Sample records for detects regular spatial

  1. Regularization design for high-quality cone-beam CT of intracranial hemorrhage using statistical reconstruction

    NASA Astrophysics Data System (ADS)

    Dang, H.; Stayman, J. W.; Xu, J.; Sisniega, A.; Zbijewski, W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.

    2016-03-01

    Intracranial hemorrhage (ICH) is associated with pathologies such as hemorrhagic stroke and traumatic brain injury. Multi-detector CT is the current front-line imaging modality for detecting ICH (fresh blood contrast 40-80 HU, down to 1 mm). Flat-panel detector (FPD) cone-beam CT (CBCT) offers a potential alternative with a smaller scanner footprint, greater portability, and lower cost potentially well suited to deployment at the point of care outside standard diagnostic radiology and emergency room settings. Previous studies have suggested reliable detection of ICH down to 3 mm in CBCT using high-fidelity artifact correction and penalized weighted least-squared (PWLS) image reconstruction with a post-artifact-correction noise model. However, ICH reconstructed by traditional image regularization exhibits nonuniform spatial resolution and noise due to interaction between the statistical weights and regularization, which potentially degrades the detectability of ICH. In this work, we propose three regularization methods designed to overcome these challenges. The first two compute spatially varying certainty for uniform spatial resolution and noise, respectively. The third computes spatially varying regularization strength to achieve uniform "detectability," combining both spatial resolution and noise in a manner analogous to a delta-function detection task. Experiments were conducted on a CBCT test-bench, and image quality was evaluated for simulated ICH in different regions of an anthropomorphic head. The first two methods improved the uniformity in spatial resolution and noise compared to traditional regularization. The third exhibited the highest uniformity in detectability among all methods and best overall image quality. The proposed regularization provides a valuable means to achieve uniform image quality in CBCT of ICH and is being incorporated in a CBCT prototype for ICH imaging.

  2. Development of a local size hierarchy causes regular spacing of trees in an even-aged Abies forest: analyses using spatial autocorrelation and the mark correlation function.

    PubMed

    Suzuki, Satoshi N; Kachi, Naoki; Suzuki, Jun-Ichirou

    2008-09-01

    During the development of an even-aged plant population, the spatial distribution of individuals often changes from a clumped pattern to a random or regular one. The development of local size hierarchies in an Abies forest was analysed for a period of 47 years following a large disturbance in 1959. In 1980 all trees in an 8 x 8 m plot were mapped and their height growth after the disturbance was estimated. Their mortality and growth were then recorded at 1- to 4-year intervals between 1980 and 2006. Spatial distribution patterns of trees were analysed by the pair correlation function. Spatial correlations between tree heights were analysed with a spatial autocorrelation function and the mark correlation function. The mark correlation function was able to detect a local size hierarchy that could not be detected by the spatial autocorrelation function alone. The small-scale spatial distribution pattern of trees changed from clumped to slightly regular during the 47 years. Mortality occurred in a density-dependent manner, which resulted in regular spacing between trees after 1980. The spatial autocorrelation and mark correlation functions revealed the existence of tree patches consisting of large trees at the initial stage. Development of a local size hierarchy was detected within the first decade after the disturbance, although the spatial autocorrelation was not negative. Local size hierarchies that developed persisted until 2006, and the spatial autocorrelation became negative at later stages (after about 40 years). This is the first study to detect local size hierarchies as a prelude to regular spacing using the mark correlation function. The results confirm that use of the mark correlation function together with the spatial autocorrelation function is an effective tool to analyse the development of a local size hierarchy of trees in a forest.

  3. A Unified Fisher's Ratio Learning Method for Spatial Filter Optimization.

    PubMed

    Li, Xinyang; Guan, Cuntai; Zhang, Haihong; Ang, Kai Keng

    To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.

  4. Discovering Structural Regularity in 3D Geometry

    PubMed Central

    Pauly, Mark; Mitra, Niloy J.; Wallner, Johannes; Pottmann, Helmut; Guibas, Leonidas J.

    2010-01-01

    We introduce a computational framework for discovering regular or repeated geometric structures in 3D shapes. We describe and classify possible regular structures and present an effective algorithm for detecting such repeated geometric patterns in point- or mesh-based models. Our method assumes no prior knowledge of the geometry or spatial location of the individual elements that define the pattern. Structure discovery is made possible by a careful analysis of pairwise similarity transformations that reveals prominent lattice structures in a suitable model of transformation space. We introduce an optimization method for detecting such uniform grids specifically designed to deal with outliers and missing elements. This yields a robust algorithm that successfully discovers complex regular structures amidst clutter, noise, and missing geometry. The accuracy of the extracted generating transformations is further improved using a novel simultaneous registration method in the spatial domain. We demonstrate the effectiveness of our algorithm on a variety of examples and show applications to compression, model repair, and geometry synthesis. PMID:21170292

  5. Task-based statistical image reconstruction for high-quality cone-beam CT

    NASA Astrophysics Data System (ADS)

    Dang, Hao; Webster Stayman, J.; Xu, Jennifer; Zbijewski, Wojciech; Sisniega, Alejandro; Mow, Michael; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassilis E.; Siewerdsen, Jeffrey H.

    2017-11-01

    Task-based analysis of medical imaging performance underlies many ongoing efforts in the development of new imaging systems. In statistical image reconstruction, regularization is often formulated in terms to encourage smoothness and/or sharpness (e.g. a linear, quadratic, or Huber penalty) but without explicit formulation of the task. We propose an alternative regularization approach in which a spatially varying penalty is determined that maximizes task-based imaging performance at every location in a 3D image. We apply the method to model-based image reconstruction (MBIR—viz., penalized weighted least-squares, PWLS) in cone-beam CT (CBCT) of the head, focusing on the task of detecting a small, low-contrast intracranial hemorrhage (ICH), and we test the performance of the algorithm in the context of a recently developed CBCT prototype for point-of-care imaging of brain injury. Theoretical predictions of local spatial resolution and noise are computed via an optimization by which regularization (specifically, the quadratic penalty strength) is allowed to vary throughout the image to maximize local task-based detectability index ({{d}\\prime} ). Simulation studies and test-bench experiments were performed using an anthropomorphic head phantom. Three PWLS implementations were tested: conventional (constant) penalty; a certainty-based penalty derived to enforce constant point-spread function, PSF; and the task-based penalty derived to maximize local detectability at each location. Conventional (constant) regularization exhibited a fairly strong degree of spatial variation in {{d}\\prime} , and the certainty-based method achieved uniform PSF, but each exhibited a reduction in detectability compared to the task-based method, which improved detectability up to ~15%. The improvement was strongest in areas of high attenuation (skull base), where the conventional and certainty-based methods tended to over-smooth the data. The task-driven reconstruction method presents a promising regularization method in MBIR by explicitly incorporating task-based imaging performance as the objective. The results demonstrate improved ICH conspicuity and support the development of high-quality CBCT systems.

  6. Novel Hyperspectral Anomaly Detection Methods Based on Unsupervised Nearest Regularized Subspace

    NASA Astrophysics Data System (ADS)

    Hou, Z.; Chen, Y.; Tan, K.; Du, P.

    2018-04-01

    Anomaly detection has been of great interest in hyperspectral imagery analysis. Most conventional anomaly detectors merely take advantage of spectral and spatial information within neighboring pixels. In this paper, two methods of Unsupervised Nearest Regularized Subspace-based with Outlier Removal Anomaly Detector (UNRSORAD) and Local Summation UNRSORAD (LSUNRSORAD) are proposed, which are based on the concept that each pixel in background can be approximately represented by its spatial neighborhoods, while anomalies cannot. Using a dual window, an approximation of each testing pixel is a representation of surrounding data via a linear combination. The existence of outliers in the dual window will affect detection accuracy. Proposed detectors remove outlier pixels that are significantly different from majority of pixels. In order to make full use of various local spatial distributions information with the neighboring pixels of the pixels under test, we take the local summation dual-window sliding strategy. The residual image is constituted by subtracting the predicted background from the original hyperspectral imagery, and anomalies can be detected in the residual image. Experimental results show that the proposed methods have greatly improved the detection accuracy compared with other traditional detection method.

  7. Complex sparse spatial filter for decoding mixed frequency and phase coded steady-state visually evoked potentials.

    PubMed

    Morikawa, Naoki; Tanaka, Toshihisa; Islam, Md Rabiul

    2018-07-01

    Mixed frequency and phase coding (FPC) can achieve the significant increase of the number of commands in steady-state visual evoked potential-based brain-computer interface (SSVEP-BCI). However, the inconsistent phases of the SSVEP over channels in a trial and the existence of non-contributing channels due to noise effects can decrease accurate detection of stimulus frequency. We propose a novel command detection method based on a complex sparse spatial filter (CSSF) by solving ℓ 1 - and ℓ 2,1 -regularization problems for a mixed-coded SSVEP-BCI. In particular, ℓ 2,1 -regularization (aka group sparsification) can lead to the rejection of electrodes that are not contributing to the SSVEP detection. A calibration data based canonical correlation analysis (CCA) and CSSF with ℓ 1 - and ℓ 2,1 -regularization cases were demonstrated for a 16-target stimuli with eleven subjects. The results of statistical test suggest that the proposed method with ℓ 1 - and ℓ 2,1 -regularization significantly achieved the highest ITR. The proposed approaches do not need any reference signals, automatically select prominent channels, and reduce the computational cost compared to the other mixed frequency-phase coding (FPC)-based BCIs. The experimental results suggested that the proposed method can be usable implementing BCI effectively with reduce visual fatigue. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Automatic optical inspection of regular grid patterns with an inspection camera used below the Shannon-Nyquist criterion for optical resolution

    NASA Astrophysics Data System (ADS)

    Ferreira, Flávio P.; Forte, Paulo M. F.; Felgueiras, Paulo E. R.; Bret, Boris P. J.; Belsley, Michael S.; Nunes-Pereira, Eduardo J.

    2017-02-01

    An Automatic Optical Inspection (AOI) system for optical inspection of imaging devices used in automotive industry using an inspecting optics of lower spatial resolution than the device under inspection is described. This system is robust and with no moving parts. The cycle time is small. Its main advantage is that it is capable of detecting and quantifying defects in regular patterns, working below the Shannon-Nyquist criterion for optical resolution, using a single low resolution image sensor. It is easily scalable, which is an important advantage in industrial applications, since the same inspecting sensor can be reused for increasingly higher spatial resolutions of the devices to be inspected. The optical inspection is implemented with a notch multi-band Fourier filter, making the procedure especially fitted for regular patterns, like the ones that can be produced in image displays and Head Up Displays (HUDs). The regular patterns are used in production line only, for inspection purposes. For image displays, functional defects are detected at the level of a sub-image display grid element unit. Functional defects are the ones impairing the function of the display, and are preferred in AOI to the direct geometric imaging, since those are the ones directly related with the end-user experience. The shift in emphasis from geometric imaging to functional imaging is critical, since it is this that allows quantitative inspection, below Shannon-Nyquist. For HUDs, the functional detect detection addresses defects resulting from the combined effect of the image display and the image forming optics.

  9. Quantifying and mapping spatial variability in simulated forest plots

    Treesearch

    Gavin R. Corral; Harold E. Burkhart

    2016-01-01

    We used computer simulations to test the efficacy of multivariate statistical methods to detect, quantify, and map spatial variability of forest stands. Simulated stands were developed of regularly-spaced plantations of loblolly pine (Pinus taeda L.). We assumed no affects of competition or mortality, but random variability was added to individual tree characteristics...

  10. Joint Optimization of Fluence Field Modulation and Regularization in Task-Driven Computed Tomography.

    PubMed

    Gang, G J; Siewerdsen, J H; Stayman, J W

    2017-02-11

    This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index ( d' ) across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength ( β ) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM.

  11. Real-world spatial regularities affect visual working memory for objects.

    PubMed

    Kaiser, Daniel; Stein, Timo; Peelen, Marius V

    2015-12-01

    Traditional memory research has focused on measuring and modeling the capacity of visual working memory for simple stimuli such as geometric shapes or colored disks. Although these studies have provided important insights, it is unclear how their findings apply to memory for more naturalistic stimuli. An important aspect of real-world scenes is that they contain a high degree of regularity: For instance, lamps appear above tables, not below them. In the present study, we tested whether such real-world spatial regularities affect working memory capacity for individual objects. Using a delayed change-detection task with concurrent verbal suppression, we found enhanced visual working memory performance for objects positioned according to real-world regularities, as compared to irregularly positioned objects. This effect was specific to upright stimuli, indicating that it did not reflect low-level grouping, because low-level grouping would be expected to equally affect memory for upright and inverted displays. These results suggest that objects can be held in visual working memory more efficiently when they are positioned according to frequently experienced real-world regularities. We interpret this effect as the grouping of single objects into larger representational units.

  12. MEG Connectivity and Power Detections with Minimum Norm Estimates Require Different Regularization Parameters.

    PubMed

    Hincapié, Ana-Sofía; Kujala, Jan; Mattout, Jérémie; Daligault, Sebastien; Delpuech, Claude; Mery, Domingo; Cosmelli, Diego; Jerbi, Karim

    2016-01-01

    Minimum Norm Estimation (MNE) is an inverse solution method widely used to reconstruct the source time series that underlie magnetoencephalography (MEG) data. MNE addresses the ill-posed nature of MEG source estimation through regularization (e.g., Tikhonov regularization). Selecting the best regularization parameter is a critical step. Generally, once set, it is common practice to keep the same coefficient throughout a study. However, it is yet to be known whether the optimal lambda for spectral power analysis of MEG source data coincides with the optimal regularization for source-level oscillatory coupling analysis. We addressed this question via extensive Monte-Carlo simulations of MEG data, where we generated 21,600 configurations of pairs of coupled sources with varying sizes, signal-to-noise ratio (SNR), and coupling strengths. Then, we searched for the Tikhonov regularization coefficients (lambda) that maximize detection performance for (a) power and (b) coherence. For coherence, the optimal lambda was two orders of magnitude smaller than the best lambda for power. Moreover, we found that the spatial extent of the interacting sources and SNR, but not the extent of coupling, were the main parameters affecting the best choice for lambda. Our findings suggest using less regularization when measuring oscillatory coupling compared to power estimation.

  13. MEG Connectivity and Power Detections with Minimum Norm Estimates Require Different Regularization Parameters

    PubMed Central

    Hincapié, Ana-Sofía; Kujala, Jan; Mattout, Jérémie; Daligault, Sebastien; Delpuech, Claude; Mery, Domingo; Cosmelli, Diego; Jerbi, Karim

    2016-01-01

    Minimum Norm Estimation (MNE) is an inverse solution method widely used to reconstruct the source time series that underlie magnetoencephalography (MEG) data. MNE addresses the ill-posed nature of MEG source estimation through regularization (e.g., Tikhonov regularization). Selecting the best regularization parameter is a critical step. Generally, once set, it is common practice to keep the same coefficient throughout a study. However, it is yet to be known whether the optimal lambda for spectral power analysis of MEG source data coincides with the optimal regularization for source-level oscillatory coupling analysis. We addressed this question via extensive Monte-Carlo simulations of MEG data, where we generated 21,600 configurations of pairs of coupled sources with varying sizes, signal-to-noise ratio (SNR), and coupling strengths. Then, we searched for the Tikhonov regularization coefficients (lambda) that maximize detection performance for (a) power and (b) coherence. For coherence, the optimal lambda was two orders of magnitude smaller than the best lambda for power. Moreover, we found that the spatial extent of the interacting sources and SNR, but not the extent of coupling, were the main parameters affecting the best choice for lambda. Our findings suggest using less regularization when measuring oscillatory coupling compared to power estimation. PMID:27092179

  14. Functional dissociation between regularity encoding and deviance detection along the auditory hierarchy.

    PubMed

    Aghamolaei, Maryam; Zarnowiec, Katarzyna; Grimm, Sabine; Escera, Carles

    2016-02-01

    Auditory deviance detection based on regularity encoding appears as one of the basic functional properties of the auditory system. It has traditionally been assessed with the mismatch negativity (MMN) long-latency component of the auditory evoked potential (AEP). Recent studies have found earlier correlates of deviance detection based on regularity encoding. They occur in humans in the first 50 ms after sound onset, at the level of the middle-latency response of the AEP, and parallel findings of stimulus-specific adaptation observed in animal studies. However, the functional relationship between these different levels of regularity encoding and deviance detection along the auditory hierarchy has not yet been clarified. Here we addressed this issue by examining deviant-related responses at different levels of the auditory hierarchy to stimulus changes varying in their degree of deviation regarding the spatial location of a repeated standard stimulus. Auditory stimuli were presented randomly from five loudspeakers at azimuthal angles of 0°, 12°, 24°, 36° and 48° during oddball and reversed-oddball conditions. Middle-latency responses and MMN were measured. Our results revealed that middle-latency responses were sensitive to deviance but not the degree of deviation, whereas the MMN amplitude increased as a function of deviance magnitude. These findings indicated that acoustic regularity can be encoded at the level of the middle-latency response but that it takes a higher step in the auditory hierarchy for deviance magnitude to be encoded, thus providing a functional dissociation between regularity encoding and deviance detection along the auditory hierarchy. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Joint Optimization of Fluence Field Modulation and Regularization in Task-Driven Computed Tomography

    PubMed Central

    Gang, G. J.; Siewerdsen, J. H.; Stayman, J. W.

    2017-01-01

    Purpose This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. Methods We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index (d′) across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength (β) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. Results The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. Conclusions The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM. PMID:28626290

  16. Joint optimization of fluence field modulation and regularization in task-driven computed tomography

    NASA Astrophysics Data System (ADS)

    Gang, G. J.; Siewerdsen, J. H.; Stayman, J. W.

    2017-03-01

    Purpose: This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. Methods: We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index (d') across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength (β) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. Results: The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. Conclusions: The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM.

  17. A spatially adaptive total variation regularization method for electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2015-12-01

    The total variation (TV) regularization method has been used to solve the ill-posed inverse problem of electrical resistance tomography (ERT), owing to its good ability to preserve edges. However, the quality of the reconstructed images, especially in the flat region, is often degraded by noise. To optimize the regularization term and the regularization factor according to the spatial feature and to improve the resolution of reconstructed images, a spatially adaptive total variation (SATV) regularization method is proposed. A kind of effective spatial feature indicator named difference curvature is used to identify which region is a flat or edge region. According to different spatial features, the SATV regularization method can automatically adjust both the regularization term and regularization factor. At edge regions, the regularization term is approximate to the TV functional to preserve the edges; in flat regions, it is approximate to the first-order Tikhonov (FOT) functional to make the solution stable. Meanwhile, the adaptive regularization factor determined by the spatial feature is used to constrain the regularization strength of the SATV regularization method for different regions. Besides, a numerical scheme is adopted for the implementation of the second derivatives of difference curvature to improve the numerical stability. Several reconstruction image metrics are used to quantitatively evaluate the performance of the reconstructed results. Both simulation and experimental results indicate that, compared with the TV (mean relative error 0.288, mean correlation coefficient 0.627) and FOT (mean relative error 0.295, mean correlation coefficient 0.638) regularization methods, the proposed SATV (mean relative error 0.259, mean correlation coefficient 0.738) regularization method can endure a relatively high level of noise and improve the resolution of reconstructed images.

  18. Spatial resolution properties of motion-compensated tomographic image reconstruction methods.

    PubMed

    Chun, Se Young; Fessler, Jeffrey A

    2012-07-01

    Many motion-compensated image reconstruction (MCIR) methods have been proposed to correct for subject motion in medical imaging. MCIR methods incorporate motion models to improve image quality by reducing motion artifacts and noise. This paper analyzes the spatial resolution properties of MCIR methods and shows that nonrigid local motion can lead to nonuniform and anisotropic spatial resolution for conventional quadratic regularizers. This undesirable property is akin to the known effects of interactions between heteroscedastic log-likelihoods (e.g., Poisson likelihood) and quadratic regularizers. This effect may lead to quantification errors in small or narrow structures (such as small lesions or rings) of reconstructed images. This paper proposes novel spatial regularization design methods for three different MCIR methods that account for known nonrigid motion. We develop MCIR regularization designs that provide approximately uniform and isotropic spatial resolution and that match a user-specified target spatial resolution. Two-dimensional PET simulations demonstrate the performance and benefits of the proposed spatial regularization design methods.

  19. Network hydraulics inclusion in water quality event detection using multiple sensor stations data.

    PubMed

    Oliker, Nurit; Ostfeld, Avi

    2015-09-01

    Event detection is one of the current most challenging topics in water distribution systems analysis: how regular on-line hydraulic (e.g., pressure, flow) and water quality (e.g., pH, residual chlorine, turbidity) measurements at different network locations can be efficiently utilized to detect water quality contamination events. This study describes an integrated event detection model which combines multiple sensor stations data with network hydraulics. To date event detection modelling is likely limited to single sensor station location and dataset. Single sensor station models are detached from network hydraulics insights and as a result might be significantly exposed to false positive alarms. This work is aimed at decreasing this limitation through integrating local and spatial hydraulic data understanding into an event detection model. The spatial analysis complements the local event detection effort through discovering events with lower signatures by exploring the sensors mutual hydraulic influences. The unique contribution of this study is in incorporating hydraulic simulation information into the overall event detection process of spatially distributed sensors. The methodology is demonstrated on two example applications using base runs and sensitivity analyses. Results show a clear advantage of the suggested model over single-sensor event detection schemes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. High-resolution seismic data regularization and wavefield separation

    NASA Astrophysics Data System (ADS)

    Cao, Aimin; Stump, Brian; DeShon, Heather

    2018-04-01

    We present a new algorithm, non-equispaced fast antileakage Fourier transform (NFALFT), for irregularly sampled seismic data regularization. Synthetic tests from 1-D to 5-D show that the algorithm may efficiently remove leaked energy in the frequency wavenumber domain, and its corresponding regularization process is accurate and fast. Taking advantage of the NFALFT algorithm, we suggest a new method (wavefield separation) for the detection of the Earth's inner core shear wave with irregularly distributed seismic arrays or networks. All interfering seismic phases that propagate along the minor arc are removed from the time window around the PKJKP arrival. The NFALFT algorithm is developed for seismic data, but may also be used for other irregularly sampled temporal or spatial data processing.

  1. Salient Object Detection via Structured Matrix Decomposition.

    PubMed

    Peng, Houwen; Li, Bing; Ling, Haibin; Hu, Weiming; Xiong, Weihua; Maybank, Stephen J

    2016-05-04

    Low-rank recovery models have shown potential for salient object detection, where a matrix is decomposed into a low-rank matrix representing image background and a sparse matrix identifying salient objects. Two deficiencies, however, still exist. First, previous work typically assumes the elements in the sparse matrix are mutually independent, ignoring the spatial and pattern relations of image regions. Second, when the low-rank and sparse matrices are relatively coherent, e.g., when there are similarities between the salient objects and background or when the background is complicated, it is difficult for previous models to disentangle them. To address these problems, we propose a novel structured matrix decomposition model with two structural regularizations: (1) a tree-structured sparsity-inducing regularization that captures the image structure and enforces patches from the same object to have similar saliency values, and (2) a Laplacian regularization that enlarges the gaps between salient objects and the background in feature space. Furthermore, high-level priors are integrated to guide the matrix decomposition and boost the detection. We evaluate our model for salient object detection on five challenging datasets including single object, multiple objects and complex scene images, and show competitive results as compared with 24 state-of-the-art methods in terms of seven performance metrics.

  2. Space-time airborne disease mapping applied to detect specific behaviour of varicella in Valencia, Spain.

    PubMed

    Iftimi, Adina; Montes, Francisco; Santiyán, Ana Míguez; Martínez-Ruiz, Francisco

    2015-01-01

    Airborne diseases are one of humanity's most feared sicknesses and have regularly caused concern among specialists. Varicella is an airborne disease which usually affects children before the age of 10. Because of its nature, varicella gives rise to interesting spatial, temporal and spatio-temporal patterns. This paper studies spatio-temporal exploratory analysis tools to detect specific behaviour of varicella in the city of Valencia, Spain, from 2008 to 2013. These methods have shown a significant association between the spatial and the temporal component, confirmed by the space-time models applied to the data. High relative risk of varicella is observed in economically disadvantaged regions, areas less involved in vaccination programmes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Spatial Probability Dynamically Modulates Visual Target Detection in Chickens

    PubMed Central

    Sridharan, Devarajan; Ramamurthy, Deepa L.; Knudsen, Eric I.

    2013-01-01

    The natural world contains a rich and ever-changing landscape of sensory information. To survive, an organism must be able to flexibly and rapidly locate the most relevant sources of information at any time. Humans and non-human primates exploit regularities in the spatial distribution of relevant stimuli (targets) to improve detection at locations of high target probability. Is the ability to flexibly modify behavior based on visual experience unique to primates? Chickens (Gallus domesticus) were trained on a multiple alternative Go/NoGo task to detect a small, briefly-flashed dot (target) in each of the quadrants of the visual field. When targets were presented with equal probability (25%) in each quadrant, chickens exhibited a distinct advantage for detecting targets at lower, relative to upper, hemifield locations. Increasing the probability of presentation in the upper hemifield locations (to 80%) dramatically improved detection performance at these locations to be on par with lower hemifield performance. Finally, detection performance in the upper hemifield changed on a rapid timescale, improving with successive target detections, and declining with successive detections at the diagonally opposite location in the lower hemifield. These data indicate the action of a process that in chickens, as in primates, flexibly and dynamically modulates detection performance based on the spatial probabilities of sensory stimuli as well as on recent performance history. PMID:23734188

  4. Trap configuration and spacing influences parameter estimates in spatial capture-recapture models

    USGS Publications Warehouse

    Sun, Catherine C.; Fuller, Angela K.; Royle, J. Andrew

    2014-01-01

    An increasing number of studies employ spatial capture-recapture models to estimate population size, but there has been limited research on how different spatial sampling designs and trap configurations influence parameter estimators. Spatial capture-recapture models provide an advantage over non-spatial models by explicitly accounting for heterogeneous detection probabilities among individuals that arise due to the spatial organization of individuals relative to sampling devices. We simulated black bear (Ursus americanus) populations and spatial capture-recapture data to evaluate the influence of trap configuration and trap spacing on estimates of population size and a spatial scale parameter, sigma, that relates to home range size. We varied detection probability and home range size, and considered three trap configurations common to large-mammal mark-recapture studies: regular spacing, clustered, and a temporal sequence of different cluster configurations (i.e., trap relocation). We explored trap spacing and number of traps per cluster by varying the number of traps. The clustered arrangement performed well when detection rates were low, and provides for easier field implementation than the sequential trap arrangement. However, performance differences between trap configurations diminished as home range size increased. Our simulations suggest it is important to consider trap spacing relative to home range sizes, with traps ideally spaced no more than twice the spatial scale parameter. While spatial capture-recapture models can accommodate different sampling designs and still estimate parameters with accuracy and precision, our simulations demonstrate that aspects of sampling design, namely trap configuration and spacing, must consider study area size, ranges of individual movement, and home range sizes in the study population.

  5. Visual sensitivity to spatially sampled modulation in human observers

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Macleod, Donald I. A.

    1991-01-01

    Thresholds were measured for detecting spatial luminance modulation in regular lattices of visually discrete dots. Thresholds for modulation of a lattice are generally higher than the corresponding threshold for modulation of a continuous field, and the size of the threshold elevation, which depends on the spacing of the lattice elements, can be as large as a one log unit. The largest threshold elevations are seen when the sample spacing is 12 min arc or greater. Theories based on response compression cannot explain the further observation that the threshold elevations due to spatial sampling are also dependent on modulation frequency: the greatest elevations occur with higher modulation frequencies. The idea that this is due to masking of the modulation frequency by the spatial frequencies in the sampling lattice is considered.

  6. Spherical Deconvolution of Multichannel Diffusion MRI Data with Non-Gaussian Noise Models and Spatial Regularization

    PubMed Central

    Canales-Rodríguez, Erick J.; Caruyer, Emmanuel; Aja-Fernández, Santiago; Radua, Joaquim; Yurramendi Mendizabal, Jesús M.; Iturria-Medina, Yasser; Melie-García, Lester; Alemán-Gómez, Yasser; Thiran, Jean-Philippe; Sarró, Salvador; Pomarol-Clotet, Edith; Salvador, Raymond

    2015-01-01

    Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-matter fiber orientations from diffusion MRI data. However, while some of these methods assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is known to be non-Gaussian and to depend on many factors such as the number of coils and the methodology used to combine multichannel MRI signals. Indeed, the two prevailing methods for multichannel signal combination lead to noise patterns better described by Rician and noncentral Chi distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian noise. Another aim of the study was to quantify the impact of including a total variation (TV) spatial regularization term in the estimation framework. To do this, we developed TV spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was performed by comparing various quality metrics on 132 three-dimensional synthetic phantoms involving different inter-fiber angles and volume fractions, which were contaminated with noise mimicking patterns generated by data processing in multichannel scanners. The results demonstrate that the inclusion of proper likelihood models leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and to better detect non-dominant fibers. The inclusion of TV regularization dramatically improved the resolution power of both techniques. The above findings were also verified in human brain data. PMID:26470024

  7. The synergy between complex channel-specific FIR filter and spatial filter for single-trial EEG classification.

    PubMed

    Yu, Ke; Wang, Yue; Shen, Kaiquan; Li, Xiaoping

    2013-01-01

    The common spatial pattern analysis (CSP), a frequently utilized feature extraction method in brain-computer-interface applications, is believed to be time-invariant and sensitive to noises, mainly due to an inherent shortcoming of purely relying on spatial filtering. Therefore, temporal/spectral filtering which can be very effective to counteract the unfavorable influence of noises is usually used as a supplement. This work integrates the CSP spatial filters with complex channel-specific finite impulse response (FIR) filters in a natural and intuitive manner. Each hybrid spatial-FIR filter is of high-order, data-driven and is unique to its corresponding channel. They are derived by introducing multiple time delays and regularization into conventional CSP. The general framework of the method follows that of CSP but performs better, as proven in single-trial classification tasks like event-related potential detection and motor imagery.

  8. Quaternion Regularization of the Equations of the Perturbed Spatial Restricted Three-Body Problem: I

    NASA Astrophysics Data System (ADS)

    Chelnokov, Yu. N.

    2017-11-01

    We develop a quaternion method for regularizing the differential equations of the perturbed spatial restricted three-body problem by using the Kustaanheimo-Stiefel variables, which is methodologically closely related to the quaternion method for regularizing the differential equations of perturbed spatial two-body problem, which was proposed by the author of the present paper. A survey of papers related to the regularization of the differential equations of the two- and threebody problems is given. The original Newtonian equations of perturbed spatial restricted three-body problem are considered, and the problem of their regularization is posed; the energy relations and the differential equations describing the variations in the energies of the system in the perturbed spatial restricted three-body problem are given, as well as the first integrals of the differential equations of the unperturbed spatial restricted circular three-body problem (Jacobi integrals); the equations of perturbed spatial restricted three-body problem written in terms of rotating coordinate systems whose angular motion is described by the rotation quaternions (Euler (Rodrigues-Hamilton) parameters) are considered; and the differential equations for angular momenta in the restricted three-body problem are given. Local regular quaternion differential equations of perturbed spatial restricted three-body problem in the Kustaanheimo-Stiefel variables, i.e., equations regular in a neighborhood of the first and second body of finite mass, are obtained. The equations are systems of nonlinear nonstationary eleventhorder differential equations. These equations employ, as additional dependent variables, the energy characteristics of motion of the body under study (a body of a negligibly small mass) and the time whose derivative with respect to a new independent variable is equal to the distance from the body of negligibly small mass to the first or second body of finite mass. The equations obtained in the paper permit developing regular methods for determining solutions, in analytical or numerical form, of problems difficult for classicalmethods, such as the motion of a body of negligibly small mass in a neighborhood of the other two bodies of finite masses.

  9. Automated Landslides Detection for Mountain Cities Using Multi-Temporal Remote Sensing Imagery.

    PubMed

    Chen, Zhong; Zhang, Yifei; Ouyang, Chao; Zhang, Feng; Ma, Jie

    2018-03-09

    Landslides that take place in mountain cities tend to cause huge casualties and economic losses, and a precise survey of landslide areas is a critical task for disaster emergency. However, because of the complicated appearance of the nature, it is difficult to find a spatial regularity that only relates to landslides, thus landslides detection based on only spatial information or artificial features usually performs poorly. In this paper, an automated landslides detection approach that is aiming at mountain cities has been proposed based on pre- and post-event remote sensing images, it mainly utilizes the knowledge of landslide-related surface covering changes, and makes full use of the temporal and spatial information. A change detection method using Deep Convolution Neural Network (DCNN) was introduced to extract the areas where drastic alterations have taken place; then, focusing on the changed areas, the Spatial Temporal Context Learning (STCL) was conducted to identify the landslides areas; finally, we use slope degree which is derived from digital elevation model (DEM) to make the result more reliable, and the change of DEM is used for making the detected areas more complete. The approach was applied to detecting the landslides in Shenzhen, Zhouqu County and Beichuan County in China, and a quantitative accuracy assessment has been taken. The assessment indicates that this approach can guarantee less commission error of landslide areal extent which is below 17.6% and achieves a quality percentage above 61.1%, and for landslide areas, the detection percentage is also competitive, the experimental results proves the feasibility and accuracy of the proposed approach for the detection landslides in mountain cities.

  10. Automated Landslides Detection for Mountain Cities Using Multi-Temporal Remote Sensing Imagery

    PubMed Central

    Chen, Zhong; Zhang, Yifei; Ouyang, Chao; Zhang, Feng; Ma, Jie

    2018-01-01

    Landslides that take place in mountain cities tend to cause huge casualties and economic losses, and a precise survey of landslide areas is a critical task for disaster emergency. However, because of the complicated appearance of the nature, it is difficult to find a spatial regularity that only relates to landslides, thus landslides detection based on only spatial information or artificial features usually performs poorly. In this paper, an automated landslides detection approach that is aiming at mountain cities has been proposed based on pre- and post-event remote sensing images, it mainly utilizes the knowledge of landslide-related surface covering changes, and makes full use of the temporal and spatial information. A change detection method using Deep Convolution Neural Network (DCNN) was introduced to extract the areas where drastic alterations have taken place; then, focusing on the changed areas, the Spatial Temporal Context Learning (STCL) was conducted to identify the landslides areas; finally, we use slope degree which is derived from digital elevation model (DEM) to make the result more reliable, and the change of DEM is used for making the detected areas more complete. The approach was applied to detecting the landslides in Shenzhen, Zhouqu County and Beichuan County in China, and a quantitative accuracy assessment has been taken. The assessment indicates that this approach can guarantee less commission error of landslide areal extent which is below 17.6% and achieves a quality percentage above 61.1%, and for landslide areas, the detection percentage is also competitive, the experimental results proves the feasibility and accuracy of the proposed approach for the detection landslides in mountain cities. PMID:29522424

  11. Using Tikhonov Regularization for Spatial Projections from CSR Regularized Spherical Harmonic GRACE Solutions

    NASA Astrophysics Data System (ADS)

    Save, H.; Bettadpur, S. V.

    2013-12-01

    It has been demonstrated before that using Tikhonov regularization produces spherical harmonic solutions from GRACE that have very little residual stripes while capturing all the signal observed by GRACE within the noise level. This paper demonstrates a two-step process and uses Tikhonov regularization to remove the residual stripes in the CSR regularized spherical harmonic coefficients when computing the spatial projections. We discuss methods to produce mass anomaly grids that have no stripe features while satisfying the necessary condition of capturing all observed signal within the GRACE noise level.

  12. 4D PET iterative deconvolution with spatiotemporal regularization for quantitative dynamic PET imaging.

    PubMed

    Reilhac, Anthonin; Charil, Arnaud; Wimberley, Catriona; Angelis, Georgios; Hamze, Hasar; Callaghan, Paul; Garcia, Marie-Paule; Boisson, Frederic; Ryder, Will; Meikle, Steven R; Gregoire, Marie-Claude

    2015-09-01

    Quantitative measurements in dynamic PET imaging are usually limited by the poor counting statistics particularly in short dynamic frames and by the low spatial resolution of the detection system, resulting in partial volume effects (PVEs). In this work, we present a fast and easy to implement method for the restoration of dynamic PET images that have suffered from both PVE and noise degradation. It is based on a weighted least squares iterative deconvolution approach of the dynamic PET image with spatial and temporal regularization. Using simulated dynamic [(11)C] Raclopride PET data with controlled biological variations in the striata between scans, we showed that the restoration method provides images which exhibit less noise and better contrast between emitting structures than the original images. In addition, the method is able to recover the true time activity curve in the striata region with an error below 3% while it was underestimated by more than 20% without correction. As a result, the method improves the accuracy and reduces the variability of the kinetic parameter estimates calculated from the corrected images. More importantly it increases the accuracy (from less than 66% to more than 95%) of measured biological variations as well as their statistical detectivity. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  13. Hyperspectral imagery super-resolution by compressive sensing inspired dictionary learning and spatial-spectral regularization.

    PubMed

    Huang, Wei; Xiao, Liang; Liu, Hongyi; Wei, Zhihui

    2015-01-19

    Due to the instrumental and imaging optics limitations, it is difficult to acquire high spatial resolution hyperspectral imagery (HSI). Super-resolution (SR) imagery aims at inferring high quality images of a given scene from degraded versions of the same scene. This paper proposes a novel hyperspectral imagery super-resolution (HSI-SR) method via dictionary learning and spatial-spectral regularization. The main contributions of this paper are twofold. First, inspired by the compressive sensing (CS) framework, for learning the high resolution dictionary, we encourage stronger sparsity on image patches and promote smaller coherence between the learned dictionary and sensing matrix. Thus, a sparsity and incoherence restricted dictionary learning method is proposed to achieve higher efficiency sparse representation. Second, a variational regularization model combing a spatial sparsity regularization term and a new local spectral similarity preserving term is proposed to integrate the spectral and spatial-contextual information of the HSI. Experimental results show that the proposed method can effectively recover spatial information and better preserve spectral information. The high spatial resolution HSI reconstructed by the proposed method outperforms reconstructed results by other well-known methods in terms of both objective measurements and visual evaluation.

  14. Cluster Detection Tests in Spatial Epidemiology: A Global Indicator for Performance Assessment

    PubMed Central

    Guttmann, Aline; Li, Xinran; Feschet, Fabien; Gaudart, Jean; Demongeot, Jacques; Boire, Jean-Yves; Ouchchane, Lemlih

    2015-01-01

    In cluster detection of disease, the use of local cluster detection tests (CDTs) is current. These methods aim both at locating likely clusters and testing for their statistical significance. New or improved CDTs are regularly proposed to epidemiologists and must be subjected to performance assessment. Because location accuracy has to be considered, performance assessment goes beyond the raw estimation of type I or II errors. As no consensus exists for performance evaluations, heterogeneous methods are used, and therefore studies are rarely comparable. A global indicator of performance, which assesses both spatial accuracy and usual power, would facilitate the exploration of CDTs behaviour and help between-studies comparisons. The Tanimoto coefficient (TC) is a well-known measure of similarity that can assess location accuracy but only for one detected cluster. In a simulation study, performance is measured for many tests. From the TC, we here propose two statistics, the averaged TC and the cumulated TC, as indicators able to provide a global overview of CDTs performance for both usual power and location accuracy. We evidence the properties of these two indicators and the superiority of the cumulated TC to assess performance. We tested these indicators to conduct a systematic spatial assessment displayed through performance maps. PMID:26086911

  15. Spatial capture-recapture: a promising method for analyzing data collected using artificial cover objects

    USGS Publications Warehouse

    Sutherland, Chris; Munoz, David; Miller, David A.W.; Grant, Evan H. Campbell

    2016-01-01

    Spatial capture–recapture (SCR) is a relatively recent development in ecological statistics that provides a spatial context for estimating abundance and space use patterns, and improves inference about absolute population density. SCR has been applied to individual encounter data collected noninvasively using methods such as camera traps, hair snares, and scat surveys. Despite the widespread use of capture-based surveys to monitor amphibians and reptiles, there are few applications of SCR in the herpetological literature. We demonstrate the utility of the application of SCR for studies of reptiles and amphibians by analyzing capture–recapture data from Red-Backed Salamanders, Plethodon cinereus, collected using artificial cover boards. Using SCR to analyze spatial encounter histories of marked individuals, we found evidence that density differed little among four sites within the same forest (on average, 1.59 salamanders/m2) and that salamander detection probability peaked in early October (Julian day 278) reflecting expected surface activity patterns of the species. The spatial scale of detectability, a measure of space use, indicates that the home range size for this population of Red-Backed Salamanders in autumn was 16.89 m2. Surveying reptiles and amphibians using artificial cover boards regularly generates spatial encounter history data of known individuals, which can readily be analyzed using SCR methods, providing estimates of absolute density and inference about the spatial scale of habitat use.

  16. Extended quantification of the generalized recurrence plot

    NASA Astrophysics Data System (ADS)

    Riedl, Maik; Marwan, Norbert; Kurths, Jürgen

    2016-04-01

    The generalized recurrence plot is a modern tool for quantification of complex spatial patterns. Its application spans the analysis of trabecular bone structures, Turing structures, turbulent spatial plankton patterns, and fractals. But, it is also successfully applied to the description of spatio-temporal dynamics and the detection of regime shifts, such as in the complex Ginzburg-Landau- equation. The recurrence plot based determinism is a central measure in this framework quantifying the level of regularities in temporal and spatial structures. We extend this measure for the generalized recurrence plot considering additional operations of symmetry than the simple translation. It is tested not only on two-dimensional regular patterns and noise but also on complex spatial patterns reconstructing the parameter space of the complex Ginzburg-Landau-equation. The extended version of the determinism resulted in values which are consistent to the original recurrence plot approach. Furthermore, the proposed method allows a split of the determinism into parts which based on laminar and non-laminar regions of the two-dimensional pattern of the complex Ginzburg-Landau-equation. A comparison of these parts with a standard method of image classification, the co-occurrence matrix approach, shows differences especially in the description of patterns associated with turbulence. In that case, it seems that the extended version of the determinism allows a distinction of phase turbulence and defect turbulence by means of their spatial patterns. This ability of the proposed method promise new insights in other systems with turbulent dynamics coming from climatology, biology, ecology, and social sciences, for example.

  17. Object-based implicit learning in visual search: perceptual segmentation constrains contextual cueing.

    PubMed

    Conci, Markus; Müller, Hermann J; von Mühlenen, Adrian

    2013-07-09

    In visual search, detection of a target is faster when it is presented within a spatial layout of repeatedly encountered nontarget items, indicating that contextual invariances can guide selective attention (contextual cueing; Chun & Jiang, 1998). However, perceptual regularities may interfere with contextual learning; for instance, no contextual facilitation occurs when four nontargets form a square-shaped grouping, even though the square location predicts the target location (Conci & von Mühlenen, 2009). Here, we further investigated potential causes for this interference-effect: We show that contextual cueing can reliably occur for targets located within the region of a segmented object, but not for targets presented outside of the object's boundaries. Four experiments demonstrate an object-based facilitation in contextual cueing, with a modulation of context-based learning by relatively subtle grouping cues including closure, symmetry, and spatial regularity. Moreover, the lack of contextual cueing for targets located outside the segmented region was due to an absence of (latent) learning of contextual layouts, rather than due to an attentional bias towards the grouped region. Taken together, these results indicate that perceptual segmentation provides a basic structure within which contextual scene regularities are acquired. This in turn argues that contextual learning is constrained by object-based selection.

  18. Statistical Analysis of 3D Images Detects Regular Spatial Distributions of Centromeres and Chromocenters in Animal and Plant Nuclei

    PubMed Central

    Biot, Eric; Adenot, Pierre-Gaël; Hue-Beauvais, Cathy; Houba-Hérin, Nicole; Duranthon, Véronique; Devinoy, Eve; Beaujean, Nathalie; Gaudin, Valérie; Maurin, Yves; Debey, Pascale

    2010-01-01

    In eukaryotes, the interphase nucleus is organized in morphologically and/or functionally distinct nuclear “compartments”. Numerous studies highlight functional relationships between the spatial organization of the nucleus and gene regulation. This raises the question of whether nuclear organization principles exist and, if so, whether they are identical in the animal and plant kingdoms. We addressed this issue through the investigation of the three-dimensional distribution of the centromeres and chromocenters. We investigated five very diverse populations of interphase nuclei at different differentiation stages in their physiological environment, belonging to rabbit embryos at the 8-cell and blastocyst stages, differentiated rabbit mammary epithelial cells during lactation, and differentiated cells of Arabidopsis thaliana plantlets. We developed new tools based on the processing of confocal images and a new statistical approach based on G- and F- distance functions used in spatial statistics. Our original computational scheme takes into account both size and shape variability by comparing, for each nucleus, the observed distribution against a reference distribution estimated by Monte-Carlo sampling over the same nucleus. This implicit normalization allowed similar data processing and extraction of rules in the five differentiated nuclei populations of the three studied biological systems, despite differences in chromosome number, genome organization and heterochromatin content. We showed that centromeres/chromocenters form significantly more regularly spaced patterns than expected under a completely random situation, suggesting that repulsive constraints or spatial inhomogeneities underlay the spatial organization of heterochromatic compartments. The proposed technique should be useful for identifying further spatial features in a wide range of cell types. PMID:20628576

  19. Considering the Spatial Layout Information of Bag of Features (BoF) Framework for Image Classification.

    PubMed

    Mu, Guangyu; Liu, Ying; Wang, Limin

    2015-01-01

    The spatial pooling method such as spatial pyramid matching (SPM) is very crucial in the bag of features model used in image classification. SPM partitions the image into a set of regular grids and assumes that the spatial layout of all visual words obey the uniform distribution over these regular grids. However, in practice, we consider that different visual words should obey different spatial layout distributions. To improve SPM, we develop a novel spatial pooling method, namely spatial distribution pooling (SDP). The proposed SDP method uses an extension model of Gauss mixture model to estimate the spatial layout distributions of the visual vocabulary. For each visual word type, SDP can generate a set of flexible grids rather than the regular grids from the traditional SPM. Furthermore, we can compute the grid weights for visual word tokens according to their spatial coordinates. The experimental results demonstrate that SDP outperforms the traditional spatial pooling methods, and is competitive with the state-of-the-art classification accuracy on several challenging image datasets.

