.; Haller, G. M.; Harris, S. E.; Hart, P. A.; Heetderks, H. D.; Levi, M. E.; Maldonado, S. E.; Roe, N. A.; Roodman, A. J.; Sapozhnikov, L.

    2011-01-01

    Mission concepts for NASA's Wide Field Infrared Survey Telescope (WFIRST), ESA's EUCLID mission, as well as for ground based observations, have requirements for large mosaic focal planes to image visible and near infrared (NIR) wavelengths. We have developed detectors, readout electronics and focal plane design techniques that can be used to create very large scalable focal plane mosaic cameras. In our technology, CCDs and HgCdTe detectors can be intermingled on a single, silicon carbide (SiC) cold plate. This enables optimized, wideband observing strategies. The CCDs, developed at Lawrence Berkeley National Laboratory, are fully-depleted, p-channel devices that are backside illuminated capable of operating at temperatures as low as 110K and have been optimized for the weak lensing dark energy technique. The NIR detectors are 1.7µm and 2.0µm wavelength cutoff H2RG® HgCdTe, manufactured by Teledyne Imaging Sensors under contract to LBL. Both the CCDs and NIR detectors are packaged on 4-side abuttable SiC pedestals with a common mounting footprint supporting a 44.16mm mosaic pitch and are coplanar. Both types of detectors have direct-attached, readout electronics that convert the detector signal directly to serial, digital data streams and allow a flexible, low cost data acquisition strategy, despite the large data volume. A mosaic of these detectors can be operated at a common temperature that achieves the required dark current and read noise performance in both types of detectors necessary for dark energy observations. We report here the design and integration for a focal plane designed to accommodate a 4x8 heterogeneous array of CCDs and HgCdTe detectors. Our current implementation contains over 1/4-billion pixels.

  19. Stellar Gyroscope for Determining Attitude of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Hancock, Bruce; Liebe, Carl; Mellstrom, Jeffrey

    2005-01-01

    A paper introduces the concept of a stellar gyroscope, currently at an early stage of development, for determining the attitude or spin axis, and spin rate of a spacecraft. Like star trackers, which are commercially available, a stellar gyroscope would capture and process images of stars to determine the orientation of a spacecraft in celestial coordinates. Star trackers utilize chargecoupled devices as image detectors and are capable of tracking attitudes at spin rates of no more than a few degrees per second and update rates typically <5 Hz. In contrast, a stellar gyroscope would utilize an activepixel sensor as an image detector and would be capable of tracking attitude at a slew rate as high as 50 deg/s, with an update rate as high as 200 Hz. Moreover, a stellar gyroscope would be capable of measuring a slew rate up to 420 deg/s. Whereas a Sun sensor and a three-axis mechanical gyroscope are typically needed to complement a star tracker, a stellar gyroscope would function without them; consequently, the mass, power consumption, and mechanical complexity of an attitude-determination system could be reduced considerably.

  20. Radiography by selective detection of scatter field velocity components

    NASA Technical Reports Server (NTRS)

    Dugan, Edward T. (Inventor); Jacobs, Alan M. (Inventor); Shedlock, Daniel (Inventor)

    2007-01-01

    A reconfigurable collimated radiation detector, system and related method includes at least one collimated radiation detector. The detector has an adjustable collimator assembly including at least one feature, such as a fin, optically coupled thereto. Adjustments to the adjustable collimator selects particular directions of travel of scattered radiation emitted from an irradiated object which reach the detector. The collimated detector is preferably a collimated detector array, where the collimators are independently adjustable. The independent motion capability provides the capability to focus the image by selection of the desired scatter field components. When an array of reconfigurable collimated detectors is provided, separate image data can be obtained from each of the detectors and the respective images cross-correlated and combined to form an enhanced image.

  1. The GlueX DIRC detector

    DOE PAGES

    Barbosa, F.; Bessuille, J.; Chudakov, E.; ...

    2017-02-03

    We present the GlueX DIRC (Detection of Internally Reflected Cherenkov light) detector that is being developed to upgrade the particle identification capabilities in the forward region of the GlueX experiment at Jefferson Lab. The GlueX DIRC will utilize four existing decommissioned BaBar DIRC bar boxes, which will be oriented to form a plane roughly 4 m away from the fixed target of the experiment. A new photon camera has been designed that is based on the SuperB FDIRC prototype. The full GlueX DIRC system will consist of two such cameras, with the first planned to be built and installed inmore » 2017. In addition, we present the current status of the design and R&D, along with the future plans of the GlueX DIRC detector.« less

  2. A high time resolution x-ray diagnostic on the Madison Symmetric Torus

    NASA Astrophysics Data System (ADS)

    DuBois, Ami M.; Lee, John David; Almagri, Abdulgadar F.

    2015-07-01

    A new high time resolution x-ray detector has been installed on the Madison Symmetric Torus (MST) to make measurements around sawtooth events. The detector system is comprised of a silicon avalanche photodiode, a 20 ns Gaussian shaping amplifier, and a 500 MHz digitizer with 14-bit sampling resolution. The fast shaping time diminishes the need to restrict the amount of x-ray flux reaching the detector, limiting the system dead-time. With a much higher time resolution than systems currently in use in high temperature plasma physics experiments, this new detector has the versatility to be used in a variety of discharges with varying flux and the ability to study dynamics on both slow and fast time scales. This paper discusses the new fast x-ray detector recently installed on MST and the improved time resolution capabilities compared to the existing soft and hard x-ray diagnostics. In addition to the detector hardware, improvements to the detector calibration and x-ray pulse identification software, such as additional fitting parameters and a more sophisticated fitting routine are discussed. Finally, initial data taken in both high confinement and standard reversed-field pinch plasma discharges are compared.

  3. High density Schottky barrier IRCCD sensors for SWIR applications at intermediate temperature

    NASA Technical Reports Server (NTRS)

    Elabd, H.; Villani, T. S.; Tower, J. R.

    1982-01-01

    Monolithic 32 x 64 and 64 x 1:128 palladium silicide (Pd2Si) interline transfer infrared charge coupled devices (IRCCDs) sensitive in the 1 to 3.5 micron spectral band were developed. This silicon imager exhibits a low response nonuniformity of typically 0.2 to 1.6% rms, and was operated in the temperature range between 40 to 140 K. Spectral response measurements of test Pd2Si p-type Si devices yield quantum efficiencies of 7.9% at 1.25 microns, 5.6% at 1.65 microns 2.2% at 2.22 microns. Improvement in quantum efficiency is expected by optimizing the different structural parameters of the Pd2Si detectors. The spectral response of the Pd2Si detectors fit a modified Fowler emission model. The measured photo-electric barrier height for the Pd2Si detectors is 0.34 eV and the measured quantum efficiency coefficient, C1, is 19%/eV. The dark current level of Pd2Si Schottky barrier focal plane arrays (FPAs) is sufficiently low to enable operation at intermediate temperatures at TV frame rates. Typical dark current level measured at 120 K on the FPA is 2 nA/sq cm. The operating temperature of the Pd2Si FPA is compatible with passive cooler performance. In addition, high density Pd2Si Schottky barrier FPAs are manufactured with high yield and therefore represent an economical approach to short wavelength IR imaging. A Pd2Si Schottky barrier image sensor for push-broom multispectral imaging in the 1.25, 1.65, and 2.22 micron bands is being studied. The sensor will have two line arrays (dual band capability) of 512 detectors each, with 30 micron center-to-center detector spacing. The device will be suitable for chip-to-chip abutment, thus providing the capability to produce large, multiple chip focal planes with contiguous, in-line sensors.

  4. Probing infrared detectors through energy-absorption interferometry

    NASA Astrophysics Data System (ADS)

    Moinard, Dan; Withington, Stafford; Thomas, Christopher N.

    2017-08-01

    We describe an interferometric technique capable of fully characterizing the optical response of few-mode and multi-mode detectors using only power measurements, and its implementation at 1550 nm wavelength. EnergyAbsorption Interferometry (EAI) is an experimental procedure where the system under test is excited with two coherent, phase-locked sources. As the relative phase between the sources is varied, a fringe is observed in the detector output. Iterating over source positions, the fringes' complex visibilities allow the two-point detector response function to be retrieved: this correlation function corresponds to the state of coherence to which the detector is maximally sensitive. This detector response function can then be decomposed into a set of natural modes, in which the detector is incoherently sensitive to power. EAI therefore allows the reconstruction of the individual degrees of freedom through which the detector can absorb energy, including their relative sensitivities and full spatial forms. Coupling mechanisms into absorbing structures and their underlying solidstate phenomena can thus be studied, with direct applications in improving current infrared detector technology. EAI has previously been demonstrated for millimeter wavelength. Here, we outline the theoretical basis of EAI, and present a room-temperature 1550 nm wavelength infrared experiment we have constructed. Finally, we discuss how this experimental system will allow us to study optical coupling into fiber-based systems and near-infrared detectors.

  5. Prototype of IGZO-TFT preamplifier and analog counter for pixel detector

    NASA Astrophysics Data System (ADS)

    Shimazoe, K.; Koyama, A.; Takahashi, H.; Shindoh, T.; Miyoshi, H.

    2017-02-01

    IGZO-TFT (Indium Galium Zinc Oxide-Thin Film Transistor) is a promising technology for controlling large display areas and large area sensors because of its very low leakage current in the off state and relatively low cost. IGZO has been used as a switching gate for a large area flat-panel detector. The photon counting capability for X-ray medical imaging has been investigated and expected for low-dose exposure and material determination. Here the design and fabrication of a charge sensitive preamplifier and analog counter using IGZO-TFT processes and its performance are reported for the first time to be used for radiation photon counting applications.

  6. Enhanced R200 with Frisch-Grid CZT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov, A.

    2017-12-01

    The goal of this project is to demonstrate an engineering prototype of a gamma ray spectrometer that uses Cadmium Zinc Telluride (CZT) in a configuration comprised of an array of position-sensitive virtual Frisch grid (PSVFG) detectors and show its capability to perform functions that would be useful to the IAEA. The detectors should achieve energy resolution of ~2% at 200 keV and <1% at > 662 keV, thereby outperforming all hand-held instruments currently in use other than cryogenically cooled germanium. BNL will make every effort to transfer the technology to an industrial partner so that robust, fieldable instruments can bemore » manufactured.« less

  7. Enhanced R200 with Frisch-Grid CZT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov, Aleksey

    The goal of this project is to demonstrate an engineering prototype of a gamma ray spectrometer that uses Cadmium Zinc Telluride (CZT) in a configuration comprised of an array of position-sensitive virtual Frisch grid (PSVFG) detectors and show its capability to perform functions that would be useful to the IAEA. The detectors should achieve energy resolution of ~2% at 200 keV and <1% at > 662 keV, thereby outperforming all hand-held instruments currently in use other than cryogenically cooled germanium. BNL will make every effort to transfer the technology to an industrial partner so that robust, fieldable instruments can bemore » manufactured.« less

  8. The Case for Space-Borne Far-Infrared Line Surveys

    NASA Technical Reports Server (NTRS)

    Bock, J. J.; Bradford, C. M.; Dragovan, M.; Earle, L.; Glenn, J.; Naylor, B.; Nguyen, H. T.; Zmuidzinas, J.

    2004-01-01

    The combination of sensitive direct detectors and a cooled aperture promises orders of magnitude improvement in the sensitivity and survey time for far-infrared and submillimeter spectroscopy compared to existing or planned capabilities. Continuing advances in direct detector technology enable spectroscopy that approaches the background limit available only from space at these wavelengths. Because the spectral confusion limit is significantly lower than the more familiar spatial confusion limit encountered in imaging applications, spectroscopy can be carried out to comparable depth with a significantly smaller aperture. We are developing a novel waveguide-coupled grating spectrometer that disperses radiation into a wide instantaneous bandwidth with moderate resolution (R 1000) in a compact 2-dimensional format. A line survey instrument coupled to a modest cooled single aperture provides an attractive scientific application for spectroscopy with direct detectors. Using a suite of waveguide spectrometers, we can obtain complete coverage over the entire far-infrared and sub-millimeter. This concept requires no moving parts to modulate the optical signal. Such an instrument would be able to conduct a far-infrared line survey 10 6 times faster than planned capabilities, assuming existing detector technology. However, if historical improvements in bolometer sensitivity continue, so that photon-limited sensitivity is obtained, the integration time can be further reduced by 2 to 4 orders of magnitude, depending on wavelength. The line flux sensitivity would be comparable to ALMA, but at shorter wavelengths and with the continuous coverage needed to extract line fluxes for sources at unknown redshifts. For example, this capability would break the current spectroscopic bottleneck in the study of far-infrared galaxies, the recently discovered, rapidly evolving objects abundant at cosmological distances.

  9. Medical isotope identification with large mobile detection systems

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard

    2012-10-01

    The Remote Sensing laboratory (RSL) of National Security Technologies Inc. has built an array of large (5.08 - cm x 10.16 - cm x 40.6 - cm) thallium doped sodium iodide (NaI: Tl) scintillators to locate and screen gamma-ray emitting radioisotopes that are of interests to radiological emergency responders [1]. These vehicle mounted detectors provide the operators with rapid, simple, specific information for radiological threat assessment. Applications include large area inspection, customs inspection, border protection, emergency response, and monitoring of radiological facilities. These RSL mobile units are currently being upgraded to meet the Defense Threat Reduction Agency mission requirements for a next-generation system capable of detecting and identifying nuclear threat materials. One of the challenging problems faced by these gamma-ray detectors is the unambiguous identification of medical isotopes like 131I (364.49 keV [81.7%], 636.99 keV [7.17%]), 99Tcm (140.51 keV [89.1%]) and 67Ga (184.6 keV [19.7%], 300.2 [16.0%], 393.5 [4.5%] that are used in radionuclide therapy and often have overlapping gamma-ray energy regions of interest (ROI). The problem is made worse by short (about 5 seconds) acquisition time of the spectral data necessary for dynamic mobile detectors. This article describes attempts to identify medical isotopes from data collected from this mobile detection system in a short period of time (not exceeding 5 secs) and a large standoff distance (typically 10 meters) The mobile units offer identification capabilities that are based on hardware auto stabilization of the amplifier gain. The 1461 keV gamma-energy line from 40K is tracked. It uses gamma-ray energy windowing along with embedded mobile Gamma Detector Response and Analysis Software (GADRAS) [2] simultaneously to deconvolve any overlapping gamma-energy ROIs. These high sensitivity detectors are capable of resolving complex masking scenarios and exceed all ANSI N42.34 (2006) requirements for the identification of bare, shielded and multiple isotopes.

  10. Above-ground Antineutrino Detection for Nuclear Reactor Monitoring

    DOE PAGES

    Sweany, Melinda; Brennan, James S.; Cabrera-Palmer, Belkis; ...

    2014-08-01

    Antineutrino monitoring of nuclear reactors has been demonstrated many times, however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detector media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surroundedmore » by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of lithium-6. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron’s annihilation gammas, which are absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe this technology will ultimately be applicable to potential safeguards scenarios such as those recently described.« less

  11. LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Hennessy, Karol; LHCb VELO Upgrade Collaboration

    2017-02-01

    The upgrade of the LHCb experiment, scheduled for LHC Run-III, scheduled to start in 2021, will transform the experiment to a trigger-less system reading out the full detector at 40 MHz event rate. All data reduction algorithms will be executed in a high-level software farm enabling the detector to run at luminosities of 2×1033 cm-2 s-1. The Vertex Locator (VELO) is the silicon vertex detector surrounding the interaction region. The current detector will be replaced with a hybrid pixel system equipped with electronics capable of reading out at 40 MHz. The upgraded VELO will provide fast pattern recognition and track reconstruction to the software trigger. The silicon pixel sensors have 55×55 μm2 pitch, and are read out by the VeloPix ASIC, from the Timepix/Medipix family. The hottest region will have pixel hit rates of 900 Mhits/s yielding a total data rate of more than 3 Tbit/s for the upgraded VELO. The detector modules are located in a separate vacuum, separated from the beam vacuum by a thin custom made foil. The foil will be manufactured through milling and possibly thinned further by chemical etching. The material budget will be minimised by the use of evaporative CO2 coolant circulating in microchannels within 400 μm thick silicon substrates. The current status of the VELO upgrade is described and latest results from operation of irradiated sensor assemblies are presented.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweany, Melinda; Brennan, James S.; Cabrera-Palmer, Belkis

    Antineutrino monitoring of nuclear reactors has been demonstrated many times, however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detector media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surroundedmore » by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of lithium-6. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron’s annihilation gammas, which are absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe this technology will ultimately be applicable to potential safeguards scenarios such as those recently described.« less

  13. The artificial retina for track reconstruction at the LHC crossing rate

    NASA Astrophysics Data System (ADS)

    Abba, A.; Bedeschi, F.; Citterio, M.; Caponio, F.; Cusimano, A.; Geraci, A.; Marino, P.; Morello, M. J.; Neri, N.; Punzi, G.; Piucci, A.; Ristori, L.; Spinella, F.; Stracka, S.; Tonelli, D.

    2016-04-01

    We present the results of an R&D study for a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel and silicon strip detectors at 40 MHz, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired to the current understanding of the mechanisms adopted by the primary visual cortex of mammals in the early stages of visual-information processing. The detailed geometry and charged-particle's activity of a large tracking detector are simulated and used to assess the performance of the artificial retina algorithm. We find that high-quality tracking in large detectors is possible with sub-microsecond latencies when the algorithm is implemented in modern, high-speed, high-bandwidth FPGA devices.

  14. Background canceling surface alpha detector

    DOEpatents

    MacArthur, D.W.; Allander, K.S.; Bounds, J.A.

    1996-06-11

    A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone. 5 figs.

  15. Background canceling surface alpha detector

    DOEpatents

    MacArthur, Duncan W.; Allander, Krag S.; Bounds, John A.

    1996-01-01

    A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone.

  16. Performance of InGaAs short wave infrared avalanche photodetector for low flux imaging

    NASA Astrophysics Data System (ADS)

    Singh, Anand; Pal, Ravinder

    2017-11-01

    Opto-electronic performance of the InGaAs/i-InGaAs/InP short wavelength infrared focal plane array suitable for high resolution imaging under low flux conditions and ranging is presented. More than 85% quantum efficiency is achieved in the optimized detector structure. Isotropic nature of the wet etching process poses a challenge in maintaining the required control in the small pitch high density detector array. Etching process is developed to achieve low dark current density of 1 nA/cm2 in the detector array with 25 µm pitch at 298 K. Noise equivalent photon performance less than one is achievable showing single photon detection capability. The reported photodiode with low photon flux is suitable for active cum passive imaging, optical information processing and quantum computing applications.

  17. Invited Article: miniTimeCube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, V. A., E-mail: vli2@hawaii.edu; Dorrill, R.; Duvall, M. J.

    2016-02-15

    We present the development of the miniTimeCube (mTC), a novel compact neutrino  detector. The mTC is a multipurpose detector, aiming to detect not only neutrinos but also fast/thermal neutrons. Potential applications include the counterproliferation of nuclear materials and the investigation of antineutrino short-baseline effects. The mTC is a plastic 0.2% {sup 10}B–doped scintillator (13 cm){sup 3} cube surrounded by 24 Micro-Channel Plate (MCP) photon detectors, each with an 8 × 8 anode totaling 1536 individual channels/pixels viewing the scintillator. It uses custom-made electronics modules which mount on top of the MCPs, making our detector compact and able to both distinguishmore » different types of events and reject noise in real time. The detector is currently deployed and being tested at the National Institute of Standards and Technology Center for Neutron Research nuclear reactor (20 MW{sub th}) in Gaithersburg MD. A shield for further tests is being constructed, and calibration and upgrades are ongoing. The mTC’s improved spatiotemporal resolution will allow for determination of incident particle directions beyond previous capabilities.« less

  18. Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner

    NASA Astrophysics Data System (ADS)

    Surti, S.; Karp, J. S.

    2015-07-01

    Current generation of commercial time-of-flight (TOF) PET scanners utilize 20-25 mm thick LSO or LYSO crystals and have an axial FOV (AFOV) in the range of 16-22 mm. Longer AFOV scanners would provide increased intrinsic sensitivity and require fewer bed positions for whole-body imaging. Recent simulation work has investigated the sensitivity gains that can be achieved with these long AFOV scanners, and has motivated new areas of investigation such as imaging with a very low dose of injected activity as well as providing whole-body dynamic imaging capability in one bed position. In this simulation work we model a 72 cm long scanner and prioritize the detector design choices in terms of timing resolution, crystal size (spatial resolution), crystal thickness (detector sensitivity), and depth-of-interaction (DOI) measurement capability. The generated list data are reconstructed with a list-mode OSEM algorithm using a Gaussian TOF kernel that depends on the timing resolution and blob basis functions for regularization. We use lesion phantoms and clinically relevant metrics for lesion detectability and contrast measurement. The scan time was fixed at 10 min for imaging a 100 cm long object assuming a 50% overlap between adjacent bed positions. Results show that a 72 cm long scanner can provide a factor of ten reduction in injected activity compared to an identical 18 cm long scanner to get equivalent lesion detectability. While improved timing resolution leads to further gains, using 3 mm (as opposed to 4 mm) wide crystals does not show any significant benefits for lesion detectability. A detector providing 2-level DOI information with equal crystal thickness also does not show significant gains. Finally, a 15 mm thick crystal leads to lower lesion detectability than a 20 mm thick crystal when keeping all other detector parameters (crystal width, timing resolution, and DOI capability) the same. However, improved timing performance with 15 mm thick crystals can provide similar or better performance than that achieved by a detector using 20 mm thick crystals.

  19. Low dark current MCT-based focal plane detector arrays for the LWIR and VLWIR developed at AIM

    NASA Astrophysics Data System (ADS)

    Gassmann, Kai Uwe; Eich, Detlef; Fick, Wolfgang; Figgemeier, Heinrich; Hanna, Stefan; Thöt, Richard

    2015-10-01

    For nearly 40 years AIM develops, manufactures and delivers photo-voltaic and photo-conductive infrared sensors and associated cryogenic coolers which are mainly used for military applications like pilotage, weapon sights, UAVs or vehicle platforms. In 2005 AIM started to provide the competences also for space applications like IR detector units for the SLSTR instrument on board of the Sentinel 3 satellite, the hyperspectral SWIR Imager for EnMAP or pushbroom detectors for high resolution Earth observation satellites. Meanwhile AIM delivered more than 25 Flight Models for several customers. The first European pulse-tube cooler ever operating on-board of a satellite is made by AIM. AIM homes the required infrared core capabilities such as design and manufacturing of focal plane assemblies, detector housing technologies, development and manufacturing of cryocoolers and also data processing for thermal IR cameras under one roof which enables high flexibility to react to customer needs and assures economical solutions. Cryogenically cooled Hg(1-x)CdxTe (MCT) quantum detectors are unequalled for applications requiring high imaging as well as high radiometric performance in the infrared spectral range. Compared with other technologies, they provide several advantages, such as the highest quantum efficiency, lower power dissipation compared to photoconductive devices and fast response times, hence outperforming micro-bolometer arrays. However, achieving an excellent MCT detector performance at long (LWIR) and very long (VLWIR) infrared wavelengths is challenging due to the exponential increase in the thermally generated photodiode dark current with increasing cut-off wavelength and / or operating temperature. Dark current is a critical design driver, especially for LWIR / VLWIR multi-spectral imagers with moderate signal levels or hyper-spectral Fourier spectrometers operating deep into the VLWIR spectral region. Consequently, low dark current (LDC) technologies are the prerequisite for future scientific space and earth observation missions. Aiming, for example at exoplanet or earth atmospheric spectral analysis, significant improvement in LWIR / VLWIR detector material performance is mandatory. LDC material optimization can target different directions of impact: (i) reduction of dark current for a given operational temperature to increase SNR and reduce thermally induced signal offset variations. (ii) operation at elevated temperatures at a given dark current level to reduce mass and power budget of the required cryocooler and to reduce cryostat complexity. (iii) increase the accessible cut-off wavelength at constant detector temperature and dark current level. This paper presents AIM's latest results on n-on-p as well as p-on-n low dark current planar MCT photodiode focal plane detector arrays at cut-off wavelengths >11 μm at 80 K. Dark current densities below Tennant's `Rule07'1 have been demonstrated for n-on-p and p-on-n devices. This work has been carried out under ESA contract ESTEC 4000107414/13/NL/SFe².

  20. Short wavelength HgCdTe staring focal plane for low background astronomy applications

    NASA Technical Reports Server (NTRS)

    Hall, D.; Stobie, J.; Hartle, N.; Lacroix, D.; Maschhoff, K.

    1989-01-01

    The design of a 128x128 staring short wave infrared (SWIR) HgCdTe focal plane incorporating charge integrating transimpedance input preamplifiers is presented. The preamplifiers improve device linearity and uniformity, and provide signal gain ahead of the miltiplexer and readout circuitry. Detector's with cutoff wavelength of 2.5 microns and operated at 80 K have demonstrated impedances in excess of 10(exp 16) ohms with 60 percent quantum efficiency. Focal plane performance using a smaller format device is presented which demonstrates the potential of this approach. Although the design is capable of achieving less than 30 rms electrons with todays technology, initial small format devices demonstrated a read noise of 100 rms electrons and were limited by the atypical high noise performance of the silicon process run. Luminescence from the active silicon circuitry in the multiplexer limits the minimum detector current to a few hundred electrons per second. Approaches to eliminate this excessive source of current is presented which should allow the focal plane to achieve detector background limited performance.

  1. Topological detector: measuring continuous dosimetric quantities with few-element detector array.

    PubMed

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-21

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions.

  2. RVS large format arrays for astronomy

    NASA Astrophysics Data System (ADS)

    Starr, Barry; Mears, Lynn; Fulk, Chad; Getty, Jonathan; Beuville, Eric; Boe, Raymond; Tracy, Christopher; Corrales, Elizabeth; Kilcoyne, Sean; Vampola, John; Drab, John; Peralta, Richard; Doyle, Christy

    2016-07-01

    Raytheon Vision Systems (RVS) has a long history of providing state of the art infrared sensor chip assemblies (SCAs) for the astronomical community. This paper will provide an update of RVS capabilities for the community not only for the infrared wavelengths but also in the visible wavelengths as well. Large format infrared detector arrays are now available that meet the demanding requirements of the low background scientific community across the wavelength spectrum. These detector arrays have formats from 1k x 1k to as large as 8k x 8k with pixel sizes ranging from 8 to 27 μm. Focal plane arrays have been demonstrated with a variety of detector materials: SiPiN, HgCdTe, InSb, and Si:As IBC. All of these detector materials have demonstrated low noise and dark current, high quantum efficiency, and excellent uniformity. All can meet the high performance requirements for low-background within the limits of their respective spectral and operating temperature ranges.

  3. Recent progress and development of a speedster-EXD: a new event-triggered hybrid CMOS x-ray detector

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher V.; Falcone, Abraham D.; Prieskorn, Zachary R.; Burrows, David N.

    2015-08-01

    We present the characterization of a new event-driven X-ray hybrid CMOS detector developed by Penn State University in collaboration with Teledyne Imaging Sensors. Along with its low susceptibility to radiation damage, low power consumption, and fast readout time to avoid pile-up, the Speedster-EXD has been designed with the capability to limit its readout to only those pixels containing charge, thus enabling even faster effective frame rates. The threshold for the comparator in each pixel can be set by the user so that only pixels with signal above the set threshold are read out. The Speedster-EXD hybrid CMOS detector also has two new in-pixel features that reduce noise from known noise sources: (1) a low-noise, high-gain CTIA amplifier to eliminate crosstalk from interpixel capacitance (IPC) and (2) in-pixel CDS subtraction to reduce kTC noise. We present the read noise, dark current, IPC, energy resolution, and gain variation measurements of one Speedster-EXD detector.

  4. Speckle imaging with the MAMA detector: Preliminary results

    NASA Technical Reports Server (NTRS)

    Horch, E.; Heanue, J. F.; Morgan, J. S.; Timothy, J. G.

    1994-01-01

    We report on the first successful speckle imaging studies using the Stanford University speckle interferometry system, an instrument that uses a multianode microchannel array (MAMA) detector as the imaging device. The method of producing high-resolution images is based on the analysis of so-called 'near-axis' bispectral subplanes and follows the work of Lohmann et al. (1983). In order to improve the signal-to-noise ratio in the bispectrum, the frame-oversampling technique of Nakajima et al. (1989) is also employed. We present speckle imaging results of binary stars and other objects from V magnitude 5.5 to 11, and the quality of these images is studied. While the Stanford system is capable of good speckle imaging results, it is limited by the overall quantum efficiency of the current MAMA detector (which is due to the response of the photocathode at visible wavelengths and other detector properties) and by channel saturation of the microchannel plate. Both affect the signal-to-noise ratio of the power spectrum and bispectrum.

  5. Hard x-ray imager for the NeXT mission

    NASA Astrophysics Data System (ADS)

    Nakazawa, Kazuhiro; Fukazawa, Yasushi; Kamae, Tuneyoshi; Kataoka, Jun; Kokubun, Motohide; Makishima, Kazuo; Mizuno, Tsunefumi; Murakami, Toshio; Nomachi, Masaharu; Tajima, Hiroyasu; Takahashi, Tadayuki; Tashiro, Makoto; Tamagawa, Toru; Terada, Yukikatsu; Watanabe, Shin; Yamaoka, Kazutaka; Yonetoku, Daisuke

    2006-06-01

    The hard X-ray imager (HXI) is the primary detector of the NeXT mission, proposed to explore high-energy non-thermal phenomena in the universe. Combined with a novel hard X-ray mirror optics, the HXI is designed to provide better than arc-minutes imaging capability with 1 keV level spectroscopy, and more than 30 times higher sensitivity compared with any existing hard X-ray instruments. The base-line design of the HXI is improving to secure high sensitivity. The key is to reduce the detector background as far as possible. Based on the experience of the Suzaku satellite launched in July 2005, the current design has a well-type tight active shield and multi layered, multi material imaging detector made of Si and CdTe. Technology has been under development for a few years so that we have reached the level where a basic detector performance is satisfied. Design tuning to further improve the sensitivity and reliability is on-going.

  6. Creation and testing of an artificial neural network based carbonate detector for Mars rovers

    NASA Technical Reports Server (NTRS)

    Bornstein, Benjamin; Castano, Rebecca; Gilmore, Martha S.; Merrill, Matthew; Greenwood, James P.

    2005-01-01

    We have developed an artificial neural network (ANN) based carbonate detector capable of running on current and future rover hardware. The detector can identify calcite in visible/NIR (350-2500 nm) spectra of both laboratory specimens covered by ferric dust and rocks in Mars analogue field environments. The ANN was trained using the Backpropagation algorithm with sigmoid activation neurons. For the training dataset, we chose nine carbonate and eight non-carbonate representative mineral spectra from the USGS spectral library. Using these spectra as seeds, we generated 10,000 variants with up to 2% Gaussian noise in each reflectance measurement. We cross-validated several ANN architectures, training on 9,900 spectra and testing on the remaining 100. The best performing ANN correctly detected, with perfect accuracy, the presence (or absence) of carbonate in spectral data taken on field samples from the Mojave desert and clean, pure marbles from CT. Sensitivity experiments with JSC Mars-1 simulant dust suggest the carbonate detector would perform well in aeolian Martian environments.

  7. Electron-Muon Identification by Atmospheric Shower and Electron Beam in a New EAS Detector Concept

    NASA Astrophysics Data System (ADS)

    Iori, M.; Denizli, H.; Yilmaz, A.; Ferrarotto, F.; Russ, J.

    2015-03-01

    We present results demonstrating the time resolution and μ/e separation capabilities of a new concept for an EAS detector capable of measuring cosmic rays arriving with large zenith angles. This kind of detector has been designed to be part of a large area (several square kilometer) surface array designed to measure ultra high energy (10-200 PeV) τ neutrinos using the Earth-skimming technique. A criterion to identify electron-gammas is also shown and the particle identification capability is tested by measurements in coincidence with the KASKADE-GRANDE experiment in Karlsruhe, Germany.

  8. A Future Large-Aperture UVOIR Space Observatory: Key Technologies and Capabilities

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew Ryan; Stahle, Carl M.; Balasubramaniam, Kunjithapatham; Clampin, Mark; Feinberg, Lee D.; Mosier, Gary E.; Quijada, Manuel A.; Rauscher, Bernard J.; Redding, David C.; Rioux, Norman M.; hide

    2015-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 20 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  9. Advanced X-ray Imaging Crystal Spectrometer for Magnetic Fusion Tokamak Devices

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Bak, J. G.; Bog, M. G.; Nam, U. W.; Moon, M. K.; Cheon, J. K.

    2008-03-01

    An advanced X-ray imaging crystal spectrometer is currently under development using a segmented position sensitive detector and time-to-digital converter (TDC) based delay-line readout electronics for burning plasma diagnostics. The proposed advanced XICS utilizes an eight-segmented position sensitive multi-wire proportional counter and supporting electronics to increase the spectrometer performance includes the photon count-rate capability and spatial resolution.

  10. Optimizing substance detection by integration of canine-human team with machine technology

    NASA Astrophysics Data System (ADS)

    Prestrude, Al M.; Ternes, J. W.

    1994-02-01

    There are several promising methods and technologies for substance detection. The oldest of these methods is the trained detector or `sniffer' dog. We summarize what is known about the capabilities of dogs in substance detection and recommend comparative testing of the canine- human team with current technology to identify the optimum combination of methods to maximize the detection of explosives and contraband.

  11. A scintillator-based online detector for the angularly resolved measurement of laser-accelerated proton spectra.

    PubMed

    Metzkes, J; Karsch, L; Kraft, S D; Pawelke, J; Richter, C; Schürer, M; Sobiella, M; Stiller, N; Zeil, K; Schramm, U

    2012-12-01

    In recent years, a new generation of high repetition rate (~10 Hz), high power (~100 TW) laser systems has stimulated intense research on laser-driven sources for fast protons. Considering experimental instrumentation, this development requires online diagnostics for protons to be added to the established offline detection tools such as solid state track detectors or radiochromic films. In this article, we present the design and characterization of a scintillator-based online detector that gives access to the angularly resolved proton distribution along one spatial dimension and resolves 10 different proton energy ranges. Conceived as an online detector for key parameters in laser-proton acceleration, such as the maximum proton energy and the angular distribution, the detector features a spatial resolution of ~1.3 mm and a spectral resolution better than 1.5 MeV for a maximum proton energy above 12 MeV in the current design. Regarding its areas of application, we consider the detector a useful complement to radiochromic films and Thomson parabola spectrometers, capable to give immediate feedback on the experimental performance. The detector was characterized at an electrostatic Van de Graaff tandetron accelerator and tested in a laser-proton acceleration experiment, proving its suitability as a diagnostic device for laser-accelerated protons.

  12. Hybrid AlGaN-SiC Avalanche Photodiode for Deep-UV Photon Detection

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Herrero, Federico A.; Sigwarth, John; Goldsman, Neil; Akturk, Akin

    2010-01-01

    The proposed device is capable of counting ultraviolet (UV) photons, is compatible for inclusion into space instruments, and has applications as deep- UV detectors for calibration systems, curing systems, and crack detection. The device is based on a Separate Absorption and Charge Multiplication (SACM) structure. It is based on aluminum gallium nitride (AlGaN) absorber on a silicon carbide APD (avalanche photodiode). The AlGaN layer absorbs incident UV photons and injects photogenerated carriers into an underlying SiC APD that is operated in Geiger mode and provides current multiplication via avalanche breakdown. The solid-state detector is capable of sensing 100-to-365-nanometer wavelength radiation at a flux level as low as 6 photons/pixel/s. Advantages include, visible-light blindness, operation in harsh environments (e.g., high temperatures), deep-UV detection response, high gain, and Geiger mode operation at low voltage. Furthermore, the device can also be designed in array formats, e.g., linear arrays or 2D arrays (micropixels inside a superpixel).

  13. Characterization of the room temperature payload prototype for the cryogenic interferometric gravitational wave detector KAGRA.

    PubMed

    Peña Arellano, Fabián Erasmo; Sekiguchi, Takanori; Fujii, Yoshinori; Takahashi, Ryutaro; Barton, Mark; Hirata, Naoatsu; Shoda, Ayaka; van Heijningen, Joris; Flaminio, Raffaele; DeSalvo, Riccardo; Okutumi, Koki; Akutsu, Tomotada; Aso, Yoichi; Ishizaki, Hideharu; Ohishi, Naoko; Yamamoto, Kazuhiro; Uchiyama, Takashi; Miyakawa, Osamu; Kamiizumi, Masahiro; Takamori, Akiteru; Majorana, Ettore; Agatsuma, Kazuhiro; Hennes, Eric; van den Brand, Jo; Bertolini, Alessandro

    2016-03-01

    KAGRA is a cryogenic interferometric gravitational wave detector currently under construction in the Kamioka mine in Japan. Besides the cryogenic test masses, KAGRA will also rely on room temperature optics which will hang at the bottom of vibration isolation chains. The payload of each chain comprises an optic, a system to align it, and an active feedback system to damp the resonant motion of the suspension itself. This article describes the performance of a payload prototype that was assembled and tested in vacuum at the TAMA300 site at the NAOJ in Mitaka, Tokyo. We describe the mechanical components of the payload prototype and their functionality. A description of the active components of the feedback system and their capabilities is also given. The performance of the active system is illustrated by measuring the quality factors of some of the resonances of the suspension. Finally, the alignment capabilities offered by the payload are reported.

  14. A large area diamond-based beam tagging hodoscope for ion therapy monitoring

    NASA Astrophysics Data System (ADS)

    Gallin-Martel, M.-L.; Abbassi, L.; Bes, A.; Bosson, G.; Collot, J.; Crozes, T.; Curtoni, S.; Dauvergne, D.; De Nolf, W.; Fontana, M.; Gallin-Martel, L.; Hostachy, J.-Y.; Krimmer, J.; Lacoste, A.; Marcatili, S.; Morse, J.; Motte, J.-F.; Muraz, J.-F.; Rarbi, F. E.; Rossetto, O.; Salomé, M.; Testa, É.; Vuiart, R.; Yamouni, M.

    2018-01-01

    The MoniDiam project is part of the French national collaboration CLaRyS (Contrôle en Ligne de l'hAdronthérapie par RaYonnements Secondaires) for on-line monitoring of hadron therapy. It relies on the imaging of nuclear reaction products that is related to the ion range. The goal here is to provide large area beam detectors with a high detection efficiency for carbon or proton beams giving time and position measurement at 100 MHz count rates (beam tagging hodoscope). High radiation hardness and intrinsic electronic properties make diamonds reliable and very fast detectors with a good signal to noise ratio. Commercial Chemical Vapor Deposited (CVD) poly-crystalline, heteroepitaxial and monocrystalline diamonds were studied. Their applicability as a particle detector was investigated using α and β radioactive sources, 95 MeV/u carbon ion beams at GANIL and 8.5 keV X-ray photon bunches from ESRF. This facility offers the unique capability of providing a focused ( 1 μm) beam in bunches of 100 ps duration, with an almost uniform energy deposition in the irradiated detector volume, therefore mimicking the interaction of single ions. A signal rise time resolution ranging from 20 to 90 ps rms and an energy resolution of 7 to 9% were measured using diamonds with aluminum disk shaped surface metallization. This enabled us to conclude that polycrystalline CVD diamond detectors are good candidates for our beam tagging hodoscope development. Recently, double-side stripped metallized diamonds were tested using the XBIC (X Rays Beam Induced Current) set-up of the ID21 beamline at ESRF which permits us to evaluate the capability of diamond to be used as position sensitive detector. The final detector will consist in a mosaic arrangement of double-side stripped diamond sensors read out by a dedicated fast-integrated electronics of several hundreds of channels.

  15. Fundamental Performance Improvement of Microwave Kinetic Inductance Detectors for UVOIR Astrophysics

    NASA Astrophysics Data System (ADS)

    Mazin, Benjamin

    Ultraviolet, Optical, and near-Infrared Microwave Kinetic Inductance Detectors (UVOIR MKIDs) are one of the most powerful new technologies to emerge out of the NASA APRA detectors program in the last decade. This proposal seeks to build on previous APRA grants to drastically improve the performance of UVOIR MKIDs. Like an X-ray microcalorimeter ultraviolet, optical, and near-IR (UVOIR) MKIDs are cryogenic detectors capable of detecting single photons and measuring their energy without filters or gratings. Our team has created this technology from the ground up, and fielded a 2024-pixel UVOIR MKID array on five separate observing runs at 5-m class telescopes. With 34 observing nights successfully completed and two astronomy papers published using MKID data (the first astronomy papers published using MKID data at any wavelength), UVOIR MKIDs are at TRL 5-6 for ground-based astronomy, and TRL 3 for space-based astronomy. The outstanding potential of these detectors was recognized in the recent NASA long term vision, "Enduring Quests, Daring Visions'', which recognized on page 88 that MKIDs have tremendous potential for future NASA UVOIR space missions, especially for finding Earth twins around nearby stars: "..microwave kinetic inductance detectors (MKIDs) would be a game-changing capability..''. Current UVOIR MKIDs feature array sizes in the 10-30 kpix range, energy resolution R=16 at 254 nm, ~70% pixel yield, and quantum efficiency that goes from 70% in the UV to 25% in the near-IR. These arrays, fabricated out of Titanium Nitride (TiN) on a high resistivity silicon substrate, are fully functional for ground-based science. However, our current MKIDs are far away from their theoretical limits, especially in yield (70% vs. 100%) and energy resolution (R=10 vs. R=100 at 400 nm). The yield is of especially urgent concern as missing pixels make accurate photometry difficult, especially for rapidly time variable sources like compact binaries that we have been studying. The yield is low because the reactively sputtered TiN that we make our MKIDs from is extremely sensitive to deposition conditions, and the resistivity and hence resonant frequency of the MKIDs varies dramatically across a wafer, as shown in. Our energy resolution is low because of a combination of factors related to the MKID material and the two level system (TLS) noise from our capacitors. In order to improve our current energy resolution, yield, and quantum efficiency we need to move in new directions. This proposal will focus on two main improvements: making better MKID resonator materials, and making lower noise capacitors.

  16. The cylindrical GEM detector of the KLOE-2 experiment

    NASA Astrophysics Data System (ADS)

    Bencivenni, G.; Branchini, P.; Ciambrone, P.; Czerwinski, E.; De Lucia, E.; Di Cicco, A.; Domenici, D.; Felici, G.; Fermani, P.; Morello, G.

    2017-07-01

    The KLOE-2 experiment started its data taking campaign in November 2014 with an upgraded tracking system at the DAΦNE electron-positron collider at the Frascati National Laboratory of INFN. The new tracking device, the Inner Tracker, operated together with the KLOE-2 Drift Chamber, has been installed to improve track and vertex reconstruction capabilities of the experimental apparatus. The Inner Tracker is a cylindrical GEM detector composed of four cylindrical triple-GEM detectors, each provided with an X-V strips-pads stereo readout. Although GEM detectors are already used in high energy physics experiments, this device is considered a frontier detector due to its fully-cylindrical geometry: KLOE-2 is the first experiment benefiting of this novel detector technology. Alignment and calibration of this detector will be presented together with its operating performance and reconstruction capabilities.

  17. Intensity information extraction in Geiger mode detector array based three-dimensional imaging applications

    NASA Astrophysics Data System (ADS)

    Wang, Fei

    2013-09-01

    Geiger-mode detectors have single photon sensitivity and picoseconds timing resolution, which make it a good candidate for low light level ranging applications, especially in the case of flash three dimensional imaging applications where the received laser power is extremely limited. Another advantage of Geiger-mode APD is their capability of large output current which can drive CMOS timing circuit directly, which means that larger format focal plane arrays can be easily fabricated using the mature CMOS technology. However Geiger-mode detector based FPAs can only measure the range information of a scene but not the reflectivity. Reflectivity is a major characteristic which can help target classification and identification. According to Poisson statistic nature, detection probability is tightly connected to the incident number of photon. Employing this relation, a signal intensity estimation method based on probability inversion is proposed. Instead of measuring intensity directly, several detections are conducted, then the detection probability is obtained and the intensity is estimated using this method. The relation between the estimator's accuracy, measuring range and number of detections are discussed based on statistical theory. Finally Monte-Carlo simulation is conducted to verify the correctness of this theory. Using 100 times of detection, signal intensity equal to 4.6 photons per detection can be measured using this method. With slight modification of measuring strategy, intensity information can be obtained using current Geiger-mode detector based FPAs, which can enrich the information acquired and broaden the application field of current technology.

  18. DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy

    NASA Astrophysics Data System (ADS)

    Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene

    2018-06-01

    We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.

  19. Silicon photodiode as a detector in the rocket-borne photometry of the near infrared airglow.

    PubMed

    Schaeffer, R C

    1976-11-01

    The application of a silicon P-I-N photodiode to the dc measurement of low levels of near ir radiation is described. It is shown that the threshold of signal detection is set by the current amplifier voltage noise, the effect of which at the output is determined by the value of source resistance of the photodiode. The photodiode was used as the detector in a compact interference filter photometer designed for rocket-borne studies of the airglow. Flight results have proved the instrument's capability to provide measurements sufficiently precise to yield an accurate height profile of the (0-0) atmospheric band of O(2) night airglow at lambda762 nm.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoover, Andrew Scott; Bennett, D. A.; Croce, Mark Philip

    In 2005 the LANL/NIST team used a single high-resolution microcalorimeter detector to measure the gamma-ray spectrum of a plutonium sample. After more than a decade of research and development on this topic, both the technology and our general understanding of its capabilities have advanced greatly, such that a progress review is now timely. We examine the scenario of a large-scale reprocessing plant and conclude that current non-destructive analysis (NDA) methods are inadequate to safeguard such a facility to the desired levels, leading to undesirable dependence on massspectrometry (MS) destructive analysis (DA). The development of microcalorimeter detectors is intended to closemore » the performance gap between NDA and DA methods to address the needs of nuclear facilities.« less

  1. Performance and Calibration of H2RG Detectors and SIDECAR ASICs for the RATIR Camera

    NASA Technical Reports Server (NTRS)

    Fox, Ori D.; Kutyrev, Alexander S.; Rapchun, David A.; Klein, Christopher R.; Butler, Nathaniel R.; Bloom, Josh; de Diego, Jos A.; Simn Farah, Alejandro D.; Gehrels, Neil A.; Georgiev, Leonid; hide

    2012-01-01

    The Reionization And Transient Infra,.Red (RATIR) camera has been built for rapid Gamma,.Ray Burst (GRE) followup and will provide simultaneous optical and infrared photometric capabilities. The infrared portion of this camera incorporates two Teledyne HgCdTe HAWAII-2RG detectors, controlled by Teledyne's SIDECAR ASICs. While other ground-based systems have used the SIDECAR before, this system also utilizes Teledyne's JADE2 interface card and IDE development environment. Together, this setup comprises Teledyne's Development Kit, which is a bundled solution that can be efficiently integrated into future ground-based systems. In this presentation, we characterize the system's read noise, dark current, and conversion gain.

  2. The “Puck” energetic charged particle detector: Design, heritage, and advancements

    PubMed Central

    Cohen, I.; Westlake, J. H.; Andrews, G. B.; Brandt, P.; Gold, R. E.; Gkioulidou, M. A.; Hacala, R.; Haggerty, D.; Hill, M. E.; Ho, G. C.; Jaskulek, S. E.; Kollmann, P.; Mauk, B. H.; McNutt, R. L.; Mitchell, D. G.; Nelson, K. S.; Paranicas, C.; Paschalidis, N.; Schlemm, C. E.

    2016-01-01

    Abstract Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low‐resource missions in the past, the need was recognized for a low‐resource but highly capable, mass‐species‐discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the “Puck” EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of ~10 keV to several MeV. This sensor makes simultaneous angular measurements of electron fluxes from the tens of keV to about 1 MeV. The same measurements can be extended down to approximately 1 keV/nucleon, with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high‐voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions. PMID:27867799

  3. The "Puck" energetic charged particle detector: Design, heritage, and advancements.

    PubMed

    Clark, G; Cohen, I; Westlake, J H; Andrews, G B; Brandt, P; Gold, R E; Gkioulidou, M A; Hacala, R; Haggerty, D; Hill, M E; Ho, G C; Jaskulek, S E; Kollmann, P; Mauk, B H; McNutt, R L; Mitchell, D G; Nelson, K S; Paranicas, C; Paschalidis, N; Schlemm, C E

    2016-08-01

    Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low-resource missions in the past, the need was recognized for a low-resource but highly capable, mass-species-discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the "Puck" EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of ~10 keV to several MeV. This sensor makes simultaneous angular measurements of electron fluxes from the tens of keV to about 1 MeV. The same measurements can be extended down to approximately 1 keV/nucleon, with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high-voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions.

  4. The "Puck" Energetic Charged Particle Detector: Design, Heritage, and Advancements

    NASA Technical Reports Server (NTRS)

    Clark, G.; Cohen, I.; Westlake, J. H.; Andrews, G. B.; Brandt, P.; Gold, R. E.; Gkioulidou, M. A.; Hacala, R.; Haggerty, D.; Hill, M. E.; hide

    2016-01-01

    Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low-resource missions in the past, the need was recognized for a low-resource but highly capable, mass-species-discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the "Puck" EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of approximately 10 kiloelectronvolts to several megaelectronvolts. This sensor makes simultaneous angular measurements of electron fluxes from the tens of kiloelectronvolts to about 1 megaelectronvolt. The same measurements can be extended down to approximately 1 kiloelectronvolt per nucleon,with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high-voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions.

  5. High-performance integrated pick-up circuit for SPAD arrays in time-correlated single photon counting

    NASA Astrophysics Data System (ADS)

    Acconcia, Giulia; Cominelli, Alessandro; Peronio, Pietro; Rech, Ivan; Ghioni, Massimo

    2017-05-01

    The analysis of optical signals by means of Single Photon Avalanche Diodes (SPADs) has been subject to a widespread interest in recent years. The development of multichannel high-performance Time Correlated Single Photon Counting (TCSPC) acquisition systems has undergone a fast trend. Concerning the detector performance, best in class results have been obtained resorting to custom technologies leading also to a strong dependence of the detector timing jitter from the threshold used to determine the onset of the photogenerated current flow. In this scenario, the avalanche current pick-up circuit plays a key role in determining the timing performance of the TCSPC acquisition system, especially with a large array of SPAD detectors because of electrical crosstalk issues. We developed a new current pick-up circuit based on a transimpedance amplifier structure able to extract the timing information from a 50-μm-diameter custom technology SPAD with a state-of-art timing jitter as low as 32ps and suitable to be exploited with SPAD arrays. In this paper we discuss the key features of this structure and we present a new version of the pick-up circuit that also provides quenching capabilities in order to minimize the number of interconnections required, an aspect that becomes more and more crucial in densely integrated systems.

  6. Robust measurement of supernova ν e spectra with future neutrino detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikrant, Alex; Laha, Ranjan; Horiuchi, Shunsaku

    Measuring precise all-flavor neutrino information from a supernova is crucial for understanding the core-collapse process as well as neutrino properties. We apply a chi-squared analysis for different detector setups to explore determination of ν e spectral parameters. Using a long-term two-dimensional core-collapse simulation with three time-varying spectral parameters, we generate mock data to examine the capabilities of the current Super-Kamiokande detector and compare the relative improvements that gadolinium, Hyper-Kamiokande, and DUNE would have. We show that in a realistic three spectral parameter framework, the addition of gadolinium to Super-Kamiokande allows for a qualitative improvement in νe determination. Efficient neutron taggingmore » will allow Hyper-Kamiokande to constrain spectral information more strongly in both the accretion and cooling phases. Overall, significant improvements will be made by Hyper-Kamiokande and DUNE, allowing for much more precise determination of ν e spectral parameters.« less

  7. Robust measurement of supernova ν e spectra with future neutrino detectors

    DOE PAGES

    Nikrant, Alex; Laha, Ranjan; Horiuchi, Shunsaku

    2018-01-25

    Measuring precise all-flavor neutrino information from a supernova is crucial for understanding the core-collapse process as well as neutrino properties. We apply a chi-squared analysis for different detector setups to explore determination of ν e spectral parameters. Using a long-term two-dimensional core-collapse simulation with three time-varying spectral parameters, we generate mock data to examine the capabilities of the current Super-Kamiokande detector and compare the relative improvements that gadolinium, Hyper-Kamiokande, and DUNE would have. We show that in a realistic three spectral parameter framework, the addition of gadolinium to Super-Kamiokande allows for a qualitative improvement in νe determination. Efficient neutron taggingmore » will allow Hyper-Kamiokande to constrain spectral information more strongly in both the accretion and cooling phases. Overall, significant improvements will be made by Hyper-Kamiokande and DUNE, allowing for much more precise determination of ν e spectral parameters.« less

  8. High Density Schottky Barrier Infrared Charge-Coupled Device (IRCCD) Sensors For Short Wavelength Infrared (SWIR) Applications At Intermediate Temperature

    NASA Astrophysics Data System (ADS)

    Elabd, H.; Villani, T. S.; Tower, J. R.