  20. Phantom experiments using soft-prior regularization EIT for breast cancer imaging.

    PubMed

    Murphy, Ethan K; Mahara, Aditya; Wu, Xiaotian; Halter, Ryan J

    2017-06-01

    A soft-prior regularization (SR) electrical impedance tomography (EIT) technique for breast cancer imaging is described, which shows an ability to accurately reconstruct tumor/inclusion conductivity values within a dense breast model investigated using a cylindrical and a breast-shaped tank. The SR-EIT method relies on knowing the spatial location of a suspicious lesion initially detected from a second imaging modality. Standard approaches (using Laplace smoothing and total variation regularization) without prior structural information are unable to accurately reconstruct or detect the tumors. The soft-prior approach represents a very significant improvement to these standard approaches, and has the potential to improve conventional imaging techniques, such as automated whole breast ultrasound (AWB-US), by providing electrical property information of suspicious lesions to improve AWB-US's ability to discriminate benign from cancerous lesions. Specifically, the best soft-regularization technique found average absolute tumor/inclusion errors of 0.015 S m -1 for the cylindrical test and 0.055 S m -1 and 0.080 S m -1 for the breast-shaped tank for 1.8 cm and 2.5 cm inclusions, respectively. The standard approaches were statistically unable to distinguish the tumor from the mammary gland tissue. An analysis of false tumors (benign suspicious lesions) provides extra insight into the potential and challenges EIT has for providing clinically relevant information. The ability to obtain accurate conductivity values of a suspicious lesion (>1.8 cm) detected from another modality (e.g. AWB-US) could significantly reduce false positives and result in a clinically important technology.

  1. Local/non-local regularized image segmentation using graph-cuts: application to dynamic and multispectral MRI.

    PubMed

    Hanson, Erik A; Lundervold, Arvid

    2013-11-01

    Multispectral, multichannel, or time series image segmentation is important for image analysis in a wide range of applications. Regularization of the segmentation is commonly performed using local image information causing the segmented image to be locally smooth or piecewise constant. A new spatial regularization method, incorporating non-local information, was developed and tested. Our spatial regularization method applies to feature space classification in multichannel images such as color images and MR image sequences. The spatial regularization involves local edge properties, region boundary minimization, as well as non-local similarities. The method is implemented in a discrete graph-cut setting allowing fast computations. The method was tested on multidimensional MRI recordings from human kidney and brain in addition to simulated MRI volumes. The proposed method successfully segment regions with both smooth and complex non-smooth shapes with a minimum of user interaction.

  2. Spatio-Temporal Regularization for Longitudinal Registration to Subject-Specific 3d Template

    PubMed Central

    Guizard, Nicolas; Fonov, Vladimir S.; García-Lorenzo, Daniel; Nakamura, Kunio; Aubert-Broche, Bérengère; Collins, D. Louis

    2015-01-01

    Neurodegenerative diseases such as Alzheimer's disease present subtle anatomical brain changes before the appearance of clinical symptoms. Manual structure segmentation is long and tedious and although automatic methods exist, they are often performed in a cross-sectional manner where each time-point is analyzed independently. With such analysis methods, bias, error and longitudinal noise may be introduced. Noise due to MR scanners and other physiological effects may also introduce variability in the measurement. We propose to use 4D non-linear registration with spatio-temporal regularization to correct for potential longitudinal inconsistencies in the context of structure segmentation. The major contribution of this article is the use of individual template creation with spatio-temporal regularization of the deformation fields for each subject. We validate our method with different sets of real MRI data, compare it to available longitudinal methods such as FreeSurfer, SPM12, QUARC, TBM, and KNBSI, and demonstrate that spatially local temporal regularization yields more consistent rates of change of global structures resulting in better statistical power to detect significant changes over time and between populations. PMID:26301716

  3. Semantic Segmentation of Forest Stands of Pure Species as a Global Optimization Problem

    NASA Astrophysics Data System (ADS)

    Dechesne, C.; Mallet, C.; Le Bris, A.; Gouet-Brunet, V.

    2017-05-01

    Forest stand delineation is a fundamental task for forest management purposes, that is still mainly manually performed through visual inspection of geospatial (very) high spatial resolution images. Stand detection has been barely addressed in the literature which has mainly focused, in forested environments, on individual tree extraction and tree species classification. From a methodological point of view, stand detection can be considered as a semantic segmentation problem. It offers two advantages. First, one can retrieve the dominant tree species per segment. Secondly, one can benefit from existing low-level tree species label maps from the literature as a basis for high-level object extraction. Thus, the semantic segmentation issue becomes a regularization issue in a weakly structured environment and can be formulated in an energetical framework. This papers aims at investigating which regularization strategies of the literature are the most adapted to delineate and classify forest stands of pure species. Both airborne lidar point clouds and multispectral very high spatial resolution images are integrated for that purpose. The local methods (such as filtering and probabilistic relaxation) are not adapted for such problem since the increase of the classification accuracy is below 5%. The global methods, based on an energy model, tend to be more efficient with an accuracy gain up to 15%. The segmentation results using such models have an accuracy ranging from 96% to 99%.

  4. Localized Spatio-Temporal Constraints for Accelerated CMR Perfusion

    PubMed Central

    Akçakaya, Mehmet; Basha, Tamer A.; Pflugi, Silvio; Foppa, Murilo; Kissinger, Kraig V.; Hauser, Thomas H.; Nezafat, Reza

    2013-01-01

    Purpose To develop and evaluate an image reconstruction technique for cardiac MRI (CMR)perfusion that utilizes localized spatio-temporal constraints. Methods CMR perfusion plays an important role in detecting myocardial ischemia in patients with coronary artery disease. Breath-hold k-t based image acceleration techniques are typically used in CMR perfusion for superior spatial/temporal resolution, and improved coverage. In this study, we propose a novel compressed sensing based image reconstruction technique for CMR perfusion, with applicability to free-breathing examinations. This technique uses local spatio-temporal constraints by regularizing image patches across a small number of dynamics. The technique is compared to conventional dynamic-by-dynamic reconstruction, and sparsity regularization using a temporal principal-component (pc) basis, as well as zerofilled data in multi-slice 2D and 3D CMR perfusion. Qualitative image scores are used (1=poor, 4=excellent) to evaluate the technique in 3D perfusion in 10 patients and 5 healthy subjects. On 4 healthy subjects, the proposed technique was also compared to a breath-hold multi-slice 2D acquisition with parallel imaging in terms of signal intensity curves. Results The proposed technique results in images that are superior in terms of spatial and temporal blurring compared to the other techniques, even in free-breathing datasets. The image scores indicate a significant improvement compared to other techniques in 3D perfusion (2.8±0.5 vs. 2.3±0.5 for x-pc regularization, 1.7±0.5 for dynamic-by-dynamic, 1.1±0.2 for zerofilled). Signal intensity curves indicate similar dynamics of uptake between the proposed method with a 3D acquisition and the breath-hold multi-slice 2D acquisition with parallel imaging. Conclusion The proposed reconstruction utilizes sparsity regularization based on localized information in both spatial and temporal domains for highly-accelerated CMR perfusion with potential utility in free-breathing 3D acquisitions. PMID:24123058

  5. Review of methodology and technology available for the detection of extrasolar planetary systems

    NASA Technical Reports Server (NTRS)

    Tarter, J. C.; Black, D. C.; Billingham, J.

    1985-01-01

    Four approaches exist for the detection of extrasolar planets. According to the only direct method, the planet is imaged at some wavelength in a manner which makes it possible to differentiate its own feeble luminosity (internal energy source plus reflected starlight) from that of the nearby host star. The three indirect methods involve the detection of a planetary mass companion on the basis of the observable effects it has on the host star. A search is conducted regarding the occurrence of regular, periodic changes in the stellar spatial motion (astrometric method) or the velocity of stellar emission line spectra (spectroscopic method) or in the apparent total stellar luminosity (photometric method). Details regarding the approaches employed for implementing the considered methods are discussed.

  6. Online Learners’ Reading Ability Detection Based on Eye-Tracking Sensors

    PubMed Central

    Zhan, Zehui; Zhang, Lei; Mei, Hu; Fong, Patrick S. W.

    2016-01-01

    The detection of university online learners’ reading ability is generally problematic and time-consuming. Thus the eye-tracking sensors have been employed in this study, to record temporal and spatial human eye movements. Learners’ pupils, blinks, fixation, saccade, and regression are recognized as primary indicators for detecting reading abilities. A computational model is established according to the empirical eye-tracking data, and applying the multi-feature regularization machine learning mechanism based on a Low-rank Constraint. The model presents good generalization ability with an error of only 4.9% when randomly running 100 times. It has obvious advantages in saving time and improving precision, with only 20 min of testing required for prediction of an individual learner’s reading ability. PMID:27626418

  7. Limited angle CT reconstruction by simultaneous spatial and Radon domain regularization based on TV and data-driven tight frame

    NASA Astrophysics Data System (ADS)

    Zhang, Wenkun; Zhang, Hanming; Wang, Linyuan; Cai, Ailong; Li, Lei; Yan, Bin

    2018-02-01

    Limited angle computed tomography (CT) reconstruction is widely performed in medical diagnosis and industrial testing because of the size of objects, engine/armor inspection requirements, and limited scan flexibility. Limited angle reconstruction necessitates usage of optimization-based methods that utilize additional sparse priors. However, most of conventional methods solely exploit sparsity priors of spatial domains. When CT projection suffers from serious data deficiency or various noises, obtaining reconstruction images that meet the requirement of quality becomes difficult and challenging. To solve this problem, this paper developed an adaptive reconstruction method for limited angle CT problem. The proposed method simultaneously uses spatial and Radon domain regularization model based on total variation (TV) and data-driven tight frame. Data-driven tight frame being derived from wavelet transformation aims at exploiting sparsity priors of sinogram in Radon domain. Unlike existing works that utilize pre-constructed sparse transformation, the framelets of the data-driven regularization model can be adaptively learned from the latest projection data in the process of iterative reconstruction to provide optimal sparse approximations for given sinogram. At the same time, an effective alternating direction method is designed to solve the simultaneous spatial and Radon domain regularization model. The experiments for both simulation and real data demonstrate that the proposed algorithm shows better performance in artifacts depression and details preservation than the algorithms solely using regularization model of spatial domain. Quantitative evaluations for the results also indicate that the proposed algorithm applying learning strategy performs better than the dual domains algorithms without learning regularization model

  8. Sensitivity to structure in action sequences: An infant event-related potential study.

    PubMed

    Monroy, Claire D; Gerson, Sarah A; Domínguez-Martínez, Estefanía; Kaduk, Katharina; Hunnius, Sabine; Reid, Vincent

    2017-05-06

    Infants are sensitive to structure and patterns within continuous streams of sensory input. This sensitivity relies on statistical learning, the ability to detect predictable regularities in spatial and temporal sequences. Recent evidence has shown that infants can detect statistical regularities in action sequences they observe, but little is known about the neural process that give rise to this ability. In the current experiment, we combined electroencephalography (EEG) with eye-tracking to identify electrophysiological markers that indicate whether 8-11-month-old infants detect violations to learned regularities in action sequences, and to relate these markers to behavioral measures of anticipation during learning. In a learning phase, infants observed an actor performing a sequence featuring two deterministic pairs embedded within an otherwise random sequence. Thus, the first action of each pair was predictive of what would occur next. One of the pairs caused an action-effect, whereas the second did not. In a subsequent test phase, infants observed another sequence that included deviant pairs, violating the previously observed action pairs. Event-related potential (ERP) responses were analyzed and compared between the deviant and the original action pairs. Findings reveal that infants demonstrated a greater Negative central (Nc) ERP response to the deviant actions for the pair that caused the action-effect, which was consistent with their visual anticipations during the learning phase. Findings are discussed in terms of the neural and behavioral processes underlying perception and learning of structured action sequences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Accurate mask-based spatially regularized correlation filter for visual tracking

    NASA Astrophysics Data System (ADS)

    Gu, Xiaodong; Xu, Xinping

    2017-01-01

    Recently, discriminative correlation filter (DCF)-based trackers have achieved extremely successful results in many competitions and benchmarks. These methods utilize a periodic assumption of the training samples to efficiently learn a classifier. However, this assumption will produce unwanted boundary effects, which severely degrade the tracking performance. Correlation filters with limited boundaries and spatially regularized DCFs were proposed to reduce boundary effects. However, their methods used the fixed mask or predesigned weights function, respectively, which was unsuitable for large appearance variation. We propose an accurate mask-based spatially regularized correlation filter for visual tracking. Our augmented objective can reduce the boundary effect even in large appearance variation. In our algorithm, the masking matrix is converted into the regularized function that acts on the correlation filter in frequency domain, which makes the algorithm fast convergence. Our online tracking algorithm performs favorably against state-of-the-art trackers on OTB-2015 Benchmark in terms of efficiency, accuracy, and robustness.

  10. Cabri 3D - assisted collaborative learning to enhance junior high school students’ spatial ability

    NASA Astrophysics Data System (ADS)

    Muntazhimah; Miatun, A.

    2018-01-01

    The main purpose of this quasi-experimental study was to determine the enhancement of spatial ability of junior high school students who learned through Cabri-3D assisted collaborative learning. The methodology of this study was the nonequivalent group that was conducted to students of the eighth grade in a junior high school as a population. Samples consisted one class of the experimental group who studied with Cabri-3D assisted collaborative learning and one class as a control group who got regular learning activity. The instrument used in this study was a spatial ability test. Analyzing normalized gain of students’ spatial ability based on mathemathical prior knowledge (MPK) and its interactions was tested by two-way ANOVA at a significance level of 5% then continued with using Post Hoc Scheffe test. The research results showed that there was significant difference in enhancement of the spatial ability between students who learnt with Cabri 3D assisted collaborative learning and students who got regular learning, there was significant difference in enhancement of the spatial ability between students who learnt with cabri 3D assisted collaborative learning and students who got regular learning in terms of MPK and there is no significant interaction between learning (Cabri-3D assisted collaborative learning and regular learning) with students’ MPK (high, medium, and low) toward the enhancement of students’ spatial abilities. From the above findings, it can be seen that cabri-3D assisted collaborative learning could enhance spatial ability of junior high school students.

  11. Effects of spatially variable resolution on field-scale estimates of tracer concentration from electrical inversions using Archie's law

    USGS Publications Warehouse

    Singha, Kamini; Gorelick, Steven M.

    2006-01-01

    Two important mechanisms affect our ability to estimate solute concentrations quantitatively from the inversion of field-scale electrical resistivity tomography (ERT) data: (1) the spatially variable physical processes that govern the flow of current as well as the variation of physical properties in space and (2) the overparameterization of inverse models, which requires the imposition of a smoothing constraint (regularization) to facilitate convergence of the inverse solution. Based on analyses of field and synthetic data, we find that the ability of ERT to recover the 3D shape and magnitudes of a migrating conductive target is spatially variable. Additionally, the application of Archie's law to tomograms from field ERT data produced solute concentrations that are consistently less than 10% of point measurements collected in the field and estimated from transport modeling. Estimates of concentration from ERT using Archie's law only fit measured solute concentrations if the apparent formation factor is varied with space and time and allowed to take on unreasonably high values. Our analysis suggests that the inability to find a single petrophysical relation in space and time between concentration and electrical resistivity is largely an effect of two properties of ERT surveys: (1) decreased sensitivity of ERT to detect the target plume with increasing distance from the electrodes and (2) the smoothing imprint of regularization used in inversion.

  12. Urban remote sensing in areas of conflict: TerraSAR-X and Sentinel-1 change detection in the Middle East

    NASA Astrophysics Data System (ADS)

    Tapete, Deodato; Cigna, Francesca

    2016-08-01

    Timely availability of images of suitable spatial resolution, temporal frequency and coverage is currently one of the major technical constraints on the application of satellite SAR remote sensing for the conservation of heritage assets in urban environments that are impacted by human-induced transformation. TerraSAR-X and Sentinel-1A, in this regard, are two different models of SAR data provision: very high resolution on-demand imagery with end user-selected acquisition parameters, on one side, and freely accessible GIS-ready products with intended regular temporal coverage, on the other. What this means for change detection analyses in urban areas is demonstrated in this paper via the experiment over Homs, the third largest city of Syria with an history of settlement since 2300 BCE, where the impacts of the recent civil war combine with pre- and post-conflict urban transformation . The potential performance of Sentinel-1A StripMap scenes acquired in an emergency context is simulated via the matching StripMap beam mode offered by TerraSAR-X. Benefits and limitations of the different radar frequency band, spatial resolution and single/multi-channel polarization are discussed, as a proof-of-concept of regular monitoring currently achievable with space-borne SAR in historic urban settings. Urban transformation observed across Homs in 2009, 2014 and 2015 shows the impact of the Syrian conflict on the cityscape and proves that operator-driven interpretation is required to understand the complexity of multiple and overlapping urban changes.

  13. Time for bed: associations with cognitive performance in 7-year-old children: a longitudinal population-based study

    PubMed Central

    Kelly, Yvonne; Kelly, John; Sacker, Amanda

    2013-01-01

    Background Little is known about the links between the time that young children go to bed and their cognitive development. In this paper we seek to examine whether bedtimes in early childhood are related to cognitive test scores in 7-year-olds. Methods We examined data on bedtimes and cognitive test (z-scores) for reading, maths and spatial abilities for 11 178 7-year-old children from the UK Millennium Cohort Study. Results At age 7, not having a regular bedtime was related to lower cognitive test scores in girls: reading (β: −0.22), maths (β: −0.26) and spatial (β: −0.15), but not for boys. Non-regular bedtimes at age 3 were independently associated, in girls and boys, with lower reading (β: −0.10, −0.20), maths (β: −0.16, −0.11) and spatial (β: −0.13, −0.16) scores. Cumulative relationships were apparent. Girls who never had regular bedtimes at ages 3, 5 and 7 had significantly lower reading (β: −0.36), maths (β: −0.51) and spatial (β: −0.40) scores, while for boys this was the case for those having non-regular bedtimes at any two ages (3, 5 or 7 years): reading (β: −0.28), maths (β: −0.22) and spatial (β: −0.26) scores. In boys having non-regular bedtimes at all three ages (3, 5 and 7 years) were non-significantly related to lower reading, maths and spatial scores. Conclusions The consistent nature of bedtimes during early childhood is related to cognitive performance. Given the importance of early child development, there may be knock on effects for health throughout life. PMID:23835763

  14. Time for bed: associations with cognitive performance in 7-year-old children: a longitudinal population-based study.

    PubMed

    Kelly, Yvonne; Kelly, John; Sacker, Amanda

    2013-11-01

    Little is known about the links between the time that young children go to bed and their cognitive development. In this paper we seek to examine whether bedtimes in early childhood are related to cognitive test scores in 7-year-olds. We examined data on bedtimes and cognitive test (z-scores) for reading, maths and spatial abilities for 11 178 7-year-old children from the UK Millennium Cohort Study. At age 7, not having a regular bedtime was related to lower cognitive test scores in girls: reading (β: -0.22), maths (β: -0.26) and spatial (β: -0.15), but not for boys. Non-regular bedtimes at age 3 were independently associated, in girls and boys, with lower reading (β: -0.10, -0.20), maths (β: -0.16, -0.11) and spatial (β: -0.13, -0.16) scores. Cumulative relationships were apparent. Girls who never had regular bedtimes at ages 3, 5 and 7 had significantly lower reading (β: -0.36), maths (β: -0.51) and spatial (β: -0.40) scores, while for boys this was the case for those having non-regular bedtimes at any two ages (3, 5 or 7 years): reading (β: -0.28), maths (β: -0.22) and spatial (β: -0.26) scores. In boys having non-regular bedtimes at all three ages (3, 5 and 7 years) were non-significantly related to lower reading, maths and spatial scores. The consistent nature of bedtimes during early childhood is related to cognitive performance. Given the importance of early child development, there may be knock on effects for health throughout life.

  15. SAR Interferometry as a Tool for Monitoring Coastal Changes in the Nile River Delta of Egypt

    NASA Technical Reports Server (NTRS)

    Aly, Mohamed H.; Klein, Andrew G.; Giardino, John R.

    2005-01-01

    The Nile River Delta is experiencing rapid rates of coastal change. The rate of both coastal retreat and accretion in the Eastern Nile Delta requires regular, accurate detection and measurement. Current techniques used to monitor coastal changes in the delta are point measurements and, thus, they provide a spatially limited view of the ongoing coastal changes. SAR interferometry can provide measurements of subtle coastal change at a significantly improved spatial resolution and over large areas (100 sq km). Using data provided by the ERS-1&2 satellites, monitoring can be accomplished as frequently as every 35 days when needed. Radar interferometry is employed in this study to detect segments of erosion and accretion during the 1993-2000 period. The average rates of erosion and accretion in the Eastern Nile Delta are measured to be -11.64 m/yr and +5.12 m/yr, respectively. The results of this interferometric study can be used effectively for coastal zone management and integrated sustainable development for the Nile River Delta.

  16. M31 in the Chandra Era: A High Definition Movie of a Nearby Galaxy

    NASA Astrophysics Data System (ADS)

    Kong, Albert; di Stefano, Rosanne

    2009-09-01

    M31 has been a prime targets for all X-ray missions since the first detection in 1974. With its superb spatial resolution, Chandra is unique in resolving dense source regions and detecting faint sources. Since the launch of Chandra, M31 has been regularly observed. It is perhaps the only nearby galaxy which is observed by an X-ray telescope regularly throughout operation. With 10 years of observations, the center of M31 has been observed with Chandra for nearly 1 Msec. The X-ray skies of M31 not only consist of many transients and variables, globular cluster X-ray sources in M31 are also different from our Milky Way. They are in general more luminous and one of them may even host an intermediate-mass black hole. Supersoft and quasi-soft X-ray sources in M31 are the best kept secret to unlock the nature of the progenitor of Type Ia supernova. In this talk, I will review some of the important Chandra discoveries in M31 in the past 10 years.

  17. Time-Optimized High-Resolution Readout-Segmented Diffusion Tensor Imaging

    PubMed Central

    Reishofer, Gernot; Koschutnig, Karl; Langkammer, Christian; Porter, David; Jehna, Margit; Enzinger, Christian; Keeling, Stephen; Ebner, Franz

    2013-01-01

    Readout-segmented echo planar imaging with 2D navigator-based reacquisition is an uprising technique enabling the sampling of high-resolution diffusion images with reduced susceptibility artifacts. However, low signal from the small voxels and long scan times hamper the clinical applicability. Therefore, we introduce a regularization algorithm based on total variation that is applied directly on the entire diffusion tensor. The spatially varying regularization parameter is determined automatically dependent on spatial variations in signal-to-noise ratio thus, avoiding over- or under-regularization. Information about the noise distribution in the diffusion tensor is extracted from the diffusion weighted images by means of complex independent component analysis. Moreover, the combination of those features enables processing of the diffusion data absolutely user independent. Tractography from in vivo data and from a software phantom demonstrate the advantage of the spatially varying regularization compared to un-regularized data with respect to parameters relevant for fiber-tracking such as Mean Fiber Length, Track Count, Volume and Voxel Count. Specifically, for in vivo data findings suggest that tractography results from the regularized diffusion tensor based on one measurement (16 min) generates results comparable to the un-regularized data with three averages (48 min). This significant reduction in scan time renders high resolution (1×1×2.5 mm3) diffusion tensor imaging of the entire brain applicable in a clinical context. PMID:24019951

  18. A 20-year catalog comparing smooth and sharp estimates of slow slip events in Cascadia

    NASA Astrophysics Data System (ADS)

    Molitors Bergman, E. G.; Evans, E. L.; Loveless, J. P.

    2017-12-01

    Slow slip events (SSEs) are a form of aseismic strain release at subduction zones resulting in a temporary reversal in interseismic upper plate motion over a period of weeks, frequently accompanied in time and space by seismic tremor at the Cascadia subduction zone. Locating SSEs spatially along the subduction zone interface is essential to understanding the relationship between SSEs, earthquakes, and tremor and assessing megathrust earthquake hazard. We apply an automated slope comparison-based detection algorithm to single continuously recording GPS stations to determine dates and surface displacement vectors of SSEs, then apply network-based filters to eliminate false detections. The main benefits of this algorithm are its ability to detect SSEs while they are occurring and track the spatial migration of each event. We invert geodetic displacement fields for slip distributions on the subduction zone interface for SSEs between 1997 and 2017 using two estimation techniques: spatial smoothing and total variation regularization (TVR). Smoothing has been frequently used in determining the location of interseismic coupling, earthquake rupture, and SSE slip and yields spatially coherent but inherently blurred solutions. TVR yields compact, sharply bordered slip estimates of similar magnitude and along-strike extent to previously presented studied events, while fitting the constraining geodetic data as well as corresponding smoothing-based solutions. Slip distributions estimated using TVR have up-dip limits that align well with down-dip limits of interseismic coupling on the plate interface and spatial extents that approximately correspond to the distribution of tremor concurrent with each event. TVR gives a unique view of slow slip distributions that can contribute to understanding of the physical properties that govern megathrust slip processes.

  19. Influence of chewing behaviour on memory and spatial learning in albino BALB/c mice.

    PubMed

    Aguirre Siancas, E E

    2017-05-01

    Since the relationship between chewing and cognitive functions has not been fully elucidated, this study aimed to determine the impact of chewing behaviour on spatial learning and memory in albino male BALB/c mice. Twenty mice aged 8 weeks were divided into 2 equal groups. The regular chewing group was fed with uncrushed grains (the same diet given to all 20 mice since they were weaned) and the limited chewing group was fed with crushed grains. At 16 weeks of age, the mice were evaluated over 5 days, including a 4-day acquisition phase prior to a probe test of spatial learning and memory in the Morris water maze on the fifth day. A comparison of the regular chewing group and the limited chewing group found no significant differences in either the acquisition phase or the probe test. However, there were significant differences in the acquisition phase for just the regular chewing group when comparing results from the first day to those from the other 3 days. The results suggest that regular chewing affects spatial learning and memory since mice in the regular chewing group decreased their times to find the hidden platform during the acquisition phase. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Task-Driven Tube Current Modulation and Regularization Design in Computed Tomography with Penalized-Likelihood Reconstruction.

    PubMed

    Gang, G J; Siewerdsen, J H; Stayman, J W

    2016-02-01

    This work applies task-driven optimization to design CT tube current modulation and directional regularization in penalized-likelihood (PL) reconstruction. The relative performance of modulation schemes commonly adopted for filtered-backprojection (FBP) reconstruction were also evaluated for PL in comparison. We adopt a task-driven imaging framework that utilizes a patient-specific anatomical model and information of the imaging task to optimize imaging performance in terms of detectability index ( d' ). This framework leverages a theoretical model based on implicit function theorem and Fourier approximations to predict local spatial resolution and noise characteristics of PL reconstruction as a function of the imaging parameters to be optimized. Tube current modulation was parameterized as a linear combination of Gaussian basis functions, and regularization was based on the design of (directional) pairwise penalty weights for the 8 in-plane neighboring voxels. Detectability was optimized using a covariance matrix adaptation evolutionary strategy algorithm. Task-driven designs were compared to conventional tube current modulation strategies for a Gaussian detection task in an abdomen phantom. The task-driven design yielded the best performance, improving d' by ~20% over an unmodulated acquisition. Contrary to FBP, PL reconstruction using automatic exposure control and modulation based on minimum variance (in FBP) performed worse than the unmodulated case, decreasing d' by 16% and 9%, respectively. This work shows that conventional tube current modulation schemes suitable for FBP can be suboptimal for PL reconstruction. Thus, the proposed task-driven optimization provides additional opportunities for improved imaging performance and dose reduction beyond that achievable with conventional acquisition and reconstruction.

  1. Neural signature of the conscious processing of auditory regularities

    PubMed Central

    Bekinschtein, Tristan A.; Dehaene, Stanislas; Rohaut, Benjamin; Tadel, François; Cohen, Laurent; Naccache, Lionel

    2009-01-01

    Can conscious processing be inferred from neurophysiological measurements? Some models stipulate that the active maintenance of perceptual representations across time requires consciousness. Capitalizing on this assumption, we designed an auditory paradigm that evaluates cerebral responses to violations of temporal regularities that are either local in time or global across several seconds. Local violations led to an early response in auditory cortex, independent of attention or the presence of a concurrent visual task, whereas global violations led to a late and spatially distributed response that was only present when subjects were attentive and aware of the violations. We could detect the global effect in individual subjects using functional MRI and both scalp and intracerebral event-related potentials. Recordings from 8 noncommunicating patients with disorders of consciousness confirmed that only conscious individuals presented a global effect. Taken together these observations suggest that the presence of the global effect is a signature of conscious processing, although it can be absent in conscious subjects who are not aware of the global auditory regularities. This simple electrophysiological marker could thus serve as a useful clinical tool. PMID:19164526

  2. Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm.

    PubMed

    Shi, Junwei; Liu, Fei; Zhang, Guanglei; Luo, Jianwen; Bai, Jing

    2014-04-01

    Owing to the high degree of scattering of light through tissues, the ill-posedness of fluorescence molecular tomography (FMT) inverse problem causes relatively low spatial resolution in the reconstruction results. Unlike L2 regularization, L1 regularization can preserve the details and reduce the noise effectively. Reconstruction is obtained through a restarted L1 regularization-based nonlinear conjugate gradient (re-L1-NCG) algorithm, which has been proven to be able to increase the computational speed with low memory consumption. The algorithm consists of inner and outer iterations. In the inner iteration, L1-NCG is used to obtain the L1-regularized results. In the outer iteration, the restarted strategy is used to increase the convergence speed of L1-NCG. To demonstrate the performance of re-L1-NCG in terms of spatial resolution, simulation and physical phantom studies with fluorescent targets located with different edge-to-edge distances were carried out. The reconstruction results show that the re-L1-NCG algorithm has the ability to resolve targets with an edge-to-edge distance of 0.1 cm at a depth of 1.5 cm, which is a significant improvement for FMT.

  3. Grid-texture mechanisms in human vision: Contrast detection of regular sparse micro-patterns requires specialist templates.

    PubMed

    Baker, Daniel H; Meese, Tim S

    2016-07-27

    Previous work has shown that human vision performs spatial integration of luminance contrast energy, where signals are squared and summed (with internal noise) over area at detection threshold. We tested that model here in an experiment using arrays of micro-pattern textures that varied in overall stimulus area and sparseness of their target elements, where the contrast of each element was normalised for sensitivity across the visual field. We found a power-law improvement in performance with stimulus area, and a decrease in sensitivity with sparseness. While the contrast integrator model performed well when target elements constituted 50-100% of the target area (replicating previous results), observers outperformed the model when texture elements were sparser than this. This result required the inclusion of further templates in our model, selective for grids of various regular texture densities. By assuming a MAX operation across these noisy mechanisms the model also accounted for the increase in the slope of the psychometric function that occurred as texture density decreased. Thus, for the first time, mechanisms that are selective for texture density have been revealed at contrast detection threshold. We suggest that these mechanisms have a role to play in the perception of visual textures.

  4. Grid-texture mechanisms in human vision: Contrast detection of regular sparse micro-patterns requires specialist templates

    PubMed Central

    Baker, Daniel H.; Meese, Tim S.

    2016-01-01

    Previous work has shown that human vision performs spatial integration of luminance contrast energy, where signals are squared and summed (with internal noise) over area at detection threshold. We tested that model here in an experiment using arrays of micro-pattern textures that varied in overall stimulus area and sparseness of their target elements, where the contrast of each element was normalised for sensitivity across the visual field. We found a power-law improvement in performance with stimulus area, and a decrease in sensitivity with sparseness. While the contrast integrator model performed well when target elements constituted 50–100% of the target area (replicating previous results), observers outperformed the model when texture elements were sparser than this. This result required the inclusion of further templates in our model, selective for grids of various regular texture densities. By assuming a MAX operation across these noisy mechanisms the model also accounted for the increase in the slope of the psychometric function that occurred as texture density decreased. Thus, for the first time, mechanisms that are selective for texture density have been revealed at contrast detection threshold. We suggest that these mechanisms have a role to play in the perception of visual textures. PMID:27460430

  5. Effective noise-suppressed and artifact-reduced reconstruction of SPECT data using a preconditioned alternating projection algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Si; Xu, Yuesheng, E-mail: yxu06@syr.edu; Zhang, Jiahan

    Purpose: The authors have recently developed a preconditioned alternating projection algorithm (PAPA) with total variation (TV) regularizer for solving the penalized-likelihood optimization model for single-photon emission computed tomography (SPECT) reconstruction. This algorithm belongs to a novel class of fixed-point proximity methods. The goal of this work is to investigate how PAPA performs while dealing with realistic noisy SPECT data, to compare its performance with more conventional methods, and to address issues with TV artifacts by proposing a novel form of the algorithm invoking high-order TV regularization, denoted as HOTV-PAPA, which has been explored and studied extensively in the present work.more » Methods: Using Monte Carlo methods, the authors simulate noisy SPECT data from two water cylinders; one contains lumpy “warm” background and “hot” lesions of various sizes with Gaussian activity distribution, and the other is a reference cylinder without hot lesions. The authors study the performance of HOTV-PAPA and compare it with PAPA using first-order TV regularization (TV-PAPA), the Panin–Zeng–Gullberg one-step-late method with TV regularization (TV-OSL), and an expectation–maximization algorithm with Gaussian postfilter (GPF-EM). The authors select penalty-weights (hyperparameters) by qualitatively balancing the trade-off between resolution and image noise separately for TV-PAPA and TV-OSL. However, the authors arrived at the same penalty-weight value for both of them. The authors set the first penalty-weight in HOTV-PAPA equal to the optimal penalty-weight found for TV-PAPA. The second penalty-weight needed for HOTV-PAPA is tuned by balancing resolution and the severity of staircase artifacts. The authors adjust the Gaussian postfilter to approximately match the local point spread function of GPF-EM and HOTV-PAPA. The authors examine hot lesion detectability, study local spatial resolution, analyze background noise properties, estimate mean square errors (MSEs), and report the convergence speed and computation time. Results: HOTV-PAPA yields the best signal-to-noise ratio, followed by TV-PAPA and TV-OSL/GPF-EM. The local spatial resolution of HOTV-PAPA is somewhat worse than that of TV-PAPA and TV-OSL. Images reconstructed using HOTV-PAPA have the lowest local noise power spectrum (LNPS) amplitudes, followed by TV-PAPA, TV-OSL, and GPF-EM. The LNPS peak of GPF-EM is shifted toward higher spatial frequencies than those for the three other methods. The PAPA-type methods exhibit much lower ensemble noise, ensemble voxel variance, and image roughness. HOTV-PAPA performs best in these categories. Whereas images reconstructed using both TV-PAPA and TV-OSL are degraded by severe staircase artifacts; HOTV-PAPA substantially reduces such artifacts. It also converges faster than the other three methods and exhibits the lowest overall reconstruction error level, as measured by MSE. Conclusions: For high-noise simulated SPECT data, HOTV-PAPA outperforms TV-PAPA, GPF-EM, and TV-OSL in terms of hot lesion detectability, noise suppression, MSE, and computational efficiency. Unlike TV-PAPA and TV-OSL, HOTV-PAPA does not create sizable staircase artifacts. Moreover, HOTV-PAPA effectively suppresses noise, with only limited loss of local spatial resolution. Of the four methods, HOTV-PAPA shows the best lesion detectability, thanks to its superior noise suppression. HOTV-PAPA shows promise for clinically useful reconstructions of low-dose SPECT data.« less

  6. Effective noise-suppressed and artifact-reduced reconstruction of SPECT data using a preconditioned alternating projection algorithm

    PubMed Central

    Li, Si; Zhang, Jiahan; Krol, Andrzej; Schmidtlein, C. Ross; Vogelsang, Levon; Shen, Lixin; Lipson, Edward; Feiglin, David; Xu, Yuesheng

    2015-01-01

    Purpose: The authors have recently developed a preconditioned alternating projection algorithm (PAPA) with total variation (TV) regularizer for solving the penalized-likelihood optimization model for single-photon emission computed tomography (SPECT) reconstruction. This algorithm belongs to a novel class of fixed-point proximity methods. The goal of this work is to investigate how PAPA performs while dealing with realistic noisy SPECT data, to compare its performance with more conventional methods, and to address issues with TV artifacts by proposing a novel form of the algorithm invoking high-order TV regularization, denoted as HOTV-PAPA, which has been explored and studied extensively in the present work. Methods: Using Monte Carlo methods, the authors simulate noisy SPECT data from two water cylinders; one contains lumpy “warm” background and “hot” lesions of various sizes with Gaussian activity distribution, and the other is a reference cylinder without hot lesions. The authors study the performance of HOTV-PAPA and compare it with PAPA using first-order TV regularization (TV-PAPA), the Panin–Zeng–Gullberg one-step-late method with TV regularization (TV-OSL), and an expectation–maximization algorithm with Gaussian postfilter (GPF-EM). The authors select penalty-weights (hyperparameters) by qualitatively balancing the trade-off between resolution and image noise separately for TV-PAPA and TV-OSL. However, the authors arrived at the same penalty-weight value for both of them. The authors set the first penalty-weight in HOTV-PAPA equal to the optimal penalty-weight found for TV-PAPA. The second penalty-weight needed for HOTV-PAPA is tuned by balancing resolution and the severity of staircase artifacts. The authors adjust the Gaussian postfilter to approximately match the local point spread function of GPF-EM and HOTV-PAPA. The authors examine hot lesion detectability, study local spatial resolution, analyze background noise properties, estimate mean square errors (MSEs), and report the convergence speed and computation time. Results: HOTV-PAPA yields the best signal-to-noise ratio, followed by TV-PAPA and TV-OSL/GPF-EM. The local spatial resolution of HOTV-PAPA is somewhat worse than that of TV-PAPA and TV-OSL. Images reconstructed using HOTV-PAPA have the lowest local noise power spectrum (LNPS) amplitudes, followed by TV-PAPA, TV-OSL, and GPF-EM. The LNPS peak of GPF-EM is shifted toward higher spatial frequencies than those for the three other methods. The PAPA-type methods exhibit much lower ensemble noise, ensemble voxel variance, and image roughness. HOTV-PAPA performs best in these categories. Whereas images reconstructed using both TV-PAPA and TV-OSL are degraded by severe staircase artifacts; HOTV-PAPA substantially reduces such artifacts. It also converges faster than the other three methods and exhibits the lowest overall reconstruction error level, as measured by MSE. Conclusions: For high-noise simulated SPECT data, HOTV-PAPA outperforms TV-PAPA, GPF-EM, and TV-OSL in terms of hot lesion detectability, noise suppression, MSE, and computational efficiency. Unlike TV-PAPA and TV-OSL, HOTV-PAPA does not create sizable staircase artifacts. Moreover, HOTV-PAPA effectively suppresses noise, with only limited loss of local spatial resolution. Of the four methods, HOTV-PAPA shows the best lesion detectability, thanks to its superior noise suppression. HOTV-PAPA shows promise for clinically useful reconstructions of low-dose SPECT data. PMID:26233214

  7. Differentiation of Forebrain and Hippocampal Dopamine 1-Class Receptors, D1R and D5R, in Spatial Learning and Memory

    PubMed Central

    Sariñana, Joshua; Tonegawa, Susumu

    2017-01-01

    Activation of prefrontal cortical (PFC), striatal, and hippocampal dopamine 1-class receptors (D1R and D5R) is necessary for normal spatial information processing. Yet the precise role of the D1R versus the D5R in the aforementioned structures, and their specific contribution to the water-maze spatial learning task remains unknown. D1R- and D5R- specific in situ hybridization probes showed that forebrain restricted D1R and D5R KO mice (F-D1R/D5R KO) displayed D1R mRNA deletion in the medial (m)PFC, dorsal and ventral striatum, and the dentate gyrus (DG) of the hippocampus. D5R mRNA deletion was limited to the mPFC, the CA1 and DG hippocampal subregions. F-D1R/D5R KO mice were given water-maze training and displayed subtle spatial latency differences between genotypes and spatial memory deficits during both regular and reversal training. To differentiate forebrain D1R from D5R activation, forebrain restricted D1R KO (F-D1R KO) and D5R KO (F-D5R KO) mice were trained on the water-maze task. F-D1R KO animals exhibited escape latency deficits throughout regular and reversal training as well as spatial memory deficits during reversal training. F-D1R KO mice also showed perseverative behavior during the reversal spatial memory probe test. In contrast, F-D5R KO animals did not present observable deficits on the water-maze task. Because F-D1R KO mice showed water-maze deficits we tested the necessity of hippocampal D1R activation for spatial learning and memory. We trained DG restricted D1R KO (DG-D1R KO) mice on the water-maze task. DG-D1R KO mice did not present detectable spatial memory deficit, but did show subtle deficits during specific days of training. Our data provides evidence that forebrain D5R activation plays a unique role in spatial learning and memory in conjunction with D1R activation. Moreover, these data suggest that mPFC and striatal, but not DG D1R activation are essential for spatial learning and memory. PMID:26174222

  8. Regularity and predictability of human mobility in personal space.

    PubMed

    Austin, Daniel; Cross, Robin M; Hayes, Tamara; Kaye, Jeffrey

    2014-01-01

    Fundamental laws governing human mobility have many important applications such as forecasting and controlling epidemics or optimizing transportation systems. These mobility patterns, studied in the context of out of home activity during travel or social interactions with observations recorded from cell phone use or diffusion of money, suggest that in extra-personal space humans follow a high degree of temporal and spatial regularity - most often in the form of time-independent universal scaling laws. Here we show that mobility patterns of older individuals in their home also show a high degree of predictability and regularity, although in a different way than has been reported for out-of-home mobility. Studying a data set of almost 15 million observations from 19 adults spanning up to 5 years of unobtrusive longitudinal home activity monitoring, we find that in-home mobility is not well represented by a universal scaling law, but that significant structure (predictability and regularity) is uncovered when explicitly accounting for contextual data in a model of in-home mobility. These results suggest that human mobility in personal space is highly stereotyped, and that monitoring discontinuities in routine room-level mobility patterns may provide an opportunity to predict individual human health and functional status or detect adverse events and trends.

  9. DETECTION OF SMALL-SCALE GRANULAR STRUCTURES IN THE QUIET SUN WITH THE NEW SOLAR TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramenko, V. I.; Yurchyshyn, V. B.; Goode, P. R.

    2012-09-10

    Results of a statistical analysis of solar granulation are presented. A data set of 36 images of a quiet-Sun area on the solar disk center was used. The data were obtained with the 1.6 m clear aperture New Solar Telescope at Big Bear Solar Observatory and with a broadband filter centered at the TiO (705.7 nm) spectral line. The very high spatial resolution of the data (diffraction limit of 77 km and pixel scale of 0.''0375) augmented by the very high image contrast (15.5% {+-} 0.6%) allowed us to detect for the first time a distinct subpopulation of mini-granular structures.more » These structures are dominant on spatial scales below 600 km. Their size is distributed as a power law with an index of -1.8 (which is close to the Kolmogorov's -5/3 law) and no predominant scale. The regular granules display a Gaussian (normal) size distribution with a mean diameter of 1050 km. Mini-granular structures contribute significantly to the total granular area. They are predominantly confined to the wide dark lanes between regular granules and often form chains and clusters, but different from magnetic bright points. A multi-fractality test reveals that the structures smaller than 600 km represent a multi-fractal, whereas on larger scales the granulation pattern shows no multi-fractality and can be considered as a Gaussian random field. The origin, properties, and role of the population of mini-granular structures in the solar magnetoconvection are yet to be explored.« less

  10. Methodological Caveats in the Detection of Coordinated Replay between Place Cells and Grid Cells.

    PubMed

    Trimper, John B; Trettel, Sean G; Hwaun, Ernie; Colgin, Laura Lee

    2017-01-01

    At rest, hippocampal "place cells," neurons with receptive fields corresponding to specific spatial locations, reactivate in a manner that reflects recently traveled trajectories. These "replay" events have been proposed as a mechanism underlying memory consolidation, or the transfer of a memory representation from the hippocampus to neocortical regions associated with the original sensory experience. Accordingly, it has been hypothesized that hippocampal replay of a particular experience should be accompanied by simultaneous reactivation of corresponding representations in the neocortex and in the entorhinal cortex, the primary interface between the hippocampus and the neocortex. Recent studies have reported that coordinated replay may occur between hippocampal place cells and medial entorhinal cortex grid cells, cells with multiple spatial receptive fields. Assessing replay in grid cells is problematic, however, as the cells exhibit regularly spaced spatial receptive fields in all environments and, therefore, coordinated replay between place cells and grid cells may be detected by chance. In the present report, we adapted analytical approaches utilized in recent studies of grid cell and place cell replay to determine the extent to which coordinated replay is spuriously detected between grid cells and place cells recorded from separate rats. For a subset of the employed analytical methods, coordinated replay was detected spuriously in a significant proportion of cases in which place cell replay events were randomly matched with grid cell firing epochs of equal duration. More rigorous replay evaluation procedures and minimum spike count requirements greatly reduced the amount of spurious findings. These results provide insights into aspects of place cell and grid cell activity during rest that contribute to false detection of coordinated replay. The results further emphasize the need for careful controls and rigorous methods when testing the hypothesis that place cells and grid cells exhibit coordinated replay.

  11. Computer Game Play as an Imaginary Stage for Reading: Implicit Spatial Effects of Computer Games Embedded in Hard Copy Books

    ERIC Educational Resources Information Center

    Smith, Glenn Gordon

    2012-01-01

    This study compared books with embedded computer games (via pentop computers with microdot paper and audio feedback) with regular books with maps, in terms of fifth graders' comprehension and retention of spatial details from stories. One group read a story in hard copy with embedded computer games, the other group read it in regular book format…

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, T; Dong, X; Petrongolo, M

    Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its material decomposition capability. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical value. Existing de-noising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. We propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm is formulated in the form of least-square estimationmore » with smoothness regularization. It includes the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. Performance is evaluated using an evaluation phantom (Catphan 600) and an anthropomorphic head phantom. Results are compared to those generated using direct matrix inversion with no noise suppression, a de-noising method applied on the decomposed images, and an existing algorithm with similar formulation but with an edge-preserving regularization term. Results: On the Catphan phantom, our method retains the same spatial resolution as the CT images before decomposition while reducing the noise standard deviation of decomposed images by over 98%. The other methods either degrade spatial resolution or achieve less low-contrast detectability. Also, our method yields lower electron density measurement error than direct matrix inversion and reduces error variation by over 97%. On the head phantom, it reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusion: We propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. The proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability. This work is supported by a Varian MRA grant.« less

  13. Raft cultivation area extraction from high resolution remote sensing imagery by fusing multi-scale region-line primitive association features

    NASA Astrophysics Data System (ADS)

    Wang, Min; Cui, Qi; Wang, Jie; Ming, Dongping; Lv, Guonian

    2017-01-01

    In this paper, we first propose several novel concepts for object-based image analysis, which include line-based shape regularity, line density, and scale-based best feature value (SBV), based on the region-line primitive association framework (RLPAF). We then propose a raft cultivation area (RCA) extraction method for high spatial resolution (HSR) remote sensing imagery based on multi-scale feature fusion and spatial rule induction. The proposed method includes the following steps: (1) Multi-scale region primitives (segments) are obtained by image segmentation method HBC-SEG, and line primitives (straight lines) are obtained by phase-based line detection method. (2) Association relationships between regions and lines are built based on RLPAF, and then multi-scale RLPAF features are extracted and SBVs are selected. (3) Several spatial rules are designed to extract RCAs within sea waters after land and water separation. Experiments show that the proposed method can successfully extract different-shaped RCAs from HR images with good performance.

  14. Implementation of a direct-imaging and FX correlator for the BEST-2 array

    NASA Astrophysics Data System (ADS)

    Foster, G.; Hickish, J.; Magro, A.; Price, D.; Zarb Adami, K.

    2014-04-01

    A new digital backend has been developed for the Basic Element for SKA Training II (BEST-2) array at Radiotelescopi di Medicina, INAF-IRA, Italy, which allows concurrent operation of an FX correlator, and a direct-imaging correlator and beamformer. This backend serves as a platform for testing some of the spatial Fourier transform concepts which have been proposed for use in computing correlations on regularly gridded arrays. While spatial Fourier transform-based beamformers have been implemented previously, this is, to our knowledge, the first time a direct-imaging correlator has been deployed on a radio astronomy array. Concurrent observations with the FX and direct-imaging correlator allow for direct comparison between the two architectures. Additionally, we show the potential of the direct-imaging correlator for time-domain astronomy, by passing a subset of beams though a pulsar and transient detection pipeline. These results provide a timely verification for spatial Fourier transform-based instruments that are currently in commissioning. These instruments aim to detect highly redshifted hydrogen from the epoch of reionization and/or to perform wide-field surveys for time-domain studies of the radio sky. We experimentally show the direct-imaging correlator architecture to be a viable solution for correlation and beamforming.

  15. [Geostatistics analyzing to cause of formation of circle distribution of plant communities in Horqin Sandy Land].

    PubMed

    He, Xingdong; Gao, Yubao; Zhao, Wenzhi; Cong, Zili

    2004-09-01

    Investigation results in the present study showed that plant communities took typical concentric circles distribution patterns along habitat gradient from top, slope to interdune on a few large fixed dunes in middle part of Korqin Sandy Land. In order to explain this phenomenon, analysis of water content and its spatial heterogeneity in sand layers on different locations of dunes was conducted. In these dunes, water contents in sand layers of the tops were lower than those of the slopes; both of them were lower than those of the interdunes. According to the results of geostatistics analysis, whether shifting dune or fixed dune, spatial heterogeneity of water contents in sand layers took on regular changes, such as ratios between nugget and sill and ranges reduced gradually, fractal dimension increased gradually, the regular changes of these parameters indicated that random spatial heterogeneity reduced gradually, and autocorrelation spatial heterogeneity increased gradually from the top, the slope to the interdune. The regular changes of water contents in sand layers and their spatial heterogeneity of different locations of the dunes, thus, might be an important cause resulted in the formation of the concentric circles patterns of the plant communities on these fixed dunes.

  16. Building block extraction and classification by means of aerial images fused with super-resolution reconstructed elevation data

    NASA Astrophysics Data System (ADS)

    Panagiotopoulou, Antigoni; Bratsolis, Emmanuel; Charou, Eleni; Perantonis, Stavros

    2017-10-01

    The detailed three-dimensional modeling of buildings utilizing elevation data, such as those provided by light detection and ranging (LiDAR) airborne scanners, is increasingly demanded today. There are certain application requirements and available datasets to which any research effort has to be adapted. Our dataset includes aerial orthophotos, with a spatial resolution 20 cm, and a digital surface model generated from LiDAR, with a spatial resolution 1 m and an elevation resolution 20 cm, from an area of Athens, Greece. The aerial images are fused with LiDAR, and we classify these data with a multilayer feedforward neural network for building block extraction. The innovation of our approach lies in the preprocessing step in which the original LiDAR data are super-resolution (SR) reconstructed by means of a stochastic regularized technique before their fusion with the aerial images takes place. The Lorentzian estimator combined with the bilateral total variation regularization performs the SR reconstruction. We evaluate the performance of our approach against that of fusing unprocessed LiDAR data with aerial images. We present the classified images and the statistical measures confusion matrix, kappa coefficient, and overall accuracy. The results demonstrate that our approach predominates over that of fusing unprocessed LiDAR data with aerial images.

  17. A novel scatter-matrix eigenvalues-based total variation (SMETV) regularization for medical image restoration

    NASA Astrophysics Data System (ADS)

    Huang, Zhenghua; Zhang, Tianxu; Deng, Lihua; Fang, Hao; Li, Qian

    2015-12-01

    Total variation(TV) based on regularization has been proven as a popular and effective model for image restoration, because of its ability of edge preserved. However, as the TV favors a piece-wise constant solution, the processing results in the flat regions of the image are easily produced "staircase effects", and the amplitude of the edges will be underestimated; the underlying cause of the problem is that the regularization parameter can not be changeable with spatial local information of image. In this paper, we propose a novel Scatter-matrix eigenvalues-based TV(SMETV) regularization with image blind restoration algorithm for deblurring medical images. The spatial information in different image regions is incorporated into regularization by using the edge indicator called difference eigenvalue to distinguish edges from flat areas. The proposed algorithm can effectively reduce the noise in flat regions as well as preserve the edge and detailed information. Moreover, it becomes more robust with the change of the regularization parameter. Extensive experiments demonstrate that the proposed approach produces results superior to most methods in both visual image quality and quantitative measures.

  18. Discrete Regularization for Calibration of Geologic Facies Against Dynamic Flow Data

    NASA Astrophysics Data System (ADS)

    Khaninezhad, Mohammad-Reza; Golmohammadi, Azarang; Jafarpour, Behnam

    2018-04-01

    Subsurface flow model calibration involves many more unknowns than measurements, leading to ill-posed problems with nonunique solutions. To alleviate nonuniqueness, the problem is regularized by constraining the solution space using prior knowledge. In certain sedimentary environments, such as fluvial systems, the contrast in hydraulic properties of different facies types tends to dominate the flow and transport behavior, making the effect of within facies heterogeneity less significant. Hence, flow model calibration in those formations reduces to delineating the spatial structure and connectivity of different lithofacies types and their boundaries. A major difficulty in calibrating such models is honoring the discrete, or piecewise constant, nature of facies distribution. The problem becomes more challenging when complex spatial connectivity patterns with higher-order statistics are involved. This paper introduces a novel formulation for calibration of complex geologic facies by imposing appropriate constraints to recover plausible solutions that honor the spatial connectivity and discreteness of facies models. To incorporate prior connectivity patterns, plausible geologic features are learned from available training models. This is achieved by learning spatial patterns from training data, e.g., k-SVD sparse learning or the traditional Principal Component Analysis. Discrete regularization is introduced as a penalty functions to impose solution discreteness while minimizing the mismatch between observed and predicted data. An efficient gradient-based alternating directions algorithm is combined with variable splitting to minimize the resulting regularized nonlinear least squares objective function. Numerical results show that imposing learned facies connectivity and discreteness as regularization functions leads to geologically consistent solutions that improve facies calibration quality.

  19. Spatially adapted second-order total generalized variational image deblurring model under impulse noise

    NASA Astrophysics Data System (ADS)

    Zhong, Qiu-Xiang; Wu, Chuan-Sheng; Shu, Qiao-Ling; Liu, Ryan Wen

    2018-04-01

    Image deblurring under impulse noise is a typical ill-posed problem which requires regularization methods to guarantee high-quality imaging. L1-norm data-fidelity term and total variation (TV) regularizer have been combined to contribute the popular regularization method. However, the TV-regularized variational image deblurring model often suffers from the staircase-like artifacts leading to image quality degradation. To enhance image quality, the detailpreserving total generalized variation (TGV) was introduced to replace TV to eliminate the undesirable artifacts. The resulting nonconvex optimization problem was effectively solved using the alternating direction method of multipliers (ADMM). In addition, an automatic method for selecting spatially adapted regularization parameters was proposed to further improve deblurring performance. Our proposed image deblurring framework is able to remove blurring and impulse noise effects while maintaining the image edge details. Comprehensive experiments have been conducted to demonstrate the superior performance of our proposed method over several state-of-the-art image deblurring methods.

  20. Production of Supra-regular Spatial Sequences by Macaque Monkeys.

    PubMed

    Jiang, Xinjian; Long, Tenghai; Cao, Weicong; Li, Junru; Dehaene, Stanislas; Wang, Liping

    2018-06-18

    Understanding and producing embedded sequences in language, music, or mathematics, is a central characteristic of our species. These domains are hypothesized to involve a human-specific competence for supra-regular grammars, which can generate embedded sequences that go beyond the regular sequences engendered by finite-state automata. However, is this capacity truly unique to humans? Using a production task, we show that macaque monkeys can be trained to produce time-symmetrical embedded spatial sequences whose formal description requires supra-regular grammars or, equivalently, a push-down stack automaton. Monkeys spontaneously generalized the learned grammar to novel sequences, including longer ones, and could generate hierarchical sequences formed by an embedding of two levels of abstract rules. Compared to monkeys, however, preschool children learned the grammars much faster using a chunking strategy. While supra-regular grammars are accessible to nonhuman primates through extensive training, human uniqueness may lie in the speed and learning strategy with which they are acquired. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Luminance cues constrain chromatic blur discrimination in natural scene stimuli.

    PubMed

    Sharman, Rebecca J; McGraw, Paul V; Peirce, Jonathan W

    2013-03-22

    Introducing blur into the color components of a natural scene has very little effect on its percept, whereas blur introduced into the luminance component is very noticeable. Here we quantify the dominance of luminance information in blur detection and examine a number of potential causes. We show that the interaction between chromatic and luminance information is not explained by reduced acuity or spatial resolution limitations for chromatic cues, the effective contrast of the luminance cue, or chromatic and achromatic statistical regularities in the images. Regardless of the quality of chromatic information, the visual system gives primacy to luminance signals when determining edge location. In natural viewing, luminance information appears to be specialized for detecting object boundaries while chromatic information may be used to determine surface properties.

  2. A New Pansharpening Method Based on Spatial and Spectral Sparsity Priors.

    PubMed

    He, Xiyan; Condat, Laurent; Bioucas-Diaz, Jose; Chanussot, Jocelyn; Xia, Junshi

    2014-06-27

    The development of multisensor systems in recent years has led to great increase in the amount of available remote sensing data. Image fusion techniques aim at inferring high quality images of a given area from degraded versions of the same area obtained by multiple sensors. This paper focuses on pansharpening, which is the inference of a high spatial resolution multispectral image from two degraded versions with complementary spectral and spatial resolution characteristics: a) a low spatial resolution multispectral image; and b) a high spatial resolution panchromatic image. We introduce a new variational model based on spatial and spectral sparsity priors for the fusion. In the spectral domain we encourage low-rank structure, whereas in the spatial domain we promote sparsity on the local differences. Given the fact that both panchromatic and multispectral images are integrations of the underlying continuous spectra using different channel responses, we propose to exploit appropriate regularizations based on both spatial and spectral links between panchromatic and the fused multispectral images. A weighted version of the vector Total Variation (TV) norm of the data matrix is employed to align the spatial information of the fused image with that of the panchromatic image. With regard to spectral information, two different types of regularization are proposed to promote a soft constraint on the linear dependence between the panchromatic and the fused multispectral images. The first one estimates directly the linear coefficients from the observed panchromatic and low resolution multispectral images by Linear Regression (LR) while the second one employs the Principal Component Pursuit (PCP) to obtain a robust recovery of the underlying low-rank structure. We also show that the two regularizers are strongly related. The basic idea of both regularizers is that the fused image should have low-rank and preserve edge locations. We use a variation of the recently proposed Split Augmented Lagrangian Shrinkage (SALSA) algorithm to effectively solve the proposed variational formulations. Experimental results on simulated and real remote sensing images show the effectiveness of the proposed pansharpening method compared to the state-of-the-art.

  3. Cortical dipole imaging using truncated total least squares considering transfer matrix error.

    PubMed

    Hori, Junichi; Takeuchi, Kosuke

    2013-01-01

    Cortical dipole imaging has been proposed as a method to visualize electroencephalogram in high spatial resolution. We investigated the inverse technique of cortical dipole imaging using a truncated total least squares (TTLS). The TTLS is a regularization technique to reduce the influence from both the measurement noise and the transfer matrix error caused by the head model distortion. The estimation of the regularization parameter was also investigated based on L-curve. The computer simulation suggested that the estimation accuracy was improved by the TTLS compared with Tikhonov regularization. The proposed method was applied to human experimental data of visual evoked potentials. We confirmed the TTLS provided the high spatial resolution of cortical dipole imaging.

  4. A simple homogeneous model for regular and irregular metallic wire media samples

    NASA Astrophysics Data System (ADS)

    Kosulnikov, S. Y.; Mirmoosa, M. S.; Simovski, C. R.

    2018-02-01

    To simplify the solution of electromagnetic problems with wire media samples, it is reasonable to treat them as the samples of a homogeneous material without spatial dispersion. The account of spatial dispersion implies additional boundary conditions and makes the solution of boundary problems difficult especially if the sample is not an infinitely extended layer. Moreover, for a novel type of wire media - arrays of randomly tilted wires - a spatially dispersive model has not been developed. Here, we introduce a simplistic heuristic model of wire media samples shaped as bricks. Our model covers WM of both regularly and irregularly stretched wires.

  5. Selection of regularization parameter for l1-regularized damage detection

    NASA Astrophysics Data System (ADS)

    Hou, Rongrong; Xia, Yong; Bao, Yuequan; Zhou, Xiaoqing

    2018-06-01

    The l1 regularization technique has been developed for structural health monitoring and damage detection through employing the sparsity condition of structural damage. The regularization parameter, which controls the trade-off between data fidelity and solution size of the regularization problem, exerts a crucial effect on the solution. However, the l1 regularization problem has no closed-form solution, and the regularization parameter is usually selected by experience. This study proposes two strategies of selecting the regularization parameter for the l1-regularized damage detection problem. The first method utilizes the residual and solution norms of the optimization problem and ensures that they are both small. The other method is based on the discrepancy principle, which requires that the variance of the discrepancy between the calculated and measured responses is close to the variance of the measurement noise. The two methods are applied to a cantilever beam and a three-story frame. A range of the regularization parameter, rather than one single value, can be determined. When the regularization parameter in this range is selected, the damage can be accurately identified even for multiple damage scenarios. This range also indicates the sensitivity degree of the damage identification problem to the regularization parameter.

  6. Phase separation driven by density-dependent movement: A novel mechanism for ecological patterns.

    PubMed

    Liu, Quan-Xing; Rietkerk, Max; Herman, Peter M J; Piersma, Theunis; Fryxell, John M; van de Koppel, Johan

    2016-12-01

    Many ecosystems develop strikingly regular spatial patterns because of small-scale interactions between organisms, a process generally referred to as spatial self-organization. Self-organized spatial patterns are important determinants of the functioning of ecosystems, promoting the growth and survival of the involved organisms, and affecting the capacity of the organisms to cope with changing environmental conditions. The predominant explanation for self-organized pattern formation is spatial heterogeneity in establishment, growth and mortality, resulting from the self-organization processes. A number of recent studies, however, have revealed that movement of organisms can be an important driving process creating extensive spatial patterning in many ecosystems. Here, we review studies that detail movement-based pattern formation in contrasting ecological settings. Our review highlights that a common principle, where movement of organisms is density-dependent, explains observed spatial regular patterns in all of these studies. This principle, well known to physics as the Cahn-Hilliard principle of phase separation, has so-far remained unrecognized as a general mechanism for self-organized complexity in ecology. Using the examples presented in this paper, we explain how this movement principle can be discerned in ecological settings, and clarify how to test this mechanism experimentally. Our study highlights that animal movement, both in isolation and in unison with other processes, is an important mechanism for regular pattern formation in ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Automated X-ray Flare Detection with GOES, 2003-2017: The Where of the Flare Catalog and Early Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Loftus, K.; Saar, S. H.

    2017-12-01

    NOAA's Space Weather Prediction Center publishes the current definitive public soft X-ray flare catalog, derived using data from the X-ray Sensor (XRS) on the Geostationary Operational Environmental Satellites (GOES) series. However, this flare list has shortcomings for use in scientific analysis. Its detection algorithm has drawbacks (missing smaller flux events and poorly characterizing complex ones), and its event timing is imprecise (peak and end times are frequently marked incorrectly, and hence peak fluxes are underestimated). It also lacks explicit and regular spatial location data. We present a new database, "The Where of the Flare" catalog, which improves upon the precision of NOAA's current version, with more consistent and accurate spatial locations, timings, and peak fluxes. Our catalog also offers several new parameters per flare (e.g. background flux, integrated flux). We use data from the GOES Solar X-ray Imager (SXI) for spatial flare locating. Our detection algorithm is more sensitive to smaller flux events close to the background level and more precisely marks flare start/peak/end times so that integrated flux can be accurately calculated. It also decomposes complex events (with multiple overlapping flares) by constituent peaks. The catalog dates from the operation of the first SXI instrument in 2003 until the present. We give an overview of the detection algorithm's design, review the catalog's features, and discuss preliminary statistical analyses of light curve morphology, complex event decomposition, and integrated flux distribution. The Where of the Flare catalog will be useful in studying X-ray flare statistics and correlating X-ray flare properties with other observations. This work was supported by Contract #8100002705 from Lockheed-Martin to SAO in support of the science of NASA's IRIS mission.

  8. Interobject grouping facilitates visual awareness.

    PubMed

    Stein, Timo; Kaiser, Daniel; Peelen, Marius V

    2015-01-01

    In organizing perception, the human visual system takes advantage of regularities in the visual input to perceptually group related image elements. Simple stimuli that can be perceptually grouped based on physical regularities, for example by forming an illusory contour, have a competitive advantage in entering visual awareness. Here, we show that regularities that arise from the relative positioning of complex, meaningful objects in the visual environment also modulate visual awareness. Using continuous flash suppression, we found that pairs of objects that were positioned according to real-world spatial regularities (e.g., a lamp above a table) accessed awareness more quickly than the same object pairs shown in irregular configurations (e.g., a table above a lamp). This advantage was specific to upright stimuli and abolished by stimulus inversion, meaning that it did not reflect physical stimulus confounds or the grouping of simple image elements. Thus, knowledge of the spatial configuration of objects in the environment shapes the contents of conscious perception.

  9. Enhancing Children's Spatial and Numerical Skills through a Dynamic Spatial Approach to Early Geometry Instruction: Effects of a 32-Week Intervention

    ERIC Educational Resources Information Center

    Hawes, Zachary; Moss, Joan; Caswell, Beverly; Naqvi, Sarah; MacKinnon, Sharla

    2017-01-01

    This study describes the implementation and effects of a 32-week teacher-led spatial reasoning intervention in K-2 classrooms. The intervention targeted spatial visualization skills as an integrated feature of regular mathematics instruction. Compared to an active control group, children in the spatial intervention demonstrated gains in spatial…

  10. The Effects of Geography and Spatial Behavior on Health Care Utilization among the Residents of a Rural Region

    PubMed Central

    Arcury, Thomas A; Gesler, Wilbert M; Preisser, John S; Sherman, Jill; Spencer, John; Perin, Jamie

    2005-01-01

    Objective This analysis determines the importance of geography and spatial behavior as predisposing and enabling factors in rural health care utilization, controlling for demographic, social, cultural, and health status factors. Data Sources A survey of 1,059 adults in 12 rural Appalachian North Carolina counties. Study Design This cross-sectional study used a three-stage sampling design stratified by county and ethnicity. Preliminary analysis of health services utilization compared weighted proportions of number of health care visits in the previous 12 months for regular check-up care, chronic care, and acute care across geographic, sociodemographic, cultural, and health variables. Multivariable logistic models identified independent correlates of health services utilization. Data Collection Methods Respondents answered standard survey questions. They located places in which they engaged health related and normal day-to-day activities; these data were entered into a geographic information system for analysis. Principal Findings Several geographic and spatial behavior factors, including having a driver's license, use of provided rides, and distance for regular care, were significantly related to health care utilization for regular check-up and chronic care in the bivariate analysis. In the multivariate model, having a driver's license and distance for regular care remained significant, as did several predisposing (age, gender, ethnicity), enabling (household income), and need (physical and mental health measures, number of conditions). Geographic measures, as predisposing and enabling factors, were related to regular check-up and chronic care, but not to acute care visits. Conclusions These results show the importance of geographic and spatial behavior factors in rural health care utilization. They also indicate continuing inequity in rural health care utilization that must be addressed in public policy. PMID:15663706

  11. From regular text to artistic writing and artworks: Fourier statistics of images with low and high aesthetic appeal

    PubMed Central

    Melmer, Tamara; Amirshahi, Seyed A.; Koch, Michael; Denzler, Joachim; Redies, Christoph

    2013-01-01

    The spatial characteristics of letters and their influence on readability and letter identification have been intensely studied during the last decades. There have been few studies, however, on statistical image properties that reflect more global aspects of text, for example properties that may relate to its aesthetic appeal. It has been shown that natural scenes and a large variety of visual artworks possess a scale-invariant Fourier power spectrum that falls off linearly with increasing frequency in log-log plots. We asked whether images of text share this property. As expected, the Fourier spectrum of images of regular typed or handwritten text is highly anisotropic, i.e., the spectral image properties in vertical, horizontal, and oblique orientations differ. Moreover, the spatial frequency spectra of text images are not scale-invariant in any direction. The decline is shallower in the low-frequency part of the spectrum for text than for aesthetic artworks, whereas, in the high-frequency part, it is steeper. These results indicate that, in general, images of regular text contain less global structure (low spatial frequencies) relative to fine detail (high spatial frequencies) than images of aesthetics artworks. Moreover, we studied images of text with artistic claim (ornate print and calligraphy) and ornamental art. For some measures, these images assume average values intermediate between regular text and aesthetic artworks. Finally, to answer the question of whether the statistical properties measured by us are universal amongst humans or are subject to intercultural differences, we compared images from three different cultural backgrounds (Western, East Asian, and Arabic). Results for different categories (regular text, aesthetic writing, ornamental art, and fine art) were similar across cultures. PMID:23554592

  12. The effect of regularization in motion compensated PET image reconstruction: a realistic numerical 4D simulation study.

    PubMed

    Tsoumpas, C; Polycarpou, I; Thielemans, K; Buerger, C; King, A P; Schaeffter, T; Marsden, P K

    2013-03-21

    Following continuous improvement in PET spatial resolution, respiratory motion correction has become an important task. Two of the most common approaches that utilize all detected PET events to motion-correct PET data are the reconstruct-transform-average method (RTA) and motion-compensated image reconstruction (MCIR). In RTA, separate images are reconstructed for each respiratory frame, subsequently transformed to one reference frame and finally averaged to produce a motion-corrected image. In MCIR, the projection data from all frames are reconstructed by including motion information in the system matrix so that a motion-corrected image is reconstructed directly. Previous theoretical analyses have explained why MCIR is expected to outperform RTA. It has been suggested that MCIR creates less noise than RTA because the images for each separate respiratory frame will be severely affected by noise. However, recent investigations have shown that in the unregularized case RTA images can have fewer noise artefacts, while MCIR images are more quantitatively accurate but have the common salt-and-pepper noise. In this paper, we perform a realistic numerical 4D simulation study to compare the advantages gained by including regularization within reconstruction for RTA and MCIR, in particular using the median-root-prior incorporated in the ordered subsets maximum a posteriori one-step-late algorithm. In this investigation we have demonstrated that MCIR with proper regularization parameters reconstructs lesions with less bias and root mean square error and similar CNR and standard deviation to regularized RTA. This finding is reproducible for a variety of noise levels (25, 50, 100 million counts), lesion sizes (8 mm, 14 mm diameter) and iterations. Nevertheless, regularized RTA can also be a practical solution for motion compensation as a proper level of regularization reduces both bias and mean square error.

  13. Improvements in GRACE Gravity Fields Using Regularization

    NASA Astrophysics Data System (ADS)

    Save, H.; Bettadpur, S.; Tapley, B. D.

    2008-12-01

    The unconstrained global gravity field models derived from GRACE are susceptible to systematic errors that show up as broad "stripes" aligned in a North-South direction on the global maps of mass flux. These errors are believed to be a consequence of both systematic and random errors in the data that are amplified by the nature of the gravity field inverse problem. These errors impede scientific exploitation of the GRACE data products, and limit the realizable spatial resolution of the GRACE global gravity fields in certain regions. We use regularization techniques to reduce these "stripe" errors in the gravity field products. The regularization criteria are designed such that there is no attenuation of the signal and that the solutions fit the observations as well as an unconstrained solution. We have used a computationally inexpensive method, normally referred to as "L-ribbon", to find the regularization parameter. This paper discusses the characteristics and statistics of a 5-year time-series of regularized gravity field solutions. The solutions show markedly reduced stripes, are of uniformly good quality over time, and leave little or no systematic observation residuals, which is a frequent consequence of signal suppression from regularization. Up to degree 14, the signal in regularized solution shows correlation greater than 0.8 with the un-regularized CSR Release-04 solutions. Signals from large-amplitude and small-spatial extent events - such as the Great Sumatra Andaman Earthquake of 2004 - are visible in the global solutions without using special post-facto error reduction techniques employed previously in the literature. Hydrological signals as small as 5 cm water-layer equivalent in the small river basins, like Indus and Nile for example, are clearly evident, in contrast to noisy estimates from RL04. The residual variability over the oceans relative to a seasonal fit is small except at higher latitudes, and is evident without the need for de-striping or spatial smoothing.

  14. Temporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction

    PubMed Central

    Kazantsev, Daniil; Guo, Enyu; Kaestner, Anders; Lionheart, William R. B.; Bent, Julian; Withers, Philip J.; Lee, Peter D.

    2016-01-01

    X-ray imaging applications in medical and material sciences are frequently limited by the number of tomographic projections collected. The inversion of the limited projection data is an ill-posed problem and needs regularization. Traditional spatial regularization is not well adapted to the dynamic nature of time-lapse tomography since it discards the redundancy of the temporal information. In this paper, we propose a novel iterative reconstruction algorithm with a nonlocal regularization term to account for time-evolving datasets. The aim of the proposed nonlocal penalty is to collect the maximum relevant information in the spatial and temporal domains. With the proposed sparsity seeking approach in the temporal space, the computational complexity of the classical nonlocal regularizer is substantially reduced (at least by one order of magnitude). The presented reconstruction method can be directly applied to various big data 4D (x, y, z+time) tomographic experiments in many fields. We apply the proposed technique to modelled data and to real dynamic X-ray microtomography (XMT) data of high resolution. Compared to the classical spatio-temporal nonlocal regularization approach, the proposed method delivers reconstructed images of improved resolution and higher contrast while remaining significantly less computationally demanding. PMID:27002902

  15. Automatic Constraint Detection for 2D Layout Regularization.

    PubMed

    Jiang, Haiyong; Nan, Liangliang; Yan, Dong-Ming; Dong, Weiming; Zhang, Xiaopeng; Wonka, Peter

    2016-08-01

    In this paper, we address the problem of constraint detection for layout regularization. The layout we consider is a set of two-dimensional elements where each element is represented by its bounding box. Layout regularization is important in digitizing plans or images, such as floor plans and facade images, and in the improvement of user-created contents, such as architectural drawings and slide layouts. To regularize a layout, we aim to improve the input by detecting and subsequently enforcing alignment, size, and distance constraints between layout elements. Similar to previous work, we formulate layout regularization as a quadratic programming problem. In addition, we propose a novel optimization algorithm that automatically detects constraints. We evaluate the proposed framework using a variety of input layouts from different applications. Our results demonstrate that our method has superior performance to the state of the art.

  16. Regularized Filters for L1-Norm-Based Common Spatial Patterns.

    PubMed

    Wang, Haixian; Li, Xiaomeng

    2016-02-01

    The l1 -norm-based common spatial patterns (CSP-L1) approach is a recently developed technique for optimizing spatial filters in the field of electroencephalogram (EEG)-based brain computer interfaces. The l1 -norm-based expression of dispersion in CSP-L1 alleviates the negative impact of outliers. In this paper, we further improve the robustness of CSP-L1 by taking into account noise which does not necessarily have as large a deviation as with outliers. The noise modelling is formulated by using the waveform length of the EEG time course. With the noise modelling, we then regularize the objective function of CSP-L1, in which the l1-norm is used in two folds: one is the dispersion and the other is the waveform length. An iterative algorithm is designed to resolve the optimization problem of the regularized objective function. A toy illustration and the experiments of classification on real EEG data sets show the effectiveness of the proposed method.

  17. Movement patterns of silvertip sharks ( Carcharhinus albimarginatus) on coral reefs

    NASA Astrophysics Data System (ADS)

    Espinoza, Mario; Heupel, Michelle. R.; Tobin, Andrew J.; Simpfendorfer, Colin A.

    2015-09-01

    Understanding how sharks use coral reefs is essential for assessing risk of exposure to fisheries, habitat loss, and climate change. Despite a wide Indo-Pacific distribution, little is known about the spatial ecology of silvertip sharks ( Carcharhinus albimarginatus), compromising the ability to effectively manage their populations. We examined the residency and movements of silvertip sharks in the central Great Barrier Reef (GBR). An array of 56 VR2W acoustic receivers was used to monitor shark movements on 17 semi-isolated reefs. Twenty-seven individuals tagged with acoustic transmitters were monitored from 70 to 731 d. Residency index to the study site ranged from 0.05 to 0.97, with a mean residency (±SD) of 0.57 ± 0.26, but most individuals were detected at or near their tagging reef. Clear seasonal patterns were apparent, with fewer individuals detected between September and February. A large proportion of the tagged population (>71 %) moved regularly between reefs. Silvertip sharks were detected less during daytime and exhibited a strong diel pattern in depth use, which may be a strategy for optimizing energetic budgets and foraging opportunities. This study provides the first detailed examination of the spatial ecology and behavior of silvertip sharks on coral reefs. Silvertip sharks remained resident at coral reef habitats over long periods, but our results also suggest this species may have more complex movement patterns and use larger areas of the GBR than common reef shark species. Our findings highlight the need to further understand the movement ecology of silvertip sharks at different spatial and temporal scales, which is critical for developing effective management approaches.

  18. Damage identification method for continuous girder bridges based on spatially-distributed long-gauge strain sensing under moving loads

    NASA Astrophysics Data System (ADS)

    Wu, Bitao; Wu, Gang; Yang, Caiqian; He, Yi

    2018-05-01

    A novel damage identification method for concrete continuous girder bridges based on spatially-distributed long-gauge strain sensing is presented in this paper. First, the variation regularity of the long-gauge strain influence line of continuous girder bridges which changes with the location of vehicles on the bridge is studied. According to this variation regularity, a calculation method for the distribution regularity of the area of long-gauge strain history is investigated. Second, a numerical simulation of damage identification based on the distribution regularity of the area of long-gauge strain history is conducted, and the results indicate that this method is effective for identifying damage and is not affected by the speed, axle number and weight of vehicles. Finally, a real bridge test on a highway is conducted, and the experimental results also show that this method is very effective for identifying damage in continuous girder bridges, and the local element stiffness distribution regularity can be revealed at the same time. This identified information is useful for maintaining of continuous girder bridges on highways.

  19. Spatial Analysis of “Crazy Quilts”, a Class of Potentially Random Aesthetic Artefacts

    PubMed Central

    Westphal-Fitch, Gesche; Fitch, W. Tecumseh

    2013-01-01

    Human artefacts in general are highly structured and often display ordering principles such as translational, reflectional or rotational symmetry. In contrast, human artefacts that are intended to appear random and non symmetrical are very rare. Furthermore, many studies show that humans find it extremely difficult to recognize or reproduce truly random patterns or sequences. Here, we attempt to model two-dimensional decorative spatial patterns produced by humans that show no obvious order. “Crazy quilts” represent a historically important style of quilt making that became popular in the 1870s, and lasted about 50 years. Crazy quilts are unusual because unlike most human artefacts, they are specifically intended to appear haphazard and unstructured. We evaluate the degree to which this intention was achieved by using statistical techniques of spatial point pattern analysis to compare crazy quilts with regular quilts from the same region and era and to evaluate the fit of various random distributions to these two quilt classes. We found that the two quilt categories exhibit fundamentally different spatial characteristics: The patch areas of crazy quilts derive from a continuous random distribution, while area distributions of regular quilts consist of Gaussian mixtures. These Gaussian mixtures derive from regular pattern motifs that are repeated and we suggest that such a mixture is a distinctive signature of human-made visual patterns. In contrast, the distribution found in crazy quilts is shared with many other naturally occurring spatial patterns. Centroids of patches in the two quilt classes are spaced differently and in general, crazy quilts but not regular quilts are well-fitted by a random Strauss process. These results indicate that, within the constraints of the quilt format, Victorian quilters indeed achieved their goal of generating random structures. PMID:24066095

  20. Spatial analysis of "crazy quilts", a class of potentially random aesthetic artefacts.

    PubMed

    Westphal-Fitch, Gesche; Fitch, W Tecumseh

    2013-01-01

    Human artefacts in general are highly structured and often display ordering principles such as translational, reflectional or rotational symmetry. In contrast, human artefacts that are intended to appear random and non symmetrical are very rare. Furthermore, many studies show that humans find it extremely difficult to recognize or reproduce truly random patterns or sequences. Here, we attempt to model two-dimensional decorative spatial patterns produced by humans that show no obvious order. "Crazy quilts" represent a historically important style of quilt making that became popular in the 1870s, and lasted about 50 years. Crazy quilts are unusual because unlike most human artefacts, they are specifically intended to appear haphazard and unstructured. We evaluate the degree to which this intention was achieved by using statistical techniques of spatial point pattern analysis to compare crazy quilts with regular quilts from the same region and era and to evaluate the fit of various random distributions to these two quilt classes. We found that the two quilt categories exhibit fundamentally different spatial characteristics: The patch areas of crazy quilts derive from a continuous random distribution, while area distributions of regular quilts consist of Gaussian mixtures. These Gaussian mixtures derive from regular pattern motifs that are repeated and we suggest that such a mixture is a distinctive signature of human-made visual patterns. In contrast, the distribution found in crazy quilts is shared with many other naturally occurring spatial patterns. Centroids of patches in the two quilt classes are spaced differently and in general, crazy quilts but not regular quilts are well-fitted by a random Strauss process. These results indicate that, within the constraints of the quilt format, Victorian quilters indeed achieved their goal of generating random structures.

  1. Spatially patterned matrix elasticity directs stem cell fate

    NASA Astrophysics Data System (ADS)

    Yang, Chun; DelRio, Frank W.; Ma, Hao; Killaars, Anouk R.; Basta, Lena P.; Kyburz, Kyle A.; Anseth, Kristi S.

    2016-08-01

    There is a growing appreciation for the functional role of matrix mechanics in regulating stem cell self-renewal and differentiation processes. However, it is largely unknown how subcellular, spatial mechanical variations in the local extracellular environment mediate intracellular signal transduction and direct cell fate. Here, the effect of spatial distribution, magnitude, and organization of subcellular matrix mechanical properties on human mesenchymal stem cell (hMSCs) function was investigated. Exploiting a photodegradation reaction, a hydrogel cell culture substrate was fabricated with regions of spatially varied and distinct mechanical properties, which were subsequently mapped and quantified by atomic force microscopy (AFM). The variations in the underlying matrix mechanics were found to regulate cellular adhesion and transcriptional events. Highly spread, elongated morphologies and higher Yes-associated protein (YAP) activation were observed in hMSCs seeded on hydrogels with higher concentrations of stiff regions in a dose-dependent manner. However, when the spatial organization of the mechanically stiff regions was altered from a regular to randomized pattern, lower levels of YAP activation with smaller and more rounded cell morphologies were induced in hMSCs. We infer from these results that irregular, disorganized variations in matrix mechanics, compared with regular patterns, appear to disrupt actin organization, and lead to different cell fates; this was verified by observations of lower alkaline phosphatase (ALP) activity and higher expression of CD105, a stem cell marker, in hMSCs in random versus regular patterns of mechanical properties. Collectively, this material platform has allowed innovative experiments to elucidate a novel spatial mechanical dosing mechanism that correlates to both the magnitude and organization of spatial stiffness.

  2. Analyzing linear spatial features in ecology.

    PubMed

    Buettel, Jessie C; Cole, Andrew; Dickey, John M; Brook, Barry W

    2018-06-01

    The spatial analysis of dimensionless points (e.g., tree locations on a plot map) is common in ecology, for instance using point-process statistics to detect and compare patterns. However, the treatment of one-dimensional linear features (fiber processes) is rarely attempted. Here we appropriate the methods of vector sums and dot products, used regularly in fields like astrophysics, to analyze a data set of mapped linear features (logs) measured in 12 × 1-ha forest plots. For this demonstrative case study, we ask two deceptively simple questions: do trees tend to fall downhill, and if so, does slope gradient matter? Despite noisy data and many potential confounders, we show clearly that topography (slope direction and steepness) of forest plots does matter to treefall. More generally, these results underscore the value of mathematical methods of physics to problems in the spatial analysis of linear features, and the opportunities that interdisciplinary collaboration provides. This work provides scope for a variety of future ecological analyzes of fiber processes in space. © 2018 by the Ecological Society of America.

  3. Spatial-Spectral Approaches to Edge Detection in Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Cox, Cary M.

    This dissertation advances geoinformation science at the intersection of hyperspectral remote sensing and edge detection methods. A relatively new phenomenology among its remote sensing peers, hyperspectral imagery (HSI) comprises only about 7% of all remote sensing research - there are five times as many radar-focused peer reviewed journal articles than hyperspectral-focused peer reviewed journal articles. Similarly, edge detection studies comprise only about 8% of image processing research, most of which is dedicated to image processing techniques most closely associated with end results, such as image classification and feature extraction. Given the centrality of edge detection to mapping, that most important of geographic functions, improving the collective understanding of hyperspectral imagery edge detection methods constitutes a research objective aligned to the heart of geoinformation sciences. Consequently, this dissertation endeavors to narrow the HSI edge detection research gap by advancing three HSI edge detection methods designed to leverage HSI's unique chemical identification capabilities in pursuit of generating accurate, high-quality edge planes. The Di Zenzo-based gradient edge detection algorithm, an innovative version of the Resmini HySPADE edge detection algorithm and a level set-based edge detection algorithm are tested against 15 traditional and non-traditional HSI datasets spanning a range of HSI data configurations, spectral resolutions, spatial resolutions, bandpasses and applications. This study empirically measures algorithm performance against Dr. John Canny's six criteria for a good edge operator: false positives, false negatives, localization, single-point response, robustness to noise and unbroken edges. The end state is a suite of spatial-spectral edge detection algorithms that produce satisfactory edge results against a range of hyperspectral data types applicable to a diverse set of earth remote sensing applications. This work also explores the concept of an edge within hyperspectral space, the relative importance of spatial and spectral resolutions as they pertain to HSI edge detection and how effectively compressed HSI data improves edge detection results. The HSI edge detection experiments yielded valuable insights into the algorithms' strengths, weaknesses and optimal alignment to remote sensing applications. The gradient-based edge operator produced strong edge planes across a range of evaluation measures and applications, particularly with respect to false negatives, unbroken edges, urban mapping, vegetation mapping and oil spill mapping applications. False positives and uncompressed HSI data presented occasional challenges to the algorithm. The HySPADE edge operator produced satisfactory results with respect to localization, single-point response, oil spill mapping and trace chemical detection, and was challenged by false positives, declining spectral resolution and vegetation mapping applications. The level set edge detector produced high-quality edge planes for most tests and demonstrated strong performance with respect to false positives, single-point response, oil spill mapping and mineral mapping. False negatives were a regular challenge for the level set edge detection algorithm. Finally, HSI data optimized for spectral information compression and noise was shown to improve edge detection performance across all three algorithms, while the gradient-based algorithm and HySPADE demonstrated significant robustness to declining spectral and spatial resolutions.

  4. Regularization of the Perturbed Spatial Restricted Three-Body Problem by L-Transformations

    NASA Astrophysics Data System (ADS)

    Poleshchikov, S. M.

    2018-03-01

    Equations of motion for the perturbed circular restricted three-body problem have been regularized in canonical variables in a moving coordinate system. Two different L-matrices of the fourth order are used in the regularization. Conditions for generalized symplecticity of the constructed transform have been checked. In the unperturbed case, the regular equations have a polynomial structure. The regular equations have been numerically integrated using the Runge-Kutta-Fehlberg method. The results of numerical experiments are given for the Earth-Moon system parameters taking into account the perturbation of the Sun for different L-matrices.

  5. Regular Topographic Patterning of Karst Depressions Suggests Landscape Self-Organization

    NASA Astrophysics Data System (ADS)

    Quintero, C.; Cohen, M. J.

    2017-12-01

    Thousands of wetland depressions that are commonly host to cypress domes dot the sub-tropical limestone landscape of South Florida. The origin of these depression features has been the topic of debate. Here we build upon the work of previous surveyors of this landscape to analyze the morphology and spatial distribution of depressions on the Big Cypress landscape. We took advantage of the emergence and availability of high resolution Light Direction and Ranging (LiDAR) technology and ArcMap GIS software to analyze the structure and regularity of landscape features with methods unavailable to past surveyors. Six 2.25 km2 LiDAR plots within the preserve were selected for remote analysis and one depression feature within each plot was selected for more intensive sediment and water depth surveying. Depression features on the Big Cypress landscape were found to show strong evidence of regular spatial patterning. Periodicity, a feature of regularly patterned landscapes, is apparent in both Variograms and Radial Spectrum Analyses. Size class distributions of the identified features indicate constrained feature sizes while Average Nearest Neighbor analyses support the inference of dispersed features with non-random spacing. The presence of regular patterning on this landscape strongly implies biotic reinforcement of spatial structure by way of the scale dependent feedback. In characterizing the structure of this wetland landscape we add to the growing body of work dedicated to documenting how water, life and geology may interact to shape the natural landscapes we see today.