    1982-11-01

    Monolithic 32 x 64 and 64 x 128 palladium silicide (Pd2Si) interline transfer IRCCDs sensitive in the 1-3.5 pm spectral band have been developed. This silicon imager exhibits a low response nonuniformity of typically 0.2-1.6% rms, and has been operated in the temperature range between 40-140K. Spectral response measurements of test Pd2Si p-type Si devices yield quantum efficiencies of 7.9% at 1.25 μm, 5.6% at 1.65 μm and 2.2% at 2.22 μm. Improvement in quantum efficiency is expected by optimizing the different structural parameters of the Pd2Si detectors. The spectral response of the Pd2Si detectors fit a modified Fowler emission model. The measured photo-electric barrier height for the Pd2Si detector is ≍0.34 eV and the measured quantum efficiency coefficient, C1, is 19%/eV. The dark current level of Pd2Si Schottky barrier focal plane arrays (FPAs) is sufficiently low to enable operation at intermediate tem-peratures at TV frame rates. Typical dark current level measured at 120K on the FPA is 2 nA/cm2. The Pd2Si Schottky barrier imaging technology has been developed for satellite sensing of earth resources. The operating temperature of the Pd2Si FPA is compatible with passive cooler performance. In addition, high density Pd2Si Schottky barrier FPAs are manufactured with high yield and therefore represent an economical approach to short wavelength IR imaging. A Pd2Si Schottky barrier image sensor for push-broom multispectral imaging in the 1.25, 1.65, and 2.22 μm bands is being studied. The sensor will have two line arrays (dual band capability) of 512 detectors each, with 30 μm center-to-center detector spacing. The device will be suitable for chip-to-chip abutment, thus providing the capability to produce large, multiple chip focal planes with contiguous, in-line sensors.

  9. Fusion cross sections measurements with MUSIC

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Fernández Niello, J. O.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Digiovine, B.; Esbensen, H.; Henderson, D.; Jiang, C. L.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Ugalde, C.; Paul, M.; Alcorta, M.; Bertone, P. F.; Lai, J.; Marley, S. T.

    2014-09-01

    The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. This work is supported by the U.S. DOE Office of Nuclear Physics under Contract No. DE-AC02-06CH11357 and the Universidad Nacional de San Martin, Argentina, Grant SJ10/39.

  10. Background-Limited Infrared-Submillimeter Spectroscopy (BLISS)

    NASA Technical Reports Server (NTRS)

    Bradford, Charles Matt

    2004-01-01

    The bulk of the cosmic far-infrared background light will soon be resolved into its individual sources with Spitzer, Astro-F, Herschel, and submm/mm ground-based cameras. The sources will be dusty galaxies at z approximately equal to 1-4. Their physical conditions and processes in these galaxies are directly probed with moderate-resolution spectroscopy from 20 micrometers to 1 mm. Currently large cold telescopes are being combined with sensitive direct detectors, offering the potential for mid-far-IR spectroscopy at the background limit (BLISS). The capability will allow routine observations of even modest high-redshift galaxies in a variety of lines. The BLISS instrument's capabilities are described in this presentation.

  11. A Comparison Framework for Reactor Anti-Neutrino Detectors in Near-Field Nuclear Safeguards Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendenhall, M.; Bowden, N.; Brodsky, J.

    Electron anti-neutrino ( e) detectors can support nuclear safeguards, from reactor monitoring to spent fuel characterization. In recent years, the scientific community has developed multiple detector concepts, many of which have been prototyped or deployed for specific measurements by their respective collaborations. However, the diversity of technical approaches, deployment conditions, and analysis techniques complicates direct performance comparison between designs. We have begun development of a simulation framework to compare and evaluate existing and proposed detector designs for nonproliferation applications in a uniform manner. This report demonstrates the intent and capabilities of the framework by evaluating four detector design concepts, calculatingmore » generic reactor antineutrino counting sensitivity, and capabilities in a plutonium disposition application example.« less

  12. 135Xe measurements with a two-element CZT-based radioxenon detector for nuclear explosion monitoring.

    PubMed

    Ranjbar, Lily; Farsoni, Abi T; Becker, Eric M

    2017-04-01

    Measurement of elevated concentrations of xenon radioisotopes ( 131m Xe, 133m Xe, 133 Xe and 135 Xe) in the atmosphere has been shown to be a very powerful method for verifying whether or not a detected explosion is nuclear in nature. These isotopes are among the few with enough mobility and with half-lives long enough to make their detection at long distances realistic. Existing radioxenon detection systems used by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) suffer from problems such as complexity, need for high maintenance and memory effect. To study the response of CdZnTe (CZT) detectors to xenon radioisotopes and investigate whether it is capable of mitigating the aforementioned issues with the current radioxenon detection systems, a prototype detector utilizing two coplanar CZT detectors was built and tested at Oregon State University. The detection system measures xenon radioisotopes through beta-gamma coincidence technique by detecting coincidence events between the two detectors. In this paper, we introduce the detector design and report our measurement results with radioactive lab sources and 135 Xe produced in the OSU TRIGA reactor. Minimum Detectable Concentration (MDC) for 135 Xe was calculated to be 1.47 ± 0.05 mBq/m 3 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Xenon Purification Research and Development for the LZ Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    Pech, Katherin

    2013-04-01

    The LZ Experiment is a next generation dark matter detector based on the current LUX detector design, with a 7-ton active volume. Although many research and development breakthroughs were achieved for the 350 kg LUX detector, the large volume scaling required for LZ presents a new set of design challenges that need to be overcome. Because the search for WIMP-like dark matter requires ultra low background experiments, the xenon target material in the LZ detector must meet purity specifications beyond what is commercially available. This challenge is two-fold. The xenon must contain extremely low amounts of electronegative impurities such as oxygen, which attenuate the charge signal. Additionally, it must also have very little of the inert isotope Kr-85, a beta-emitter that can obscure the dark matter signal in the detector volume. The purity requirements for the LUX experiment have been achieved, but the factor of 20 scaling in volume for LZ and increased demands for sensitivity mean that new research and development work must be done to increase our xenon purification capabilities. This talk will focus on the efforts being done at Case Western Reserve University to meet these strict purity requirements for the LZ Experiment.

  14. A tool to convert CAD models for importation into Geant4

    NASA Astrophysics Data System (ADS)

    Vuosalo, C.; Carlsmith, D.; Dasu, S.; Palladino, K.; LUX-ZEPLIN Collaboration

    2017-10-01

    The engineering design of a particle detector is usually performed in a Computer Aided Design (CAD) program, and simulation of the detector’s performance can be done with a Geant4-based program. However, transferring the detector design from the CAD program to Geant4 can be laborious and error-prone. SW2GDML is a tool that reads a design in the popular SOLIDWORKS CAD program and outputs Geometry Description Markup Language (GDML), used by Geant4 for importing and exporting detector geometries. Other methods for outputting CAD designs are available, such as the STEP format, and tools exist to convert these formats into GDML. However, these conversion methods produce very large and unwieldy designs composed of tessellated solids that can reduce Geant4 performance. In contrast, SW2GDML produces compact, human-readable GDML that employs standard geometric shapes rather than tessellated solids. This paper will describe the development and current capabilities of SW2GDML and plans for its enhancement. The aim of this tool is to automate importation of detector engineering models into Geant4-based simulation programs to support rapid, iterative cycles of detector design, simulation, and optimization.

  15. Multi-Grid detector for neutron spectroscopy: results obtained on time-of-flight spectrometer CNCS

    NASA Astrophysics Data System (ADS)

    Anastasopoulos, M.; Bebb, R.; Berry, K.; Birch, J.; Bryś, T.; Buffet, J.-C.; Clergeau, J.-F.; Deen, P. P.; Ehlers, G.; van Esch, P.; Everett, S. M.; Guerard, B.; Hall-Wilton, R.; Herwig, K.; Hultman, L.; Höglund, C.; Iruretagoiena, I.; Issa, F.; Jensen, J.; Khaplanov, A.; Kirstein, O.; Lopez Higuera, I.; Piscitelli, F.; Robinson, L.; Schmidt, S.; Stefanescu, I.

    2017-04-01

    The Multi-Grid detector technology has evolved from the proof-of-principle and characterisation stages. Here we report on the performance of the Multi-Grid detector, the MG.CNCS prototype, which has been installed and tested at the Cold Neutron Chopper Spectrometer, CNCS at SNS. This has allowed a side-by-side comparison to the performance of 3He detectors on an operational instrument. The demonstrator has an active area of 0.2 m2. It is specifically tailored to the specifications of CNCS. The detector was installed in June 2016 and has operated since then, collecting neutron scattering data in parallel to the He-3 detectors of CNCS. In this paper, we present a comprehensive analysis of this data, in particular on instrument energy resolution, rate capability, background and relative efficiency. Stability, gamma-ray and fast neutron sensitivity have also been investigated. The effect of scattering in the detector components has been measured and provides input to comparison for Monte Carlo simulations. All data is presented in comparison to that measured by the 3He detectors simultaneously, showing that all features recorded by one detector are also recorded by the other. The energy resolution matches closely. We find that the Multi-Grid is able to match the data collected by 3He, and see an indication of a considerable advantage in the count rate capability. Based on these results, we are confident that the Multi-Grid detector will be capable of producing high quality scientific data on chopper spectrometers utilising the unprecedented neutron flux of the ESS.

  16. The LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Dosil Suárez, Álvaro; LHCb VELO Upgrade Group

    2016-07-01

    The upgrade of the LHCb experiment, planned for 2019, will transform the experiment to a trigger-less system reading out the full detector at 40 MHz event rate. All data reduction algorithms will be executed in a high-level software farm. The upgraded detector will run at luminosities of 2×1033 cm-2 s-1 and probe physics beyond the Standard Model in the heavy flavour sector with unprecedented precision. The Vertex Locator (VELO) is the silicon vertex detector surrounding the interaction region. The current detector will be replaced with a hybrid pixel system equipped with electronics capable of reading out at 40 MHz. The detector comprises silicon pixel sensors with 55×55 μm2 pitch, read out by the VeloPix ASIC, based on the TimePix/MediPix family. The hottest region will have pixel hit rates of 900 Mhits/s yielding a total data rate more than 3 Tbit/s for the upgraded VELO. The detector modules are located in a separate vacuum, separated from the beam vacuum by a thin custom made foil. The detector halves are retracted when the beams are injected and closed at stable beams, positioning the first sensitive pixel at 5.1 mm from the beams. The material budget will be minimised by the use of evaporative CO2 coolant circulating in microchannels within 400 μm thick silicon substrates.

  17. Large-Format HgCdTe Dual-Band Long-Wavelength Infrared Focal-Plane Arrays

    NASA Astrophysics Data System (ADS)

    Smith, E. P. G.; Venzor, G. M.; Gallagher, A. M.; Reddy, M.; Peterson, J. M.; Lofgreen, D. D.; Randolph, J. E.

    2011-08-01

    Raytheon Vision Systems (RVS) continues to further its capability to deliver state-of-the-art high-performance, large-format, HgCdTe focal-plane arrays (FPAs) for dual-band long-wavelength infrared (L/LWIR) detection. Specific improvements have recently been implemented at RVS in molecular-beam epitaxy (MBE) growth and wafer fabrication and are reported in this paper. The aim of the improvements is to establish producible processes for 512 × 512 30- μm-unit-cell L/LWIR FPAs, which has resulted in: the growth of triple-layer heterojunction (TLHJ) HgCdTe back-to-back photodiode detector designs on 6 cm × 6 cm CdZnTe substrates with 300-K Fourier-transform infrared (FTIR) cutoff wavelength uniformity of ±0.1 μm across the entire wafer; demonstration of detector dark-current performance for the longer-wavelength detector band approaching that of single-color liquid-phase epitaxy (LPE) LWIR detectors; and uniform, high-operability, 512 × 512 30- μm-unit-cell FPA performance in both LWIR bands.

  18. Admittance detector for high impedance systems: design and applications.

    PubMed

    Zhang, Min; Stamos, Brian N; Dasgupta, Purnendu K

    2014-12-02

    We describe an admittance detector for high impedance systems (small capillary bore and/or low solution specific conductance). Operation in the low frequency range (≤1 kHz, much lower than most relevant publications) provides optimum response to conductance changes in capillaries ≤20 μm in bore. The detector design was based on studies described in a preceding companion paper ( Zhang, M.; Stamos, B. N.; Amornthammarong, N.; Dasgupta, P. K. Anal. Chem. 2014, 8 , DOI 10.1021/ac503245a.). The highest S/N for detecting 100 μM KCl (5.5 μM peak concentration, ∼0.8 μS/cm) injected into water flowing through a capillary of 7.5 μm inner radius (r) was observed at 500-750 Hz. A low bias current operational amplifier in the transimpedance configuration permitted high gain (1 V/nA) to measure pA-nA level currents in the detection cell. Aside from an oscillator, an offset-capable RMS-DC converter formed the complete detection circuitry. Limits of detection (LODs) of KCl scaled inversely with the capillary cross section and were 2.1 and 0.32 μM injected KCl for r = 1 and 2.5 μm capillaries, respectively. When used as a detector on an r = 8 μm bore poly(methyl methacrylate) capillary in a split effluent stream from a suppressed ion chromatograph, the LOD was 27 nM bromide (Vex 22 V p-p), compared to 14 nM observed with a commercial bipolar pulse macroscale conductivity detector with an actively thermostated cell. We also show applications of the detector in electrophoresis in capillaries with r = 1 and 2.5 μm. Efficient heat dissipation permits high concentrations of the background electrolyte and sensitive detection because of efficient electrostacking.

  19. Result from, and status of, EXO-200

    NASA Astrophysics Data System (ADS)

    Daniels, Tim; EXO-200 Collaboration

    2017-01-01

    EXO-200 has provided one of the most sensitive searches for neutrinoless double-beta decay utilizing 175 kg of enriched liquid xenon in an ultra-low background time projection chamber. This detector has demonstrated excellent energy resolution and background rejection capabilities. Using the first two years of data, EXO-200 has set a limit of 1 . 1 ×1025 y at 90 double-beta decay half-life of 136Xe. The experiment has experienced a brief hiatus in data taking during a temporary shutdown of its host facility: the Waste Isolation Pilot Plant. EXO-200 has resumed data taking in earnest with upgraded detector electronics. Results from the analysis of EXO-200 data and an update on the current status of EXO-200 will be presented.

  20. 33 CFR 127.203 - Portable gas detectors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Portable gas detectors. 127.203... Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.203 Portable gas detectors. The marine transfer area for LNG must have at least two portable gas detectors capable of measuring 0-100% of the...

  1. 33 CFR 127.203 - Portable gas detectors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Portable gas detectors. 127.203... Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.203 Portable gas detectors. The marine transfer area for LNG must have at least two portable gas detectors capable of measuring 0-100% of the...

  2. 33 CFR 127.203 - Portable gas detectors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Portable gas detectors. 127.203... Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.203 Portable gas detectors. The marine transfer area for LNG must have at least two portable gas detectors capable of measuring 0-100% of the...

  3. 33 CFR 127.203 - Portable gas detectors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Portable gas detectors. 127.203... Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.203 Portable gas detectors. The marine transfer area for LNG must have at least two portable gas detectors capable of measuring 0-100% of the...

  4. 33 CFR 127.203 - Portable gas detectors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Portable gas detectors. 127.203... Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.203 Portable gas detectors. The marine transfer area for LNG must have at least two portable gas detectors capable of measuring 0-100% of the...

  5. Status of the PAPPA experiment

    NASA Technical Reports Server (NTRS)

    Kogut, Alan

    2006-01-01

    The Primordial Anisotropy Polarization Pathfinder Array (PAPPA) is a balloonborne instrument to measure the polarization of the cosmic microwave background and search for the signature of primordial gravity waves. PAPPA uses a novel marriage of RF phase modulation and millimeter-wave bolometric detectors to produce a "polarimeter-on-a-chip" capable of simultaneously measuring the Stokes I, Q, and U parameters on the sky. I will discuss the current status and future plans for PAPPA.

  6. Observation of the cosmic-ray shadow of the Moon with IceCube

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Bertrand, D.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohaichuk, S.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Bruijn, R.; Brunner, J.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Clevermann, F.; Coenders, S.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; De Ridder, S.; Desiati, P.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eisch, J.; Ellsworth, R. W.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grandmont, D. T.; Grant, D.; Groß, A.; Ha, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Krings, K.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leute, J.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Sheremata, C.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tešić, G.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Wasserman, R.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.; IceCube Collaboration

    2014-05-01

    We report on the observation of a significant deficit of cosmic rays from the direction of the Moon with the IceCube detector. The study of this "Moon shadow" is used to characterize the angular resolution and absolute pointing capabilities of the detector. The detection is based on data taken in two periods before the completion of the detector: between April 2008 and May 2009, when IceCube operated in a partial configuration with 40 detector strings deployed in the South Pole ice, and between May 2009 and May 2010 when the detector operated with 59 strings. Using two independent analysis methods, the Moon shadow has been observed to high significance (>6σ) in both detector configurations. The observed location of the shadow center is within 0.2° of its expected position when geomagnetic deflection effects are taken into account. This measurement validates the directional reconstruction capabilities of IceCube.

  7. Current and Future Research at DANCE

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Hayes, A.; Kawano, T.; Mosby, S.; Rusev, G.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Walker, C. L.; Wilhelmy, J. B.

    2015-05-01

    An overview of the current experimental program on measurements of neutron capture and neutron induced fission at the Detector for Advanced Neutron Capture Experiments (DANCE) is presented. Three major projects are currently under way: 1) high precision measurements of neutron capture cross sections on Uranium isotopes, 2) research aimed at studies of the short-lived actinide isomer production in neutron capture on 235U and 3) measurements of correlated data of fission observables. New projects include developments of auxiliary detectors to improve the capability of DANCE. We are building a compact, segmented NEUtron detector Array at DANCE (NEUANCE), which will be installed in the central cavity of the DANCE array. It will provide experimental information on prompt fission neutrons in coincidence with the prompt fission gamma-rays measured by 160 BaF2 crystals of DANCE. Unique correlated data will be obtained for neutron capture and neutron-induced fission using the DANCE-NEUANCE experimental set up in the future.

  8. Recent Developments in PET Instrumentation

    PubMed Central

    Peng, Hao; Levin, Craig S.

    2013-01-01

    Positron emission tomography (PET) is used in the clinic and in vivo small animal research to study molecular processes associated with diseases such as cancer, heart disease, and neurological disorders, and to guide the discovery and development of new treatments. This paper reviews current challenges of advancing PET technology and some of newly developed PET detectors and systems. The paper focuses on four aspects of PET instrumentation: high photon detection sensitivity; improved spatial resolution; depth-of-interaction (DOI) resolution and time-of-flight (TOF). Improved system geometry, novel non-scintillator based detectors, and tapered scintillation crystal arrays are able to enhance the photon detection sensitivity of a PET system. Several challenges for achieving high resolution with standard scintillator-based PET detectors are discussed. Novel detectors with 3-D positioning capability have great potential to be deployed in PET for achieving spatial resolution better than 1 mm, such as cadmium-zinc-telluride (CZT) and position-sensitive avalanche photodiodes (PSAPDs). DOI capability enables a PET system to mitigate parallax error and achieve uniform spatial resolution across the field-of-view (FOV). Six common DOI designs, as well as advantages and limitations of each design, are discussed. The availability of fast scintillation crystals such as LaBr3, and the silicon photomultiplier (SiPM) greatly advances TOF-PET development. Recent instrumentation and initial results of clinical trials are briefly presented. If successful, these technology advances, together with new probe molecules, will substantially enhance the molecular sensitivity of PET and thus increase its role in preclinical and clinical research as well as evaluating and managing disease in the clinic. PMID:20497121

  9. Alpha/beta pulse shape discrimination in plastic scintillation using commercial scintillation detectors.

    PubMed

    Bagán, H; Tarancón, A; Rauret, G; García, J F

    2010-06-18

    Activity determination in different types of samples is a current need in many different fields. Simultaneously analysing alpha and beta emitters is now a routine option when using liquid scintillation (LS) and pulse shape discrimination. However, LS has an important drawback, the generation of mixed waste. Recently, several studies have shown the capability of plastic scintillation (PS) as an alternative to LS, but no research has been carried out to determine its capability for alpha/beta discrimination. The objective of this study was to evaluate the capability of PS to discriminate alpha/beta emitters on the basis of pulse shape analysis (PSA). The results obtained show that PS pulses had lower energy than LS pulses. As a consequence, a lower detection efficiency, a shift to lower energies and a better discrimination of beta and a worst discrimination of alpha disintegrations was observed for PS. Colour quenching also produced a decrease in the energy of the particles, as well as the effects described above. It is clear that in PS, the discrimination capability was correlated with the energy of the particles detected. Taking into account the discrimination capabilities of PS, a protocol for the measurement and the calculation of alpha and beta activities in mixtures using PS and commercial scintillation detectors has been proposed. The new protocol was applied to the quantification of spiked river water samples containing a pair of radionuclides ((3)H-(241)Am or (90)Sr/(90)Y-(241)Am) in different activity proportions. The relative errors in all determinations were lower than 7%. These results demonstrate the capability of PS to discriminate alpha/beta emitters on the basis of pulse shape and to quantify mixtures without generating mixed waste. 2010 Elsevier B.V. All rights reserved.

  10. The ALICE Transition Radiation Detector: Construction, operation, and performance

    NASA Astrophysics Data System (ADS)

    Alice Collaboration

    2018-02-01

    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/ c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.

  11. Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in Joint European Torus fusion plasmas.

    PubMed

    Cazzaniga, C; Sundén, E Andersson; Binda, F; Croci, G; Ericsson, G; Giacomelli, L; Gorini, G; Griesmayer, E; Grosso, G; Kaveney, G; Nocente, M; Perelli Cippo, E; Rebai, M; Syme, B; Tardocchi, M

    2014-04-01

    First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.

  12. Short-wavelength infrared imaging using low dark current InGaAs detector arrays and vertical-cavity surface-emitting laser illuminators

    NASA Astrophysics Data System (ADS)

    Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David

    2011-06-01

    We describe the factors that go into the component choices for a short wavelength IR (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7 °C. In addition, we have mated our InGaAs detector arrays to 640×512 readout integrated integrated circuits to make focal plane arrays (FPAs). The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 μm at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0 °C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling. In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, and provide artifact-free imagery versus conventional laser illuminators.

  13. Simultaneous Scanning Electron Microscope Imaging of Topographical and Chemical Contrast Using In-Lens, In-Column, and Everhart-Thornley Detector Systems.

    PubMed

    Zhang, Xinming; Cen, Xi; Ravichandran, Rijuta; Hughes, Lauren A; van Benthem, Klaus

    2016-06-01

    The scanning electron microscope provides a platform for subnanometer resolution characterization of material morphology with excellent topographic and chemical contrast dependent on the used detectors. For imaging applications, the predominantly utilized signals are secondary electrons (SEs) and backscattered electrons (BSEs) that are emitted from the sample surface. Recent advances in detector technology beyond the traditional Everhart-Thornley geometry have enabled the simultaneous acquisition and discrimination of SE and BSE signals. This study demonstrates the imaging capabilities of a recently introduced new detector system that consists of the combination of two in-lens (I-L) detectors and one in-column (I-C) detector. Coupled with biasing the sample stage to reduce electron-specimen interaction volumes, this trinity of detector geometry allows simultaneous acquisition of signals to distinguish chemical contrast from topographical changes of the sample, including the identification of surface contamination. The I-C detector provides 4× improved topography, whereas the I-L detector closest to the sample offers excellent simultaneous chemical contrast imaging while not limiting the minimization of working distance to obtain optimal lateral resolution. Imaging capabilities and contrast mechanisms for all three detectors are discussed quantitatively in direct comparison to each other and the conventional Everhart-Thornley detector.

  14. Studying Cold Nuclear Matter with the MPC-EX of PHENIX

    NASA Astrophysics Data System (ADS)

    Grau, Nathan; Phenix Collaboration

    2017-09-01

    Highly asymmetric collision systems, such as d+Au, provide a unique environment to study cold nuclear matter. Potential measurements range from pinning down the modification of the nuclear wave function, i.e. saturation, to studying final state interactions, i.e. energy loss. The PHENIX experiment has enhanced the muon piston calorimeter (MPC) with a silicon-tungsten preshower, the MPC-EX. With its fine segmentation the MPC-EX extends the photon detection capability at 3 < | η | < 3.8. In this talk we review the current status of the detector, its calibration, and its identification capabilities using the 2016 d+Au dataset. We also discuss the specific physics observables the MPC-EX can measure.

  15. Design and fabrication of a novel self-powered solid-state neutron detector

    NASA Astrophysics Data System (ADS)

    LiCausi, Nicholas

    There is a strong interest in intercepting special nuclear materials (SNM) at national and international borders and ports for homeland security applications. Detection of SNM such as U and Pu is often accomplished by sensing their natural or induced neutron emission. Such detector systems typically use thermal neutron detectors inside a plastic moderator. In order to achieve high detection efficiency gas filled detectors are often used; these detectors require high voltage bias for operation, which complicates the system when tens or hundreds of detectors are deployed. A better type of detector would be an inexpensive solid-state detector that can be mass-produced like any other computer chip. Research surrounding solid-state detectors has been underway since the late 1990's. A simple solid-state detector employs a planar solar-cell type p-n junction and a thin conversion material that converts incident thermal neutrons into detectable alpha-particles and 7Li ions. Existing work has typically used 6LiF or 10B as this conversion layer. Although a simple planar detector can act as a highly portable, low cost detector, it is limited to relatively low detection efficiency (˜10%). To increase the efficiency, 3D perforated p-i-n silicon devices were proposed. To get high efficiency, these detectors need to be biased, resulting in increased leakage current and hence detector noise. In this research, a new type of detector structure was proposed, designed and fabricated. Among several detector structures evaluated, a honeycomb-like silicon p-n structure was selected, which is filled with natural boron as the neutron converter. A silicon p+-n diode formed on the thin silicon wall of the honeycomb structure detects the energetic alpha-particles emitted from the boron conversion layer. The silicon detection layer is fabricated to be fully depleted with an integral step during the boron filling process. This novel feature results in a simplified fabrication process. Three key advantages of the novel devices are theoretical neutron detection efficiency of ˜48%, a self-passivating structure that reduces leakage current and detector operation with no bias resulting in extremely low device noise. Processes required to fabricate the 3D type detector were explored and developed in this thesis. The detector capacitance and processing steps have been simulated with MEDICI and TSuprem-4, respectively. Lithography masks were then designed using Cadence. The fabrication process development was conducted in line with standard CMOS grade integrated circuit processing to allow for simple integration with existing fabrication facilities. A number of new processes were developed including the low pressure chemical vapor deposition of conformal boron films using diborane on very high aspect-ratio trenches and holes. Development also included methods for "wet" chemical etching and "dry" reactive ion etching of the deposited boron films. Fabricated detectors were characterized with the transmission line method, 4-point probe, I-V measurements and C-V measurements. Finally the detector response to thermal neutrons was studied. Characterization has shown significant reduction in reverse leakage current density to ˜8x10-8 A/cm2 (nearly 4 orders of magnitude over the previously published data). Results show that the fabrication process developed is capable of producing efficient (˜22.5%) solid-state thermal neutron detectors.

  16. Development of a new signal processor for tetralateral position sensitive detector based on single-chip microcomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Meizhen; Shi Longzhao; Wang Yuxing

    2006-08-15

    An inherently nonlinear relation between the output current of the tetralateral position sensitive detector (PSD) and the position of the incident light spot has been found theoretically. Based on single-chip microcomputer and the theoretical relation between output current and position, a new signal processor capable of correcting nonlinearity and reducing position measurement deviation of tetralateral PSD was developed. A tetralateral PSD (S1200, 13x13 mm{sup 2}, Hamamatsu Photonics K.K.) was measured with the new signal processor, a linear relation between the output position of the PSD, and the incident position of the light spot was obtained. In the 60% range ofmore » a 13x13 mm{sup 2} active area, the position nonlinearity (rms) was 0.15% and the position measurement deviation (rms) was {+-}20 {mu}m. Compared with traditional analog signal processor, the new signal processor is of better compatibility, lower cost, higher precision, and easier to be interfaced.« less

  17. Development of a new signal processor for tetralateral position sensitive detector based on single-chip microcomputer

    NASA Astrophysics Data System (ADS)

    Huang, Mei-Zhen; Shi, Long-Zhao; Wang, Yu-Xing; Ni, Yi; Li, Zhen-Qing; Ding, Hai-Feng

    2006-08-01

    An inherently nonlinear relation between the output current of the tetralateral position sensitive detector (PSD) and the position of the incident light spot has been found theoretically. Based on single-chip microcomputer and the theoretical relation between output current and position, a new signal processor capable of correcting nonlinearity and reducing position measurement deviation of tetralateral PSD was developed. A tetralateral PSD (S1200, 13×13mm2, Hamamatsu Photonics K.K.) was measured with the new signal processor, a linear relation between the output position of the PSD, and the incident position of the light spot was obtained. In the 60% range of a 13×13mm2 active area, the position nonlinearity (rms) was 0.15% and the position measurement deviation (rms) was ±20μm. Compared with traditional analog signal processor, the new signal processor is of better compatibility, lower cost, higher precision, and easier to be interfaced.

  18. Speckle interferometry. Data acquisition and control for the SPID instrument.

    NASA Astrophysics Data System (ADS)

    Altarac, S.; Tallon, M.; Thiebaut, E.; Foy, R.

    1998-08-01

    SPID (SPeckle Imaging by Deconvolution) is a new speckle camera currently under construction at CRAL-Observatoire de Lyon. Its high spectral resolution and high image restoration capabilities open new astrophysical programs. The instrument SPID is composed of four main optical modules which are fully automated and computer controlled by a software written in Tcl/Tk/Tix and C. This software provides an intelligent assistance to the user by choosing observational parameters as a function of atmospheric parameters, computed in real time, and the desired restored image quality. Data acquisition is made by a photon-counting detector (CP40). A VME-based computer under OS9 controls the detector and stocks the data. The intelligent system runs under Linux on a PC. A slave PC under DOS commands the motors. These 3 computers communicate through an Ethernet network. SPID can be considered as a precursor for VLT's (Very Large Telescope, four 8-meter telescopes currently built in Chile by European Southern Observatory) very high spatial resolution camera.

  19. Midwavelength interband cascade infrared photodetectors with superlattice absorbers and gain

    NASA Astrophysics Data System (ADS)

    Lei, Lin; Li, Lu; Lotfi, Hossein; Ye, Hao; Yang, Rui Q.; Mishima, Tetsuya D.; Santos, Michael B.; Johnson, Matthew B.

    2018-01-01

    We report on a comparison study of the electrical and optical properties of a set of device structures with different numbers of cascade stages, type-II superlattice (T2SL) absorber thickness, and doping variations, as well as a noncurrent-matched interband cascade infrared photodetectors (ICIP) structure with equal absorbers. Multistage ICIPs were demonstrated to be capable of operating at high temperatures at zero-bias with superior carrier transport over comparable conventional one-stage detectors. Based on the temperature dependence and bias sensitivity of their responsivities with various absorber thicknesses, the diffusion length is estimated to be between 0.6 and 1.0 μm for T2SL materials at high temperatures (>250 K). A comparison of responsivities between current matched ICIPs with varied absorber thicknesses and noncurrent-matched ICIPs with equal absorbers shows that the current-matching among cascade stages is necessary to maximize responsivity. Additionally, electrical gain exceeding unity is demonstrated in these detectors in the reverse-illumination configuration.

  20. Exclusive muon neutrino charged current pion-less topologies. ArgoNeuT results and future prospects in LAr TPC detectors

    DOE PAGES

    Palamara, Ornella

    2016-12-29

    Results from the analysis of charged current pion-less (CC 0-pion) muon neutrino events in argon collected by the ArgoNeuT experiment on the NuMI beam at Fermilab are presented and compared with predictions from Monte Carlo simulations. A novel analysis method, based on the reconstruction of exclusive topologies, fully exploiting the Liquid argon Time Projection Chamber (LAr TPC) technique capabilities, is used to analyze the events, characterized by the presence at the vertex of a leading muon track eventually accompanied by one or more highly ionizing tracks, and study nuclear effects in neutrino interactions on argon nuclei. Multiple protons accompanying themore » leading muon are visible in the ArgoNeuT events, and measured with a proton reconstruction threshold of 21 MeV kinetic energy. As a result, measurements of (anti-)neutrino CC 0-pion inclusive and exclusive cross sections on argon nuclei are reported. Prospects for future, larger mass LAr TPC detectors are discussed.« less

  1. Joint Services Electronics Program. Basic Research in Electronics (JSEP)

    DTIC Science & Technology

    1992-08-01

    DBRs). Our DBR work allows us to develop improved vertical cavity surface-emitting lasers ( VCSELs ) and also to examine details of optical phenomena... in short-cavity lasers. We have used MBE regrowth techniques to provide current tunnelling into the device active region of the VCSEL . We use an AlAs... optical detector structures. We have already developed significant capability in the low temperature (2506C - 3000C) growth of undoped GaAs and AIo.3Gao

  2. Current LWIR HSI Remote Sensing Activities at Defence R&D Canada - Valcartier

    DTIC Science & Technology

    2009-10-01

    measures the IR radiation from a target scene which is optically combined onto a single detector out-of-phase with the IR radiation from a corresponding...Hyper-Cam-LW. The MODDIFS project involves the development of a leading edge infrared ( IR ) hyperspectral sensor optimized for the standoff detection...essentially offer the optical subtraction capability of the CATSI system but at high-spatial resolution using an MCT focal plane array of 8484

  3. Capture and fission with DANCE and NEUANCE

    DOE PAGES

    Jandel, M.; Baramsai, B.; Bond, E.; ...

    2015-12-23

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomericmore » states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables.« less

  4. Capabilities, Calibration, and Impact of the ISS-RAD Fast Neutron Detector

    NASA Technical Reports Server (NTRS)

    Leitgab, Martin

    2015-01-01

    In the current NASA crew radiation health risk assessment framework, estimates for the neutron contributions to crew radiation exposure largely rely on simulated data with sizeable uncertainties due to the lack of experimental measurements inside the ISS. Integrated in the ISS-RAD instrument, the ISS-RAD Fast Neutron Detector (FND) will deploy to the ISS on one of the next cargo supply missions. Together with the ISS-RAD Charged Particle Detector, the FND will perform, for the first time, routine and precise direct neutron measurements inside the ISS between 0.5 and 80 MeV. The measurements will close the NASA Medical Operations Requirement to monitor neutrons inside the ISS and impact crew radiation health risk assessments by reducing uncertainties on the neutron contribution to crew exposure, enabling more efficient mission planning. The presentation will focus on the FND detection mechanism, calibration results and expectations about the FND's interaction with the mixed radiation field inside the ISS.

  5. Capture and fission with DANCE and NEUANCE

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.

    2015-12-01

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomeric states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables.

  6. Organic Scintillator Detector Response Simulations with DRiFT

    DOE PAGES

    Andrews, Madison Theresa; Bates, Cameron Russell; Mckigney, Edward Allen; ...

    2016-06-11

    Here, this work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNPR output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed- field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNPR ®6, which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discriminationmore » plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.« less

  7. Organic scintillator detector response simulations with DRiFT

    NASA Astrophysics Data System (ADS)

    Andrews, M. T.; Bates, C. R.; McKigney, E. A.; Solomon, C. J.; Sood, A.

    2016-09-01

    This work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNP® output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed-field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNP® 6 , which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discrimination plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.

  8. Novel ultrasensitive plasmonic detector of terahertz pulses enhanced by femtosecond optical pulses

    NASA Astrophysics Data System (ADS)

    Shur, M.; Rudin, S.; Rupper, G.; Muraviev, A.

    2016-09-01

    Plasmonic Field Effect Transistor detectors (first proposed in 1996) have emerged as superior room temperature terahertz (THz) detectors. Recent theoretical and experimental results showed that such detectors are capable of subpicosecond resolution. Their sensitivity can be greatly enhanced by applying the DC drain-to-source current that increases the responsivity due to the enhanced non-linearity of the device but also adds 1/f noise. We now propose, and demonstrate a dramatic responsivity enhancement of these plasmonic THz pulse detectors by applying a femtosecond optical laser pulse superimposed on the THz pulse. The proposed physical mechanism links the enhanced detection to the superposition of the THz pulse field and the rectified optical field. A femtosecond pulse generates a large concentration of the electron-hole pairs shorting the drain and source contacts and, therefore, determining the moment of time when the THz induced charge starts discharging into the transmission line connecting the FET to an oscilloscope. This allows for scanning the THz pulse with the strongly enhanced sensitivity and/or for scanning the response waveform after the THz pulse is over. The experimental results obtained using AlGaAs/InGaAs deep submicron HEMTs are in good agreement with this mechanism. This new technique could find numerous imaging, sensing, and quality control applications.

  9. Trace detection of explosives using an in-line high-volume sampler, preconcentrator, and Fido explosives detector

    NASA Astrophysics Data System (ADS)

    Ingram, Russ; Sikes, John

    2010-04-01

    This paper shall demonstrate the results of a prototype system to detect explosive objects and obscured contaminated targets. By combining a high volume sampling nozzle with an inline 2-stage preconcentrator and a Fido, greater standoff is achieved than with the Fido alone. The direct application of this system is on the Autonomous Mine Detection System (AMDS) but could be deployed on a large variety of robotic platforms. It is being developed under the auspices of the U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate, Countermine Division. This device is one of several detection tools and technologies to be used on the AMDS. These systems will have multiple, and at times, overlapping objectives. One objective is trace detection on the surface of an unknown potential target. By increasing the standoff capabilities of the detector, the fine manipulation of the robot deploying the detector is less critical. Current detectors used on robotic systems must either be directly in the vapor plume or make direct contact with the target. By increasing the standoff, detection is more easily and quickly achieved. The end result detector must overcome cross-contamination, sample throughput, and environmental issues. The paper will provide preliminary results of the prototype system to include data, and where feasible, video of testing results.

  10. CMOS-TDI detector technology for reconnaissance application

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Reulke, Ralf; Jung, Melanie; Sengebusch, Karsten

    2014-10-01

    The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design CMOS in a TDI (Time Delay and Integration) architecture. This project includes the technological design of future high or multi-spectral resolution spaceborne instruments and the possibility of higher integration. DLR OS and the Fraunhofer Institute for Microelectronic Circuits and Systems (IMS) in Duisburg were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large-swath and high-spectral resolution with intelligent synchronization control, fast-readout ADC (analog digital converter) chains and new focal-plane concepts opens the door to new remote-sensing and smart deep-space instruments. The paper gives an overview of the detector development status and verification program at DLR, as well as of new control possibilities for CMOS-TDI detectors in synchronization control mode.

  11. The ALICE Transition Radiation Detector: Construction, operation, and performance

    DOE PAGES

    Acharya, S; Adam, J; Adamova, D; ...

    2017-09-21

    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this article, the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction.more » The triggering capability is demonstrated both for jet, light nuclei, and electron selection.« less

  12. The ALICE Transition Radiation Detector: Construction, operation, and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, S; Adam, J; Adamova, D

    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this article, the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction.more » The triggering capability is demonstrated both for jet, light nuclei, and electron selection.« less

  13. ANTARES and KM3NeT programs for the supernova neutrino detection

    NASA Astrophysics Data System (ADS)

    Kulikovskiy, Vladimir

    2017-02-01

    The currently working ANTARES neutrino telescope has capabilities to detect neutrinos produced in astrophysical transient sources. Neutrino alerts are regularly generated to trigger multi-wavelength observatories. Potential sources include gamma-ray bursts, core-collapse supernovae, and flaring active galactic nuclei. In particular, the neutrino detection together with the multi-wavelength observations may reveal hidden jets in the supernova explosions. Supernovae remnants are currently the most promising acceleration sites of the cosmic rays in our Galaxy. The neutrino emission is expected during the cosmic ray interaction with the surrounding matter. The neutrino telescopes in the Northern hemisphere have excellent visibility to the most of the galactic supernovae remnants. Recent results on the search for point-sources with the ANTARES detector and the prospects for the future KM3NeT detector are presented. Although ANTARES and KM3NeT detectors are mainly designed for high energy neutrino detection, the MeV neutrino signal from the supernova can be identified as a simultaneous increase of the counting rate of the optical modules in the detector. The noise from the optical background due to 40K decay in the sea water and the bioluminescence can be significantly reduced by using nanosecond coincidences between the nearby placed photomultipliers. This technique has been tested with the ANTARES storeys, each one consisting of three 10-inch photomultipliers, and it is further optimized for the KM3NeT telescope where the directional optical modules containing 31 3-inch photomultipliers provide very promising expectations.

  14. Above-ground antineutrino detection for nuclear reactor monitoring

    NASA Astrophysics Data System (ADS)

    Sweany, M.; Brennan, J.; Cabrera-Palmer, B.; Kiff, S.; Reyna, D.; Throckmorton, D.

    2015-01-01

    Antineutrino monitoring of nuclear reactors has been demonstrated many times (Klimov et al., 1994 [1]; Bowden et al., 2009 [2]; Oguri et al., 2014 [3]), however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detection media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surrounded by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of 6Li. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron's annihilation gammas, a signature that is absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe that this technology will ultimately be applicable to potential safeguards scenarios such as those recently described by Huber et al. (2014) [4,5].

  15. High voltage plasma sheath analysis related to TSS-1

    NASA Technical Reports Server (NTRS)

    Sheldon, John W.

    1990-01-01

    On the first mission of the Tethered Satellite System (TSS-1), a 1.8 m diameter spherical satellite will be deployed a distance of 20 km above the Space Shuttle Orbiter on an insulated conducting tether. The satellite will be held at electric potentials up to 5000 volts positive with respect to the ambient plasma. Due to the passage of the conducting tether through the Earth's magnetic field, an electromagnetic field (EMF) will be created, driving electrons down the tether to the Orbiter, out through an electron gun into the ionosphere and back into the positive-biased satellite. The main problem addressed here is the current-voltage characteristics of the ionospheric interaction with the satellite. The first problem is that while the satellite will be capable of measuring charged particle flow to the surface at several locations, the detectors have a limited range of acceptance angle. The second problem is that the angle of incidence of the incoming electrons will have to be relative to the local normal. This will be important in order to predict the magnitude of the detectable current at each detector location so the detector gain can be pre-set to the correct range. The plasma sheath was analyzed mathematically, and subroutines were written to solve relevant finite element, Taylor-Vlasov, and Poisson equations.

  16. Fast surface temperature measurement of Teflon propellant-in-pulsed ablative discharges using HgCdTe photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Antonsen, Erik L.; Burton, Rodney L.; Reed, Garrett A.; Spanjers, Gregory G.

    2006-10-01

    High-speed mercury cadmium telluride photovoltaic detectors, sensitive to infrared emission, are investigated as a means of measuring surface temperature on a microsecond time frame during pulsed ablative discharges with Teflon™ as the ablated material. Analysis is used to derive a governing equation for detector output voltage for materials with wavelength dependent emissivity. The detector output voltage is experimentally calibrated against thermocouples embedded in heated Teflon. Experimental calibration is performed with Teflon that has been exposed to ˜200 pulsed discharges and non-plasma-exposed Teflon and is compared to theoretical predictions to analyze emissivity differences. The diagnostic capability is evaluated with measurements of surface temperature from the Teflon propellant of electric micropulsed plasma thrusters. During the pulsed current discharge, there is insufficient information to claim that the surface temperature is accurately measured. However, immediately following the discharge, the postpulse cooling curve is measured. The statistical spread of postpulse surface temperature from shot to shot, most likely due to arc constriction and localization, is investigated to determine an operational envelope for postpulse temperature and mass ablation. This information is useful for determining postpulse ablation contributions to mass loss as well as evaluation of theoretical discharge models currently under development.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Arvind, E-mail: anita@barc.gov.in; Topkar, Anita

    In order to improve the gamma discrimination capability for thermal neutron measurements using silicon PIN detectors, a novel approach of use of thin epitaxial silicon PIN detectors was investigated. Thin epitaxial silicon detectors with thickness of 15 µm were developed and their performance was tested with thermal neutrons using {sup 10}B converter. The performance of this detector was compared with the performance of a 300 µm silicon detector. The results of experiments presented in this paper indicate that thin epitaxial silicon detectors can significantly improve γ discrimination for thermal neutron measurements.

  18. Comparison of CdZnTe neutron detector models using MCNP6 and Geant4

    NASA Astrophysics Data System (ADS)

    Wilson, Emma; Anderson, Mike; Prendergasty, David; Cheneler, David

    2018-01-01

    The production of accurate detector models is of high importance in the development and use of detectors. Initially, MCNP and Geant were developed to specialise in neutral particle models and accelerator models, respectively; there is now a greater overlap of the capabilities of both, and it is therefore useful to produce comparative models to evaluate detector characteristics. In a collaboration between Lancaster University, UK, and Innovative Physics Ltd., UK, models have been developed in both MCNP6 and Geant4 of Cadmium Zinc Telluride (CdZnTe) detectors developed by Innovative Physics Ltd. Herein, a comparison is made of the relative strengths of MCNP6 and Geant4 for modelling neutron flux and secondary γ-ray emission. Given the increasing overlap of the modelling capabilities of MCNP6 and Geant4, it is worthwhile to comment on differences in results for simulations which have similarities in terms of geometries and source configurations.

  19. A beta-ray spectrometer based on a two-or three silicon detector coincidence telescope

    NASA Astrophysics Data System (ADS)

    Horowitz, Y. S.; Weizman, Y.; Hirning, C. R.

    1996-02-01

    This report describes the operation of a beta-ray energy spectrometer based on a silicon detector telescope using two or three elements. The front detector is a planar, totally-depleted, silicon surface barrier detector that is 97 μm thick, the back detector is a room-temperature, lithium compensated, silicon detector that is 5000 μm thick, and the intermediate detector is similar to the front detector but 72 μm thick and intended to be used only in intense photon fields. The three detectors are mounted in a light-tight aluminum housing. The capability of the spectrometer to reject photons is based upon the fact that the incident photon will have a small probability of simultaneously losing detectable energy in two detectors, and an even smaller probability of losing detectable energy in all three detectors. Electrons will, however, almost always record measurable events in either the front two or all three detectors. A coincidence requirement between the detectors thus rejects photon induced events. With a 97 μm thick detector the lower energy coincidence threshold is approximately 110 keV. With an ultra-thin 40 μm thick front detector, and operated at 15°C, the spectrometer is capable of detecting even 60-70 keV electrons with a coincidence efficiency of 60%. The spectrometer has been used to measure beta radiation fields in CANDU reactor working environments, and the spectral information is intended to support dose algorithms for the LiF TLD chips used in the Ontario Hydro dosimetry program.

  20. Investigation of the Effect of Temperature and Light Emission from Silicon Photomultiplier Detectors

    NASA Astrophysics Data System (ADS)

    Ruiz Castruita, Daniel; Ramos, Daniel; Hernandez, Victor; Niduaza, Rommel; Konx, Adrian; Fan, Sewan; Fatuzzo, Laura; Ritt, Stefan

    2015-04-01

    The silicon photomultiplier (SiPM) is an extremely sensitive light detector capable of measuring very dim light and operates as a photon-number resolving detector. Its high gain comes from operating at slightly above the breakdown voltage, which is also accompanied by a high dark count rate. At this conference poster session we describe our investigation of using SiPMs, the multipixel photon counters (MPPC) from Hamamatsu, as readout detectors for development in a cosmic ray scintillating detector array. Our research includes implementation of a novel design that automatically adjusts for the bias voltage to the MPPC detectors to compensate for changes in the ambient temperature. Furthermore, we describe our investigations for the MPPC detector characteristics at different bias voltages, temperatures and light emission properties. To measure the faint light emitted from the MPPC we use a photomultiplier tube capable of detecting single photons. Our data acquisition setup consists of a 5 Giga sample/second waveform digitizer, the DRS4, triggered to capture the MPPC detector waveforms. Analysis of the digitized waveforms, using the CERN package PAW, would be discussed and presented. US Department of Education Title V Grant PO31S090007.

  1. A CMOS-based high-resolution fluoroscope (HRF) detector prototype with 49.5μm pixels for use in endovascular image guided interventions (EIGI)

    NASA Astrophysics Data System (ADS)

    Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2017-03-01

    X-ray detectors to meet the high-resolution requirements for endovascular image-guided interventions (EIGIs) are being developed and evaluated. A new 49.5-micron pixel prototype detector is being investigated and compared to the current suite of high-resolution fluoroscopic (HRF) detectors. This detector featuring a 300-micron thick CsI(Tl) scintillator, and low electronic noise CMOS readout is designated the HRF- CMOS50. To compare the abilities of this detector with other existing high resolution detectors, a standard performance metric analysis was applied, including the determination of the modulation transfer function (MTF), noise power spectra (NPS), noise equivalent quanta (NEQ), and detective quantum efficiency (DQE) for a range of energies and exposure levels. The advantage of the smaller pixel size and reduced blurring due to the thin phosphor was exemplified when the MTF of the HRF-CMOS50 was compared to the other high resolution detectors, which utilize larger pixels, other optical designs or thicker scintillators. However, the thinner scintillator has the disadvantage of a lower quantum detective efficiency (QDE) for higher diagnostic x-ray energies. The performance of the detector as part of an imaging chain was examined by employing the generalized metrics GMTF, GNEQ, and GDQE, taking standard focal spot size and clinical imaging parameters into consideration. As expected, the disparaging effects of focal spot unsharpness, exacerbated by increasing magnification, degraded the higher-frequency performance of the HRF-CMOS50, while increasing scatter fraction diminished low-frequency performance. Nevertheless, the HRF-CMOS50 brings improved resolution capabilities for EIGIs, but would require increased sensitivity and dynamic range for future clinical application.

  2. A high-throughput, multi-channel photon-counting detector with picosecond timing

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-06-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  3. MO-F-CAMPUS-T-05: Design of An Innovative Beam Monitor for Particle Therapy for the Simultaneous Measurement of Beam Fluence and Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacchi, R; Guarachi, L Fanola; Monaco, V

    2015-06-15

    Purpose: Monitoring the prescribed dose in particle therapy is typically carried out by using parallel plate ionization chambers working in transmission mode. The use of gas detectors has several drawbacks: they need to be calibrated daily against standard dosimeters and their dependence on beam quality factors need to be fully characterized and controlled with high accuracy. A detector capable of single particle counting is proposed which would overcome all these limitations. Combined with a gas ionization chamber, it will allow determining the average particle stopping power, thus providing an effective method for the online verification of the selected particle energymore » and range. Methods: Low-Gain Avalanche Detectors (LGADs) are innovative n-in-p silicon sensors with moderate internal charge multiplication occurring in the strong field generated by an additional p+ doping layer implanted at a depth of a few µm in the bulk of the sensor. The increased signal-to-noise ratio allows designing very thin, few tens of microns, segmented LGADs, called Ultra Fast Silicon Detectors (UFSD), optimized for very fast signal, which would be suitable for charged particle counting at high rates. A prototype UFSD is being designed for this purpose. Results: Different LGAD diodes have been characterized both in laboratory and beam tests, and the results compared both with those obtained with similar diodes without the gain layer and with a program simulating the signal in the sensors. The signal is found to be enhanced in LGADs, while the leakage current and the noise is not affected by the gain. Possible alternative designs and implementations are also presented and discussed. Conclusion: Thanks to their excellent counting capabilities, UFSD detectors are a promising technology for future beam monitor devices in hadron-therapy applications. Studies are ongoing to better understand their properties and optimize the design in view of this application.« less

  4. Timing and tracking for the Crystal Barrel detector

    NASA Astrophysics Data System (ADS)

    Beck, Reinhard; Brinkmann, Kai; Novotny, Rainer

    2017-01-01

    The aim of the project D.3 is the upgrade of several detector components used in the CBELSA/TAPS experiment at ELSA. The readout of the Crystal Barrel Calorimeter will be extended by a timing branch in order to gain trigger capability for the detector, which will allow to measure completely neutral final states in photoproduction reactions (see projects A.1 and C.5). Additionally, the readout of the inner crystals of the TAPS detector, which covers the forward opening of the Crystal Barrel Calorimeter, will be modified to be capable of high event rates due to the intensity upgrade of ELSA. Furthermore, a full-scale prototype Time Projection Chamber (TPC) has been built to be used as a new central tracker for the CBELSA/TAPS experiment at ELSA and the FOPI experiment at GSI.