  6. Iterative image-domain decomposition for dual-energy CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Tianye; Dong, Xue; Petrongolo, Michael

    2014-04-15

    Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its capability of material decomposition. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical values of DECT. Existing denoising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. In this work, the authors propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm ismore » formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, the authors include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. The regularization term enforces the image smoothness by calculating the square sum of neighboring pixel value differences. To retain the boundary sharpness of the decomposed images, the authors detect the edges in the CT images before decomposition. These edge pixels have small weights in the calculation of the regularization term. Distinct from the existing denoising algorithms applied on the images before or after decomposition, the method has an iterative process for noise suppression, with decomposition performed in each iteration. The authors implement the proposed algorithm using a standard conjugate gradient algorithm. The method performance is evaluated using an evaluation phantom (Catphan©600) and an anthropomorphic head phantom. The results are compared with those generated using direct matrix inversion with no noise suppression, a denoising method applied on the decomposed images, and an existing algorithm with similar formulation as the proposed method but with an edge-preserving regularization term. Results: On the Catphan phantom, the method maintains the same spatial resolution on the decomposed images as that of the CT images before decomposition (8 pairs/cm) while significantly reducing their noise standard deviation. Compared to that obtained by the direct matrix inversion, the noise standard deviation in the images decomposed by the proposed algorithm is reduced by over 98%. Without considering the noise correlation properties in the formulation, the denoising scheme degrades the spatial resolution to 6 pairs/cm for the same level of noise suppression. Compared to the edge-preserving algorithm, the method achieves better low-contrast detectability. A quantitative study is performed on the contrast-rod slice of Catphan phantom. The proposed method achieves lower electron density measurement error as compared to that by the direct matrix inversion, and significantly reduces the error variation by over 97%. On the head phantom, the method reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusions: The authors propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. By exploring the full variance-covariance properties of the decomposed images and utilizing the edge predetection, the proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability.« less

  7. Methodological Caveats in the Detection of Coordinated Replay between Place Cells and Grid Cells

    PubMed Central

    Trimper, John B.; Trettel, Sean G.; Hwaun, Ernie; Colgin, Laura Lee

    2017-01-01

    At rest, hippocampal “place cells,” neurons with receptive fields corresponding to specific spatial locations, reactivate in a manner that reflects recently traveled trajectories. These “replay” events have been proposed as a mechanism underlying memory consolidation, or the transfer of a memory representation from the hippocampus to neocortical regions associated with the original sensory experience. Accordingly, it has been hypothesized that hippocampal replay of a particular experience should be accompanied by simultaneous reactivation of corresponding representations in the neocortex and in the entorhinal cortex, the primary interface between the hippocampus and the neocortex. Recent studies have reported that coordinated replay may occur between hippocampal place cells and medial entorhinal cortex grid cells, cells with multiple spatial receptive fields. Assessing replay in grid cells is problematic, however, as the cells exhibit regularly spaced spatial receptive fields in all environments and, therefore, coordinated replay between place cells and grid cells may be detected by chance. In the present report, we adapted analytical approaches utilized in recent studies of grid cell and place cell replay to determine the extent to which coordinated replay is spuriously detected between grid cells and place cells recorded from separate rats. For a subset of the employed analytical methods, coordinated replay was detected spuriously in a significant proportion of cases in which place cell replay events were randomly matched with grid cell firing epochs of equal duration. More rigorous replay evaluation procedures and minimum spike count requirements greatly reduced the amount of spurious findings. These results provide insights into aspects of place cell and grid cell activity during rest that contribute to false detection of coordinated replay. The results further emphasize the need for careful controls and rigorous methods when testing the hypothesis that place cells and grid cells exhibit coordinated replay. PMID:28824388

  8. Fast Spatial Resolution Analysis of Quadratic Penalized Least-Squares Image Reconstruction With Separate Real and Imaginary Roughness Penalty: Application to fMRI.

    PubMed

    Olafsson, Valur T; Noll, Douglas C; Fessler, Jeffrey A

    2018-02-01

    Penalized least-squares iterative image reconstruction algorithms used for spatial resolution-limited imaging, such as functional magnetic resonance imaging (fMRI), commonly use a quadratic roughness penalty to regularize the reconstructed images. When used for complex-valued images, the conventional roughness penalty regularizes the real and imaginary parts equally. However, these imaging methods sometimes benefit from separate penalties for each part. The spatial smoothness from the roughness penalty on the reconstructed image is dictated by the regularization parameter(s). One method to set the parameter to a desired smoothness level is to evaluate the full width at half maximum of the reconstruction method's local impulse response. Previous work has shown that when using the conventional quadratic roughness penalty, one can approximate the local impulse response using an FFT-based calculation. However, that acceleration method cannot be applied directly for separate real and imaginary regularization. This paper proposes a fast and stable calculation for this case that also uses FFT-based calculations to approximate the local impulse responses of the real and imaginary parts. This approach is demonstrated with a quadratic image reconstruction of fMRI data that uses separate roughness penalties for the real and imaginary parts.

  9. Unsupervised seismic facies analysis with spatial constraints using regularized fuzzy c-means

    NASA Astrophysics Data System (ADS)

    Song, Chengyun; Liu, Zhining; Cai, Hanpeng; Wang, Yaojun; Li, Xingming; Hu, Guangmin

    2017-12-01

    Seismic facies analysis techniques combine classification algorithms and seismic attributes to generate a map that describes main reservoir heterogeneities. However, most of the current classification algorithms only view the seismic attributes as isolated data regardless of their spatial locations, and the resulting map is generally sensitive to noise. In this paper, a regularized fuzzy c-means (RegFCM) algorithm is used for unsupervised seismic facies analysis. Due to the regularized term of the RegFCM algorithm, the data whose adjacent locations belong to same classification will play a more important role in the iterative process than other data. Therefore, this method can reduce the effect of seismic data noise presented in discontinuous regions. The synthetic data with different signal/noise values are used to demonstrate the noise tolerance ability of the RegFCM algorithm. Meanwhile, the fuzzy factor, the neighbour window size and the regularized weight are tested using various values, to provide a reference of how to set these parameters. The new approach is also applied to a real seismic data set from the F3 block of the Netherlands. The results show improved spatial continuity, with clear facies boundaries and channel morphology, which reveals that the method is an effective seismic facies analysis tool.

  10. Regular and Chaotic Spatial Distribution of Bose-Einstein Condensed Atoms in a Ratchet Potential

    NASA Astrophysics Data System (ADS)

    Li, Fei; Xu, Lan; Li, Wenwu

    2018-02-01

    We study the regular and chaotic spatial distribution of Bose-Einstein condensed atoms with a space-dependent nonlinear interaction in a ratchet potential. There exists in the system a space-dependent atomic current that can be tuned via Feshbach resonance technique. In the presence of the space-dependent atomic current and a weak ratchet potential, the Smale-horseshoe chaos is studied and the Melnikov chaotic criterion is obtained. Numerical simulations show that the ratio between the intensities of optical potentials forming the ratchet potential, the wave vector of the laser producing the ratchet potential or the wave vector of the modulating laser can be chosen as the controlling parameters to result in or avoid chaotic spatial distributional states.

  11. Employing temporal self-similarity across the entire time domain in computed tomography reconstruction

    PubMed Central

    Kazantsev, D.; Van Eyndhoven, G.; Lionheart, W. R. B.; Withers, P. J.; Dobson, K. J.; McDonald, S. A.; Atwood, R.; Lee, P. D.

    2015-01-01

    There are many cases where one needs to limit the X-ray dose, or the number of projections, or both, for high frame rate (fast) imaging. Normally, it improves temporal resolution but reduces the spatial resolution of the reconstructed data. Fortunately, the redundancy of information in the temporal domain can be employed to improve spatial resolution. In this paper, we propose a novel regularizer for iterative reconstruction of time-lapse computed tomography. The non-local penalty term is driven by the available prior information and employs all available temporal data to improve the spatial resolution of each individual time frame. A high-resolution prior image from the same or a different imaging modality is used to enhance edges which remain stationary throughout the acquisition time while dynamic features tend to be regularized spatially. Effective computational performance together with robust improvement in spatial and temporal resolution makes the proposed method a competitive tool to state-of-the-art techniques. PMID:25939621

  12. Guidance of Spatial Attention by Incidental Learning and Endogenous Cuing

    ERIC Educational Resources Information Center

    Jiang, Yuhong V.; Swallow, Khena M.; Rosenbaum, Gail M.

    2013-01-01

    Our visual system is highly sensitive to regularities in the environment. Locations that were important in one's previous experience are often prioritized during search, even though observers may not be aware of the learning. In this study we characterized the guidance of spatial attention by incidental learning of a target's spatial probability,…

  13. Assessing the resolution-dependent utility of tomograms for geostatistics

    USGS Publications Warehouse

    Day-Lewis, F. D.; Lane, J.W.

    2004-01-01

    Geophysical tomograms are used increasingly as auxiliary data for geostatistical modeling of aquifer and reservoir properties. The correlation between tomographic estimates and hydrogeologic properties is commonly based on laboratory measurements, co-located measurements at boreholes, or petrophysical models. The inferred correlation is assumed uniform throughout the interwell region; however, tomographic resolution varies spatially due to acquisition geometry, regularization, data error, and the physics underlying the geophysical measurements. Blurring and inversion artifacts are expected in regions traversed by few or only low-angle raypaths. In the context of radar traveltime tomography, we derive analytical models for (1) the variance of tomographic estimates, (2) the spatially variable correlation with a hydrologic parameter of interest, and (3) the spatial covariance of tomographic estimates. Synthetic examples demonstrate that tomograms of qualitative value may have limited utility for geostatistics; moreover, the imprint of regularization may preclude inference of meaningful spatial statistics from tomograms.

  14. Image processing for quantifying fracture orientation and length scale transitions during brittle deformation

    NASA Astrophysics Data System (ADS)

    Rizzo, R. E.; Healy, D.; Farrell, N. J.

    2017-12-01

    We have implemented a novel image processing tool, namely two-dimensional (2D) Morlet wavelet analysis, capable of detecting changes occurring in fracture patterns at different scales of observation, and able of recognising the dominant fracture orientations and the spatial configurations for progressively larger (or smaller) scale of analysis. Because of its inherited anisotropy, the Morlet wavelet is proved to be an excellent choice for detecting directional linear features, i.e. regions where the amplitude of the signal is regular along one direction and has sharp variation along the perpendicular direction. Performances of the Morlet wavelet are tested against the 'classic' Mexican hat wavelet, deploying a complex synthetic fracture network. When applied to a natural fracture network, formed triaxially (σ1>σ2=σ3) deforming a core sample of the Hopeman sandstone, the combination of 2D Morlet wavelet and wavelet coefficient maps allows for the detection of characteristic scale orientation and length transitions, associated with the shifts from distributed damage to the growth of localised macroscopic shear fracture. A complementary outcome arises from the wavelet coefficient maps produced by increasing the wavelet scale parameter. These maps can be used to chart the variations in the spatial distribution of the analysed entities, meaning that it is possible to retrieve information on the density of fracture patterns at specific length scales during deformation.

  15. a Preliminary Study of Web-Based Spatial Data Analysis Feasibility - One of Possible Solutions for Disaster Response and Management

    NASA Astrophysics Data System (ADS)

    Lim, C. C.; Chang, K.-C.

    2012-07-01

    As the massive tsunami that struck northeast Japan in 11 March 2011 after a magnitude 9.0 earthquake, it reveals that people are living in a critical environment. Although great improvement has been achieved in disaster prevention technologies, many natural disasters are still unpredictable. In addition to the prevention, rapid and effective responses to such disasters are also crucial. One of the key elements to success is the information dissemination of disaster, including both area and people living within that region. In the past decade, web-based spatial information system has become the major platform for both data sharing and displaying. What is coming next is the development of web-based spatial data analysis. A web-based service allows people to implement spatial analysis immediately as long as the internet connection among database and application servers is available. This useful and helpful spatial information is able to be accessed by all users around the world almost simultaneously. The main goal of this paper is to implement a spatial data analysis module based on service oriented architecture (SOA) concept. The main interest and focus of our study is based on the knowledge regularization processes of spatial data analysis to achieve the automated land cover change detection (LCCD) over internet. The proposed automated model is tested and verified by FORMOSAT-2 imageries taken in 2005 and in 2008. It will be published online for users around the world to maximize the add-on value and minimize the cost of the spatial data, moreover, to reveal the situations of disaster rapidly.

  16. Direct Reconstruction of CT-Based Attenuation Correction Images for PET With Cluster-Based Penalties

    NASA Astrophysics Data System (ADS)

    Kim, Soo Mee; Alessio, Adam M.; De Man, Bruno; Kinahan, Paul E.

    2017-03-01

    Extremely low-dose (LD) CT acquisitions used for PET attenuation correction have high levels of noise and potential bias artifacts due to photon starvation. This paper explores the use of a priori knowledge for iterative image reconstruction of the CT-based attenuation map. We investigate a maximum a posteriori framework with cluster-based multinomial penalty for direct iterative coordinate decent (dICD) reconstruction of the PET attenuation map. The objective function for direct iterative attenuation map reconstruction used a Poisson log-likelihood data fit term and evaluated two image penalty terms of spatial and mixture distributions. The spatial regularization is based on a quadratic penalty. For the mixture penalty, we assumed that the attenuation map may consist of four material clusters: air + background, lung, soft tissue, and bone. Using simulated noisy sinogram data, dICD reconstruction was performed with different strengths of the spatial and mixture penalties. The combined spatial and mixture penalties reduced the root mean squared error (RMSE) by roughly two times compared with a weighted least square and filtered backprojection reconstruction of CT images. The combined spatial and mixture penalties resulted in only slightly lower RMSE compared with a spatial quadratic penalty alone. For direct PET attenuation map reconstruction from ultra-LD CT acquisitions, the combination of spatial and mixture penalties offers regularization of both variance and bias and is a potential method to reconstruct attenuation maps with negligible patient dose. The presented results, using a best-case histogram suggest that the mixture penalty does not offer a substantive benefit over conventional quadratic regularization and diminishes enthusiasm for exploring future application of the mixture penalty.

  17. Towards Monitoring Biodiversity in Amazonian Forests: How Regular Samples Capture Meso-Scale Altitudinal Variation in 25 km2 Plots

    PubMed Central

    Norris, Darren; Fortin, Marie-Josée; Magnusson, William E.

    2014-01-01

    Background Ecological monitoring and sampling optima are context and location specific. Novel applications (e.g. biodiversity monitoring for environmental service payments) call for renewed efforts to establish reliable and robust monitoring in biodiversity rich areas. As there is little information on the distribution of biodiversity across the Amazon basin, we used altitude as a proxy for biological variables to test whether meso-scale variation can be adequately represented by different sample sizes in a standardized, regular-coverage sampling arrangement. Methodology/Principal Findings We used Shuttle-Radar-Topography-Mission digital elevation values to evaluate if the regular sampling arrangement in standard RAPELD (rapid assessments (“RAP”) over the long-term (LTER [“PELD” in Portuguese])) grids captured patters in meso-scale spatial variation. The adequacy of different sample sizes (n = 4 to 120) were examined within 32,325 km2/3,232,500 ha (1293×25 km2 sample areas) distributed across the legal Brazilian Amazon. Kolmogorov-Smirnov-tests, correlation and root-mean-square-error were used to measure sample representativeness, similarity and accuracy respectively. Trends and thresholds of these responses in relation to sample size and standard-deviation were modeled using Generalized-Additive-Models and conditional-inference-trees respectively. We found that a regular arrangement of 30 samples captured the distribution of altitude values within these areas. Sample size was more important than sample standard deviation for representativeness and similarity. In contrast, accuracy was more strongly influenced by sample standard deviation. Additionally, analysis of spatially interpolated data showed that spatial patterns in altitude were also recovered within areas using a regular arrangement of 30 samples. Conclusions/Significance Our findings show that the logistically feasible sample used in the RAPELD system successfully recovers meso-scale altitudinal patterns. This suggests that the sample size and regular arrangement may also be generally appropriate for quantifying spatial patterns in biodiversity at similar scales across at least 90% (≈5 million km2) of the Brazilian Amazon. PMID:25170894

  18. Penalized likelihood and multi-objective spatial scans for the detection and inference of irregular clusters

    PubMed Central

    2010-01-01

    Background Irregularly shaped spatial clusters are difficult to delineate. A cluster found by an algorithm often spreads through large portions of the map, impacting its geographical meaning. Penalized likelihood methods for Kulldorff's spatial scan statistics have been used to control the excessive freedom of the shape of clusters. Penalty functions based on cluster geometry and non-connectivity have been proposed recently. Another approach involves the use of a multi-objective algorithm to maximize two objectives: the spatial scan statistics and the geometric penalty function. Results & Discussion We present a novel scan statistic algorithm employing a function based on the graph topology to penalize the presence of under-populated disconnection nodes in candidate clusters, the disconnection nodes cohesion function. A disconnection node is defined as a region within a cluster, such that its removal disconnects the cluster. By applying this function, the most geographically meaningful clusters are sifted through the immense set of possible irregularly shaped candidate cluster solutions. To evaluate the statistical significance of solutions for multi-objective scans, a statistical approach based on the concept of attainment function is used. In this paper we compared different penalized likelihoods employing the geometric and non-connectivity regularity functions and the novel disconnection nodes cohesion function. We also build multi-objective scans using those three functions and compare them with the previous penalized likelihood scans. An application is presented using comprehensive state-wide data for Chagas' disease in puerperal women in Minas Gerais state, Brazil. Conclusions We show that, compared to the other single-objective algorithms, multi-objective scans present better performance, regarding power, sensitivity and positive predicted value. The multi-objective non-connectivity scan is faster and better suited for the detection of moderately irregularly shaped clusters. The multi-objective cohesion scan is most effective for the detection of highly irregularly shaped clusters. PMID:21034451

  19. Deviance detection based on regularity encoding along the auditory hierarchy: electrophysiological evidence in humans.

    PubMed

    Escera, Carles; Leung, Sumie; Grimm, Sabine

    2014-07-01

    Detection of changes in the acoustic environment is critical for survival, as it prevents missing potentially relevant events outside the focus of attention. In humans, deviance detection based on acoustic regularity encoding has been associated with a brain response derived from the human EEG, the mismatch negativity (MMN) auditory evoked potential, peaking at about 100-200 ms from deviance onset. By its long latency and cerebral generators, the cortical nature of both the processes of regularity encoding and deviance detection has been assumed. Yet, intracellular, extracellular, single-unit and local-field potential recordings in rats and cats have shown much earlier (circa 20-30 ms) and hierarchically lower (primary auditory cortex, medial geniculate body, inferior colliculus) deviance-related responses. Here, we review the recent evidence obtained with the complex auditory brainstem response (cABR), the middle latency response (MLR) and magnetoencephalography (MEG) demonstrating that human auditory deviance detection based on regularity encoding-rather than on refractoriness-occurs at latencies and in neural networks comparable to those revealed in animals. Specifically, encoding of simple acoustic-feature regularities and detection of corresponding deviance, such as an infrequent change in frequency or location, occur in the latency range of the MLR, in separate auditory cortical regions from those generating the MMN, and even at the level of human auditory brainstem. In contrast, violations of more complex regularities, such as those defined by the alternation of two different tones or by feature conjunctions (i.e., frequency and location) fail to elicit MLR correlates but elicit sizable MMNs. Altogether, these findings support the emerging view that deviance detection is a basic principle of the functional organization of the auditory system, and that regularity encoding and deviance detection is organized in ascending levels of complexity along the auditory pathway expanding from the brainstem up to higher-order areas of the cerebral cortex.

  20. To be or not to be Asymmetric? VLTI/MIDI and the Mass-loss Geometry of AGB Stars

    NASA Astrophysics Data System (ADS)

    Paladini, C.; Klotz, D.; Sacuto, S.; Lagadec, E.; Wittkowski, M.; Richichi, A.; Hron, J.; Jorissen, A.; Groenewegen, M. A. T.; Kerschbaum, F.; Verhoelst, T.; Rau, G.; Olofsson, H.; Zhao-Geisler, R.; Matter, A.

    2017-06-01

    The Mid-infrared Interferometric instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) has been used to spatially resolve the dust-forming region of 14 asymptotic giant branch (AGB) stars with different chemistry (O-rich and C-rich) and variability types (Miras, semi-regular, and irregular variables). The main goal of the programme was to detect deviations from spherical symmetry in the dust-forming region of these stars. All the stars of the sample are well resolved with the VLTI, and five are asymmetric and O-rich. This finding contrasts with observations in the near-infrared, where the C-rich objects are found to be more asymmetric than the O-rich ones. The nature of the asymmetric structures so far detected (dusty discs versus blobs)remains uncertain and will require imaging on milli-arcsecond scales.

  1. Evidence for Intact Memory-Guided Attention in School-Aged Children

    ERIC Educational Resources Information Center

    Dixon, Matthew L.; Zelazo, Philip David; De Rosa, Eve

    2010-01-01

    Visual scenes contain many statistical regularities such as the likely identity and location of objects that are present; with experience, such regularities can be encoded and can ultimately facilitate the deployment of spatial attention to important locations. Memory-guided attention has been extensively examined in adults with the "contextual…

  2. Capability of ERTS-1 imagery to investigate geological and structural features in a sedimentary basin (Bassin Parisien, France)

    NASA Technical Reports Server (NTRS)

    Cavelier, C.; Scanvic, J. Y.; Weecksteen, G.; Zizerman, A.

    1973-01-01

    A preliminary study of the MSS imagery of a sedimentary basin whose structure is regular is reported. Crops and natural vegetation are distributed all over the site located under temperate climate. Ground data available concern plant species geology and tectonic and are correlated with results from ERTS 1 imagery. This comparison shows a good correlation. The main geological units are detected or enhanced by way of agricultural land use and/or natural vegetation. Alluvial deposits are outlined by vegetation grass land and poplar trees. Some spatial relationship of geostructures, suspected until now, are identified or extended in associating results from different spectral bands.

  3. An economic passive sampling method to detect particulate pollutants using magnetic measurements.

    PubMed

    Cao, Liwan; Appel, Erwin; Hu, Shouyun; Ma, Mingming

    2015-10-01

    Identifying particulate matter (PM) emitted from industrial processes into the atmosphere is an important issue in environmental research. This paper presents a passive sampling method using simple artificial samplers that maintains the advantage of bio-monitoring, but overcomes some of its disadvantages. The samplers were tested in a heavily polluted area (Linfen, China) and compared to results from leaf samples. Spatial variations of magnetic susceptibility from artificial passive samplers and leaf samples show very similar patterns. Scanning electron microscopy suggests that the collected PM are mostly in the range of 2-25 μm; frequent occurrence of spherical shape indicates industrial combustion dominates PM emission. Magnetic properties around power plants show different features than other plants. This sampling method provides a suitable and economic tool for semi-quantifying temporal and spatial distribution of air quality; they can be installed in a regular grid and calibrate the weight of PM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Using 3D spatial correlations to improve the noise robustness of multi component analysis of 3D multi echo quantitative T2 relaxometry data.

    PubMed

    Kumar, Dushyant; Hariharan, Hari; Faizy, Tobias D; Borchert, Patrick; Siemonsen, Susanne; Fiehler, Jens; Reddy, Ravinder; Sedlacik, Jan

    2018-05-12

    We present a computationally feasible and iterative multi-voxel spatially regularized algorithm for myelin water fraction (MWF) reconstruction. This method utilizes 3D spatial correlations present in anatomical/pathological tissues and underlying B1 + -inhomogeneity or flip angle inhomogeneity to enhance the noise robustness of the reconstruction while intrinsically accounting for stimulated echo contributions using T2-distribution data alone. Simulated data and in vivo data acquired using 3D non-selective multi-echo spin echo (3DNS-MESE) were used to compare the reconstruction quality of the proposed approach against those of the popular algorithm (the method by Prasloski et al.) and our previously proposed 2D multi-slice spatial regularization spatial regularization approach. We also investigated whether the inter-sequence correlations and agreements improved as a result of the proposed approach. MWF-quantifications from two sequences, 3DNS-MESE vs 3DNS-gradient and spin echo (3DNS-GRASE), were compared for both reconstruction approaches to assess correlations and agreements between inter-sequence MWF-value pairs. MWF values from whole-brain data of six volunteers and two multiple sclerosis patients are being reported as well. In comparison with competing approaches such as Prasloski's method or our previously proposed 2D multi-slice spatial regularization method, the proposed method showed better agreements with simulated truths using regression analyses and Bland-Altman analyses. For 3DNS-MESE data, MWF-maps reconstructed using the proposed algorithm provided better depictions of white matter structures in subcortical areas adjoining gray matter which agreed more closely with corresponding contrasts on T2-weighted images than MWF-maps reconstructed with the method by Prasloski et al. We also achieved a higher level of correlations and agreements between inter-sequence (3DNS-MESE vs 3DNS-GRASE) MWF-value pairs. The proposed algorithm provides more noise-robust fits to T2-decay data and improves MWF-quantifications in white matter structures especially in the sub-cortical white matter and major white matter tract regions. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Spatially adaptive bases in wavelet-based coding of semi-regular meshes

    NASA Astrophysics Data System (ADS)

    Denis, Leon; Florea, Ruxandra; Munteanu, Adrian; Schelkens, Peter

    2010-05-01

    In this paper we present a wavelet-based coding approach for semi-regular meshes, which spatially adapts the employed wavelet basis in the wavelet transformation of the mesh. The spatially-adaptive nature of the transform requires additional information to be stored in the bit-stream in order to allow the reconstruction of the transformed mesh at the decoder side. In order to limit this overhead, the mesh is first segmented into regions of approximately equal size. For each spatial region, a predictor is selected in a rate-distortion optimal manner by using a Lagrangian rate-distortion optimization technique. When compared against the classical wavelet transform employing the butterfly subdivision filter, experiments reveal that the proposed spatially-adaptive wavelet transform significantly decreases the energy of the wavelet coefficients for all subbands. Preliminary results show also that employing the proposed transform for the lowest-resolution subband systematically yields improved compression performance at low-to-medium bit-rates. For the Venus and Rabbit test models the compression improvements add up to 1.47 dB and 0.95 dB, respectively.

  6. General physical activity levels influence positive and negative priming effects in young adults.

    PubMed

    Kamijo, Keita; Takeda, Yuji

    2009-03-01

    To investigate the relationship between general physical activity level and the cognitive functions of executive control in young adults using behavioral measures and event-related brain potentials. Forty young adults (mean age=21.1 yrs; 19 females) were differentiated on the basis of their regular physical activity level into two groups: active and sedentary. They performed a spatial priming task consisting of three conditions: control, positive, and negative priming. Spatial priming effects, which are related to executive control and occur automatically, were assessed as indicators of cognitive functioning. Negative priming effects on reaction time and P3 latency in the active group were larger than in the sedentary group. By contrast, positive priming effects were only observed in the sedentary group. The cognitive effects of regular physical activity could be observed using a relatively simple paradigm. The results indicate that regular physical activity has a beneficial effect on the cognitive processes on executive control in young adults. The present study provides additional evidence of the beneficial effects of regular physical activity on cognitive functioning in young adults.

  7. Processing and statistical analysis of soil-root images

    NASA Astrophysics Data System (ADS)

    Razavi, Bahar S.; Hoang, Duyen; Kuzyakov, Yakov

    2016-04-01

    Importance of the hotspots such as rhizosphere, the small soil volume that surrounds and is influenced by plant roots, calls for spatially explicit methods to visualize distribution of microbial activities in this active site (Kuzyakov and Blagodatskaya, 2015). Zymography technique has previously been adapted to visualize the spatial dynamics of enzyme activities in rhizosphere (Spohn and Kuzyakov, 2014). Following further developing of soil zymography -to obtain a higher resolution of enzyme activities - we aimed to 1) quantify the images, 2) determine whether the pattern (e.g. distribution of hotspots in space) is clumped (aggregated) or regular (dispersed). To this end, we incubated soil-filled rhizoboxes with maize Zea mays L. and without maize (control box) for two weeks. In situ soil zymography was applied to visualize enzymatic activity of β-glucosidase and phosphatase at soil-root interface. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. Furthermore, we applied "spatial point pattern analysis" to determine whether the pattern (e.g. distribution of hotspots in space) is clumped (aggregated) or regular (dispersed). Our results demonstrated that distribution of hotspots at rhizosphere is clumped (aggregated) compare to control box without plant which showed regular (dispersed) pattern. These patterns were similar in all three replicates and for both enzymes. We conclude that improved zymography is promising in situ technique to identify, analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere. Moreover, such different patterns should be considered in assessments and modeling of rhizosphere extension and the corresponding effects on soil properties and functions. Key words: rhizosphere, spatial point pattern, enzyme activity, zymography, maize.

  8. Multitask SVM learning for remote sensing data classification

    NASA Astrophysics Data System (ADS)

    Leiva-Murillo, Jose M.; Gómez-Chova, Luis; Camps-Valls, Gustavo

    2010-10-01

    Many remote sensing data processing problems are inherently constituted by several tasks that can be solved either individually or jointly. For instance, each image in a multitemporal classification setting could be taken as an individual task but relation to previous acquisitions should be properly considered. In such problems, different modalities of the data (temporal, spatial, angular) gives rise to changes between the training and test distributions, which constitutes a difficult learning problem known as covariate shift. Multitask learning methods aim at jointly solving a set of prediction problems in an efficient way by sharing information across tasks. This paper presents a novel kernel method for multitask learning in remote sensing data classification. The proposed method alleviates the dataset shift problem by imposing cross-information in the classifiers through matrix regularization. We consider the support vector machine (SVM) as core learner and two regularization schemes are introduced: 1) the Euclidean distance of the predictors in the Hilbert space; and 2) the inclusion of relational operators between tasks. Experiments are conducted in the challenging remote sensing problems of cloud screening from multispectral MERIS images and for landmine detection.

  9. Mixture of Segmenters with Discriminative Spatial Regularization and Sparse Weight Selection*

    PubMed Central

    Chen, Ting; Rangarajan, Anand; Eisenschenk, Stephan J.

    2011-01-01

    This paper presents a novel segmentation algorithm which automatically learns the combination of weak segmenters and builds a strong one based on the assumption that the locally weighted combination varies w.r.t. both the weak segmenters and the training images. We learn the weighted combination during the training stage using a discriminative spatial regularization which depends on training set labels. A closed form solution to the cost function is derived for this approach. In the testing stage, a sparse regularization scheme is imposed to avoid overfitting. To the best of our knowledge, such a segmentation technique has never been reported in literature and we empirically show that it significantly improves on the performances of the weak segmenters. After showcasing the performance of the algorithm in the context of atlas-based segmentation, we present comparisons to the existing weak segmenter combination strategies on a hippocampal data set. PMID:22003748

  10. On linear Landau Damping for relativistic plasmas via Gevrey regularity

    NASA Astrophysics Data System (ADS)

    Young, Brent

    2015-10-01

    We examine the phenomenon of Landau Damping in relativistic plasmas via a study of the relativistic Vlasov-Poisson system (both on the torus and on R3) linearized around a sufficiently nice, spatially uniform kinetic equilibrium. We find that exponential decay of spatial Fourier modes is impossible under modest symmetry assumptions. However, by assuming the equilibrium and initial data are sufficiently regular functions of velocity for a given wavevector (in particular that they exhibit a kind of Gevrey regularity), we show that it is possible for the mode associated to this wavevector to decay like exp ⁡ (-| t | δ) (with 0 < δ < 1) if the magnitude of the wavevector exceeds a certain critical size which depends on the character of the interaction. We also give a heuristic argument why one should not expect such rapid decay for modes with wavevectors below this threshold.

  11. The new MOPREDAS database and the monthly precipitation trends in Spain (December 1945- November 2005)

    NASA Astrophysics Data System (ADS)

    Gonzalez-Hidalgo, Jose Carlos; Brunetti, Michele; Martin, De Luis

    2010-05-01

    Precipitation is one of the most important climate elements directly affecting human society, economic activities and natural systems; at the same time it is the most variable climate element, and its changes can be detected only if a spatially dense network of observations is used. Due to this, the last AR4 report renewed interest in the study of precipitation, and suggests focusing on detailed sub-regional studies, with a preference for those areas where water is a scarce resource with heavy demands placed on it. We have developed the new MOPREDAS database (MOnthly PREcipitation DAtabase of Spain) by exploiting the total amount of data available at Spanish Meteorological Agency (AEMET, formerly INM). These provide a total of 2670 complete and homogeneous series for the period 1946-2005 after exhaustive quality control and reconstruction processes, and at present is the most complete and extensive monthly precipitation dataset uptodated in Spain, including dense information up to 1500 m o.l.s.. MOPREDAS has been created with the aim of analyzing the behaviour of precipitation in the conterminous provinces of Spain, and to validate the downscaling of climate models on a detailed spatial level. To this end, the station data were also interpolated on a regular grid, at 1/10 of degree of resolution, over the whole Spain. Trend analysis (Mann-Kendall text, p <0,10) confirms great spatial and temporal variability in the behaviour of precipitation across Spain between 1946-2005. Except March, June and October, no generalized significant pattern have been found, but subregional areas with homogeneous trend were detected. MOPREDAS shows a global decrease of precipitation in March that affects 68.9% of Spain and 31.8% in June, while in October the area affected by positive trends is 33.7% of land (p<0.10). We detected numerous sub-regional coherent patterns well delineated by topographic factors, and passing unnoticed until now due to inadequate data density. These results suggest that both global and local factors affect the spatial distribution of trends in the Iberian Peninsula, being mountain chains the most significant geographical factor in determining the spatial distribution of monthly trends on a detailed, sub-regional spatial scale.

  12. Topological chaos of the spatial prisoner's dilemma game on regular networks.

    PubMed

    Jin, Weifeng; Chen, Fangyue

    2016-02-21

    The spatial version of evolutionary prisoner's dilemma on infinitely large regular lattice with purely deterministic strategies and no memories among players is investigated in this paper. Based on the statistical inferences, it is pertinent to confirm that the frequency of cooperation for characterizing its macroscopic behaviors is very sensitive to the initial conditions, which is the most practically significant property of chaos. Its intrinsic complexity is then justified on firm ground from the theory of symbolic dynamics; that is, this game is topologically mixing and possesses positive topological entropy on its subsystems. It is demonstrated therefore that its frequency of cooperation could not be adopted by simply averaging over several steps after the game reaches the equilibrium state. Furthermore, the chaotically changing spatial patterns via empirical observations can be defined and justified in view of symbolic dynamics. It is worth mentioning that the procedure proposed in this work is also applicable to other deterministic spatial evolutionary games therein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. EIT image reconstruction with four dimensional regularization.

    PubMed

    Dai, Tao; Soleimani, Manuchehr; Adler, Andy

    2008-09-01

    Electrical impedance tomography (EIT) reconstructs internal impedance images of the body from electrical measurements on body surface. The temporal resolution of EIT data can be very high, although the spatial resolution of the images is relatively low. Most EIT reconstruction algorithms calculate images from data frames independently, although data are actually highly correlated especially in high speed EIT systems. This paper proposes a 4-D EIT image reconstruction for functional EIT. The new approach is developed to directly use prior models of the temporal correlations among images and 3-D spatial correlations among image elements. A fast algorithm is also developed to reconstruct the regularized images. Image reconstruction is posed in terms of an augmented image and measurement vector which are concatenated from a specific number of previous and future frames. The reconstruction is then based on an augmented regularization matrix which reflects the a priori constraints on temporal and 3-D spatial correlations of image elements. A temporal factor reflecting the relative strength of the image correlation is objectively calculated from measurement data. Results show that image reconstruction models which account for inter-element correlations, in both space and time, show improved resolution and noise performance, in comparison to simpler image models.

  14. Information transmission using non-poisson regular firing.

    PubMed

    Koyama, Shinsuke; Omi, Takahiro; Kass, Robert E; Shinomoto, Shigeru

    2013-04-01

    In many cortical areas, neural spike trains do not follow a Poisson process. In this study, we investigate a possible benefit of non-Poisson spiking for information transmission by studying the minimal rate fluctuation that can be detected by a Bayesian estimator. The idea is that an inhomogeneous Poisson process may make it difficult for downstream decoders to resolve subtle changes in rate fluctuation, but by using a more regular non-Poisson process, the nervous system can make rate fluctuations easier to detect. We evaluate the degree to which regular firing reduces the rate fluctuation detection threshold. We find that the threshold for detection is reduced in proportion to the coefficient of variation of interspike intervals.

  15. Invariance Detection within an Interactive System: A Perceptual Gateway to Language Development

    ERIC Educational Resources Information Center

    Gogate, Lakshmi J.; Hollich, George

    2010-01-01

    In this article, we hypothesize that "invariance detection," a general perceptual phenomenon whereby organisms attend to relatively stable patterns or regularities, is an important means by which infants tune in to various aspects of spoken language. In so doing, we synthesize a substantial body of research on detection of regularities across the…

  16. Promote quantitative ischemia imaging via myocardial perfusion CT iterative reconstruction with tensor total generalized variation regularization

    NASA Astrophysics Data System (ADS)

    Gu, Chengwei; Zeng, Dong; Lin, Jiahui; Li, Sui; He, Ji; Zhang, Hao; Bian, Zhaoying; Niu, Shanzhou; Zhang, Zhang; Huang, Jing; Chen, Bo; Zhao, Dazhe; Chen, Wufan; Ma, Jianhua

    2018-06-01

    Myocardial perfusion computed tomography (MPCT) imaging is commonly used to detect myocardial ischemia quantitatively. A limitation in MPCT is that an additional radiation dose is required compared to unenhanced CT due to its repeated dynamic data acquisition. Meanwhile, noise and streak artifacts in low-dose cases are the main factors that degrade the accuracy of quantifying myocardial ischemia and hamper the diagnostic utility of the filtered backprojection reconstructed MPCT images. Moreover, it is noted that the MPCT images are composed of a series of 2/3D images, which can be naturally regarded as a 3/4-order tensor, and the MPCT images are globally correlated along time and are sparse across space. To obtain higher fidelity ischemia from low-dose MPCT acquisitions quantitatively, we propose a robust statistical iterative MPCT image reconstruction algorithm by incorporating tensor total generalized variation (TTGV) regularization into a penalized weighted least-squares framework. Specifically, the TTGV regularization fuses the spatial correlation of the myocardial structure and the temporal continuation of the contrast agent intake during the perfusion. Then, an efficient iterative strategy is developed for the objective function optimization. Comprehensive evaluations have been conducted on a digital XCAT phantom and a preclinical porcine dataset regarding the accuracy of the reconstructed MPCT images, the quantitative differentiation of ischemia and the algorithm’s robustness and efficiency.

  17. Multi-Compartment T2 Relaxometry Using a Spatially Constrained Multi-Gaussian Model

    PubMed Central

    Raj, Ashish; Pandya, Sneha; Shen, Xiaobo; LoCastro, Eve; Nguyen, Thanh D.; Gauthier, Susan A.

    2014-01-01

    The brain’s myelin content can be mapped by T2-relaxometry, which resolves multiple differentially relaxing T2 pools from multi-echo MRI. Unfortunately, the conventional fitting procedure is a hard and numerically ill-posed problem. Consequently, the T2 distributions and myelin maps become very sensitive to noise and are frequently difficult to interpret diagnostically. Although regularization can improve stability, it is generally not adequate, particularly at relatively low signal to noise ratio (SNR) of around 100–200. The purpose of this study was to obtain a fitting algorithm which is able to overcome these difficulties and generate usable myelin maps from noisy acquisitions in a realistic scan time. To this end, we restrict the T2 distribution to only 3 distinct resolvable tissue compartments, modeled as Gaussians: myelin water, intra/extra-cellular water and a slow relaxing cerebrospinal fluid compartment. We also impose spatial smoothness expectation that volume fractions and T2 relaxation times of tissue compartments change smoothly within coherent brain regions. The method greatly improves robustness to noise, reduces spatial variations, improves definition of white matter fibers, and enhances detection of demyelinating lesions. Due to efficient design, the additional spatial aspect does not cause an increase in processing time. The proposed method was applied to fast spiral acquisitions on which conventional fitting gives uninterpretable results. While these fast acquisitions suffer from noise and inhomogeneity artifacts, our preliminary results indicate the potential of spatially constrained 3-pool T2 relaxometry. PMID:24896833

  18. Three regularities of recognition memory: the role of bias.

    PubMed

    Hilford, Andrew; Maloney, Laurence T; Glanzer, Murray; Kim, Kisok

    2015-12-01

    A basic assumption of Signal Detection Theory is that decisions are made on the basis of likelihood ratios. In a preceding paper, Glanzer, Hilford, and Maloney (Psychonomic Bulletin & Review, 16, 431-455, 2009) showed that the likelihood ratio assumption implies that three regularities will occur in recognition memory: (1) the Mirror Effect, (2) the Variance Effect, (3) the normalized Receiver Operating Characteristic (z-ROC) Length Effect. The paper offered formal proofs and computational demonstrations that decisions based on likelihood ratios produce the three regularities. A survey of data based on group ROCs from 36 studies validated the likelihood ratio assumption by showing that its three implied regularities are ubiquitous. The study noted, however, that bias, another basic factor in Signal Detection Theory, can obscure the Mirror Effect. In this paper we examine how bias affects the regularities at the theoretical level. The theoretical analysis shows: (1) how bias obscures the Mirror Effect, not the other two regularities, and (2) four ways to counter that obscuring. We then report the results of five experiments that support the theoretical analysis. The analyses and the experimental results also demonstrate: (1) that the three regularities govern individual, as well as group, performance, (2) alternative explanations of the regularities are ruled out, and (3) that Signal Detection Theory, correctly applied, gives a simple and unified explanation of recognition memory data.

  19. A method for spatial regularisation of a bunch of filaments in a femtosecond laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandidov, V P; Kosareva, O G; Nyakk, A V

    A method for spatial regularisation of chaotically located filaments, which appear in a high-power femtosecond laser pulse, is proposed, numerically substantiated, and experimentally tested. This method is based on the introduction of regular light-field perturbations into the femtosecond-pulse cross section. (letters)

  20. Fractal analysis of time varying data

    DOEpatents

    Vo-Dinh, Tuan; Sadana, Ajit

    2002-01-01

    Characteristics of time varying data, such as an electrical signal, are analyzed by converting the data from a temporal domain into a spatial domain pattern. Fractal analysis is performed on the spatial domain pattern, thereby producing a fractal dimension D.sub.F. The fractal dimension indicates the regularity of the time varying data.

  1. Species-driven phases and increasing structure in early-successional plant communities.

    PubMed

    Zaplata, Markus K; Winter, Susanne; Fischer, Anton; Kollmann, Johannes; Ulrich, Werner

    2013-01-01

    Successional phases describe changes in ecological communities that proceed in steps rather than continuously. Despite their importance for the understanding of ecosystem development, there still exists no reliable definition of phases and no quantitative measure of phase transitions. In order to obtain these data, we investigated primary succession in an artificial catchment (6 ha) in eastern Germany over a period of 6 years. The data set consists of records of plant species and their cover values, and initial substrate properties, both from plots in a regular grid (20 m × 20 m) suitable for spatial data analysis. Community assembly was studied by analyses of species co-occurrence and nestedness. Additionally, we correlated lognormal and log series distributions of species abundance to each community. We here introduce a new general method for detection of successional phases based on the degree of transient spatial homogeneity in the study system. Spatially coherent vegetation patterns revealed nonoverlapping partitions within this sequence of primary succession and were characterized as two distinct ecological phases. Patterns of species co-occurrence were increasingly less random, and hence the importance of demographic stochasticity and neutral community assembly decreased during the study period. Our findings highlight the spatial dimension of successional phases and quantify the degree of change between these steps. They are an element for advancing a more reliable terminology of ecological successions.

  2. Estimating abundance

    USGS Publications Warehouse

    Sutherland, Chris; Royle, Andy

    2016-01-01

    This chapter provides a non-technical overview of ‘closed population capture–recapture’ models, a class of well-established models that are widely applied in ecology, such as removal sampling, covariate models, and distance sampling. These methods are regularly adopted for studies of reptiles, in order to estimate abundance from counts of marked individuals while accounting for imperfect detection. Thus, the chapter describes some classic closed population models for estimating abundance, with considerations for some recent extensions that provide a spatial context for the estimation of abundance, and therefore density. Finally, the chapter suggests some software for use in data analysis, such as the Windows-based program MARK, and provides an example of estimating abundance and density of reptiles using an artificial cover object survey of Slow Worms (Anguis fragilis).

  3. Estimating abundance: Chapter 27

    USGS Publications Warehouse

    Royle, J. Andrew

    2016-01-01

    This chapter provides a non-technical overview of ‘closed population capture–recapture’ models, a class of well-established models that are widely applied in ecology, such as removal sampling, covariate models, and distance sampling. These methods are regularly adopted for studies of reptiles, in order to estimate abundance from counts of marked individuals while accounting for imperfect detection. Thus, the chapter describes some classic closed population models for estimating abundance, with considerations for some recent extensions that provide a spatial context for the estimation of abundance, and therefore density. Finally, the chapter suggests some software for use in data analysis, such as the Windows-based program MARK, and provides an example of estimating abundance and density of reptiles using an artificial cover object survey of Slow Worms (Anguis fragilis).

  4. Hydrography change detection: the usefulness of surface channels derived From LiDAR DEMs for updating mapped hydrography

    USGS Publications Warehouse

    Poppenga, Sandra K.; Gesch, Dean B.; Worstell, Bruce B.

    2013-01-01

    The 1:24,000-scale high-resolution National Hydrography Dataset (NHD) mapped hydrography flow lines require regular updating because land surface conditions that affect surface channel drainage change over time. Historically, NHD flow lines were created by digitizing surface water information from aerial photography and paper maps. Using these same methods to update nationwide NHD flow lines is costly and inefficient; furthermore, these methods result in hydrography that lacks the horizontal and vertical accuracy needed for fully integrated datasets useful for mapping and scientific investigations. Effective methods for improving mapped hydrography employ change detection analysis of surface channels derived from light detection and ranging (LiDAR) digital elevation models (DEMs) and NHD flow lines. In this article, we describe the usefulness of surface channels derived from LiDAR DEMs for hydrography change detection to derive spatially accurate and time-relevant mapped hydrography. The methods employ analyses of horizontal and vertical differences between LiDAR-derived surface channels and NHD flow lines to define candidate locations of hydrography change. These methods alleviate the need to analyze and update the nationwide NHD for time relevant hydrography, and provide an avenue for updating the dataset where change has occurred.

  5. Geomorphological activity at a rock glacier front detected with a 3D density-based clustering algorithm

    NASA Astrophysics Data System (ADS)

    Micheletti, Natan; Tonini, Marj; Lane, Stuart N.

    2017-02-01

    Acquisition of high density point clouds using terrestrial laser scanners (TLSs) has become commonplace in geomorphic science. The derived point clouds are often interpolated onto regular grids and the grids compared to detect change (i.e. erosion and deposition/advancement movements). This procedure is necessary for some applications (e.g. digital terrain analysis), but it inevitably leads to a certain loss of potentially valuable information contained within the point clouds. In the present study, an alternative methodology for geomorphological analysis and feature detection from point clouds is proposed. It rests on the use of the Density-Based Spatial Clustering of Applications with Noise (DBSCAN), applied to TLS data for a rock glacier front slope in the Swiss Alps. The proposed methods allowed the detection and isolation of movements directly from point clouds which yield to accuracies in the following computation of volumes that depend only on the actual registered distance between points. We demonstrated that these values are more conservative than volumes computed with the traditional DEM comparison. The results are illustrated for the summer of 2015, a season of enhanced geomorphic activity associated with exceptionally high temperatures.

  6. Prevalence and clustering of soil-transmitted helminth infections in a tribal area in southern India.

    PubMed

    Kaliappan, Saravanakumar Puthupalayam; George, Santosh; Francis, Mark Rohit; Kattula, Deepthi; Sarkar, Rajiv; Minz, Shantidani; Mohan, Venkata Raghava; George, Kuryan; Roy, Sheela; Ajjampur, Sitara Swarna Rao; Muliyil, Jayaprakash; Kang, Gagandeep

    2013-12-01

    To estimate the prevalence, spatial patterns and clustering in the distribution of soil-transmitted helminth (STH) infections, and factors associated with hookworm infections in a tribal population in Tamil Nadu, India. Cross-sectional study with one-stage cluster sampling of 22 clusters. Demographic and risk factor data and stool samples for microscopic ova/cysts examination were collected from 1237 participants. Geographical information systems mapping assessed spatial patterns of infection. The overall prevalence of STH was 39% (95% CI 36%–42%), with hookworm 38% (95% CI 35–41%) and Ascaris lumbricoides 1.5% (95% CI 0.8–2.2%). No Trichuris trichiura infection was detected. People involved in farming had higher odds of hookworm infection (1.68, 95% CI 1.31–2.17, P < 0.001). In the multiple logistic regression, adults (2.31, 95% CI 1.80–2.96, P < 0.001), people with pet cats (1.55, 95% CI 1.10–2.18, P = 0.011) and people who did not wash their hands with soap after defecation (1.84, 95% CI 1.27–2.67, P = 0.001) had higher odds of hookworm infection, but gender and poor usage of foot wear did not significantly increase risk. Cluster analysis, based on design effect calculation, did not show any clustering of cases among the study population; however, spatial scan statistic detected a significant cluster for hookworm infections in one village. Multiple approaches including health education, improving the existing sanitary practices and regular preventive chemotherapy are needed to control the burden of STH in similar endemic areas.

  7. The cost of uniqueness in groundwater model calibration

    NASA Astrophysics Data System (ADS)

    Moore, Catherine; Doherty, John

    2006-04-01

    Calibration of a groundwater model requires that hydraulic properties be estimated throughout a model domain. This generally constitutes an underdetermined inverse problem, for which a solution can only be found when some kind of regularization device is included in the inversion process. Inclusion of regularization in the calibration process can be implicit, for example through the use of zones of constant parameter value, or explicit, for example through solution of a constrained minimization problem in which parameters are made to respect preferred values, or preferred relationships, to the degree necessary for a unique solution to be obtained. The "cost of uniqueness" is this: no matter which regularization methodology is employed, the inevitable consequence of its use is a loss of detail in the calibrated field. This, in turn, can lead to erroneous predictions made by a model that is ostensibly "well calibrated". Information made available as a by-product of the regularized inversion process allows the reasons for this loss of detail to be better understood. In particular, it is easily demonstrated that the estimated value for an hydraulic property at any point within a model domain is, in fact, a weighted average of the true hydraulic property over a much larger area. This averaging process causes loss of resolution in the estimated field. Where hydraulic conductivity is the hydraulic property being estimated, high averaging weights exist in areas that are strategically disposed with respect to measurement wells, while other areas may contribute very little to the estimated hydraulic conductivity at any point within the model domain, this possibly making the detection of hydraulic conductivity anomalies in these latter areas almost impossible. A study of the post-calibration parameter field covariance matrix allows further insights into the loss of system detail incurred through the calibration process to be gained. A comparison of pre- and post-calibration parameter covariance matrices shows that the latter often possess a much smaller spectral bandwidth than the former. It is also demonstrated that, as an inevitable consequence of the fact that a calibrated model cannot replicate every detail of the true system, model-to-measurement residuals can show a high degree of spatial correlation, a fact which must be taken into account when assessing these residuals either qualitatively, or quantitatively in the exploration of model predictive uncertainty. These principles are demonstrated using a synthetic case in which spatial parameter definition is based on pilot points, and calibration is implemented using both zones of piecewise constancy and constrained minimization regularization.

  8. Spatial mapping of dynamic cerebral autoregulation by multichannel near-infrared spectroscopy in high-grade carotid artery disease

    NASA Astrophysics Data System (ADS)

    Reinhard, Matthias; Schumacher, F. Konrad; Rutsch, Sebastian; Oeinck, Maximilian; Timmer, Jens; Mader, Irina; Schelter, Björn; Weiller, Cornelius; Kaller, Christoph P.

    2014-09-01

    The exact spatial distribution of impaired cerebral autoregulation in carotid artery disease is unknown. In this pilot study, we present a new approach of multichannel near-infrared spectroscopy (mcNIRS) for noninvasive spatial mapping of dynamic autoregulation in carotid artery disease. In 15 patients with unilateral severe carotid artery stenosis or occlusion, cortical hemodynamics in the bilateral frontal cortex were assessed from changes in oxyhemoglobin concentration using 52-channel NIRS (spatial resolution ˜2 cm). Dynamic autoregulation was graded by the phase shift between respiratory-induced 0.1 Hz oscillations of blood pressure and oxyhemoglobin. Ten of 15 patients showed regular phase values in the expected (patho) physiological range. Five patients had clearly outlying irregular phase values mostly due to artifacts. In patients with a regular phase pattern, a significant side-to-side difference of dynamic autoregulation was observed for the cortical border zone area between the middle and anterior cerebral artery (p<0.05). In conclusion, dynamic cerebral autoregulation can be spatially assessed from slow hemodynamic oscillations with mcNIRS. In high-grade carotid artery disease, cortical dynamic autoregulation is affected mostly in the vascular border zone. Spatial mapping of dynamic autoregulation may serve as a powerful tool for identifying brain regions at specific risks for hemodynamic infarction.

  9. DEM generation from contours and a low-resolution DEM

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Shen, Huanfeng; Feng, Ruitao; Li, Jie; Zhang, Liangpei

    2017-12-01

    A digital elevation model (DEM) is a virtual representation of topography, where the terrain is established by the three-dimensional co-ordinates. In the framework of sparse representation, this paper investigates DEM generation from contours. Since contours are usually sparsely distributed and closely related in space, sparse spatial regularization (SSR) is enforced on them. In order to make up for the lack of spatial information, another lower spatial resolution DEM from the same geographical area is introduced. In this way, the sparse representation implements the spatial constraints in the contours and extracts the complementary information from the auxiliary DEM. Furthermore, the proposed method integrates the advantage of the unbiased estimation of kriging. For brevity, the proposed method is called the kriging and sparse spatial regularization (KSSR) method. The performance of the proposed KSSR method is demonstrated by experiments in Shuttle Radar Topography Mission (SRTM) 30 m DEM and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 30 m global digital elevation model (GDEM) generation from the corresponding contours and a 90 m DEM. The experiments confirm that the proposed KSSR method outperforms the traditional kriging and SSR methods, and it can be successfully used for DEM generation from contours.

  10. Clusters in irregular areas and lattices.

    PubMed

    Wieczorek, William F; Delmerico, Alan M; Rogerson, Peter A; Wong, David W S

    2012-01-01

    Geographic areas of different sizes and shapes of polygons that represent counts or rate data are often encountered in social, economic, health, and other information. Often political or census boundaries are used to define these areas because the information is available only for those geographies. Therefore, these types of boundaries are frequently used to define neighborhoods in spatial analyses using geographic information systems and related approaches such as multilevel models. When point data can be geocoded, it is possible to examine the impact of polygon shape on spatial statistical properties, such as clustering. We utilized point data (alcohol outlets) to examine the issue of polygon shape and size on visualization and statistical properties. The point data were allocated to regular lattices (hexagons and squares) and census areas for zip-code tabulation areas and tracts. The number of units in the lattices was set to be similar to the number of tract and zip-code areas. A spatial clustering statistic and visualization were used to assess the impact of polygon shape for zip- and tract-sized units. Results showed substantial similarities and notable differences across shape and size. The specific circumstances of a spatial analysis that aggregates points to polygons will determine the size and shape of the areal units to be used. The irregular polygons of census units may reflect underlying characteristics that could be missed by large regular lattices. Future research to examine the potential for using a combination of irregular polygons and regular lattices would be useful.

  11. Likelihood ratio decisions in memory: three implied regularities.

    PubMed

    Glanzer, Murray; Hilford, Andrew; Maloney, Laurence T

    2009-06-01

    We analyze four general signal detection models for recognition memory that differ in their distributional assumptions. Our analyses show that a basic assumption of signal detection theory, the likelihood ratio decision axis, implies three regularities in recognition memory: (1) the mirror effect, (2) the variance effect, and (3) the z-ROC length effect. For each model, we present the equations that produce the three regularities and show, in computed examples, how they do so. We then show that the regularities appear in data from a range of recognition studies. The analyses and data in our study support the following generalization: Individuals make efficient recognition decisions on the basis of likelihood ratios.

  12. Allan Variance Computed in Space Domain: Definition and Application to InSAR Data to Characterize Noise and Geophysical Signal.

    PubMed

    Cavalié, Olivier; Vernotte, François

    2016-04-01

    The Allan variance was introduced 50 years ago for analyzing the stability of frequency standards. In addition to its metrological interest, it may be also considered as an estimator of the large trends of the power spectral density (PSD) of frequency deviation. For instance, the Allan variance is able to discriminate different types of noise characterized by different power laws in the PSD. The Allan variance was also used in other fields than time and frequency metrology: for more than 20 years, it has been used in accelerometry, geophysics, geodesy, astrophysics, and even finances. However, it seems that up to now, it has been exclusively applied for time series analysis. We propose here to use the Allan variance on spatial data. Interferometric synthetic aperture radar (InSAR) is used in geophysics to image ground displacements in space [over the synthetic aperture radar (SAR) image spatial coverage] and in time thanks to the regular SAR image acquisitions by dedicated satellites. The main limitation of the technique is the atmospheric disturbances that affect the radar signal while traveling from the sensor to the ground and back. In this paper, we propose to use the Allan variance for analyzing spatial data from InSAR measurements. The Allan variance was computed in XY mode as well as in radial mode for detecting different types of behavior for different space-scales, in the same way as the different types of noise versus the integration time in the classical time and frequency application. We found that radial Allan variance is the more appropriate way to have an estimator insensitive to the spatial axis and we applied it on SAR data acquired over eastern Turkey for the period 2003-2011. Spatial Allan variance allowed us to well characterize noise features, classically found in InSAR such as phase decorrelation producing white noise or atmospheric delays, behaving like a random walk signal. We finally applied the spatial Allan variance to an InSAR time series to detect when the geophysical signal, here the ground motion, emerges from the noise.

  13. Organ-Level Analysis of Idioblast Patterning in Egeria densa Planch. Leaves

    PubMed Central

    Hara, Takuya; Kobayashi, Emi; Ohtsubo, Kohei; Kumada, Shogo; Kanazawa, Mikako; Abe, Tomoko; Itoh, Ryuuichi D.; Fujiwara, Makoto T.

    2015-01-01

    Leaf tissues of plants usually contain several types of idioblasts, defined as specialized cells whose shape and contents differ from the surrounding homogeneous cells. The spatial patterning of idioblasts, particularly of trichomes and guard cells, across the leaf epidermis has received considerable attention as it offers a useful biological model for studying the intercellular regulation of cell fate and patterning. Excretory idioblasts in the leaves of the aquatic monocotyledonous plant Egeria densa produced light blue autofluorescence when irradiated with ultraviolet light. The use of epifluorescence microscopy to detect this autofluorescence provided a simple and convenient method for detecting excretory idioblasts and allowed tracking of those cells across the leaf surfaces, enabling quantitative measurement of the clustering and spacing patterns of idioblasts at the whole leaf level. Occurrence of idioblasts was coordinated along the proximal–distal, medial–lateral, and adaxial–abaxial axes, producing a recognizable consensus spatial pattern of idioblast formation among fully expanded leaves. Idioblast clusters, which comprised up to nine cells aligned along the proximal–distal axis, showed no positional bias or regularity in idioblast-forming areas when compared with singlet idioblasts. Up to 75% of idioblasts existed as clusters on every leaf side examined. The idioblast-forming areas varied between leaves, implying phenotypic plasticity. Furthermore, in young expanding leaves, autofluorescence was occasionally detected in a single giant vesicle or else in one or more small vesicles, which eventually grew to occupy a large portion of the idioblast volume as a central vacuole. Differentiation of vacuoles by accumulating the fluorescence substance might be an integral part of idioblast differentiation. Red autofluorescence from chloroplasts was not detected in idioblasts of young expanding leaves, suggesting idioblast differentiation involves an arrest in chloroplast development at a very early stage, rather than transdifferentiation of chloroplast-containing epidermal cells. PMID:25742311

  14. Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient.

    PubMed

    Shi, Junwei; Zhang, Bin; Liu, Fei; Luo, Jianwen; Bai, Jing

    2013-09-15

    For the ill-posed fluorescent molecular tomography (FMT) inverse problem, the L1 regularization can protect the high-frequency information like edges while effectively reduce the image noise. However, the state-of-the-art L1 regularization-based algorithms for FMT reconstruction are expensive in memory, especially for large-scale problems. An efficient L1 regularization-based reconstruction algorithm based on nonlinear conjugate gradient with restarted strategy is proposed to increase the computational speed with low memory consumption. The reconstruction results from phantom experiments demonstrate that the proposed algorithm can obtain high spatial resolution and high signal-to-noise ratio, as well as high localization accuracy for fluorescence targets.

  15. Oil Spill Detection and Tracking Using Lipschitz Regularity and Multiscale Techniques in Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Ajadi, O. A.; Meyer, F. J.

    2014-12-01

    Automatic oil spill detection and tracking from Synthetic Aperture Radar (SAR) images is a difficult task, due in large part to the inhomogeneous properties of the sea surface, the high level of speckle inherent in SAR data, the complexity and the highly non-Gaussian nature of amplitude information, and the low temporal sampling that is often achieved with SAR systems. This research presents a promising new oil spill detection and tracking method that is based on time series of SAR images. Through the combination of a number of advanced image processing techniques, the develop approach is able to mitigate some of these previously mentioned limitations of SAR-based oil-spill detection and enables fully automatic spill detection and tracking across a wide range of spatial scales. The method combines an initial automatic texture analysis with a consecutive change detection approach based on multi-scale image decomposition. The first step of the approach, a texture transformation of the original SAR images, is performed in order to normalize the ocean background and enhance the contrast between oil-covered and oil-free ocean surfaces. The Lipschitz regularity (LR), a local texture parameter, is used here due to its proven ability to normalize the reflectivity properties of ocean water and maximize the visibly of oil in water. To calculate LR, the images are decomposed using two-dimensional continuous wavelet transform (2D-CWT), and transformed into Holder space to measure LR. After texture transformation, the now normalized images are inserted into our multi-temporal change detection algorithm. The multi-temporal change detection approach is a two-step procedure including (1) data enhancement and filtering and (2) multi-scale automatic change detection. The performance of the developed approach is demonstrated by an application to oil spill areas in the Gulf of Mexico. In this example, areas affected by oil spills were identified from a series of ALOS PALSAR images acquired in 2010. The comparison showed exceptional performance of our method. This method can be applied to emergency management and decision support systems with a need for real-time data, and it shows great potential for rapid data analysis in other areas, including volcano detection, flood boundaries, forest health, and wildfires.

  16. Periodicity in spatial data and geostatistical models: autocorrelation between patches

    Treesearch

    Volker C. Radeloff; Todd F. Miller; Hong S. He; David J. Mladenoff

    2000-01-01

    Several recent studies in landscape ecology have found periodicity in correlograms or semi-variograms calculated, for instance, from spatial data of soils, forests, or animal populations. Some of the studies interpreted this as an indication of regular or periodic landscape patterns. This interpretation is in disagreement with other studies that doubt whether such...

  17. Least squares reconstruction of non-linear RF phase encoded MR data.

    PubMed

    Salajeghe, Somaie; Babyn, Paul; Sharp, Jonathan C; Sarty, Gordon E

    2016-09-01

    The numerical feasibility of reconstructing MRI signals generated by RF coils that produce B1 fields with a non-linearly varying spatial phase is explored. A global linear spatial phase variation of B1 is difficult to produce from current confined to RF coils. Here we use regularized least squares inversion, in place of the usual Fourier transform, to reconstruct signals generated in B1 fields with non-linear phase variation. RF encoded signals were simulated for three RF coil configurations: ideal linear, parallel conductors and, circular coil pairs. The simulated signals were reconstructed by Fourier transform and by regularized least squares. The Fourier reconstruction of simulated RF encoded signals from the parallel conductor coil set showed minor distortions over the reconstruction of signals from the ideal linear coil set but the Fourier reconstruction of signals from the circular coil set produced severe geometric distortion. Least squares inversion in all cases produced reconstruction errors comparable to the Fourier reconstruction of the simulated signal from the ideal linear coil set. MRI signals encoded in B1 fields with non-linearly varying spatial phase may be accurately reconstructed using regularized least squares thus pointing the way to the use of simple RF coil designs for RF encoded MRI. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  18. Photoacoustic tomography guided diffuse optical tomography for small-animal model

    NASA Astrophysics Data System (ADS)

    Wang, Yihan; Gao, Feng; Wan, Wenbo; Zhang, Yan; Li, Jiao

    2015-03-01

    Diffuse optical tomography (DOT) is a biomedical imaging technology for noninvasive visualization of spatial variation about the optical properties of tissue, which can be applied to in vivo small-animal disease model. However, traditional DOT suffers low spatial resolution due to tissue scattering. To overcome this intrinsic shortcoming, multi-modal approaches that incorporate DOT with other imaging techniques have been intensively investigated, where a priori information provided by the other modalities is normally used to reasonably regularize the inverse problem of DOT. Nevertheless, these approaches usually consider the anatomical structure, which is different from the optical structure. Photoacoustic tomography (PAT) is an emerging imaging modality that is particularly useful for visualizing lightabsorbing structures embedded in soft tissue with higher spatial resolution compared with pure optical imaging. Thus, we present a PAT-guided DOT approach, to obtain the location a priori information of optical structure provided by PAT first, and then guide DOT to reconstruct the optical parameters quantitatively. The results of reconstruction of phantom experiments demonstrate that both quantification and spatial resolution of DOT could be highly improved by the regularization of feasible-region information provided by PAT.

  19. A New Stratified Sampling Procedure which Decreases Error Estimation of Varroa Mite Number on Sticky Boards.

    PubMed

    Kretzschmar, A; Durand, E; Maisonnasse, A; Vallon, J; Le Conte, Y

    2015-06-01

    A new procedure of stratified sampling is proposed in order to establish an accurate estimation of Varroa destructor populations on sticky bottom boards of the hive. It is based on the spatial sampling theory that recommends using regular grid stratification in the case of spatially structured process. The distribution of varroa mites on sticky board being observed as spatially structured, we designed a sampling scheme based on a regular grid with circles centered on each grid element. This new procedure is then compared with a former method using partially random sampling. Relative error improvements are exposed on the basis of a large sample of simulated sticky boards (n=20,000) which provides a complete range of spatial structures, from a random structure to a highly frame driven structure. The improvement of varroa mite number estimation is then measured by the percentage of counts with an error greater than a given level. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Predictive cues for auditory stream formation in humans and monkeys.

    PubMed

    Aggelopoulos, Nikolaos C; Deike, Susann; Selezneva, Elena; Scheich, Henning; Brechmann, André; Brosch, Michael

    2017-12-18

    Auditory perception is improved when stimuli are predictable, and this effect is evident in a modulation of the activity of neurons in the auditory cortex as shown previously. Human listeners can better predict the presence of duration deviants embedded in stimulus streams with fixed interonset interval (isochrony) and repeated duration pattern (regularity), and neurons in the auditory cortex of macaque monkeys have stronger sustained responses in the 60-140 ms post-stimulus time window under these conditions. Subsequently, the question has arisen whether isochrony or regularity in the sensory input contributed to the enhancement of the neuronal and behavioural responses. Therefore, we varied the two factors isochrony and regularity independently and measured the ability of human subjects to detect deviants embedded in these sequences as well as measuring the responses of neurons the primary auditory cortex of macaque monkeys during presentations of the sequences. The performance of humans in detecting deviants was significantly increased by regularity. Isochrony enhanced detection only in the presence of the regularity cue. In monkeys, regularity increased the sustained component of neuronal tone responses in auditory cortex while isochrony had no consistent effect. Although both regularity and isochrony can be considered as parameters that would make a sequence of sounds more predictable, our results from the human and monkey experiments converge in that regularity has a greater influence on behavioural performance and neuronal responses. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Assessment of using ultrasound images as prior for diffuse optical tomography regularization matrix

    NASA Astrophysics Data System (ADS)

    Althobaiti, Murad; Vavadi, Hamed; Zhu, Quing

    2017-02-01

    Imaging of tissue with Ultrasound-guided diffuse optical tomography (DOT) is a rising imaging technique to map hemoglobin concentrations within tissue for breast cancer detection and diagnosis. Near-infrared optical imaging received a lot of attention in research as a possible technique to be used for such purpose especially for breast tumors. Since DOT images contrast is closely related to oxygenation and deoxygenating of the hemoglobin, which is an important factor in differentiating malignant and benign tumors. One of the optical imaging modalities used is the diffused optical tomography (DOT); which probes deep scattering tissue (1-5cm) by NIR optical source-detector probe and detects NIR photons in the diffusive regime. The photons in the diffusive regime usually reach the detector without significant information about their source direction and the propagation path. Because of that, the optical reconstruction problem of the medium characteristics is ill-posed even with the tomography and Back-projection techniques. The accurate recovery of images requires an effective image reconstruction method. Here, we illustrate a method in which ultrasound images are encoded as prior for regularization of the inversion matrix. Results were evaluated using phantom experiments of low and high absorption contrasts. This method improves differentiation between the low and the high contrasts targets. Ultimately, this method could improve malignant and benign cases by increasing reconstructed absorption ratio of malignant to benign. Besides that, the phantom results show improvements in target shape as well as the spatial resolution of the DOT reconstructed images.

  2. Contrasting patterns of fine-scale herb layer species composition in temperate forests

    NASA Astrophysics Data System (ADS)

    Chudomelová, Markéta; Zelený, David; Li, Ching-Feng

    2017-04-01

    Although being well described at the landscape level, patterns in species composition of forest herb layer are rarely studied at smaller scales. Here, we examined fine-scale environmental determinants and spatial structures of herb layer communities in thermophilous oak- and hornbeam dominated forests of the south-eastern part of the Czech Republic. Species composition of herb layer vegetation and environmental variables were recorded within a fixed grid of 2 × 2 m subplots regularly distributed within 1-ha quadrate plots in three forest stands. For each site, environmental models best explaining species composition were constructed using constrained ordination analysis. Spatial eigenvector mapping was used to model and account for spatial structures in community variation. Mean Ellenberg indicator values calculated for each subplot were used for ecological interpretation of spatially structured residual variation. The amount of variation explained by environmental and spatial models as well as the selection of variables with the best explanatory power differed among sites. As an important environmental factor, relative elevation was common to all three sites, while pH and canopy openness were shared by two sites. Both environmental and community variation was mostly coarse-scaled, as was the spatially structured portion of residual variation. When corrected for bias due to spatial autocorrelation, those environmental factors with already weak explanatory power lost their significance. Only a weak evidence of possibly omitted environmental predictor was found for autocorrelated residuals of site models using mean Ellenberg indicator values. Community structure was determined by different factors at different sites. The relative importance of environmental filtering vs. spatial processes was also site specific, implying that results of fine-scale studies tend to be shaped by local conditions. Contrary to expectations based on other studies, overall dominance of spatial processes at fine scale has not been detected. Ecologists should keep this in mind when making generalizations about community dynamics.

  3. Long-term adaptation to change in implicit contextual learning.

    PubMed

    Zellin, Martina; von Mühlenen, Adrian; Müller, Hermann J; Conci, Markus

    2014-08-01

    The visual world consists of spatial regularities that are acquired through experience in order to guide attentional orienting. For instance, in visual search, detection of a target is faster when a layout of nontarget items is encountered repeatedly, suggesting that learned contextual associations can guide attention (contextual cuing). However, scene layouts sometimes change, requiring observers to adapt previous memory representations. Here, we investigated the long-term dynamics of contextual adaptation after a permanent change of the target location. We observed fast and reliable learning of initial context-target associations after just three repetitions. However, adaptation of acquired contextual representations to relocated targets was slow and effortful, requiring 3 days of training with overall 80 repetitions. A final test 1 week later revealed equivalent effects of contextual cuing for both target locations, and these were comparable to the effects observed on day 1. That is, observers learned both initial target locations and relocated targets, given extensive training combined with extended periods of consolidation. Thus, while implicit contextual learning efficiently extracts statistical regularities of our environment at first, it is rather insensitive to change in the longer term, especially when subtle changes in context-target associations need to be acquired.

  4. Circulation controls of the spatial structure of maximum daily precipitation over Poland

    NASA Astrophysics Data System (ADS)

    Stach, Alfred

    2015-04-01

    Among forecasts made on the basis of global and regional climatic models is one of a high probability of an increase in the frequency and intensity of extreme precipitation events. Learning the regularities underlying the recurrence and spatial extent of extreme precipitation is obviously of great importance, both economic and social. The main goal of the study was to analyse regularities underlying spatial and temporal variations in monthly Maximum Daily Precipitation Totals (MDPTs) observed in Poland over the years 1956-1980. These data are specific because apart from being spatially discontinuous, which is typical of precipitation, they are also non-synchronic. The main aim of the study was accomplished via several detailed goals: • identification and typology of the spatial structure of monthly MDPTs, • determination of the character and probable origin of events generating MDPTs, and • quantitative assessment of the contribution of the particular events to the overall MDPT figures. The analysis of the spatial structure of MDPTs was based on 300 models of spatial structure, one for each of the analysed sets of monthly MDPTs. The models were built on the basis of empirical anisotropic semivariograms of normalised data. In spite of their spatial discontinuity and asynchronicity, the MDPT data from Poland display marked regularities in their spatial pattern that yield readily to mathematical modelling. The MDPT field in Poland is usually the sum of the outcomes of three types of processes operating at various spatial scales: local (<10-20 km), regional (50-150 km), and supra-regional (>200 km). The spatial scales are probably connected with a convective/ orographic, a frontal and a 'planetary waves' genesis of high precipitation. Their contributions are highly variable. Generally predominant, however, are high daily precipitation totals with a spatial extent of 50 to 150 km connected with mesoscale phenomena and the migration of atmospheric fronts (35-38%). The spatial extent of areas of high local-scale precipitation usually varies at random, especially in the warm season. At supra-local scales, structures of repetitive size predominate. Eight types of anisotropic structures of monthly MDPTs were distinguished. To identify them, an analysis was made of semivariance surface similarities. The types differ not only in the level and direction of anisotropy, but also in the number and type of elementary components, which is evidence of genetic differences in precipitation. Their appearance shows a significant seasonal variability, so the most probable supposition was that temporal variations in the MDPT pattern were connected with circulation conditions: the type and direction of inflow of air masses. This hypothesis was validated by testing differences in the frequency of occurrence of Grosswetterlagen circulation situations in the months belonging to the distinguished types of the spatial MDPT pattern.

  5. Detecting regional patterns of changing CO2 flux in Alaska

    PubMed Central

    Parazoo, Nicholas C.; Wofsy, Steven C.; Koven, Charles D.; Sweeney, Colm; Lawrence, David M.; Lindaas, Jakob; Chang, Rachel Y.-W.; Miller, Charles E.

    2016-01-01

    With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO2 with climatically forced CO2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage and near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO2 observing network is unlikely to detect potentially large CO2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. Although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost. PMID:27354511

  6. Detecting regional patterns of changing CO 2 flux in Alaska

    DOE PAGES

    Parazoo, Nicholas C.; Commane, Roisin; Wofsy, Steven C.; ...

    2016-06-27

    With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO 2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO 2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO 2 with climatically forced CO 2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage andmore » near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO 2 observing network is unlikely to detect potentially large CO 2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. In conclusion, although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost.« less

  7. Advances in Significance Testing for Cluster Detection

    NASA Astrophysics Data System (ADS)

    Coleman, Deidra Andrea

    Over the past two decades, much attention has been given to data driven project goals such as the Human Genome Project and the development of syndromic surveillance systems. A major component of these types of projects is analyzing the abundance of data. Detecting clusters within the data can be beneficial as it can lead to the identification of specified sequences of DNA nucleotides that are related to important biological functions or the locations of epidemics such as disease outbreaks or bioterrorism attacks. Cluster detection techniques require efficient and accurate hypothesis testing procedures. In this dissertation, we improve upon the hypothesis testing procedures for cluster detection by enhancing distributional theory and providing an alternative method for spatial cluster detection using syndromic surveillance data. In Chapter 2, we provide an efficient method to compute the exact distribution of the number and coverage of h-clumps of a collection of words. This method involves defining a Markov chain using a minimal deterministic automaton to reduce the number of states needed for computation. We allow words of the collection to contain other words of the collection making the method more general. We use our method to compute the distributions of the number and coverage of h-clumps in the Chi motif of H. influenza.. In Chapter 3, we provide an efficient algorithm to compute the exact distribution of multiple window discrete scan statistics for higher-order, multi-state Markovian sequences. This algorithm involves defining a Markov chain to efficiently keep track of probabilities needed to compute p-values of the statistic. We use our algorithm to identify cases where the available approximation does not perform well. We also use our algorithm to detect unusual clusters of made free throw shots by National Basketball Association players during the 2009-2010 regular season. In Chapter 4, we give a procedure to detect outbreaks using syndromic surveillance data while controlling the Bayesian False Discovery Rate (BFDR). The procedure entails choosing an appropriate Bayesian model that captures the spatial dependency inherent in epidemiological data and considers all days of interest, selecting a test statistic based on a chosen measure that provides the magnitude of the maximumal spatial cluster for each day, and identifying a cutoff value that controls the BFDR for rejecting the collective null hypothesis of no outbreak over a collection of days for a specified region.We use our procedure to analyze botulism-like syndrome data collected by the North Carolina Disease Event Tracking and Epidemiologic Collection Tool (NC DETECT).

  8. Use of Self-to-Object and Object-to-Object Spatial Relations in Locomotion

    ERIC Educational Resources Information Center

    Xiao, Chengli; Mou, Weimin; McNamara, Timothy P.

    2009-01-01

    In 8 experiments, the authors examined the use of representations of self-to-object or object-to-object spatial relations during locomotion. Participants learned geometrically regular or irregular layouts of objects while standing at the edge or in the middle and then pointed to objects while blindfolded in 3 conditions: before turning (baseline),…

  9. Spatial optimization of the pattern of fuel management activities and subsequent effects on simulated wildfires

    Treesearch

    Young-Hwan Kim; Pete Bettinger; Mark Finney

    2009-01-01

    Methods for scheduling forest management activities in a spatial pattern (dispersed, clumped, random, and regular) are presented, with the intent to examine the effects of placement of activities on resulting simulated wildfire behavior. Both operational and fuel reduction management prescriptions are examined, and a heuristic was employed to schedule the activities....

  10. Spectral methods for the spin-2 equation near the cylinder at spatial infinity

    NASA Astrophysics Data System (ADS)

    Macedo, Rodrigo P.; Valiente Kroon, Juan A.

    2018-06-01

    We solve, numerically, the massless spin-2 equations, written in terms of a gauge based on the properties of conformal geodesics, in a neighbourhood of spatial infinity using spectral methods in both space and time. This strategy allows us to compute the solutions to these equations up to the critical sets where null infinity intersects with spatial infinity. Moreover, we use the convergence rates of the numerical solutions to read-off their regularity properties.

  11. Multispectral guided fluorescence diffuse optical tomography using upconverting nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svenmarker, Pontus, E-mail: pontus.svenmarker@physics.umu.se; Department of Physics, Umeå University, SE-901 87 Umeå; Centre for Microbial Research

    2014-02-17

    We report on improved image detectability for fluorescence diffuse optical tomography using upconverting nanoparticles doped with rare-earth elements. Core-shell NaYF{sub 4}:Yb{sup 3+}/Er{sup 3+}@NaYF{sub 4} upconverting nanoparticles were synthesized through a stoichiometric method. The Yb{sup 3+}/Er{sup 3+} sensitizer-activator pair yielded two anti-Stokes shifted fluorescence emission bands at 540 nm and 660 nm, here used to a priori estimate the fluorescence source depth with sub-millimeter precision. A spatially varying regularization incorporated the a priori fluorescence source depth estimation into the tomography reconstruction scheme. Tissue phantom experiments showed both an improved resolution and contrast in the reconstructed images as compared to not using any amore » priori information.« less

  12. Spatial point pattern analysis of human settlements and geographical associations in eastern coastal China - a case study.

    PubMed

    Zhang, Zhonghao; Xiao, Rui; Shortridge, Ashton; Wu, Jiaping

    2014-03-10

    Understanding the spatial point pattern of human settlements and their geographical associations are important for understanding the drivers of land use and land cover change and the relationship between environmental and ecological processes on one hand and cultures and lifestyles on the other. In this study, a Geographic Information System (GIS) approach, Ripley's K function and Monte Carlo simulation were used to investigate human settlement point patterns. Remotely sensed tools and regression models were employed to identify the effects of geographical determinants on settlement locations in the Wen-Tai region of eastern coastal China. Results indicated that human settlements displayed regular-random-cluster patterns from small to big scale. Most settlements located on the coastal plain presented either regular or random patterns, while those in hilly areas exhibited a clustered pattern. Moreover, clustered settlements were preferentially located at higher elevations with steeper slopes and south facing aspects than random or regular settlements. Regression showed that influences of topographic factors (elevation, slope and aspect) on settlement locations were stronger across hilly regions. This study demonstrated a new approach to analyzing the spatial patterns of human settlements from a wide geographical prospective. We argue that the spatial point patterns of settlements, in addition to the characteristics of human settlements, such as area, density and shape, should be taken into consideration in the future, and land planners and decision makers should pay more attention to city planning and management. Conceptual and methodological bridges linking settlement patterns to regional and site-specific geographical characteristics will be a key to human settlement studies and planning.

  13. Spatially Regularized Machine Learning for Task and Resting-state fMRI

    PubMed Central

    Song, Xiaomu; Panych, Lawrence P.; Chen, Nan-kuei

    2015-01-01

    Background Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades. New Method A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space. Results The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level. Comparison with Existing Methods A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level. Conclusions The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies. PMID:26470627

  14. Shade tree spatial structure and pod production explain frosty pod rot intensity in cacao agroforests, Costa Rica.

    PubMed

    Gidoin, Cynthia; Avelino, Jacques; Deheuvels, Olivier; Cilas, Christian; Bieng, Marie Ange Ngo

    2014-03-01

    Vegetation composition and plant spatial structure affect disease intensity through resource and microclimatic variation effects. The aim of this study was to evaluate the independent effect and relative importance of host composition and plant spatial structure variables in explaining disease intensity at the plot scale. For that purpose, frosty pod rot intensity, a disease caused by Moniliophthora roreri on cacao pods, was monitored in 36 cacao agroforests in Costa Rica in order to assess the vegetation composition and spatial structure variables conducive to the disease. Hierarchical partitioning was used to identify the most causal factors. Firstly, pod production, cacao tree density and shade tree spatial structure had significant independent effects on disease intensity. In our case study, the amount of susceptible tissue was the most relevant host composition variable for explaining disease intensity by resource dilution. Indeed, cacao tree density probably affected disease intensity more by the creation of self-shading rather than by host dilution. Lastly, only regularly distributed forest trees, and not aggregated or randomly distributed forest trees, reduced disease intensity in comparison to plots with a low forest tree density. A regular spatial structure is probably crucial to the creation of moderate and uniform shade as recommended for frosty pod rot management. As pod production is an important service expected from these agroforests, shade tree spatial structure may be a lever for integrated management of frosty pod rot in cacao agroforests.

  15. Spatial variability of soil available phosphorous and potassium at three different soils located in Pannonian Croatia

    NASA Astrophysics Data System (ADS)

    Bogunović, Igor; Pereira, Paulo; Đurđević, Boris

    2017-04-01

    Information on spatial distribution of soil nutrients in agroecosystems is critical for improving productivity and reducing environmental pressures in intensive farmed soils. In this context, spatial prediction of soil properties should be accurate. In this study we analyse 704 data of soil available phosphorus (AP) and potassium (AK); the data derive from soil samples collected across three arable fields in Baranja region (Croatia) in correspondence of different soil types: Cambisols (169 samples), Chernozems (131 samples) and Gleysoils (404 samples). The samples are collected in a regular sampling grid (distance 225 x 225 m). Several geostatistical techniques (Inverse Distance to a Weight (IDW) with the power of 1, 2 and 3; Radial Basis Functions (RBF) - Inverse Multiquadratic (IMT), Multiquadratic (MTQ), Completely Regularized Spline (CRS), Spline with Tension (SPT) and Thin Plate Spline (TPS); and Local Polynomial (LP) with the power of 1 and 2; two geostatistical techniques -Ordinary Kriging - OK and Simple Kriging - SK) were tested in order to evaluate the most accurate spatial variability maps using criteria of lowest RMSE during cross validation technique. Soil parameters varied considerably throughout the studied fields and their coefficient of variations ranged from 31.4% to 37.7% and from 19.3% to 27.1% for soil AP and AK, respectively. The experimental variograms indicate a moderate spatial dependence for AP and strong spatial dependence for all three locations. The best spatial predictor for AP at Chernozem field was Simple kriging (RMSE=61.711), and for AK inverse multiquadratic (RMSE=44.689). The least accurate technique was Thin plate spline (AP) and Inverse distance to a weight with a power of 1 (AK). Radial basis function models (Spline with Tension for AP at Gleysoil and Cambisol and Completely Regularized Spline for AK at Gleysol) were the best predictors, while Thin Plate Spline models were the least accurate in all three cases. The best interpolator for AK at Cambisol was the local polynomial with the power of 2 (RMSE=33.943), while the least accurate was Thin Plate Spline (RMSE=39.572).

  16. Markov Chain Monte Carlo estimation of species distributions: a case study of the swift fox in western Kansas

    USGS Publications Warehouse

    Sargeant, Glen A.; Sovada, Marsha A.; Slivinski, Christiane C.; Johnson, Douglas H.

    2005-01-01

    Accurate maps of species distributions are essential tools for wildlife research and conservation. Unfortunately, biologists often are forced to rely on maps derived from observed occurrences recorded opportunistically during observation periods of variable length. Spurious inferences are likely to result because such maps are profoundly affected by the duration and intensity of observation and by methods used to delineate distributions, especially when detection is uncertain. We conducted a systematic survey of swift fox (Vulpes velox) distribution in western Kansas, USA, and used Markov chain Monte Carlo (MCMC) image restoration to rectify these problems. During 1997–1999, we searched 355 townships (ca. 93 km) 1–3 times each for an average cost of $7,315 per year and achieved a detection rate (probability of detecting swift foxes, if present, during a single search) of = 0.69 (95% Bayesian confidence interval [BCI] = [0.60, 0.77]). Our analysis produced an estimate of the underlying distribution, rather than a map of observed occurrences, that reflected the uncertainty associated with estimates of model parameters. To evaluate our results, we analyzed simulated data with similar properties. Results of our simulations suggest negligible bias and good precision when probabilities of detection on ≥1 survey occasions (cumulative probabilities of detection) exceed 0.65. Although the use of MCMC image restoration has been limited by theoretical and computational complexities, alternatives do not possess the same advantages. Image models accommodate uncertain detection, do not require spatially independent data or a census of map units, and can be used to estimate species distributions directly from observations without relying on habitat covariates or parameters that must be estimated subjectively. These features facilitate economical surveys of large regions, the detection of temporal trends in distribution, and assessments of landscape-level relations between species and habitats. Requirements for the use of MCMC image restoration include study areas that can be partitioned into regular grids of mapping units, spatially contagious species distributions, reliable methods for identifying target species, and cumulative probabilities of detection ≥0.65.

  17. Markov chain Monte Carlo estimation of species distributions: A case study of the swift fox in western Kansas

    USGS Publications Warehouse

    Sargeant, G.A.; Sovada, M.A.; Slivinski, C.C.; Johnson, D.H.

    2005-01-01

    Accurate maps of species distributions are essential tools for wildlife research and conservation. Unfortunately, biologists often are forced to rely on maps derived from observed occurrences recorded opportunistically during observation periods of variable length. Spurious inferences are likely to result because such maps are profoundly affected by the duration and intensity of observation and by methods used to delineate distributions, especially when detection is uncertain. We conducted a systematic survey of swift fox (Vulpes velox) distribution in western Kansas, USA, and used Markov chain Monte Carlo (MCMC) image restoration to rectify these problems. During 1997-1999, we searched 355 townships (ca. 93 km2) 1-3 times each for an average cost of $7,315 per year and achieved a detection rate (probability of detecting swift foxes, if present, during a single search) of ?? = 0.69 (95% Bayesian confidence interval [BCI] = [0.60, 0.77]). Our analysis produced an estimate of the underlying distribution, rather than a map of observed occurrences, that reflected the uncertainty associated with estimates of model parameters. To evaluate our results, we analyzed simulated data with similar properties. Results of our simulations suggest negligible bias and good precision when probabilities of detection on ???1 survey occasions (cumulative probabilities of detection) exceed 0.65. Although the use of MCMC image restoration has been limited by theoretical and computational complexities, alternatives do not possess the same advantages. Image models accommodate uncertain detection, do not require spatially independent data or a census of map units, and can be used to estimate species distributions directly from observations without relying on habitat covariates or parameters that must be estimated subjectively. These features facilitate economical surveys of large regions, the detection of temporal trends in distribution, and assessments of landscape-level relations between species and habitats. Requirements for the use of MCMC image restoration include study areas that can be partitioned into regular grids of mapping units, spatially contagious species distributions, reliable methods for identifying target species, and cumulative probabilities of detection ???0.65.

  18. High quality 4D cone-beam CT reconstruction using motion-compensated total variation regularization

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Ma, Jianhua; Bian, Zhaoying; Zeng, Dong; Feng, Qianjin; Chen, Wufan

    2017-04-01

    Four dimensional cone-beam computed tomography (4D-CBCT) has great potential clinical value because of its ability to describe tumor and organ motion. But the challenge in 4D-CBCT reconstruction is the limited number of projections at each phase, which result in a reconstruction full of noise and streak artifacts with the conventional analytical algorithms. To address this problem, in this paper, we propose a motion compensated total variation regularization approach which tries to fully explore the temporal coherence of the spatial structures among the 4D-CBCT phases. In this work, we additionally conduct motion estimation/motion compensation (ME/MC) on the 4D-CBCT volume by using inter-phase deformation vector fields (DVFs). The motion compensated 4D-CBCT volume is then viewed as a pseudo-static sequence, of which the regularization function was imposed on. The regularization used in this work is the 3D spatial total variation minimization combined with 1D temporal total variation minimization. We subsequently construct a cost function for a reconstruction pass, and minimize this cost function using a variable splitting algorithm. Simulation and real patient data were used to evaluate the proposed algorithm. Results show that the introduction of additional temporal correlation along the phase direction can improve the 4D-CBCT image quality.