  5. Hand-held, mechanically cooled, radiation detection system for gamma-ray spectroscopy

    DOEpatents

    Burks, Morgan Thomas; Eckels, Joel Del

    2010-06-08

    In one embodiment, a radiation detection system is provided including a radiation detector and a first enclosure encapsulating the radiation detector, the first enclosure including a low-emissivity infra-red (IR) reflective coating used to thermally isolate the radiation detector. Additionally, a second enclosure encapsulating the first enclosure is included, the first enclosure being suspension mounted to the second enclosure. Further, a cooler capable of cooling the radiation detector is included. Still yet, a first cooling interface positioned on the second enclosure is included for coupling the cooler and the first enclosure. Furthermore, a second cooling interface positioned on the second enclosure and capable of coupling the first enclosure to a cooler separate from the radiation detection system is included. Other embodiments are also presented.

  6. Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.; Abat, E.; Abbott, B.

    2011-11-28

    The Large Hadron Collider (LHC) at CERN promises a major step forward in the understanding of the fundamental nature of matter. The ATLAS experiment is a general-purpose detector for the LHC, whose design was guided by the need to accommodate the wide spectrum of possible physics signatures. The major remit of the ATLAS experiment is the exploration of the TeV mass scale where groundbreaking discoveries are expected. In the focus are the investigation of the electroweak symmetry breaking and linked to this the search for the Higgs boson as well as the search for Physics beyond the Standard Model. Inmore » this report a detailed examination of the expected performance of the ATLAS detector is provided, with a major aim being to investigate the experimental sensitivity to a wide range of measurements and potential observations of new physical processes. An earlier summary of the expected capabilities of ATLAS was compiled in 1999 [1]. A survey of physics capabilities of the CMS detector was published in [2]. The design of the ATLAS detector has now been finalised, and its construction and installation have been completed [3]. An extensive test-beam programme was undertaken. Furthermore, the simulation and reconstruction software code and frameworks have been completely rewritten. Revisions incorporated reflect improved detector modelling as well as major technical changes to the software technology. Greatly improved understanding of calibration and alignment techniques, and their practical impact on performance, is now in place. The studies reported here are based on full simulations of the ATLAS detector response. A variety of event generators were employed. The simulation and reconstruction of these large event samples thus provided an important operational test of the new ATLAS software system. In addition, the processing was distributed world-wide over the ATLAS Grid facilities and hence provided an important test of the ATLAS computing system - this is the origin of the expression 'CSC studies' ('computing system commissioning'), which is occasionally referred to in these volumes. The work reported does generally assume that the detector is fully operational, and in this sense represents an idealised detector: establishing the best performance of the ATLAS detector with LHC proton-proton collisions is a challenging task for the future. The results summarised here therefore represent the best estimate of ATLAS capabilities before real operational experience of the full detector with beam. Unless otherwise stated, simulations also do not include the effect of additional interactions in the same or other bunch-crossings, and the effect of neutron background is neglected. Thus simulations correspond to the low-luminosity performance of the ATLAS detector. This report is broadly divided into two parts: firstly the performance for identification of physics objects is examined in detail, followed by a detailed assessment of the performance of the trigger system. This part is subdivided into chapters surveying the capabilities for charged particle tracking, each of electron/photon, muon and tau identification, jet and missing transverse energy reconstruction, b-tagging algorithms and performance, and finally the trigger system performance. In each chapter of the report, there is a further subdivision into shorter notes describing different aspects studied. The second major subdivision of the report addresses physics measurement capabilities, and new physics search sensitivities. Individual chapters in this part discuss ATLAS physics capabilities in Standard Model QCD and electroweak processes, in the top quark sector, in b-physics, in searches for Higgs bosons, supersymmetry searches, and finally searches for other new particles predicted in more exotic models.« less

  7. Army Science and Technology Master Plan, Fiscal Year 1997 - Volume 1.

    DTIC Science & Technology

    1996-12-01

    the EMW battlefield mission areas, mobility manportable mine detector, with the capability to detect both metallic and non- metallic minesand...b. Countermobility 98). The vehicular detector will demonstrate the mounted capability to detect metallic and Engineers impede the enemy’s freedom...This network pro- that will be effective against a wide variety of vides the commander with real-time targeting antitank and antipersonnel metallic and

  8. Devices useful for vacuum ultraviolet beam characterization including a movable stage with a transmission grating and image detector

    DOEpatents

    Gessner, Oliver; Kornilov, Oleg A; Wilcox, Russell B

    2013-10-29

    The invention provides for a device comprising an apparatus comprising (a) a transmission grating capable of diffracting a photon beam into a diffracted photon output, and (b) an image detector capable of detecting the diffracted photon output. The device is useful for measuring the spatial profile and diffraction pattern of a photon beam, such as a vacuum ultraviolet (VUV) beam.

  9. Gas amplified ionization detector for gas chromatography

    DOEpatents

    Huston, Gregg C.

    1992-01-01

    A gas-amplified ionization detector for gas chromatrography which possesses increased sensitivity and a very fast response time. Solutes eluding from a gas chromatographic column are ionized by UV photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the UV photoionization of at least a portion of each solute passing through the detector.

  10. Investigating the Inverse Square Law with the Timepix Hybrid Silicon Pixel Detector: A CERN [at] School Demonstration Experiment

    ERIC Educational Resources Information Center

    Whyntie, T.; Parker, B.

    2013-01-01

    The Timepix hybrid silicon pixel detector has been used to investigate the inverse square law of radiation from a point source as a demonstration of the CERN [at] school detector kit capabilities. The experiment described uses a Timepix detector to detect the gamma rays emitted by an [superscript 241]Am radioactive source at a number of different…

  11. Stacked Metal Silicide/Silicon Far-Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1988-01-01

    Selective doping of silicon in proposed metal silicide/silicon Schottky-barrier infrared photodetector increases maximum detectable wavelength. Stacking layers to form multiple Schottky barriers increases quantum efficiency of detector. Detectors of new type enhance capabilities of far-infrared imaging arrays. Grows by molecular-beam epitaxy on silicon waferscontaining very-large-scale integrated circuits. Imaging arrays of detectors made in monolithic units with image-preprocessing circuitry.

  12. Prompt Photon Measurements with the PHENIX MPC-EX Detector

    NASA Astrophysics Data System (ADS)

    Lajoie, John

    2012-10-01

    The MPC-EX detector is a Si-W preshower extension to the existing PHENIX Muon Piston Calorimeter (MPC). The MPC-EX consists of eight layers of alternating W absorber and Si mini-pad sensors. Covering a large pseudorapidity range, 3.1 < |η| < 3.8, the MPC-EX and MPC access low-x partons in the Au nucleus in d+Au collisions through prompt photon measurements. With the addition of the MPC-EX, the neutral pion reconstruction range extends to energies > 80 GeV, a factor of four improvement over current capabilities. Not only will the MPC-EX strengthen PHENIX's existing forward 0̂ and jet measurements, it also provides the necessary 0̂ rejection to make a prompt photon measurement feasible. With this 0̂ rejection, prompt photon yields at high pT, pT> 3 GeV, can be statistically extracted using a double ratio method. The prompt photon RdAu measured with the MPC-EX will quantify the level of gluon shadowing or saturation in the Au nucleus at low-x, x˜ 10-3, with a projected systematic error band a factor of four smaller than current global fits to current measurements.

  13. Spin filter effect of hBN/Co detector electrodes in a 3D topological insulator spin valve

    NASA Astrophysics Data System (ADS)

    Vaklinova, Kristina; Polyudov, Katharina; Burghard, Marko; Kern, Klaus

    2018-03-01

    Topological insulators emerge as promising components of spintronic devices, in particular for applications where all-electrical spin control is essential. While the capability of these materials to generate spin-polarized currents is well established, only very little is known about the spin injection/extraction into/out of them. Here, we explore the switching behavior of lateral spin valves comprising the 3D topological insulator Bi2Te2Se as channel, which is separated from ferromagnetic Cobalt detector contacts by an ultrathin hexagonal boron nitride (hBN) tunnel barrier. The corresponding contact resistance displays a notable variation, which is correlated with a change of the switching characteristics of the spin valve. For contact resistances below ~5 kΩ, the hysteresis in the switching curve reverses upon reversing the applied current, as expected for spin-polarized currents carried by the helical surface states. By contrast, for higher contact resistances an opposite polarity of the hysteresis loop is observed, which is independent of the current direction, a behavior signifying negative spin detection efficiency of the multilayer hBN/Co contacts combined with bias-induced spin signal inversion. Our findings suggest the possibility to tune the spin exchange across the interface between a ferromagnetic metal and a topological insulator through the number of intervening hBN layers.

  14. Method and apparatus for current-output peak detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Geronimo, Gianluigi

    2017-01-24

    A method and apparatus for a current-output peak detector. A current-output peak detector circuit is disclosed and works in two phases. The peak detector circuit includes switches to switch the peak detector circuit from the first phase to the second phase upon detection of the peak voltage of an input voltage signal. The peak detector generates a current output with a high degree of accuracy in the second phase.

  15. The Advanced Technology Large-Aperture Space Telescope (ATLAST) Technology Roadmap

    NASA Technical Reports Server (NTRS)

    Stahle, Carl; Balasubramanian, K.; Bolcar, M.; Clampin, M.; Feinberg, L.; Hartman, K.; Mosier, C.; Quijada, M.; Rauscher, B.; Redding, D.; hide

    2014-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 40 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  16. Characterisation of Redlen high-flux CdZnTe

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Veale, M. C.; Wilson, M. D.; Seller, P.; Schneider, A.; Iniewski, K.

    2017-12-01

    CdZnTe is a promising material for the current generation of free electron laser light sources and future laser-driven γ-ray sources which require detectors capable of high flux imaging at X-ray and γ-ray energies (> 10 keV) . However, at high fluxes CdZnTe has been shown to polarise due to hole trapping, leading to poor performance. Novel Redlen CdZnTe material with improved hole transport properties has been designed for high flux applications. Small pixel CdZnTe detectors were fabricated by Redlen Technologies and flip-chip bonded to PIXIE ASICs. An XIA Digital Gamma Finder PIXIE-16 system was used to digitise each of the nine analogue signals with a timing resolution of 10 ns. Pulse shape analysis was used to extract the rise times and amplitude of signals. These were measured as a function of applied bias voltage and used to calculate the mobility (μ) and mobility-lifetime (μτ) of electrons and holes in the material for three identical detectors. The measured values of the transport properties of electrons in the high-flux-capable material was lower than previously reported for Redlen CdZnTe material (μeτe ~ 1 × 10-3 cm2V-1 and μe ~ 1000 cm2V-1s-1) while the hole transport properties were found to have improved (μhτh ~ 3 × 10-4 cm2V-1 and μh ~ 100 cm2V-1s-1).

  17. High resolution track etch autoradiography

    DOEpatents

    Solares, G.; Zamenhof, R.G.

    1994-12-27

    A detector assembly is disclosed for use in obtaining alpha-track autoradiographs, the detector assembly including a substantially boron-free substrate; a detector layer deposited on the substantially boron-free substrate, the detector layer being capable of recording alpha particle tracks and exhibiting evidence of the alpha tracks in response to being exposed to an etchant, the detector layer being less than about 2 microns thick; and a protective layer deposited on the detector layer, the protective layer being resistant to the etchant and having a thickness of about 0.5 to 1 microns. 13 figures.

  18. High resolution track etch autoradiography

    DOEpatents

    Solares, Guido; Zamenhof, Robert G.

    1994-01-01

    A detector assembly for use in obtaining alpha-track autoradiographs, the detector assembly including a substantially boron-free substrate; a detector layer deposited on the substantially boron-free substrate, the detector layer being capable of recording alpha particle tracks and exhibiting evidence of the alpha tracks in response to being exposed to an etchant, the detector layer being less than about 2 microns thick; and a protective layer deposited on the detector layer, the protective layer being resistant to the etchant and having a thickness of about 0.5 to 1 microns.

  19. The 150 ns detector project: Prototype preamplifier results

    NASA Astrophysics Data System (ADS)

    Warburton, W. K.; Russell, S. R.; Kleinfelder, Stuart A.

    1994-08-01

    The long-term goal of the 150 ns detector project is to develop a pixel area detector capable of 6 MHz frame rates (150 ns/frame). Our milestones toward this goal are: a single pixel, 1×256 1D and 8×8 2D detectors, 256×256 2D detectors and, finally, 1024 × 1024 2D detectors. The design strategy is to supply a complete electronics chain (resetting preamp, selectable gain amplifier, analog-to-digital converter (ADC), and memory) for each pixel. In the final detectors these will all be custom integrated circuits. The front-end preamplifiers are integrated first, since their design and performance are the most unusual and also critical to the project's success. Similarly, our early work is concentrated on devising and perfecting detector structures. In this paper we demonstrate the performance of prototypes of our integrated preamplifiers. While the final design will have 64 preamps to a chip, including a switchable gain stage, the prototypes were integrated 8 channels to a "Tiny Chip" and tested in 4 configurations (feedback capacitor Cf equal 2.5 or 4.0 pF, output directly or through a source follower). These devices have been tested thoroughly for reset settling times, gain, linearity, and electronic noise. They generally work as designed, being fast enough to easily integrate detector charge, settle, and reset in 150 ns. Gain and linearity appear to be acceptable. Current values of electronic noise, in double-sampling mode, are about twice the design goal of {2}/{3} of a single photon at 6 keV. We expect this figure to improve with the addition of the onboard amplifier stage and improved packaging. Our next test chip will include these improvements and allow testing with our first detector samples, which will be 1×256 (50 μm wide pixels) and 8×8 (1 mm 2 pixels) element detector on 1 mm thick silicon.

  20. The Physics of Superconducting Microwave Resonators

    NASA Astrophysics Data System (ADS)

    Gao, Jiansong

    Over the past decade, low temperature detectors have brought astronomers revolutionary new observational capabilities and led to many great discoveries. Although a single low temperature detector has very impressive sensitivity, a large detector array would be much more powerful and are highly demanded for the study of more difficult and fundamental problems in astronomy. However, current detector technologies, such as transition edge sensors and superconducting tunnel junction detectors, are difficult to integrate into a large array. The microwave kinetic inductance detector (MKID) is a promising new detector technology invented at Caltech and JPL which provides both high sensitivity and an easy solution to the detector integration. It senses the change in the surface impedance of a superconductor as incoming photons break Cooper pairs, by using high-Q superconducting microwave resonators capacitively coupled to a common feedline. This architecture allows thousands of detectors to be easily integrated through passive frequency domain multiplexing. In this thesis, we explore the rich and interesting physics behind these superconducting microwave resonators. The first part of the thesis discusses the surface impedance of a superconductor, the kinetic inductance of a superconducting coplanar waveguide, and the circuit response of a resonator. These topics are related with the responsivity of MKIDs. The second part presents the study of the excess frequency noise that is universally observed in these resonators. The properties of the excess noise, including power, temperature, material, and geometry dependence, have been quantified. The noise source has been identified to be the two-level systems in the dielectric material on the surface of the resonator. A semi-empirical noise model has been developed to explain the power and geometry dependence of the noise, which is useful to predict the noise for a specified resonator geometry. The detailed physical noise mechanism, however, is still not clear. With the theoretical results of the responsivity and the semi-empirical noise model established in this thesis, a prediction of the detector sensitivity (noise equivalent power) and an optimization of the detector design are now possible.

  1. Conceptual study of a heavy-ion-ERDA spectrometer for energies below 6 MeV

    NASA Astrophysics Data System (ADS)

    Julin, Jaakko; Sajavaara, Timo

    2017-09-01

    Elastic recoil detection analysis (ERDA) is a well established technique and it offers unique capabilities in thin film analysis. Simultaneous detection and depth profiling of all elements, including hydrogen, is possible only with time-of-flight ERDA. Bragg ionization chambers or ΔE - E detectors can also be used to identify the recoiling element if sufficiently high energies are used. The chief limitations of time-of-flight ERDA are the beam induced sample damage and the requirement of a relatively large accelerator. In this paper we propose a detector setup, which could be used with 3 MeV to 6 MeV medium heavy beams from either a single ended accelerator (40Ar) or from a tandem accelerator (39K). The detector setup consists of two timing detectors and a gas ionization chamber energy detector. Compared to use of very heavy low energy ions the hydrogen recoils with this beam have sufficient energy to be detected with current gas ionization chamber energy detector. To reduce the beam induced damage the proposed detector setup covers a solid angle larger than 1 msr, roughly an order of magnitude improvement over most time-of-flight ERDA setups. The setup could be used together with a small accelerator to be used for light element analysis of approximately 50 nm films. The concept is tested with 39K beam from a 1.7 MV Pelletron tandem accelerator with the Jyväskylä ToF-ERDA setup. In addition to the measurements effects related to low energies and increase in the solid angle are simulated with Monte Carlo methods.

  2. Measurement of the 235U Induced Fission Gamma-ray Spectrum as an Active Non-destructive Assay of Fresh Nucleear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarnoski, Sarah E.; Fast, James E.; Fulsom, Bryan G.

    2017-07-17

    Non-destructive assay is a powerful tool the International Atomic Energy Agency (IAEA) employs to verify adherence to safeguards agreements. Current IAEA veri- cation techniques for fresh nuclear fuel include passive gamma-ray spectroscopy to determine fuel enrichment. This technique suers from self-shielding and lakes the percision to detect diversion of central fuel rods. The aim of this research is to develop a new, more capable non-destructive analysis technique using active neutron interroga- tion of fuel assemblies and determining the yields of short-lived ssion products from high-resolution gamma-ray spectroscopy using high-purity germanium (HPGe). This paper reports results from irradiation of a onemore » meter tall mock fresh fuel assembly with low enriched uranium (LEU) or depleted uranium (DU) rods using a down-scattered deuterium-tritium (D-T) neutron source. Both prompt and delayed gamma-ray spec- tra were collected as time-stamped list-mode data in a coax detector and without list mode data in a planar strip detector. No dierentiating signatures were observed in the prompt spectra in either detector; however, both detectors observed several short-lived ssion product signatures in LEU and not DU fuel, indicating that this technique has potential for determination of enrichment of fresh fuel assemblies. There were eight unique ssion products observed in the LEU spectra with the coax detector spectra, and three ssion products were observed in the LEU spectra with the strip detector.« less

  3. Multiple-channel ultra-violet absorbance detector for two-dimensional chromatographic separations.

    PubMed

    Lynch, Kyle B; Yang, Yu; Ren, Jiangtao; Liu, Shaorong

    2018-05-01

    In recent years, much research has gone into developing online comprehensive two-dimensional liquid chromatographic systems allowing for high peak capacities in comparable separation times to that of one-dimensional liquid chromatographic systems. However, the speed requirements in the second dimension (2nd-D) still remain one challenge for complex biological samples due to the current configuration of two column/two detector systems. Utilization of multiple 2nd-D columns can mitigate this challenge. To adapt this approach, we need a multiple channel detector. Here we develop a versatile multichannel ultraviolet (UV) light absorbance detector that is capable of simultaneously monitoring separations in 12 columns. The detector consists of a deuterium lighthouse, a flow cell assembly (a 13-channel flow cell fitted with a 13-photodiode-detection system), and a data acquisition and monitoring terminal. Through the use of a custom high optical quality furcated fiber to improve light transmission, precise machining of a flow cell to reduce background stray light through precision alignment, and sensitive electronic circuitry to reduce electronic noise through an active low pass filter, the background noise level is measured in the tens of µAU. We obtain a linear dynamic range of close to three orders of magnitude. Compared to a commercialized multichannel UV light absorbance detector like the Waters 2488 UV/Vis, our device provides an increase in channel detection while residing within the same noise region and linear range. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Pipeline Processing for VISTA

    NASA Astrophysics Data System (ADS)

    Lewis, J. R.; Irwin, M.; Bunclark, P.

    2010-12-01

    The VISTA telescope is a 4 metre instrument which has recently been commissioned at Paranal, Chile. Equipped with an infrared camera, 16 2Kx2K Raytheon detectors and a 1.7 square degree field of view, VISTA represents a huge leap in infrared survey capability in the southern hemisphere. Pipeline processing of IR data is far more technically challenging than for optical data. IR detectors are inherently more unstable, while the sky emission is over 100 times brighter than most objects of interest, and varies in a complex spatial and temporal manner. To compensate for this, exposure times are kept short, leading to high nightly data rates. VISTA is expected to generate an average of 250 GB of data per night over the next 5-10 years, which far exceeds the current total data rate of all 8m-class telescopes. In this presentation we discuss the pipelines that have been developed to deal with IR imaging data from VISTA and discuss the primary issues involved in an end-to-end system capable of: robustly removing instrument and night sky signatures; monitoring data quality and system integrity; providing astrometric and photometric calibration; and generating photon noise-limited images and science-ready astronomical catalogues.

  5. Nuclear Security Applications of Antineutrino Detectors: Current Capabilities and Future Prospects

    DOE PAGES

    Bernstein, Adam; Baldwin, George; Boyer, Brian; ...

    2010-12-10

    Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline—Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, there are many applications of interest in nuclear nonproliferation. This work presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline with other ongoingmore » fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.« less

  6. Characterization of selected elementary motion detector cells to image primitives.

    PubMed

    Benson, Leslie A; Barrett, Steven F; Wright, Cameron H G

    2008-01-01

    Developing a visual sensing system, complete with motion processing hardware and software would have many applications to current technology. It could be mounted on many autonomous vehicles to provide information about the navigational environment, as well as obstacle avoidance features. Incorporating the motion processing capabilities into the sensor requires a new approach to the algorithm implementation. This research, and that of many others, have turned to nature for inspiration. Elementary motion detector (EMD) cells are involved in a biological preprocessing network to provide information to the motion processing lobes of the house degrees y Musca domestica. This paper describes the response of the photoreceptor inputs to the EMDs. The inputs to the EMD components are tested as they are stimulated with varying image primitives. This is the first of many steps in characterizing the EMD response to image primitives.

  7. Nuclear security applications of antineutrino detectors : current capabilities and future prospects.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, A.; Goodman, M.; Baldwin, G.

    2010-12-10

    Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline - Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, there are many applications of interest in nuclear nonproliferation. This paper presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline withmore » other ongoing fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, M. C., E-mail: mthompson@trialphaenergy.com; Gota, H.; Putvinski, S.

    The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions ofmore » the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.« less

  9. A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics.

    PubMed

    Mazin, Benjamin A; Bumble, Bruce; Meeker, Seth R; O'Brien, Kieran; McHugh, Sean; Langman, Eric

    2012-01-16

    Microwave Kinetic Inductance Detectors, or MKIDs, have proven to be a powerful cryogenic detector technology due to their sensitivity and the ease with which they can be multiplexed into large arrays. A MKID is an energy sensor based on a photon-variable superconducting inductance in a lithographed microresonator, and is capable of functioning as a photon detector across the electromagnetic spectrum as well as a particle detector. Here we describe the first successful effort to create a photon-counting, energy-resolving ultraviolet, optical, and near infrared MKID focal plane array. These new Optical Lumped Element (OLE) MKID arrays have significant advantages over semiconductor detectors like charge coupled devices (CCDs). They can count individual photons with essentially no false counts and determine the energy and arrival time of every photon with good quantum efficiency. Their physical pixel size and maximum count rate is well matched with large telescopes. These capabilities enable powerful new astrophysical instruments usable from the ground and space. MKIDs could eventually supplant semiconductor detectors for most astronomical instrumentation, and will be useful for other disciplines such as quantum optics and biological imaging.

  10. Automatic wound infection interpretation for postoperative wound image

    NASA Astrophysics Data System (ADS)

    Hsu, Jui-Tse; Ho, Te-Wei; Shih, Hsueh-Fu; Chang, Chun-Che; Lai, Feipei; Wu, Jin-Ming

    2017-02-01

    With the growing demand for more efficient wound care after surgery, there is a necessity to develop a machine learning based image analysis approach to reduce the burden for health care professionals. The aim of this study was to propose a novel approach to recognize wound infection on the postsurgical site. Firstly, we proposed an optimal clustering method based on unimodal-rosin threshold algorithm to extract the feature points from a potential wound area into clusters for regions of interest (ROI). Each ROI was regarded as a suture site of the wound area. The automatic infection interpretation based on the support vector machine is available to assist physicians doing decision-making in clinical practice. According to clinical physicians' judgment criteria and the international guidelines for wound infection interpretation, we defined infection detector modules as the following: (1) Swelling Detector, (2) Blood Region Detector, (3) Infected Detector, and (4) Tissue Necrosis Detector. To validate the capability of the proposed system, a retrospective study using the confirmation wound pictures that were used for diagnosis by surgical physicians as the gold standard was conducted to verify the classification models. Currently, through cross validation of 42 wound images, our classifiers achieved 95.23% accuracy, 93.33% sensitivity, 100% specificity, and 100% positive predictive value. We believe this ability could help medical practitioners in decision making in clinical practice.

  11. High Resolution Imaging with MUSTANG-2 on the GBT

    NASA Astrophysics Data System (ADS)

    Stanchfield, Sara; Ade, Peter; Aguirre, James; Brevik, Justus A.; Cho, Hsiao-Mei; Datta, Rahul; Devlin, Mark; Dicker, Simon R.; Dober, Bradley; Duff, Shannon M.; Egan, Dennis; Ford, Pam; Hilton, Gene; Hubmayr, Johannes; Irwin, Kent; Knowles, Kenda; Marganian, Paul; Mason, Brian Scott; Mates, John A. B.; McMahon, Jeff; Mello, Melinda; Mroczkowski, Tony; Romero, Charles; Sievers, Jonathon; Tucker, Carole; Vale, Leila R.; Vissers, Michael; White, Steven; Whitehead, Mark; Ullom, Joel; Young, Alexander

    2018-01-01

    We present early science results from MUSTANG-2, a 90 GHz feedhorn-coupled, microwave SQUID-multiplexed TES bolometer array operating on the Robert C. Byrd Green Bank Telescope (GBT). The feedhorn and waveguide-probe-coupled detector technology is a mature technology, which has been used on instruments such as the South Pole Telescope, the Atacama Cosmology Telescope, and the Atacama B-mode Search telescope. The microwave SQUID multiplexer-based readout system developed for MUSTANG-2 currently reads out 66 detectors with a single coaxial cable and will eventually allow thousands of detectors to be multiplexed. This microwave SQUID multiplexer combines the proven abilities of millimeter wave TES detectors with the multiplexing capabilities of KIDs with no degradation in noise performance of the detectors. Each multiplexing device is read out using warm electronics consisting of a commercially available ROACH board, a DAC/ADC card, and an Intermediate Frequency mixer circuit. The hardware was originally developed by the Collaboration for Astronomy Signal Processing and Electronic Research (CASPER) group, whose primary goal is to develop scalable FPGA-based hardware with the flexibility to be used in a wide range of radio signal processing applications. MUSTANG-2 is the first on-sky instrument to use microwave SQUID multiplexing and is available as a shared-risk/PI instrument on the GBT. In MUSTANG-2’s first season 7 separate proposals were awarded a total of 230 hours of telescope time.

  12. Towards a microchannel-based X-ray detector with two-dimensional spatial and time resolution and high dynamic range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Bernhard W.; Mane, Anil U.; Elam, Jeffrey W.

    X-ray detectors that combine two-dimensional spatial resolution with a high time resolution are needed in numerous applications of synchrotron radiation. Most detectors with this combination of capabilities are based on semiconductor technology and are therefore limited in size. Furthermore, the time resolution is often realised through rapid time-gating of the acquisition, followed by a slower readout. Here, a detector technology is realised based on relatively inexpensive microchannel plates that uses GHz waveform sampling for a millimeter-scale spatial resolution and better than 100 ps time resolution. The technology is capable of continuous streaming of time- and location-tagged events at rates greatermore » than 10 7events per cm 2. Time-gating can be used for improved dynamic range.« less

  13. The BATSE experiment on the Gamma Ray Observatory: Solar flare hard x ray and gamma-ray capabilities

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Parnell, T. A.; Paciesas, W. S.; Pendleton, G. N.; Hudson, H. S.; Matteson, J. L.; Peterson, L. E.; Cline, T. L.

    1989-01-01

    The Burst and Transient Source Experiment (BATSE) for the Gamma Ray Observatory (GRO) consists of eight detector modules that provide full-sky coverage for gamma-ray bursts and other transient phenomena such as solar flares. Each detector module has a thin, large-area scintillation detector (2025 sq cm) for high time-resolution studies, and a thicker spectroscopy detector (125 sq cm) to extend the energy range and provide better spectral resolution. The total energy range of the system is 15 keV to 100 MeV. These 16 detectors and the associated onboard data system should provide unprecedented capabilities for observing rapid spectral changes and gamma-ray lines from solar flares. The presence of a solar flare can be detected in real-time by BATSE; a trigger signal is sent to two other experiments on the GRO. The launch of the GRO is scheduled for June 1990, so that BATSE can be an important component of the Max '91 campaign.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G.J.

    Two goals for security scanning of cargo and freight are the ability to determine the type of material that is being imaged, and to do so at low radiation dose. One commonly used technique to determine the effective Z of the cargo is dual-energy imaging, i.e. imaging with different x-ray energy spectra. Another technique uses the fact that the transmitted x-ray spectrum itself also depends on the effective Z. Spectroscopy is difficult because the energy of individual x rays needs to be measured in a very high count-rate environment. Typical accelerators for security applications offer large but short bursts ofmore » x-rays, suitable for current-mode integrated imaging. In order to perform x-ray spectroscopy, a new accelerator design is desired that has the following features: 1) increased duty factor in order to spread out the arrival of x-rays at the detector array over time; 2) x-ray intensity modulation from one delivered pulse to the next by adjusting the accelerator electron beam instantaneous current so as to deliver adequate signal without saturating the spectroscopic detector; and 3) the capability to direct the (forward peaked) x-ray intensity towards high-attenuation areas in the cargo (“fan-beam-steering”). Current sources are capable of 0.1% duty factor, although usually they are operated at significantly lower duty factors (~0.04%), but duty factors in the range 0.4-1.0% are desired. The higher duty factor can be accomplished, e.g., by moving from 300 pulses per second (pps) to 1000 pps and/or increasing the pulse duration from a typical 4 μs to 10 μs. This paper describes initial R&D to examine cost effective modifications that could be performed on a typical accelerator for these purposes, as well as R&D for fan-beam steering.« less

  15. Development of an ultra-high temperature infrared scene projector at Santa Barbara Infrared Inc.

    NASA Astrophysics Data System (ADS)

    Franks, Greg; Laveigne, Joe; Danielson, Tom; McHugh, Steve; Lannon, John; Goodwin, Scott

    2015-05-01

    The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to develop correspondingly larger-format infrared emitter arrays to support the testing needs of systems incorporating these detectors. As with most integrated circuits, fabrication yields for the read-in integrated circuit (RIIC) that drives the emitter pixel array are expected to drop dramatically with increasing size, making monolithic RIICs larger than the current 1024x1024 format impractical and unaffordable. Additionally, many scene projector users require much higher simulated temperatures than current technology can generate to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024x1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During an earlier phase of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1000K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. Also in development under the same UHT program is a 'scalable' RIIC that will be used to drive the high temperature pixels. This RIIC will utilize through-silicon vias (TSVs) and quilt packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the inherent yield limitations of very-large-scale integrated circuits. Current status of the RIIC development effort will also be presented.

  16. A Wide Dynamic Range Tapped Linear Array Image Sensor

    NASA Astrophysics Data System (ADS)

    Washkurak, William D.; Chamberlain, Savvas G.; Prince, N. Daryl

    1988-08-01

    Detectors for acousto-optic signal processing applications require fast transient response as well as wide dynamic range. There are two major choices of detectors: conductive or integration mode. Conductive mode detectors have an initial transient period before they reach then' i equilibrium state. The duration of 1 his period is dependent on light level as well as detector capacitance. At low light levels a conductive mode detector is very slow; response time is typically on the order of milliseconds. Generally. to obtain fast transient response an integrating mode detector is preferred. With integrating mode detectors. the dynamic range is determined by the charge storage capability of the tran-sport shift registers and the noise level of the image sensor. The conventional net hod used to improve dynamic range is to increase the shift register charge storage capability. To achieve a dynamic range of fifty thousand assuming two hundred noise equivalent electrons, a charge storage capability of ten million electrons would be required. In order to accommodate this amount of charge. unrealistic shift registers widths would be required. Therefore, with an integrating mode detector it is difficult to achieve a dynamic range of over four orders of magnitude of input light intensity. Another alternative is to solve the problem at the photodetector aml not the shift, register. DALSA's wide dynamic range detector utilizes an optimized, ion implant doped, profiled MOSFET photodetector specifically designed for wide dynamic range. When this new detector operates at high speed and at low light levels the photons are collected and stored in an integrating fashion. However. at bright light levels where transient periods are short, the detector switches into a conductive mode. The light intensity is logarithmically compressed into small charge packets, easily carried by the CCD shift register. As a result of the logarithmic conversion, dynamic ranges of over six orders of magnitide are obtained. To achieve the short integration times necessary in acousto-optic applications. t he wide dynamic range detector has been implemented into a tapped array architecture with eight outputs and 256 photoelements. Operation of each 01)1,1)111 at 16 MHz yields detector integration times of 2 micro-seconds. Buried channel two phase CCD shift register technology is utilized to minimize image sensor noise improve video output rates and increase ease of operation.

  17. The E and B EXperiment: EBEX

    NASA Astrophysics Data System (ADS)

    Helson, Kyle R.

    2015-08-01

    We report on the status of the E and B Experiment (EBEX) a balloon-borne polarimeter designed to measure the polarization of the cosmic microwave background radiation. The instrument employs a 1.5 meter Gregorian Mizuguchi-Dragone telescope providing 8 arc-minute resolution at three bands centered on 150, 250, and 410 GHz. A continuously rotating achromatic half wave plate, mounted on a superconducting magnetic bearing, and a polarizing grid give EBEX polarimetric capabilities. Radiation is detected with a kilo-pixel array of transition edge sensor (TES) bolometers that are cooled to 0.25 K. The detectors are readout using SQUID current amplifiers and a digital frequency-domain multiplexing system in which 16 detectors are readout simultaneously with two wires. EBEX is the first instrument to implement TESs and such readout system on board a balloon-borne platform. EBEX was launched from the Antarctic in December 2012 on an 11-day long-duration balloon flight. This presentation will provide an overview of the instrument and discuss the flight and status of the data analysis. We also discuss the next generation of EBEX called EBEX10k, currently in development.

  18. A new gamma ray imaging diagnostic for runaway electron studies at DIII-D

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Pace, D. C.; Eidietis, N. W.; Paz-Soldan, C.; Commaux, N.; Shiraki, D.; Hollmann, E. M.; Moyer, R. A.; Risov, V.

    2015-11-01

    A new Gamma Ray Imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at DIII-D. The diagnostic is sensitive to 0.5 - 50 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE dissipation from pellet injection. The GRI consists of a lead ``pinhole camera'' mounted on the midplane with 11x11 counter-current tangential chords 20 cm wide that span the vessel. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE Bremsstrahlung radiation. Detectors operate in current saturation mode at 10 MHz, or the flux is attenuated for Pulse Height Analysis (PHA) capable of discriminating up to ~10k pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. Work supported by the US DOE under DE-AC05-00OR22725, DE-FG02-07ER54917 & DE-FC02-04ER54698.

  19. Development of CMOS pixel sensors for the upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Molnar, L.

    2014-12-01

    The ALICE Collaboration is preparing a major upgrade of the current detector, planned for installation during the second long LHC shutdown in the years 2018-19, in order to enhance its low-momentum vertexing and tracking capability, and exploit the planned increase of the LHC luminosity with Pb beams. One of the cornerstones of the ALICE upgrade strategy is to replace the current Inner Tracking System in its entirety with a new, high resolution, low-material ITS detector. The new ITS will consist of seven concentric layers equipped with Monolithic Active Pixel Sensors (MAPS) implemented using the 0.18 μm CMOS technology of TowerJazz. In this contribution, the main key features of the ITS upgrade will be illustrated with emphasis on the functionality of the pixel chip. The ongoing developments on the readout architectures, which have been implemented in several fabricated prototypes, will be discussed. The operational features of these prototypes as well as the results of the characterisation tests before and after irradiation will also be presented.

  20. Status of the DRIFT-II Directional Dark Matter Detector

    NASA Astrophysics Data System (ADS)

    Ghag, Chamkaur

    2006-10-01

    DRIFT is a directional dark matter detection programme that utilises the fact that as the Earth rotates and revolves around the Sun, an annual and diurnal signal modulation could be detected as a result of relative motion between the Earth and the non-rotating WIMP halo. This would provide very strong evidience of WIMPs since such a signal could not be mimicked by background sources. DRIFT II is an array of gas filled time projection chambers (TPCs) with Multi Wire Proportional Counter (MWPC) readout. Signals from different types of events differ greatly, between nuclear and electron recoils for example, due to the amount of ionisation initially produced and recombination times. This provides phenomenal discrimination capabilities. The first module of the DRIFT-II detector was successfully installed underground at Boulby Mine, N. Yorkshire early last year and has proven very stable, collecting high quality calibration and WIMP data. Since then a second module has been installed and is also currently operational. This presentation will describe the status of the detector and will focus on the determination of neutron efficiency and gamma rejection factors.

  1. Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors.

    PubMed

    Lombi, E; de Jonge, M D; Donner, E; Ryan, C G; Paterson, D

    2011-06-01

    Environmental samples are extremely diverse but share a tendency for heterogeneity and complexity. This heterogeneity poses methodological challenges when investigating biogeochemical processes. In recent years, the development of analytical tools capable of probing element distribution and speciation at the microscale have allowed this challenge to be addressed. Of these available tools, laterally resolved synchrotron techniques such as X-ray fluorescence mapping are key methods for the in situ investigation of micronutrients and inorganic contaminants in environmental samples. This article demonstrates how recent advances in X-ray fluorescence detector technology are bringing new possibilities to environmental research. Fast detectors are helping to circumvent major issues such as X-ray beam damage of hydrated samples, as dwell times during scanning are reduced. They are also helping to reduce temporal beamtime requirements, making particularly time-consuming techniques such as micro X-ray fluorescence (μXRF) tomography increasingly feasible. This article focuses on μXRF mapping of nutrients and metalloids in environmental samples, and suggests that the current divide between mapping and speciation techniques will be increasingly blurred by the development of combined approaches.

  2. Low-background Gamma Spectroscopy at Sanford Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Chiller, Christopher; Alanson, Angela; Mei, Dongming

    2014-03-01

    Rare-event physics experiments require the use of material with unprecedented radio-purity. Low background counting assay capabilities and detectors are critical for determining the sensitivity of the planned ultra-low background experiments. A low-background counting, LBC, facility has been built at the 4850-Level Davis Campus of the Sanford Underground Research Facility to perform screening of material and detector parts. Like many rare event physics experiments, our LBC uses lead shielding to mitigate background radiation. Corrosion of lead brick shielding in subterranean installations creates radon plate-out potential as well as human risks of ingestible or respirable lead compounds. Our LBC facilities employ an exposed lead shield requiring clean smooth surfaces. A cleaning process of low-activity silica sand blasting and borated paraffin hot coating preservation was employed to guard against corrosion due to chemical and biological exposures. The resulting lead shield maintains low background contribution integrity while fully encapsulating the lead surface. We report the performance of the current LBC and a plan to develop a large germanium well detector for PMT screening. Support provided by Sd governors research center-CUBED, NSF PHY-0758120 and Sanford Lab.

  3. Progress in the development of a S-RETGEM-based detector for an early forest fire warning system

    NASA Astrophysics Data System (ADS)

    Charpak, G.; Benaben, P.; Breuil, P.; Martinengo, P.; Nappi, E.; Peskov, V.

    2009-12-01

    We present a prototype of a Strip Resistive Thick GEM (S-RETGEM) photosensitive gaseous detector filled with Ne and ethylferrocene (EF) vapours at a total pressure of 1 atm for an early forest fire detection system. Measurements show that it is one hundred times more sensitive than the best commercial ultraviolet (UV) flame detectors; and therefore, it is able to reliably detect a flame of ~ 1.5 × 1.5 × 1.5 m3 at a distance of about 1 km. An additional and unique feature of this detector is its imaging capability, which in combination with other techniques, may significantly reduce false fire alarms rate when operating in an automatic mode. Preliminary results conducted with air-filled photosensitive gaseous detectors are also presented. The main advantages of this approach include both the simplicity of manufacturing and affordability of construction materials such as plastics and glues specifically reducing detector production cost. The sensitivity of these air-filled detectors at certain conditions may be as high as those filled with Ne and EF. Long-term tests of such sealed detectors indicate a significant progress in this direction. We believe that our detectors utilized in addition to other flame and smoke sensors will exceptionally increase the capability to detect forest fire at a very early stage of development. Our future efforts will be focused on attempts to commercialize such detectors utilizing our aforementioned findings.

  4. Characterization of Geiger mode avalanche photodiodes for fluorescence decay measurements

    NASA Astrophysics Data System (ADS)

    Jackson, John C.; Phelan, Don; Morrison, Alan P.; Redfern, R. Michael; Mathewson, Alan

    2002-05-01

    Geiger mode avalanche photodiodes (APD) can be biased above the breakdown voltage to allow detection of single photons. Because of the increase in quantum efficiency, magnetic field immunity, robustness, longer operating lifetime and reduction in costs, solid-state detectors capable of operating at non-cryogenic temperatures and providing single photon detection capabilities provide attractive alternatives to the photomultiplier tube (PMT). Shallow junction Geiger mode APD detectors provide the ability to manufacture photon detectors and detector arrays with CMOS compatible processing steps and allows the use of novel Silicon-on-Insulator(SoI) technology to provide future integrated sensing solutions. Previous work on Geiger mode APD detectors has focused on increasing the active area of the detector to make it more PMT like, easing the integration of discrete reaction, detection and signal processing into laboratory experimental systems. This discrete model for single photon detection works well for laboratory sized test and measurement equipment, however the move towards microfluidics and systems on a chip requires integrated sensing solutions. As we move towards providing integrated functionality of increasingly nanoscopic sized emissions, small area detectors and detector arrays that can be easily integrated into marketable systems, with sensitive small area single photon counting detectors will be needed. This paper will demonstrate the 2-dimensional and 3-dimensional simulation of optical coupling that occurs in Geiger mode APDs. Fabricated Geiger mode APD detectors optimized for fluorescence decay measurements were characterized and preliminary results show excellent results for their integration into fluorescence decay measurement systems.

  5. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT.

    PubMed

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-05-21

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  6. The Vehicle Detector Clearinghouse (VDC) : a summary report

    DOT National Transportation Integrated Search

    2002-01-01

    The mission of the VDC is to provide information to transportation agencies on the capabilities of commercially available vehicle detectors by gathering, organizing, and sharing information concerning tests and test procedures in a timely, efficient,...

  7. Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths.

    PubMed

    Natarajan, Chandra M; Zhang, Lijian; Coldenstrodt-Ronge, Hendrik; Donati, Gaia; Dorenbos, Sander N; Zwiller, Val; Walmsley, Ian A; Hadfield, Robert H

    2013-01-14

    Superconducting nanowire single-photon detectors (SNSPDs) are widely used in telecom wavelength optical quantum information science applications. Quantum detector tomography allows the positive-operator-valued measure (POVM) of a single-photon detector to be determined. We use an all-fiber telecom wavelength detector tomography test bed to measure detector characteristics with respect to photon flux and polarization, and hence determine the POVM. We study the SNSPD both as a binary detector and in an 8-bin, fiber based, Time-Multiplexed (TM) configuration at repetition rates up to 4 MHz. The corresponding POVMs provide an accurate picture of the photon number resolving capability of the TM-SNSPD.

  8. Muon trackers for imaging a nuclear reactor

    NASA Astrophysics Data System (ADS)

    Kume, N.; Miyadera, H.; Morris, C. L.; Bacon, J.; Borozdin, K. N.; Durham, J. M.; Fuzita, K.; Guardincerri, E.; Izumi, M.; Nakayama, K.; Saltus, M.; Sugita, T.; Takakura, K.; Yoshioka, K.

    2016-09-01

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. The system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m2 area. Each muon tracker consists of 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when the core is imaged from outside the reactor building.

  9. Performance of a Commercial Silicon Drift Detector for X-ray Microanalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenik, Edward A

    2008-01-01

    Silicon drift detectors (SDDs) are rapidly becoming the energy dispersive spectrometer of choice especially for scanning electron microscopy applications. The complementary features of large active areas (i.e., collection angle) and high count rate capability of these detector contribute to their popularity, as well as the absence of liquid nitrogen cooling of the detector. The performance of an EDAX Apollo 40 SDD on a JEOL 6500F SEM will be discussed.

  10. Methods for increasing the sensitivity of gamma-ray imagers

    DOEpatents

    Mihailescu, Lucian [Pleasanton, CA; Vetter, Kai M [Alameda, CA; Chivers, Daniel H [Fremont, CA

    2012-02-07

    Methods are presented that increase the position resolution and granularity of double sided segmented semiconductor detectors. These methods increase the imaging resolution capability of such detectors, either used as Compton cameras, or as position sensitive radiation detectors in imagers such as SPECT, PET, coded apertures, multi-pinhole imagers, or other spatial or temporal modulated imagers.

  11. Systems for increasing the sensitivity of gamma-ray imagers

    DOEpatents

    Mihailescu, Lucian; Vetter, Kai M.; Chivers, Daniel H.

    2012-12-11

    Systems that increase the position resolution and granularity of double sided segmented semiconductor detectors are provided. These systems increase the imaging resolution capability of such detectors, either used as Compton cameras, or as position sensitive radiation detectors in imagers such as SPECT, PET, coded apertures, multi-pinhole imagers, or other spatial or temporal modulated imagers.

  12. Microscope mode secondary ion mass spectrometry imaging with a Timepix detector.

    PubMed

    Kiss, Andras; Jungmann, Julia H; Smith, Donald F; Heeren, Ron M A

    2013-01-01

    In-vacuum active pixel detectors enable high sensitivity, highly parallel time- and space-resolved detection of ions from complex surfaces. For the first time, a Timepix detector assembly was combined with a secondary ion mass spectrometer for microscope mode secondary ion mass spectrometry (SIMS) imaging. Time resolved images from various benchmark samples demonstrate the imaging capabilities of the detector system. The main advantages of the active pixel detector are the higher signal-to-noise ratio and parallel acquisition of arrival time and position. Microscope mode SIMS imaging of biomolecules is demonstrated from tissue sections with the Timepix detector.

  13. Experimental flat-panel high-spatial-resolution volume CT of the temporal bone.

    PubMed

    Gupta, Rajiv; Bartling, Soenke H; Basu, Samit K; Ross, William R; Becker, Hartmut; Pfoh, Armin; Brady, Thomas; Curtin, Hugh D

    2004-09-01

    A CT scanner employing a digital flat-panel detector is capable of very high spatial resolution as compared with a multi-section CT (MSCT) scanner. Our purpose was to determine how well a prototypical volume CT (VCT) scanner with a flat-panel detector system defines fine structures in temporal bone. Four partially manipulated temporal-bone specimens were imaged by use of a prototypical cone-beam VCT scanner with a flat-panel detector system at an isometric resolution of 150 microm at the isocenter. These specimens were also depicted by state-of-the-art multisection CT (MSCT). Forty-two structures imaged by both scanners were qualitatively assessed and rated, and scores assigned to VCT findings were compared with those of MSCT. Qualitative assessment of anatomic structures, lesions, cochlear implants, and middle-ear hearing aids indicated that image quality was significantly better with VCT (P < .001). Structures near the spatial-resolution limit of MSCT (e.g., bony covering of the tympanic segment of the facial canal, the incudo-stapedial joint, the proximal vestibular aqueduct, the interscalar septum, and the modiolus) had higher contrast and less partial-volume effect with VCT. The flat-panel prototype provides better definition of fine osseous structures of temporal bone than that of currently available MSCT scanners. This study provides impetus for further research in increasing spatial resolution beyond that offered by the current state-of-the-art scanners.

  14. Rapid portal imaging with a high-efficiency, large field-of-view detector.

    PubMed

    Mosleh-Shirazi, M A; Evans, P M; Swindell, W; Symonds-Tayler, J R; Webb, S; Partridge, M

    1998-12-01

    The design, construction, and performance evaluation of an electronic portal imaging device (EPID) are described. The EPID has the same imaging geometry as the current mirror-based systems except for the x-ray detection stage, where a two-dimensional (2D) array of 1 cm thick CsI(Tl) detector elements are utilized. The approximately 18% x-ray quantum efficiency of the scintillation detector and its 30 x 40 cm2 field-of-view at the isocenter are greater than other area-imaging EPIDs. The imaging issues addressed are theoretical and measured signal-to-noise ratio, linearity of the imaging chain, influence of frame-summing on image quality and image calibration. Portal images of test objects and a humanoid phantom are used to measure the performance of the system. An image quality similar to the current devices is achieved but with a lower dose. With approximately 1 cGy dose delivered by a 6 MV beam, a 2 mm diam structure of 1.3% contrast and an 18 mm diam object of 0.125% contrast can be resolved without using image-enhancement methods. A spatial resolution of about 2 mm at the isocenter is demonstrated. The capability of the system to perform fast sequential imaging, synchronized with the radiation pulses, makes it suitable for patient motion studies and verification of intensity-modulated beams as well as its application in cone-beam megavoltage computed tomography.

  15. The CosmicWatch Desktop Muon Detector: a self-contained, pocket sized particle detector

    NASA Astrophysics Data System (ADS)

    Axani, S. N.; Frankiewicz, K.; Conrad, J. M.

    2018-03-01

    The CosmicWatch Desktop Muon Detector is a self-contained, hand-held cosmic ray muon detector that is valuable for astro/particle physics research applications and outreach. The material cost of each detector is under 100 and it takes a novice student approximately four hours to build their first detector. The detectors are powered via a USB connection and the data can either be recorded directly to a computer or to a microSD card. Arduino- and Python-based software is provided to operate the detector and an online application to plot the data in real-time. In this paper, we describe the various design features, evaluate the performance, and illustrate the detectors capabilities by providing several example measurements.

  16. Neutron radiation damage and recovery studies of SiPMs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, T.; Rao, T.; Stoll, S.

    We characterized the performance of Silicon Photomultipliers (SiPMs) before and after exposure of up to 10 12 neutron/cm 2 dosage. We show that the typical orders of magnitude increase of dark current upon neutron irradiation can be suppressed by operating it at a lower temperature and single-photoelectron detection capability can be restored. The required operating temperature depends on the dosage received. Furthermore, after high temperature thermal annealing, there is compelling evidence that the extrinsic dark current is lowered by orders of magnitude and single-photon detection performance are to some extent recovered at room temperature. Our experimental findings might have widespreadmore » implications for extending the functionality and the useful lifetime of current and future large scale SiPM detectors deployed in ionization radiation environment.« less

  17. Application of pixel-cell detector technology for Advanced Neutron Beam Monitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, Daniel M.