  19. Visuomotor adaptability in older adults with mild cognitive decline.

    PubMed

    Schaffert, Jeffrey; Lee, Chi-Mei; Neill, Rebecca; Bo, Jin

    2017-02-01

    The current study examined the augmentation of error feedback on visuomotor adaptability in older adults with varying degrees of cognitive decline (assessed by the Montreal Cognitive Assessment; MoCA). Twenty-three participants performed a center-out computerized visuomotor adaptation task when the visual feedback of their hand movement error was presented in a regular (ratio=1:1) or enhanced (ratio=1:2) error feedback schedule. Results showed that older adults with lower scores on the MoCA had less adaptability than those with higher MoCA scores during the regular feedback schedule. However, participants demonstrated similar adaptability during the enhanced feedback schedule, regardless of their cognitive ability. Furthermore, individuals with lower MoCA scores showed larger after-effects in spatial control during the enhanced schedule compared to the regular schedule, whereas individuals with higher MoCA scores displayed the opposite pattern. Additional neuro-cognitive assessments revealed that spatial working memory and processing speed were positively related to motor adaptability during the regular scheduled but negatively related to adaptability during the enhanced schedule. We argue that individuals with mild cognitive decline employed different adaptation strategies when encountering enhanced visual feedback, suggesting older adults with mild cognitive impairment (MCI) may benefit from enhanced visual error feedback during sensorimotor adaptation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Analysis of absence seizure generation using EEG spatial-temporal regularity measures.

    PubMed

    Mammone, Nadia; Labate, Domenico; Lay-Ekuakille, Aime; Morabito, Francesco C

    2012-12-01

    Epileptic seizures are thought to be generated and to evolve through an underlying anomaly of synchronization in the activity of groups of neuronal populations. The related dynamic scenario of state transitions is revealed by detecting changes in the dynamical properties of Electroencephalography (EEG) signals. The recruitment procedure ending with the crisis can be explored through a spatial-temporal plot from which to extract suitable descriptors that are able to monitor and quantify the evolving synchronization level from the EEG tracings. In this paper, a spatial-temporal analysis of EEG recordings based on the concept of permutation entropy (PE) is proposed. The performance of PE are tested on a database of 24 patients affected by absence (generalized) seizures. The results achieved are compared to the dynamical behavior of the EEG of 40 healthy subjects. Being PE a feature which is dependent on two parameters, an extensive study of the sensitivity of the performance of PE with respect to the parameters' setting was carried out on scalp EEG. Once the optimal PE configuration was determined, its ability to detect the different brain states was evaluated. According to the results here presented, it seems that the widely accepted model of "jump" transition to absence seizure should be in some cases coupled (or substituted) by a gradual transition model characteristic of self-organizing networks. Indeed, it appears that the transition to the epileptic status is heralded before the preictal state, ever since the interictal stages. As a matter of fact, within the limits of the analyzed database, the frontal-temporal scalp areas appear constantly associated to PE levels higher compared to the remaining electrodes, whereas the parieto-occipital areas appear associated to lower PE values. The EEG of healthy subjects neither shows any similar dynamic behavior nor exhibits any recurrent portrait in PE topography.

  1. Penalized Weighted Least-Squares Approach to Sinogram Noise Reduction and Image Reconstruction for Low-Dose X-Ray Computed Tomography

    PubMed Central

    Wang, Jing; Li, Tianfang; Lu, Hongbing; Liang, Zhengrong

    2006-01-01

    Reconstructing low-dose X-ray CT (computed tomography) images is a noise problem. This work investigated a penalized weighted least-squares (PWLS) approach to address this problem in two dimensions, where the WLS considers first- and second-order noise moments and the penalty models signal spatial correlations. Three different implementations were studied for the PWLS minimization. One utilizes a MRF (Markov random field) Gibbs functional to consider spatial correlations among nearby detector bins and projection views in sinogram space and minimizes the PWLS cost function by iterative Gauss-Seidel algorithm. Another employs Karhunen-Loève (KL) transform to de-correlate data signals among nearby views and minimizes the PWLS adaptively to each KL component by analytical calculation, where the spatial correlation among nearby bins is modeled by the same Gibbs functional. The third one models the spatial correlations among image pixels in image domain also by a MRF Gibbs functional and minimizes the PWLS by iterative successive over-relaxation algorithm. In these three implementations, a quadratic functional regularization was chosen for the MRF model. Phantom experiments showed a comparable performance of these three PWLS-based methods in terms of suppressing noise-induced streak artifacts and preserving resolution in the reconstructed images. Computer simulations concurred with the phantom experiments in terms of noise-resolution tradeoff and detectability in low contrast environment. The KL-PWLS implementation may have the advantage in terms of computation for high-resolution dynamic low-dose CT imaging. PMID:17024831

  2. Implicit learning of non-spatial sequences in schizophrenia

    PubMed Central

    MARVEL, CHERIE L.; SCHWARTZ, BARBARA L.; HOWARD, DARLENE V.; HOWARD, JAMES H.

    2006-01-01

    Recent studies have reported abnormal implicit learning of sequential patterns in patients with schizophrenia. Because these studies were based on visuospatial cues, the question remained whether patients were impaired simply due to the demands of spatial processing. This study examined implicit sequence learning in 24 patients with schizophrenia and 24 healthy controls using a non-spatial variation of the serial reaction time test (SRT) in which pattern stimuli alternated with random stimuli on every other trial. Both groups showed learning by responding faster and more accurately to pattern trials than to random trials. Patients, however, showed a smaller magnitude of sequence learning. Both groups were unable to demonstrate explicit knowledge of the nature of the pattern, confirming that learning occurred without awareness. Clinical variables were not correlated with the patients' learning deficits. Patients with schizophrenia have a decreased ability to develop sensitivity to regularly occurring sequences of events within their environment. This type of deficit may affect an array of cognitive and motor functions that rely on the perception of event regularity. PMID:16248901

  3. Percolation of spatially constraint networks

    NASA Astrophysics Data System (ADS)

    Li, Daqing; Li, Guanliang; Kosmidis, Kosmas; Stanley, H. E.; Bunde, Armin; Havlin, Shlomo

    2011-03-01

    We study how spatial constraints are reflected in the percolation properties of networks embedded in one-dimensional chains and two-dimensional lattices. We assume long-range connections between sites on the lattice where two sites at distance r are chosen to be linked with probability p(r)~r-δ. Similar distributions have been found in spatially embedded real networks such as social and airline networks. We find that for networks embedded in two dimensions, with 2<δ<4, the percolation properties show new intermediate behavior different from mean field, with critical exponents that depend on δ. For δ<2, the percolation transition belongs to the universality class of percolation in Erdös-Rényi networks (mean field), while for δ>4 it belongs to the universality class of percolation in regular lattices. For networks embedded in one dimension, we find that, for δ<1, the percolation transition is mean field. For 1<δ<2, the critical exponents depend on δ, while for δ>2 there is no percolation transition as in regular linear chains.

  4. Spatial constraints underlying the retinal mosaics of two types of horizontal cells in cat and macaque.

    PubMed

    Eglen, Stephen J; Wong, James C T

    2008-01-01

    Most types of retinal neurons are spatially positioned in non-random patterns, termed retinal mosaics. Several developmental mechanisms are thought to be important in the formation of these mosaics. Most evidence to date suggests that homotypic constraints within a type of neuron are dominant, and that heterotypic interactions between different types of neuron are rare. In an analysis of macaque H1 and H2 horizontal cell mosaics, Wässle et al. (2000) suggested that the high regularity index of the combined H1 and H2 mosaic might be caused by heterotypic interactions during development. Here we use computer modeling to suggest that the high regularity index of the combined H1 and H2 mosaic is a by-product of the basic constraint that two neurons cannot occupy the same space. The spatial arrangement of type A and type B horizontal cells in cat retina also follow this same principle.

  5. High spatial resolution compressed sensing (HSPARSE) functional MRI.

    PubMed

    Fang, Zhongnan; Van Le, Nguyen; Choy, ManKin; Lee, Jin Hyung

    2016-08-01

    To propose a novel compressed sensing (CS) high spatial resolution functional MRI (fMRI) method and demonstrate the advantages and limitations of using CS for high spatial resolution fMRI. A randomly undersampled variable density spiral trajectory enabling an acceleration factor of 5.3 was designed with a balanced steady state free precession sequence to achieve high spatial resolution data acquisition. A modified k-t SPARSE method was then implemented and applied with a strategy to optimize regularization parameters for consistent, high quality CS reconstruction. The proposed method improves spatial resolution by six-fold with 12 to 47% contrast-to-noise ratio (CNR), 33 to 117% F-value improvement and maintains the same temporal resolution. It also achieves high sensitivity of 69 to 99% compared the original ground-truth, small false positive rate of less than 0.05 and low hemodynamic response function distortion across a wide range of CNRs. The proposed method is robust to physiological noise and enables detection of layer-specific activities in vivo, which cannot be resolved using the highest spatial resolution Nyquist acquisition. The proposed method enables high spatial resolution fMRI that can resolve layer-specific brain activity and demonstrates the significant improvement that CS can bring to high spatial resolution fMRI. Magn Reson Med 76:440-455, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  6. Cardiac C-arm computed tomography using a 3D + time ROI reconstruction method with spatial and temporal regularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mory, Cyril, E-mail: cyril.mory@philips.com; Philips Research Medisys, 33 rue de Verdun, 92156 Suresnes; Auvray, Vincent

    2014-02-15

    Purpose: Reconstruction of the beating heart in 3D + time in the catheter laboratory using only the available C-arm system would improve diagnosis, guidance, device sizing, and outcome control for intracardiac interventions, e.g., electrophysiology, valvular disease treatment, structural or congenital heart disease. To obtain such a reconstruction, the patient's electrocardiogram (ECG) must be recorded during the acquisition and used in the reconstruction. In this paper, the authors present a 4D reconstruction method aiming to reconstruct the heart from a single sweep 10 s acquisition. Methods: The authors introduce the 4D RecOnstructiOn using Spatial and TEmporal Regularization (short 4D ROOSTER) method,more » which reconstructs all cardiac phases at once, as a 3D + time volume. The algorithm alternates between a reconstruction step based on conjugate gradient and four regularization steps: enforcing positivity, averaging along time outside a motion mask that contains the heart and vessels, 3D spatial total variation minimization, and 1D temporal total variation minimization. Results: 4D ROOSTER recovers the different temporal representations of a moving Shepp and Logan phantom, and outperforms both ECG-gated simultaneous algebraic reconstruction technique and prior image constrained compressed sensing on a clinical case. It generates 3D + time reconstructions with sharp edges which can be used, for example, to estimate the patient's left ventricular ejection fraction. Conclusions: 4D ROOSTER can be applied for human cardiac C-arm CT, and potentially in other dynamic tomography areas. It can easily be adapted to other problems as regularization is decoupled from projection and back projection.« less

  7. Effects of induced Na+/Ca2+ exchanger overexpression on the spatial distribution of L-type Ca2+ channels and junctophilin-2 in pressure-overloaded hearts.

    PubMed

    Ujihara, Yoshihiro; Mohri, Satoshi; Katanosaka, Yuki

    2016-11-25

    The Na + /Ca 2+ exchanger 1 (NCX1) is an essential Ca 2+ efflux system in cardiomyocytes. Although NCX1 is distributed throughout the sarcolemma, a subpopulation of NCX1 is localized to transverse (T)-tubules. There is growing evidence that T-tubule disorganization is a causal event that shifts the transition from hypertrophy to heart failure (HF). However, the detailed molecular mechanisms have not been clarified. Previously, we showed that induced NCX1 expression in pressure-overloaded hearts attenuates defective excitation-contraction coupling and HF progression. Here, we examined the effects of induced NCX1 overexpression on the spatial distribution of L-type Ca 2+ channels (LTCCs) and junctophilin-2 (JP2), a structural protein that connects the T-tubule and sarcoplasmic reticulum membrane, in pressure-overloaded hearts. Quantitative analysis showed that the regularity of NCX1 localization was significantly decreased at 8 weeks after transverse aortic constriction (TAC)-surgery; however, T-tubule organization and the regularities of LTCC and JP2 immunofluorescent signals were maintained at this time point. These observations demonstrated that release of NCX1 from the T-tubule area occurred before the onset of T-tubule disorganization and LTCC and JP2 mislocalization. Moreover, induced NCX1 overexpression at 8 weeks post-TAC not only recovered NCX1 regularity but also prevented the decrease in LTCC and JP2 regularities at 16 weeks post-TAC. These results suggested that NCX1 may play an important role in the proper spatial distribution of LTCC and JP2 in T-tubules in the context of pressure-overloading. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Identification of nodal tissue in the living heart using rapid scanning fiber-optics confocal microscopy and extracellular fluorophores.

    PubMed

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2013-09-01

    Risks associated with pediatric reconstructive heart surgery include injury of the sinoatrial node (SAN) and atrioventricular node (AVN), requiring cardiac rhythm management using implantable pacemakers. These injuries are the result of difficulties in identifying nodal tissues intraoperatively. Here we describe an approach based on confocal microscopy and extracellular fluorophores to quantify tissue microstructure and identify nodal tissue. Using conventional 3-dimensional confocal microscopy we investigated the microstructural arrangement of SAN, AVN, and atrial working myocardium (AWM) in fixed rat heart. AWM exhibited a regular striated arrangement of the extracellular space. In contrast, SAN and AVN had an irregular, reticulated arrangement. AWM, SAN, and AVN tissues were beneath a thin surface layer of tissue that did not obstruct confocal microscopic imaging. Subsequently, we imaged tissues in living rat hearts with real-time fiber-optics confocal microscopy. Fiber-optics confocal microscopy images resembled images acquired with conventional confocal microscopy. We investigated spatial regularity of tissue microstructure from Fourier analysis and second-order image moments. Fourier analysis of fiber-optics confocal microscopy images showed that the spatial regularity of AWM was greater than that of nodal tissues (37.5 ± 5.0% versus 24.3 ± 3.9% for SAN and 23.8 ± 3.7% for AVN; P<0.05). Similar differences of spatial regularities were revealed from second-order image moments (50.0 ± 7.3% for AWM versus 29.3 ± 6.7% for SAN and 27.3 ± 5.5% for AVN; P<0.05). The study demonstrates feasibility of identifying nodal tissue in living heart using extracellular fluorophores and fiber-optics confocal microscopy. Application of the approach in pediatric reconstructive heart surgery may reduce risks of injuring nodal tissues.

  9. Statistical regularities of art images and natural scenes: spectra, sparseness and nonlinearities.

    PubMed

    Graham, Daniel J; Field, David J

    2007-01-01

    Paintings are the product of a process that begins with ordinary vision in the natural world and ends with manipulation of pigments on canvas. Because artists must produce images that can be seen by a visual system that is thought to take advantage of statistical regularities in natural scenes, artists are likely to replicate many of these regularities in their painted art. We have tested this notion by computing basic statistical properties and modeled cell response properties for a large set of digitized paintings and natural scenes. We find that both representational and non-representational (abstract) paintings from our sample (124 images) show basic similarities to a sample of natural scenes in terms of their spatial frequency amplitude spectra, but the paintings and natural scenes show significantly different mean amplitude spectrum slopes. We also find that the intensity distributions of paintings show a lower skewness and sparseness than natural scenes. We account for this by considering the range of luminances found in the environment compared to the range available in the medium of paint. A painting's range is limited by the reflective properties of its materials. We argue that artists do not simply scale the intensity range down but use a compressive nonlinearity. In our studies, modeled retinal and cortical filter responses to the images were less sparse for the paintings than for the natural scenes. But when a compressive nonlinearity was applied to the images, both the paintings' sparseness and the modeled responses to the paintings showed the same or greater sparseness compared to the natural scenes. This suggests that artists achieve some degree of nonlinear compression in their paintings. Because paintings have captivated humans for millennia, finding basic statistical regularities in paintings' spatial structure could grant insights into the range of spatial patterns that humans find compelling.

  10. Disease Prediction based on Functional Connectomes using a Scalable and Spatially-Informed Support Vector Machine

    PubMed Central

    Watanabe, Takanori; Kessler, Daniel; Scott, Clayton; Angstadt, Michael; Sripada, Chandra

    2014-01-01

    Substantial evidence indicates that major psychiatric disorders are associated with distributed neural dysconnectivity, leading to strong interest in using neuroimaging methods to accurately predict disorder status. In this work, we are specifically interested in a multivariate approach that uses features derived from whole-brain resting state functional connectomes. However, functional connectomes reside in a high dimensional space, which complicates model interpretation and introduces numerous statistical and computational challenges. Traditional feature selection techniques are used to reduce data dimensionality, but are blind to the spatial structure of the connectomes. We propose a regularization framework where the 6-D structure of the functional connectome (defined by pairs of points in 3-D space) is explicitly taken into account via the fused Lasso or the GraphNet regularizer. Our method only restricts the loss function to be convex and margin-based, allowing non-differentiable loss functions such as the hinge-loss to be used. Using the fused Lasso or GraphNet regularizer with the hinge-loss leads to a structured sparse support vector machine (SVM) with embedded feature selection. We introduce a novel efficient optimization algorithm based on the augmented Lagrangian and the classical alternating direction method, which can solve both fused Lasso and GraphNet regularized SVM with very little modification. We also demonstrate that the inner subproblems of the algorithm can be solved efficiently in analytic form by coupling the variable splitting strategy with a data augmentation scheme. Experiments on simulated data and resting state scans from a large schizophrenia dataset show that our proposed approach can identify predictive regions that are spatially contiguous in the 6-D “connectome space,” offering an additional layer of interpretability that could provide new insights about various disease processes. PMID:24704268

  11. Impact of respiratory motion correction and spatial resolution on lesion detection in PET: a simulation study based on real MR dynamic data

    NASA Astrophysics Data System (ADS)

    Polycarpou, Irene; Tsoumpas, Charalampos; King, Andrew P.; Marsden, Paul K.

    2014-02-01

    The aim of this study is to investigate the impact of respiratory motion correction and spatial resolution on lesion detectability in PET as a function of lesion size and tracer uptake. Real respiratory signals describing different breathing types are combined with a motion model formed from real dynamic MR data to simulate multiple dynamic PET datasets acquired from a continuously moving subject. Lung and liver lesions were simulated with diameters ranging from 6 to 12 mm and lesion to background ratio ranging from 3:1 to 6:1. Projection data for 6 and 3 mm PET scanner resolution were generated using analytic simulations and reconstructed without and with motion correction. Motion correction was achieved using motion compensated image reconstruction. The detectability performance was quantified by a receiver operating characteristic (ROC) analysis obtained using a channelized Hotelling observer and the area under the ROC curve (AUC) was calculated as the figure of merit. The results indicate that respiratory motion limits the detectability of lung and liver lesions, depending on the variation of the breathing cycle length and amplitude. Patients with large quiescent periods had a greater AUC than patients with regular breathing cycles and patients with long-term variability in respiratory cycle or higher motion amplitude. In addition, small (less than 10 mm diameter) or low contrast (3:1) lesions showed the greatest improvement in AUC as a result of applying motion correction. In particular, after applying motion correction the AUC is improved by up to 42% with current PET resolution (i.e. 6 mm) and up to 51% for higher PET resolution (i.e. 3 mm). Finally, the benefit of increasing the scanner resolution is small unless motion correction is applied. This investigation indicates high impact of respiratory motion correction on lesion detectability in PET and highlights the importance of motion correction in order to benefit from the increased resolution of future PET scanners.

  12. Deep Independence Network Analysis of Structural Brain Imaging: Application to Schizophrenia

    PubMed Central

    Castro, Eduardo; Hjelm, R. Devon; Plis, Sergey M.; Dinh, Laurent; Turner, Jessica A.; Calhoun, Vince D.

    2016-01-01

    Linear independent component analysis (ICA) is a standard signal processing technique that has been extensively used on neuroimaging data to detect brain networks with coherent brain activity (functional MRI) or covarying structural patterns (structural MRI). However, its formulation assumes that the measured brain signals are generated by a linear mixture of the underlying brain networks and this assumption limits its ability to detect the inherent nonlinear nature of brain interactions. In this paper, we introduce nonlinear independent component estimation (NICE) to structural MRI data to detect abnormal patterns of gray matter concentration in schizophrenia patients. For this biomedical application, we further addressed the issue of model regularization of nonlinear ICA by performing dimensionality reduction prior to NICE, together with an appropriate control of the complexity of the model and the usage of a proper approximation of the probability distribution functions of the estimated components. We show that our results are consistent with previous findings in the literature, but we also demonstrate that the incorporation of nonlinear associations in the data enables the detection of spatial patterns that are not identified by linear ICA. Specifically, we show networks including basal ganglia, cerebellum and thalamus that show significant differences in patients versus controls, some of which show distinct nonlinear patterns. PMID:26891483

  13. A distributed air index based on maximum boundary rectangle over grid-cells for wireless non-flat spatial data broadcast.

    PubMed

    Im, Seokjin; Choi, JinTak

    2014-06-17

    In the pervasive computing environment using smart devices equipped with various sensors, a wireless data broadcasting system for spatial data items is a natural way to efficiently provide a location dependent information service, regardless of the number of clients. A non-flat wireless broadcast system can support the clients in accessing quickly their preferred data items by disseminating the preferred data items more frequently than regular data on the wireless channel. To efficiently support the processing of spatial window queries in a non-flat wireless data broadcasting system, we propose a distributed air index based on a maximum boundary rectangle (MaxBR) over grid-cells (abbreviated DAIM), which uses MaxBRs for filtering out hot data items on the wireless channel. Unlike the existing index that repeats regular data items in close proximity to hot items at same frequency as hot data items in a broadcast cycle, DAIM makes it possible to repeat only hot data items in a cycle and reduces the length of the broadcast cycle. Consequently, DAIM helps the clients access the desired items quickly, improves the access time, and reduces energy consumption. In addition, a MaxBR helps the clients decide whether they have to access regular data items or not. Simulation studies show the proposed DAIM outperforms existing schemes with respect to the access time and energy consumption.

  14. Gas chimney detection based on improving the performance of combined multilayer perceptron and support vector classifier

    NASA Astrophysics Data System (ADS)

    Hashemi, H.; Tax, D. M. J.; Duin, R. P. W.; Javaherian, A.; de Groot, P.

    2008-11-01

    Seismic object detection is a relatively new field in which 3-D bodies are visualized and spatial relationships between objects of different origins are studied in order to extract geologic information. In this paper, we propose a method for finding an optimal classifier with the help of a statistical feature ranking technique and combining different classifiers. The method, which has general applicability, is demonstrated here on a gas chimney detection problem. First, we evaluate a set of input seismic attributes extracted at locations labeled by a human expert using regularized discriminant analysis (RDA). In order to find the RDA score for each seismic attribute, forward and backward search strategies are used. Subsequently, two non-linear classifiers: multilayer perceptron (MLP) and support vector classifier (SVC) are run on the ranked seismic attributes. Finally, to capitalize on the intrinsic differences between both classifiers, the MLP and SVC results are combined using logical rules of maximum, minimum and mean. The proposed method optimizes the ranked feature space size and yields the lowest classification error in the final combined result. We will show that the logical minimum reveals gas chimneys that exhibit both the softness of MLP and the resolution of SVC classifiers.

  15. Physics-driven Spatiotemporal Regularization for High-dimensional Predictive Modeling: A Novel Approach to Solve the Inverse ECG Problem

    NASA Astrophysics Data System (ADS)

    Yao, Bing; Yang, Hui

    2016-12-01

    This paper presents a novel physics-driven spatiotemporal regularization (STRE) method for high-dimensional predictive modeling in complex healthcare systems. This model not only captures the physics-based interrelationship between time-varying explanatory and response variables that are distributed in the space, but also addresses the spatial and temporal regularizations to improve the prediction performance. The STRE model is implemented to predict the time-varying distribution of electric potentials on the heart surface based on the electrocardiogram (ECG) data from the distributed sensor network placed on the body surface. The model performance is evaluated and validated in both a simulated two-sphere geometry and a realistic torso-heart geometry. Experimental results show that the STRE model significantly outperforms other regularization models that are widely used in current practice such as Tikhonov zero-order, Tikhonov first-order and L1 first-order regularization methods.

  16. Gender and Racial Differences: Development of Sixth Grade Students' Geometric Spatial Visualization within an Earth/Space Unit

    ERIC Educational Resources Information Center

    Jackson, Christa; Wilhelm, Jennifer Anne; Lamar, Mary; Cole, Merryn

    2015-01-01

    This study investigated sixth-grade middle-level students' geometric spatial development by gender and race within and between control and experimental groups at two middle schools as they participated in an Earth/Space unit. The control group utilized a regular Earth/Space curriculum and the experimental group used a National Aeronautics and…

  17. Extended generalized recurrence plot quantification of complex circular patterns

    NASA Astrophysics Data System (ADS)

    Riedl, Maik; Marwan, Norbert; Kurths, Jürgen

    2017-03-01

    The generalized recurrence plot is a modern tool for quantification of complex spatial patterns. Its application spans the analysis of trabecular bone structures, Turing patterns, turbulent spatial plankton patterns, and fractals. Determinism is a central measure in this framework quantifying the level of regularity of spatial structures. We show by basic examples of fully regular patterns of different symmetries that this measure underestimates the orderliness of circular patterns resulting from rotational symmetries. We overcome this crucial problem by checking additional structural elements of the generalized recurrence plot which is demonstrated with the examples. Furthermore, we show the potential of the extended quantity of determinism applying it to more irregular circular patterns which are generated by the complex Ginzburg-Landau-equation and which can be often observed in real spatially extended dynamical systems. So, we are able to reconstruct the main separations of the system's parameter space analyzing single snapshots of the real part only, in contrast to the use of the original quantity. This ability of the proposed method promises also an improved description of other systems with complicated spatio-temporal dynamics typically occurring in fluid dynamics, climatology, biology, ecology, social sciences, etc.

  18. Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI.

    PubMed

    Asif, M Salman; Hamilton, Lei; Brummer, Marijn; Romberg, Justin

    2013-09-01

    Accelerated magnetic resonance imaging techniques reduce signal acquisition time by undersampling k-space. A fundamental problem in accelerated magnetic resonance imaging is the recovery of quality images from undersampled k-space data. Current state-of-the-art recovery algorithms exploit the spatial and temporal structures in underlying images to improve the reconstruction quality. In recent years, compressed sensing theory has helped formulate mathematical principles and conditions that ensure recovery of (structured) sparse signals from undersampled, incoherent measurements. In this article, a new recovery algorithm, motion-adaptive spatio-temporal regularization, is presented that uses spatial and temporal structured sparsity of MR images in the compressed sensing framework to recover dynamic MR images from highly undersampled k-space data. In contrast to existing algorithms, our proposed algorithm models temporal sparsity using motion-adaptive linear transformations between neighboring images. The efficiency of motion-adaptive spatio-temporal regularization is demonstrated with experiments on cardiac magnetic resonance imaging for a range of reduction factors. Results are also compared with k-t FOCUSS with motion estimation and compensation-another recently proposed recovery algorithm for dynamic magnetic resonance imaging. . Copyright © 2012 Wiley Periodicals, Inc.

  19. Blind estimation of blur in hyperspectral images

    NASA Astrophysics Data System (ADS)

    Zhang, Mo; Vozel, Benoit; Chehdi, Kacem; Uss, Mykhail; Abramov, Sergey; Lukin, Vladimir

    2017-10-01

    Hyperspectral images acquired by remote sensing systems are generally degraded by noise and can be sometimes more severely degraded by blur. When no knowledge is available about the degradations present on the original image, blind restoration methods can only be considered. By blind, we mean absolutely no knowledge neither of the blur point spread function (PSF) nor the original latent channel and the noise level. In this study, we address the blind restoration of the degraded channels component-wise, according to a sequential scheme. For each degraded channel, the sequential scheme estimates the blur point spread function (PSF) in a first stage and deconvolves the degraded channel in a second and final stage by means of using the PSF previously estimated. We propose a new component-wise blind method for estimating effectively and accurately the blur point spread function. This method follows recent approaches suggesting the detection, selection and use of sufficiently salient edges in the current processed channel for supporting the regularized blur PSF estimation. Several modifications are beneficially introduced in our work. A new selection of salient edges through thresholding adequately the cumulative distribution of their corresponding gradient magnitudes is introduced. Besides, quasi-automatic and spatially adaptive tuning of the involved regularization parameters is considered. To prove applicability and higher efficiency of the proposed method, we compare it against the method it originates from and four representative edge-sparsifying regularized methods of the literature already assessed in a previous work. Our attention is mainly paid to the objective analysis (via ݈l1-norm) of the blur PSF error estimation accuracy. The tests are performed on a synthetic hyperspectral image. This synthetic hyperspectral image has been built from various samples from classified areas of a real-life hyperspectral image, in order to benefit from realistic spatial distribution of reference spectral signatures to recover after synthetic degradation. The synthetic hyperspectral image has been successively degraded with eight real blurs taken from the literature, each of a different support size. Conclusions, practical recommendations and perspectives are drawn from the results experimentally obtained.

  20. New central configurations of the (n + 1) -body problem

    NASA Astrophysics Data System (ADS)

    Fernandes, Antonio Carlos; Garcia, Braulio Augusto; Llibre, Jaume; Mello, Luis Fernando

    2018-01-01

    In this article we study central configurations of the (n + 1) -body problem. For the planar (n + 1) -body problem we study central configurations performed by n ≥ 2 bodies with equal masses at the vertices of a regular n-gon and one body with null mass. We also study spatial central configurations considering n bodies with equal masses at the vertices of a regular polyhedron and one body with null mass.

  1. A fully Galerkin method for the recovery of stiffness and damping parameters in Euler-Bernoulli beam models

    NASA Technical Reports Server (NTRS)

    Smith, R. C.; Bowers, K. L.

    1991-01-01

    A fully Sinc-Galerkin method for recovering the spatially varying stiffness and damping parameters in Euler-Bernoulli beam models is presented. The forward problems are discretized with a sinc basis in both the spatial and temporal domains thus yielding an approximate solution which converges exponentially and is valid on the infinite time interval. Hence the method avoids the time-stepping which is characteristic of many of the forward schemes which are used in parameter recovery algorithms. Tikhonov regularization is used to stabilize the resulting inverse problem, and the L-curve method for determining an appropriate value of the regularization parameter is briefly discussed. Numerical examples are given which demonstrate the applicability of the method for both individual and simultaneous recovery of the material parameters.

  2. Neural Evidence of Statistical Learning: Efficient Detection of Visual Regularities without Awareness

    ERIC Educational Resources Information Center

    Turk-Browne, Nicholas B.; Scholl, Brian J.; Chun, Marvin M.; Johnson, Marcia K.

    2009-01-01

    Our environment contains regularities distributed in space and time that can be detected by way of statistical learning. This unsupervised learning occurs without intent or awareness, but little is known about how it relates to other types of learning, how it affects perceptual processing, and how quickly it can occur. Here we use fMRI during…

  3. Regularization of soft-X-ray imaging in the DIII-D tokamak

    DOE PAGES

    Wingen, A.; Shafer, M. W.; Unterberg, E. A.; ...

    2015-03-02

    We developed an image inversion scheme for the soft X-ray imaging system (SXRIS) diagnostic at the DIII-D tokamak in order to obtain the local soft X-ray emission at a poloidal cross-section from the spatially line-integrated image taken by the SXRIS camera. The scheme uses the Tikhonov regularization method since the inversion problem is generally ill-posed. The regularization technique uses the generalized singular value decomposition to determine a solution that depends on a free regularization parameter. The latter has to be chosen carefully, and the so called {\\it L-curve} method to find the optimum regularization parameter is outlined. A representative testmore » image is used to study the properties of the inversion scheme with respect to inversion accuracy, amount/strength of regularization, image noise and image resolution. Moreover, the optimum inversion parameters are identified, while the L-curve method successfully computes the optimum regularization parameter. Noise is found to be the most limiting issue, but sufficient regularization is still possible at noise to signal ratios up to 10%-15%. Finally, the inversion scheme is applied to measured SXRIS data and the line-integrated SXRIS image is successfully inverted.« less

  4. An Investigation of Automatic Change Detection for Topographic Map Updating

    NASA Astrophysics Data System (ADS)

    Duncan, P.; Smit, J.

    2012-08-01

    Changes to the landscape are constantly occurring and it is essential for geospatial and mapping organisations that these changes are regularly detected and captured, so that map databases can be updated to reflect the current status of the landscape. The Chief Directorate of National Geospatial Information (CD: NGI), South Africa's national mapping agency, currently relies on manual methods of detecting changes and capturing these changes. These manual methods are time consuming and labour intensive, and rely on the skills and interpretation of the operator. It is therefore necessary to move towards more automated methods in the production process at CD: NGI. The aim of this research is to do an investigation into a methodology for automatic or semi-automatic change detection for the purpose of updating topographic databases. The method investigated for detecting changes is through image classification as well as spatial analysis and is focussed on urban landscapes. The major data input into this study is high resolution aerial imagery and existing topographic vector data. Initial results indicate the traditional pixel-based image classification approaches are unsatisfactory for large scale land-use mapping and that object-orientated approaches hold more promise. Even in the instance of object-oriented image classification generalization of techniques on a broad-scale has provided inconsistent results. A solution may lie with a hybrid approach of pixel and object-oriented techniques.

  5. Clustering, randomness and regularity in cloud fields. I - Theoretical considerations. II - Cumulus cloud fields

    NASA Technical Reports Server (NTRS)

    Weger, R. C.; Lee, J.; Zhu, Tianri; Welch, R. M.

    1992-01-01

    The current controversy existing in reference to the regularity vs. clustering in cloud fields is examined by means of analysis and simulation studies based upon nearest-neighbor cumulative distribution statistics. It is shown that the Poisson representation of random point processes is superior to pseudorandom-number-generated models and that pseudorandom-number-generated models bias the observed nearest-neighbor statistics towards regularity. Interpretation of this nearest-neighbor statistics is discussed for many cases of superpositions of clustering, randomness, and regularity. A detailed analysis is carried out of cumulus cloud field spatial distributions based upon Landsat, AVHRR, and Skylab data, showing that, when both large and small clouds are included in the cloud field distributions, the cloud field always has a strong clustering signal.

  6. Chimeric mitochondrial peptides from contiguous regular and swinger RNA.

    PubMed

    Seligmann, Hervé

    2016-01-01

    Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A), multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200 × rarer than swinger peptides (3/100,000 versus 6/1000). Among 186 peptides with > 8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist.

  7. Spatial Point Pattern Analysis of Human Settlements and Geographical Associations in Eastern Coastal China — A Case Study

    PubMed Central

    Zhang, Zhonghao; Xiao, Rui; Shortridge, Ashton; Wu, Jiaping

    2014-01-01

    Understanding the spatial point pattern of human settlements and their geographical associations are important for understanding the drivers of land use and land cover change and the relationship between environmental and ecological processes on one hand and cultures and lifestyles on the other. In this study, a Geographic Information System (GIS) approach, Ripley’s K function and Monte Carlo simulation were used to investigate human settlement point patterns. Remotely sensed tools and regression models were employed to identify the effects of geographical determinants on settlement locations in the Wen-Tai region of eastern coastal China. Results indicated that human settlements displayed regular-random-cluster patterns from small to big scale. Most settlements located on the coastal plain presented either regular or random patterns, while those in hilly areas exhibited a clustered pattern. Moreover, clustered settlements were preferentially located at higher elevations with steeper slopes and south facing aspects than random or regular settlements. Regression showed that influences of topographic factors (elevation, slope and aspect) on settlement locations were stronger across hilly regions. This study demonstrated a new approach to analyzing the spatial patterns of human settlements from a wide geographical prospective. We argue that the spatial point patterns of settlements, in addition to the characteristics of human settlements, such as area, density and shape, should be taken into consideration in the future, and land planners and decision makers should pay more attention to city planning and management. Conceptual and methodological bridges linking settlement patterns to regional and site-specific geographical characteristics will be a key to human settlement studies and planning. PMID:24619117

  8. Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals.

    PubMed

    Engemann, Denis A; Gramfort, Alexandre

    2015-03-01

    Magnetoencephalography and electroencephalography (M/EEG) measure non-invasively the weak electromagnetic fields induced by post-synaptic neural currents. The estimation of the spatial covariance of the signals recorded on M/EEG sensors is a building block of modern data analysis pipelines. Such covariance estimates are used in brain-computer interfaces (BCI) systems, in nearly all source localization methods for spatial whitening as well as for data covariance estimation in beamformers. The rationale for such models is that the signals can be modeled by a zero mean Gaussian distribution. While maximizing the Gaussian likelihood seems natural, it leads to a covariance estimate known as empirical covariance (EC). It turns out that the EC is a poor estimate of the true covariance when the number of samples is small. To address this issue the estimation needs to be regularized. The most common approach downweights off-diagonal coefficients, while more advanced regularization methods are based on shrinkage techniques or generative models with low rank assumptions: probabilistic PCA (PPCA) and factor analysis (FA). Using cross-validation all of these models can be tuned and compared based on Gaussian likelihood computed on unseen data. We investigated these models on simulations, one electroencephalography (EEG) dataset as well as magnetoencephalography (MEG) datasets from the most common MEG systems. First, our results demonstrate that different models can be the best, depending on the number of samples, heterogeneity of sensor types and noise properties. Second, we show that the models tuned by cross-validation are superior to models with hand-selected regularization. Hence, we propose an automated solution to the often overlooked problem of covariance estimation of M/EEG signals. The relevance of the procedure is demonstrated here for spatial whitening and source localization of MEG signals. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Pattern-Based Inverse Modeling for Characterization of Subsurface Flow Models with Complex Geologic Heterogeneity

    NASA Astrophysics Data System (ADS)

    Golmohammadi, A.; Jafarpour, B.; M Khaninezhad, M. R.

    2017-12-01

    Calibration of heterogeneous subsurface flow models leads to ill-posed nonlinear inverse problems, where too many unknown parameters are estimated from limited response measurements. When the underlying parameters form complex (non-Gaussian) structured spatial connectivity patterns, classical variogram-based geostatistical techniques cannot describe the underlying connectivity patterns. Modern pattern-based geostatistical methods that incorporate higher-order spatial statistics are more suitable for describing such complex spatial patterns. Moreover, when the underlying unknown parameters are discrete (geologic facies distribution), conventional model calibration techniques that are designed for continuous parameters cannot be applied directly. In this paper, we introduce a novel pattern-based model calibration method to reconstruct discrete and spatially complex facies distributions from dynamic flow response data. To reproduce complex connectivity patterns during model calibration, we impose a feasibility constraint to ensure that the solution follows the expected higher-order spatial statistics. For model calibration, we adopt a regularized least-squares formulation, involving data mismatch, pattern connectivity, and feasibility constraint terms. Using an alternating directions optimization algorithm, the regularized objective function is divided into a continuous model calibration problem, followed by mapping the solution onto the feasible set. The feasibility constraint to honor the expected spatial statistics is implemented using a supervised machine learning algorithm. The two steps of the model calibration formulation are repeated until the convergence criterion is met. Several numerical examples are used to evaluate the performance of the developed method.

  10. Coordinated Speed Oscillations in Schooling Killifish Enrich Social Communication

    NASA Astrophysics Data System (ADS)

    Swain, Daniel T.; Couzin, Iain D.; Leonard, Naomi Ehrich

    2015-10-01

    We examine the spatial dynamics of individuals in small schools of banded killifish ( Fundulus diaphanus) that exhibit rhythmic, oscillating speed, typically with sustained, coordinated, out-of-phase speed oscillations as they move around a shallow water tank. We show that the relative motion among the fish yields a periodically time-varying network of social interactions that enriches visually driven social communication. The oscillations lead to the regular making and breaking of occlusions, which we term "switching." We show that the rate of convergence to consensus (biologically, the capacity for individuals in groups to achieve effective coordinated motion) governed by the switching outperforms static alternatives, and performs as well as the less practical case of every fish sensing every other fish. We show further that the oscillations in speed yield oscillations in relative bearing between fish over a range that includes the angles previously predicted to be optimal for a fish to detect changes in heading and speed of its neighbors. To investigate systematically, we derive and analyze a dynamic model of interacting agents that move with oscillatory speed. We show that coordinated circular motion of the school leads to systematic cycling of spatial ordering of agents and possibilities for enriched spatial density of measurements of the external environment. Our results highlight the potential benefits of dynamic communication topologies in collective animal behavior, and suggest new, useful control laws for the distributed coordination of mobile robotic networks.

  11. Monitoring forest cover loss using multiple data streams, a case study of a tropical dry forest in Bolivia

    NASA Astrophysics Data System (ADS)

    Dutrieux, Loïc Paul; Verbesselt, Jan; Kooistra, Lammert; Herold, Martin

    2015-09-01

    Automatically detecting forest disturbances as they occur can be extremely challenging for certain types of environments, particularly those presenting strong natural variations. Here, we use a generic structural break detection framework (BFAST) to improve the monitoring of forest cover loss by combining multiple data streams. Forest change monitoring is performed using Landsat data in combination with MODIS or rainfall data to further improve the modelling and monitoring. We tested the use of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) with varying spatial aggregation window sizes as well as a rainfall derived index as external regressors. The method was evaluated on a dry tropical forest area in lowland Bolivia where forest cover loss is known to occur, and we validated the results against a set of ground truth samples manually interpreted using the TimeSync environment. We found that the addition of an external regressor allows to take advantage of the difference in spatial extent between human induced and naturally induced variations and only detect the processes of interest. Of all configurations, we found the 13 by 13 km MODIS NDVI window to be the most successful, with an overall accuracy of 87%. Compared with a single pixel approach, the proposed method produced better time-series model fits resulting in increases of overall accuracy (from 82% to 87%), and decrease in omission and commission errors (from 33% to 24% and from 3% to 0% respectively). The presented approach seems particularly relevant for areas with high inter-annual natural variability, such as forests regularly experiencing exceptional drought events.

  12. Hot molecular hydrogen in the central parsec of the Galaxy through near-infrared 3D fitting

    NASA Astrophysics Data System (ADS)

    Ciurlo, A.; Paumard, T.; Rouan, D.; Clénet, Y.

    2016-10-01

    Aims: We have investigated neutral gas in the central cavity of the circumnuclear disk (CND) at the Galactic center, where the ionized minispiral lies, to describe the H2 distribution and properties in this ionized environment. Methods: This study was carried out through a spectro-imaging data cube of the central cavity obtained with SPIFFI on the VLT. The observed field of view is 36″ × 29″, with a spectral resolution R = 1300 in the near-infrared. These observations cover several H2 lines. To preserve the spatial resolution and avoid edge effects, we applied a new line-fitting method that consists of a regularized 3D fitting. We also applied a more classical 1D fitting to compare the relative strength of the H2 lines. Results: We present high spatial and spectral resolution maps of the intensity, velocity, and width of five H2 lines and an extinction map derived from H2. Molecular gas is detected everywhere in the field. In particular, in addition to the known CND features, we detected an emission from the northern arm cloud and from the minicavity. The excitation diagrams allow us to estimate the temperature, mass, and density of these features. Conclusions: We interpret the CND emission as coming from a hot, thermalized, thin layer at the surface of the clouds. The observed H2 corresponds only to a small fraction of the total H2 mass. The emission remains fairly strong in the whole central cavity, but it is not thermalized. A strong deviation from thermal equilibrium is detected near the minicavity. We suggest that this emission is caused by constantly forming H2 that is destroyed again before it reaches ortho/para equilibrium.

  13. Identifying hazardous alcohol consumption during pregnancy: implementing a research-based model in real life.

    PubMed

    Göransson, Mona; Magnusson, Asa; Heilig, Markus

    2006-01-01

    It has been repeatedly demonstrated that hazardous alcohol use during pregnancy is rarely detected in regular antenatal care, and that detection can be markedly improved using systematic screening. A major challenge is to translate research-based strategies into regular antenatal care. Here, we examined whether a screening strategy using the Alcohol Use Disorder Test (AUDIT) and time-line follow-back (TLFB) could be implemented under naturalistic conditions and within available resources; and whether it would improve detection to the extent previously shown in a research context. Regular midwives at a large antenatal care clinic were randomized to receive brief training and then implement AUDIT and TLFB ("intervention"); or to a waiting-list control group continuing to deliver regular care ("control"). In the intervention-condition, AUDIT was used to collect data about alcohol use during the year preceding pregnancy, and TLFB to assess actual consumption during the first trimester. Data were collected from new admissions over 6 months. Drop out was higher among patients of the intervention group than control midwives, 14% (23/162) versus 0% (0/153), and p<0.0001. A one-day training session combined with continuous expert support was sufficient to implement systematic screening with AUDIT and TLFB largely within resources of regular antenatal care. The use of these instruments identified patients with hazardous consumption during the year preceding pregnancy i.e. AUDIT score 6 or higher (17%, 23/139), and patients with ongoing consumption exceeding 70 g/week and/or binge consumption according to TLFB (17%, 24/139), to a significantly higher degree than regular antenatal screening (0/162). The AUDIT- and TLFB-positive populations overlapped partially, with 36/139 subjects screening positive with either of the instrument and 11/139 were positive for both. We confirm previous findings that alcohol use during pregnancy is more extensive in Sweden than has generally been realized. Systematic screening using AUDIT and TLFB detects hazardous use in a manner which regular antenatal care does not. This remains true under naturalistic conditions, following minimal training of regular antenatal care staff, and can be achieved with minimal resources. The proposed strategy appears attractive for broad implementation.