    2011-01-11

    Application of Pixel-Cell Detector Technology for Advanced Neutron Beam Monitors Specifications of currently available neutron beam detectors limit their usefulness at intense neutron beams of large-scale national user facilities used for the advanced study of materials. A large number of neutron-scattering experiments require beam monitors to operate in an intense neutron beam flux of >10E+7 neutrons per second per square centimeter. For instance, a 4 cm x 4 cm intense beam flux of 6.25 x 10E+7 n/s/cm2 at the Spallation Neutron Source will put a flux of 1.00 x 10E+9 n/s at the beam monitor. Currently available beam monitors withmore » a typical efficiency of 1 x 10E-4 will need to be replaced in less than two years of operation due to wire and gas degradation issues. There is also a need at some instruments for beam position information that are beyond the capabilities of currently available He-3 and BF3 neutron beam monitors. ORDELA, Inc.’s research under USDOE SBIR Grant (DE-FG02-07ER84844) studied the feasibility of using pixel-cell technology for developing a new generation of stable, long-life neutron beam monitors. The research effort has led to the development and commercialization of advanced neutron beam detectors that will directly benefit the Spallation Neutron Source and other intense neutron sources such as the High Flux Isotope Reactor. A prototypical Pixel-Cell Neutron Beam Monitor was designed and constructed during this research effort. This prototype beam monitor was exposed to an intense neutron beam at the HFIR SNS HB-2 test beam site. Initial measurements on efficiency, uniformity across the detector, and position resolution yielded excellent results. The development and test results have provided the required data to initiate the fabrication and commercialization of this next generation of neutron-detector systems. ORDELA, Inc. has (1) identified low-cost design and fabrication strategies, (2) developed and built pixel-cell detectors and instrumented a 64-pixel-cell detector to specifications for the Cold-Neutron Chopper Spectrometer and POWGEN instruments, (3) investigated the general characteristics of this technology, (4) studied pixel-cell configurations and arrived at an optimized modular design, and (5) evaluated fabrication costs of mass production for these configurations. The resulting technology will enable a complete line of pixel-cell-based neutron detectors to be commercially under available. ORDELA, Inc has a good track history of application of innovative technology into the marketplace. Our commercialization record reflects this. For additional information, please contact Daniel Kopp at ORDELA, Inc. at +1 (865) 483-8675 or check our website at www.ordela.com.« less

  18. VIPRAM_L1CMS: a 2-Tier 3D Architecture for Pattern Recognition for Track Finding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoff, J. R.; Joshi, Joshi,S.; Liu, Liu,

    In HEP tracking trigger applications, flagging an individual detector hit is not important. Rather, the path of a charged particle through many detector layers is what must be found. Moreover, given the increased luminosity projected for future LHC experiments, this type of track finding will be required within the Level 1 Trigger system. This means that future LHC experiments require not just a chip capable of high-speed track finding but also one with a high-speed readout architecture. VIPRAM_L1CMS is 2-Tier Vertically Integrated chip designed to fulfill these requirements. It is a complete pipelined Pattern Recognition Associative Memory (PRAM) architecture includingmore » pattern recognition, result sparsification, and readout for Level 1 trigger applications in CMS with 15-bit wide detector addresses and eight detector layers included in the track finding. Pattern recognition is based on classic Content Addressable Memories with a Current Race Scheme to reduce timing complexity and a 4-bit Selective Precharge to minimize power consumption. VIPRAM_L1CMS uses a pipelined set of priority-encoded binary readout structures to sparsify and readout active road flags at frequencies of at least 100MHz. VIPRAM_L1CMS is designed to work directly with the Pulsar2b Architecture.« less

  19. Detector development for Jefferson Lab's 12GeV Upgrade

    DOE PAGES

    Qiang, Yi

    2015-05-01

    Jefferson Lab will soon finish its highly anticipated 12 GeV Upgrade. With doubled maximum energy, Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF) will enable a new experimental program with substantial discovery potential, addressing important topics in nuclear, hadronic and electroweak physics. In order to take full advantage of the high energy, high luminosity beam, new detectors are being developed, designed and constructed to fit the needs of different physics topics. The paper will give an overview of various new detector technologies to be used for 12 GeV experiments. It will then focus on the development of two solenoid-based spectrometers,more » the GlueX and SoLID spectrometers. The GlueX experiment in Hall D will study the complex properties of gluons through exotic hybrid meson spectroscopy. The GlueX spectrometer, a hermetic detector package designed for spectroscopy and the associated partial wave analysis, is currently in the final stage of construction. Hall A, on the other hand, is developing the SoLID spectrometer to capture the 3D image of the nucleon from semi-inclusive processes and to study the intrinsic properties of quarks through mirror symmetry breaking. Such a spectrometer will have the capability to handle very high event rates while still maintaining a large acceptance in the forward region.« less

  20. On the use of positron counting for radio-Assay in nuclear pharmaceutical production.

    PubMed

    Maneuski, D; Giacomelli, F; Lemaire, C; Pimlott, S; Plenevaux, A; Owens, J; O'Shea, V; Luxen, A

    2017-07-01

    Current techniques for the measurement of radioactivity at various points during PET radiopharmaceutical production and R&D are based on the detection of the annihilation gamma rays from the radionuclide in the labelled compound. The detection systems to measure these gamma rays are usually variations of NaI or CsF scintillation based systems requiring costly and heavy lead shielding to reduce background noise. These detectors inherently suffer from low detection efficiency, high background noise and very poor linearity. They are also unable to provide any reasonably useful position information. A novel positron counting technique is proposed for the radioactivity assay during radiopharmaceutical manufacturing that overcomes these limitations. Detection of positrons instead of gammas offers an unprecedented level of position resolution of the radiation source (down to sub-mm) thanks to the nature of the positron interaction with matter. Counting capability instead of charge integration in the detector brings the sensitivity down to the statistical limits at the same time as offering very high dynamic range and linearity from zero to any arbitrarily high activity. This paper reports on a quantitative comparison between conventional detector systems and the proposed positron counting detector. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Electron-bombarded CCD detectors for ultraviolet atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Opal, C. B.

    1983-01-01

    Electronic image sensors based on charge coupled devices operated in electron-bombarded mode, yielding real-time, remote-readout, photon-limited UV imaging capability are being developed. The sensors also incorporate fast-focal-ratio Schmidt optics and opaque photocathodes, giving nearly the ultimate possible diffuse-source sensitivity. They can be used for direct imagery of atmospheric emission phenomena, and for imaging spectrography with moderate spatial and spectral resolution. The current state of instrument development, laboratory results, planned future developments and proposed applications of the sensors in space flight instrumentation is described.

  2. Summary of long-baseline systematics session at CETUP*2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherdack, Daniel; Worcester, Elizabeth

    2015-10-15

    A session studying systematics in long-baseline neutrino oscillation physics was held July 14-18, 2014 as part of CETUP* 2014. Systematic effects from flux normalization and modeling, modeling of cross sections and nuclear interactions, and far detector effects were addressed. Experts presented the capabilities of existing and planned tools. A program of study to determine estimates of and requirements for the size of these effects was designed. This document summarizes the results of the CETUP* systematics workshop and the current status of systematic uncertainty studies in long-baseline neutrino oscillation measurements.

  3. Hypernuclear physics studies of the PANDA experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Sanchez Lorente, Alicia

    2014-09-01

    Hypernuclear research will be one of the main topics addressed by the PANDA experiment at the planned Facility for Antiproton and Ion Research FAIR at Darmstadt (Germany). http://www. gsi.de, http://www.gsi.de/fair/. Thanks to the use of stored overline {p} beams, copious production of double Λ hypernuclei is expected at the PANDA experiment, which will enable high precision γ spectroscopy of such nuclei for the first time, and consequently a unique chance to explore the hyperon-hyperon interaction. In particular, ambiguities of past experiments in determining the strength of the ΛΛ interaction will be avoided thanks to the excellent energy precision of a few keV (FWHM) achieved by germanium detectors. Such a resolution capability is particularly needed to resolve the small energy spacing of the order of (10-100) keV, which is characteristic from the spin doublet in hypernuclei the so -called "hypernuclear fine structure". In comparison to previous experiments, PANDA will benefit from a novel technique to assign the various observable γ-transitions in a unique way to specific double hypernuclei by exploring various light targets. Nevertheless, the ability to carry out unique assignments requires a devoted hypernuclear detector setup. This consists of a primary nuclear target for the production of {Ξ }-+overline {Ξ } pairs, a secondary active target for the hypernuclei formation and the identification of associated decay products and a germanium array detector to perform γ spectroscopy. Moreover, one of the most challenging issues of this project is the fact that all detector systems need to operate in the presence of a high magnetic field and a large hadronic background. Accordingly, the need of an innovative detector concept will require dramatic improvements to fulfil these conditions and that will likely lead to a new generation of detectors. In the present talk details concerning the current status of the activities related to the detector developments for this challenging programme will be given. Among these improvements is the new concept for a cooling system for the germanium detector based on a electro-mechanical device. In the present work, the cooling efficiency of such devices has been successfully tested, showing their capability to reach liquid nitrogen temperatures and therefore the possibility to use them as a good alternative to the standard liquid nitrogen dewars. Furthermore, since the momentum resolution of low momentum particles is crucial for the unique identification of hypernuclei, an analysis procedure for improving the momentum resolution in few layer silicon based trackers is presented.

  4. Hypernuclear physics studies of the P̅ANDA experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Sanchez Lorente, Alicia

    2015-05-01

    Hypernuclear research will be one of the main topics addressed by the PANDA experiment at the planned Facility for Antiproton and Ion Research FAIR at Darmstadt (Germany). [1, 2] Thanks to the use of stored p̅ beams, copious production of double Λ hypernuclei is expected at the PANDA experiment, which will enable high precision γ spectroscopy of such nuclei for the first time, and consequently a unique chance to explore the hyperon-hyperon interaction. In particular, ambiguities of past experiments in determining the strength of the ΛΛ interaction will be avoided thanks to the excellent energy precision of a few keV (FWHM) achieved by germanium detectors. Such a resolution capability is particularly needed to resolve the small energy spacing of the order of (10-100) keV, which is characteristic from the spin doublet in hypernuclei the so -called "hypernuclear fine structure". In comparison to previous experiments, PANDA will benefit from a novel technique to assign the various observable γ-transitions in a unique way to specific double hypernuclei by exploring various light targets. Nevertheless, the ability to carry out unique assignments requires a devoted hypernuclear detector setup. This consists of a primary nuclear target for the production of Ξ- + overline Xi pairs, a secondary active target for the hypernuclei formation and the identification of associated decay products and a germanium array detector to perform γ spectroscopy. Moreover, one of the most challenging issues of this project is the fact that all detector systems need to operate in the presence of a high magnetic field and a large hadronic background. Accordingly, the need of an innovative detector concept will require dramatic improvements to fulfil these conditions and that will likely lead to a new generation of detectors. In the present work details concerning the current status of the activities related to the detector developments for this challenging programme will be given. Among these improvements is the new concept for a cooling system for the germanium detector based on a electro-mechanical device. In the present work, the cooling efficiency of such devices has been successfully tested, showing their capability to reach liquid nitrogen temperatures and therefore the possibility to use them as a good alternative to the standard liquid nitrogen dewars. Furthermore, since the momentum resolution of low momentum particles is crucial for the unique identification of hypernuclei, an analysis procedure for improving the momentum resolution in few layer silicon based trackers is presented.

  5. The Cryogenic AntiCoincidence detector for ATHENA X-IFU: a scientific assessment of the observational capabilities in the hard X-ray band

    NASA Astrophysics Data System (ADS)

    D'Andrea, M.; Lotti, S.; Macculi, C.; Piro, L.; Argan, A.; Gatti, F.

    2017-12-01

    ATHENA is a large X-ray observatory, planned to be launched by ESA in 2028 towards an L2 orbit. One of the two instruments of the payload is the X-IFU: a cryogenic spectrometer based on a large array of TES microcalorimeters, able to perform integral field spectrography in the 0.2-12 keV band (2.5 eV FWHM at 6 keV). The X-IFU sensitivity is highly degraded by the particle background expected in the L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the particle background level and enable the mission science goals, the instrument incorporates a Cryogenic AntiCoincidence detector (CryoAC). It is a 4 pixel TES based detector, placed < 1 mm below the main array. In this paper we report a scientific assessment of the CryoAC observational capabilities in the hard X-ray band (E > 10 keV). The aim of the study has been to understand if the present detector design can be improved in order to enlarge the X-IFU scientific capability on an energy band wider than the TES array. This is beyond the CryoAC baseline, being this instrument aimed to operate as anticoincidence particle detector and not conceived to perform X-ray observations.

  6. Characterizing scintillator detector response for correlated fission experiments with MCNP and associated packages

    DOE PAGES

    Andrews, M. T.; Rising, M. E.; Meierbachtol, K.; ...

    2018-06-15

    Wmore » hen multiple neutrons are emitted in a fission event they are correlated in both energy and their relative angle, which may impact the design of safeguards equipment and other instrumentation for non-proliferation applications. The most recent release of MCNP 6 . 2 contains the capability to simulate correlated fission neutrons using the event generators CGMF and FREYA . These radiation transport simulations will be post-processed by the detector response code, DRiFT , and compared directly to correlated fission measurements. DRiFT has been previously compared to single detector measurements, its capabilities have been recently expanded with correlated fission simulations in mind. Finally, this paper details updates to DRiFT specific to correlated fission measurements, including tracking source particle energy of all detector events (and non-events), expanded output formats, and digitizer waveform generation.« less

  7. Characterizing scintillator detector response for correlated fission experiments with MCNP and associated packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, M. T.; Rising, M. E.; Meierbachtol, K.

    Wmore » hen multiple neutrons are emitted in a fission event they are correlated in both energy and their relative angle, which may impact the design of safeguards equipment and other instrumentation for non-proliferation applications. The most recent release of MCNP 6 . 2 contains the capability to simulate correlated fission neutrons using the event generators CGMF and FREYA . These radiation transport simulations will be post-processed by the detector response code, DRiFT , and compared directly to correlated fission measurements. DRiFT has been previously compared to single detector measurements, its capabilities have been recently expanded with correlated fission simulations in mind. Finally, this paper details updates to DRiFT specific to correlated fission measurements, including tracking source particle energy of all detector events (and non-events), expanded output formats, and digitizer waveform generation.« less

  8. Fast and broadband detector for laser radiation

    NASA Astrophysics Data System (ADS)

    Scorticati, Davide; Crapella, Giacomo; Pellegrino, Sergio

    2018-02-01

    We developed a fast detector (patent pending) based on the Laser Induced Transverse Voltage (LITV) effect. The advantage of detectors using the LITV effect over pyroelectric sensors and photodiodes for laser radiation measurements is the combination of an overall fast response time, broadband spectral acceptance, high saturation threshold to direct laser irradiation and the possibility to measure pulsed as well as cw-laser sources. The detector is capable of measuring the energy of single laser pulses with repetition frequencies up to the MHz range, adding the possibility to also measure the output power of cw-lasers. Moreover, the thermal nature of the sensor enables the capability to work in a broadband spectrum, from UV to THz as well as the possibility of operating in a broad-range (10-3-102 W/cm2 ) of incident average optical power densities of the laser radiation, without the need of adopting optical filters nor other precautions.

  9. MO-G-17A-01: Innovative High-Performance PET Imaging System for Preclinical Imaging and Translational Researches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, X; Lou, K; Rice University, Houston, TX

    Purpose: To develop a practical and compact preclinical PET with innovative technologies for substantially improved imaging performance required for the advanced imaging applications. Methods: Several key components of detector, readout electronics and data acquisition have been developed and evaluated for achieving leapfrogged imaging performance over a prototype animal PET we had developed. The new detector module consists of an 8×8 array of 1.5×1.5×30 mm{sup 3} LYSO scintillators with each end coupled to a latest 4×4 array of 3×3 mm{sup 2} Silicon Photomultipliers (with ∼0.2 mm insensitive gap between pixels) through a 2.0 mm thick transparent light spreader. Scintillator surface andmore » reflector/coupling were designed and fabricated to reserve air-gap to achieve higher depth-of-interaction (DOI) resolution and other detector performance. Front-end readout electronics with upgraded 16-ch ASIC was newly developed and tested, so as the compact and high density FPGA based data acquisition and transfer system targeting 10M/s coincidence counting rate with low power consumption. The new detector module performance of energy, timing and DOI resolutions with the data acquisition system were evaluated. Initial Na-22 point source image was acquired with 2 rotating detectors to assess the system imaging capability. Results: No insensitive gaps at the detector edge and thus it is capable for tiling to a large-scale detector panel. All 64 crystals inside the detector were clearly separated from a flood-source image. Measured energy, timing, and DOI resolutions are around 17%, 2.7 ns and 1.96 mm (mean value). Point source image is acquired successfully without detector/electronics calibration and data correction. Conclusion: Newly developed advanced detector and readout electronics will be enable achieving targeted scalable and compact PET system in stationary configuration with >15% sensitivity, ∼1.3 mm uniform imaging resolution, and fast acquisition counting rate capability for substantially improved imaging and quantification performance for small animal imaging and image-guided radiotherapy applications. This work was supported by a research award RP120326 from Cancer Prevention and Research Institute of Texas.« less

  10. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  11. Exploration of maximum count rate capabilities for large-area photon counting arrays based on polycrystalline silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua

    2016-03-01

    Pixelated photon counting detectors with energy discrimination capabilities are of increasing clinical interest for x-ray imaging. Such detectors, presently in clinical use for mammography and under development for breast tomosynthesis and spectral CT, usually employ in-pixel circuits based on crystalline silicon - a semiconductor material that is generally not well-suited for economic manufacture of large-area devices. One interesting alternative semiconductor is polycrystalline silicon (poly-Si), a thin-film technology capable of creating very large-area, monolithic devices. Similar to crystalline silicon, poly-Si allows implementation of the type of fast, complex, in-pixel circuitry required for photon counting - operating at processing speeds that are not possible with amorphous silicon (the material currently used for large-area, active matrix, flat-panel imagers). The pixel circuits of two-dimensional photon counting arrays are generally comprised of four stages: amplifier, comparator, clock generator and counter. The analog front-end (in particular, the amplifier) strongly influences performance and is therefore of interest to study. In this paper, the relationship between incident and output count rate of the analog front-end is explored under diagnostic imaging conditions for a promising poly-Si based design. The input to the amplifier is modeled in the time domain assuming a realistic input x-ray spectrum. Simulations of circuits based on poly-Si thin-film transistors are used to determine the resulting output count rate as a function of input count rate, energy discrimination threshold and operating conditions.

  12. Arrays of Position-Sensitive Virtual Frisch-Grid CdZnTe Detectors: Results From a $$4\\times 4$$ Array Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocampo Giraldo, L. A.; Bolotnikov, A. E.; Camarda, G. S.

    Position-sensitive virtual Frisch-grid (VFG) CdZnTe (CZT) detectors offer a unique capability for correcting the response nonuniformities caused by crystal defects. This allowed us to achieve high energy resolution, while using typical-grade commercial CZT crystals with relaxed requirements to their quality, thus reducing the overall cost of detectors. Another advantage of the VFG detectors is that they can be integrated into arrays and used in small compact hand-held instruments or large-area gamma cameras that will enhance detection capability for many practical applications, including nonproliferation, medical imaging, and gamma-ray astronomy. Here in this paper, we present the results from testing small arraymore » prototypes coupled with front-end application-specified integrated circuit. Each detector in the array is furnished with 5-mm-wide charge-sensing pads placed near the anode. The pads signals are converted into XY coordinates, which combined with the cathode signals (for Z coordinates) provide 3-D position information of all interaction points. The basic array consists of a number of detectors grouped into 2×2 subarrays, each having a common cathode made by connecting together the cathodes of the individual detectors. Lastly, these features can significantly improve the performance of detectors while using typical-grade low-cost CZT crystals to reduce the overall cost of the proposed instrument.« less

  13. Arrays of Position-Sensitive Virtual Frisch-Grid CdZnTe Detectors: Results From a $$4\\times 4$$ Array Prototype

    DOE PAGES

    Ocampo Giraldo, L. A.; Bolotnikov, A. E.; Camarda, G. S.; ...

    2017-08-22

    Position-sensitive virtual Frisch-grid (VFG) CdZnTe (CZT) detectors offer a unique capability for correcting the response nonuniformities caused by crystal defects. This allowed us to achieve high energy resolution, while using typical-grade commercial CZT crystals with relaxed requirements to their quality, thus reducing the overall cost of detectors. Another advantage of the VFG detectors is that they can be integrated into arrays and used in small compact hand-held instruments or large-area gamma cameras that will enhance detection capability for many practical applications, including nonproliferation, medical imaging, and gamma-ray astronomy. Here in this paper, we present the results from testing small arraymore » prototypes coupled with front-end application-specified integrated circuit. Each detector in the array is furnished with 5-mm-wide charge-sensing pads placed near the anode. The pads signals are converted into XY coordinates, which combined with the cathode signals (for Z coordinates) provide 3-D position information of all interaction points. The basic array consists of a number of detectors grouped into 2×2 subarrays, each having a common cathode made by connecting together the cathodes of the individual detectors. Lastly, these features can significantly improve the performance of detectors while using typical-grade low-cost CZT crystals to reduce the overall cost of the proposed instrument.« less

  14. Performance of the EDELWEISS-III experiment for direct dark matter searches

    NASA Astrophysics Data System (ADS)

    Armengaud, E.; Arnaud, Q.; Augier, C.; Benoît, A.; Bergé, L.; Bergmann, T.; Billard, J.; de Boissière, T.; Bres, G.; Broniatowski, A.; Brudanin, V.; Camus, P.; Cazes, A.; Chapellier, M.; Charlieux, F.; De Jésus, M.; Dumoulin, L.; Eitel, K.; Filosofov, D.; Foerster, N.; Fourches, N.; Garde, G.; Gascon, J.; Giuliani, A.; Grollier, M.; Gros, M.; Hehn, L.; Hervé, S.; Heuermann, G.; Humbert, V.; Jin, Y.; Juillard, A.; Kéfélian, C.; Kleifges, M.; Kozlov, V.; Kraus, H.; Kudryavtsev, V. A.; Le-Sueur, H.; Lin, J.; Maisonobe, R.; Mancuso, M.; Marnieros, S.; Menshikov, A.; Navick, X.-F.; Nones, C.; Olivieri, E.; Pari, P.; Paul, B.; Poda, D.; Queguiner, E.; Robinson, M.; Rodenas, H.; Rozov, S.; Sanglard, V.; Schmidt, B.; Scorza, S.; Siebenborn, B.; Tcherniakhovski, D.; Vagneron, L.; Weber, M.; Yakushev, E.; Zhang, X.; Zolotarova, A.

    2017-08-01

    We present the results of measurements demonstrating the efficiency of the EDELWEISS-III array of cryogenic germanium detectors for direct dark matter searches. The experimental setup and the FID (Fully Inter-Digitized) detector array is described, as well as the efficiency of the double measurement of heat and ionization signals in background rejection. For the whole set of 24 FID detectors used for coincidence studies, the baseline resolutions for the fiducial ionization energy are mainly below 0.7 keVee (FHWM) whereas the baseline resolutions for heat energies are mainly below 1.5 keVee (FWHM). The response to nuclear recoils as well as the very good discrimination capability of the FID design has been measured with an AmBe source. The surface β- and α-decay rejection power of Rsurf < 4 × 10-5 per α at 90% C.L. has been determined with a 210Pb source, the rejection of bulk γ-ray events has been demonstrated using γ-calibrations with 133Ba sources leading to a value of Rγ -mis-fid < 2.5 × 10-6 at 90% C.L.. The current levels of natural radioactivity measured in the detector array are shown as the rate of single γ background. The fiducial volume fraction of the FID detectors has been measured to a weighted average value of (74.6 ± 0.4)% using the cosmogenic activation of the 65Zn and 68,71Ge isotopes. The stability and uniformity of the detector response is also discussed. The achieved resolutions, thresholds and background levels of the upgraded EDELWEISS-III detectors in their setup are thus well suited to the direct search of WIMP dark matter over a large mass range.

  15. The intensive DT neutron generator of TU Dresden

    NASA Astrophysics Data System (ADS)

    Klix, Axel; DÖring, Toralf; Domula, Alexander; Zuber, Kai

    2018-01-01

    TU Dresden operates an accelerator-based intensive DT neutron generator. Experimental activities comprise investigation into material activation and decay, neutron and photon transport in matter and R&D work on radiation detectors for harsh environments. The intense DT neutron generator is capable to produce a maximum of 1012 n/s. The neutron source is a solid-type water-cooled tritium target based on a titanium matrix on a copper carrier. The neutron yield at a typical deuteron beam current of 1 mA is of the order of 1011 n/s in 4Π. A pneumatic sample transport system is available for short-time irradiations and connected to wo high-purity germanium detector spectrometers for the measurement of induced activities. The overall design of the experimental hall with the neutron generator allows a flexible setup of experiments including the possibility of investigating larger structures and cooled samples or samples at high temperatures.

  16. Characterizing multi-photon quantum interference with practical light sources and threshold single-photon detectors

    NASA Astrophysics Data System (ADS)

    Navarrete, Álvaro; Wang, Wenyuan; Xu, Feihu; Curty, Marcos

    2018-04-01

    The experimental characterization of multi-photon quantum interference effects in optical networks is essential in many applications of photonic quantum technologies, which include quantum computing and quantum communication as two prominent examples. However, such characterization often requires technologies which are beyond our current experimental capabilities, and today's methods suffer from errors due to the use of imperfect sources and photodetectors. In this paper, we introduce a simple experimental technique to characterize multi-photon quantum interference by means of practical laser sources and threshold single-photon detectors. Our technique is based on well-known methods in quantum cryptography which use decoy settings to tightly estimate the statistics provided by perfect devices. As an illustration of its practicality, we use this technique to obtain a tight estimation of both the generalized Hong‑Ou‑Mandel dip in a beamsplitter with six input photons and the three-photon coincidence probability at the output of a tritter.

  17. Enhancing Tabletop X-Ray Phase Contrast Imaging with Nano-Fabrication

    PubMed Central

    Miao, Houxun; Gomella, Andrew A.; Harmon, Katherine J.; Bennett, Eric E.; Chedid, Nicholas; Znati, Sami; Panna, Alireza; Foster, Barbara A.; Bhandarkar, Priya; Wen, Han

    2015-01-01

    X-ray phase-contrast imaging is a promising approach for improving soft-tissue contrast and lowering radiation dose in biomedical applications. While current tabletop imaging systems adapt to common x-ray tubes and large-area detectors by employing absorptive elements such as absorption gratings or monolithic crystals to filter the beam, we developed nanometric phase gratings which enable tabletop x-ray far-field interferometry with only phase-shifting elements, leading to a substantial enhancement in the performance of phase contrast imaging. In a general sense the method transfers the demands on the spatial coherence of the x-ray source and the detector resolution to the feature size of x-ray phase masks. We demonstrate its capabilities in hard x-ray imaging experiments at a fraction of clinical dose levels and present comparisons with the existing Talbot-Lau interferometer and with conventional digital radiography. PMID:26315891

  18. Missing pulse detector for a variable frequency source

    DOEpatents

    Ingram, Charles B.; Lawhorn, John H.

    1979-01-01

    A missing pulse detector is provided which has the capability of monitoring a varying frequency pulse source to detect the loss of a single pulse or total loss of signal from the source. A frequency-to-current converter is used to program the output pulse width of a variable period retriggerable one-shot to maintain a pulse width slightly longer than one-half the present monitored pulse period. The retriggerable one-shot is triggered at twice the input pulse rate by employing a frequency doubler circuit connected between the one-shot input and the variable frequency source being monitored. The one-shot remains in the triggered or unstable state under normal conditions even though the source period is varying. A loss of an input pulse or single period of a fluctuating signal input will cause the one-shot to revert to its stable state, changing the output signal level to indicate a missing pulse or signal.

  19. Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon

    NASA Astrophysics Data System (ADS)

    Arneodo, F.; Benabderrahmane, M. L.; Bruno, G.; Conicella, V.; Di Giovanni, A.; Fawwaz, O.; Messina, M.; Candela, A.; Franchi, G.

    2018-06-01

    We present the performances and characterization of an array made of S13370-3050CN (VUV4 generation) Multi-Pixel Photon Counters manufactured by Hamamatsu and equipped with a low power consumption preamplifier operating at liquid xenon temperature (∼ 175 K). The electronics is designed for the readout of a matrix of maximum dimension of 8 × 8 individual photosensors and it is based on a single operational amplifier. The detector prototype presented in this paper utilizes the Analog Devices AD8011 current feedback operational amplifier, but other models can be used depending on the application. A biasing correction circuit has been implemented for the gain equalization of photosensors operating at different voltages. The results show single photon detection capability making this device a promising choice for future generation of large scale dark matter detectors based on liquid xenon, such as DARWIN.

  20. The HERSCHEL detector: high-rapidity shower counters for LHCb

    NASA Astrophysics Data System (ADS)

    Carvalho Akiba, K.; Alessio, F.; Bondar, N.; Byczynski, W.; Coco, V.; Collins, P.; Dumps, R.; Dzhelyadin, R.; Gandini, P.; Gruberg Cazon, B. R.; Jacobsson, R.; Johnson, D.; Manthey, J.; Mauricio, J.; McNulty, R.; Monteil, S.; Rachwal, B.; Ravonel Salzgeber, M.; Roy, L.; Schindler, H.; Stevenson, S.; Wilkinson, G.

    2018-04-01

    The HERSCHEL detector consists of a set of scintillating counters, designed to increase the coverage of the LHCb experiment in the high-rapidity regions on either side of the main spectrometer. The new detector improves the capabilities of LHCb for studies of diffractive interactions, most notably Central Exclusive Production. In this paper the construction, installation, commissioning, and performance of HERSCHEL are presented.

  1. A Detailed FLUKA-2005 Monte Carlo Simulation for the ATIC Detector

    NASA Technical Reports Server (NTRS)

    Gunasingha, R. M.; Fazely, A. R.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Ganel, O.; Guzik, T. G.

    2006-01-01

    We have performed a detailed Monte Carlo (MC) calculation for the Advanced thin Ionization Calorimeter (ATIC) detector using the MC code FLUKA-2005 which is capable of simulating particles up to 10 PeV. The ATIC detector has completed two successful balloon flights from McMurdo, Antarctica lasting a total of more than 35 days. ATIC is designed as a multiple, long duration balloon Bight, investigation of the cosmic ray spectra from below 50 GeV to near 100 TeV total energy; using a fully active Bismuth Germanate @GO) calorimeter. It is equipped with a large mosaic of silicon detector pixels capable of charge identification and as a particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the middle and below a 0.75 nuclear interaction length graphite target. Our calculations are part of an analysis package of both A- and energy-dependences of different nuclei interacting with the ATIC detector. The MC simulates the responses of different components of the detector such as the Simatrix, the scintillator hodoscopes and the BGO calorimeter to various nuclei. We also show comparisons of the FLUKA-2005 MC calculations with a GEANT calculation and data for protons, He and CNO.

  2. Observation of cosmic ray hadrons at the top of the Sierra Negra volcano in Mexico with the SciCRT prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, E.; Valdés-Galicia, J. F.; Matsubara, Y.

    In this work we report the flux of protons and neutral emission measured at the top of the Sierra Negra volcano at 4600 m.a.s.l. (575 g/cm2), in Eastern Mexico. As an example of the capability of the mini-SciCR as a cosmic ray detector we present the Forbush decrease recorded on March 7, 2012. These data were obtained with a cosmic ray detector prototype called mini-SciCR that was operating from October 2010 to July 2012. Our main aims were to measure the hadronic component flux of the secondary cosmic ray and to show the appropriate performance of all system of themore » detector. To separate the signals of protons from other charged particles we obtained the energy deposition pattern when they cross the detector using a Monte Carlo simulation, and to separate the signals of neutral emission we used an anticoincidence system between the edge bars and the internal bars of the detector. The mini-SciCR is a prototype of a new cosmic ray detector called SciBar Cosmic Ray Telescope (SciCRT) installed in the same place, which is in the process of calibration. The SciCRT will work mainly as a Solar Neutron and Muon Telescope, it is designed to achieve: (1) larger effective area than the current Solar Neutron Telescope, (2) higher energy resolution to determine the energy spectrum of solar neutrons, (3) lower energy threshold, and (4) higher particle identification ability.« less

  3. Observation of cosmic ray hadrons at the top of the Sierra Negra volcano in Mexico with the SciCRT prototype

    DOE PAGES

    Ortiz, E.; Valdés-Galicia, J. F.; Matsubara, Y.; ...

    2016-02-16

    In this study we report the flux of protons and neutral emission measured at the top of the Sierra Negra volcano at 4600 m.a.s.l. (575 g/cm 2), in Eastern Mexico. As an example of the capability of the mini-SciCR as a cosmic ray detector we present the Forbush decrease recorded on March 7, 2012. These data were obtained with a cosmic ray detector prototype called mini-SciCR that was operating from October 2010 to July 2012. Our main aims were to measure the hadronic component flux of the secondary cosmic ray and to show the appropriate performance of all system ofmore » the detector. To separate the signals of protons from other charged particles we obtained the energy deposition pattern when they cross the detector using a Monte Carlo simulation, and to separate the signals of neutral emission we used an anticoincidence system between the edge bars and the internal bars of the detector. The mini-SciCR is a prototype of a new cosmic ray detector called SciBar Cosmic Ray Telescope (SciCRT) installed in the same place, which is in the process of calibration. The SciCRT will work mainly as a Solar Neutron and Muon Telescope, it is designed to achieve: (1) larger effective area than the current Solar Neutron Telescope, (2) higher energy resolution to determine the energy spectrum of solar neutrons, (3) lower energy threshold, and (4) higher particle identification ability.« less

  4. Observation of cosmic ray hadrons at the top of the Sierra Negra volcano in Mexico with the SciCRT prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, E.; Valdés-Galicia, J. F.; Matsubara, Y.

    In this study we report the flux of protons and neutral emission measured at the top of the Sierra Negra volcano at 4600 m.a.s.l. (575 g/cm 2), in Eastern Mexico. As an example of the capability of the mini-SciCR as a cosmic ray detector we present the Forbush decrease recorded on March 7, 2012. These data were obtained with a cosmic ray detector prototype called mini-SciCR that was operating from October 2010 to July 2012. Our main aims were to measure the hadronic component flux of the secondary cosmic ray and to show the appropriate performance of all system ofmore » the detector. To separate the signals of protons from other charged particles we obtained the energy deposition pattern when they cross the detector using a Monte Carlo simulation, and to separate the signals of neutral emission we used an anticoincidence system between the edge bars and the internal bars of the detector. The mini-SciCR is a prototype of a new cosmic ray detector called SciBar Cosmic Ray Telescope (SciCRT) installed in the same place, which is in the process of calibration. The SciCRT will work mainly as a Solar Neutron and Muon Telescope, it is designed to achieve: (1) larger effective area than the current Solar Neutron Telescope, (2) higher energy resolution to determine the energy spectrum of solar neutrons, (3) lower energy threshold, and (4) higher particle identification ability.« less

  5. NEW LENSLET BASED IFS WITH HIGH DETECTOR PIXEL EFFICIENCY

    NASA Astrophysics Data System (ADS)

    Gong, Qian

    2018-01-01

    Three IFS types currently used for optical design are: lenslet array, imager slicer, and lenslet array and fiber combined. Lenslet array based Integral Field Spectroscopy (IFS) is very popular for many astrophysics applications due to its compactness, simplicity, as well as cost and mass savings. The disadvantage of lenslet based IFS is its low detector pixel efficiency. Enough spacing is needed between adjacent spectral traces in cross dispersion direction to avoid wavelength cross-talk, because the same wavelength is not aligned to the same column on detector. Such as on a recent exoplanet coronagraph instrument study to support the coming astrophysics decadal survey (LUVOIR), to cover a 45 λ/D Field of View (FOV) with a spectral resolving power of 200 at shortest wavelength, a 4k x 4k detector array is needed. This large format EMCCD pushes the detector into technology development area with a low TRL. Besides the future mission, it will help WFIRST coronagraph IFS by packing all spectra into a smaller area on detector, which will reduce the chance for electrons to be trapped in pixels, and slow the detector degradation during the mission.The innovation we propose here is to increase the detector packing efficiency by grouping a number of lenslets together to form many mini slits. In other words, a number of spots (Point Spread Function at lenslet focus) are aligned into a line to resemble a mini slit. Therefore, wavelength cross-talk is no longer a concern anymore. This combines the advantage of lenslet array and imager slicer together. The isolation rows between spectral traces in cross dispersion direction can be reduced or removed. So the packing efficiency is greatly increased. Furthermore, the today’s microlithography and etching technique is capable of making such a lenslet array, which will relax the detector demand significantly. It will finally contribute to the habitable exoplanets study to analyzing their spectra from direct images. Detailed theory, design, analysis, and fabrication status will be presented.

  6. Silicon technologies for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Spannagel, S.

    2017-06-01

    CLIC is a proposed linear e+e- collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2% X0 per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50-150 μm, including different active edge designs, are evaluated using Timepix3 ASICs. First prototypes of the CLICpix readout ASIC, implemented in 65 nm CMOS technology and with a pixel size of 25×25μm 2, have been produced and tested in particle beams. An updated version of the ASIC with a larger pixel matrix and improved precision of the time-over-threshold and time-of-arrival measurements has been submitted. Different hybridization concepts have been developed for the interconnection between the sensor and readout ASIC, ranging from small-pitch bump bonding of planar sensors to capacitive coupling of active HV-CMOS sensors. Detector simulations based on Geant 4 and TCAD are compared with experimental results to assess and optimize the performance of the various designs. This contribution gives an overview of the R&D program undertaken for the CLIC vertex detector and presents performance measurements of the prototype detectors currently under investigation.

  7. Enhanced operator interface for hand-held landmine detector

    NASA Astrophysics Data System (ADS)

    Herman, Herman; McMahill, Jeffrey D.; Kantor, George

    2001-10-01

    As landmines get harder to detect, the complexity of landmine detectors has also been increasing. To increase the probability of detection and decrease the false alarm rate of low metallic landmines, many detectors employ multiple sensing modalities, which include radar and metal detector. Unfortunately, the operator interface for these new detectors stays pretty much the same as for the older detectors. Although the amount of information that the new detectors acquire has increased significantly, the interface has been limited to a simple audio interface. We are currently developing a hybrid audiovisual interface for enhancing the overall performance of the detector. The hybrid audiovisual interface combines the simplicity of the audio output with the rich spatial content of the video display. It is designed to optimally present the output of the detector and also to give the proper feedback to the operator. Instead of presenting all the data to the operator simultaneously, the interface allows the operator to access the information as needed. This capability is critical to avoid information overload, which can significantly reduce the performance of the operator. The audio is used as the primary notification signal, while the video is used for further feedback, discrimination, localization and sensor fusion. The idea is to let the operator gets the feedback that he needs and enable him to look at the data in the most efficient way. We are also looking at a hybrid man-machine detection system which utilizes precise sweeping by the machine and powerful human cognitive ability. In such a hybrid system, the operator is free to concentrate on discriminant task, such as manually fusing the output of the different sensing modalities, instead of worrying about the proper sweep technique. In developing this concept, we have been using the virtual mien lane to validate some of these concepts. We obtained some very encouraging results form our preliminary test. It clearly shows that with the proper feedback, the performance of the operator can be improved significantly in a very short time.

  8. CZT drift strip detectors for high energy astrophysics

    NASA Astrophysics Data System (ADS)

    Kuvvetli, I.; Budtz-Jørgensen, C.; Caroli, E.; Auricchio, N.

    2010-12-01

    Requirements for X- and gamma ray detectors for future High Energy Astrophysics missions include high detection efficiency and good energy resolution as well as fine position sensitivity even in three dimensions. We report on experimental investigations on the CZT drift detector developed DTU Space. It is operated in the planar transverse field (PTF) mode, with the purpose of demonstrating that the good energy resolution of the CZT drift detector can be combined with the high efficiency of the PTF configuration. Furthermore, we demonstrated and characterized the 3D sensing capabilities of this detector configuration. The CZT drift strip detector (10 mm×10 mm×2.5 mm) was characterized in both standard illumination geometry, Photon Parallel Field (PPF) configuration and in PTF configuration. The detection efficiency and energy resolution are compared for both configurations . The PTF configuration provided a higher efficiency in agreement with calculations. The detector energy resolution was found to be the same (3 keV FWHM at 122 keV) in both in PPF and PTF . The depth sensing capabilities offered by drift strip detectors was investigated by illuminating the detector using a collimated photon beam of 57Co radiation in PTF configuration. The width (300μm FWHM at 122 keV) of the measured depth distributions was almost equal to the finite beam size. However, the data indicate that the best achievable depth resolution for the CZT drift detector is 90μm FWHM at 122 keV and that it is determined by the electronic noise from the setup.

  9. Muon trackers for imaging a nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kume, N.; Miyadera, H.; Morris, C. L.

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. Furthermore, the system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m 2 area. In each muon tracker there consists 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when themore » core is imaged from outside the reactor building.« less

  10. The NO$$\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalesak, Jaroslav; et al.

    2014-01-01

    The NOνA experiment is a long-baseline neutrino experiment designed to make measurements to determine the neutrino mass hierarchy, neutrino mixing parameters and CP violation in the neutrino sector. In order to make these measurements the NOνA collaboration has designed a highly distributed, synchronized, continuous digitization and readout system that is able to acquire and correlate data from the Fermilab accelerator complex (NuMI), the NOνA near detector at the Fermilab site and the NOνA far detector which is located 810 km away at Ash River, MN. This system has unique properties that let it fully exploit the physics capabilities of themore » NOνA detector. The design of the NOνA DAQ system and its capabilities are discussed in this paper.« less

  11. Muon trackers for imaging a nuclear reactor

    DOE PAGES

    Kume, N.; Miyadera, H.; Morris, C. L.; ...

    2016-09-21

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. Furthermore, the system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m 2 area. In each muon tracker there consists 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when themore » core is imaged from outside the reactor building.« less

  12. Plastic scintillator detector for pulsed flux measurements

    NASA Astrophysics Data System (ADS)

    Kadilin, V. V.; Kaplun, A. A.; Taraskin, A. A.

    2017-01-01

    A neutron detector, providing charged particle detection capability, has been designed. The main purpose of the detector is to measure pulsed fluxes of both charged particles and neutrons during scientific experiments. The detector consists of commonly used neutron-sensitive ZnS(Ag) / 6LiF scintillator screens wrapping a layer of polystyrene based scintillator (BC-454, EJ-254 or equivalent boron loaded plastic). This type of detector design is able to log a spatial distribution of events and may be scaled to any size. Different variations of the design were considered and modelled in specialized toolkits. The article presents a review of the detector design features as well as simulation results.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Madison Theresa; Bates, Cameron Russell; Mckigney, Edward Allen

    Here, this work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNPR output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed- field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNPR ®6, which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discriminationmore » plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.« less

  14. Characterization of a Commercial Silicon Beta Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foxe, Michael P.; Hayes, James C.; Mayer, Michael F.

    Silicon detectors are of interest for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) due to their enhanced energy resolution compared to plastic scintillators beta cells. Previous work developing a figure-of-merit (FOM) for comparison of beta cells suggests that the minimum detectable activity (MDA) could be reduced by a factor of two to three with the use of silicon detectors. Silicon beta cells have been developed by CEA (France) and Lares Ltd. (Russia), with the PIPSBox developed by CEA being commercially available from Canberra for approximately $35k, but there is still uncertainty about the reproducibility of the capabilities in themore » field. PNNL is developing a high-resolution beta-gamma detector system in the shallow underground laboratory, which will utilize and characterize the operation of the PIPSBox detector. Throughout this report, we examine the capabilities of the PIPSBox as developed by CEA. The lessons learned through the testing and use of the PIPSBox will allow PNNL to strategically develop a silicon detector optimized to better suit the communities needs in the future.« less

  15. High-Dose Neutron Detector Development Using 10B Coated Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menlove, Howard Olsen; Henzlova, Daniela

    2016-11-08

    During FY16 the boron-lined parallel-plate technology was optimized to fully benefit from its fast timing characteristics in order to enhance its high count rate capability. To facilitate high count rate capability, a novel fast amplifier with timing and operating properties matched to the detector characteristics was developed and implemented in the 8” boron plate detector that was purchased from PDT. Each of the 6 sealed-cells was connected to a fast amplifier with corresponding List mode readout from each amplifier. The FY16 work focused on improvements in the boron-10 coating materials and procedures at PDT to significantly improve the neutron detectionmore » efficiency. An improvement in the efficiency of a factor of 1.5 was achieved without increasing the metal backing area for the boron coating. This improvement has allowed us to operate the detector in gamma-ray backgrounds that are four orders of magnitude higher than was previously possible while maintaining a relatively high counting efficiency for neutrons. This improvement in the gamma-ray rejection is a key factor in the development of the high dose neutron detector.« less

  16. Solid state neutron detector array

    DOEpatents

    Seidel, John G.; Ruddy, Frank H.; Brandt, Charles D.; Dulloo, Abdul R.; Lott, Randy G.; Sirianni, Ernest; Wilson, Randall O.

    1999-01-01

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinilla, Maria Isabel

    This report seeks to study and benchmark code predictions against experimental data; determine parameters to match MCNP-simulated detector response functions to experimental stilbene measurements; add stilbene processing capabilities to DRiFT; and improve NEUANCE detector array modeling and analysis using new MCNP6 and DRiFT features.

  18. Controller and data acquisition system for SIDECAR ASIC driven HAWAII detectors

    NASA Astrophysics Data System (ADS)

    Ramaprakash, Anamparambu; Burse, Mahesh; Chordia, Pravin; Chillal, Kalpesh; Kohok, Abhay; Mestry, Vilas; Punnadi, Sujit; Sinha, Sakya

    2010-07-01

    SIDECAR is an Application Specific Integrated Circuit (ASIC), which can be used for control and data acquisition from near-IR HAWAII detectors offered by Teledyne Imaging Sensors (TIS), USA. The standard interfaces provided by Teledyne are COM API and socket servers running under MS Windows platform. These interfaces communicate to the ASIC (and the detector) through an intermediate card called JWST ASIC Drive Electronics (JADE2). As part of an ongoing programme of several years, for developing astronomical focal plane array (CCDs, CMOS and Hybrid) controllers and data acquisition systems (CDAQs), IUCAA is currently developing the next generation controllers employing Virtex-5 family FPGA devices. We present here the capabilities which are built into these new CDAQs for handling HAWAII detectors. In our system, the computer which hosts the application programme, user interface and device drivers runs on a Linux platform. It communicates through a hot-pluggable USB interface (with an optional optical fibre extender) to the FPGA-based card which replaces the JADE2. The FPGA board in turn, controls the SIDECAR ASIC and through it a HAWAII-2RG detector, both of which are located in a cryogenic test Dewar set up which is liquid nitrogen cooled. The system can acquire data over 1, 4, or 32 readout channels, with or without binning, at different speeds, can define sub-regions for readout, offers various readout schemes like Fowler sampling, up-theramp etc. In this paper, we present the performance results obtained from a prototype system.

  19. Conceptual design and optimization of a plastic scintillator array for 2D tomography using a compact D-D fast neutron generator.

    PubMed

    Adams, Robert; Zboray, Robert; Cortesi, Marco; Prasser, Horst-Michael

    2014-04-01

    A conceptual design optimization of a fast neutron tomography system was performed. The system is based on a compact deuterium-deuterium fast neutron generator and an arc-shaped array of individual neutron detectors. The array functions as a position sensitive one-dimensional detector allowing tomographic reconstruction of a two-dimensional cross section of an object up to 10 cm across. Each individual detector is to be optically isolated and consists of a plastic scintillator and a Silicon Photomultiplier for measuring light produced by recoil protons. A deterministic geometry-based model and a series of Monte Carlo simulations were used to optimize the design geometry parameters affecting the reconstructed image resolution. From this, it is expected that with an array of 100 detectors a reconstructed image resolution of ~1.5mm can be obtained. Other simulations were performed in order to optimize the scintillator depth (length along the neutron path) such that the best ratio of direct to scattered neutron counts is achieved. This resulted in a depth of 6-8 cm and an expected detection efficiency of 33-37%. Based on current operational capabilities of a prototype neutron generator being developed at the Paul Scherrer Institute, planned implementation of this detector array design should allow reconstructed tomograms to be obtained with exposure times on the order of a few hours. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Modeling the impact of preflushing on CTE in proton irradiated CCD-based detectors

    NASA Astrophysics Data System (ADS)

    Philbrick, R. H.

    2002-04-01

    A software model is described that performs a "real world" simulation of the operation of several types of charge-coupled device (CCD)-based detectors in order to accurately predict the impact that high-energy proton radiation has on image distortion and modulation transfer function (MTF). The model was written primarily to predict the effectiveness of vertical preflushing on the custom full frame CCD-based detectors intended for use on the proposed Kepler Discovery mission, but it is capable of simulating many other types of CCD detectors and operating modes as well. The model keeps track of the occupancy of all phosphorous-silicon (P-V), divacancy (V-V) and oxygen-silicon (O-V) defect centers under every CCD electrode over the entire detector area. The integrated image is read out by simulating every electrode-to-electrode charge transfer in both the vertical and horizontal CCD registers. A signal level dependency on the capture and emission of signal is included and the current state of each electrode (e.g., barrier or storage) is considered when distributing integrated and emitted signal. Options for performing preflushing, preflashing, and including mini-channels are available on both the vertical and horizontal CCD registers. In addition, dark signal generation and image transfer smear can be selectively enabled or disabled. A comparison of the charge transfer efficiency (CTE) data measured on the Hubble space telescope imaging spectrometer (STIS) CCD with the CTE extracted from model simulations of the STIS CCD show good agreement.

  1. AMS-02 as a Space Weather Observatory

    NASA Astrophysics Data System (ADS)

    Whitman, K.; Bindi, V.; Chati, M.; Consolandi, C.; Corti, C.

    2013-12-01

    The Alpha Magnetic Spectrometer (AMS-02) is a state-of-the-art space detector that measures particles in the energy range of hundreds of MeV to a few TeV. AMS-02 has been installed onboard of the International Space Station (ISS) since May 2011 where it will operate for the duration of the station. To date, there is an abundance of space-based solar data collected in the low energy regimes, whereas there are very few direct measurements of higher energy particles available. AMS-02 is capable of measuring arrival time and composition of the highest energy SEPs in space. It is crucial to build a better knowledge base regarding the most energetic and potentially harmful events. We are currently developing a program to employ AMS-02 as a real-time space weather observatory. SEPs with higher energies are usually accelerated during a short period of time and they are the first particles to reach the Earth. AMS-02, measuring these highest energy SEPs, can alert the onset of an SEP event. During the past two years of operation, we have identified two main quantities in AMS-02 that are particularly sensitive to the arrival of SEPs: the detector livetime and the transition radiation detector (TRD) event size. By monitoring the detector livetime and the TRD event size, AMS-02 can pinpoint in real-time the arrival of SEPs inside the Earth's magnetosphere operating as a space weather detector.

  2. CMOS detectors: lessons learned during the STC stereo channel preflight calibration

    NASA Astrophysics Data System (ADS)

    Simioni, E.; De Sio, A.; Da Deppo, V.; Naletto, G.; Cremonese, G.

    2017-09-01

    The Stereo Camera (STC), mounted on-board the BepiColombo spacecraft, will acquire in push frame stereo mode the entire surface of Mercury. STC will provide the images for the global three-dimensional reconstruction of the surface of the innermost planet of the Solar System. The launch of BepiColombo is foreseen in 2018. STC has an innovative optical system configuration, which allows good optical performances with a mass and volume reduction of a factor two with respect to classical stereo camera approach. In such a telescope, two different optical paths inclined of +/-20°, with respect to the nadir direction, are merged together in a unique off axis path and focused on a single detector. The focal plane is equipped with a 2k x 2k hybrid Si-PIN detector, based on CMOS technology, combining low read-out noise, high radiation hardness, compactness, lack of parasitic light, capability of snapshot image acquisition and short exposure times (less than 1 ms) and small pixel size (10 μm). During the preflight calibration campaign of STC, some detector spurious effects have been noticed. Analyzing the images taken during the calibration phase, two different signals affecting the background level have been measured. These signals can reduce the detector dynamics down to a factor of 1/4th and they are not due to dark current, stray light or similar effects. In this work we will describe all the features of these unwilled effects, and the calibration procedures we developed to analyze them.

  3. Exploring the Birth and Evolution of the Universe: How Detectors Have Revolutionized Space Astronomy

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel H.

    2012-01-01

    The past century has seen tremendous advances in the capability of instruments used for astronomical imaging and spectroscopy. Capabilities of instruments have expanded in many dimensions; the scale of telescopes has grown tremendously, the wavelengths used for astronomy have grown from visible light to the full electromagnetic spectrum, extending from gamma rays to low frequency radio waves. Additional advances have been enabled by the availability of space facilities, which eliminate the effects of the earths atmosphere and magnetosphere, and allow cooling of instruments to avoid instrumental thermal radiation. Even with all these advances, the increase in capability of detection systems has produced truly revolutionary improvements in capability. Today, I will describe the advances in astronomical detection from the photographic plates of the early 20th century to the giant high efficiency focal planes being developed for modern space and ground based astronomical instrument. I will review the demanding performance requirements set by space astronomy, and show how the detector community has risen to the challenge in producing high performance detectors for the Hubble Space Telescope, the Spitzer Space Telescope, and the James Webb Space Telescope, now under development.

  4. Design of a wideband CMOS impedance spectroscopy ASIC analog front-end for multichannel biosensor interfaces.

    PubMed

    Valente, Virgilio; Dai Jiang; Demosthenous, Andreas

    2015-08-01

    This paper presents the preliminary design and simulation of a flexible and programmable analog front-end (AFE) circuit with current and voltage readout capabilities for electric impedance spectroscopy (EIS). The AFE is part of a fully integrated multifrequency EIS platform. The current readout comprises of a transimpedance stage and an automatic gain control (AGC) unit designed to accommodate impedance changes larger than 3 order of magnitude. The AGC is based on a dynamic peak detector that tracks changes in the input current over time and regulates the gain of a programmable gain amplifier in order to optimise the signal-to-noise ratio. The system works up to 1 MHz. The voltage readout consists of a 2 stages of fully differential current-feedback instrumentation amplifier which provide 100 dB of CMRR and a programmable gain up to 20 V/V per stage with a bandwidth in excess of 10MHz.

  5. Technology gap assessment for a future large-aperture ultraviolet-optical-infrared space telescope

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Crooke, Julie; Feinberg, Lee; Quijada, Manuel; Rauscher, Bernard J.; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl M.; Thronson, Harley

    2016-10-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team identified five key technology areas to enable candidate architectures for a future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, "Enduring Quests, Daring Visions." The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technology areas are internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescope systems, detectors, and mirror coatings. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current technology readiness level (TRL), thus identifying the current technology gap. We also report on current, planned, or recommended efforts to develop each technology to TRL 5.

  6. Review of an assortment of IR materials-devices technologies used for imaging in spectral bands ranging from the visible to very long wavelengths

    NASA Astrophysics Data System (ADS)

    DeWames, Roger E.

    2016-05-01

    In this paper we review the intrinsic and extrinsic technological properties of the incumbent technology, InP/In0.53Ga0.47As/InP, for imaging in the visible- short wavelength spectral band, InSb and HgCdTe for imaging in the mid-wavelength spectral band and HgCdTe for imaging in the long wavelength spectral band. These material systems are in use for a wide range of applications addressing compelling needs in night vision imaging, low light level astronomical applications and defense strategic satellite sensing. These materials systems are direct band gap energy semiconductors hence the internal quantum efficiency η, is near unity over a wide spectral band pass. A key system figure of merit of a shot noise limited detector technology is given by the equation (1+Jdark. /Jphoton), where Jdark is the dark current density and Jphoton ~qηΦ is the photocurrent density; Φ is the photon flux incident on the detector and q is the electronic charge. The capability to maintain this factor for a specific spectral band close to unity for low illumination conditions and low temperature onset of non-ideal dark current components, basically intrinsic diffusion limited performance all the way, is a marker of quality and versatility of a semiconductor detector technology. It also enables the highest temperature of operation for tactical illumination conditions. A purpose of the work reported in this paper is to explore the focal plane array data sets of photodiode detector technologies widely used to bench mark their fundamental and technology properties and identify paths for improvements.

  7. Exploring the sensitivity of next generation gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Ackley, K.; Adams, C.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arun, K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Biwer, C.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bock, O.; Bogan, C.; Bohe, A.; Bond, C.; Bork, R.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Buonanno, A.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C. B.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Dal Canton, T.; Danilishin, S. L.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dave, I.; Davies, G. S.; Daw, E. J.; De, S.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Palma, I.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferreira, E. C.; Fisher, R. P.; Fletcher, M.; Frei, Z.; Freise, A.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gaonkar, S. G.; Gaur, G.; Gehrels, N.; Geng, P.; George, J.; Gergely, L.; Ghosh, Abhirup; Ghosh, Archisman; Giaime, J. A.; Giardina, K. D.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Graef, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Green, A. C.; Grote, H.; Grunewald, S.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heintze, M. C.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jang, H.; Jani, K.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leong, J. R.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lormand, M.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martynov, D. V.; Mason, K.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Miao, H.; Middleton, H.; Mikhailov, E. E.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Mohapatra, S. R. P.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nayak, R. K.; Nedkova, K.; Nelson, T. J. N.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nitz, A.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Poe, M.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prokhorov, L.; Puncken, O.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Raymond, V.; Read, J.; Reed, C. M.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Rollins, J. G.; Roma, V. J.; Romanov, G.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Szczepańczyk, M. J.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Traylor, G.; Trifirò, D.; Tse, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vander-Hyde, D. C.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Vinciguerra, S.; Vine, D. J.; Vitale, S.; Vo, T.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Weaver, B.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Zanolin, M.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; (LIGO Scientific Collaboration; Harms, J.

    2017-02-01

    The second-generation of gravitational-wave detectors are just starting operation, and have already yielding their first detections. Research is now concentrated on how to maximize the scientific potential of gravitational-wave astronomy. To support this effort, we present here design targets for a new generation of detectors, which will be capable of observing compact binary sources with high signal-to-noise ratio throughout the Universe.

  8. Organic Scintillation Detectors for Spectroscopic Radiation Portal Monitors

    NASA Astrophysics Data System (ADS)

    Paff, Marc Gerrit

    Thousands of radiation portal monitors have been deployed worldwide to detect and deter the smuggling of nuclear and radiological materials that could be used in nefarious acts. Radiation portal monitors are often installed at bottlenecks where large amounts of people or goods must traverse. Examples of use include scanning cargo containers at shipping ports, vehicles at border crossings, and people at high profile functions and events. Traditional radiation portal monitors contain separate detectors for passively measuring neutron and gamma ray count rates. 3He tubes embedded in polyethylene and slabs of plastic scintillators are the most common detector materials used in radiation portal monitors. The radiation portal monitor alarm mechanism relies on measuring radiation count rates above user defined alarm thresholds. These alarm thresholds are set above natural background count rates. Minimizing false alarms caused by natural background and maximizing sensitivity to weakly emitting threat sources must be balanced when setting these alarm thresholds. Current radiation portal monitor designs suffer from frequent nuisance radiation alarms. These radiation nuisance alarms are most frequently caused by shipments of large quantities of naturally occurring radioactive material containing cargo, like kitty litter, as well as by humans who have recently undergone a nuclear medicine procedure, particularly 99mTc treatments. Current radiation portal monitors typically lack spectroscopic capabilities, so nuisance alarms must be screened out in time-intensive secondary inspections with handheld radiation detectors. Radiation portal monitors using organic liquid scintillation detectors were designed, built, and tested. A number of algorithms were developed to perform on-the-fly radionuclide identification of single and combination radiation sources moving past the portal monitor at speeds up to 2.2 m/s. The portal monitor designs were tested extensively with a variety of shielded and unshielded radiation sources, including special nuclear material, at the European Commission Joint Research Centre in Ispra, Italy. Common medical isotopes were measured at the C.S. Mott Children's Hospital and added to the radionuclide identification algorithms.

  9. Processing of CT sinograms acquired using a VRX detector

    NASA Astrophysics Data System (ADS)

    Jordan, Lawrence M.; DiBianca, Frank A.; Zou, Ping; Laughter, Joseph S.; Zeman, Herbert D.

    2000-04-01

    A 'variable resolution x-ray detector' (VRX) capable of resolving beyond 100 cycles/main a single dimension has been proposed by DiBianca, et al. The use of detectors of this design for computed-tomography (CT) imaging requires novel preprocessing of data to correct for the detector's non- uniform imaging characteristics over its range of view. This paper describes algorithms developed specifically to adjust VRX data for varying magnification, source-to-detector range and beam obliquity and to sharpen reconstructions by deconvolving the ray impulse function. The preprocessing also incorporates nonlinear interpolation of VRX raw data into canonical CT sinogram formats.

  10. GADRAS-DRF 18.6 User's Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horne, Steve M.; Thoreson, Greg G.; Theisen, Lisa A.

    2016-05-01

    The Gamma Detector Response and Analysis Software–Detector Response Function (GADRAS-DRF) application computes the response of gamma-ray and neutron detectors to incoming radiation. This manual provides step-by-step procedures to acquaint new users with the use of the application. The capabilities include characterization of detector response parameters, plotting and viewing measured and computed spectra, analyzing spectra to identify isotopes, and estimating source energy distributions from measured spectra. GADRAS-DRF can compute and provide detector responses quickly and accurately, giving users the ability to obtain usable results in a timely manner (a matter of seconds or minutes).

  11. An Infrared Camera Simulation for Estimating Spatial Temperature Profiles and Signal-to-Noise Ratios of an Airborne Laser-Illuminated Target

    DTIC Science & Technology

    2007-06-01

    of SNR, she incorporated the effects that an InGaAs photovoltaic detector have in producing the signal along with the photon, Johnson, and shot noises ...the photovoltaic FPA detector modeled? • What detector noise sources limit the computed signal? 3.1 Modeling Methodology Two aspects in the IR camera...Another shot noise source in photovoltaic detectors is dark current. This current represents the current flowing in the detector when no optical radiation

  12. Multi-Stage ADRs for Current and Future Astronomy Missions: Performance and Requirements for Cryogen-Free Operation

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; Kimball, Mark; Vlahacos, Kosta

    2010-01-01

    The cooling requirements for current (e.g. Astro-H) and future (e.g. IXO and ASP) astronomy missions pose significant challenges for the sub-Kelvin Cooler. In particular, the use of large detector arrays increases the cooling power needed, and the variety of cryocoolers that can be used for pre-cooling greatly expands the range of temperatures at which the sub-Kelvin cooler can be designed to reject heat. In most cases, there is also a need for a stable higher temperature stage for cooling amplifiers or telescope components. NASA/GSFC is currently building a 3-stage ADR for the Astro-H mission, and is developing a 5-stage ADR suitable for IXO and ASP, as well as many other missions in the early planning stages. The architecture of these ADRs allows them to be adapted rather easily for different cooling requirements and to accommodate different cryocooler capabilities (operating temperature and cooling power). This paper will discuss the performance of these ADRs, which operate in both continuous, and single-shot cooling modes, and the minimum cryocooler capabilities needed to meet the requirements of future missions.

  13. Study of the dE/dx resolution of a GEM Readout Chamber prototype for the upgrade of the ALICE TPC

    NASA Astrophysics Data System (ADS)

    Mathis, Andreas

    2018-02-01

    The ALICE Collaboration is planning a major upgrade of its central barrel detectors to be able to cope with the increased LHC luminosity beyond 2020. For the TPC, this implies a replacement of the currently used gated MWPCs (Multi-Wire Proportional Chamber) by GEM (Gas Electron Multiplier) based readout chambers. In order to prove, that the present particle identification capabilities via measurement of the specific energy loss are retained after the upgrade, a prototype of the ALICE IROC (Inner Readout Chamber) has been evaluated in a test beam campaign at the CERN PS. The dE/dx resolution of the prototype has been proven to be fully compatible with the current MWPCs.

  14. Switched integration amplifier-based photocurrent meter for accurate spectral responsivity measurement of photometers.

    PubMed

    Park, Seongchong; Hong, Kee-Suk; Kim, Wan-Seop

    2016-03-20

    This work introduces a switched integration amplifier (SIA)-based photocurrent meter for femtoampere (fA)-level current measurement, which enables us to measure a 107 dynamic range of spectral responsivity of photometers even with a common lamp-based monochromatic light source. We described design considerations and practices about operational amplifiers (op-amps), switches, readout methods, etc., to compose a stable SIA of low offset current in terms of leakage current and gain peaking in detail. According to the design, we made six SIAs of different integration capacitance and different op-amps and evaluated their offset currents. They showed an offset current of (1.5-85) fA with a slow variation of (0.5-10) fA for an hour under opened input. Applying a detector to the SIA input, the offset current and its variation were increased and the SIA readout became noisier due to finite shunt resistance and nonzero shunt capacitance of the detector. One of the SIAs with 10 pF nominal capacitance was calibrated using a calibrated current source at the current level of 10 nA to 1 fA and at the integration time of 2 to 65,536 ms. As a result, we obtained a calibration formula for integration capacitance as a function of integration time rather than a single capacitance value because the SIA readout showed a distinct dependence on integration time at a given current level. Finally, we applied it to spectral responsivity measurement of a photometer. It is demonstrated that the home-made SIA of 10 pF was capable of measuring a 107 dynamic range of spectral responsivity of a photometer.

  15. Inverter ratio failure detector

    NASA Technical Reports Server (NTRS)

    Wagner, A. P.; Ebersole, T. J.; Andrews, R. E. (Inventor)

    1974-01-01

    A failure detector which detects the failure of a dc to ac inverter is disclosed. The inverter under failureless conditions is characterized by a known linear relationship of its input and output voltages and by a known linear relationship of its input and output currents. The detector includes circuitry which is responsive to the detector's input and output voltages and which provides a failure-indicating signal only when the monitored output voltage is less by a selected factor, than the expected output voltage for the monitored input voltage, based on the known voltages' relationship. Similarly, the detector includes circuitry which is responsive to the input and output currents and provides a failure-indicating signal only when the input current exceeds by a selected factor the expected input current for the monitored output current based on the known currents' relationship.

  16. A Geant4 model of backscatter security imaging systems

    NASA Astrophysics Data System (ADS)

    Leboffe, Eric Matthew

    The operating characteristics of x ray security scanner systems that utilize backscatter signal in order to distinguish person borne threats have never been made fully available to the general public. By designing a model using Geant4, studies can be performed which will shed light on systems such as security scanners and allow for analysis of the performance and safety of the system without access to any system data. Despite the fact that the systems are no longer in use at airports in the United States, the ability to design and validate detector models and phenomena is an important capability that can be applied to many current real world applications. The model presented provides estimates for absorbed dose, effective dose and dose depth distribution that are comparable to previously published work and explores imaging capabilities for the system embodiment modeled.

  17. Capability of long distance 100  GHz FMCW using a single GDD lamp sensor.

    PubMed

    Levanon, Assaf; Rozban, Daniel; Aharon Akram, Avihai; Kopeika, Natan S; Yitzhaky, Yitzhak; Abramovich, Amir

    2014-12-20

    Millimeter wave (MMW)-based imaging systems are required for applications in medicine, homeland security, concealed weapon detection, and space technology. The lack of inexpensive room temperature imaging sensors makes it difficult to provide a suitable MMW system for many of the above applications. A 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The radar system requires that the millimeter wave detector will be able to operate as a heterodyne detector. Since the source of radiation is a frequency modulated continuous wave (FMCW), the detected signal as a result of heterodyne detection gives the object's depth information according to value of difference frequency, in addition to the reflectance of the 2D image. New experiments show the capability of long distance FMCW detection by using a large scale Cassegrain projection system, described first (to our knowledge) in this paper. The system presents the capability to employ a long distance of at least 20 m with a low-cost plasma-based glow discharge detector (GDD) focal plane array (FPA). Each point on the object corresponds to a point in the image and includes the distance information. This will enable relatively inexpensive 3D MMW imaging.

  18. Searching for dark matter with single phase liquid argon

    NASA Astrophysics Data System (ADS)

    Caldwell, Thomas S., Jr.

    The first hint that we fail to understand the nature of a large fraction of the gravitating matter in the universe came from Fritz Zwicky's measurements of the velocity distribution of the Coma cluster in 1933. Using the Virial theorem, Zwicky found that galaxies in the cluster were orbiting far too fast to remain gravitationally bound when their mass was estimated by the brightness of the visible matter. This led to the postulation that some form of non-luminous dark matter is present in galaxies comprising a large fraction of the galactic mass. The nature of this dark matter remains yet unknown over 80 years after Zwicky's measurements despite the efforts of many experiments. Dark matter is widely believed to be a beyond the Standard Model particle which brings the dark matter problem into the realm of particle physics. Supersymmetry is one widely explored extension of the Standard model, from which particles meeting the constraints on dark matter properties can naturally arise. These particles are generically termed weakly interacting massive particles (WIMPs), and are a currently favored dark matter candidate. A variety of experimental efforts are underway aimed towards direct detection of dark matter through observation of rare scattering of WIMPs in terrestrial detectors. Single phase liquid argon detectors are an appealing WIMP detection technique due to the scintillation properties of liquid argon and the scalability of the single phase approach. The MiniCLEAN dark matter detector is a single phase liquid argon scintillation scintillation detector with a 500 kg active mass. The modular design offers 4pi coverage with 92 optical cassettes, each containing TPB coated acrylic and a cryogenic photomultiplier tube. The MiniCLEAN detector has recently completed construction at SNOLAB. The detector is currently being commissioned, and will soon begin operation with the liquid argon target. Utilizing advanced pulse-shape discrimination techniques, MiniCLEAN will probe the WIMP-nucleon cross section parameter space to the level of 10--44 cm2 and demonstrate the pulse-shape discrimination required for next generation experiments capable of further probing the WIMP parameter space in search of WIMP dark matter.

  19. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications

    PubMed Central

    Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J.; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo

    2016-01-01

    Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54 μm square pixels using trilinear interpolation, the presampled MTF at Nyquist frequency of 9.26 cycles/mm was 0.29 and 0.24 along the orthogonal directions and the limiting resolution (10% MTF) occurred at approximately 12 cycles/mm. Visual analysis of a bar pattern image showed the ability to resolve close to 12 line-pairs/mm and qualitative evaluation of a neurovascular nitinol-stent showed the ability to visualize its struts at clinically relevant conditions. Conclusions: Hexagonal pixel array photon-counting CdTe detector provides high spatial resolution in single-photon counting mode. After resampling to optimal square pixel size for distortion-free display, the spatial resolution is preserved. The dual-energy capabilities of the detector could allow for artifact-free subtraction angiography and basis material decomposition. The proposed high-resolution photon-counting detector with energy-resolving capability can be of importance for several image-guided interventional procedures as well as for pediatric applications. PMID:27147324

  20. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications.

    PubMed

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo

    2016-05-01

    High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54 μm square pixels using trilinear interpolation, the presampled MTF at Nyquist frequency of 9.26 cycles/mm was 0.29 and 0.24 along the orthogonal directions and the limiting resolution (10% MTF) occurred at approximately 12 cycles/mm. Visual analysis of a bar pattern image showed the ability to resolve close to 12 line-pairs/mm and qualitative evaluation of a neurovascular nitinol-stent showed the ability to visualize its struts at clinically relevant conditions. Hexagonal pixel array photon-counting CdTe detector provides high spatial resolution in single-photon counting mode. After resampling to optimal square pixel size for distortion-free display, the spatial resolution is preserved. The dual-energy capabilities of the detector could allow for artifact-free subtraction angiography and basis material decomposition. The proposed high-resolution photon-counting detector with energy-resolving capability can be of importance for several image-guided interventional procedures as well as for pediatric applications.

  1. Error detection capability of a novel transmission detector: a validation study for online VMAT monitoring.

    PubMed

    Pasler, Marlies; Michel, Kilian; Marrazzo, Livia; Obenland, Michael; Pallotta, Stefania; Björnsgard, Mari; Lutterbach, Johannes

    2017-09-01

    The purpose of this study was to characterize a new single large-area ionization chamber, the integral quality monitor system (iRT, Germany), for online and real-time beam monitoring. Signal stability, monitor unit (MU) linearity and dose rate dependence were investigated for static and arc deliveries and compared to independent ionization chamber measurements. The dose verification capability of the transmission detector system was evaluated by comparing calculated and measured detector signals for 15 volumetric modulated arc therapy plans. The error detection sensitivity was tested by introducing MLC position and linac output errors. Deviations in dose distributions between the original and error-induced plans were compared in terms of detector signal deviation, dose-volume histogram (DVH) metrics and 2D γ-evaluation (2%/2 mm and 3%/3 mm). The detector signal is linearly dependent on linac output and shows negligible (<0.4%) dose rate dependence up to 460 MU min -1 . Signal stability is within 1% for cumulative detector output; substantial variations were observed for the segment-by-segment signal. Calculated versus measured cumulative signal deviations ranged from  -0.16%-2.25%. DVH, mean 2D γ-value and detector signal evaluations showed increasing deviations with regard to the respective reference with growing MLC and dose output errors; good correlation between DVH metrics and detector signal deviation was found (e.g. PTV D mean : R 2   =  0.97). Positional MLC errors of 1 mm and errors in linac output of 2% were identified with the transmission detector system. The extensive tests performed in this investigation show that the new transmission detector provides a stable and sensitive cumulative signal output and is suitable for beam monitoring during patient treatment.

  2. Error detection capability of a novel transmission detector: a validation study for online VMAT monitoring

    NASA Astrophysics Data System (ADS)

    Pasler, Marlies; Michel, Kilian; Marrazzo, Livia; Obenland, Michael; Pallotta, Stefania; Björnsgard, Mari; Lutterbach, Johannes

    2017-09-01

    The purpose of this study was to characterize a new single large-area ionization chamber, the integral quality monitor system (iRT, Germany), for online and real-time beam monitoring. Signal stability, monitor unit (MU) linearity and dose rate dependence were investigated for static and arc deliveries and compared to independent ionization chamber measurements. The dose verification capability of the transmission detector system was evaluated by comparing calculated and measured detector signals for 15 volumetric modulated arc therapy plans. The error detection sensitivity was tested by introducing MLC position and linac output errors. Deviations in dose distributions between the original and error-induced plans were compared in terms of detector signal deviation, dose-volume histogram (DVH) metrics and 2D γ-evaluation (2%/2 mm and 3%/3 mm). The detector signal is linearly dependent on linac output and shows negligible (<0.4%) dose rate dependence up to 460 MU min-1. Signal stability is within 1% for cumulative detector output; substantial variations were observed for the segment-by-segment signal. Calculated versus measured cumulative signal deviations ranged from  -0.16%-2.25%. DVH, mean 2D γ-value and detector signal evaluations showed increasing deviations with regard to the respective reference with growing MLC and dose output errors; good correlation between DVH metrics and detector signal deviation was found (e.g. PTV D mean: R 2  =  0.97). Positional MLC errors of 1 mm and errors in linac output of 2% were identified with the transmission detector system. The extensive tests performed in this investigation show that the new transmission detector provides a stable and sensitive cumulative signal output and is suitable for beam monitoring during patient treatment.

  3. Direct Imaging of Radionuclide-Produced Electrons and Positrons with an Ultrathin Phosphor

    PubMed Central

    Chen, Liying; Gobar, Lisa S.; Knowles, Negar G.; Liu, Zhonglin; Gmitro, Arthur F.; Barrett, Harrison H.

    2008-01-01

    Current electron detectors are either unable to image in vivo or lack sufficient spatial resolution because of electron scattering in thick detector materials. This study was aimed at developing a sensitive high-resolution system capable of detecting electron-emitting isotopes in vivo. Methods The system uses a lens-coupled charge-coupled-device camera to capture the scintillation light excited by an electron-emitting object near an ultrathin phosphor. The spatial resolution and sensitivity of the system were measured with a 3.7-kBq 90Y/90Sr β-source and a 70-µm resin bead labeled with 99mTc. Finally, we imaged the 99mTc-pertechnetate concentration in the mandibular gland of a mouse in vivo. Results Useful images were obtained with only a few hundred emitted β particles from the 90Y/90Sr source or conversion electrons from the 99mTc bead source. The in vivo image showed a clear profile of the mandibular gland and many fine details with exposures of as low as 30 s. All measurements were consistent with a spatial resolution of about 50 µm, corresponding to 2.5 detector pixels with the current camera. Conclusion Our new electron-imaging system can image electron-emitting isotope distributions at high resolution and sensitivity. The system is useful for in vivo imaging of small animals and small, exposed regions on humans. The ability to image β particles, positrons, and conversion electrons makes the system applicable to most isotopes. PMID:18552136

  4. Sixteen Years of the Hubble Space Telescope's Advanced Camera for Surveys: Calibration Update

    NASA Astrophysics Data System (ADS)

    Grogin, Norman A.; ACS Instrument Team

    2018-06-01

    The Advanced Camera for Surveys (ACS) has been a workhorse HST imager for over sixteen years, subsequent to its Servicing Mission 3B installation in 2002. The once defunct ACS Wide Field Channel (WFC) has now been operating nearly twice as long (>9yrs) since its Servicing Mission 4 (SM4) repair than it had originally operated prior to its 2007 failure. Despite the accumulating radiation damage to the WFC CCDs during their long stay in low Earth orbit, ACS continues to be heavily exploited by the HST community as both a prime and a parallel detector.During past year, there have been two new releases of the CALACS image reduction pipeline that have incorporated several recent advancements in ACS calibration capabilities. We review these updates, along with the enhanced calibration reference files (superbiases, superdarks, etc.) associated with these CALACS releases. We also present results from long-term monitoring of WFC dark current and readout noise, and from new studies of detector performance from both WFC and the ACS Solar Blind Channel (SBC). Highlights include: 1) improved characterization of WFC post-flash LED illumination, including a low-level annual modulation of LED intensity; 2) comprehensive assessment of SBC dark current as a function of detector operating temperature, and of SBC operating temperature versus duration of use; and 3) an update to the WFC bad-pixel table resulting from a minor particulate-contamination event in May 2017.

  5. An Intrinsic Fiber-Optic Sensor for Structure Lightning Current Measurement

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel. G.; Snyder, Gary P.

    2014-01-01

    An intrinsic optical-fiber sensor based on Faraday Effect is developed that is highly suitable for measuring lightning current on aircraft, towers and complex structures. Originally developed specifically for aircraft installations, it is light-weight, non-conducting, structure conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can measure total current down to DC. When used on lightning towers, the sensor can help validate other sensors and lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. A broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with a 60 dB dynamic range. Two systems were built that are similar in design but with slightly different sensitivities. The 1310nm laser system can measure 300 A - 300 kA, and has a 15m long sensing fiber. It was used in laboratory testing, including measuring current on an aluminum structure simulating an aircraft fuselage or a lightning tower. High current capabilities were demonstrated up to 200 kA at a lightning test facility. The 1550nm laser system can measure 400 A - 400 kA and has a 25m fiber length. Used in field measurements, excellent results were achieved in the summer of 2012 measuring rocket-triggered lightning at the International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida. In both systems increased sensitivity can be achieved with multiple fiber loops. The fiber optic sensor provides many unique capabilities not currently possible with traditional sensors. It represents an important new tool for lightning current measurement where low weight, complex shapes, large structure dimension, large current, and low frequency capabilities are important considerations.

  6. The LHC Experiments

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The Large Hadron Collider or LHC is the world’s biggest particle accelerator, but it can only get particles moving very quickly. To make measurements, scientists must employ particle detectors. There are four big detectors at the LHC: ALICE, ATLAS, CMS, and LHCb. In this video, Fermilab’s Dr. Don Lincoln introduces us to these detectors and gives us an idea of each one’s capabilities.

  7. Sensor readout detector circuit

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.

    1998-01-01

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

  8. Sensor readout detector circuit

    DOEpatents

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  9. The sPHENIX Experiment

    NASA Astrophysics Data System (ADS)

    Pérez Lara, Carlos E.

    2018-02-01

    Our understanding of QCD under extreme conditions has advanced tremendously in the last 20 years with the discovery of the Quark Gluon Plasma and its characterisation in heavy ion collisions at RHIC and LHC. The sPHENIX detector planned at RHIC is designed to further study the microscopic nature of the QGP through precision measurements of jet, upsilon and open heavy flavor probes over a broad pT range. The multi-year sPHENIX physics program will commence in early 2023, using state-of-the art detector technologies to fully exploit the highest RHIC luminosities. The experiment incorporates the 1.4 T former BaBar solenoid magnet, and will feature high precision tracking and vertexing capabilities, provided by a compact TPC, Si-strip intermediate tracker and MAPS vertex detector. This is complemented by highly granular electromagnetic and hadronic calorimetry with full azimuthal coverage. In this document I describe the sPHENIX detector design and physics program, with particular emphasis on the comprehensive open heavy flavour program enabled by the experiment's large coverage, high rate capability and precision vertexing.

  10. Comparison of Fluka-2006 Monte Carlo Simulation and Flight Data for the ATIC Detector

    NASA Technical Reports Server (NTRS)

    Gunasingha, R.M.; Fazely, A.R.; Adams, J.H.; Ahn, H.S.; Bashindzhagyan, G.L.; Chang, J.; Christl, M.; Ganel, O.; Guzik, T.G.; Isbert, J.; hide

    2007-01-01

    We have performed a detailed Monte Carlo (MC) simulation for the Advanced Thin Ionization Calorimeter (ATIC) detector using the MC code FLUKA-2006 which is capable of simulating particles up to 10 PeV. The ATIC detector has completed two successful balloon flights from McMurdo, Antarctica lasting a total of more than 35 days. ATIC is designed as a multiple, long duration balloon flight, investigation of the cosmic ray spectra from below 50 GeV to near 100 TeV total energy; using a fully active Bismuth Germanate(BGO) calorimeter. It is equipped with a large mosaic of.silicon detector pixels capable of charge identification, and, for particle tracking, three projective layers of x-y scintillator hodoscopes, located above, in the middle and below a 0.75 nuclear interaction length graphite target. Our simulations are part of an analysis package of both nuclear (A) and energy dependences for different nuclei interacting in the ATIC detector. The MC simulates the response of different components of the detector such as the Si-matrix, the scintillator hodoscopes and the BGO calorimeter to various nuclei. We present comparisons of the FLUKA-2006 MC calculations with GEANT calculations and with the ATIC CERN data and ATIC flight data.

  11. Organic materials and devices for detecting ionizing radiation

    DOEpatents

    Doty, F Patrick [Livermore, CA; Chinn, Douglas A [Livermore, CA

    2007-03-06

    A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.

  12. An evaluation of the Kearny Fallout Meter (KFM), a radiation detector constructed from commonly available household materials.

    PubMed

    McDonald, J T; West, W G; Kearfott, K J

    2004-11-01

    A radiation detector constructed of common household materials was developed at Oak Ridge National Laboratory (ORNL) by Cresson H. Kearny and has been referred to as the Kearny Fallout Meter (KFM). Developed during the height of the Cold War, the KFM was intended to place a radiation meter capable of measuring fallout from nuclear weapons in the hands of every U.S. citizen. Instructions for the construction of the meter, as well as information about radiation health effects, were developed in the form of multi-page newspaper insert. Subsequently, the sensitivity of the meter was refined by a high school teacher, Dr. Paul S. Lombardi, for use in demonstrations about radiation. The meter is currently being marketed for survivalists in light of potential radiation terrorist concerns. The KFM and Lombardi's variation of it are constructed and evaluated for this work. Calibrated tests of the response and variations in response are reported. A critique of the multi-page manual is made. In addition, the suitability of using such a detector, in terms of actual ease of construction and practical sensitivity, is discussed for its use in demonstrations and introductory classes on nuclear topics.

  13. Independent gate control of injected and detected spin currents in CVD graphene nonlocal spin valves

    NASA Astrophysics Data System (ADS)

    Anugrah, Yoska; Hu, Jiaxi; Stecklein, Gordon; Crowell, Paul A.; Koester, Steven J.

    2018-01-01

    Graphene is an ideal material for spintronic devices due to its low spin-orbit coupling and high mobility. One of the most important potential applications of graphene spintronics is for use in neuromorphic computing systems, where the tunable spin resistance of graphene can be used to apply analog weighting factors. A key capability needed to achieve spin-based neuromorphic computing systems is to achieve distinct regions of control, where injected and detected spin currents can be tuned independently. Here, we demonstrate the ability to achieve such independent control using a graphene spin valve geometry where the injector and detector regions are modulated by two separate bottom gate electrodes. The spin transport parameters and their dependence on each gate voltage are extracted from Hanle precession measurements. From this analysis, local spin transport parameters and their dependence on the local gate voltage are found, which provide a basis for a spatially-resolved spin resistance network that simulates the device. The data and model are used to calculate the spin currents flowing into, through, and out of the graphene channel. We show that the spin current flowing through the graphene channel can be modulated by 30% using one gate and that the spin current absorbed by the detector can be modulated by 50% using the other gate. This result demonstrates that spin currents can be controlled by locally tuning the spin resistance of graphene. The integration of chemical vapor deposition (CVD) grown graphene with local gates allows for the implementation of large-scale integrated spin-based circuits.

  14. High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafari Salim, A., E-mail: ajafaris@uwaterloo.ca; Eftekharian, A.; University of Waterloo, Waterloo, Ontario N2L 3G1

    In this paper, we theoretically show that a multi-layer superconducting nanowire single-photon detector (SNSPD) is capable of approaching characteristics of an ideal SNSPD in terms of the quantum efficiency, dark count, and band-width. A multi-layer structure improves the performance in two ways. First, the potential barrier for thermally activated vortex crossing, which is the major source of dark counts and the reduction of the critical current in SNSPDs is elevated. In a multi-layer SNSPD, a vortex is made of 2D-pancake vortices that form a stack. It will be shown that the stack of pancake vortices effectively experiences a larger potentialmore » barrier compared to a vortex in a single-layer SNSPD. This leads to an increase in the experimental critical current as well as significant decrease in the dark count rate. In consequence, an increase in the quantum efficiency for photons of the same energy or an increase in the sensitivity to photons of lower energy is achieved. Second, a multi-layer structure improves the efficiency of single-photon absorption by increasing the effective optical thickness without compromising the single-photon sensitivity.« less

  15. Focal plane mechanical design of the NISP/Euclid instrument

    NASA Astrophysics Data System (ADS)

    Bonnefoi, Anne; Bon, William; Niclas, Mathieu; Solheim, Bjarte G. B.; Torvanger, Oyvind; Schistad, Robert; Foulon, Benjamin; Garcia, José; Vives, Sébastien

    2016-07-01

    Currently in phase C, the Euclid mission selected by ESA in the Cosmic Vision program is dedicated to understand dark energy and dark matter. NISP (standing for Near Infrared Spectro-Photometer) is one of the two instruments of the mission. NISP will combine a photometer and a spectrometer working in the near-IR (0.9-2 microns). Its detection subsystem (called NI-DS) is based on a mosaic of 16 IR detectors cooled down to 90K which are supported by a molybdenum plate. The front-end readout electronics (working at 130K) are supported by another structure in Aluminum. The NI-DS is mounted on the rest of the instrument thanks to a panel in Silicon Carbide (SiC). Finally an optical baffle in Titanium will prevent the rogue light to reach the detectors. On top of the complexity due to the wide range of temperatures and the various materials imposed at the interfaces; the NI-DS has also to incorporate an internal adjustment capability of the position of the focal plane in tip/tilt and focus. This article will present current status of the development of the detection system of NISP.

  16. High sensitivity field asymmetric ion mobility spectrometer

    NASA Astrophysics Data System (ADS)

    Chavarria, Mario A.; Matheoud, Alessandro V.; Marmillod, Philippe; Liu, Youjiang; Kong, Deyi; Brugger, Jürgen; Boero, Giovanni

    2017-03-01

    A high sensitivity field asymmetric ion mobility spectrometer (FAIMS) was designed, fabricated, and tested. The main components of the system are a 10.6 eV UV photoionization source, an ion filter driven by a high voltage/high frequency n-MOS inverter circuit, and a low noise ion detector. The ion filter electronics are capable to generate square waveforms with peak-to-peak voltages up to 1000 V at frequencies up to 1 MHz with adjustable duty cycles. The ion detector current amplifier has a gain up to 1012 V/A with an effective equivalent input noise level down to about 1 fA/Hz1/2 during operation with the ion filter at the maximum voltage and frequency. The FAIMS system was characterized by detecting different standard chemical compounds. Additionally, we investigated the use of a synchronous modulation/demodulation technique to improve the signal-to-noise ratio in FAIMS measurements. In particular, we implemented the modulation of the compensation voltage with the synchronous demodulation of the ion current. The analysis of the measurements at low concentration levels led to an extrapolated limit of detection for acetone of 10 ppt with an averaging time of 1 s.

  17. Update on the Fabrication and Performance of 2-D Arrays of Superconducting Magnesium Diboride (MgB2) Thermal Detectors for Outer-Planets Exploration

    NASA Technical Reports Server (NTRS)

    Lakew, Brook; Aslam, S.

    2011-01-01

    Detectors with better performance than the current thermopile detectors that operate at room temperature will be needed at the focal plane of far-infrared instruments on future planetary exploration missions. We will present an update on recent results from the 2-D array of MgB2 thermal detectors being currently developed at NASA Goddard. Noise and sensitivity results will be presented and compared to thermal detectors currently in use on planetary missions.

  18. Performance, results, and prospects of the visible spectrograph VEGA on CHARA

    NASA Astrophysics Data System (ADS)

    Mourard, Denis; Challouf, Mounir; Ligi, Roxanne; Bério, Philippe; Clausse, Jean-Michel; Gerakis, Jérôme; Bourges, Laurent; Nardetto, Nicolas; Perraut, Karine; Tallon-Bosc, Isabelle; McAlister, H.; ten Brummelaar, T.; Ridgway, S.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2012-07-01

    In this paper, we review the current performance of the VEGA/CHARA visible spectrograph and make a review of the most recent astrophysical results. The science programs take benefit of the exceptional angular resolution, the unique spectral resolution and one of the main features of CHARA: Infrared and Visible parallel operation. We also discuss recent developments concerning the tools for the preparation of observations and important features of the data reduction software. A short discussion of the future developments will complete the presentation, directed towards new detectors and possible new beam combination scheme for improved sensitivity and imaging capabilities.

  19. Bone optical spectroscopy for the measurement of hemoglobin content

    NASA Astrophysics Data System (ADS)

    Hollmann, Joseph L.; Arambel, Paula; Piet, Judith; Shefelbine, Sandra; Markovic, Stacey; Niedre, Mark; DiMarzio, Charles A.

    2014-05-01

    Osteoporosis is a common side effect of spinal cord injuries. Blood perfusion in the bone provides an indication of bone health and may help to evaluate therapies addressing bone loss. Current methods for measuring blood perfusion of bone use dyes and ionizing radiation, and yield qualitative results. We present a device capable of measuring blood oxygenation in the tibia. The device illuminates the skin directly over the tibia with a white light source and measures the diffusely reflected light in the near infrared spectrum. Multiple source-detector distances are utilized so that the blood perfusion in skin and bone may be differentiated.

  20. Pushing x-ray photon correlation spectroscopy beyond the continuous frame rate limit

    DOE PAGES

    Dufresne, Eric M.; Narayanan, Suresh; Sandy, Alec R.; ...

    2016-01-06

    We demonstrate delayed-frame X-ray Photon Correlation Spectroscopy with 120 microsecond time resolution, limited only by sample scattering rates, with a prototype Pixel-array detector capable of taking two image frames separated by 153 ns or less. Although the overall frame rate is currently limited to about 4 frame pairs per second, we easily measured millisecond correlation functions. In conclusion, this technology, coupled to the use of brighter synchrotrons such as Petra III or the NSLS-II should enable X-ray Photon Correlation Spectroscopy on microsecond time scales on a wider variety of materials.

  1. Recent Developments at the Accelerator Laboratory in Jyvaeskylae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trzaska, Wladyslaw Henryk

    Recent developments at the Accelerator Laboratory in Jyvaeskylae are described. In addition to the existing K = 130 a new cyclotron has been added. It is capable of producing of high current proton and deuteron beams at 30 and 15 MeV correspondingly. It should be fully operational in 2010. A new development in Jyvaeskylae is the growing commitment to astroparticle physics. Jyvaeskylae took the main scientific responsibility for a new cosmic-ray experiment EMMA and has joined the LAGUNA project working on the design of the next generation of very large volume detectors for underground observatories.

  2. νμ → ν e oscillations search in the OPERA experiment

    NASA Astrophysics Data System (ADS)

    Zemskova, S.

    2016-11-01

    The tracking capabilities of the OPERA detector allow to reconstruct τ-leptons and electrons. It gives a possibility to observe νμ → ντ oscillations in the appearance mode and to study νμ → ν e oscillations in the νμ CNGS beam. Current results on νμ → ν e channel in the three-flavour mixing model are presented. The same data allow to constrain the presence of additional sterile neutrino states. The analysis of the full 2008-2012 OPERA data set and work on its improvement are going on. Details of the achievements are presented.

  3. Characterization of the LBNL PEM Camera

    NASA Astrophysics Data System (ADS)

    Wang, G.-C.; Huber, J. S.; Moses, W. W.; Qi, J.; Choong, W.-S.

    2006-06-01

    We present the tomographic images and performance measurements of the LBNL positron emission mammography (PEM) camera, a specially designed positron emission tomography (PET) camera that utilizes PET detector modules with depth of interaction measurement capability to achieve both high sensitivity and high resolution for breast cancer detection. The camera currently consists of 24 detector modules positioned as four detector banks to cover a rectangular patient port that is 8.2/spl times/6 cm/sup 2/ with a 5 cm axial extent. Each LBNL PEM detector module consists of 64 3/spl times/3/spl times/30 mm/sup 3/ LSO crystals coupled to a single photomultiplier tube (PMT) and an 8/spl times/8 silicon photodiode array (PD). The PMT provides accurate timing, the PD identifies the crystal of interaction, the sum of the PD and PMT signals (PD+PMT) provides the total energy, and the PD/(PD+PMT) ratio determines the depth of interaction. The performance of the camera has been evaluated by imaging various phantoms. The full-width-at-half-maximum (FWHM) spatial resolution changes slightly from 1.9 mm to 2.1 mm when measured at the center and corner of the field of the view, respectively, using a 6 ns coincidence timing window and a 300-750 keV energy window. With the same setup, the peak sensitivity of the camera is 1.83 kcps//spl mu/Ci.

  4. Solar neutrino detection in a large volume double-phase liquid argon experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco, D.; Agnes, P.; Giganti, C.

    2016-08-01

    Precision measurements of solar neutrinos emitted by specific nuclear reaction chains in the Sun are of great interest for developing an improved understanding of star formation and evolution. Given the expected neutrino fluxes and known detection reactions, such measurements require detectors capable of collecting neutrino-electron scattering data in exposures on the order of 1 ktonne-yr, with good energy resolution and extremely low background. Two-phase liquid argon time projection chambers (LAr TPCs) are under development for direct Dark Matter WIMP searches, which possess very large sensitive mass, high scintillation light yield, good energy resolution, and good spatial resolution in all threemore » cartesian directions. While enabling Dark Matter searches with sensitivity extending to the ''neutrino floor'' (given by the rate of nuclear recoil events from solar neutrino coherent scattering), such detectors could also enable precision measurements of solar neutrino fluxes using the neutrino-electron elastic scattering events. Modeling results are presented for the cosmogenic and radiogenic backgrounds affecting solar neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at LNGS depth (3,800 meters of water equivalent). The results show that such a detector could measure the CNO neutrino rate with ∼15% precision, and significantly improve the precision of the {sup 7}Be and pep neutrino rates compared to the currently available results from the Borexino organic liquid scintillator detector.« less

  5. A Silicon SPECT System for Molecular Imaging of the Mouse Brain.

    PubMed

    Shokouhi, Sepideh; Fritz, Mark A; McDonald, Benjamin S; Durko, Heather L; Furenlid, Lars R; Wilson, Donald W; Peterson, Todd E

    2007-01-01

    We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 1024 strips on each side gives rise to a detector with over one million pixels. Combining four high-resolution DSSDs into a SPECT system offers an unprecedented space-bandwidth product for the imaging of single-photon emitters. The system consists of two camera heads with two silicon detectors stacked one behind the other in each head. The collimator has a focused pinhole system with cylindrical-shaped pinholes that are laser-drilled in a 250 μm tungsten plate. The unique ability to collect projection data at two magnifications simultaneously allows for multiplexed data at high resolution to be combined with lower magnification data with little or no multiplexing. With the current multi-pinhole collimator design, our SPECT system will be capable of offering high spatial resolution, sensitivity and angular sampling for small field-of-view applications, such as molecular imaging of the mouse brain.

  6. Design and manufacture of imaging time-of-propagation optics

    NASA Astrophysics Data System (ADS)

    Albrecht, Mike; Fast, James; Schwartz, Alan

    2016-09-01

    There are several challenges associated with the design and manufacture of the optics required for the imaging time-of- propagation detector constructed for the Belle II particle physics experiment. This detector uses Cherenkov light radiated in quartz bars to identify subatomic particles: pions, kaons, and protons. The optics are physically large (125 cm x 45 cm x 2 cm bars and 45 cm x 10 cm x 5 cm prisms), all surfaces are optically polished, and there is very little allowance for chamfers or surface defects. In addition to the optical challenges, there are several logistical and handling challenges associated with measuring, assembling, cleaning, packaging, and shipping these delicate precision optics. This paper describes a collaborative effort between Pacific Northwest National Laboratory, the University of Cincinnati, and ZYGO Corporation for the design and manufacture of 48 fused silica optics (30 bars and 18 prisms) for the iTOP Detector. Details of the iTOP detector design that drove the challenging optical requirements are provided, along with material selection considerations. Since the optics are so large, precise, and delicate, special care had to be given to the selection of a manufacturing process capable of achieving the challenging optical and surface defect requirements on such large and high-aspect-ratio (66:1) components. A brief update on the current status and performance of these optics is also provided.

  7. Design of T-GEM detectors for X-ray diagnostics on JET

    NASA Astrophysics Data System (ADS)

    Rzadkiewicz, J.; Dominik, W.; Scholz, M.; Chernyshova, M.; Czarski, T.; Czyrkowski, H.; Dabrowski, R.; Jakubowska, K.; Karpinski, L.; Kasprowicz, G.; Kierzkowski, K.; Pozniak, K.; Salapa, Z.; Zabolotny, W.; Blanchard, P.; Tyrrell, S.; Zastrow, K.-D.; JET EFDA Contributors

    2013-08-01

    Upgraded high-resolution X-ray diagnostics on JET is expected to monitor the plasma radiation emitted by W46+ and Ni26+ ions at 2.4 keV and 7.8 keV photon energies, respectively. Both X-ray lines will be monitored by new generation energy-resolved micropattern gas detectors with 1-D position reconstruction capability. The detection structure is based on triple GEM (T-GEM) amplification structure followed by the strip readout electrode. This article presents a design of new detectors and prototype detector tests.

  8. Monte Carlo Simulation of a Segmented Detector for Low-Energy Electron Antineutrinos

    NASA Astrophysics Data System (ADS)

    Qomi, H. Akhtari; Safari, M. J.; Davani, F. Abbasi

    2017-11-01

    Detection of low-energy electron antineutrinos is of importance for several purposes, such as ex-vessel reactor monitoring, neutrino oscillation studies, etc. The inverse beta decay (IBD) is the interaction that is responsible for detection mechanism in (organic) plastic scintillation detectors. Here, a detailed study will be presented dealing with the radiation and optical transport simulation of a typical segmented antineutrino detector withMonte Carlo method using MCNPX and FLUKA codes. This study shows different aspects of the detector, benefiting from inherent capabilities of the Monte Carlo simulation codes.

  9. Solid state neutron detector array

    DOEpatents

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  10. X-ray fluorescence analysis of alloy and stainless steels using a mercuric iodide detector

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Maddox, W. Gene

    1988-01-01

    A mercuric iodide detector was used for the XRF analysis of a number of NBS standard steels, applying a specially developed correction method for interelemental effects. It is shown that, using this method and a good peak-deconvolution technique, the HgI2 detector is capable of achieving resolutions and count rates needed in the XRF anlysis of multielement samples. The freedom from cryogenic cooling and from power supplies necessary for an electrically cooled device makes this detector a very good candidate for a portable instrument.

  11. A scalable multi-photon coincidence detector based on superconducting nanowires.

    PubMed

    Zhu, Di; Zhao, Qing-Yuan; Choi, Hyeongrak; Lu, Tsung-Ju; Dane, Andrew E; Englund, Dirk; Berggren, Karl K

    2018-06-04

    Coincidence detection of single photons is crucial in numerous quantum technologies and usually requires multiple time-resolved single-photon detectors. However, the electronic readout becomes a major challenge when the measurement basis scales to large numbers of spatial modes. Here, we address this problem by introducing a two-terminal coincidence detector that enables scalable readout of an array of detector segments based on superconducting nanowire microstrip transmission line. Exploiting timing logic, we demonstrate a sixteen-element detector that resolves all 136 possible single-photon and two-photon coincidence events. We further explore the pulse shapes of the detector output and resolve up to four-photon events in a four-element device, giving the detector photon-number-resolving capability. This new detector architecture and operating scheme will be particularly useful for multi-photon coincidence detection in large-scale photonic integrated circuits.

  12. Study of gamma detection capabilities of the REWARD mobile spectroscopic system

    NASA Astrophysics Data System (ADS)

    Balbuena, J. P.; Baptista, M.; Barros, S.; Dambacher, M.; Disch, C.; Fiederle, M.; Kuehn, S.; Parzefall, U.

    2017-07-01

    REWARD is a novel mobile spectroscopic radiation detector system for Homeland Security applications. The system integrates gamma and neutron detection equipped with wireless communication. A comprehensive simulation study on its gamma detection capabilities in different radioactive scenarios is presented in this work. The gamma detection unit consists of a precise energy resolution system based on two stacked (Cd,Zn)Te sensors working in coincidence sum mode. The volume of each of these CZT sensors is 1 cm3. The investigated energy windows used to determine the detection capabilities of the detector correspond to the gamma emissions from 137Cs and 60Co radioactive sources (662 keV and 1173/1333 keV respectively). Monte Carlo and Technology Computer-Aided Design (TCAD) simulations are combined to determine its sensing capabilities for different radiation sources and estimate the limits of detection of the sensing unit as a function of source activity for several shielding materials.

  13. P-Compensated and P-Doped Superlattice Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Khoshakhlagh, Arezou (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2017-01-01

    Barrier infrared detectors configured to operate in the long-wave (LW) infrared regime are provided. The barrier infrared detector systems may be configured as pin, pbp, barrier and double heterostructrure infrared detectors incorporating optimized p-doped absorbers capable of taking advantage of high mobility (electron) minority carriers. The absorber may be a p-doped Ga-free InAs/InAsSb material. The p-doping may be accomplished by optimizing the Be doping levels used in the absorber material. The barrier infrared detectors may incorporate individual superlattice layers having narrower periodicity and optimization of Sb composition to achieve cutoff wavelengths of.about.10.mu.m.

  14. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET.

    PubMed

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-03-21

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes-as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  15. Data acquisition system issues for large experiments

    NASA Astrophysics Data System (ADS)

    Siskind, E. J.

    2007-09-01

    This talk consists of personal observations on two classes of data acquisition ("DAQ") systems for Silicon trackers in large experiments with which the author has been concerned over the last three or more years. The first half is a classic "lessons learned" recital based on experience with the high-level debug and configuration of the DAQ system for the GLAST LAT detector. The second half is concerned with a discussion of the promises and pitfalls of using modern (and future) generations of "system-on-a-chip" ("SOC") or "platform" field-programmable gate arrays ("FPGAs") in future large DAQ systems. The DAQ system pipeline for the 864k channels of Si tracker in the GLAST LAT consists of five tiers of hardware buffers which ultimately feed into the main memory of the (two-active-node) level-3 trigger processor farm. The data formats and buffer volumes of these tiers are briefly described, as well as the flow control employed between successive tiers. Lessons learned regarding data formats, buffer volumes, and flow control/data discard policy are discussed. The continued development of platform FPGAs containing large amounts of configurable logic fabric, embedded PowerPC hard processor cores, digital signal processing components, large volumes of on-chip buffer memory, and multi-gigabit serial I/O capability permits DAQ system designers to vastly increase the amount of data preprocessing that can be performed in parallel within the DAQ pipeline for detector systems in large experiments. The capabilities of some currently available FPGA families are reviewed, along with the prospects for next-generation families of announced, but not yet available, platform FPGAs. Some experience with an actual implementation is presented, and reconciliation between advertised and achievable specifications is attempted. The prospects for applying these components to space-borne Si tracker detectors are briefly discussed.