  14. External synchronization of oscillating pulse edge on a transmission line with regularly spaced tunnel diodes.

    PubMed

    Narahara, Koichi; Misono, Masatoshi; Miyakawa, Kenji

    2013-01-01

    We investigate the external synchronization of the oscillating pulse edges developed in a transmission line periodically loaded with tunnel diodes (TDs), termed a TD line. It is observed that the pulse edge oscillates on a TD line when supplied by an appropriate voltage at the end of the line. We discuss how the pulse edge oscillates on a TD line and the properties of the external synchronization of the edge oscillation driven by a sinusoidal perturbation. By applying a phase-reduction scheme to the transmission equation of a TD line, we obtain the phase sensitivity, which satisfactory explains the measured spatial dependence of the locking range on the frequency. Moreover, we successfully detect the spatiotemporal behaviors of the edge oscillation by establishing synchronization with the sampling trigger of an oscilloscope.

  15. Core surface magnetic field evolution 2000-2010

    NASA Astrophysics Data System (ADS)

    Finlay, C. C.; Jackson, A.; Gillet, N.; Olsen, N.

    2012-05-01

    We present new dedicated core surface field models spanning the decade from 2000.0 to 2010.0. These models, called gufm-sat, are based on CHAMP, Ørsted and SAC-C satellite observations along with annual differences of processed observatory monthly means. A spatial parametrization of spherical harmonics up to degree and order 24 and a temporal parametrization of sixth-order B-splines with 0.25 yr knot spacing is employed. Models were constructed by minimizing an absolute deviation measure of misfit along with measures of spatial and temporal complexity at the core surface. We investigate traditional quadratic or maximum entropy regularization in space, and second or third time derivative regularization in time. Entropy regularization allows the construction of models with approximately constant spectral slope at the core surface, avoiding both the divergence characteristic of the crustal field and the unrealistic rapid decay typical of quadratic regularization at degrees above 12. We describe in detail aspects of the models that are relevant to core dynamics. Secular variation and secular acceleration are found to be of lower amplitude under the Pacific hemisphere where the core field is weaker. Rapid field evolution is observed under the eastern Indian Ocean associated with the growth and drift of an intense low latitude flux patch. We also find that the present axial dipole decay arises from a combination of subtle changes in the southern hemisphere field morphology.

  16. Fundamental structures of dynamic social networks.

    PubMed

    Sekara, Vedran; Stopczynski, Arkadiusz; Lehmann, Sune

    2016-09-06

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision.

  17. Fundamental structures of dynamic social networks

    PubMed Central

    Sekara, Vedran; Stopczynski, Arkadiusz; Lehmann, Sune

    2016-01-01

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision. PMID:27555584

  18. Oil Spill Detection: Past and Future Trends

    NASA Astrophysics Data System (ADS)

    Topouzelis, Konstantinos; Singha, Suman

    2016-08-01

    In the last 15 years, the detection of oil spills by satellite means has been moved from experimental to operational. Actually, what is really changed is the satellite image availability. From the late 1990's, in the age of "no data" we have moved forward 15 years to the age of "Sentinels" with an abundance of data. Either large accident related to offshore oil exploration and production activity or illegal discharges from tankers, oil on the sea surface is or can be now regularly monitored, over European Waters. National and transnational organizations (i.e. European Maritime Safety Agency's 'CleanSeaNet' Service) are routinely using SAR imagery to detect oil due to it's all weather, day and night imaging capability. However, all these years the scientific methodology on the detection remains relatively constant. From manual analysis to fully automatic detection methodologies, no significant contribution has been published in the last years and certainly none has dramatically changed the rules of the detection. On the contrary, although the overall accuracy of the methodology is questioned, the four main classification steps (dark area detection, features extraction, statistic database creation, and classification) are continuously improving. In recent years, researchers came up with the use of polarimetric SAR data for oil spill detection and characterizations, although utilization of Pol-SAR data for this purpose still remains questionable due to lack of verified dataset and low spatial coverage of Pol-SAR data. The present paper is trying to point out the drawbacks of the oil spill detection in the last years and focus on the bottlenecks of the oil spill detection methodologies. Also, solutions on the basis of data availability, management and analysis are proposed. Moreover, an ideal detection system is discussed regarding satellite image and in situ observations using different scales and sensors.

  19. High-rise buildings in the structure of an urbanized landscape and their influence on the spatial composition and image of the city

    NASA Astrophysics Data System (ADS)

    Moor, Valery K.; Erysheva, Elena A.

    2018-03-01

    High-rise buildings play an important role in the spatial structure, composition and image of the city, as they are its spatial dominants and landmarks. The conditions of high-rise buildings perception in an urbanized landscape are changing in depending on the landscape-morphological conditions (the relief, the existence of the water area and the character of the coastline). Regularities of high-rise buildings' spatial organization in various natural-landscape situations are considered in the research; the basic principles of high-rise elements inclusion in structure of the urbanized landscape providing their harmonious interaction are formulated.

  20. Abnormal functional connectivity of EEG gamma band in patients with depression during emotional face processing.

    PubMed

    Li, Yingjie; Cao, Dan; Wei, Ling; Tang, Yingying; Wang, Jijun

    2015-11-01

    This paper evaluates the large-scale structure of functional brain networks using graph theoretical concepts and investigates the difference in brain functional networks between patients with depression and healthy controls while they were processing emotional stimuli. Electroencephalography (EEG) activities were recorded from 16 patients with depression and 14 healthy controls when they performed a spatial search task for facial expressions. Correlations between all possible pairs of 59 electrodes were determined by coherence, and the coherence matrices were calculated in delta, theta, alpha, beta, and gamma bands (low gamma: 30-50Hz and high gamma: 50-80Hz, respectively). Graph theoretical analysis was applied to these matrices by using two indexes: the clustering coefficient and the characteristic path length. The global EEG coherence of patients with depression was significantly higher than that of healthy controls in both gamma bands, especially in the high gamma band. The global coherence in both gamma bands from healthy controls appeared higher in negative conditions than in positive conditions. All the brain networks were found to hold a regular and ordered topology during emotion processing. However, the brain network of patients with depression appeared randomized compared with the normal one. The abnormal network topology of patients with depression was detected in both the prefrontal and occipital regions. The negative bias from healthy controls occurred in both gamma bands during emotion processing, while it disappeared in patients with depression. The proposed work studied abnormally increased connectivity of brain functional networks in patients with depression. By combing the clustering coefficient and the characteristic path length, we found that the brain networks of patients with depression and healthy controls had regular networks during emotion processing. Yet the brain networks of the depressed group presented randomization trends. Moreover, negative bias was detected in the healthy controls during emotion processing, while it was not detected in patients with depression, which might be related to the types of negative stimuli used in this study. The brain networks from both patients with depression and healthy controls were found to hold a regular and ordered topology. Yet the brain networks of patients with depression had randomization trends. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Sinc-Galerkin estimation of diffusivity in parabolic problems

    NASA Technical Reports Server (NTRS)

    Smith, Ralph C.; Bowers, Kenneth L.

    1991-01-01

    A fully Sinc-Galerkin method for the numerical recovery of spatially varying diffusion coefficients in linear partial differential equations is presented. Because the parameter recovery problems are inherently ill-posed, an output error criterion in conjunction with Tikhonov regularization is used to formulate them as infinite-dimensional minimization problems. The forward problems are discretized with a sinc basis in both the spatial and temporal domains thus yielding an approximate solution which displays an exponential convergence rate and is valid on the infinite time interval. The minimization problems are then solved via a quasi-Newton/trust region algorithm. The L-curve technique for determining an approximate value of the regularization parameter is briefly discussed, and numerical examples are given which show the applicability of the method both for problems with noise-free data as well as for those whose data contains white noise.

  2. First-impression bias effects on mismatch negativity to auditory spatial deviants.

    PubMed

    Fitzgerald, Kaitlin; Provost, Alexander; Todd, Juanita

    2018-04-01

    Internal models of regularities in the world serve to facilitate perception as redundant input can be predicted and neural resources conserved for that which is new or unexpected. In the auditory system, this is reflected in an evoked potential component known as mismatch negativity (MMN). MMN is elicited by the violation of an established regularity to signal the inaccuracy of the current model and direct resources to the unexpected event. Prevailing accounts suggest that MMN amplitude will increase with stability in regularity; however, observations of first-impression bias contradict stability effects. If tones rotate probabilities as a rare deviant (p = .125) and common standard (p = .875), MMN elicited to the initial deviant tone reaches maximal amplitude faster than MMN to the first standard when later encountered as deviant-a differential pattern that persists throughout rotations. Sensory inference is therefore biased by longer-term contextual information beyond local probability statistics. Using the same multicontext sequence structure, we examined whether this bias generalizes to MMN elicited by spatial sound cues using monaural sounds (n = 19, right first deviant and n = 22, left first deviant) and binaural sounds (n = 19, right first deviant). The characteristic differential modulation of MMN to the two tones was observed in two of three groups, providing partial support for the generalization of first-impression bias to spatially deviant sounds. We discuss possible explanations for its absence when the initial deviant was delivered monaurally to the right ear. © 2017 Society for Psychophysiological Research.

  3. Combined ICA-LORETA analysis of mismatch negativity.

    PubMed

    Marco-Pallarés, J; Grau, C; Ruffini, G

    2005-04-01

    A major challenge for neuroscience is to map accurately the spatiotemporal patterns of activity of the large neuronal populations that are believed to underlie computing in the human brain. To study a specific example, we selected the mismatch negativity (MMN) brain wave (an event-related potential, ERP) because it gives an electrophysiological index of a "primitive intelligence" capable of detecting changes, even abstract ones, in a regular auditory pattern. ERPs have a temporal resolution of milliseconds but appear to result from mixed neuronal contributions whose spatial location is not fully understood. Thus, it is important to separate these sources in space and time. To tackle this problem, a two-step approach was designed combining the independent component analysis (ICA) and low-resolution tomography (LORETA) algorithms. Here we implement this approach to analyze the subsecond spatiotemporal dynamics of MMN cerebral sources using trial-by-trial experimental data. We show evidence that a cerebral computation mechanism underlies MMN. This mechanism is mediated by the orchestrated activity of several spatially distributed brain sources located in the temporal, frontal, and parietal areas, which activate at distinct time intervals and are grouped in six main statistically independent components.

  4. Spatially resolved quantification of agrochemicals on plant surfaces using energy dispersive X-ray microanalysis.

    PubMed

    Hunsche, Mauricio; Noga, Georg

    2009-12-01

    In the present study the principle of energy dispersive X-ray microanalysis (EDX), i.e. the detection of elements based on their characteristic X-rays, was used to localise and quantify organic and inorganic pesticides on enzymatically isolated fruit cuticles. Pesticides could be discriminated from the plant surface because of their distinctive elemental composition. Findings confirm the close relation between net intensity (NI) and area covered by the active ingredient (AI area). Using wide and narrow concentration ranges of glyphosate and glufosinate, respectively, results showed that quantification of AI requires the selection of appropriate regression equations while considering NI, peak-to-background (P/B) ratio, and AI area. The use of selected internal standards (ISs) such as Ca(NO(3))(2) improved the accuracy of the quantification slightly but led to the formation of particular, non-typical microstructured deposits. The suitability of SEM-EDX as a general technique to quantify pesticides was evaluated additionally on 14 agrochemicals applied at diluted or regular concentration. Among the pesticides tested, spatial localisation and quantification of AI amount could be done for inorganic copper and sulfur as well for the organic agrochemicals glyphosate, glufosinate, bromoxynil and mancozeb. (c) 2009 Society of Chemical Industry.

  5. Effect of Royal Jelly on spatial learning and memory in rat model of streptozotocin-induced sporadic Alzheimer's disease

    PubMed Central

    Zamani, Zohre; Reisi, Parham; Alaei, Hojjatallah; Pilehvarian, Ali Asghar

    2012-01-01

    Background: It has been recently demonstrated that Royal jelly (RJ) has a beneficial role on neural functions. Alzheimer's disease (AD) is associated with impairments of learning and memory. Therefore, the present study was designed to examine the effect of RJ on spatial learning and memory in rats after intracerebroventricular injection of streptozotocin (icv-STZ). Materials and Methods: Rats were infused bilaterally with an icv injection of STZ, while sham rats received vehicle only. The rats were feed with RJ-contained food (3% w/w) (lyophilized RJ mixed with powdered regular food) or regular food for 10 days. Then spatial learning and memory was tested in the rats by Morris water maze test. Results: Results showed that in icv-STZ group latency and path length were increased as compared to sham group, also icv-STZ rats less remembered the target quadrant that previously the platform was located; however, these were protected significantly in STZ group that received RJ-containing food. Conclusions: Our findings support the potential neuroprotective role of RJ and its helpful effects in AD. PMID:23210085

  6. The role of retinal bipolar cell in early vision: an implication with analogue networks and regularization theory.

    PubMed

    Yagi, T; Ohshima, S; Funahashi, Y

    1997-09-01

    A linear analogue network model is proposed to describe the neuronal circuit of the outer retina consisting of cones, horizontal cells, and bipolar cells. The model reflects previous physiological findings on the spatial response properties of these neurons to dim illumination and is expressed by physiological mechanisms, i.e., membrane conductances, gap-junctional conductances, and strengths of chemical synaptic interactions. Using the model, we characterized the spatial filtering properties of the bipolar cell receptive field with the standard regularization theory, in which the early vision problems are attributed to minimization of a cost function. The cost function accompanying the present characterization is derived from the linear analogue network model, and one can gain intuitive insights on how physiological mechanisms contribute to the spatial filtering properties of the bipolar cell receptive field. We also elucidated a quantitative relation between the Laplacian of Gaussian operator and the bipolar cell receptive field. From the computational point of view, the dopaminergic modulation of the gap-junctional conductance between horizontal cells is inferred to be a suitable neural adaptation mechanism for transition between photopic and mesopic vision.

  7. The intelligence of observation: improving high school students' spatial ability by means of intervention unit

    NASA Astrophysics Data System (ADS)

    Patkin, Dorit; Dayan, Ester

    2013-03-01

    This case study of one class versus a control group focused on the impact of an intervention unit, which is not part of the regular curriculum, on the improvement of spatial ability of high school students (forty-six 12th-graders, aged 17-18, both boys and girls) in general as well as from a gender perspective. The study explored three sub-abilities: mental rotation (MR), spatial visualization (VS) and spatial orientation (SO). Findings indicated that the spatial orientation of the experimental group students had considerably improved. The findings also illustrated a significant gender-based advantage in favour of the boys in some of the spatial abilities even before the implementation of the intervention unit. The hypothesis relating to the reduction of the gender differences was not corroborated.

  8. The Intelligence of Observation: Improving High School Students' Spatial Ability by Means of Intervention Unit

    ERIC Educational Resources Information Center

    Patkin, Dorit; Dayan, Ester

    2013-01-01

    This case study of one class versus a control group focused on the impact of an intervention unit, which is not part of the regular curriculum, on the improvement of spatial ability of high school students (forty-six 12th-graders, aged 17-18, both boys and girls) in general as well as from a gender perspective. The study explored three…

  9. Stress regularity in quasi-static perfect plasticity with a pressure dependent yield criterion

    NASA Astrophysics Data System (ADS)

    Babadjian, Jean-François; Mora, Maria Giovanna

    2018-04-01

    This work is devoted to establishing a regularity result for the stress tensor in quasi-static planar isotropic linearly elastic - perfectly plastic materials obeying a Drucker-Prager or Mohr-Coulomb yield criterion. Under suitable assumptions on the data, it is proved that the stress tensor has a spatial gradient that is locally squared integrable. As a corollary, the usual measure theoretical flow rule is expressed in a strong form using the quasi-continuous representative of the stress.

  10. Self-organization in irregular landscapes: Detecting autogenic interactions from field data using descriptive statistics and dynamical systems theory

    NASA Astrophysics Data System (ADS)

    Larsen, L.; Watts, D.; Khurana, A.; Anderson, J. L.; Xu, C.; Merritts, D. J.

    2015-12-01

    The classic signal of self-organization in nature is pattern formation. However, the interactions and feedbacks that organize depositional landscapes do not always result in regular or fractal patterns. How might we detect their existence and effects in these "irregular" landscapes? Emergent landscapes such as newly forming deltaic marshes or some restoration sites provide opportunities to study the autogenic processes that organize landscapes and their physical signatures. Here we describe a quest to understand autogenic vs. allogenic controls on landscape evolution in Big Spring Run, PA, a landscape undergoing restoration from bare-soil conditions to a target wet meadow landscape. The contemporary motivation for asking questions about autogenic vs. allogenic controls is to evaluate how important initial conditions or environmental controls may be for the attainment of management objectives. However, these questions can also inform interpretation of the sedimentary record by enabling researchers to separate signals that may have arisen through self-organization processes from those resulting from environmental perturbations. Over three years at Big Spring Run, we mapped the dynamic evolution of floodplain vegetation communities and distributions of abiotic variables and topography. We used principal component analysis and transition probability analysis to detect associative interactions between vegetation and geomorphic variables and convergent cross-mapping on lidar data to detect causal interactions between biomass and topography. Exploratory statistics revealed that plant communities with distinct morphologies exerted control on landscape evolution through stress divergence (i.e., channel initiation) and promoting the accumulation of fine sediment in channels. Together, these communities participated in a negative feedback that maintains low energy and multiple channels. Because of the spatially explicit nature of this feedback, causal interactions could not be uncovered from convergent cross-mapping with this limited dataset, serving as a reminder that spatially explicit approaches for revealing causality are needed to reconstruct self-organizing mechanisms from data.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akiyama, Kazunori; Fish, Vincent L.; Doeleman, Sheperd S.

    We propose a new imaging technique for radio and optical/infrared interferometry. The proposed technique reconstructs the image from the visibility amplitude and closure phase, which are standard data products of short-millimeter very long baseline interferometers such as the Event Horizon Telescope (EHT) and optical/infrared interferometers, by utilizing two regularization functions: the ℓ {sub 1}-norm and total variation (TV) of the brightness distribution. In the proposed method, optimal regularization parameters, which represent the sparseness and effective spatial resolution of the image, are derived from data themselves using cross-validation (CV). As an application of this technique, we present simulated observations of M87more » with the EHT based on four physically motivated models. We confirm that ℓ {sub 1} + TV regularization can achieve an optimal resolution of ∼20%–30% of the diffraction limit λ / D {sub max}, which is the nominal spatial resolution of a radio interferometer. With the proposed technique, the EHT can robustly and reasonably achieve super-resolution sufficient to clearly resolve the black hole shadow. These results make it promising for the EHT to provide an unprecedented view of the event-horizon-scale structure in the vicinity of the supermassive black hole in M87 and also the Galactic center Sgr A*.« less

  12. Iterative image reconstruction for PROPELLER-MRI using the nonuniform fast fourier transform.

    PubMed

    Tamhane, Ashish A; Anastasio, Mark A; Gui, Minzhi; Arfanakis, Konstantinos

    2010-07-01

    To investigate an iterative image reconstruction algorithm using the nonuniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) MRI. Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it with that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased signal to noise ratio, reduced artifacts, for similar spatial resolution, compared with gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter, the new reconstruction technique may provide PROPELLER images with improved image quality compared with conventional gridding. (c) 2010 Wiley-Liss, Inc.

  13. Depreciation of public goods in spatial public goods games

    NASA Astrophysics Data System (ADS)

    Shi, Dong-Mei; Zhuang, Yong; Li, Yu-Jian; Wang, Bing-Hong

    2011-10-01

    In real situations, the value of public goods will be reduced or even lost because of external factors or for intrinsic reasons. In this work, we investigate the evolution of cooperation by considering the effect of depreciation of public goods in spatial public goods games on a square lattice. It is assumed that each individual gains full advantage if the number of the cooperators nc within a group centered on that individual equals or exceeds the critical mass (CM). Otherwise, there is depreciation of the public goods, which is realized by rescaling the multiplication factor r to (nc/CM)r. It is shown that the emergence of cooperation is remarkably promoted for CM > 1 even at small values of r, and a global cooperative level is achieved at an intermediate value of CM = 4 at a small r. We further study the effect of depreciation of public goods on different topologies of a regular lattice, and find that the system always reaches global cooperation at a moderate value of CM = G - 1 regardless of whether or not there exist overlapping triangle structures on the regular lattice, where G is the group size of the associated regular lattice.

  14. Iterative Image Reconstruction for PROPELLER-MRI using the NonUniform Fast Fourier Transform

    PubMed Central

    Tamhane, Ashish A.; Anastasio, Mark A.; Gui, Minzhi; Arfanakis, Konstantinos

    2013-01-01

    Purpose To investigate an iterative image reconstruction algorithm using the non-uniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping parallEL Lines with Enhanced Reconstruction) MRI. Materials and Methods Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it to that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. Results It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased SNR, reduced artifacts, for similar spatial resolution, compared to gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. Conclusion An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter the new reconstruction technique may provide PROPELLER images with improved image quality compared to conventional gridding. PMID:20578028

  15. MRI Estimates of Brain Iron Concentration in Normal Aging Using Quantitative Susceptibility Mapping

    PubMed Central

    Bilgic, Berkin; Pfefferbaum, Adolf; Rohlfing, Torsten; Sullivan, Edith V.; Adalsteinsson, Elfar

    2011-01-01

    Quantifying tissue iron concentration in vivo is instrumental for understanding the role of iron in physiology and in neurological diseases associated with abnormal iron distribution. Herein, we use recently-developed Quantitative Susceptibility Mapping (QSM) methodology to estimate the tissue magnetic susceptibility based on MRI signal phase. To investigate the effect of different regularization choices, we implement and compare ℓ1 and ℓ2 norm regularized QSM algorithms. These regularized approaches solve for the underlying magnetic susceptibility distribution, a sensitive measure of the tissue iron concentration, that gives rise to the observed signal phase. Regularized QSM methodology also involves a pre-processing step that removes, by dipole fitting, unwanted background phase effects due to bulk susceptibility variations between air and tissue and requires data acquisition only at a single field strength. For validation, performances of the two QSM methods were measured against published estimates of regional brain iron from postmortem and in vivo data. The in vivo comparison was based on data previously acquired using Field-Dependent Relaxation Rate Increase (FDRI), an estimate of MRI relaxivity enhancement due to increased main magnetic field strength, requiring data acquired at two different field strengths. The QSM analysis was based on susceptibility-weighted images acquired at 1.5T, whereas FDRI analysis used Multi-Shot Echo-Planar Spin Echo images collected at 1.5T and 3.0T. Both datasets were collected in the same healthy young and elderly adults. The in vivo estimates of regional iron concentration comported well with published postmortem measurements; both QSM approaches yielded the same rank ordering of iron concentration by brain structure, with the lowest in white matter and the highest in globus pallidus. Further validation was provided by comparison of the in vivo measurements, ℓ1-regularized QSM versus FDRI and ℓ2-regularized QSM versus FDRI, which again yielded perfect rank ordering of iron by brain structure. The final means of validation was to assess how well each in vivo method detected known age-related differences in regional iron concentrations measured in the same young and elderly healthy adults. Both QSM methods and FDRI were consistent in identifying higher iron concentrations in striatal and brain stem ROIs (i.e., caudate nucleus, putamen, globus pallidus, red nucleus, and substantia nigra) in the older than in the young group. The two QSM methods appeared more sensitive in detecting age differences in brain stem structures as they revealed differences of much higher statistical significance between the young and elderly groups than did FDRI. However, QSM values are influenced by factors such as the myelin content, whereas FDRI is a more specific indicator of iron content. Hence, FDRI demonstrated higher specificity to iron yet yielded noisier data despite longer scan times and lower spatial resolution than QSM. The robustness, practicality, and demonstrated ability of predicting the change in iron deposition in adult aging suggest that regularized QSM algorithms using single-field-strength data are possible alternatives to tissue iron estimation requiring two field strengths. PMID:21925274

  16. Detecting spatial regimes in ecosystems

    EPA Science Inventory

    Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological ...

  17. How to COAAD Images. II. A Coaddition Image that is Optimal for Any Purpose in the Background-dominated Noise Limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zackay, Barak; Ofek, Eran O.

    Image coaddition is one of the most basic operations that astronomers perform. In Paper I, we presented the optimal ways to coadd images in order to detect faint sources and to perform flux measurements under the assumption that the noise is approximately Gaussian. Here, we build on these results and derive from first principles a coaddition technique that is optimal for any hypothesis testing and measurement (e.g., source detection, flux or shape measurements, and star/galaxy separation), in the background-noise-dominated case. This method has several important properties. The pixels of the resulting coadded image are uncorrelated. This image preserves all themore » information (from the original individual images) on all spatial frequencies. Any hypothesis testing or measurement that can be done on all the individual images simultaneously, can be done on the coadded image without any loss of information. The PSF of this image is typically as narrow, or narrower than the PSF of the best image in the ensemble. Moreover, this image is practically indistinguishable from a regular single image, meaning that any code that measures any property on a regular astronomical image can be applied to it unchanged. In particular, the optimal source detection statistic derived in Paper I is reproduced by matched filtering this image with its own PSF. This coaddition process, which we call proper coaddition, can be understood as the maximum signal-to-noise ratio measurement of the Fourier transform of the image, weighted in such a way that the noise in the entire Fourier domain is of equal variance. This method has important implications for multi-epoch seeing-limited deep surveys, weak lensing galaxy shape measurements, and diffraction-limited imaging via speckle observations. The last topic will be covered in depth in future papers. We provide an implementation of this algorithm in MATLAB.« less

  18. Consistently Sampled Correlation Filters with Space Anisotropic Regularization for Visual Tracking

    PubMed Central

    Shi, Guokai; Xu, Tingfa; Luo, Jiqiang; Li, Yuankun

    2017-01-01

    Most existing correlation filter-based tracking algorithms, which use fixed patches and cyclic shifts as training and detection measures, assume that the training samples are reliable and ignore the inconsistencies between training samples and detection samples. We propose to construct and study a consistently sampled correlation filter with space anisotropic regularization (CSSAR) to solve these two problems simultaneously. Our approach constructs a spatiotemporally consistent sample strategy to alleviate the redundancies in training samples caused by the cyclical shifts, eliminate the inconsistencies between training samples and detection samples, and introduce space anisotropic regularization to constrain the correlation filter for alleviating drift caused by occlusion. Moreover, an optimization strategy based on the Gauss-Seidel method was developed for obtaining robust and efficient online learning. Both qualitative and quantitative evaluations demonstrate that our tracker outperforms state-of-the-art trackers in object tracking benchmarks (OTBs). PMID:29231876

  19. Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization.

    PubMed

    Sauwen, Nicolas; Acou, Marjan; Sima, Diana M; Veraart, Jelle; Maes, Frederik; Himmelreich, Uwe; Achten, Eric; Huffel, Sabine Van

    2017-05-04

    Segmentation of gliomas in multi-parametric (MP-)MR images is challenging due to their heterogeneous nature in terms of size, appearance and location. Manual tumor segmentation is a time-consuming task and clinical practice would benefit from (semi-) automated segmentation of the different tumor compartments. We present a semi-automated framework for brain tumor segmentation based on non-negative matrix factorization (NMF) that does not require prior training of the method. L1-regularization is incorporated into the NMF objective function to promote spatial consistency and sparseness of the tissue abundance maps. The pathological sources are initialized through user-defined voxel selection. Knowledge about the spatial location of the selected voxels is combined with tissue adjacency constraints in a post-processing step to enhance segmentation quality. The method is applied to an MP-MRI dataset of 21 high-grade glioma patients, including conventional, perfusion-weighted and diffusion-weighted MRI. To assess the effect of using MP-MRI data and the L1-regularization term, analyses are also run using only conventional MRI and without L1-regularization. Robustness against user input variability is verified by considering the statistical distribution of the segmentation results when repeatedly analyzing each patient's dataset with a different set of random seeding points. Using L1-regularized semi-automated NMF segmentation, mean Dice-scores of 65%, 74 and 80% are found for active tumor, the tumor core and the whole tumor region. Mean Hausdorff distances of 6.1 mm, 7.4 mm and 8.2 mm are found for active tumor, the tumor core and the whole tumor region. Lower Dice-scores and higher Hausdorff distances are found without L1-regularization and when only considering conventional MRI data. Based on the mean Dice-scores and Hausdorff distances, segmentation results are competitive with state-of-the-art in literature. Robust results were found for most patients, although careful voxel selection is mandatory to avoid sub-optimal segmentation.

  20. Analytical Modeling Tool for Design of Hydrocarbon Sensitive Optical Fibers

    PubMed Central

    Vahdati, Nader; Lawand, Lydia

    2017-01-01

    Pipelines are the main transportation means for oil and gas products across large distances. Due to the severe conditions they operate in, they are regularly inspected using conventional Pipeline Inspection Gages (PIGs) for corrosion damage. The motivation for researching a real-time distributed monitoring solution arose to mitigate costs and provide a proactive indication of potential failures. Fiber optic sensors with polymer claddings provide a means of detecting contact with hydrocarbons. By coating the fibers with a layer of metal similar in composition to that of the parent pipeline, corrosion of this coating may be detected when the polymer cladding underneath is exposed to the surrounding hydrocarbons contained within the pipeline. A Refractive Index (RI) change occurs in the polymer cladding causing a loss in intensity of a traveling light pulse due to a reduction in the fiber’s modal capacity. Intensity losses may be detected using Optical Time Domain Reflectometry (OTDR) while pinpointing the spatial location of the contact via time delay calculations of the back-scattered pulses. This work presents a theoretical model for the above sensing solution to provide a design tool for the fiber optic cable in the context of hydrocarbon sensing following corrosion of an external metal coating. Results are verified against the experimental data published in the literature. PMID:28956847

  1. Integrated change detection and temporal trajectory analysis of coastal wetlands using high spatial resolution Korean Multi-Purpose Satellite series imagery

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoang Hai; Tran, Hien; Sunwoo, Wooyeon; Yi, Jong-hyuk; Kim, Dongkyun; Choi, Minha

    2017-04-01

    A series of multispectral high-resolution Korean Multi-Purpose Satellite (KOMPSAT) images was used to detect the geographical changes in four different tidal flats between the Yellow Sea and the west coast of South Korea. The method of unsupervised classification was used to generate a series of land use/land cover (LULC) maps from satellite images, which were then used as input for temporal trajectory analysis to detect the temporal change of coastal wetlands and its association with natural and anthropogenic activities. The accurately classified LULC maps of KOMPSAT images, with overall accuracy ranging from 83.34% to 95.43%, indicate that these multispectral high-resolution satellite data are highly applicable to the generation of high-quality thematic maps for extracting wetlands. The result of the trajectory analysis showed that, while the variation of the tidal flats in the Gyeonggi and Jeollabuk provinces was well correlated with the regular tidal regimes, the reductive trajectory of the wetland areas belonging to the Saemangeum province was caused by a high degree of human-induced activities including large reclamation and urbanization. The conservation of the Jeungdo Wetland Protected Area in the Jeollanam province revealed that effective social and environmental policies could help in protecting coastal wetlands from degradation.

  2. Variable Cyanobacterial Toxin and Metabolite Profiles across Six Eutrophic Lakes of Differing Physiochemical Characteristics

    PubMed Central

    Beversdorf, Lucas J.; Weirich, Chelsea A.; Bartlett, Sarah L.; Miller, Todd. R.

    2017-01-01

    Future sustainability of freshwater resources is seriously threatened due to the presence of harmful cyanobacterial blooms, and yet, the number, extent, and distribution of most cyanobacterial toxins—including “emerging” toxins and other bioactive compounds—are poorly understood. We measured 15 cyanobacterial compounds—including four microcystins (MC), saxitoxin (SXT), cylindrospermopsin (CYL), anatoxin-a (ATX) and homo-anatoxin-a (hATX), two anabaenopeptins (Apt), three cyanopeptolins (Cpt), microginin (Mgn), and nodularin (NOD)—in six freshwater lakes that regularly experience noxious cHABs. MC, a human liver toxin, was present in all six lakes and was detected in 80% of all samples. Similarly, Apt, Cpt, and Mgn were detected in all lakes in roughly 86%, 50%, and 35% of all samples, respectively. Despite being a notable brackish water toxin, NOD was detected in the two shallowest lakes—Wingra (4.3 m) and Koshkonong (2.1 m). All compounds were highly variable temporally, and spatially. Metabolite profiles were significantly different between lakes suggesting lake characteristics influenced the cyanobacterial community and/or metabolite production. Understanding how cyanobacterial toxins are distributed across eutrophic lakes may shed light onto the ecological function of these metabolites, provide valuable information for their remediation and removal, and aid in the protection of public health. PMID:28208628

  3. Analytical Modeling Tool for Design of Hydrocarbon Sensitive Optical Fibers.

    PubMed

    Al Handawi, Khalil; Vahdati, Nader; Shiryayev, Oleg; Lawand, Lydia

    2017-09-28

    Pipelines are the main transportation means for oil and gas products across large distances. Due to the severe conditions they operate in, they are regularly inspected using conventional Pipeline Inspection Gages (PIGs) for corrosion damage. The motivation for researching a real-time distributed monitoring solution arose to mitigate costs and provide a proactive indication of potential failures. Fiber optic sensors with polymer claddings provide a means of detecting contact with hydrocarbons. By coating the fibers with a layer of metal similar in composition to that of the parent pipeline, corrosion of this coating may be detected when the polymer cladding underneath is exposed to the surrounding hydrocarbons contained within the pipeline. A Refractive Index (RI) change occurs in the polymer cladding causing a loss in intensity of a traveling light pulse due to a reduction in the fiber's modal capacity. Intensity losses may be detected using Optical Time Domain Reflectometry (OTDR) while pinpointing the spatial location of the contact via time delay calculations of the back-scattered pulses. This work presents a theoretical model for the above sensing solution to provide a design tool for the fiber optic cable in the context of hydrocarbon sensing following corrosion of an external metal coating. Results are verified against the experimental data published in the literature.

  4. Shaping highly regular glass architectures: A lesson from nature

    PubMed Central

    Schoeppler, Vanessa; Reich, Elke; Vacelet, Jean; Rosenthal, Martin; Pacureanu, Alexandra; Rack, Alexander; Zaslansky, Paul; Zolotoyabko, Emil; Zlotnikov, Igor

    2017-01-01

    Demospongiae is a class of marine sponges that mineralize skeletal elements, the glass spicules, made of amorphous silica. The spicules exhibit a diversity of highly regular three-dimensional branched morphologies that are a paradigm example of symmetry in biological systems. Current glass shaping technology requires treatment at high temperatures. In this context, the mechanism by which glass architectures are formed by living organisms remains a mystery. We uncover the principles of spicule morphogenesis. During spicule formation, the process of silica deposition is templated by an organic filament. It is composed of enzymatically active proteins arranged in a mesoscopic hexagonal crystal-like structure. In analogy to synthetic inorganic nanocrystals that show high spatial regularity, we demonstrate that the branching of the filament follows specific crystallographic directions of the protein lattice. In correlation with the symmetry of the lattice, filament branching determines the highly regular morphology of the spicules on the macroscale. PMID:29057327

  5. Gene expression based mouse brain parcellation using Markov random field regularized non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Pathak, Sayan D.; Haynor, David R.; Thompson, Carol L.; Lein, Ed; Hawrylycz, Michael

    2009-02-01

    Understanding the geography of genetic expression in the mouse brain has opened previously unexplored avenues in neuroinformatics. The Allen Brain Atlas (www.brain-map.org) (ABA) provides genome-wide colorimetric in situ hybridization (ISH) gene expression images at high spatial resolution, all mapped to a common three-dimensional 200μm3 spatial framework defined by the Allen Reference Atlas (ARA) and is a unique data set for studying expression based structural and functional organization of the brain. The goal of this study was to facilitate an unbiased data-driven structural partitioning of the major structures in the mouse brain. We have developed an algorithm that uses nonnegative matrix factorization (NMF) to perform parts based analysis of ISH gene expression images. The standard NMF approach and its variants are limited in their ability to flexibly integrate prior knowledge, in the context of spatial data. In this paper, we introduce spatial connectivity as an additional regularization in NMF decomposition via the use of Markov Random Fields (mNMF). The mNMF algorithm alternates neighborhood updates with iterations of the standard NMF algorithm to exploit spatial correlations in the data. We present the algorithm and show the sub-divisions of hippocampus and somatosensory-cortex obtained via this approach. The results are compared with established neuroanatomic knowledge. We also highlight novel gene expression based sub divisions of the hippocampus identified by using the mNMF algorithm.

  6. On the role of working memory in spatial contextual cueing.

    PubMed

    Travis, Susan L; Mattingley, Jason B; Dux, Paul E

    2013-01-01

    The human visual system receives more information than can be consciously processed. To overcome this capacity limit, we employ attentional mechanisms to prioritize task-relevant (target) information over less relevant (distractor) information. Regularities in the environment can facilitate the allocation of attention, as demonstrated by the spatial contextual cueing paradigm. When observers are exposed repeatedly to a scene and invariant distractor information, learning from earlier exposures enhances the search for the target. Here, we investigated whether spatial contextual cueing draws on spatial working memory resources and, if so, at what level of processing working memory load has its effect. Participants performed 2 tasks concurrently: a visual search task, in which the spatial configuration of some search arrays occasionally repeated, and a spatial working memory task. Increases in working memory load significantly impaired contextual learning. These findings indicate that spatial contextual cueing utilizes working memory resources.

  7. Relatedness in spatially structured populations with empty sites: An approach based on spatial moment equations.

    PubMed

    Lion, Sébastien

    2009-09-07

    Taking into account the interplay between spatial ecological dynamics and selection is a major challenge in evolutionary ecology. Although inclusive fitness theory has proven to be a very useful tool to unravel the interactions between spatial genetic structuring and selection, applications of the theory usually rely on simplifying demographic assumptions. In this paper, I attempt to bridge the gap between spatial demographic models and kin selection models by providing a method to compute approximations for relatedness coefficients in a spatial model with empty sites. Using spatial moment equations, I provide an approximation of nearest-neighbour relatedness on random regular networks, and show that this approximation performs much better than the ordinary pair approximation. I discuss the connection between the relatedness coefficients I define and those used in population genetics, and sketch some potential extensions of the theory.

  8. What is the context of contextual cueing?

    PubMed

    Makovski, Tal

    2016-12-01

    People have a powerful ability to extract regularities from noisy environments and to utilize this knowledge to assist in visual search. Extensive research has shown that this ability, termed contextual cueing (CC), is robust and ubiquitous, but it is still unclear what exactly is the context that is being leaned. Researchers have typically focused on how people learn spatial configuration regularities and have hence used simplified, meaningless search stimuli. Here, observers performed visual search tasks using images of real-world objects. The results revealed that, contrary to past findings, the repetition of either arbitrary spatial information or identity information was not sufficient to produce context learning. Instead, learning was found only when both types of information were repeated together. These results were further replicated in hybrid search tasks, in which subjects looked for multiple target templates. Together, these data suggest that CC is more limited than typically assumed, yet this learning is highly robust.

  9. The Detection of Clusters with Spatial Heterogeneity

    ERIC Educational Resources Information Center

    Zhang, Zuoyi

    2011-01-01

    This thesis consists of two parts. In Chapter 2, we focus on the spatial scan statistics with overdispersion and Chapter 3 is devoted to the randomized permutation test for identifying local patterns of spatial association. The spatial scan statistic has been widely used in spatial disease surveillance and spatial cluster detection. To apply it, a…

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Dongcheol; Peterson, B. J.; Lee, Seung Hun

    The resistive bolometers have been successfully installed in the midplane of L-port in Korea Superconducting Tokamak Advanced Research (KSTAR) device. The spatial and temporal resolutions, 4.5 cm and {approx}1 kHz, respectively, enable us to measure the radial profile of the total radiated power from magnetically confined plasma at a high temperature through radiation and neutral particles. The radiated power was measured at all shots. Even at low plasma current, the bolometer signal was detectable. The electron cyclotron resonance heating (ECH) has been used in tokamak for ECH assisted start-up and plasma control by local heating and current drive. The detectorsmore » of resistive bolometer, near the antenna of ECH, are affected by electron cyclotron wave. The tomographic reconstruction, using the Phillips-Tikhonov regularization method, will be carried out for a major radial profile of the radiation emissivity of the circular cross-section plasma.« less

  11. Analyzing the spatial positioning of nuclei in polynuclear giant cells

    NASA Astrophysics Data System (ADS)

    Stange, Maike; Hintsche, Marius; Sachse, Kirsten; Gerhardt, Matthias; Valleriani, Angelo; Beta, Carsten

    2017-11-01

    How cells establish and maintain a well-defined size is a fundamental question of cell biology. Here we investigated to what extent the microtubule cytoskeleton can set a predefined cell size, independent of an enclosing cell membrane. We used electropulse-induced cell fusion to form giant multinuclear cells of the social amoeba Dictyostelium discoideum. Based on dual-color confocal imaging of cells that expressed fluorescent markers for the cell nucleus and the microtubules, we determined the subcellular distributions of nuclei and centrosomes in the giant cells. Our two- and three-dimensional imaging results showed that the positions of nuclei in giant cells do not fall onto a regular lattice. However, a comparison with model predictions for random positioning showed that the subcellular arrangement of nuclei maintains a low but still detectable degree of ordering. This can be explained by the steric requirements of the microtubule cytoskeleton, as confirmed by the effect of a microtubule degrading drug.

  12. Increased Sensitivity to Mirror Symmetry in Autism

    PubMed Central

    Perreault, Audrey; Gurnsey, Rick; Dawson, Michelle; Mottron, Laurent; Bertone, Armando

    2011-01-01

    Can autistic people see the forest for the trees? Ongoing uncertainty about the integrity and role of global processing in autism gives special importance to the question of how autistic individuals group local stimulus attributes into meaningful spatial patterns. We investigated visual grouping in autism by measuring sensitivity to mirror symmetry, a highly-salient perceptual image attribute preceding object recognition. Autistic and non-autistic individuals were asked to detect mirror symmetry oriented along vertical, oblique, and horizontal axes. Both groups performed best when the axis was vertical, but across all randomly-presented axis orientations, autistics were significantly more sensitive to symmetry than non-autistics. We suggest that under some circumstances, autistic individuals can take advantage of parallel access to local and global information. In other words, autistics may sometimes see the forest and the trees, and may therefore extract from noisy environments genuine regularities which elude non-autistic observers. PMID:21559337

  13. Robust Kriged Kalman Filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baingana, Brian; Dall'Anese, Emiliano; Mateos, Gonzalo

    2015-11-11

    Although the kriged Kalman filter (KKF) has well-documented merits for prediction of spatial-temporal processes, its performance degrades in the presence of outliers due to anomalous events, or measurement equipment failures. This paper proposes a robust KKF model that explicitly accounts for presence of measurement outliers. Exploiting outlier sparsity, a novel l1-regularized estimator that jointly predicts the spatial-temporal process at unmonitored locations, while identifying measurement outliers is put forth. Numerical tests are conducted on a synthetic Internet protocol (IP) network, and real transformer load data. Test results corroborate the effectiveness of the novel estimator in joint spatial prediction and outlier identification.

  14. Sharp switches between regular and swinger mitochondrial replication: 16S rDNA systematically exchanging nucleotides A<->T+C<->G in the mitogenome of Kamimuria wangi.

    PubMed

    Seligmann, Hervé

    2016-07-01

    Swinger DNAs are sequences whose homology with known sequences is detected only by assuming systematic exchanges between nucleotides. Nine symmetric (X<->Y, i.e. A<->C) and fourteen asymmetric (X->Y->Z, i.e. A->C->G) exchanges exist. All swinger DNA previously detected in GenBank follow the A<->T+C<->G exchange, while mitochondrial swinger RNAs distribute among different swinger types. Here different alignment criteria detect 87 additional swinger mitochondrial DNAs (86 from insects), including the first swinger gene embedded within a complete genome, corresponding to the mitochondrial 16S rDNA of the stonefly Kamimuria wangi. Other Kamimuria mt genome regions are "regular", stressing unanswered questions on (a) swinger polymerization regulation; (b) swinger 16S rDNA functions; and (c) specificity to rDNA, in particular 16S rDNA. Sharp switches between regular and swinger replication, together with previous observations on swinger transcription, suggest that swinger replication might be due to a switch in polymerization mode of regular polymerases and the possibility of swinger-encoded information, predicted in primordial genes such as rDNA.