  16. The "+" for CRIRES: enabling better science at infrared wavelength and high spectral resolution at the ESO VLT

    NASA Astrophysics Data System (ADS)

    Dorn, Reinhold J.; Follert, Roman; Bristow, Paul; Cumani, Claudio; Eschbaumer, Siegfried; Grunhut, Jason; Haimerl, Andreas; Hatzes, Artie; Heiter, Ulrike; Hinterschuster, Renate; Ives, Derek J.; Jung, Yves; Kerber, Florian; Klein, Barbara; Lavaila, Alexis; Lizon, Jean Louis; Löwinger, Tom; Molina-Conde, Ignacio; Nicholson, Belinda; Marquart, Thomas; Oliva, Ernesto; Origlia, Livia; Pasquini, Luca; Paufique, Jérôme; Piskunov, Nikolai; Reiners, Ansgar; Seemann, Ulf; Stegmeier, Jörg; Stempels, Eric; Tordo, Sebastien

    2016-08-01

    The adaptive optics (AO) assisted CRIRES instrument is an IR (0.92 - 5.2 μm) high-resolution spectrograph was in operation from 2006 to 2014 at the Very Large Telescope (VLT) observatory. CRIRES was a unique instrument, accessing a parameter space (wavelength range and spectral resolution) up to now largely uncharted. It consisted of a single-order spectrograph providing long-slit (40 arcsecond) spectroscopy with a resolving power up to R=100 000. However the setup was limited to a narrow, single-shot, spectral range of about 1/70 of the central wavelength, resulting in low observing efficiency for many scientific programmes requiring a broad spectral coverage. The CRIRES upgrade project, CRIRES+, transforms this VLT instrument into a cross-dispersed spectrograph to increase the simultaneously covered wavelength range by a factor of ten. A new and larger detector focal plane array of three Hawaii 2RG detectors with 5.3 μm cut-off wavelength will replace the existing detectors. For advanced wavelength calibration, custom-made absorption gas cells and an etalon system will be added. A spectro-polarimetric unit will allow the recording of circular and linear polarized spectra. This upgrade will be supported by dedicated data reduction software allowing the community to take full advantage of the new capabilities offered by CRIRES+. CRIRES+ has now entered its assembly and integration phase and will return with all new capabilities by the beginning of 2018 to the Very Large Telescope in Chile. This article will provide the reader with an update of the current status of the instrument as well as the remaining steps until final installation at the Paranal Observatory.

  17. Speckle imaging with the PAPA detector. [Precision Analog Photon Address

    NASA Technical Reports Server (NTRS)

    Papaliolios, C.; Nisenson, P.; Ebstein, S.

    1985-01-01

    A new 2-D photon-counting camera, the PAPA (precision analog photon address) detector has been built, tested, and used successfully for the acquisition of speckle imaging data. The camera has 512 x 512 pixels and operates at count rates of at least 200,000/sec. In this paper, technical details on the camera are presented and some of the laboratory and astronomical results are included which demonstrate the detector's capabilities.

  18. Particle Identification in the NIMROD-ISiS Detector Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wuenschel, S.; Hagel, K.; May, L. W.

    Interest in the influence of the neutron-to-proton (N/Z) ratio on multifragmenting nuclei has demanded an improvement in the capabilities of multi-detector arrays as well as the companion analysis methods. The particle identification method used in the NIMROD-ISiS 4{pi} array is described. Performance of the detectors and the analysis method are presented for the reaction of {sup 86}Kr+{sup 64}Ni at 35 MeV/u.

  19. High Performance CMOS Light Detector with Dark Current Suppression in Variable-Temperature Systems.

    PubMed

    Lin, Wen-Sheng; Sung, Guo-Ming; Lin, Jyun-Long

    2016-12-23

    This paper presents a dark current suppression technique for a light detector in a variable-temperature system. The light detector architecture comprises a photodiode for sensing the ambient light, a dark current diode for conducting dark current suppression, and a current subtractor that is embedded in the current amplifier with enhanced dark current cancellation. The measured dark current of the proposed light detector is lower than that of the epichlorohydrin photoresistor or cadmium sulphide photoresistor. This is advantageous in variable-temperature systems, especially for those with many infrared light-emitting diodes. Experimental results indicate that the maximum dark current of the proposed current amplifier is approximately 135 nA at 125 °C, a near zero dark current is achieved at temperatures lower than 50 °C, and dark current and temperature exhibit an exponential relation at temperatures higher than 50 °C. The dark current of the proposed light detector is lower than 9.23 nA and the linearity is approximately 1.15 μA/lux at an external resistance R SS = 10 kΩ and environmental temperatures from 25 °C to 85 °C.

  20. High Performance CMOS Light Detector with Dark Current Suppression in Variable-Temperature Systems

    PubMed Central

    Lin, Wen-Sheng; Sung, Guo-Ming; Lin, Jyun-Long

    2016-01-01

    This paper presents a dark current suppression technique for a light detector in a variable-temperature system. The light detector architecture comprises a photodiode for sensing the ambient light, a dark current diode for conducting dark current suppression, and a current subtractor that is embedded in the current amplifier with enhanced dark current cancellation. The measured dark current of the proposed light detector is lower than that of the epichlorohydrin photoresistor or cadmium sulphide photoresistor. This is advantageous in variable-temperature systems, especially for those with many infrared light-emitting diodes. Experimental results indicate that the maximum dark current of the proposed current amplifier is approximately 135 nA at 125 °C, a near zero dark current is achieved at temperatures lower than 50 °C, and dark current and temperature exhibit an exponential relation at temperatures higher than 50 °C. The dark current of the proposed light detector is lower than 9.23 nA and the linearity is approximately 1.15 μA/lux at an external resistance RSS = 10 kΩ and environmental temperatures from 25 °C to 85 °C. PMID:28025530

  1. Performance evaluation of a modular detector unit for X-ray computed tomography.

    PubMed

    Guo, Zhe; Tang, Zhiwei; Wang, Xinzeng; Deng, Mingliang; Hu, Guangshu; Zhang, Hui

    2013-04-18

    A research prototype CT scanner is currently under development in our lab. One of the key components in this project is the CT detector. This paper describes the design and performance evaluation of the modular CT detector unit for our proposed scanner. It consists of a Photodiode Array Assembly which captures irradiating X-ray photons and converts the energy into electrical current, and a mini Data Acquisition System which performs current integration and converts the analog signal into digital samples. The detector unit can be easily tiled together to form a CT detector. Experiments were conducted to characterize the detector performance both at the single unit level and system level. The noise level, linearity and uniformity of the proposed detector unit were reported and initial imaging studies were also presented which demonstrated the potential application of the proposed detector unit in actual CT scanners.

  2. Study of the performance of Micromegas detectors in magnetic field

    NASA Astrophysics Data System (ADS)

    Dimitrios, Sampsonidis

    2018-02-01

    Resistive Micromegas (MICRO MEsh GAseous Structure) detectors have been chosen by the ATLAS collaboration at LHC for the high luminosity upgrade, due to their capability to maintain full efficiency and high spatial resolution at high occupancy, for tracking muons in the forward region of the detector. The Inner Muon Station, in the high-rapidity region, the so called New Small Wheel (NSW), will be composed of micromegas detectors that will have to maintain good performance in the presence of magnetic field of up to about 0.3 T. The response of micromegas detectors is affected by the magnetic field, where the deflection of the drift electrons is described by the Lorentz angle, resulting in a bias in the reconstructed track position. Several test-beam campaigns have been performed to test the behaviour of small size resistive micromegas prototypes (10×10 cm2) in magnetic fields up to 1 T, using high momentum muon and hadron beams at CERN. These studies are performed in order to validate the capability of the chambers to provide unbiased tracks in the NSW conditions. Measurements of the Lorentz angle and drift velocity as a function of the magnetic field are presented and both are compared to expectations based on Garfield-Magboltz simulations. Several methods to correct the position bias are applied, based on the chamber configuration or on the knowledge of the local value of the magnetic field. The results of these studies are presented together with an overall discussion of the Micromegas tracking capability in magnetic field.

  3. Long-distance transmission of light in a scintillator-based radiation detector

    DOEpatents

    Dowell, Jonathan L.; Talbott, Dale V.; Hehlen, Markus P.

    2017-07-11

    Scintillator-based radiation detectors capable of transmitting light indicating the presence of radiation for long distances are disclosed herein. A radiation detector can include a scintillator layer and a light-guide layer. The scintillator layer is configured to produce light upon receiving incident radiation. The light-guide layer is configured to receive light produced by the scintillator layer and either propagate the received light through the radiation detector or absorb the received light and emit light, through fluorescence, that is propagated through the radiation detector. A radiation detector can also include an outer layer partially surrounding the scintillator layer and light-guide layer. The index of refraction of the light-guide layer can be greater than the index of refraction of adjacent layers.

  4. Multi-anode microchannel arrays. [for use in ground-based and spaceborne telescopes

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Mount, G. H.; Bybee, R. L.

    1979-01-01

    The Multi-Anode Microchannel Arrays (MAMA's) are a family of photoelectric, photon-counting array detectors being developed for use in instruments on both ground-based and space-borne telescopes. These detectors combine high sensitivity and photometric stability with a high-resolution imaging capability. MAMA detectors can be operated in a windowless configuration at extreme-ultraviolet and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. Prototype MAMA detectors with up to 512 x 512 pixels are now being tested in the laboratory and telescope operation of a simple (10 x 10)-pixel visible-light detector has been initiated. The construction and modes-of-operation of the MAMA detectors are briefly described and performance data are presented.

  5. Expanding the detection efficiency of silicon drift detectors

    NASA Astrophysics Data System (ADS)

    Schlosser, D. M.; Lechner, P.; Lutz, G.; Niculae, A.; Soltau, H.; Strüder, L.; Eckhardt, R.; Hermenau, K.; Schaller, G.; Schopper, F.; Jaritschin, O.; Liebel, A.; Simsek, A.; Fiorini, C.; Longoni, A.

    2010-12-01

    To expand the detection efficiency Silicon Drift Detectors (SDDs) with various customized radiation entrance windows, optimized detector areas and geometries have been developed. Optimum values for energy resolution, peak to background ratio (P/B) and high count rate capability support the development. Detailed results on sensors optimized for light element detection down to Boron or even lower will be reported. New developments for detecting medium and high X-ray energies by increasing the effective detector thickness will be presented. Gamma-ray detectors consisting of a SDD coupled to scintillators like CsI(Tl) and LaBr 3(Ce) have been examined. Results of the energy resolution for the 137Cs 662 keV line and the light yield (LY) of such detector systems will be reported.

  6. Small Pixel Hybrid CMOS X-ray Detectors

    NASA Astrophysics Data System (ADS)

    Hull, Samuel; Bray, Evan; Burrows, David N.; Chattopadhyay, Tanmoy; Falcone, Abraham; Kern, Matthew; McQuaide, Maria; Wages, Mitchell

    2018-01-01

    Concepts for future space-based X-ray observatories call for a large effective area and high angular resolution instrument to enable precision X-ray astronomy at high redshift and low luminosity. Hybrid CMOS detectors are well suited for such high throughput instruments, and the Penn State X-ray detector lab, in collaboration with Teledyne Imaging Sensors, has recently developed new small pixel hybrid CMOS X-ray detectors. These prototype 128x128 pixel devices have 12.5 micron pixel pitch, 200 micron fully depleted depth, and include crosstalk eliminating CTIA amplifiers and in-pixel correlated double sampling (CDS) capability. We report on characteristics of these new detectors, including the best read noise ever measured for an X-ray hybrid CMOS detector, 5.67 e- (RMS).

  7. LOCALIZATION OF SHORT DURATION GRAVITATIONAL-WAVE TRANSIENTS WITH THE EARLY ADVANCED LIGO AND VIRGO DETECTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essick, Reed; Vitale, Salvatore; Katsavounidis, Erik

    2015-02-20

    The Laser Interferometer Gravitational wave Observatory (LIGO) and Virgo advanced ground-based gravitational-wave detectors will begin collecting science data in 2015. With first detections expected to follow, it is important to quantify how well generic gravitational-wave transients can be localized on the sky. This is crucial for correctly identifying electromagnetic counterparts as well as understanding gravitational-wave physics and source populations. We present a study of sky localization capabilities for two search and parameter estimation algorithms: coherent WaveBurst, a constrained likelihood algorithm operating in close to real-time, and LALInferenceBurst, a Markov chain Monte Carlo parameter estimation algorithm developed to recover generic transientmore » signals with latency of a few hours. Furthermore, we focus on the first few years of the advanced detector era, when we expect to only have two (2015) and later three (2016) operational detectors, all below design sensitivity. These detector configurations can produce significantly different sky localizations, which we quantify in detail. We observe a clear improvement in localization of the average detected signal when progressing from two-detector to three-detector networks, as expected. Although localization depends on the waveform morphology, approximately 50% of detected signals would be imaged after observing 100-200 deg{sup 2} in 2015 and 60-110 deg{sup 2} in 2016, although knowledge of the waveform can reduce this to as little as 22 deg{sup 2}. This is the first comprehensive study on sky localization capabilities for generic transients of the early network of advanced LIGO and Virgo detectors, including the early LIGO-only two-detector configuration.« less

  8. MicroCT with energy-resolved photon-counting detectors

    PubMed Central

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, BMW; Patt, B E; Frey, E C

    2011-01-01

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with Kabsorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences. PMID:21464527

  9. MicroCT with energy-resolved photon-counting detectors.

    PubMed

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, B M W; Patt, B E; Frey, E C

    2011-05-07

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with K-absorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences.

  10. Detectors Requirements for the ODIN Beamline at ESS

    NASA Astrophysics Data System (ADS)

    Morgano, Manuel; Lehmann, Eberhard; Strobl, Markus

    The upcoming high intensity pulsed spallationneutron source ESS, now in construction in Sweden, will provide unprecedented opportunities for neutron science worldwide. In particular, neutron imaging will benefit from the time structure of the source and its high brilliance. These features will unlock new opportunities at the imaging beamline ODIN, but only if suitable detectors are employed and, in some cases, upgraded. In this paper, we highlight the current state-of-the-art for neutron imaging detectors, pointing out that, while no single presently existing detector can fulfill all the requirements currently needed to exploit the source to its limits, the wide range of applications of ODIN can be successfully covered by a suite of current state-of-the-art detectors. Furthermore we speculate on improvements to the current detector technologies that would expand the range of the existing detectors and application range and we outline a strategy to have the best possible combined system for the foreseen day 1 operations of ODIN in 2019.

  11. Design and Performance of the Multiplexed SQUID/TES Array at Ninety Gigahertz

    NASA Astrophysics Data System (ADS)

    Stanchfield, Sara; Ade, Peter; Aguirre, James; Brevik, Justus A.; Cho, Hsiao-Mei; Datta, Rahul; Devlin, Mark; Dicker, Simon R.; Dober, Bradley; Duff, Shannon M.; Egan, Dennis; Ford, Pam; Hilton, Gene; Hubmayr, Johannes; Irwin, Kent; Knowles, Kenda; Marganian, Paul; Mason, Brian Scott; Mates, John A. B.; McMahon, Jeff; Mello, Melinda; Mroczkowski, Tony; Romero, Charles; Sievers, Jonathon; Tucker, Carole; Vale, Leila R.; Vissers, Michael; White, Steven; Whitehead, Mark; Ullom, Joel; Young, Alexander

    2018-01-01

    We present the array performance and astronomical images from early science results from MUSTANG-2, a 90 GHz feedhorn-coupled, microwave SQUID-multiplexed TES bolometer array operating on the Robert C. Byrd Green Bank Telescope (GBT). MUSTANG-2 was installed on the GBT on December 2, 2016 and immediately began commissioning efforts, followed by science observations, which are expected to conclude June 2017. The feedhorn and waveguide-probe-coupled detector technology is a mature technology, which has been used on instrument including the South Pole Telescope, the Atacama Cosmology Telescope, and the Atacama B-mode Search telescope. The microwave SQUID readout system developed for MUSTANG-2 currently reads out 66 detectors with a single coaxial cable and will eventually allow thousands of detectors to be multiplexed. This microwave SQUID multiplexer combines the proven abilities of millimeterwave TES detectors with the multiplexing capabilities of KIDs with no degradation in noise performance of the detectors. Each multiplexing device is read out using warm electronics consisting of a commercially available ROACH board, a DAC/ADC card, and an Intermediate Frequency mixer circuit. The hardware was originally developed by the UC Berkeley Collaboration for Astronomy Signal Processing and Electronic Research (CASPER) group, whose primary goal is to develop scalable FPGA-based hardware with the flexibility to be used in a wide range of radio signal processing applications. MUSTANG-2 is the first on-sky instrument to use microwave SQUID multiplexing and is available as a shared-risk/PI instrument on the GBT. In MUSTANG-2's first season 7 separate proposals were awarded a total of 230 hours of telescope time.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew, E-mail: andrew.karellas@umassmed.edu

    Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixelmore » pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54 μm square pixels using trilinear interpolation, the presampled MTF at Nyquist frequency of 9.26 cycles/mm was 0.29 and 0.24 along the orthogonal directions and the limiting resolution (10% MTF) occurred at approximately 12 cycles/mm. Visual analysis of a bar pattern image showed the ability to resolve close to 12 line-pairs/mm and qualitative evaluation of a neurovascular nitinol-stent showed the ability to visualize its struts at clinically relevant conditions. Conclusions: Hexagonal pixel array photon-counting CdTe detector provides high spatial resolution in single-photon counting mode. After resampling to optimal square pixel size for distortion-free display, the spatial resolution is preserved. The dual-energy capabilities of the detector could allow for artifact-free subtraction angiography and basis material decomposition. The proposed high-resolution photon-counting detector with energy-resolving capability can be of importance for several image-guided interventional procedures as well as for pediatric applications.« less

  13. The EIGER detector for low-energy electron microscopy and photoemission electron microscopy.

    PubMed

    Tinti, G; Marchetto, H; Vaz, C A F; Kleibert, A; Andrä, M; Barten, R; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Franz, T; Fröjdh, E; Greiffenberg, D; Lopez-Cuenca, C; Mezza, D; Mozzanica, A; Nolting, F; Ramilli, M; Redford, S; Ruat, M; Ruder, Ch; Schädler, L; Schmidt, Th; Schmitt, B; Schütz, F; Shi, X; Thattil, D; Vetter, S; Zhang, J

    2017-09-01

    EIGER is a single-photon-counting hybrid pixel detector developed at the Paul Scherrer Institut, Switzerland. It is designed for applications at synchrotron light sources with photon energies above 5 keV. Features of EIGER include a small pixel size (75 µm × 75 µm), a high frame rate (up to 23 kHz), a small dead-time between frames (down to 3 µs) and a dynamic range up to 32-bit. In this article, the use of EIGER as a detector for electrons in low-energy electron microscopy (LEEM) and photoemission electron microscopy (PEEM) is reported. It is demonstrated that, with only a minimal modification to the sensitive part of the detector, EIGER is able to detect electrons emitted or reflected by the sample and accelerated to 8-20 keV. The imaging capabilities are shown to be superior to the standard microchannel plate detector for these types of applications. This is due to the much higher signal-to-noise ratio, better homogeneity and improved dynamic range. In addition, the operation of the EIGER detector is not affected by radiation damage from electrons in the present energy range and guarantees more stable performance over time. To benchmark the detector capabilities, LEEM experiments are performed on selected surfaces and the magnetic and electronic properties of individual iron nanoparticles with sizes ranging from 8 to 22 nm are detected using the PEEM endstation at the Surface/Interface Microscopy (SIM) beamline of the Swiss Light Source.

  14. Thermally driven anomalous Hall effect transitions in FeRh

    NASA Astrophysics Data System (ADS)

    Popescu, Adrian; Rodriguez-Lopez, Pablo; Haney, Paul M.; Woods, Lilia M.

    2018-04-01

    Materials exhibiting controllable magnetic phase transitions are currently in demand for many spintronics applications. Here, we investigate from first principles the electronic structure and intrinsic anomalous Hall, spin Hall, and anomalous Nernst response properties of the FeRh metallic alloy which undergoes a thermally driven antiferromagnetic-to-ferromagnetic phase transition. We show that the energy band structures and underlying Berry curvatures have important signatures in the various Hall effects. Specifically, the suppression of the anomalous Hall and Nernst effects in the antiferromagnetic state and a sign change in the spin Hall conductivity across the transition are found. It is suggested that the FeRh can be used as a spin current detector capable of differentiating the spin Hall effect from other anomalous transverse effects. The implications of this material and its thermally driven phases as a spin current detection scheme are also discussed.

  15. Proposed new accelerator design for homeland security x-ray applications

    DOE PAGES

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G.J.; ...

    2015-01-01

    Two goals for security scanning of cargo and freight are the ability to determine the type of material that is being imaged, and to do so at low radiation dose. One commonly used technique to determine the effective Z of the cargo is dual-energy imaging, i.e. imaging with different x-ray energy spectra. Another technique uses the fact that the transmitted x-ray spectrum itself also depends on the effective Z. Spectroscopy is difficult because the energy of individual x rays needs to be measured in a very high count-rate environment. Typical accelerators for security applications offer large but short bursts ofmore » x-rays, suitable for current-mode integrated imaging. In order to perform x-ray spectroscopy, a new accelerator design is desired that has the following features: 1) increased duty factor in order to spread out the arrival of x-rays at the detector array over time; 2) x-ray intensity modulation from one delivered pulse to the next by adjusting the accelerator electron beam instantaneous current so as to deliver adequate signal without saturating the spectroscopic detector; and 3) the capability to direct the (forward peaked) x-ray intensity towards high-attenuation areas in the cargo (“fan-beam-steering”). Current sources are capable of 0.1% duty factor, although usually they are operated at significantly lower duty factors (~0.04%), but duty factors in the range 0.4-1.0% are desired. The higher duty factor can be accomplished, e.g., by moving from 300 pulses per second (pps) to 1000 pps and/or increasing the pulse duration from a typical 4 μs to 10 μs. This paper describes initial R&D to examine cost effective modifications that could be performed on a typical accelerator for these purposes, as well as R&D for fan-beam steering.« less

  16. Earth Occultation Monitoring with the Fermi Gamma Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2014-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique (EOT). Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors for daily monitoring. Light curves, updated daily, are available on our website http://heastro.phys.lsu.edu/gbm. Our software is also capable of performing the Earth occultation monitoring using up to 128 energy bands, or any combination of those bands, using our 128-channel, 4-s CSPEC data. The GBM BGO detectors, sensitive from about 200 keV to 40 keV, can also be used with this technique. In our standard application of the EOT, we use a catalog of sources to drive the measurements. To ensure that our catalog is complete, our team has developed an Earth occultation imaging method. In this talk, I will describe both techniques and the current data products available. I will highlight recent and important results from the GBM EOT, including the current status of our observations of hard X-ray variations in the Crab Nebula.

  17. Effect of Intense Optical Excitation on Internal Electric Field Evolution in CdTe Gamma-Ray Detectors

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Ichinohe, Y.; Seto, S.

    2018-03-01

    The time-of-flight (TOF) transient currents in radiation detectors made of CdTe and Cd0.9Zn0.1Te (CZT) have been measured at several optical excitation intensities to investigate the effect of drifting carriers on the internal field. Both detectors show so-called space-charge-perturbed (SCP) current under intense optical excitation. A Monte Carlo (MC) simulation combined with an iterative solution of Poisson's equation is used to reproduce the observed currents under several bias voltages and excitation intensities. The SCP theory describes well the transient current in the CZT detector, whereas injection of holes from the anode and a corresponding reduction of the electron lifetime are further required to describe that in the CdTe detector. We visualize the temporal changes in the charge distribution and internal electric field profiles of both detectors.

  18. YieldStar based reticle 3D measurements and its application

    NASA Astrophysics Data System (ADS)

    Vaenkatesan, Vidya; Finders, Jo; ten Berge, Peter; Plug, Reinder; Sijben, Anko; Schellekens, Twan; Dillen, Harm; Pocobiej, Wojciech; Jorge, Vasco G.; van Dijck, Jurgen

    2016-09-01

    YieldStar (YS) is an established ASML-built scatterometer that is capable of measuring wafer Critical Dimension (CD), Overlay and Focus. In a recent work, the application range of YS was extended to measure 3D CD patterns on a reticle (pattern CD, height, Side Wall Angle-SWA). The primary motivation for this study came from imaging studies that indicated a need for measuring and controlling reticle 3D topography. CD scanning electron microscope (CD-SEM), Atomic force microscope (AFM), 3D multiple detector SEM (3D-SEM) are the preferred tools for reticle metrology. While these tools serve the industry well, the current research to the impact of reticle 3D involves extensive costs, logistic challenges and increased reticle lead time. YS provides an attractive alternative as it can measure pattern CD, SWA and height in a single measurement and at high throughput. This work demonstrates the capability of YS as a reticle metrology tool.

  19. Closed-loop pulsed helium ionization detector

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  20. Increasing the High Voltage Capabilities and Exploring Parameter Space of an Inertial Electrostatic Confinement Fusion Neutron Source for the Detection of Chemical Explosives

    NASA Astrophysics Data System (ADS)

    Michalak, Matthew K.

    The objectives of the work presented here include understanding key operating principles and providing precise data sets that can be used to test inertial electrostatic confinement (IEC) fusion theory and optimize IEC device operation. The underlying physical behavior was separated from superficial trends observed in an IEC device at the University of Wisconsin-Madison (UW). The effects of changing voltage (30-170 kV) and current (30-100 mA) were thoroughly explored, pressure effects (0.15-1.25 mTorr) were mapped, and the effect of impurities in the system was quantified. The most challenging part of this work was designing a high voltage feedthrough that could reliably operate at higher voltages for far longer times than previously attained. A system to detect conventional explosives using fusion neutrons was also designed, constructed, and tested. Precise data sets were created by taking into account and minimizing the effects of short and long term trends in the experiment. Detailed meter current scans were taken that showed a linear relationship of the neutron production rate with current. Cathode voltage scans were slightly greater than linear in the neutron rate from 30 to 170 kV, but the rate increase diminished to near linear as 170 kV was approached. A new high voltage feedthrough was designed that surpassed the performance of past UW IEC lab feedthroughs and shows promise for long duration operation at still higher voltages. Limitations of other equipment in the IEC lab prevented testing the feedthrough to voltages above 175 kV. A more robust construction of the feedthrough and reducing the consequences of a feedthrough failure were also important design criteria that were met. A detector array was made to detect explosives via the 10.8 MeV neutron capture prompt gamma from nitrogen. Signals from four separate detectors were combined to make the individual detectors act similar to one large detector. The detector signals were both summed and combined to compare the performance of the two methods. An overwhelming background radiation signal and insufficient time resolution were two factors that led to the combined signal not performing as well as the summed signal.

  1. Definition of Throw-Away Detectors (TADs) and VLF antenna for the AMPS laboratory

    NASA Technical Reports Server (NTRS)

    Koons, H. C.; Fennell, J. F.

    1975-01-01

    A Throw Away Detector (TAD)/subsatellite to be used as an experiment platform for the test flights to map the EMI from the shuttle and during the AMPS science flights is defined. A range of instrument platforms of varying capabilities is examined with emphasis on the EMI test vehicle. The operational support requirements of TAD/subsatellites are determined. The throw away detector is envisioned as a simple instrument package for supporting specific experiments.

  2. Characterization and Selection of Polymer Materials for Binary Munitions Storage. Part 3. Branch Content Determination.

    DTIC Science & Technology

    1987-09-01

    accuracy. The data aquisition system combines a position- sensitive X-ray detector with a 65 kilobyte microcomputer capable of operating as a...The rapid X-ray diffraction system measures intensity versus 20 patterns by placing the detector with its sensitivity axis positioned parallel to the...plane of the diffractometer (see Figure 2). As shown in Figure 2, the detector sensitivity axis z is coplanar with both the incident beam and the

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalemci, Emrah

    This work summarizes the efforts in Turkey to build a laboratory capable of building and testing high energy astrophysics detectors that work in space. The EC FP6 ASTRONS project contributed strongly to these efforts, and as a result a fully operational laboratory at Sabanci University have been developed. In this laboratory we test and develop Si and CdZnTe based room temperature semiconductor strip detectors and develop detector and electronics system to be used as a payload on potential small Turkish satellites.

  4. The E and B EXperiment: EBEX

    NASA Astrophysics Data System (ADS)

    Helson, Kyle

    2014-03-01

    We report on the status of the E and B Experiment (EBEX) a balloon-borne polarimeter designed to measure the polarization of the cosmic microwave background radiation. The instrument employs a 1.5 meter Gregorian Mizuguchi-Dragone telescope providing 8 arc-minute resolution at three bands centered on 150, 250, and 410 GHz. A continuously rotating achromatic half wave plate, mounted on a superconducting magnetic bearing, and a polarizing grid give EBEX polarimetric capabilities. Radiation is detected with a kilo-pixel array of transition edge sensor (TES) bolometers that are cooled to 0.25 K. The detectors are readout using SQUID current amplifiers and a digital frequency-domain multiplexing system in which 16 detectors are readout simultaneously with two wires. EBEX is the first instrument to implement TESs and such readout system on board a balloon-borne platform. EBEX was launched from the Antarctic in December 2012 on an 11-day long-duration balloon flight. This presentation will provide an overview of the instrument and discuss the flight and status of the data analysis.

  5. Infrared engineering for the advancement of science: A UK perspective

    NASA Astrophysics Data System (ADS)

    Baker, Ian M.

    2017-02-01

    Leonardo MW (formerly Selex ES) has been developing infrared sensors and cameras for over 62 years at two main sites at Southampton and Basildon. Funding mainly from UK MOD has seen the technology progress from single element PbSe sensors to advanced, high definition, HgCdTe cameras, widely deployed in many fields today. However, in the last 10 years the major challenges and research funding has come from projects within the scientific sphere, particularly: astronomy and space. Low photon flux, high resolution spectroscopy and fast frame rates are the motivation to drive the sensitivity of infrared detectors to the single photon level. These detectors make use of almost noiseless avalanche gain in HgCdTe to achieve the sensitivity and speed of response. Metal Organic Vapour Phase Epitaxy, MOVPE, grown on low-cost GaAs substrates, provides the capability for crucial bandgap engineering to suppress breakdown currents and allow high avalanche gain even in very low background conditions. This paper describes the progress so far and provides a glimpse of the future.

  6. The Mini-Calorimeter on-board AGILE: The first year in space

    NASA Astrophysics Data System (ADS)

    Marisaldi, M.; Labanti, C.; Fuschino, F.; Galli, M.; Argan, A.; Bulgarelli, A.; Di Cocco, G.; Gianotti, F.; Tavani, M.; Trifoglio, M.; Trois, A.

    2009-04-01

    AGILE, the Italian space mission dedicated to gamma-ray and hard-X astrophysics, was successfully launched on 23rd April 2007 and is currently fully operative. The Mini-Calorimeter (MCAL) on-board the AGILE satellite is a scintillation detector made of 20 kg of segmented CsI(Tl) scintillator with photodiode readout with a total geometrical area of 1400 cm2. MCAL can work both as a slave of the AGILE Silicon tracker and as an independent detector for gamma-ray bursts (GRB) detection in the 300 keV - 100 MeV energy range. Despite its limited thickness, due to weight constraints, MCAL has proven to successfully self-trigger GRBs at MeV energies providing photon-by-photon data with less than 2 μs time resolution and almost all-sky detection capabilities. The instrument design and characteristics, as well as the in-flight performance after one year of operation in space and the scientific results obtained so far are reviewed and discussed.

  7. Room temperature solution processed low dimensional CH3NH3PbI3 NIR detector

    NASA Astrophysics Data System (ADS)

    Besra, N.; Paul, T.; Sarkar, P. K.; Thakur, S.; Sarkar, S.; Das, A.; Chanda, K.; Sardar, K.; Chattopadhyay, K. K.

    2018-05-01

    Metal halide perovskites have recently drawn immense research interests among the worldwide scientific community due to their excellent light harvesting capabilities and above all, cost effectiveness. These new class of materials have already been used as efficient optoelectronic devices e.g. solar cells, photo detectors, etc. Here in this work, room temperature NIR (near infra red) response of organic-inorganic lead halide perovskite CH3NH3PbI3 (Methylammonium lead tri iodide) nanorods has been studied. A very simple solution process technique has been adopted to synthesize CH3NH3PbI3 nanostructures at room temperature. The NIR exposure upon the sample resulted in a considerable hike in its dark current with very good responsivity (0.37 mA/W). Along with that, a good on-off ratio (41.8) was also obtained when the sample was treated under a pulsed NIR exposure with operating voltage of 2 V. The specific detectivity of the device came in the order of 1010 Jone.

  8. Trends and new developments in gaseous detectors

    NASA Astrophysics Data System (ADS)

    Hoch, M.

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hardron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have proved their reliability in various experiments and are promising candidates for future projects. Performance and results will be discussed for these detectors. Furthermore, achievements in RPC-based detectors will be discussed. The standard Trigger RPC is a reliable low-cost semi-industrial manufactured device with good time resolution. Thin gap RPCs (Multigap-, and High Rate Timing RPC) show very fast signal response at high efficiency and significantly increased rate capability and will be applied in TOF detectors.

  9. A combined time-of-flight and depth-of-interaction detector for total-body positron emission tomography.

    PubMed

    Berg, Eric; Roncali, Emilie; Kapusta, Maciej; Du, Junwei; Cherry, Simon R

    2016-02-01

    In support of a project to build a total-body PET scanner with an axial field-of-view of 2 m, the authors are developing simple, cost-effective block detectors with combined time-of-flight (TOF) and depth-of-interaction (DOI) capabilities. This work focuses on investigating the potential of phosphor-coated crystals with conventional PMT-based block detector readout to provide DOI information while preserving timing resolution. The authors explored a variety of phosphor-coating configurations with single crystals and crystal arrays. Several pulse shape discrimination techniques were investigated, including decay time, delayed charge integration (DCI), and average signal shapes. Pulse shape discrimination based on DCI provided the lowest DOI positioning error: 2 mm DOI positioning error was obtained with single phosphor-coated crystals while 3-3.5 mm DOI error was measured with the block detector module. Minimal timing resolution degradation was observed with single phosphor-coated crystals compared to uncoated crystals, and a timing resolution of 442 ps was obtained with phosphor-coated crystals in the block detector compared to 404 ps without phosphor coating. Flood maps showed a slight degradation in crystal resolvability with phosphor-coated crystals; however, all crystals could be resolved. Energy resolution was degraded by 3%-7% with phosphor-coated crystals compared to uncoated crystals. These results demonstrate the feasibility of obtaining TOF-DOI capabilities with simple block detector readout using phosphor-coated crystals.

  10. Dark Current Reduction of IR Detectors

    DTIC Science & Technology

    2017-10-19

    demonstrating a novel dark current reduction approach for dense infrared detector arrays. This technique is based on the diffusion control junction (DCJ...fabricate and test detector arrays with and without DCJs on the same wafer and demonstrate the effectiveness of the DCJ approach in reducing dark current...subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE

  11. Personal continuous air monitor

    DOEpatents

    Morgan, Ronald G.; Salazar, Samuel A.

    2000-01-01

    A personal continuous air monitor capable of giving immediate warning of the presence of radioactivity has a filter/detector head to be worn in the breathing zone of a user, containing a filter mounted adjacent to radiation detectors, and a preamplifier. The filter/detector head is connected to a belt pack to be worn at the waist or on the back of a user. The belt pack contains a signal processor, batteries, a multichannel analyzer, a logic circuit, and an alarm. An air pump also is provided in the belt pack for pulling air through the filter/detector head by way of an air tube.

  12. Fiberoptic metal detector capable of profile detection.

    PubMed

    Hua, Wei-Shu; Hooks, Joshua R; Erwin, Nicholas A; Wu, Wen-Jong; Wang, Wei-Chih

    2011-03-31

    The purpose of this paper is to develop a novel ferromagnetic polymeric metal detector system by using a fiber-optic Mach-Zehnder interferometer with a newly developed ferromagnetic polymer as the magnetostrictive sensing device. This ferromagnetic polymeric metal detector system is simple to fabricate, small in size, and resistant to RF interference (which is common in typical electromagnetic type metal detectors). Metal detection is made possible by disrupting the magnetic flux density present on the magnetostrictive sensor. This paper discusses the magnetic properties of the ferromagnetic polymers. In addition, the preliminary results of successful sensing of different geometrical metal shapes will be discussed.

  13. Simulation and Measurement of Absorbed Dose from 137 Cs Gammas Using a Si Timepix Detector

    NASA Technical Reports Server (NTRS)

    Stoffle, Nicholas; Pinsky, Lawrence; Empl, Anton; Semones, Edward

    2011-01-01

    The TimePix readout chip is a hybrid pixel detector with over 65k independent pixel elements. Each pixel contains its own circuitry for charge collection, counting logic, and readout. When coupled with a Silicon detector layer, the Timepix chip is capable of measuring the charge, and thus energy, deposited in the Silicon. Measurements using a NIST traceable 137Cs gamma source have been made at Johnson Space Center using such a Si Timepix detector, and this data is compared to simulations of energy deposition in the Si layer carried out using FLUKA.

  14. A small-angle large-acceptance detection system for hadrons

    NASA Astrophysics Data System (ADS)

    Kalantar-Nayestanaki, N.; Bacelar, J. C. S.; Brandenburg, S.; Huisman, H.; Messchendorp, J. G.; Mul, F. A.; Schadmand, S.; van der Schaaf, K.; Schippers, J. M.; Volkerts, M.

    2000-04-01

    The performance of a segmented large-acceptance detector, capable of measuring particles at small forward angles, is presented. The Small-Angle Large-Acceptance Detector (SALAD), was built to handle very high rates of particles impinging on the detector. Particles down to a few MeV can be detected with it. The position of charged particles is measured by two Multi-Wire Proportional Chambers while scintillator blocks are used to measure the energy of the detected particle. A stack of thin scintillators placed behind the energy detectors allows for a hardware rejection (veto) of high-energy particles going through the scintillator blocks.

  15. Novel Drift Structures for Silicon and Compound Semiconductor X-Ray and Gamma-Ray Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley E. Patt; Jan S. Iwanczyk

    Recently developed silicon- and compound-semiconductor-based drift detector structures have produced excellent performance for charged particles, X rays, and gamma rays and for low-signal visible light detection. The silicon drift detector (SDD) structures that we discuss relate to direct X-ray detectors and scintillation photon detectors coupled with scintillators for gamma rays. Recent designs include several novel features that ensure very low dark current (both bulk silicon dark current and surface dark current) and hence low noise. In addition, application of thin window technology ensures a very high quantum efficiency entrance window on the drift photodetector.

  16. Achieving ultra-high temperatures with a resistive emitter array

    NASA Astrophysics Data System (ADS)

    Danielson, Tom; Franks, Greg; Holmes, Nicholas; LaVeigne, Joe; Matis, Greg; McHugh, Steve; Norton, Dennis; Vengel, Tony; Lannon, John; Goodwin, Scott

    2016-05-01

    The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to also develop larger-format infrared emitter arrays to support the testing of systems incorporating these detectors. In addition to larger formats, many scene projector users require much higher simulated temperatures than can be generated with current technology in order to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024 x 1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During earlier phases of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1400 K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. A 'scalable' Read In Integrated Circuit (RIIC) is also being developed under the same UHT program to drive the high temperature pixels. This RIIC will utilize through-silicon via (TSV) and Quilt Packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the yield limitations inherent in large-scale integrated circuits. Results of design verification testing of the completed RIIC will be presented and discussed.

  17. SuperCDMS Prototype Detector Design and Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Allison Blair

    A substantial amount of astrophysical evidence indicates that approximately a quarter of all energy in the universe is composed of a nonluminous, and nonbaryonic \\dark" matter. Of the potential dark matter particle candidates, Weakly Interacting Massive Particles, or WIMPs, is particularly well motivated. As a means to directly detect WIMP interactions with baryonic matter, the Cryogenic Dark Matter Search (CDMS) project was established, operating at the Soudan Underground Laboratory from 2003 - 2015, under the CDMS II and SuperCDMS Soudan experiments. CDMS detectors simultaneously measure the ionization and phonon energies of recoil events in Si and Ge crystals kept atmore » cryogenic temperatures in a low-background environment. The ratio of ionization energy to recoil energy serves as a discrimination parameter to separate nuclear recoil events from the electron-recoil background. The next installation, SuperCDMS SNOLAB, is preparing for future operation, with an initial payload of eighteen Ge and six Si, 100 mm diameter, 33 mm thick detectors. Of this initial payload, eight Ge and four Si detectors will operate in a high-voltage ( 100 V) mode, which have an increased sensitivity to low-mass WIMPs due to decreased energy thresholds. The SuperCDMS test facility at University of Minnesota aids in the detector R&D and characterization of prototype detectors, as part of the scale-up eort for Super- CDMS SNOLAB. This thesis presents the rst full ionization and phonon characterization study of a 100 mm diameter, 33 mm thick prototype Ge detector with interleaved phonon and ionization channels. Measurements include ionization collection eciency, surface event rejection capabilities, and successful demonstration of nuclear recoil event discrimination. Results indicate that 100 mm diameter, interleaved Ge detectors show potential for use in SuperCDMS SNOLAB. As part of detector R&D, the Minnesota test facility also looks beyond the next stage of SuperCDMS, investigating larger individual detectors as a means to easily scale up the sensitive mass of future searches. This thesis presents the design and initial testing results of a prototype 150 mm diameter, 33 mm thick silicon ionization detector, which is 5.2 times larger than those used in SuperCDMS at Soudan and 2.25 times larger than those planned for use at SuperCDMS SNOLAB. In addition, the detector was operated with contact-free ionization electrodes to minimize bias leakage currents, which can limit operation at high bias voltages. The results show promise for the operation of both large volume silicon detectors and contact-free ionization electrodes for scaling up detector mass and bias.« less

  18. Efficient Charge Collection in Coplanar-Grid Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Kunc, J.; Praus, P.; Belas, E.; Dědič, V.; Pekárek, J.; Grill, R.

    2018-05-01

    We model laser-induced transient-current waveforms in radiation coplanar-grid detectors. Poisson's equation is solved by the finite-element method and currents induced by a photogenerated charge are obtained using the Shockley-Ramo theorem. The spectral response on a radiation flux is modeled by Monte Carlo simulations. We show a 10 × improved spectral resolution of the coplanar-grid detector using differential signal sensing. We model the current waveform dependence on the doping, depletion width, diffusion, and detector shielding, and their mutual dependence is discussed in terms of detector optimization. The numerical simulations are successfully compared to experimental data, and further model simplifications are proposed. The space charge below electrodes and a nonhomogeneous electric field on a coplanar-grid anode are found to be the dominant contributions to laser-induced transient-current waveforms.

  19. Depth of interaction determination in monolithic scintillator with double side SiPM readout.

    PubMed

    Morrocchi, Matteo; Ambrosi, Giovanni; Bisogni, Maria Giuseppina; Bosi, Filippo; Boretto, Marco; Cerello, Piergiorgio; Ionica, Maria; Liu, Ben; Pennazio, Francesco; Piliero, Maria Antonietta; Pirrone, Giovanni; Postolache, Vasile; Wheadon, Richard; Del Guerra, Alberto

    2017-12-01

    Monolithic scintillators read out by arrays of photodetectors represent a promising solution to obtain high spatial resolution and the depth of interaction (DOI) of the annihilation photon. We have recently investigated a detector geometry composed of a monolithic scintillator readout on two sides by silicon photomultiplier (SiPM) arrays, and we have proposed two parameters for the DOI determination: the difference in the number of triggered SiPMs on the two sides of the detector and the difference in the maximum collected signal on a single SiPM on each side. This work is focused on the DOI calibration and on the determination of the capability of our detector. For the DOI calibration, we studied a method which can be implemented also in detectors mounted in a full PET scanner. We used a PET detector module composed of a monolithic 20 × 20 × 10 mm 3 LYSO scintillator crystal coupled on two opposite faces to two arrays of SiPMs. On each side, the scintillator was coupled to 6 × 6 SiPMs. In this paper, the two parameters previously proposed for the DOI determination were calibrated with two different methods. The first used a lateral scan of the detector with a collimated 511 keV pencil beam at steps of 0.5 mm to study the detector DOI capability, while the second used the background radiation of the 176 Lu in the scintillator. The DOI determination capability was tested on different regions of the detector using each parameter and the combination of the two. With both parameters for the DOI determination, in the lateral scan, the bias between the mean reconstructed DOI and the real beam position was lower than 0.3 mm, and the DOI distribution had a standard deviation of about 1.5 mm. When using the calibration with the radioactivity of the LYSO, the mean bias increased of about 0.2 mm but with no degradation of the standard deviation of the DOI distribution. The two parameters allow to achieve a DOI resolution comparable with the state of the art, giving a continuous information about the three-dimensional interaction position of the scintillation. These results were obtained by using simple estimators and a detector scalable to a whole PET system. The DOI calibration obtained using lutetium natural radioactivity gives results comparable to the other standard method but appears more readily applicable to detectors mounted in a full PET scanner.

  20. High-resolution ionization detector and array of such detectors

    DOEpatents

    McGregor, Douglas S [Ypsilanti, MI; Rojeski, Ronald A [Pleasanton, CA

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  1. The PHOBOS detector at RHIC

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Basilev, S.; Baum, R.; Betts, R. R.; Białas, A.; Bindel, R.; Bogucki, W.; Budzanowski, A.; Busza, W.; Carroll, A.; Ceglia, M.; Chang, Y.-H.; Chen, A. E.; Coghen, T.; Connor, C.; Czyż, W.; Dabrowski, B.; Decowski, M. P.; Despet, M.; Fita, P.; Fitch, J.; Friedl, M.; Gałuszka, K.; Ganz, R.; Garcia, E.; George, N.; Godlewski, J.; Gomes, C.; Griesmayer, E.; Gulbrandsen, K.; Gushue, S.; Halik, J.; Halliwell, C.; Haridas, P.; Hayes, A.; Heintzelman, G. A.; Henderson, C.; Hollis, R.; Hołyński, R.; Hofman, D.; Holzman, B.; Johnson, E.; Kane, J.; Katzy, J.; Kita, W.; Kotuła, J.; Kraner, H.; Kucewicz, W.; Kulinich, P.; Law, C.; Lemler, M.; Ligocki, J.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Neal, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Patel, M.; Pernegger, H.; Plesko, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Ross, D.; Rosenberg, L.; Ryan, J.; Sanzgiri, A.; Sarin, P.; Sawicki, P.; Scaduto, J.; Shea, J.; Sinacore, J.; Skulski, W.; Steadman, S. G.; Stephans, G. S. F.; Steinberg, P.; Straczek, A.; Stodulski, M.; Strek, M.; Stopa, Z.; Sukhanov, A.; Surowiecka, K.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zalewski, K.; Żychowski, P.; Phobos Collaboration

    2003-03-01

    This manuscript contains a detailed description of the PHOBOS experiment as it is configured for the Year 2001 running period. It is capable of detecting charged particles over the full solid angle using a multiplicity detector and measuring identified charged particles near mid-rapidity in two spectrometer arms with opposite magnetic fields. Both of these components utilize silicon pad detectors for charged particle detection. The minimization of material between the collision vertex and the first layers of silicon detectors allows for the detection of charged particles with very low transverse momenta, which is a unique feature of the PHOBOS experiment. Additional detectors include a time-of-flight wall which extends the particle identification range for one spectrometer arm, as well as sets of scintillator paddle and Cherenkov detector arrays for event triggering and centrality selection.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, P.; Austin, J.; Cao, S. V.

    This Letter of Intent outlines a proposal to build a large, yet cost-effective, 100 kton fiducial mass water Cherenkov detector that will initially run in the NuMI beam line. The CHIPS detector (CHerenkov detector In Mine PitS) will be deployed in a flooded mine pit, removing the necessity and expense of a substantial external structure capable of supporting a large detector mass. There are a number of mine pits in northern Minnesota along the NuMI beam that could be used to deploy such a detector. In particular, the Wentworth Pit 2W is at the ideal off-axis angle to contribute tomore » the measurement of the CP violating phase. The detector is designed so that it can be moved to a mine pit in the LBNE beam line once that becomes operational.« less

  3. X-Ray Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, Brian; Li, Mary; Skinner, Gerald

    2013-01-01

    X-ray optics were fabricated with the capability of imaging solar x-ray sources with better than 0.1 arcsecond angular resolution, over an order of magnitude finer than is currently possible. Such images would provide a new window into the little-understood energy release and particle acceleration regions in solar flares. They constitute one of the most promising ways to probe these regions in the solar atmosphere with the sensitivity and angular resolution needed to better understand the physical processes involved. A circular slit structure with widths as fine as 0.85 micron etched in a silicon wafer 8 microns thick forms a phase zone plate version of a Fresnel lens capable of focusing approx. =.6 keV x-rays. The focal length of the 3-cm diameter lenses is 100 microns, and the angular resolution capability is better than 0.1 arcsecond. Such phase zone plates were fabricated in Goddard fs Detector Development Lab. (DDL) and tested at the Goddard 600-microns x-ray test facility. The test data verified that the desired angular resolution and throughput efficiency were achieved.

  4. A method to improve observations of gamma-ray sources near 10 (15) eV

    NASA Technical Reports Server (NTRS)

    Sommers, P.; Elbert, J. W.

    1985-01-01

    Now that sources of gamma rays near 10 to the 15th power eV have been identified, there is a need for telescopes which can study in detail the high energy gamma ray emissions from these sources. The capabilities of a Cerenkov detector which can track a source at large zenith angle (small elevation angle) are analyzed. Because the observed showers must then develop far from the detector, the effective detection area is very large. During a single half-hour hot phase of Cygnus X-3, for example, it may be possible to detect 45 signal showers compared with 10 background showers. Time structure within the hot phase may then be discernible. The precise capabilities of the detector depend on its mirror size, angular acceptance, electronic speed, coincidence properties, etc. Calculations are presented for one feasible design using mirrors of an improved Fly's Eye type.

  5. 2D metal profile detector using a polymeric fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Hua, Wei-Shu; Hooks, Joshua R.; Erwin, Nicholas A.; Wu, Wen-Jong; Wang, Wei-Chih

    2012-04-01

    As sensors become integrated in more applications, interest in magnetostrictive sensor technology has blossomed. Magnetostrictive materials have many advantages and useful applications in daily life, such as high efficient coupling between elastic and polymer material, large displacement, magnetic field sensors, micro actuator and motion motor, etc. The purpose of this paper is to develop a metal sensor which is capable of detecting different geometries and shapes of metal objects. The main configuration is using a Mach-Zehnder fiber-optic interferometer coated with magnetostrictive material. The metal detector system is a novel design of metal detector, easy to fabricate and capable of high sensitivity. In our design, metal detection is made possible by disrupting the magnetic flux density that encompasses the magnetostriction sensor. In this paper, experimental setups are described and metal sensing results are presented. The results of detecting complex metal's geometry and metal's mapping results are discussed.

  6. Prompt photon measurements with PHENIX's MPC-EX detector

    NASA Astrophysics Data System (ADS)

    Campbell, Sarah; PHENIX Collaboration

    2013-08-01

    The MPC-EX detector is a Si-W preshower extension to the existing Muon Piston Calorimeter (MPC). The MPC-EX consists of eight layers of alternating W absorber and Si mini-pad sensors. Located at forward rapidity, 3.1 < |η| < 3.8, the MPC and MPC-EX will access low-x partons in the Au nucleus in p+Au collisions and high-x partons in the projectile in polarized p+p collisions. With the addition of the MPC-EX, the neutral pion reconstruction energy range extends to the luminosity limit, energies > 80 GeV, a factor of four improvement over current capabilities. Not only will the MPC-EX strengthen PHENIX's existing forward π0 and jet measurements, it will provide sufficient prompt photon and π0 separation to make a prompt photon measurement possible. Prompt photon yields at high pT, pT > 3 GeV/c, can be statistically extracted using the double ratio method. In transversely polarized p+p collisions, the measurement of the prompt photon single spin asymmetry, AN, will resolve the sign discrepancy between the Sivers and twist-3 extractions of AN. In p+Au collisions, the prompt photon RpAu will quantify the level of gluon saturation in the Au nucleus at low-x, x ~ 10-3, with a projected systematic error band a factor of four smaller than EPS09's current allowable range. The MPC-EX detector will expand our understanding of the gluon nuclear parton distribution functions, providing important information about the initial state of heavy ion collisions, and clarify how the valence parton's transverse momentum and spin correlates to the proton spin.

  7. Building an Experimental Setup to Characterize an H4RG-15

    NASA Astrophysics Data System (ADS)

    Hirata, Mickie; Hodapp, K.; Hall, Donald N. B.; Goebel, Sean B.; Jacobson, Shane M.

    2018-01-01

    The Teledyne Imaging Sensors H4RG-15 infrared detector is designed for the next era of extremely large telescopes. Characterization of individual H4RG-15 detectors are critical for future astronomical use. ULBcam, a former UH88 IR camera and remnant test dewar for H2RG characterization, was previously modified for H4RG-15 characterization. During the summer, this system was further upgraded with a baffle tube to a blackbody illumination source to allow controlled field illumination. This baffle tube, designed in OpenSCAD, was constructed in the IfA machine shop. Specific placements of the 50-micron aperture and scatter restrictive baffling was designed in Zemax. Four separate data sets were acquired to look into detector persistence, dark current, read noise, and charge gain. With the illumination source set at 450 K, ten ramps of 90/90 read frames were taken to pass saturation values. These tests were repeated at 500K to show results at over saturated conditions. Five ramps of 136/136 read frames were taken with a blank shutter applied. The persistence results showed expected results with signals settling from the third ramp. Dark current results showed higher than Teledyne stated values at 0.06 electrons/second, a factor of 6 higher than expected, which exposes systematic ULBcam dark testing capabilities. The read noise resulted with an expected value of 0.014 electrons. The charge gain showed 0.02 electrons/ADU where the expected value is 2 electrons/ADU. Data analysis using reference frame subtraction will be done for future work.

  8. Test Equipment and Method to Characterize a SWIR Digital Imaging System

    DTIC Science & Technology

    2014-06-01

    based on Gallium Arsenide (GaAs) detectors are sensitive in the visible and near infrared (NIR) bands, and used only at night. They produce images from... current from the silicon sensor located on the sphere. The irradiance responsivity, Rn, is the ratio of the silicon detector current and the absolute...silicon detector currents , in accordance with equation 1: ( , ,)[ 2⁄ ] = [] ( ,

  9. Continued development of doped-germanium photoconductors for astronomical observations at wavelengths from 30 to 120 micrometers

    NASA Technical Reports Server (NTRS)

    Bratt, P. R.; Lewis, N. N.; Long, L. E.

    1978-01-01

    The development of doped-germanium detectors which have optimized performance in the 30- to 120-mu m wavelength range and are capable of achieving the objectives of the infrared astronomical satellite (IRAS) space mission is discussed. Topics covered include the growth and evaluation of Ge:Ga and Ge:Be crystals, procedures for the fabrication and testing of detectors, irradiance calculations, detector responsivity, and resistance measurements through MOSFET. Test data are presented in graphs and charts.

  10. Vapor-Phase Infrared Spectral Study of Weapons-Grade O-Ethyl S-2(diisopropylamino)ethyl methylphosphonothiolate (VX)

    DTIC Science & Technology

    2012-05-01

    instrument was equipped with deuterated triglycine sulfide and mercury-cadmium-telluride ( HgCdTe ) detectors and was capable of obtaining spectra with...helium-neon [HeNe] laser zero-crossing frequency) using the HgCdTe detector . Absorbance spectra of the vapor effluent were computed using background...weak [a = 0.00021 (umol/mol) ’m ’, which gave a prediction of A ~ 0.001] and close to the detector cutoff (root mean square [RMS] noise = 0.0002 A

  11. Study of pulse shape discrimination for a neutron phoswich detector

    NASA Astrophysics Data System (ADS)

    Hartman, Jessica; Barzilov, Alexander

    2017-09-01

    A portable phoswich detector capable of differentiating between fast neutrons and thermal neutrons, and photons was developed. The detector design is based on the use of two solid-state scintillators with dissimilar scintillation time properties coupled with a single optical sensor: a 6Li loaded glass and EJ-299-33A plastic. The on-the-fly digital pulse shape discrimination and the wavelet treatment of measured waveforms were employed in the data analysis. The instrument enabled neutron spectrum evaluation.

  12. Enhancement of concentration range of chromatographically detectable components with array detector mass spectrometry

    DOEpatents

    Enke, Christie

    2013-02-19

    Methods and instruments for high dynamic range analysis of sample components are described. A sample is subjected to time-dependent separation, ionized, and the ions dispersed with a constant integration time across an array of detectors according to the ions m/z values. Each of the detectors in the array has a dynamically adjustable gain or a logarithmic response function, producing an instrument capable of detecting a ratio of responses or 4 or more orders of magnitude.

  13. TCPD: A micropattern photon detector hybrid for RICH applications

    NASA Astrophysics Data System (ADS)

    Hamar, G.; Varga, D.

    2017-03-01

    A micropattern and wire chamber hybrid has been constructed for UV photon detection, and its performance evaluated. It is revealed that such combination retains some key advantages of both the Thick-GEM primary and CCC secondary amplification stages, and results in a high gain gaseous photon detector with outstanding stability. Key features such as MIP suppression, detection efficiency and photon cluster size are discussed. The capability of the detector for UV photon detection has been established and proven with Cherenkov photons in particle beam tests.

  14. Joint chemical agent detector (JCAD): the future of chemical agent detection

    NASA Astrophysics Data System (ADS)

    Laljer, Charles E.

    2003-08-01

    The Joint Chemical Agent Detector (JCAD) has continued development through 2002. The JCAD has completed Contractor Validation Testing (CVT) that included chemical warfare agent testing, environmental testing, electromagnetic interferent testing, and platform integration validation. The JCAD provides state of the art chemical warfare agent detection capability to military and homeland security operators. Intelligence sources estimate that over twenty countries have active chemical weapons programs. The spread of weapons of mass destruction (and the industrial capability for manufacture of these weapons) to third world nations and terrorist organizations has greatly increased the chemical agent threat to U.S. interests. Coupled with the potential for U.S. involvement in localized conflicts in an operational or support capacity, increases the probability that the military Joint Services may encounter chemical agents anywhere in the world. The JCAD is a small (45 in3), lightweight (2 lb.) chemical agent detector for vehicle interiors, aircraft, individual personnel, shipboard, and fixed site locations. The system provides a common detection component across multi-service platforms. This common detector system will allow the Joint Services to use the same operational and support concept for more efficient utilization of resources. The JCAD detects, identifies, quantifies, and warns of the presence of chemical agents prior to onset of miosis. Upon detection of chemical agents, the detector provides local and remote audible and visual alarms to the operators. Advance warning will provide the vehicle crew and other personnel in the local area with the time necessary to protect themselves from the lethal effects of chemical agents. The JCAD is capable of being upgraded to protect against future chemical agent threats. The JCAD provides the operator with the warning necessary to survive and fight in a chemical warfare agent threat environment.

  15. The Radiation Assessment Detector (RAD) Investigation

    NASA Astrophysics Data System (ADS)

    Hassler, D. M.; Zeitlin, C.; Wimmer-Schweingruber, R. F.; Böttcher, S.; Martin, C.; Andrews, J.; Böhm, E.; Brinza, D. E.; Bullock, M. A.; Burmeister, S.; Ehresmann, B.; Epperly, M.; Grinspoon, D.; Köhler, J.; Kortmann, O.; Neal, K.; Peterson, J.; Posner, A.; Rafkin, S.; Seimetz, L.; Smith, K. D.; Tyler, Y.; Weigle, G.; Reitz, G.; Cucinotta, F. A.

    2012-09-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) is an energetic particle detector designed to measure a broad spectrum of energetic particle radiation. It will make the first-ever direct radiation measurements on the surface of Mars, detecting galactic cosmic rays, solar energetic particles, secondary neutrons, and other secondary particles created both in the atmosphere and in the Martian regolith. The radiation environment on Mars, both past and present, may have implications for habitability and the ability to sustain life. Radiation exposure is also a major concern for future human missions. The RAD instrument combines charged- and neutral-particle detection capability over a wide dynamic range in a compact, low-mass, low-power instrument. These capabilities are required in order to measure all the important components of the radiation environment. RAD consists of the RAD Sensor Head (RSH) and the RAD Electronics Box (REB) integrated together in a small, compact volume. The RSH contains a solid-state detector telescope with three silicon PIN diodes for charged particle detection, a thallium doped Cesium Iodide scintillator, plastic scintillators for neutron detection and anti-coincidence shielding, and the front-end electronics. The REB contains three circuit boards, one with a novel mixed-signal ASIC for processing analog signals and an associated control FPGA, another with a second FPGA to communicate with the rover and perform onboard analysis of science data, and a third board with power supplies and power cycling or "sleep"-control electronics. The latter enables autonomous operation, independent of commands from the rover. RAD is a highly capable and highly configurable instrument that paves the way for future compact energetic particle detectors in space.

  16. Source strength verification and quality assurance of preloaded brachytherapy needles using a CMOS flat panel detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golshan, Maryam, E-mail: maryam.golshan@bccancer.bc.ca; Spadinger, Ingrid; Chng, Nick

    2016-06-15

    Purpose: Current methods of low dose rate brachytherapy source strength verification for sources preloaded into needles consist of either assaying a small number of seeds from a separate sample belonging to the same lot used to load the needles or performing batch assays of a subset of the preloaded seed trains. Both of these methods are cumbersome and have the limitations inherent to sampling. The purpose of this work was to investigate an alternative approach that uses an image-based, autoradiographic system capable of the rapid and complete assay of all sources without compromising sterility. Methods: The system consists of amore » flat panel image detector, an autoclavable needle holder, and software to analyze the detected signals. The needle holder was designed to maintain a fixed vertical spacing between the needles and the image detector, and to collimate the emissions from each seed. It also provides a sterile barrier between the needles and the imager. The image detector has a sufficiently large image capture area to allow several needles to be analyzed simultaneously.Several tests were performed to assess the accuracy and reproducibility of source strengths obtained using this system. Three different seed models (Oncura 6711 and 9011 {sup 125}I seeds, and IsoAid Advantage {sup 103}Pd seeds) were used in the evaluations. Seeds were loaded into trains with at least 1 cm spacing. Results: Using our system, it was possible to obtain linear calibration curves with coverage factor k = 1 prediction intervals of less than ±2% near the centre of their range for the three source models. The uncertainty budget calculated from a combination of type A and type B estimates of potential sources of error was somewhat larger, yielding (k = 1) combined uncertainties for individual seed readings of 6.2% for {sup 125}I 6711 seeds, 4.7% for {sup 125}I 9011 seeds, and 11.0% for Advantage {sup 103}Pd seeds. Conclusions: This study showed that a flat panel detector dosimetry system is a viable option for source strength verification in preloaded needles, as it is capable of measuring all of the sources intended for implantation. Such a system has the potential to directly and efficiently estimate individual source strengths, the overall mean source strength, and the positions within the seed-spacer train.« less

  17. An end-to-end approach to developing biological and chemical detector requirements

    NASA Astrophysics Data System (ADS)

    Teclemariam, Nerayo P.; Purvis, Liston K.; Foltz, Greg W.; West, Todd; Edwards, Donna M.; Fruetel, Julia A.; Gleason, Nathaniel J.

    2009-05-01

    Effective defense against chemical and biological threats requires an "end-to-end" strategy that encompasses the entire problem space, from threat assessment and target hardening to response planning and recovery. A key element of the strategy is the definition of appropriate system requirements for surveillance and detection of threat agents. Our end-to-end approach to venue chem/bio defense is captured in the Facilities Weapons of Mass Destruction Decision Analysis Capability (FacDAC), an integrated system-of-systems toolset that can be used to generate requirements across all stages of detector development. For example, in the early stage of detector development the approach can be used to develop performance targets (e.g., sensitivity, selectivity, false positive rate) to provide guidance on what technologies to pursue. In the development phase, after a detector technology has been selected, the approach can aid in determining performance trade-offs and down-selection of competing technologies. During the application stage, the approach can be employed to design optimal defensive architectures that make the best use of available technology to maximize system performance. This presentation will discuss the end-to-end approach to defining detector requirements and demonstrate the capabilities of the FacDAC toolset using examples from a number of studies for the Department of Homeland Security.

  18. Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET

    PubMed Central

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-01-01

    This paper investigates the performance of 1 mm resolution Cadmium Zinc Telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3-D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06±0.39% at 511 keV throughout most the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44±0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78±0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes – as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system. PMID:21335649

  19. Frequency division multiplexed readout of TES detectors with baseband feedback

    NASA Astrophysics Data System (ADS)

    den Hartog, R.; Audley, M. D.; Beyer, J.; Bruijn, M. P.; de Korte, P.; Gottardi, L.; Hijmering, R.; Jackson, B.; Nieuwenhuizen, A.; van der Kuur, J.; van Leeuwen, B.-J.; Van Loon, D.

    2012-09-01

    SRON is developing an electronic system for the multiplexed read-out of an array of transition edge sensors (TES) by combining the techniques of frequency domain multiplexing (FDM) with base-band feedback (BBFB). The astronomical applications are the read-out of soft X-ray microcalorimeters and the far-infrared bolometers for the SAFARI instrument on the Japanese mission SPICA. In this paper we derive the requirements for the read-out system regarding noise and dynamic range in the context of the SAFARI instrument, and demonstrate that the current experimental prototype is capable of simultaneously locking 57 channels and complies with these requirements.

  20. Impacts of Underwater Noise on Marine Vertebrates: Project Introduction and First Results.

    PubMed

    Liebschner, Alexander; Seibel, Henrike; Teilmann, Jonas; Wittekind, Dietrich; Parmentier, Eric; Dähne, Michael; Dietz, Rune; Driver, Jörg; van Elk, Cornelis; Everaarts, Eligius; Findeisen, Henning; Kristensen, Jacob; Lehnert, Kristina; Lucke, Klaus; Merck, Thomas; Müller, Sabine; Pawliczka, Iwona; Ronnenberg, Katrin; Rosenberger, Tanja; Ruser, Andreas; Tougaard, Jakob; Schuster, Max; Sundermeyer, Janne; Sveegaard, Signe; Siebert, Ursula

    2016-01-01

    The project conducts application-oriented research on impacts of underwater noise on marine vertebrates in the North and Baltic Seas. In distinct subprojects, the hearing sensitivity of harbor porpoises and gray seals as well as the acoustic tolerance limit of harbor porpoises to impulsive noise from pile driving and stress reactions caused by anthropogenic noise is investigated. Animals are equipped with DTAGs capable of recording the actual surrounding noise field of free-swimming harbor porpoises and seals. Acoustic noise mapping including porpoise detectors in the Natura 2000 sites of the North and Baltic Seas will help to fully understand current noise impacts.

  1. a Plutonium Ceramic Target for Masha

    NASA Astrophysics Data System (ADS)

    Wilk, P. A.; Shaughnessy, D. A.; Moody, K. J.; Kenneally, J. M.; Wild, J. F.; Stoyer, M. A.; Patin, J. B.; Lougheed, R. W.; Ebbinghaus, B. B.; Landingham, R. L.; Oganessian, Yu. Ts.; Yeremin, A. V.; Dmitriev, S. N.

    2005-09-01

    We are currently developing a plutonium ceramic target for the MASHA mass separator. The MASHA separator will use a thick plutonium ceramic target capable of tolerating temperatures up to 2000 °C. Promising candidates for the target include oxides and carbides, although more research into their thermodynamic properties will be required. Reaction products will diffuse out of the target into an ion source, where they will then be transported through the separator to a position-sensitive focal-plane detector array. Experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide for future experiments where the chemical properties of the heaviest elements are studied.

  2. Two Undergraduate Projects for Data Acquisition and Control

    NASA Astrophysics Data System (ADS)

    Hiersche, Kelly; Pena, Tara; Grogan, Tanner; Wright, Matthew

    We are designing two separate instruments for use in our undergraduate laboratory. In the first project, a Raspberry Pi is used to simultaneously monitor a large number of current and voltage readings and store them in a database. In our second project, we are constructing our own microcontrollers to work as a general-purpose interface based off work carried out in Review of Scientific Instruments 84, 103101 (2013). It was designed for low cost and simple construction, making it ideal for undergraduate level work. This circuit has room for two interchangeable daughter boards, giving it the capability to work as a general lab interface, lock-in detector, or waveform generator.

  3. Environmental Detection of Clandestine Nuclear Weapon Programs

    NASA Astrophysics Data System (ADS)

    Kemp, R. Scott

    2016-06-01

    Environmental sensing of nuclear activities has the potential to detect nuclear weapon programs at early stages, deter nuclear proliferation, and help verify nuclear accords. However, no robust system of detection has been deployed to date. This can be variously attributed to high costs, technical limitations in detector technology, simple countermeasures, and uncertainty about the magnitude or behavior of potential signals. In this article, current capabilities and promising opportunities are reviewed. Systematic research in a variety of areas could improve prospects for detecting covert nuclear programs, although the potential for countermeasures suggests long-term verification of nuclear agreements will need to rely on methods other than environmental sensing.

  4. Search for νμ → νe oscillations with the OPERA experiment in the CNGS beam

    NASA Astrophysics Data System (ADS)

    Tenti, M.; OPERA Collaboration

    2016-04-01

    The OPERA hybrid detector, designed to prove neutrino oscillations in the νμ →ντ channel, was exposed to the CNGS νμ beam at a distance of 730 km from the neutrino source. Profiting of the tracking capabilities of its Emulsion Cloud Chamber system, OPERA can perform also a search for νμ →νe oscillations. Current results are compatible with the non-oscillation hypothesis in the three flavour mixing model. The same data allow to constrain the non-standard oscillation parameters θnew and Δmnew2 indicated by the LSND and MiniBooNE experiments.

  5. The along track scanning radiometer for ERS-1 - Scan geometry and data simulation

    NASA Astrophysics Data System (ADS)

    Prata, A. J. Fred; Cechet, Robert P.; Barton, Ian J.; Llewellyn-Jones, David T.

    1990-01-01

    The first European remote-sensing satellite (ERS-1), due to be launched in 1990, will carry the along track scanning radiometer (ATSR), which has been specifically designed to give accurate satellite measurements of sea surface temperature (SST). Details of the novel scanning technique used by the ATSR are given, and data from the NOAA-9 AVHRR instrument are used to simulate raw ATSR imagery. Because of the high precision of the onboard blackbodies, the active cooling of the detectors, 12-b digitization, and dual-angle capability, the ATSR promises to achieve higher-accuracy satellite-derived SSTs than are currently available.

  6. Remote sensing of oceanic phytoplankton - Present capabilities and future goals

    NASA Technical Reports Server (NTRS)

    Esaias, W. E.

    1980-01-01

    A description is given of current work in the development of sensors, and their integration into increasingly powerful systems, for oceanic phytoplankton abundance estimation. Among the problems relevant to such work are phytoplankton ecology, the spatial and temporal domains, available sensor platforms, and sensor combinations. Among the platforms considered are satellites, aircraft, tethered balloons, helicopters, ships, and the Space Shuttle. Sensors discussed include microwave radiometers, laser fluorosensors, microwave scatterometers, multispectral scanners, Coastal Ocean Dynamics Radar (CODAR), and linear array detectors. Consideration is also given to the prospects for such future sensor systems as the National Oceanic Satellite System (NOSS) and the Airborne Integrated Mapping System (AIMS).

  7. IceVeto: Extended PeV neutrino astronomy in the Southern Hemisphere with IceCube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auffenberg, Jan; Collaboration: IceCube Collaboration

    IceCube, the world's largest high-energy neutrino observatory, built at the South Pole, recently reported evidence of an astrophysical neutrino flux extending to PeV energies in the Southern Hemisphere. This observation raises the question of how the sensitivity in this energy range could be further increased. In the down-going sector, in IceCube's case the Southern Hemisphere, backgrounds from atmospheric muons and neutrinos pose a challenge to the identification of an astrophysical neutrino flux. The IceCube analysis, that led to the evidence for astrophysical neutrinos, is based on an in-ice veto strategy for background rejection. One possibility available to IceCube is themore » concept of an extended surface detector, IceVeto, which could allow the rejection of a large fraction of atmospheric backgrounds, primarily for muons from cosmic ray (CR) air showers as well as from neutrinos in the same air showers. Building on the experience of IceTop/IceCube, possibly the most cost-effective and sensitive way to build IceVeto is as an extension of the IceTop detector, with simple photomultiplier based detector modules for CR air shower detection. Initial simulations and estimates indicate that such a veto detector will significantly increase the sensitivity to an astrophysical flux of ν{sub μ} induced muon tracks in the Southern Hemisphere compared to current analyses. Here we present the motivation and capabilities based on initial simulations. Conceptual ideas for a simplified surface array will be discussed briefly.« less

  8. Caliste 64: detection unit of a spectro imager array for a hard x-ray space telescope

    NASA Astrophysics Data System (ADS)

    Limousin, O.; Meuris, A.; Lugiez, F.; Gevin, Olivier; Pinsard, F.; Blondel, C.; Le Mer, I.; Delagnes, E.; Vassal, M. C.; Soufflet, F.; Bocage, R.; Penquer, A.; Billot, M.

    2017-11-01

    In the frame of the hard X-ray Simbol-X observatory, a joint CNES-ASI space mission to be flown in 2014, a prototype of miniature Cd(Zn)Te camera equipped with 64 pixels has been designed. The device, called Caliste 64, is a spectro-imager with high resolution event timetagging capability. Caliste 64 integrates a Cd(Zn)Te semiconductor detector with segmented electrode and its front-end electronics made of 64 independent analog readout channels. This 1 × 1 × 2 cm3 camera, able to detect photons in the range from 2 keV up to 250 keV, is an elementary detection unit juxtaposable on its four sides. Consequently, large detector array can be made assembling a mosaic of Caliste 64 units. Electronics readout module is achieved by stacking four IDeF-X V1.1 ASICs, perpendicular to the detection plane. We achieved good noise performances, with a mean Equivalent Noise Charge of 65 electrons rms over the 64 channels. For the first prototypes, we chose Pt//CdTe//Al/Ti/Au Schottky detectors because of their very low dark current and excellent spectroscopic performances. Recently a Caliste 64 prototype has been also equipped with a 2 mm thick Au//CdZnTe//Au detector. This paper presents the performances of these four prototypes and demonstrates spectral performances better than 1 keV fwhm at 59.54 keV when the samples are moderately cooled down to -10°C.

  9. Development of EXITE2: a large-area imaging phoswich detector/telescope for hard x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Manandhar, Raj P.; Lum, Kenneth S.; Eikenberry, Stephen S.; Krockenberger, Martin; Grindlay, Jonathan E.

    1993-11-01

    We review design considerations and present preliminary details of the performance of a new imaging system for hard X-ray astronomy in the 20 - 600 keV energy range. The detector is a 40 cm X 40 cm NaI(Tl)/CsI(Na) phoswich module, read out by a 7 X 7 array of square PMTs. The detector comprises the main part of the next generation Energetic X-ray Imaging Telescope Experiment (EXITE2), which had its first flight on 13 June 1993 from Palestine, Texas. Imaging is accomplished via the coded-aperture mask technique. The mask consists of 16 mm square lead/tin/copper pixels arranged in a cyclically repeated 13 X 11 uniformly redundant array pattern at a focal length of 2.5 m, giving 22 arcmin resolution. The field of view, determined by the lead/brass collimator (16 mm pitch) is 4.65 degrees FWHM. We anticipate a 3 sigma sensitivity of 1 X 10(superscript -5) photons cm(superscript -2) s(superscript -1) keV(superscript -1) at 100 keV in a 10(superscript 4) sec balloon observation. The electronics incorporate two on-board computers, providing a future capability to record the full data stream and telemeter compressed data. The design of the current detector and electronics allows an upgrade to EXITE3, which adds a proportional counter front-end to achieve lower background and better spatial and spectral resolution below approximately 100 keV.

  10. First results on DEPFET Active Pixel Sensors fabricated in a CMOS foundry—a promising approach for new detector development and scientific instrumentation

    NASA Astrophysics Data System (ADS)

    Aschauer, S.; Majewski, P.; Lutz, G.; Soltau, H.; Holl, P.; Hartmann, R.; Schlosser, D.; Paschen, U.; Weyers, S.; Dreiner, S.; Klusmann, M.; Hauser, J.; Kalok, D.; Bechteler, A.; Heinzinger, K.; Porro, M.; Titze, B.; Strüder, L.

    2017-11-01

    DEPFET Active Pixel Sensors (APS) have been introduced as focal plane detectors for X-ray astronomy already in 1996. Fabricated on high resistivity, fully depleted silicon and back-illuminated they can provide high quantum efficiency and low noise operation even at very high read rates. In 2009 a new type of DEPFET APS, the DSSC (DEPFET Sensor with Signal Compression) was developed, which is dedicated to high-speed X-ray imaging at the European X-ray free electron laser facility (EuXFEL) in Hamburg. In order to resolve the enormous contrasts occurring in Free Electron Laser (FEL) experiments, this new DSSC-DEPFET sensor has the capability of nonlinear amplification, that is, high gain for low intensities in order to obtain single-photon detection capability, and reduced gain for high intensities to achieve high dynamic range for several thousand photons per pixel and frame. We call this property "signal compression". Starting in 2015, we have been fabricating DEPFET sensors in an industrial scale CMOS foundry maintaining the outstanding proven DEPFET properties and adding new capabilities due to the industrial-scale CMOS process. We will highlight these additional features and describe the progress achieved so far. In a first attempt on double-sided polished 725 μm thick 200 mm high resistivity float zone silicon wafers all relevant device related properties have been measured, such as leakage current, depletion voltage, transistor characteristics, noise and energy resolution for X-rays and the nonlinear response. The smaller feature size provided by the new technology allows for an advanced design and significant improvements in device performance. A brief summary of the present status will be given as well as an outlook on next steps and future perspectives.

  11. Optical Imaging and Radiometric Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Ha, Kong Q.; Fitzmaurice, Michael W.; Moiser, Gary E.; Howard, Joseph M.; Le, Chi M.

    2010-01-01

    OPTOOL software is a general-purpose optical systems analysis tool that was developed to offer a solution to problems associated with computational programs written for the James Webb Space Telescope optical system. It integrates existing routines into coherent processes, and provides a structure with reusable capabilities that allow additional processes to be quickly developed and integrated. It has an extensive graphical user interface, which makes the tool more intuitive and friendly. OPTOOL is implemented using MATLAB with a Fourier optics-based approach for point spread function (PSF) calculations. It features parametric and Monte Carlo simulation capabilities, and uses a direct integration calculation to permit high spatial sampling of the PSF. Exit pupil optical path difference (OPD) maps can be generated using combinations of Zernike polynomials or shaped power spectral densities. The graphical user interface allows rapid creation of arbitrary pupil geometries, and entry of all other modeling parameters to support basic imaging and radiometric analyses. OPTOOL provides the capability to generate wavefront-error (WFE) maps for arbitrary grid sizes. These maps are 2D arrays containing digital sampled versions of functions ranging from Zernike polynomials to combination of sinusoidal wave functions in 2D, to functions generated from a spatial frequency power spectral distribution (PSD). It also can generate optical transfer functions (OTFs), which are incorporated into the PSF calculation. The user can specify radiometrics for the target and sky background, and key performance parameters for the instrument s focal plane array (FPA). This radiometric and detector model setup is fairly extensive, and includes parameters such as zodiacal background, thermal emission noise, read noise, and dark current. The setup also includes target spectral energy distribution as a function of wavelength for polychromatic sources, detector pixel size, and the FPA s charge diffusion modulation transfer function (MTF).

  12. Advances in SELEX ES infrared detectors for space and astronomy

    NASA Astrophysics Data System (ADS)

    Knowles, P.; Hipwood, L.; Baker, I.; Weller, H.

    2017-11-01

    Selex ES produces a wide range of infrared detectors from mercury cadmium telluride (MCT) and triglycine sulfate (TGS), and has supplied both materials into space programmes spanning a period of over 40 years. Current development activities that underpin potential future space missions include large format arrays for near- and short-wave infrared (NIR and SWIR) incorporating radiation-hard designs and suppression of glow. Improved heterostructures are aimed at the reduction of dark currents and avalanche photodiodes (APDs), and parallel studies have been undertaken for low-stress MCT array mounts. Much of this development work has been supported by ESA, UK Space, and ESO, and some has been performed in collaboration with the UK Astronomy Technology Centre and E2V. This paper focuses on MCT heterostructure developments and novel design elements in silicon read-out chips (ROICs). The 2048 x 2048 element, 17um pitch ROIC for ESA's SWIR array development forms the basis for the largest cooled infrared detector manufactured in Europe. Selex ES MCT is grown by metal organic vapour phase epitaxy (MOVPE), currently on 75mm diameter GaAs substrates. The MCT die size of the SWIR array is 35mm square and only a single array can be printed on the 75mm diameter wafer, utilising only 28% of the wafer area. The situation for 100mm substrates is little better, allowing only 2 arrays and 31% utilisation. However, low cost GaAs substrates are readily available in 150mm diameter and the MCT growth is scalable to this size, offering the real possibility of 6 arrays per wafer with 42% utilisation. A similar 2k x 2k ROIC is the goal of ESA's NIR programme, which is currently in phase 2 with a 1k x 1k demonstrator, and a smaller 320 x 256 ROIC (SAPHIRA) has been designed for ESO for the adaptive optics application in the VLT Gravity instrument. All 3 chips have low noise source-follower architecture and are enabled for MCT APD arrays, which have been demonstrated by ESO to be capable of single photon detection. The possibility therefore exists in the near future of demonstrating a photon counting, 2k x 2k SWIR MCT detector manufactured on an affordable wafer scale of 6 arrays per wafer.

  13. Compton suppression and event triggering in a commercial data acquisition system

    NASA Astrophysics Data System (ADS)

    Tabor, Samuel; Caussyn, D. D.; Tripathi, Vandana; Vonmoss, J.; Liddick, S. N.

    2012-10-01

    A number of groups are starting to use flash digitizer systems to directly convert the preamplifier signals of high-resolution Ge detectors to a stream of digital data. Some digitizers are also equipped with software constant fraction discriminator algorithms capable of operating on the resulting digital data stream to provide timing information. Because of the dropping cost per channel of these systems, it should now be possible to also connect outputs of the Bismuth Germanate (BGO) scintillators used for Compton suppression to other digitizer inputs so that BGO logic signals can also be available in the same system. This provides the possibility to perform all the Compton suppression and multiplicity trigger logic within the digital system, thus eliminating the need for separate timing filter amplifiers (TFA), constant fraction discriminators (CFD), logic units, and lots of cables. This talk will describe the performance of such a system based on Pixie16 modules from XIA LLC with custom field programmable gate array (FPGA) programming for an array of Compton suppressed single Ge crystal and 4-crystal ``Clover'' detector array along with optional particle detectors. Initial tests of the system have produced results comparable with the current traditional system of individual electronics and peak sensing analog to digital converters. The advantages of the all digital system will be discussed.

  14. Physics process level discrimination of detections for GATE: assessment of contamination in SPECT and spurious activity in PET.

    PubMed

    De Beenhouwer, Jan; Staelens, Steven; Vandenberghe, Stefaan; Verhaeghe, Jeroen; Van Holen, Roel; Rault, Erwann; Lemahieu, Ignace

    2009-04-01

    The GEANT4 application for tomographic emission (GATE) is one of the most detailed Monte Carlo simulation tools for SPECT and PET. It allows for realistic phantoms, complex decay schemes, and a large variety of detector geometries. However, only a fraction of the information in each particle history is available for postprocessing. In order to extend the analysis capabilities of GATE, a flexible framework was developed. This framework allows all detected events to be subdivided according to their type: In PET, true coincidences from others, and in SPECT, geometrically collimated photons from others. The framework of the authors can be applied to any isotope, phantom, and detector geometry available in GATE. It is designed to enhance the usability of GATE for the study of contamination and for the investigation of the properties of current and future prototype detectors. The authors apply the framework to a case study of Bexxar, first assuming labeling with 124I, then with 131I. It is shown that with 124I PET, results with an optimized window improve upon those with the standard window but achieve less than half of the ideal improvement. Nevertheless, 124I PET shows improved resolution compared to 131I SPECT with triple-energy-window scatter correction.

  15. The SoLid experiment

    NASA Astrophysics Data System (ADS)

    Kalousis, L. N.; SoLid Collaboration

    2017-09-01

    The SoLid experiment is a short-baseline project, probing the disappearance of reactor antineutrinos using a novel detector design. Installed at a very short distance of ˜ 5.5 - 10 m from the BR2 research reactor at SCK·CEN in Mol (Belgium) it will be able to search for active-to-sterile neutrino oscillations, exploring most of the allowed parameter region. SoLid will make use of a highly segmented detector, built from 5 cm PVT cubes, interleaved with 6LiF:ZnS(Ag) screens, and read out by optical fibers and Silicon Photomultipliers (SiPMs). The detector granularity allows for the localization of the positron and neutron signals from antineutrino interactions and the robust neutron identification capabilities, offered by the 6LiF:ZnS(Ag) inorganic scintillator, provide background suppression to an unparalleled level. This paper reviews the experimental layout and current status of SoLid. Emphasis is put on the challenges one faces towards this measurement, focusing on the decisions and strategy adapted by the SoLid collaboration. The analysis scheme and the details of the oscillation framework are also presented, highlighting the sensitivity contour and physics potential of SoLid. Finally, other physics topics, such as, reactor monitoring or measurement of the 235U spectrum are also covered.

  16. Designing a reliable leak bio-detection system for natural gas pipelines.

    PubMed

    Batzias, F A; Siontorou, C G; Spanidis, P-M P

    2011-02-15

    Monitoring of natural gas (NG) pipelines is an important task for economical/safety operation, loss prevention and environmental protection. Timely and reliable leak detection of gas pipeline, therefore, plays a key role in the overall integrity management for the pipeline system. Owing to the various limitations of the currently available techniques and the surveillance area that needs to be covered, the research on new detector systems is still thriving. Biosensors are worldwide considered as a niche technology in the environmental market, since they afford the desired detector capabilities at low cost, provided they have been properly designed/developed and rationally placed/networked/maintained by the aid of operational research techniques. This paper addresses NG leakage surveillance through a robust cooperative/synergistic scheme between biosensors and conventional detector systems; the network is validated in situ and optimized in order to provide reliable information at the required granularity level. The proposed scheme is substantiated through a knowledge based approach and relies on Fuzzy Multicriteria Analysis (FMCA), for selecting the best biosensor design that suits both, the target analyte and the operational micro-environment. This approach is illustrated in the design of leak surveying over a pipeline network in Greece. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Compact LWIR sensors using spatial interferometric technology (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bingham, Adam L.; Lucey, Paul G.; Knobbe, Edward T.

    2017-05-01

    Recent developments in reducing the cost and mass of hyperspectral sensors have enabled more widespread use for short range compositional imaging applications. HSI in the long wave infrared (LWIR) is of interest because it is sensitive to spectral phenomena not accessible to other wavelengths, and because of its inherent thermal imaging capability. At Spectrum Photonics we have pursued compact LWIR hyperspectral sensors both using microbolometer arrays and compact cryogenic detector cameras. Our microbolometer-based systems are principally aimed at short standoff applications, currently weigh 10-15 lbs and feature sizes approximately 20x20x10 cm, with sensitivity in the 1-2 microflick range, and imaging times on the order of 30 seconds. Our systems that employ cryogenic arrays are aimed at medium standoff ranges such as nadir looking missions from UAVs. Recent work with cooled sensors has focused on Strained Layer Superlattice (SLS) technology, as these detector arrays are undergoing rapid improvements, and have some advantages compared to HgCdTe detectors in terms of calibration stability. These sensors include full on-board processing sensor stabilization so are somewhat larger than the microbolometer systems, but could be adapted to much more compact form factors. We will review our recent progress in both these application areas.

  18. Soft gamma-ray detector for the ASTRO-H Mission

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Blandford, Roger; Enoto, Teruaki; Kataoka, Jun; Kawaharada, Madoka; Kokubun, Motohide; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Madejski, Greg; Makishima, Kazuo; Mizuno, Tsunefumi; Nakamori, Takeshi; Nakazawa, Kazuhiro; Mori, Kunishiro; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Sato, Goro; Sato, Rie; Takeda, Shin'ichiro; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Tashiro, Makoto; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Yamada, Shinya; Yatsu, Yoichi; Yonetoku, Daisuke; Yuasa, Takayuki

    2012-09-01

    ASTRO-H is the next generation JAXA X-ray satellite, intended to carry instruments with broad energy coverage and exquisite energy resolution. The Soft Gamma-ray Detector (SGD) is one of ASTRO-H instruments and will feature wide energy band (60-600 keV) at a background level 10 times better than the current instruments on orbit. The SGD is complimentary to ASTRO-H’s Hard X-ray Imager covering the energy range of 5-80 keV. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield where Compton kinematics is utilized to reject backgrounds. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and CdTe (cadmium telluride) sensors. Good energy resolution is afforded by semiconductor sensors, and it results in good background rejection capability due to better constraints on Compton kinematics. Utilization of Compton kinematics also makes the SGD sensitive to the gamma-ray polarization, opening up a new window to study properties of gamma-ray emission processes. In this paper, we will present the detailed design of the SGD and the results of the final prototype developments and evaluations. Moreover, we will also present expected performance based on the measurements with prototypes.

  19. Investigating the effect of characteristic x-rays in cadmium zinc telluride detectors under breast computerized tomography operating conditions

    PubMed Central

    Glick, Stephen J.; Didier, Clay

    2013-01-01

    A number of research groups have been investigating the use of dedicated breast computerized tomography (CT). Preliminary results have been encouraging, suggesting an improved visualization of masses on breast CT as compared to conventional mammography. Nonetheless, there are many challenges to overcome before breast CT can become a routine clinical reality. One potential improvement over current breast CT prototypes would be the use of photon counting detectors with cadmium zinc telluride (CZT) (or CdTe) semiconductor material. These detectors can operate at room temperature and provide high detection efficiency and the capability of multi-energy imaging; however, one factor in particular that limits image quality is the emission of characteristic x-rays. In this study, the degradative effects of characteristic x-rays are examined when using a CZT detector under breast CT operating conditions. Monte Carlo simulation software was used to evaluate the effect of characteristic x-rays and the detector element size on spatial and spectral resolution for a CZT detector used under breast CT operating conditions. In particular, lower kVp spectra and thinner CZT thicknesses were studied than that typically used with CZT based conventional CT detectors. In addition, the effect of characteristic x-rays on the accuracy of material decomposition in spectral CT imaging was explored. It was observed that when imaging with 50-60 kVp spectra, the x-ray transmission through CZT was very low for all detector thicknesses studied (0.5–3.0 mm), thus retaining dose efficiency. As expected, characteristic x-ray escape from the detector element of x-ray interaction increased with decreasing detector element size, approaching a 50% escape fraction for a 100 μm size detector element. The detector point spread function was observed to have only minor degradation with detector element size greater than 200 μm and lower kV settings. Characteristic x-rays produced increasing distortion in the spectral response with decreasing detector element size. If not corrected for, this caused a large bias in estimating tissue density parameters for material decomposition. It was also observed that degradation of the spectral response due to characteristic x-rays caused worsening precision in the estimation of tissue density parameters. It was observed that characteristic x-rays do cause some degradation in the spatial and spectral resolution of thin CZT detectors operating under breast CT conditions. These degradations should be manageable with careful selection of the detector element size. Even with the observed spectral distortion from characteristic x-rays, it is still possible to correctly estimate tissue parameters for material decomposition using spectral CT if accurate modeling is used. PMID:24187383

  20. Modular optical detector system

    DOEpatents

    Horn, Brent A [Livermore, CA; Renzi, Ronald F [Tracy, CA

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  1. Advanced Detector and Waveform Digitizer for Water Vapor DIAL Systems

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1998-01-01

    Measurement of atmospheric water vapor has become a major requirement for understanding moist-air processes. Differential absorption lidar (DIAL) is a technique best suited for the measurement of atmospheric water vapor. NASA Langley Research Center is continually developing improved DIAL systems. One aspect of current development is focused on the enhancement of a DIAL receiver by applying state-of-the-art technology in building a new compact detection system that will be placed directly on the DIAL receiver telescope. The newly developed detection system has the capability of being digitally interfaced with a simple personal computer, using a discrete input/output interface. This has the potential of transmitting digital data over relatively long distances instead of analog signals, which greatly reduces measurement noise. In this paper, we discuss some results from the new compact water vapor DIAL detection system which includes a silicon based avalanche photodiode (APD) detector, a 14-bit, 10-MHz waveform digitizer, a microcontroller and other auxiliary electronics. All of which are contained on a small printed-circuit-board. This will significantly reduce the weight and volume over the current CAMAC system and eventually will be used in a water vapor DIAL system on an unpiloted atmospheric vehicle (UAV) aircraft, or alternatively on an orbiting spacecraft.

  2. An Inexpensive Cosmic Ray Detector for the Classroom

    ERIC Educational Resources Information Center

    Goldader, Jeffrey D.; Choi, Seulah

    2010-01-01

    Finding ways to demonstrate--in a high school classroom--that subatomic particles from space produce other particles capable of reaching the Earth's surface is not a trivial task. In this paper, we describe a Geiger-Muller tube-based cosmic ray coincidence detector we produced at a total cost of less than $200, using two tubes purchased used…

  3. Relativistic astrophysics. [design analysis and performance tests of Cerenkov counters for detection of iron isotopes

    NASA Technical Reports Server (NTRS)

    Price, P. B.

    1976-01-01

    The design, experimental testing, and calibration (error analysis) of a high resolution Cerenkov-scintillation detector is presented. The detector is capable of detecting iron isotopes and heavy ions of cosmic rays, and of performing direct measurements of individual neighboring isotopes at charge resolution 26. It utilizes Lexan (trademark) sheets, and has been used in flight packages of balloons and on the Skylab. The detector will be able to provide more information on violet astrophysical processes, such as thermonuclear reactions on neutron stars. Ground support and display equipment which are to be used in conjunction with the detector are also discussed.

  4. Monopole, astrophysics and cosmic ray observatory at Gran Sasso

    NASA Technical Reports Server (NTRS)

    Demarzo, C.; Enriquez, O.; Giglietto, N.; Posa, F.; Attolini, M.; Baldetti, F.; Giacomelli, G.; Grianti, F.; Margiotta, A.; Serra, P.

    1985-01-01

    A new large area detector, MACRO was approved for installation at the Gran Sasso Laboratory in Italy. The detector will be dedicated to the study of naturally penetrating radiation deep underground. It is designed with the general philosophy of covering the largest possible area with a detector having both sufficient built-in redundancy and use of complementary techniques to study very rare phenomena. The detector capabilities will include monopole investigations significantly below the Parker bound; astrophysics studies of very high energy gamma ray and neutrino point sources; cosmic ray measurements of single and multimuons; and the general observation of rare new forms of matter in the cosmic rays.

  5. Engineering Novel Detectors and Sensors for MRI

    PubMed Central

    Qian, Chunqi; Zabow, Gary; Koretsky, Alan

    2013-01-01

    Increasing detection sensitivity and image contrast have always been major topics of research in MRI. In this perspective, we summarize two engineering approaches to make detectors and sensors that have potential to extend the capability of MRI. The first approach is to integrate miniaturized detectors with a wireless powered parametric amplifier to enhance the detection sensitivity of remotely coupled detectors. The second approach is to microfabricate contrast agents with encoded multispectral frequency shifts, whose properties can be specified and fine-tuned by geometry. These two complementary approaches will benefit from the rapid development in nanotechnology and microfabrication which should enable new opportunities for MRI. PMID:23245489

  6. High-Rate Capable Floating Strip Micromegas

    NASA Astrophysics Data System (ADS)

    Bortfeldt, Jonathan; Bender, Michael; Biebel, Otmar; Danger, Helge; Flierl, Bernhard; Hertenberger, Ralf; Lösel, Philipp; Moll, Samuel; Parodi, Katia; Rinaldi, Ilaria; Ruschke, Alexander; Zibell, André

    2016-04-01

    We report on the optimization of discharge insensitive floating strip Micromegas (MICRO-MEsh GASeous) detectors, fit for use in high-energy muon spectrometers. The suitability of these detectors for particle tracking is shown in high-background environments and at very high particle fluxes up to 60 MHz/cm2. Measurement and simulation of the microscopic discharge behavior have demonstrated the excellent discharge tolerance. A floating strip Micromegas with an active area of 48 cm × 50 cm with 1920 copper anode strips exhibits in 120 GeV pion beams a spatial resolution of 50 μm at detection efficiencies above 95%. Pulse height, spatial resolution and detection efficiency are homogeneous over the detector. Reconstruction of particle track inclination in a single detector plane is discussed, optimum angular resolutions below 5° are observed. Systematic deviations of this μTPC-method are fully understood. The reconstruction capabilities for minimum ionizing muons are investigated in a 6.4 cm × 6.4 cm floating strip Micromegas under intense background irradiation of the whole active area with 20 MeV protons at a rate of 550 kHz. The spatial resolution for muons is not distorted by space charge effects. A 6.4 cm × 6.4 cm floating strip Micromegas doublet with low material budget is investigated in highly ionizing proton and carbon ion beams at particle rates between 2 MHz and 2 GHz. Stable operation up to the highest rates is observed, spatial resolution, detection efficiencies, the multi-hit and high-rate capability are discussed.

  7. Applications of Digitized 3-D Position-Sensitive CdZnTe Spectrometers for National Security and Nuclear Nonproliferation

    NASA Astrophysics Data System (ADS)

    Streicher, Michael W.

    A nuclear weapon detonation remains one of the gravest threats to the global community. Although the likelihood of a nuclear event remains small, the economic and political ramifications of an event are vast. The surest way to reduce the probability of an incident is to account for the special nuclear materials (SNM) which can be used to produce a nuclear weapon. Materials which can be used to manufacture a radiological dispersion device ("dirty bomb") must also be monitored. Rapidly-deployable, commercially-available, room-temperature imaging gamma-ray spectrometers are improving the ability of authorities to intelligently and quickly respond to threats. New electronics which digitally-sample the radiation-induced signals in CdZnTe detectors have expanded the capabilities of these sensors. This thesis explores national security applications where digital readout of CdZnTe detectors significantly enhances capabilities. Radioactive sources can be detected more quickly using digitally-sampled CdZnTe detector due to the improved energy resolution. The excellent energy resolution also improves the accuracy of measurements of uranium enrichment and allows users to measure plutonium grade. Small differences in the recorded gamma-ray energy spectrum can be used to estimate the effective atomic number and mass thickness of materials shielding SNM sources. Improved position resolution of gamma-ray interactions through digital readout allows high resolution gamma-ray images of SNM revealing information about the source configuration. CdZnTe sensors can detect the presence of neutrons, indirectly, through measurement of gamma rays released during capture of thermal neutrons by Cd-113 or inelastic scattering with any constituent nuclei. Fast neutrons, such as those released following fission, can be directly detected through elastic scattering interactions in the detector. Neutrons are a strong indicator of fissile material, and the background neutron rate is much lower than the gamma-ray background rate. Neutrons can more easily penetrate shielding materials as well which can greatly aid in the detection of shielded SNM. Digital CdZnTe readout enables the sensors to maintain excellent energy resolution at high count rates. Pulse pile-up and preamplifier decay can be monitored and corrected for on an event-by-event basis limiting energy resolution degradation in dose rates higher than 100 mR/hr. Finally, new iterations of the digital electronics have enhanced gamma-ray detection capabilities at high photon energies. Currently, gamma rays with energy up to 4.4 MeV have been detected. High-energy photon detection is critical for many proposed active interrogation systems.

  8. pODI at WIYN: Instrument Performance and Upgrade Path

    NASA Astrophysics Data System (ADS)

    Harbeck, Daniel R.; Boroson, T. A.; Rajagopal, J.; ODI Team; PPA Team

    2013-06-01

    A preliminary version of the WIYN One Degree Imager (ODI) has been commissioned throughout the semester 2012B, and has been put into scientific operation February 2013. ODI was devised to take advantage of the excellent image quality and wide field of view of the WIYN 3.5m telescope. To further improve delivered image quality, ODI uses Orthogonal Transfer Array (OTA) detectors that have the capability to electronically correct for image motion in the detectors during an exposure. The partial ODI (pODI) populates 13 out of the 64 OTAs in the focal plane, and coherent image motion correction is enabled. The 13 OTAs are configured as a 24 x 24 arcminute central “science field”, plus 4 outer OTAs, allowing the sampling of all radii within the one square degree field. Guide star signals from the outer detectors are either directed to the telescope only, or additionally used to calculate a global, coherent shift correction that is sent to the OTAs. The performance of pODI is excellent. Image quality is site seeing limited, and, on good seeing nights, we can achieve images around 0.4 arcsec FWHM over the entire field. We are still in the process of characterizing the gains from active image motion correction, but the detectors perform well in this mode. Data are immediately transferred to an archive at Indiana University, where they are pipeline-processed to remove instrumental signature. In this poster we summarize the current performance of the pODI instrument and outline a path towards a future, expanded version of ODI with a 6x6 central detector array, or a field of view of 48 x 48 arcminutes.

  9. 3He and BF 3 neutron detector pressure effect and model comparison

    NASA Astrophysics Data System (ADS)

    Lintereur, Azaree; Conlin, Kenneth; Ely, James; Erikson, Luke; Kouzes, Richard; Siciliano, Edward; Stromswold, David; Woodring, Mitchell

    2011-10-01

    Radiation detection systems for homeland security applications must possess the capability of detecting both gamma rays and neutrons. The radiation portal monitor systems that are currently deployed use a plastic scintillator for detecting gamma rays and 3He gas-filled proportional counters for detecting neutrons. Proportional counters filled with 3He are the preferred neutron detectors for use in radiation portal monitor systems because 3He has a large neutron cross-section, is relatively insensitive to gamma-rays, is neither toxic nor corrosive, can withstand extreme environments, and can be operated at a lower voltage than some of the alternative proportional counters. The amount of 3He required for homeland security and science applications has depleted the world supply and there is no longer enough available to fill the demand. Thus, alternative neutron detectors are being explored. Two possible temporary solutions that could be utilized while a more permanent solution is being identified are reducing the 3He pressure in the proportional counters and using boron trifluoride gas-filled proportional counters. Reducing the amount of 3He required in each of the proportional counters would decrease the rate at which 3He is being used; not enough to solve the shortage, but perhaps enough to increase the amount of time available to find a working replacement. Boron trifluoride is not appropriate for all situations as these detectors are less sensitive than 3He, boron trifluoride gas is corrosive, and a much higher voltage is required than what is used with 3He detectors. Measurements of the neutron detection efficiency of 3He and boron trifluoride as a function of tube pressure were made. The experimental results were also used to validate models of the radiation portal monitor systems.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheuermann, J; Howansky, A; Goldan, A

    Purpose: We present the first active matrix flat panel imager (AMFPI) capable of producing x-ray quantum noise limited images at low doses by overcoming the electronic noise through signal amplification by photoconductive avalanche gain (gav). The indirect detector fabricated uses an optical sensing layer of amorphous selenium (a-Se) known as High-Gain Avalanche Rushing Photoconductor (HARP). The detector design is called Scintillator HARP (SHARP)-AMFPI. This is the first image sensor to utilize solid-state HARP technology. Methods: The detector’s electronic readout is a 24 × 30 cm{sup 2} array of thin film transistors (TFT) with a pixel pitch of 85 µm. Themore » HARP structure consists of a 15 µm layer of a-Se isolated from the high voltage (HV) and signal electrode by a 2 µm thick hole blocking layer and electron blocking layer, respectively, to reduce dark current. A 150 µm thick structured CsI scintillator with reflective backing and a fiber optic faceplate (FOP) was coupled to the semi-transparent HV bias electrode of the HARP structure. Images were acquired using a 30 kVp Mo/Mo spectrum typically used in mammography. Results: Optical sensitivity measurements demonstrate that gav = 76 ± 5 can be achieved over the entire active area of the detector. At a constant dose to the detector of 6.67 µGy, image quality increases with gav until the effective electronic noise is negligible. Quantum noise limited images can be obtained with doses as low as 0.18 µGy. Conclusion: We demonstrate the feasibility of utilizing avalanche gain to overcome electronic noise. The indirect detector fabricated is the first solid-state imaging sensor to use HARP, and the largest active area HARP sensor to date. Our future work is to improve charge transport within the HARP structure and utilize a transparent HV electrode.« less

  11. Earth's magnetic field as a radiator to detet cosmic ray electrons of energy >10/sup 12/ eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, S.A.; Balasubrahmanyan, V.K.

    1983-10-01

    We have examined in detail the synchrotron emission by electrons of energy greater than a few TeV in the earth's magnetic field. The photon spectrum lies in the X-ray and ..gamma.. ray region. As the emission takes place in a narrow cone along the direction of the electron, the photons would be incident nearly along a straight line on a detector. This unique feature provides the signature to identify the electron unambiguously. The mean energy of the photons being proportional to the square of the electron energy allows us to determine the energy accurately. Though it may appear that onemore » needs to know the arrival direction of electrons to obtain its energy, we have shown that an omnidirectional detector can be satisfactorily used to estimate the energy. We also show that the colleting power of the detector is a sensitive function of the area of the detector A, the energy of electron E/sub 0/, and the number of photons required to identify an electron n/sub ..gamma../; asymptotically the collecting power is proportional to A/sup 1.43/ E/sub 0/n/sub ..gamma..//sup -1.8/. An instrument, with an energy threshold for the detection of photons can be used to measure reliably the integral flux of electrons, even if it has limited energy resolution. We have calculated the event rate expected by using an ideal balloon-borne detector capable of detecting above 20 keV at 4 g cm/sup -2/ of atmospheric depth over Palestine Texas, and compared with the expected rates using instruments based on currently available techniques of detection.« less

  12. Measuring $$\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Jessica Sarah

    2011-01-01

    The MINOS Experiment consists of two steel-scintillator calorimeters, sampling the long baseline NuMI muon neutrino beam. It was designed to make a precise measurement of the ‘atmospheric’ neutrino mixing parameters, Δm 2 atm. and sin 2 (2 atm.). The Near Detector measures the initial spectrum of the neutrino beam 1km from the production target, and the Far Detector, at a distance of 735 km, measures the impact of oscillations in the neutrino energy spectrum. Work performed to validate the quality of the data collected by the Near Detector is presented as part of this thesis. This thesis primarily details themore » results of a v μ disappearance analysis, and presents a new sophisticated fitting software framework, which employs a maximum likelihood method to extract the best fit oscillation parameters. The software is entirely decoupled from the extrapolation procedure between the detectors, and is capable of fitting multiple event samples (defined by the selections applied) in parallel, and any combination of energy dependent and independent sources of systematic error. Two techniques to improve the sensitivity of the oscillation measurement were also developed. The inclusion of information on the energy resolution of the neutrino events results in a significant improvement in the allowed region for the oscillation parameters. The degree to which sin 2 (2θ )= 1.0 could be disfavoured with the exposure of the current dataset if the true mixing angle was non-maximal, was also investigated, with an improved neutrino energy reconstruction for very low energy events. The best fit oscillation parameters, obtained by the fitting software and incorporating resolution information were: | Δm 2| = 2.32 +0.12 -0.08×10 -3 eV 2 and sin 2 (2θ ) > 0.90(90% C.L.). The analysis provides the current world best measurement of the atmospheric neutrino mass splitting Δm 2. The alternative models of neutrino decay and decoherence are disfavoured by 7.8σ and 9.7σ respectively.« less

  13. Real-Time Capabilities of a Digital Analyzer for Mixed-Field Assay Using Scintillation Detectors

    NASA Astrophysics Data System (ADS)

    Aspinall, M. D.; Joyce, M. J.; Lavietes, A.; Plenteda, R.; Cave, F. D.; Parker, H.; Jones, A.; Astromskas, V.

    2017-03-01

    Scintillation detectors offer a single-step detection method for fast neutrons and necessitate real-time acquisition, whereas this is redundant in two-stage thermal detection systems using helium-3 and lithium-6, where the fast neutrons need to be thermalized prior to detection. The relative affordability of scintillation detectors and the associated fast digital acquisition systems have enabled entirely new measurement setups that can consist of sizeable detector arrays. These detectors in most cases rely on photomultiplier tubes, which have significant tolerances and result in variations in detector response functions. The detector tolerances and other environmental instabilities must be accounted for in measurements that depend on matched detector performance. This paper presents recent advances made to a high-speed FPGA-based digitizer. The technology described offers a complete solution for fast-neutron scintillation detectors by integrating multichannel high-speed data acquisition technology with dedicated detector high-voltage supplies. This configuration has significant advantages for large detector arrays that require uniform detector responses. We report on bespoke control software and firmware techniques that exploit real-time functionality to reduce setup and acquisition time, increase repeatability, and reduce statistical uncertainties.

  14. Cherenkov light identification in TeO2 crystals with Si low-temperature detectors

    NASA Astrophysics Data System (ADS)

    Gironi, L.; Biassoni, M.; Brofferio, C.; Capelli, S.; Carniti, P.; Cassina, L.; Clemenza, M.; Cremonesi, O.; Faverzani, M.; Ferri, E.; Giachero, A.; Gotti, C.; Maino, M.; Margesin, B.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pozzi, S.; Previtali, E.; Puiu, A.; Sisti, M.; Terranova, F.

    2017-09-01

    Low temperature thermal detectors with particle identification capabilities are among the best detectors for next generation experiments for the search of neutrinoless double beta decay. Thermal detectors allow to reach excellent energy resolution and to optimize the detection efficiency, while the possibility to identify the interacting particle allows to greatly reduce the background. Tellurium dioxide is one of the favourite compounds since it has long demonstrated the first two features and could reach the third through Cherenkov emission tagging [1]. A new generation of cryogenic light detectors are however required to detect the few Cherenkov photons emitted by electrons of few MeV energy. Preliminary measurements with new Si light detectors demonstrated a clear event-by-event discrimination between alpha and beta/gamma interactions at the 130Te neutrinoless double beta decay Q-value (2528 keV).

  15. Digital Radiography and Computed Tomography Project -- Fully Integrated Linear Detector ArrayStatus Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tim Roney; Robert Seifert; Bob Pink

    2011-09-01

    The field-portable Digital Radiography and Computed Tomography (DRCT) x-ray inspection systems developed for the Project Manager for NonStockpile Chemical Materiel (PMNSCM) over the past 13 years have used linear diode detector arrays from two manufacturers; Thomson and Thales. These two manufacturers no longer produce this type of detector. In the interest of insuring the long term viability of the portable DRCT single munitions inspection systems and to improve the imaging capabilities, this project has been investigating improved, commercially available detectors. During FY-10, detectors were evaluated and one in particular, manufactured by Detection Technologies (DT), Inc, was acquired for possible integrationmore » into the DRCT systems. The remainder of this report describes the work performed in FY-11 to complete evaluations and fully integrate the detector onto a representative DRCT platform.« less

  16. System and Method for Determining Fluence of a Substance

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    2016-01-01

    A system and method for measuring a fluence of gas are disclosed. The system has a first light detector capable of outputting an electrical signal based on an amount of light received. A barrier is positionable adjacent the first light detector and is susceptible to a change in dimension from the fluence of the gas. The barrier permits a portion of light from being received by the first light detector. The change in the dimension of the barrier changes the electrical signal output from the first light detector. A second light detector is positionable to receive light representative of the first light detector without the barrier. The system and method have broad application to detect fluence of gas that may cause erosion chemical reaction causing erosive deterioration. One application is in low orbit Earth for detecting the fluence of atomic oxygen.

  17. Effect of Defects on III-V MWIR nBn Detector Performance

    DTIC Science & Technology

    2014-08-01

    SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 infrared detectors ...rather than diffusion based processes. Keywords: infrared detectors , MWIR, nBn, photodiode, defects, irradiation, lattice mismatch, dark current...currents will increase noise in the detector , it is important to understand the impact elevated defect concentrations will have on barrier architecture

  18. A combined time-of-flight and depth-of-interaction detector for total-body positron emission tomography

    PubMed Central

    Berg, Eric; Roncali, Emilie; Kapusta, Maciej; Du, Junwei; Cherry, Simon R.

    2016-01-01

    Purpose: In support of a project to build a total-body PET scanner with an axial field-of-view of 2 m, the authors are developing simple, cost-effective block detectors with combined time-of-flight (TOF) and depth-of-interaction (DOI) capabilities. Methods: This work focuses on investigating the potential of phosphor-coated crystals with conventional PMT-based block detector readout to provide DOI information while preserving timing resolution. The authors explored a variety of phosphor-coating configurations with single crystals and crystal arrays. Several pulse shape discrimination techniques were investigated, including decay time, delayed charge integration (DCI), and average signal shapes. Results: Pulse shape discrimination based on DCI provided the lowest DOI positioning error: 2 mm DOI positioning error was obtained with single phosphor-coated crystals while 3–3.5 mm DOI error was measured with the block detector module. Minimal timing resolution degradation was observed with single phosphor-coated crystals compared to uncoated crystals, and a timing resolution of 442 ps was obtained with phosphor-coated crystals in the block detector compared to 404 ps without phosphor coating. Flood maps showed a slight degradation in crystal resolvability with phosphor-coated crystals; however, all crystals could be resolved. Energy resolution was degraded by 3%–7% with phosphor-coated crystals compared to uncoated crystals. Conclusions: These results demonstrate the feasibility of obtaining TOF–DOI capabilities with simple block detector readout using phosphor-coated crystals. PMID:26843254

  19. A combined time-of-flight and depth-of-interaction detector for total-body positron emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Eric, E-mail: eberg@ucdavis.edu; Roncali, Emilie; Du, Junwei

    Purpose: In support of a project to build a total-body PET scanner with an axial field-of-view of 2 m, the authors are developing simple, cost-effective block detectors with combined time-of-flight (TOF) and depth-of-interaction (DOI) capabilities. Methods: This work focuses on investigating the potential of phosphor-coated crystals with conventional PMT-based block detector readout to provide DOI information while preserving timing resolution. The authors explored a variety of phosphor-coating configurations with single crystals and crystal arrays. Several pulse shape discrimination techniques were investigated, including decay time, delayed charge integration (DCI), and average signal shapes. Results: Pulse shape discrimination based on DCI providedmore » the lowest DOI positioning error: 2 mm DOI positioning error was obtained with single phosphor-coated crystals while 3–3.5 mm DOI error was measured with the block detector module. Minimal timing resolution degradation was observed with single phosphor-coated crystals compared to uncoated crystals, and a timing resolution of 442 ps was obtained with phosphor-coated crystals in the block detector compared to 404 ps without phosphor coating. Flood maps showed a slight degradation in crystal resolvability with phosphor-coated crystals; however, all crystals could be resolved. Energy resolution was degraded by 3%–7% with phosphor-coated crystals compared to uncoated crystals. Conclusions: These results demonstrate the feasibility of obtaining TOF–DOI capabilities with simple block detector readout using phosphor-coated crystals.« less

  20. Tomography of quantum detectors

    NASA Astrophysics Data System (ADS)

    Lundeen, J. S.; Feito, A.; Coldenstrodt-Ronge, H.; Pregnell, K. L.; Silberhorn, Ch.; Ralph, T. C.; Eisert, J.; Plenio, M. B.; Walmsley, I. A.

    2009-01-01

    Measurement connects the world of quantum phenomena to the world of classical events. It has both a passive role-in observing quantum systems-and an active one, in preparing quantum states and controlling them. In view of the central status of measurement in quantum mechanics, it is surprising that there is no general recipe for designing a detector that measures a given observable. Compounding this, the characterization of existing detectors is typically based on partial calibrations or elaborate models. Thus, experimental specification (that is, tomography) of a detector is of fundamental and practical importance. Here, we present the realization of quantum detector tomography. We identify the positive-operator-valued measure describing the detector, with no ancillary assumptions. This result completes the triad, state, process and detector tomography, required to fully specify an experiment. We characterize an avalanche photodiode and a photon-number-resolving detector capable of detecting up to eight photons. This creates a new set of tools for accurately detecting and preparing non-classical light.

  1. Radiation imaging with optically read out GEM-based detectors

    NASA Astrophysics Data System (ADS)

    Brunbauer, F. M.; Lupberger, M.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.

    2018-02-01

    Modern imaging sensors allow for high granularity optical readout of radiation detectors such as MicroPattern Gaseous Detectors (MPGDs). Taking advantage of the high signal amplification factors achievable by MPGD technologies such as Gaseous Electron Multipliers (GEMs), highly sensitive detectors can be realised and employing gas mixtures with strong scintillation yield in the visible wavelength regime, optical readout of such detectors can provide high-resolution event representations. Applications from X-ray imaging to fluoroscopy and tomography profit from the good spatial resolution of optical readout and the possibility to obtain images without the need for extensive reconstruction. Sensitivity to low-energy X-rays and energy resolution permit energy resolved imaging and material distinction in X-ray fluorescence measurements. Additionally, the low material budget of gaseous detectors and the possibility to couple scintillation light to imaging sensors via fibres or mirrors makes optically read out GEMs an ideal candidate for beam monitoring detectors in high energy physics as well as radiotherapy. We present applications and achievements of optically read out GEM-based detectors including high spatial resolution imaging and X-ray fluorescence measurements as an alternative readout approach for MPGDs. A detector concept for low intensity applications such as X-ray crystallography, which maximises detection efficiency with a thick conversion region but mitigates parallax-induced broadening is presented and beam monitoring capabilities of optical readout are explored. Augmenting high resolution 2D projections of particle tracks obtained with optical readout with timing information from fast photon detectors or transparent anodes for charge readout, 3D reconstruction of particle trajectories can be performed and permits the realisation of optically read out time projection chambers. Combining readily available high performance imaging sensors with compatible scintillating gases and the strong signal amplification factors achieved by MPGDs makes optical readout an attractive alternative to the common concept of electronic readout of radiation detectors. Outstanding signal-to-noise ratios and robustness against electronic noise allow unprecedented imaging capabilities for various applications in fields ranging from high energy physics to medical instrumentation.

  2. The wide field imager instrument for Athena

    NASA Astrophysics Data System (ADS)

    Meidinger, Norbert; Eder, Josef; Eraerds, Tanja; Nandra, Kirpal; Pietschner, Daniel; Plattner, Markus; Rau, Arne; Strecker, Rafael

    2016-07-01

    The WFI (Wide Field Imager) instrument is planned to be one of two complementary focal plane cameras on ESA's next X-ray observatory Athena. It combines unprecedented survey power through its large field of view of 40 amin x 40 amin together with excellent count rate capability (>= 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.2 keV to 15 keV, e.g. the full width at half maximum of a line at 7 keV will be <= 170 eV until the end of the nominal mission phase. This performance is accomplished by using DEPFET active pixel sensors with a pixel size of 130 μm x 130 μm well suited to the on-axis angular resolution of 5 arcsec half energy width (HEW) of the mirror system. Each DEPFET pixel is a combined sensor-amplifier structure with a MOSFET integrated onto a fully depleted 450 μm thick silicon bulk. Two detectors are planned for the WFI instrument: A large-area detector comprising four sensors with a total of 1024 x 1024 pixels and a fast detector optimized for high count rate observations. This high count rate capable detector permits for bright point sources with an intensity of 1 Crab a throughput of more than 80% and a pile-up of less than 1%. The fast readout of the DEPFET pixel matrices is facilitated by an ASIC development, called VERITAS-2. Together with the Switcher-A, a control ASIC that allows for operation of the DEPFET in rolling shutter mode, these elements form the key components of the WFI detectors. The detectors are surrounded by a graded-Z shield, which has in particular the purpose to avoid fluorescence lines that would contribute to the instrument background. Together with ultra-thin coating of the sensor and particle identification by the detector itself, the particle induced background shall be minimized in order to achieve the scientific requirement of a total instrumental background value smaller than 5 x 10-3 cts/cm2/s/keV. Each detector has its dedicated detector electronics (DE) for supply and data acquisition. Due to the high frame rate in combination with the large pixel array, signal correction and event filtering have to be done on-board and in real-time as the raw data rate would by far exceed the feasible telemetry rate. The data streams are merged and compressed in the Instrument Control and Power distribution Unit (ICPU). The ICPU is the data, control and power interface of the WFI to the Athena spacecraft. The WFI instrument comprises in addition a filter wheel (FW) in front of the camera as well as an optical stray-light baffle. In the current phase A of the Athena project, the technology development is performed. At its end, breadboard models will be developed and tested to demonstrate a technical readiness level (TRL) of at least 5 for the various WFI subsystems before mission adoption in 2020.

  3. SEMICONDUCTOR TECHNOLOGY: Influence of hydrogenation on the dark current mechanism of HgCdTe photovoltaic detectors

    NASA Astrophysics Data System (ADS)

    Hui, Qiao; Weida, Hu; Zhenhua, Ye; Xiangyang, Li; Haimei, Gong

    2010-03-01

    The influence of hydrogenation on the dark current mechanism of HgCdTe photovoltaic detectors is studied. The hydrogenation is achieved by exposing samples to a H2/Ar plasma atmosphere that was produced during a reactive ion etching process. A set of variable-area photomask was specially designed to evaluate the hydrogenation effect. It was found that the current-voltage characteristics were gradually improved when detectors were hydrogenated by different areas. The fitting results of experimental results at reverse bias conditions sustained that the improvement of current-voltage curves was due to the suppression of trap assisted tunneling current and the enhancement of minority lifetime in the depletion region. It was also found that the dominative forward current was gradually converted from a generation-recombination current to a diffusion current with the enlargement of the hydrogenation area, which was infered from the ideality factors by abstraction of forward resistance-voltage curves of different detectors.

  4. Technology development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a candidate large UV-Optical-Infrared (LUVOIR) surveyor

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-09-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  5. Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; hide

    2015-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  6. Photon Counting Using Edge-Detection Algorithm

    NASA Technical Reports Server (NTRS)

    Gin, Jonathan W.; Nguyen, Danh H.; Farr, William H.

    2010-01-01

    New applications such as high-datarate, photon-starved, free-space optical communications require photon counting at flux rates into gigaphoton-per-second regimes coupled with subnanosecond timing accuracy. Current single-photon detectors that are capable of handling such operating conditions are designed in an array format and produce output pulses that span multiple sample times. In order to discern one pulse from another and not to overcount the number of incoming photons, a detection algorithm must be applied to the sampled detector output pulses. As flux rates increase, the ability to implement such a detection algorithm becomes difficult within a digital processor that may reside within a field-programmable gate array (FPGA). Systems have been developed and implemented to both characterize gigahertz bandwidth single-photon detectors, as well as process photon count signals at rates into gigaphotons per second in order to implement communications links at SCPPM (serial concatenated pulse position modulation) encoded data rates exceeding 100 megabits per second with efficiencies greater than two bits per detected photon. A hardware edge-detection algorithm and corresponding signal combining and deserialization hardware were developed to meet these requirements at sample rates up to 10 GHz. The photon discriminator deserializer hardware board accepts four inputs, which allows for the ability to take inputs from a quadphoton counting detector, to support requirements for optical tracking with a reduced number of hardware components. The four inputs are hardware leading-edge detected independently. After leading-edge detection, the resultant samples are ORed together prior to deserialization. The deserialization is performed to reduce the rate at which data is passed to a digital signal processor, perhaps residing within an FPGA. The hardware implements four separate analog inputs that are connected through RF connectors. Each analog input is fed to a high-speed 1-bit comparator, which digitizes the input referenced to an adjustable threshold value. This results in four independent serial sample streams of binary 1s and 0s, which are ORed together at rates up to 10 GHz. This single serial stream is then deserialized by a factor of 16 to create 16 signal lines at a rate of 622.5 MHz or lower for input to a high-speed digital processor assembly. The new design and corresponding hardware can be employed with a quad-photon counting detector capable of handling photon rates on the order of multi-gigaphotons per second, whereas prior art was only capable of handling a single input at 1/4 the flux rate. Additionally, the hardware edge-detection algorithm has provided the ability to process 3-10 higher photon flux rates than previously possible by removing the limitation that photoncounting detector output pulses on multiple channels being ORed not overlap. Now, only the leading edges of the pulses are required to not overlap. This new photon counting digitizer hardware architecture supports a universal front end for an optical communications receiver operating at data rates from kilobits to over one gigabit per second to meet increased mission data volume requirements.

  7. Gamma-ray burst spectroscopy capabilities of the BATSE/GRO experiment

    NASA Technical Reports Server (NTRS)

    Matteson, J. L.; Fishman, G. J.; Meegan, C. A.; Parnell, T. A.; Wilson, R. B.; Paciesas, W.; Cline, T. L.; Teegarden, B. J.

    1985-01-01

    A scintillation spectrometer is included in each of the eight BATSE/GRO detector modules, resulting in all-sky coverage for gamma-ray bursts. The scientific motivation, design and capabilities of these spectrometers for performing spectral observations over a wide range of gamma-ray energies and burst intensities are described.

  8. A review of the developments of radioxenon detectors for nuclear explosion monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivels, Ciara B.; McIntyre, Justin I.; Bowyer, Theodore W.

    Developments in radioxenon monitoring since the implementation of the International Monitoring System are reviewed with emphasis on the most current technologies to improve detector sensitivity and resolution. The nuclear detectors reviewed include combinations of plastic and NaI(Tl) detectors, high purity germanium detectors, silicon detectors, and phoswich detectors. The minimum detectable activity and calibration methods for the various detectors are also discussed.

  9. Apparatus and method for critical current measurements

    DOEpatents

    Martin, Joe A.; Dye, Robert C.

    1992-01-01

    An apparatus for the measurement of the critical current of a superconductive sample, e.g., a clad superconductive sample, the apparatus including a conductive coil, a means for maintaining the coil in proximity to a superconductive sample, an electrical connection means for passing a low amplitude alternating current through the coil, a cooling means for maintaining the superconductive sample at a preselected temperature, a means for passing a current through the superconductive sample, and, a means for monitoring reactance of the coil, is disclosed, together with a process of measuring the critical current of a superconductive material, e.g., a clad superconductive material, by placing a superconductive material into the vicinity of the conductive coil of such an apparatus, cooling the superconductive material to a preselected temperature, passing a low amplitude alternating current through the coil, the alternating current capable of generating a magnetic field sufficient to penetrate, e.g., any cladding, and to induce eddy currents in the superconductive material, passing a steadily increasing current through the superconductive material, the current characterized as having a different frequency than the alternating current, and, monitoring the reactance of the coil with a phase sensitive detector as the current passed through the superconductive material is steadily increased whereby critical current of the superconductive material can be observed as the point whereat a component of impedance deviates.

  10. Insect-gene-activity detection system for chemical and biological warfare agents and toxic industrial chemicals

    NASA Astrophysics Data System (ADS)

    Mackie, Ryan S.; Schilling, Amanda S.; Lopez, Arturo M.; Rayms-Keller, Alfredo

    2002-02-01

    Detection of multiple chemical and biological weapons (CBW) agents and/or complex mixtures of toxic industrial chemicals (TIC) is imperative for both the commercial and military sectors. In a military scenario, a multi-CBW attack would create confusion, thereby delaying decontamination and therapeutic efforts. In the commercial sector, polluted sites invariably contain a mixture of TIC. Novel detection systems capable of detecting CBW and TIC are sorely needed. While it may be impossible to build a detector capable of discriminating all the possible combinations of CBW, a detection system capable of statistically predicting the most likely composition of a given mixture is within the reach of current emerging technologies. Aquatic insect-gene activity may prove to be a sensitive, discriminating, and elegant paradigm for the detection of CBW and TIC. We propose to systematically establish the expression patterns of selected protein markers in insects exposed to specific mixtures of chemical and biological warfare agents to generate a library of biosignatures of exposure. The predicting capabilities of an operational library of biosignatures of exposures will allow the detection of emerging novel or genetically engineered agents, as well as complex mixtures of chemical and biological weapons agents. CBW and TIC are discussed in the context of war, terrorism, and pollution.

  11. Systems and methods for detecting and processing

    DOEpatents

    Johnson, Michael M [Livermore, CA; Yoshimura, Ann S [Tracy, CA

    2006-03-28

    Embodiments of the present invention provides systems and method for detecting. Sensing modules are provided in communication with one or more detectors. In some embodiments, detectors are provided that are sensitive to chemical, biological, or radiological agents. Embodiments of sensing modules include processing capabilities to analyze, perform computations on, and/or run models to predict or interpret data received from one or more detectors. Embodiments of sensing modules form various network configurations with one another and/or with one or more data aggregation devices. Some embodiments of sensing modules include power management functionalities.

  12. The Underwater Spectrometric System Based on CZT Detector for Survey of the Bottom of MR Reactor Pool - 13461

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potapov, Victor; Safronov, Alexey; Ivanov, Oleg

    2013-07-01

    The underwater spectrometer system for detection of irradiated nuclear fuel on the pool bottom of the reactor was elaborated. During the development process metrological studies of CdZnTe (CZT) detectors were conducted. These detectors are designed for spectrometric measurements in high radiation fields. A mathematical model based on the Monte Carlo method was created to evaluate the capability of such a system. A few experimental models were realized and the characteristics of the spectrometric system are represented. (authors)

  13. Shower disc sampling and the angular resolution of gamma-ray shower detectors

    NASA Technical Reports Server (NTRS)

    Lambert, A.; Lloyd-Evans, J.

    1985-01-01

    As part of the design study for the new UHE gamma ray detector being constsructed at Haverah Park, a series of experiments using scintillators operated side-by-side in 10 to the 15th power eV air showers are undertaken. Investigation of the rms sampling fluctuations in the shower disc arrival time yields an upper limit to the intrinsic sampling uncertainty, sigma sub rms = (1.1 + or - 0.1)ns, implying an angular resolution capability 1 deg for an inter-detector spacing of approximately 25 m.

  14. Read-noise characterization of focal plane array detectors via mean-variance analysis.

    PubMed

    Sperline, R P; Knight, A K; Gresham, C A; Koppenaal, D W; Hieftje, G M; Denton, M B

    2005-11-01

    Mean-variance analysis is described as a method for characterization of the read-noise and gain of focal plane array (FPA) detectors, including charge-coupled devices (CCDs), charge-injection devices (CIDs), and complementary metal-oxide-semiconductor (CMOS) multiplexers (infrared arrays). Practical FPA detector characterization is outlined. The nondestructive readout capability available in some CIDs and FPA devices is discussed as a means for signal-to-noise ratio improvement. Derivations of the equations are fully presented to unify understanding of this method by the spectroscopic community.

  15. The SAFIR experiment: Concept, status and perspectives

    NASA Astrophysics Data System (ADS)

    Becker, Robert; Buck, Alfred; Casella, Chiara; Dissertori, Günther; Fischer, Jannis; Howard, Alexander; Ito, Mikiko; Khateri, Parisa; Lustermann, Werner; Oliver, Josep F.; Röser, Ulf; Warnock, Geoffrey; Weber, Bruno

    2017-02-01

    The SAFIR development represents a novel Positron Emission Tomography (PET) detector, conceived for preclinical fast acquisitions inside the bore of a Magnetic Resonance Imaging (MRI) scanner. The goal is hybrid and simultaneous PET/MRI dynamic studies at unprecedented temporal resolutions of a few seconds. The detector relies on matrices of scintillating LSO-based crystals coupled one-to-one with SiPM arrays and readout by fast ASICs with excellent timing resolution and high rate capabilities. The paper describes the detector concept and the initial results in terms of simulations and characterisation measurements.

  16. A new detector for sub-millisecond EXAFS spectroscopy at the European Synchrotron Radiation Facility.

    PubMed

    Kantor, Innokenty; Labiche, Jean-Claude; Collet, Emmanuel; Siron, Laurent; Thevenin, Jean-Jacques; Ponchut, Cyril; Borrel, Jacques; Mairs, Trevor; Marini, Carlo; Strohm, Cornelius; Mathon, Olivier; Pascarelli, Sakura

    2014-11-01

    A new FReLoN (Fast-Readout Low-Noise) high-frame-rate detector adopted for the fast continuous collection of X-ray absorption spectra is presented. The detector is installed on the energy-dispersive X-ray absorption beamline ID24 at the ESRF and is capable of full time-resolved EXAFS spectra collection with over 4 kHz repetition rate and 0.2 ms exposure time. An example of the in situ kinetic study of the high-temperature oxidation of metallic iron is presented.

  17. Characterization of resonant tunneling diodes for microwave and millimeter-wave detection

    NASA Technical Reports Server (NTRS)

    Mehdi, I.; East, J. R.; Haddad, G. I.

    1991-01-01

    The authors report on the direct detection capabilities of resonant tunneling diodes in the 10-100 GHz range. An open circuit voltage sensitivity of 1750 mV/mW (in Ka-band) was measured. This is higher than the sensitivity of comparatively based commercially available solid-state detectors. The detector properties are a strong function of diode bias and the measured tangential signal sensitivity (-32 dBm at Ka-band with 1-MHz bandwidth) and the dynamic range (25 dB) of the diode are smaller compared to other solid-state detectors.

  18. Fermi LAT Observations of Cosmic-Ray Electrons

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2011-01-01

    Designed as a gamma-ray instrument, the LAT is a capable detector of high energy cosmic ray electrons. The LAT is composed of a 4x4 array of identical towers. Each tower has a Tracker and a Calorimeter module. Entire LAT is covered by segmented Anti-Coincidence Detector (ACD). The electron data analysis is based on that developed for photons. The main challenge is to identify and separate electrons from all other charged species, mainly CR protons (for gamma-ray analysis this is provided by the Anti-Coincidence Detector)

  19. First observation of low energy electron neutrinos in a liquid argon time projection chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; Asaadi, J.

    Liquid argon time projection chambers (LArTPCs) produce remarkable fidelity in the observation of neutrino interactions. The superior capabilities of such detectors to reconstruct the spatial and calorimetric information of neutrino events have made them the detectors of choice in a number of experiments, specifically those looking to observe electron neutrino (more » $$\

  20. ATTICA family of thermal cameras in submarine applications

    NASA Astrophysics Data System (ADS)

    Kuerbitz, Gunther; Fritze, Joerg; Hoefft, Jens-Rainer; Ruf, Berthold

    2001-10-01

    Optronics Mast Systems (US: Photonics Mast Systems) are electro-optical devices which enable a submarine crew to observe the scenery above water during dive. Unlike classical submarine periscopes they are non-hull-penetrating and therefore have no direct viewing capability. Typically they have electro-optical cameras both for the visual and for an IR spectral band with panoramic view and a stabilized line of sight. They can optionally be equipped with laser range- finders, antennas, etc. The brand name ATTICA (Advanced Two- dimensional Thermal Imager with CMOS-Array) characterizes a family of thermal cameras using focal-plane-array (FPA) detectors which can be tailored to a variety of requirements. The modular design of the ATTICA components allows the use of various detectors (InSb, CMT 3...5 μm , CMT 7...11 μm ) for specific applications. By means of a microscanner ATTICA cameras achieve full standard TV resolution using detectors with only 288 X 384 (US:240 X 320) detector elements. A typical requirement for Optronics-Mast Systems is a Quick- Look-Around capability. For FPA cameras this implies the need for a 'descan' module which can be incorporated in the ATTICA cameras without complications.

  1. Modeling and analysis of hybrid pixel detector deficiencies for scientific applications

    NASA Astrophysics Data System (ADS)

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-01

    Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long. A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to clock distribution etc. can be accurately analyzed to determine ROIC architectural viability and bottlenecks. Hence the impact of the detector parameters on the scientific application can be studied.

  2. Alphas and surface backgrounds in liquid argon dark matter detectors

    NASA Astrophysics Data System (ADS)

    Stanford, Christopher J.

    Current observations from astrophysics indicate the presence of dark matter, an invisible form of matter that makes up a large part of the mass of the universe. One of the leading theories for dark matter is that it is made up of Weakly Interacting Massive Particles (WIMPs). One of the ways we try to discover WIMPs is by directly detecting their interaction with regular matter. This can be done using a scintillator such as liquid argon, which gives off light when a particle interacts with it. Liquid argon (LAr) is a favorable means of detecting WIMPs because it has an inherent property that enables a technique called pulse-shape discrimination (PSD). PSD can distinguish a WIMP signal from the constant background of electromagnetic signals from other sources, like gamma rays. However, there are other background signals that PSD is not as capable of rejecting, such as those caused by alpha decays on the interior surfaces of the detector. Radioactive elements that undergo alpha decay are introduced to detector surfaces during construction by radon gas that is naturally present in the air, as well as other means. When these surface isotopes undergo alpha decay, they can produce WIMP-like signals in the detector. We present here two LAr experiments. The first (RaDOSE) discovered a property of an organic compound that led to a technique for rejecting surface alpha decays in LAr detectors with high efficiency. The second (DarkSide-50) is a dark matter experiment operated at LNGS in Italy and is the work of an international collaboration. A detailed look is given into alpha decays and surface backgrounds present in the detector, and projections are made of alpha-related backgrounds for 500 live days of data. The technique developed with RaDOSE is applied to DarkSide-50 to determine its effectiveness in practice. It is projected to suppress the surface background in DarkSide-50 by more than a factor of 1000.

  3. Explosives detection using photoneutrons produced by X-rays

    NASA Astrophysics Data System (ADS)

    Yang, Yigang; Li, Yuanjing; Wang, Haidong; Li, Tiezhu; Wu, Bin

    2007-08-01

    The detection of explosives has become a critical issue after recent terrorist attacks. This paper describes research on explosives detection using photoneutrons from a photoneutron convertor that consists of 20 kg heavy water in an aluminum container whose shape was optimized to most effectively convert X-rays to photoneutrons. The X-rays were produced by a 9 MeV electron accelerator with an average electron current of 100 μA, resulted in a photoneutron yield of >10 11 n/s. Monte-Carlo simulations show that the radiation field is composed of X-ray pulses, fast neutron pulses and thermal neutrons. Both the X-ray and fast neutron pulses are 5 μs wide with a 300 Hz repetition frequency. The thermal neutron flux, which is higher than 10 4 n/cm 2/s, is essentially time invariant. A time shielding circuit was developed for the spectrometry system to halt the sampling process during the intense X-ray pulses. Paraffin, boron carbide and lead were used to protect the detector from interference from the X-rays, fast neutrons, thermal neutrons and background γ-rays coming from the system materials induced by photoneutrons. 5″×5″ NaI (Tl) scintillators were chosen as the detectors to detect the photoneutrons induced γ-rays from the inspected explosive simulant. Nitrogen (6.01 cps) 10.828 MeV γ-rays were detected with one detector from a 50 kg carbamide block placed 60 cm in front of the detector. A collimator was used to reduce the number of background 10.828 MeV γ-rays coming from the nitrogen in the air to improve the signal to background ratio from 0.136 to 1.81. A detector array of seven 5″×5″ NaI (Tl) detectors was used to measure the 2-D distributions of N and H in the sample. The combination of photoneutron analysis and X-ray imaging shows promise for enhancing explosives detection capabilities.

  4. Use of a Si(Li) detector as β spectrometer.

    PubMed

    Dryák, P; Kovář, P

    2014-05-01

    The aim of this work is to demonstrate the capability of a Si(Li) detector for the measurement of β spectra, despite the energy absorption in air and in the Be window. A simple source holder fixes the source on the symmetry axis at 3mm from the detector window. The β-sources are produced by evaporation on a plastic backing plate. Absorbing materials between the source and the sensitive volume of the detector are 3 mm of air, a Be window, 0.1 μm Si and 20 nm of gold. A model of the detector was created for β spectra simulation using the MCNP 4A code. Experimental spectra of (14)C, (147)Pm, (204)Tl, (90)Sr/(90)Y were compared with simulated spectra. © 2013 Published by Elsevier Ltd.

  5. Development of a Compton suppressed gamma spectrometer using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Britton, Richard

    Gamma ray spectroscopy is routinely used to measure radiation in a number of situations. These include security applications, nuclear forensics studies, characterisation of radioactive sources, and environmental monitoring. For routine studies of environmental materials, the amount of radioactivity present is often very low, requiring spectroscopy systems which have to monitor the source for up to 7 days to achieve the required sensitivity. Recent developments in detector technology and data processing techniques have opened up the possibility of developing a highly efficient Compton Suppressed system, that was previously the preserve of large experimental collaborations. The accessibility of Monte-Carlo toolkits such as GEANT4 also provide the opportunity to optimise these systems using computer simulations, greatly reducing the need for expensive (and inefficient) testing in the laboratory. This thesis details the development of such a Compton Suppressed, planar HPGe detector system. Using the GEANT4 toolkit in combination with the experimental facilities at AWE, Aldermaston (which include HPGe detection systems, scintillator based detector systems, advanced shielding materials and gamma-gamma coincidence systems), simulations were built and validated to reproduce the detector response seen in the 'real-life' systems. This resulted in several improvements to the current system; for the shielding materials used, terrestrial and cosmic radiation were minimised, while reducing the X-ray fluorescence seen in the primary HPGe detector by an order of magnitude. With respect to the HPGe detector itself, an optimum thickness was identified for low energy (<300 keV) radiation, which maximised the efficiency for the energy range of interest while minimising the interaction probability for higher energy radionuclides (which are the primary cause of the Compton continuum that obscures lower energy decays). A combination of secondary detectors were then optimised to design a Compton Suppression system for the primary detector, which could improve the performance of the current Compton Suppression system by an order of magnitude. This equates to a reduction of the continuum by up to a factor of 240 for a nuclide such as Co-60, which is crucial for the detection of low-energy, low-activity emitters typically swamped by such a continuum. Finally, thoroughly optimised acquisition and analysis software has also been written to process data created by future high sensitivity gamma coincidence systems. This includes modules for the creation of histograms, coincidence matrices, and an ASCII to binary converter (for historical data) that has resulted in an analysis speed increase of up to 20000 times when compared to the software originally used for the extraction of coincidence information. Modules for low-energy time-walk correction and the removal of accidental coincidences are also included, which represent a capability that was not previously available.

  6. A High-Resolution Time-of-Flight Clinical PET Detection System Using a Gapless PMT-Quadrant-Sharing Method

    NASA Astrophysics Data System (ADS)

    Wong, Wai-Hoi; Li, Hongdi; Zhang, Yuxuan; Ramirez, Rocio; An, Shaohui; Wang, Chao; Liu, Shitao; Dong, Yun; Baghaei, Hossain

    2015-10-01

    We developed a high-resolution Photomultiplier-Quadrant-Sharing (PQS) PET system for human imaging. This system is made up of 24 detector panels. Each panel (bank) consists of 3 ×7 detector blocks, and each block has 16 ×16 LYSO crystals of 2.35 ×2.35 ×15.2 mm3. We used a novel detector-grinding scheme that is compatible with the PQS detector-pixel-decoding requirements to make a gapless cylindrical detector ring for maximizing detection efficiency while delivering an ultrahigh spatial-resolution for a whole-body PET camera with a ring diameter of 87 cm and axial field of view of 27.6 cm. This grinding scheme enables two adjacent gapless panels to share one row of the PMTs to extend the PQS configuration beyond one panel and thus maximize the economic benefit (in PMT usage) of the PQS design. The entire detector ring has 129,024 crystals, all of which are clearly decoded using only 576 PMTs (38-mm diameter). Thus, each PMT on average decodes 224 crystals to achieve a high crystal-pitch resolution of 2.44 mm ×2.44 mm. The detector blocks were mass-produced with our slab-sandwich-slice technique using a set of optimized mirror-film patterns (between crystals) to maximize light output and achieve high spatial and timing resolution. This detection system with time-of-flight capability was placed in a human PET/CT gantry. The reconstructed image resolution of the system was about 2.87 mm using 2D-filtered back-projection. The time-of-flight resolution was 473 ps. The preliminary images of phantoms and clinical studies presented in this work demonstrate the capability of this new PET/CT system to produce high-quality images.

  7. Space radiation studies

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1986-01-01

    Instrument design and data analysis expertise was provided in support of several space radiation monitoring programs. The Verification of Flight Instrumentation (VFI) program at NASA included both the Active Radiation Detector (ARD) and the Nuclear Radiation Monitor (NRM). Design, partial fabrication, calibration and partial data analysis capability to the ARD program was provided, as well as detector head design and fabrication, software development and partial data analysis capability to the NRM program. The ARD flew on Spacelab-1 in 1983, performed flawlessly and was returned to MSFC after flight with unchanged calibration factors. The NRM, flown on Spacelab-2 in 1985, also performed without fault, not only recording the ambient gamma ray background on the Spacelab, but also recording radiation events of astrophysical significance.

  8. Tracking and imaging humans on heterogeneous infrared sensor arrays for law enforcement applications

    NASA Astrophysics Data System (ADS)

    Feller, Steven D.; Zheng, Y.; Cull, Evan; Brady, David J.

    2002-08-01

    We present a plan for the integration of geometric constraints in the source, sensor and analysis levels of sensor networks. The goal of geometric analysis is to reduce the dimensionality and complexity of distributed sensor data analysis so as to achieve real-time recognition and response to significant events. Application scenarios include biometric tracking of individuals, counting and analysis of individuals in groups of humans and distributed sentient environments. We are particularly interested in using this approach to provide networks of low cost point detectors, such as infrared motion detectors, with complex imaging capabilities. By extending the capabilities of simple sensors, we expect to reduce the cost of perimeter and site security applications.

  9. Phase II Upgrade of the GERDA Experiment for the Search of Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Majorovits, B.

    Observation of neutrinoless double beta decay could answer the question regarding the Majorana or Dirac nature of neutrinos. The GERDA experiment utilizes HPGe detectors enriched with the isotope 76Ge to search for this process. Recently the GERDA collaboration has unblinded data of Phase I of the experiment. In order to further improve the sensitivity of the experiment, additionally to the coaxial detectors used, 30 BEGe detectors made from germanium enriched in 76Ge will be deployed in GERDA Phase II. BEGe detectors have superior PSD capability, thus the background can be further reduced. The liquid argon surrounding the detector array will be instrumented in order to reject background by detecting scintillation light induced in the liquid argon by radiation. After a short introduction the hardware preparations for GERDA Phase II as well as the processing and characterization of the 30 BEGe detectors are discussed.

  10. The Pierre Auger Observatory Upgrade - Preliminary Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, Alexander

    The Pierre Auger Observatory has begun a major Upgrade of its already impressive capabilities, with an emphasis on improved mass composition determination using the surface detectors of the Observatory. Known as AugerPrime, the upgrade will include new 4 m 2 plastic scintillator detectors on top of all 1660 water-Cherenkov detectors, updated and more flexible surface detector electronics, a large array of buried muon detectors, and an extended duty cycle for operations of the fluorescence detectors. This Preliminary Design Report was produced by the Collaboration in April 2015 as an internal document and information for funding agencies. It outlines the scientificmore » and technical case for AugerPrime. We now release it to the public via the arXiv server. We invite you to review the large number of fundamental results already achieved by the Observatory and our plans for the future.« less

  11. Evaluation of a ''CMOS'' Imager for Shadow Mask Hard X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Desai, Upendra D.; Orwig, Larry E.; Oergerle, William R. (Technical Monitor)

    2002-01-01

    We have developed a hard x-ray coder that provides high angular resolution imaging capability using a coarse position sensitive image plane detector. The coder consists of two Fresnel zone plates. (FZP) Two such 'FZP's generate Moire fringe patterns whose frequency and orientation define the arrival direction of a beam with respect to telescope axis. The image plane detector needs to resolve the Moire fringe pattern. Pixilated detectors can be used as an image plane detector. The recently available 'CMOS' imager could provide a very low power large area image plane detector for hard x-rays. We have looked into a unit made by Rad-Icon Imaging Corp. The Shadow-Box 1024 x-ray camera is a high resolution 1024xl024 pixel detector of 50x50 mm area. It is a very low power, stand alone camera. We present some preliminary results of our investigation of evaluation of such camera.

  12. The Goals and Status of SoLid Experiment

    NASA Astrophysics Data System (ADS)

    Park, Jaewon

    2016-09-01

    SoLid is a short baseline sterile neutrino oscillation search experiment using the BR2 compact core reactor in Belgium. Ruling out or confirming sterile neutrino is one of main interests in the neutrino physics field. Highly segmented scintillator cube detector with 6LiF:ZnS(Ag) neutron screen provides high purity neutron tagging by pulse shape discrimination (PSD), and capture position identification. These capabilities from this novel detector are critical to isolate neutrino interactions in a high background environment. The prototype detector (SM1) provides important feedback for validating the performance of the detector design. Recent results from SM1 will be presented. Construction of the SoLid Phase-1 detector is underway. The three-ton detector with three years running will allow us to reach the sterile neutrino exclusion limit of sin2 2 θ < 0 . 03 at Δm2 2eV2 at the 99% confidence level.

  13. Development of a compact E ? B microchannel plate detector for beam imaging

    DOE PAGES

    Wiggins, B. B.; Singh, Varinderjit; Vadas, J.; ...

    2017-06-17

    A beam imaging detector was developed by coupling a multi-strip anode with delay line readout to an E×B microchannel plate (MCP) detector. This detector is capable of measuring the incident position of the beam particles in one-dimension. To assess the spatial resolution, the detector was illuminated by an α-source with an intervening mask that consists of a series of precisely-machined slits. The measured spatial resolution was 520 um source FWHM, which was improved to 413 um FWHM by performing an FFT of the signals, rejecting spurious signals on the delay line, and requiring a minimum signal amplitude. This measured spatialmore » resolution of 413 um FWHM corresponds to an intrinsic resolution of 334 um FWHM when the effect of the finite slit width is de-convoluted. To understand the measured resolution, the performance of the detector is simulated with the ion-trajectory code SIMION.« less

  14. Development of a compact E ? B microchannel plate detector for beam imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiggins, B. B.; Singh, Varinderjit; Vadas, J.

    A beam imaging detector was developed by coupling a multi-strip anode with delay line readout to an E×B microchannel plate (MCP) detector. This detector is capable of measuring the incident position of the beam particles in one-dimension. To assess the spatial resolution, the detector was illuminated by an α-source with an intervening mask that consists of a series of precisely-machined slits. The measured spatial resolution was 520 um source FWHM, which was improved to 413 um FWHM by performing an FFT of the signals, rejecting spurious signals on the delay line, and requiring a minimum signal amplitude. This measured spatialmore » resolution of 413 um FWHM corresponds to an intrinsic resolution of 334 um FWHM when the effect of the finite slit width is de-convoluted. To understand the measured resolution, the performance of the detector is simulated with the ion-trajectory code SIMION.« less

  15. Characterisation of the high dynamic range Large Pixel Detector (LPD) and its use at X-ray free electron laser sources

    NASA Astrophysics Data System (ADS)

    Veale, M. C.; Adkin, P.; Booker, P.; Coughlan, J.; French, M. J.; Hart, M.; Nicholls, T.; Schneider, A.; Seller, P.; Pape, I.; Sawhney, K.; Carini, G. A.; Hart, P. A.

    2017-12-01

    The STFC Rutherford Appleton Laboratory have delivered the Large Pixel Detector (LPD) for MHz frame rate imaging at the European XFEL. The detector system has an active area of 0.5 m × 0.5 m and consists of a million pixels on a 500 μm pitch. Sensors have been produced from 500 μm thick Hammamatsu silicon tiles that have been bump bonded to the readout ASIC using a silver epoxy and gold stud technique. Each pixel of the detector system is capable of measuring 105 12 keV photons per image readout at 4.5 MHz. In this paper results from the testing of these detectors at the Diamond Light Source and the Linac Coherent Light Source (LCLS) are presented. The performance of the detector in terms of linearity, spatial uniformity and the performance of the different ASIC gain stages is characterised.

  16. Neutron response characterization for an EJ299-33 plastic scintillation detector

    DOE PAGES

    Lawrence, Chris C.; Febbraro, Michael; Massey, Thomas N.; ...

    2014-05-10

    Organic scintillation detectors have shown promise as neutron detectors for characterizing special nuclear materials in various arms-control and homeland security applications. Recent advances have yielded a new plastic scintillator - EJ299-33 - with pulse-shape-discrimination (PSD) capability. Plastic scintillators would have a much expanded range of deployment relative to liquids and crystals. Here in this paper, we present a full characterization of pulse height response to fission-energy neutrons for an EJ299-33 detector with 7.62-by-7.62-cm cylindrical active volume, and compare with an EJ309 liquid scintillator in the same assembly. Scintillation light output relations, energy resolutions, and response matrices are presented for bothmore » detectors. A Continuous spectrum neutron source, obtained via the bombardment of 27Al with 7.44-MeV deuterons at the Edwards Accelerator Facility at Ohio University, was used for the measurement. A new procedure for evaluating and comparing PSD performance is presented which accounts for the effect of the light output relation on the ability to detect low energy neutrons. The EJ299-33 is shown to have considerable deficit in matrix condition, and in PSD figure of merit when compared to EJ309, especially when neutron energy is taken into account. Furthermore the EJ299 is likely to bring a modest PSD capability into a array of held applications that are not accessible to liquids or crystals.« less

  17. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging.

    PubMed

    Kiss, András; Smith, Donald F; Jungmann, Julia H; Heeren, Ron M A

    2013-12-30

    Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source was combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The system's mass spectral and imaging performance is tested with various benchmark samples and thin tissue sections. The high secondary ion yield (with respect to 'traditional' monatomic primary ion sources) of the C60 primary ion source and the increased sensitivity of the high voltage detector setup improve microscope mode secondary ion mass spectrometry imaging. The analysis time and the signal-to-noise ratio are improved compared with other microscope mode imaging systems, all at high spatial resolution. We have demonstrated the unique capabilities of a C60 ion microscope with a Timepix detector for high spatial resolution microscope mode secondary ion mass spectrometry imaging. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Neutron detection using a current biased kinetic inductance detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shishido, Hiroaki, E-mail: shishido@pe.osakafu-u.ac.jp; Miyajima, Shigeyuki; Ishida, Takekazu

    2015-12-07

    We demonstrate neutron detection using a solid state superconducting current biased kinetic inductance detector (CB-KID), which consists of a superconducting Nb meander line of 1 μm width and 40 nm thickness. {sup 10}B-enriched neutron absorber layer of 150 nm thickness is placed on top of the CB-KID. Our neutron detectors are able to operate in a wide superconducting region in the bias current–temperature diagram. This is in sharp contrast with our preceding current-biased transition edge detector, which can operate only in a narrow range just below the superconducting critical temperature. The full width at half maximum of the signals remains of the ordermore » of a few tens of ns, which confirms the high speed operation of our detectors.« less

  19. ChromAIX2: A large area, high count-rate energy-resolving photon counting ASIC for a Spectral CT Prototype

    NASA Astrophysics Data System (ADS)

    Steadman, Roger; Herrmann, Christoph; Livne, Amir

    2017-08-01

    Spectral CT based on energy-resolving photon counting detectors is expected to deliver additional diagnostic value at a lower dose than current state-of-the-art CT [1]. The capability of simultaneously providing a number of spectrally distinct measurements not only allows distinguishing between photo-electric and Compton interactions but also discriminating contrast agents that exhibit a K-edge discontinuity in the absorption spectrum, referred to as K-edge Imaging [2]. Such detectors are based on direct converting sensors (e.g. CdTe or CdZnTe) and high-rate photon counting electronics. To support the development of Spectral CT and show the feasibility of obtaining rates exceeding 10 Mcps/pixel (Poissonian observed count-rate), the ChromAIX ASIC has been previously reported showing 13.5 Mcps/pixel (150 Mcps/mm2 incident) [3]. The ChromAIX has been improved to offer the possibility of a large area coverage detector, and increased overall performance. The new ASIC is called ChromAIX2, and delivers count-rates exceeding 15 Mcps/pixel with an rms-noise performance of approximately 260 e-. It has an isotropic pixel pitch of 500 μm in an array of 22×32 pixels and is tile-able on three of its sides. The pixel topology consists of a two stage amplifier (CSA and Shaper) and a number of test features allowing to thoroughly characterize the ASIC without a sensor. A total of 5 independent thresholds are also available within each pixel, allowing to acquire 5 spectrally distinct measurements simultaneously. The ASIC also incorporates a baseline restorer to eliminate excess currents induced by the sensor (e.g. dark current and low frequency drifts) which would otherwise cause an energy estimation error. In this paper we report on the inherent electrical performance of the ChromAXI2 as well as measurements obtained with CZT (CdZnTe)/CdTe sensors and X-rays and radioactive sources.

  20. Preliminary design report, Large Space Telescope OTA/SI Phase B study: High speed area photometer. [systems analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A photometer is examined which combines several features from separate instruments into a single package. The design presented has both point and area photometry capability with provision for inserting filters to provide spectral discrimination. The electronics provide for photon counting mode for the point detectors and both photon counting and analog modes for the area detector. The area detector also serves as a target locating device for the point detectors. Topics discussed include: (1) electronic equipment requirements, (2) optical properties, (3) structural housing for the instrument, (4) motors and other mechanical components, (5) ground support equipment, and (6) environment control for the instrument. Engineering drawings and block diagrams are shown.

Top