  15. Object detection in natural scenes: Independent effects of spatial and category-based attention.

    PubMed

    Stein, Timo; Peelen, Marius V

    2017-04-01

    Humans are remarkably efficient in detecting highly familiar object categories in natural scenes, with evidence suggesting that such object detection can be performed in the (near) absence of attention. Here we systematically explored the influences of both spatial attention and category-based attention on the accuracy of object detection in natural scenes. Manipulating both types of attention additionally allowed for addressing how these factors interact: whether the requirement for spatial attention depends on the extent to which observers are prepared to detect a specific object category-that is, on category-based attention. The results showed that the detection of targets from one category (animals or vehicles) was better than the detection of targets from two categories (animals and vehicles), demonstrating the beneficial effect of category-based attention. This effect did not depend on the semantic congruency of the target object and the background scene, indicating that observers attended to visual features diagnostic of the foreground target objects from the cued category. Importantly, in three experiments the detection of objects in scenes presented in the periphery was significantly impaired when observers simultaneously performed an attentionally demanding task at fixation, showing that spatial attention affects natural scene perception. In all experiments, the effects of category-based attention and spatial attention on object detection performance were additive rather than interactive. Finally, neither spatial nor category-based attention influenced metacognitive ability for object detection performance. These findings demonstrate that efficient object detection in natural scenes is independently facilitated by spatial and category-based attention.

  16. A Tikhonov Regularization Scheme for Focus Rotations with Focused Ultrasound Phased Arrays

    PubMed Central

    Hughes, Alec; Hynynen, Kullervo

    2016-01-01

    Phased arrays have a wide range of applications in focused ultrasound therapy. By using an array of individually-driven transducer elements, it is possible to steer a focus through space electronically and compensate for acoustically heterogeneous media with phase delays. In this paper, the concept of focusing an ultrasound phased array is expanded to include a method to control the orientation of the focus using a Tikhonov regularization scheme. It is then shown that the Tikhonov regularization parameter used to solve the ill-posed focus rotation problem plays an important role in the balance between quality focusing and array efficiency. Finally, the technique is applied to the synthesis of multiple foci, showing that this method allows for multiple independent spatial rotations. PMID:27913323

  17. A Tikhonov Regularization Scheme for Focus Rotations With Focused Ultrasound-Phased Arrays.

    PubMed

    Hughes, Alec; Hynynen, Kullervo

    2016-12-01

    Phased arrays have a wide range of applications in focused ultrasound therapy. By using an array of individually driven transducer elements, it is possible to steer a focus through space electronically and compensate for acoustically heterogeneous media with phase delays. In this paper, the concept of focusing an ultrasound-phased array is expanded to include a method to control the orientation of the focus using a Tikhonov regularization scheme. It is then shown that the Tikhonov regularization parameter used to solve the ill-posed focus rotation problem plays an important role in the balance between quality focusing and array efficiency. Finally, the technique is applied to the synthesis of multiple foci, showing that this method allows for multiple independent spatial rotations.

  18. Regularity gradient estimates for weak solutions of singular quasi-linear parabolic equations

    NASA Astrophysics Data System (ADS)

    Phan, Tuoc

    2017-12-01

    This paper studies the Sobolev regularity for weak solutions of a class of singular quasi-linear parabolic problems of the form ut -div [ A (x , t , u , ∇u) ] =div [ F ] with homogeneous Dirichlet boundary conditions over bounded spatial domains. Our main focus is on the case that the vector coefficients A are discontinuous and singular in (x , t)-variables, and dependent on the solution u. Global and interior weighted W 1 , p (ΩT , ω)-regularity estimates are established for weak solutions of these equations, where ω is a weight function in some Muckenhoupt class of weights. The results obtained are even new for linear equations, and for ω = 1, because of the singularity of the coefficients in (x , t)-variables.

  19. Raman spectroscopy-based detection of chemical contaminants in food powders

    NASA Astrophysics Data System (ADS)

    Chao, Kuanglin; Dhakal, Sagar; Qin, Jianwei; Kim, Moon; Bae, Abigail

    2016-05-01

    Raman spectroscopy technique has proven to be a reliable method for qualitative detection of chemical contaminants in food ingredients and products. For quantitative imaging-based detection, each contaminant particle in a food sample must be detected and it is important to determine the necessary spatial resolution needed to effectively detect the contaminant particles. This study examined the effective spatial resolution required for detection of maleic acid in tapioca starch and benzoyl peroxide in wheat flour. Each chemical contaminant was mixed into its corresponding food powder at a concentration of 1% (w/w). Raman spectral images were collected for each sample, leveled across a 45 mm x 45 mm area, using different spatial resolutions. Based on analysis of these images, a spatial resolution of 0.5mm was selected as effective spatial resolution for detection of maleic acid in starch and benzoyl peroxide in flour. An experiment was then conducted using the 0.5mm spatial resolution to demonstrate Raman imaging-based quantitative detection of these contaminants for samples prepared at 0.1%, 0.3%, and 0.5% (w/w) concentrations. The results showed a linear correlation between the detected numbers of contaminant pixels and the actual concentrations of contaminant.

  20. On the persistence of spatiotemporal oscillations generated by invasion

    NASA Astrophysics Data System (ADS)

    Kay, A. L.; Sherratt, J. A.

    1999-10-01

    Many systems in biology and chemistry are oscillatory, with a stable, spatially homogeneous steady state which consists of periodic temporal oscillations in the interacting species, and such systems have been extensively studied on infinite or semi-infinite spatial domains. We consider the effect of a finite domain, with zero-flux boundary conditions, on the behaviour of solutions to oscillatory reaction-diffusion equations after invasion. We begin by considering numerical simulations of various oscillatory predatory-prey systems. We conclude that when regular spatiotemporal oscillations are left in the wake of invasion, these die out, beginning with a decrease in the spatial frequency of the oscillations at one boundary, which then propagates across the domain. The long-time solution in this case is purely temporal oscillations, corresponding to the limit cycle of the kinetics. Contrastingly, when irregular spatiotemporal oscillations are left in the wake of invasion, they persist, even in very long time simulations. To study this phenomenon in more detail, we consider the {lambda}-{omega} class of reaction-diffusion systems. Numerical simulations show that these systems also exhibit die-out of regular spatiotemporal oscillations and persistence of irregular spatiotemporal oscillations. Exploiting the mathematical simplicity of the {lambda}-{omega} form, we derive analytically an approximation to the transition fronts in r and {theta}x which occur during the die-out of the regular oscillations. We then use this approximation to describe how the die-out occurs, and to derive a measure of its rate, as a function of parameter values. We discuss applications of our results to ecology, calcium signalling and chemistry.

  1. Biometric, microstructural, and high-resolution trace element studies in Crassostrea gigas of Cantabria (Bay of Biscay, Spain): Anthropogenic and seasonal influences

    NASA Astrophysics Data System (ADS)

    Higuera-Ruiz, R.; Elorza, J.

    2009-04-01

    Living Crassostrea gigas oysters of different ages and sizes were collected in three estuaries of Cantabria (Bay of Biscay, Spain): San Vicente de la Barquera Estuary, Santander Bay, and Marismas de Santoña Estuary. The main objective was to determine different shell responses to variable environmental parameters. A shell morphological study, based on three biometric indices, indicates that oysters of Santander Bay have two significant shell anomalies: abnormal thickening of the right valve and loss of vital cavity volume. These shell abnormalities are related with the presence in these waters of the chemical tributyltin. In the other two estuaries, the oysters show no detectable anomalies. Four shell microstructures have been distinguished: Regular Simple Prismatic, Regular Foliated, cone-Complex Cross Foliated, and Chalk. In Santander Bay oysters, the Chalk forms a "root-type" framework, whereas in the other two estuaries it forms a more compact microstructure. It is proposed that exposure to tributyltin has produced this modification. High-spatial-resolution geochemical transects have been carried out on the Regular Foliated microstructure in the umbo region in order to evaluate the distribution of Mg, Sr, and Na. The elements analysed exhibit clear cyclic variations in San Vicente de la Barquera Estuary and Marismas de Santoña Estuary oysters, related with seasonal periods, and characterised by broad maxima during months in which the waters are warmer and have higher salinity. These patterns are buffered in Santander Bay oysters. Our results demonstrate that biometric, microstructural, and high-resolution trace element studies in oyster shells can provide information about contaminants and seasonal variations in the estuarine environment.

  2. Assessing cognition following petrol sniffing for Indigenous Australians.

    PubMed

    Dingwall, Kylie M; Lewis, Matthew S; Maruff, Paul; Cairney, Sheree

    2010-07-01

    Chronic petrol inhalation can be associated with significant cognitive impairment. While rehabilitation programs can rely on such skills to educate clients and achieve treatment outcomes, cognitive function is rarely assessed on admission. This is particularly true for Indigenous populations where standard assessments are not appropriate. This paper describes a process for assessing cognition in Indigenous Australians. Two studies investigate firstly the demographic factors impacting on cognition for healthy Indigenous Australians and secondly the utility of the assessment process for detecting petrol sniffing related cognitive impairments. Study One assessed a naturalistic sample of healthy Indigenous Australians from the Northern Territory (N = 206; mean age = 28.03) on computerised tests of psychomotor speed, visual attention, memory, learning, spatial awareness and executive functions. Multiple regression analyses determined the unique contributions of six factors (age, education, gender, familiarity with computers, regular long term cannabis use and locality) to the variance in performance for this group. Study Two examined group differences in cognitive performance on the same tests between healthy Indigenous Australians (N = 96) and Indigenous petrol sniffers (N = 50; both age restricted to < 26 years) while controlling those factors found to impact on performance from Study One. Age, computer familiarity, and education significantly contributed to the variance in performance measures. While controlling these factors, petrol abuse was associated with poorer performance on complex tasks of psychomotor, visual attention, memory, learning, spatial awareness and executive function. This assessment process is useful for detecting substance abuse related impairments in Indigenous Australians and when using this assessment process, age and computer familiarity in particular should be controlled for.

  3. Real-time passive acoustic detection of marine mammals from a variety of autonomous platforms

    NASA Astrophysics Data System (ADS)

    Baumgartner, M.; Van Parijs, S. M.; Hotchkin, C. F.; Gurnee, J.; Stafford, K.; Winsor, P.; Davies, K. T. A.; Taggart, C. T.

    2016-02-01

    Over the past two decades, passive acoustic monitoring has proven to be an effective means of estimating the occurrence of marine mammals. The vast majority of applications involve archival recordings from bottom-mounted instruments or towed hydrophones from moving ships; however, there is growing interest in assessing marine mammal occurrence from autonomous platforms, particularly in real time. The Woods Hole Oceanographic Institution has developed the capability to detect, classify, and remotely report in near real time the calls of marine mammals via passive acoustics from a variety of autonomous platforms, including Slocum gliders, wave gliders, and moored buoys. The mobile Slocum glider can simultaneously measure marine mammal occurrence and oceanographic conditions throughout the water column, making it well suited for studying both marine mammal distribution and habitat. Wave gliders and moored buoys provide complementary observations over much larger spatial scales and longer temporal scales, respectively. The near real-time reporting capability of these platforms enables follow-up visual observations, on-water research, or responsive management action. We have recently begun to use this technology to regularly monitor baleen whales off the coast of New England, USA and Nova Scotia, Canada, as well as baleen whales, beluga whales, and bearded seals in the Chukchi Sea off the northwest coast of Alaska, USA. Our long-range goal is to monitor occurrence over wide spatial and temporal extents as part of the regional and global ocean observatory initiatives to improve marine mammal conservation and management and to study changes in marine mammal distribution over multi-annual time scales in response to climate change.

  4. Space-time variations in child mortality in a rural South African population with high HIV prevalence (2000-2014).

    PubMed

    Tlou, Boikhutso; Sartorius, Benn; Tanser, Frank

    2017-01-01

    The aim of the study was to identify the key determinants of child mortality 'hot-spots' in space and time. Comprehensive population-based mortality data collected between 2000 and 2014 by the Africa Centre Demographic Information System located in the UMkhanyakude District of KwaZulu-Natal Province, South Africa, was analysed. We assigned all mortality events and person-time of observation for children <5 years of age to an exact homestead of residence (mapped to <2m accuracy as part of the DSA platform). Using these exact locations, both the Kulldorff and Tango spatial scan statistics for regular and irregular shaped cluster detection were used to identify clusters of childhood mortality events in both space and time. Of the 49 986 children aged < 5 years who resided in the study area between 2000 and 2014, 2010 (4.0%) died. Childhood mortality decreased by 80% over the period from >20 per 1000 person-years in 2001-2003 to 4 per 1000 person-years in 2014. The two scanning spatial techniques identified two high-risk clusters for child mortality along the eastern border of the study site near the national highway, with a relative risk of 2.10 and 1.91 respectively. The high-risk communities detected in this work, and the differential risk factor profile of these communities, can assist public health professionals to identify similar populations in other parts of rural South Africa. Identifying child mortality hot-spots will potentially guide policy interventions in rural, resource-limited settings.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, B; Southern Medical University, Guangzhou, Guangdong; Shen, C

    Purpose: Multi-energy computed tomography (MECT) is an emerging application in medical imaging due to its ability of material differentiation and potential for molecular imaging. In MECT, image correlations at different spatial and channels exist. It is desirable to incorporate these correlations in reconstruction to improve image quality. For this purpose, this study proposes a MECT reconstruction technique that employes spatial spectral non-local means (ssNLM) regularization. Methods: We consider a kVp-switching scanning method in which source energy is rapidly switched during data acquisition. For each energy channel, this yields projection data acquired at a number of angles, whereas projection angles amongmore » channels are different. We formulate the reconstruction task as an optimziation problem. A least square term enfores data fidelity. A ssNLM term is used as regularization to encourage similarities among image patches at different spatial locations and channels. When comparing image patches at different channels, intensity difference were corrected by a transformation estimated via histogram equalization during the reconstruction process. Results: We tested our method in a simulation study with a NCAT phantom and an experimental study with a Gammex phantom. For comparison purpose, we also performed reconstructions using conjugate-gradient least square (CGLS) method and conventional NLM method that only considers spatial correlation in an image. ssNLM is able to better suppress streak artifacts. The streaks are along different projection directions in images at different channels. ssNLM discourages this dissimilarity and hence removes them. True image structures are preserved in this process. Measurements in regions of interests yield 1.1 to 3.2 and 1.5 to 1.8 times higher contrast to noise ratio than the NLM approach. Improvements over CGLS is even more profound due to lack of regularization in the CGLS method and hence amplified noise. Conclusion: The proposed ssNLM method for kVp-switching MECT reconstruction can achieve high quality MECT images.« less

  6. Bypassing the Limits of Ll Regularization: Convex Sparse Signal Processing Using Non-Convex Regularization

    NASA Astrophysics Data System (ADS)

    Parekh, Ankit

    Sparsity has become the basis of some important signal processing methods over the last ten years. Many signal processing problems (e.g., denoising, deconvolution, non-linear component analysis) can be expressed as inverse problems. Sparsity is invoked through the formulation of an inverse problem with suitably designed regularization terms. The regularization terms alone encode sparsity into the problem formulation. Often, the ℓ1 norm is used to induce sparsity, so much so that ℓ1 regularization is considered to be `modern least-squares'. The use of ℓ1 norm, as a sparsity-inducing regularizer, leads to a convex optimization problem, which has several benefits: the absence of extraneous local minima, well developed theory of globally convergent algorithms, even for large-scale problems. Convex regularization via the ℓ1 norm, however, tends to under-estimate the non-zero values of sparse signals. In order to estimate the non-zero values more accurately, non-convex regularization is often favored over convex regularization. However, non-convex regularization generally leads to non-convex optimization, which suffers from numerous issues: convergence may be guaranteed to only a stationary point, problem specific parameters may be difficult to set, and the solution is sensitive to the initialization of the algorithm. The first part of this thesis is aimed toward combining the benefits of non-convex regularization and convex optimization to estimate sparse signals more effectively. To this end, we propose to use parameterized non-convex regularizers with designated non-convexity and provide a range for the non-convex parameter so as to ensure that the objective function is strictly convex. By ensuring convexity of the objective function (sum of data-fidelity and non-convex regularizer), we can make use of a wide variety of convex optimization algorithms to obtain the unique global minimum reliably. The second part of this thesis proposes a non-linear signal decomposition technique for an important biomedical signal processing problem: the detection of sleep spindles and K-complexes in human sleep electroencephalography (EEG). We propose a non-linear model for the EEG consisting of three components: (1) a transient (sparse piecewise constant) component, (2) a low-frequency component, and (3) an oscillatory component. The oscillatory component admits a sparse time-frequency representation. Using a convex objective function, we propose a fast non-linear optimization algorithm to estimate the three components in the proposed signal model. The low-frequency and oscillatory components are then used to estimate the K-complexes and sleep spindles respectively. The proposed detection method is shown to outperform several state-of-the-art automated sleep spindles detection methods.

  7. How color, regularity, and good Gestalt determine backward masking.

    PubMed

    Sayim, Bilge; Manassi, Mauro; Herzog, Michael

    2014-06-18

    The strength of visual backward masking depends on the stimulus onset asynchrony (SOA) between target and mask. Recently, it was shown that the conjoint spatial layout of target and mask is as crucial as SOA. Particularly, masking strength depends on whether target and mask group with each other. The same is true in crowding where the global spatial layout of the flankers and target-flanker grouping determine crowding strength. Here, we presented a vernier target followed by different flanker configurations at varying SOAs. Similar to crowding, masking of a red vernier target was strongly reduced for arrays of 10 green compared with 10 red flanking lines. Unlike crowding, single green lines flanking the red vernier showed strong masking. Irregularly arranged flanking lines yielded stronger masking than did regularly arranged lines, again similar to crowding. While cuboid flankers reduced crowding compared with single lines, this was not the case in masking. We propose that, first, masking is reduced when the flankers are part of a larger spatial structure. Second, spatial factors counteract color differences between the target and the flankers. Third, complex Gestalts, such as cuboids, seem to need longer processing times to show ungrouping effects as observed in crowding. Strong parallels between masking and crowding suggest similar underlying mechanism; however, temporal factors in masking additionally modulate performance, acting as an additional grouping cue. © 2014 ARVO.

  8. Blind image fusion for hyperspectral imaging with the directional total variation

    NASA Astrophysics Data System (ADS)

    Bungert, Leon; Coomes, David A.; Ehrhardt, Matthias J.; Rasch, Jennifer; Reisenhofer, Rafael; Schönlieb, Carola-Bibiane

    2018-04-01

    Hyperspectral imaging is a cutting-edge type of remote sensing used for mapping vegetation properties, rock minerals and other materials. A major drawback of hyperspectral imaging devices is their intrinsic low spatial resolution. In this paper, we propose a method for increasing the spatial resolution of a hyperspectral image by fusing it with an image of higher spatial resolution that was obtained with a different imaging modality. This is accomplished by solving a variational problem in which the regularization functional is the directional total variation. To accommodate for possible mis-registrations between the two images, we consider a non-convex blind super-resolution problem where both a fused image and the corresponding convolution kernel are estimated. Using this approach, our model can realign the given images if needed. Our experimental results indicate that the non-convexity is negligible in practice and that reliable solutions can be computed using a variety of different optimization algorithms. Numerical results on real remote sensing data from plant sciences and urban monitoring show the potential of the proposed method and suggests that it is robust with respect to the regularization parameters, mis-registration and the shape of the kernel.

  9. Mesoscopic Effects in an Agent-Based Bargaining Model in Regular Lattices

    PubMed Central

    Poza, David J.; Santos, José I.; Galán, José M.; López-Paredes, Adolfo

    2011-01-01

    The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young [1] modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders. PMID:21408019

  10. A morphometric analysis of vegetation patterns in dryland ecosystems

    PubMed Central

    Dekker, Stefan C.; Li, Mao; Mio, Washington; Punyasena, Surangi W.; Lenton, Timothy M.

    2017-01-01

    Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems. PMID:28386414

  11. A morphometric analysis of vegetation patterns in dryland ecosystems.

    PubMed

    Mander, Luke; Dekker, Stefan C; Li, Mao; Mio, Washington; Punyasena, Surangi W; Lenton, Timothy M

    2017-02-01

    Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems.

  12. Mesoscopic effects in an agent-based bargaining model in regular lattices.

    PubMed

    Poza, David J; Santos, José I; Galán, José M; López-Paredes, Adolfo

    2011-03-09

    The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders.

  13. Systematic Dimensionality Reduction for Quantum Walks: Optimal Spatial Search and Transport on Non-Regular Graphs

    PubMed Central

    Novo, Leonardo; Chakraborty, Shantanav; Mohseni, Masoud; Neven, Hartmut; Omar, Yasser

    2015-01-01

    Continuous time quantum walks provide an important framework for designing new algorithms and modelling quantum transport and state transfer problems. Often, the graph representing the structure of a problem contains certain symmetries that confine the dynamics to a smaller subspace of the full Hilbert space. In this work, we use invariant subspace methods, that can be computed systematically using the Lanczos algorithm, to obtain the reduced set of states that encompass the dynamics of the problem at hand without the specific knowledge of underlying symmetries. First, we apply this method to obtain new instances of graphs where the spatial quantum search algorithm is optimal: complete graphs with broken links and complete bipartite graphs, in particular, the star graph. These examples show that regularity and high-connectivity are not needed to achieve optimal spatial search. We also show that this method considerably simplifies the calculation of quantum transport efficiencies. Furthermore, we observe improved efficiencies by removing a few links from highly symmetric graphs. Finally, we show that this reduction method also allows us to obtain an upper bound for the fidelity of a single qubit transfer on an XY spin network. PMID:26330082

  14. A morphometric analysis of vegetation patterns in dryland ecosystems

    NASA Astrophysics Data System (ADS)

    Mander, Luke; Dekker, Stefan C.; Li, Mao; Mio, Washington; Punyasena, Surangi W.; Lenton, Timothy M.

    2017-02-01

    Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems.

  15. Volumetric CT with sparse detector arrays (and application to Si-strip photon counters).

    PubMed

    Sisniega, A; Zbijewski, W; Stayman, J W; Xu, J; Taguchi, K; Fredenberg, E; Lundqvist, Mats; Siewerdsen, J H

    2016-01-07

    Novel x-ray medical imaging sensors, such as photon counting detectors (PCDs) and large area CCD and CMOS cameras can involve irregular and/or sparse sampling of the detector plane. Application of such detectors to CT involves undersampling that is markedly different from the commonly considered case of sparse angular sampling. This work investigates volumetric sampling in CT systems incorporating sparsely sampled detectors with axial and helical scan orbits and evaluates performance of model-based image reconstruction (MBIR) with spatially varying regularization in mitigating artifacts due to sparse detector sampling. Volumetric metrics of sampling density and uniformity were introduced. Penalized-likelihood MBIR with a spatially varying penalty that homogenized resolution by accounting for variations in local sampling density (i.e. detector gaps) was evaluated. The proposed methodology was tested in simulations and on an imaging bench based on a Si-strip PCD (total area 5 cm  ×  25 cm) consisting of an arrangement of line sensors separated by gaps of up to 2.5 mm. The bench was equipped with translation/rotation stages allowing a variety of scanning trajectories, ranging from a simple axial acquisition to helical scans with variable pitch. Statistical (spherical clutter) and anthropomorphic (hand) phantoms were considered. Image quality was compared to that obtained with a conventional uniform penalty in terms of structural similarity index (SSIM), image uniformity, spatial resolution, contrast, and noise. Scan trajectories with intermediate helical width (~10 mm longitudinal distance per 360° rotation) demonstrated optimal tradeoff between the average sampling density and the homogeneity of sampling throughout the volume. For a scan trajectory with 10.8 mm helical width, the spatially varying penalty resulted in significant visual reduction of sampling artifacts, confirmed by a 10% reduction in minimum SSIM (from 0.88 to 0.8) and a 40% reduction in the dispersion of SSIM in the volume compared to the constant penalty (both penalties applied at optimal regularization strength). Images of the spherical clutter and wrist phantoms confirmed the advantages of the spatially varying penalty, showing a 25% improvement in image uniformity and 1.8  ×  higher CNR (at matched spatial resolution) compared to the constant penalty. The studies elucidate the relationship between sampling in the detector plane, acquisition orbit, sampling of the reconstructed volume, and the resulting image quality. They also demonstrate the benefit of spatially varying regularization in MBIR for scenarios with irregular sampling patterns. Such findings are important and integral to the incorporation of a sparsely sampled Si-strip PCD in CT imaging.

  16. Volumetric CT with sparse detector arrays (and application to Si-strip photon counters)

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Fredenberg, E.; Lundqvist, Mats; Siewerdsen, J. H.

    2016-01-01

    Novel x-ray medical imaging sensors, such as photon counting detectors (PCDs) and large area CCD and CMOS cameras can involve irregular and/or sparse sampling of the detector plane. Application of such detectors to CT involves undersampling that is markedly different from the commonly considered case of sparse angular sampling. This work investigates volumetric sampling in CT systems incorporating sparsely sampled detectors with axial and helical scan orbits and evaluates performance of model-based image reconstruction (MBIR) with spatially varying regularization in mitigating artifacts due to sparse detector sampling. Volumetric metrics of sampling density and uniformity were introduced. Penalized-likelihood MBIR with a spatially varying penalty that homogenized resolution by accounting for variations in local sampling density (i.e. detector gaps) was evaluated. The proposed methodology was tested in simulations and on an imaging bench based on a Si-strip PCD (total area 5 cm  ×  25 cm) consisting of an arrangement of line sensors separated by gaps of up to 2.5 mm. The bench was equipped with translation/rotation stages allowing a variety of scanning trajectories, ranging from a simple axial acquisition to helical scans with variable pitch. Statistical (spherical clutter) and anthropomorphic (hand) phantoms were considered. Image quality was compared to that obtained with a conventional uniform penalty in terms of structural similarity index (SSIM), image uniformity, spatial resolution, contrast, and noise. Scan trajectories with intermediate helical width (~10 mm longitudinal distance per 360° rotation) demonstrated optimal tradeoff between the average sampling density and the homogeneity of sampling throughout the volume. For a scan trajectory with 10.8 mm helical width, the spatially varying penalty resulted in significant visual reduction of sampling artifacts, confirmed by a 10% reduction in minimum SSIM (from 0.88 to 0.8) and a 40% reduction in the dispersion of SSIM in the volume compared to the constant penalty (both penalties applied at optimal regularization strength). Images of the spherical clutter and wrist phantoms confirmed the advantages of the spatially varying penalty, showing a 25% improvement in image uniformity and 1.8  ×  higher CNR (at matched spatial resolution) compared to the constant penalty. The studies elucidate the relationship between sampling in the detector plane, acquisition orbit, sampling of the reconstructed volume, and the resulting image quality. They also demonstrate the benefit of spatially varying regularization in MBIR for scenarios with irregular sampling patterns. Such findings are important and integral to the incorporation of a sparsely sampled Si-strip PCD in CT imaging.

  17. Volumetric CT with sparse detector arrays (and application to Si-strip photon counters)

    PubMed Central

    Sisniega, A; Zbijewski, W; Stayman, J W; Xu, J; Taguchi, K; Fredenberg, E; Lundqvist, Mats; Siewerdsen, J H

    2016-01-01

    Novel x-ray medical imaging sensors, such as photon counting detectors (PCDs) and large area CCD and CMOS cameras can involve irregular and/or sparse sampling of the detector plane. Application of such detectors to CT involves undersampling that is markedly different from the commonly considered case of sparse angular sampling. This work investigates volumetric sampling in CT systems incorporating sparsely sampled detectors with axial and helical scan orbits and evaluates performance of model-based image reconstruction (MBIR) with spatially varying regularization in mitigating artifacts due to sparse detector sampling. Volumetric metrics of sampling density and uniformity were introduced. Penalized-likelihood MBIR with a spatially varying penalty that homogenized resolution by accounting for variations in local sampling density (i.e. detector gaps) was evaluated. The proposed methodology was tested in simulations and on an imaging bench based on a Si-strip PCD (total area 5 cm × 25 cm) consisting of an arrangement of line sensors separated by gaps of up to 2.5 mm. The bench was equipped with translation/rotation stages allowing a variety of scanning trajectories, ranging from a simple axial acquisition to helical scans with variable pitch. Statistical (spherical clutter) and anthropomorphic (hand) phantoms were considered. Image quality was compared to that obtained with a conventional uniform penalty in terms of structural similarity index (SSIM), image uniformity, spatial resolution, contrast, and noise. Scan trajectories with intermediate helical width (~10 mm longitudinal distance per 360° rotation) demonstrated optimal tradeoff between the average sampling density and the homogeneity of sampling throughout the volume. For a scan trajectory with 10.8 mm helical width, the spatially varying penalty resulted in significant visual reduction of sampling artifacts, confirmed by a 10% reduction in minimum SSIM (from 0.88 to 0.8) and a 40% reduction in the dispersion of SSIM in the volume compared to the constant penalty (both penalties applied at optimal regularization strength). Images of the spherical clutter and wrist phantoms confirmed the advantages of the spatially varying penalty, showing a 25% improvement in image uniformity and 1.8 × higher CNR (at matched spatial resolution) compared to the constant penalty. The studies elucidate the relationship between sampling in the detector plane, acquisition orbit, sampling of the reconstructed volume, and the resulting image quality. They also demonstrate the benefit of spatially varying regularization in MBIR for scenarios with irregular sampling patterns. Such findings are important and integral to the incorporation of a sparsely sampled Si-strip PCD in CT imaging. PMID:26611740

  18. GIFTed Demons: deformable image registration with local structure-preserving regularization using supervoxels for liver applications

    PubMed Central

    Gleeson, Fergus V.; Brady, Michael; Schnabel, Julia A.

    2018-01-01

    Abstract. Deformable image registration, a key component of motion correction in medical imaging, needs to be efficient and provides plausible spatial transformations that reliably approximate biological aspects of complex human organ motion. Standard approaches, such as Demons registration, mostly use Gaussian regularization for organ motion, which, though computationally efficient, rule out their application to intrinsically more complex organ motions, such as sliding interfaces. We propose regularization of motion based on supervoxels, which provides an integrated discontinuity preserving prior for motions, such as sliding. More precisely, we replace Gaussian smoothing by fast, structure-preserving, guided filtering to provide efficient, locally adaptive regularization of the estimated displacement field. We illustrate the approach by applying it to estimate sliding motions at lung and liver interfaces on challenging four-dimensional computed tomography (CT) and dynamic contrast-enhanced magnetic resonance imaging datasets. The results show that guided filter-based regularization improves the accuracy of lung and liver motion correction as compared to Gaussian smoothing. Furthermore, our framework achieves state-of-the-art results on a publicly available CT liver dataset. PMID:29662918

  19. GIFTed Demons: deformable image registration with local structure-preserving regularization using supervoxels for liver applications.

    PubMed

    Papież, Bartłomiej W; Franklin, James M; Heinrich, Mattias P; Gleeson, Fergus V; Brady, Michael; Schnabel, Julia A

    2018-04-01

    Deformable image registration, a key component of motion correction in medical imaging, needs to be efficient and provides plausible spatial transformations that reliably approximate biological aspects of complex human organ motion. Standard approaches, such as Demons registration, mostly use Gaussian regularization for organ motion, which, though computationally efficient, rule out their application to intrinsically more complex organ motions, such as sliding interfaces. We propose regularization of motion based on supervoxels, which provides an integrated discontinuity preserving prior for motions, such as sliding. More precisely, we replace Gaussian smoothing by fast, structure-preserving, guided filtering to provide efficient, locally adaptive regularization of the estimated displacement field. We illustrate the approach by applying it to estimate sliding motions at lung and liver interfaces on challenging four-dimensional computed tomography (CT) and dynamic contrast-enhanced magnetic resonance imaging datasets. The results show that guided filter-based regularization improves the accuracy of lung and liver motion correction as compared to Gaussian smoothing. Furthermore, our framework achieves state-of-the-art results on a publicly available CT liver dataset.

  20. Thermal Structure of Jupiter's Infrared Hotspots and Plumes in the Northern Equatorial Region

    NASA Astrophysics Data System (ADS)

    Fletcher, Leigh N.; Orton, Glenn S.; Rogers, John H.; Greathouse, Thomas K.; Momary, Thomas W.; Giles, Rohini Sara; Melin, Henrik; Sinclair, James; Irwin, Patrick Gerard Joseph; Vedovato, Marco

    2016-10-01

    The most prominent features of Jupiter's northern equatorial region are the visibly dark, 5-µm-bright 'hotspots' that move rapidly eastward on the southern edge of the North Equatorial Belt (NEB, Allison 1990, doi:10.1016/0019-1035(90)90069-L). We combine high-resolution thermal-infrared (5-20 µm) imaging from VLT/VISIR and IRTF/SpeX with spatially resolved spectroscopy from IRTF/TEXES to examine the thermal and chemical conditions in the equatorial region during the 2015-2016 apparition. The high spatial resolution permits the first detailed cross-comparison of thermal and visible-albedo conditions within the hotspots. We find that: (i) cloud-clearing within the hotspots creates 8.6-µm bright patches that are broader and more diffuse than their 5-µm counterparts; (ii) cloudy, cool cells ("plumes") in the northern Equatorial Zone are ammonia-rich and dark in the 5- and 8-12 µm range; (iii) the hotspots sometimes demonstrate a westward tilt with altitude in the 0.1-0.8 bar region (Fletcher et al., 2016, doi:10.1016/j.icarus.2016.06.008); and (iv) blue-grey streaks on the southeastern edges of these ammonia-rich cells are also cloud free and bright at 5-12 µm. This regular longitudinal pattern of cloudy cells and cloud-free hotspots is consistent with condensation of NH3-rich air as it ascends in cells, and subsidence of dry, volatile-depleted air in the hotspots. The westward tilt of the NEB hotspots with height that was detected in 2014 (but not in 2016) supports the equatorial Rossby-wave hypothesis for the NEB pattern. This equatorial wave is distinct from those in the upper troposphere during the 2015-16 NEB expansion event (Orton et al., DPS/EPSC 2016). The cells and hotspots observed in the thermal-IR are the same type as those detected at near-IR wavelengths by Galileo/NIMS (Baines et al. 2002, doi:10.1006/icar.2002.6901) and in the radio, probing the deep atmosphere (de Pater et al., 2016, doi:10.1126/science.aaf2210), suggesting a coherent structure over tens of kilometres of altitude. Regular infrared tracking of the plume and hotspot locations will be used to aid interpretation of Juno observations.

  1. A Context-sensitive Approach to Anonymizing Spatial Surveillance Data: Impact on Outbreak Detection

    PubMed Central

    Cassa, Christopher A.; Grannis, Shaun J.; Overhage, J. Marc; Mandl, Kenneth D.

    2006-01-01

    Objective: The use of spatially based methods and algorithms in epidemiology and surveillance presents privacy challenges for researchers and public health agencies. We describe a novel method for anonymizing individuals in public health data sets by transposing their spatial locations through a process informed by the underlying population density. Further, we measure the impact of the skew on detection of spatial clustering as measured by a spatial scanning statistic. Design: Cases were emergency department (ED) visits for respiratory illness. Baseline ED visit data were injected with artificially created clusters ranging in magnitude, shape, and location. The geocoded locations were then transformed using a de-identification algorithm that accounts for the local underlying population density. Measurements: A total of 12,600 separate weeks of case data with artificially created clusters were combined with control data and the impact on detection of spatial clustering identified by a spatial scan statistic was measured. Results: The anonymization algorithm produced an expected skew of cases that resulted in high values of data set k-anonymity. De-identification that moves points an average distance of 0.25 km lowers the spatial cluster detection sensitivity by less than 4% and lowers the detection specificity less than 1%. Conclusion: A population-density–based Gaussian spatial blurring markedly decreases the ability to identify individuals in a data set while only slightly decreasing the performance of a standardly used outbreak detection tool. These findings suggest new approaches to anonymizing data for spatial epidemiology and surveillance. PMID:16357353

  2. Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D- and 3D-spatial configurations

    NASA Astrophysics Data System (ADS)

    Geints, Yu E.; Zemlyanov, A. A.; Minin, O. V.; Minin, I. V.

    2018-06-01

    We present the systematic study of key characteristics (field intensity enhancement, spatial extents) of the 2D- and 3D-photonic nanojets (PNJs) produced by geometrically-regular micron-sized dielectric particles illuminated by a plane laser wave. By means of the finite-difference time-domain calculations, we highlight the differences and similarities between PNJs in these two spatial configurations for curved- (sphere, circular cylinder) and rectangle-shaped scatterers (cube, square bar). Our findings can be useful, for example, for the design of particle-based high-resolution imaging because the spatial resolution by such systems might be further controlled by the optimization of refractive index contrast and geometrical shape of the particle-lens.

  3. Spatial arrangement and size distribution of normal faults, Buckskin detachment upper plate, Western Arizona

    NASA Astrophysics Data System (ADS)

    Laubach, S. E.; Hundley, T. H.; Hooker, J. N.; Marrett, R. A.

    2018-03-01

    Fault arrays typically include a wide range of fault sizes and those faults may be randomly located, clustered together, or regularly or periodically located in a rock volume. Here, we investigate size distribution and spatial arrangement of normal faults using rigorous size-scaling methods and normalized correlation count (NCC). Outcrop data from Miocene sedimentary rocks in the immediate upper plate of the regional Buckskin detachment-low angle normal-fault, have differing patterns of spatial arrangement as a function of displacement (offset). Using lower size-thresholds of 1, 0.1, 0.01, and 0.001 m, displacements range over 5 orders of magnitude and have power-law frequency distributions spanning ∼ four orders of magnitude from less than 0.001 m to more than 100 m, with exponents of -0.6 and -0.9. The largest faults with >1 m displacement have a shallower size-distribution slope and regular spacing of about 20 m. In contrast, smaller faults have steep size-distribution slopes and irregular spacing, with NCC plateau patterns indicating imposed clustering. Cluster widths are 15 m for the 0.1-m threshold, 14 m for 0.01-m, and 1 m for 0.001-m displacement threshold faults. Results demonstrate normalized correlation count effectively characterizes the spatial arrangement patterns of these faults. Our example from a high-strain fault pattern above a detachment is compatible with size and spatial organization that was influenced primarily by boundary conditions such as fault shape, mechanical unit thickness and internal stratigraphy on a range of scales rather than purely by interaction among faults during their propagation.

  4. An Automated, Adaptive Framework for Optimizing Preprocessing Pipelines in Task-Based Functional MRI

    PubMed Central

    Churchill, Nathan W.; Spring, Robyn; Afshin-Pour, Babak; Dong, Fan; Strother, Stephen C.

    2015-01-01

    BOLD fMRI is sensitive to blood-oxygenation changes correlated with brain function; however, it is limited by relatively weak signal and significant noise confounds. Many preprocessing algorithms have been developed to control noise and improve signal detection in fMRI. Although the chosen set of preprocessing and analysis steps (the “pipeline”) significantly affects signal detection, pipelines are rarely quantitatively validated in the neuroimaging literature, due to complex preprocessing interactions. This paper outlines and validates an adaptive resampling framework for evaluating and optimizing preprocessing choices by optimizing data-driven metrics of task prediction and spatial reproducibility. Compared to standard “fixed” preprocessing pipelines, this optimization approach significantly improves independent validation measures of within-subject test-retest, and between-subject activation overlap, and behavioural prediction accuracy. We demonstrate that preprocessing choices function as implicit model regularizers, and that improvements due to pipeline optimization generalize across a range of simple to complex experimental tasks and analysis models. Results are shown for brief scanning sessions (<3 minutes each), demonstrating that with pipeline optimization, it is possible to obtain reliable results and brain-behaviour correlations in relatively small datasets. PMID:26161667

  5. Gibbon travel paths are goal oriented.

    PubMed

    Asensio, Norberto; Brockelman, Warren Y; Malaivijitnond, Suchinda; Reichard, Ulrich H

    2011-05-01

    Remembering locations of food resources is critical for animal survival. Gibbons are territorial primates which regularly travel through small and stable home ranges in search of preferred, limited and patchily distributed resources (primarily ripe fruit). They are predicted to profit from an ability to memorize the spatial characteristics of their home range and may increase their foraging efficiency by using a 'cognitive map' either with Euclidean or with topological properties. We collected ranging and feeding data from 11 gibbon groups (Hylobates lar) to test their navigation skills and to better understand gibbons' 'spatial intelligence'. We calculated the locations at which significant travel direction changes occurred using the change-point direction test and found that these locations primarily coincided with preferred fruit sources. Within the limits of biologically realistic visibility distances observed, gibbon travel paths were more efficient in detecting known preferred food sources than a heuristic travel model based on straight travel paths in random directions. Because consecutive travel change-points were far from the gibbons' sight, planned movement between preferred food sources was the most parsimonious explanation for the observed travel patterns. Gibbon travel appears to connect preferred food sources as expected under the assumption of a good mental representation of the most relevant sources in a large-scale space.

  6. Receptive fields of locust brain neurons are matched to polarization patterns of the sky.

    PubMed

    Bech, Miklós; Homberg, Uwe; Pfeiffer, Keram

    2014-09-22

    Many animals, including insects, are able to use celestial cues as a reference for spatial orientation and long-distance navigation [1]. In addition to direct sunlight, the chromatic gradient of the sky and its polarization pattern are suited to serve as orientation cues [2-5]. Atmospheric scattering of sunlight causes a regular pattern of E vectors in the sky, which are arranged along concentric circles around the sun [5, 6]. Although certain insects rely predominantly on sky polarization for spatial orientation [7], it has been argued that detection of celestial E vector orientation may not suffice to differentiate between solar and antisolar directions [8, 9]. We show here that polarization-sensitive (POL) neurons in the brain of the desert locust Schistocerca gregaria can overcome this ambiguity. Extracellular recordings from POL units in the central complex and lateral accessory lobes revealed E vector tunings arranged in concentric circles within large receptive fields, matching the sky polarization pattern at certain solar positions. Modeling of neuronal responses under an idealized sky polarization pattern (Rayleigh sky) suggests that these "matched filter" properties allow locusts to unambiguously determine the solar azimuth by relying solely on the sky polarization pattern for compass navigation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Island building in the South China Sea: detection of turbidity plumes and artificial islands using Landsat and MODIS data

    PubMed Central

    Barnes, Brian B.; Hu, Chuanmin

    2016-01-01

    The South China Sea is currently in a state of intense geopolitical conflict, with six countries claiming sovereignty over some or all of the area. Recently, several countries have carried out island building projects in the Spratly Islands, converting portions of coral reefs into artificial islands. Aerial photography and high resolution satellites can capture snapshots of this construction, but such data are lacking in temporal resolution and spatial scope. In contrast, lower resolution satellite sensors with regular repeat sampling allow for more rigorous assessment and monitoring of changes to the reefs and surrounding areas. Using Landsat-8 data at ≥15-m resolution, we estimated that over 15 km2 of submerged coral reef area was converted to artificial islands between June 2013 and December 2015, mostly by China. MODIS data at ≥250-m resolution were used to locate previously underreported island building activities, as well as to assess resulting in-water turbidity plumes. The combined spatial extent of observed turbidity plumes for island building activities at Mischief, Subi, and Fiery Cross Reefs was over 4,300 km2, although nearly 40% of this area was only affected once. Together, these activities represent widespread damage to coral ecosystems through physical burial as well as indirect turbidity effects. PMID:27628096

  8. Classification of brain signals associated with imagination of hand grasping, opening and reaching by means of wavelet-based common spatial pattern and mutual information.

    PubMed

    Amanpour, Behzad; Erfanian, Abbas

    2013-01-01

    An important issue in designing a practical brain-computer interface (BCI) is the selection of mental tasks to be imagined. Different types of mental tasks have been used in BCI including left, right, foot, and tongue motor imageries. However, the mental tasks are different from the actions to be controlled by the BCI. It is desirable to select a mental task to be consistent with the desired action to be performed by BCI. In this paper, we investigated the detecting the imagination of the hand grasping, hand opening, and hand reaching in one hand using electroencephalographic (EEG) signals. The results show that the ERD/ERS patterns, associated with the imagination of hand grasping, opening, and reaching are different. For classification of brain signals associated with these mental tasks and feature extraction, a method based on wavelet packet, regularized common spatial pattern (CSP), and mutual information is proposed. The results of an offline analysis on five subjects show that the two-class mental tasks can be classified with an average accuracy of 77.6% using proposed method. In addition, we examine the proposed method on datasets IVa from BCI Competition III and IIa from BCI Competition IV.

  9. Spatio-temporal outbreaks of campylobacteriosis and the role of fresh-milk vending machines in the Czech Republic: A methodological study.

    PubMed

    Marek, Lukáš; Pászto, Vít

    2017-11-08

    Inspired by local outbreaks of campylobacteriosis in the Czech Republic in 2010 linked to the debate about alleged health risks of the raw milk consumption, a detailed study was carried out. Firstly, scanning was utilised to identify spatio-temporal clusters of the disease from 2008 to 2012. Then a spatial method (geographical profiling originally developed for criminology) served as assessment in selecting fresh-milk vending machines that could have contributed to some of the local campylobacteriosis outbreaks. Even though an area of increased relative risk of the disease was identified in the affected city of České Budějovice during January and February 2010, geoprofiling did not identify any vending machines in the area as the potential source. However, possible sources in some nearby cities were suggested. Overall, 14 high-rate clusters including the localisation of 9% of the vending machines installed in the Czech Republic were found in the period 2008-2012. Although the vending machines are subject to strict hygiene standards and regular testing, a potential link between a small number of them and the spatial distribution of campylobacteriosis has been detected in the Czech Republic. This should be taken into account in public health research of the disease.

  10. Spatially-Resolved Hydraulic Conductivity Estimation Via Poroelastic Magnetic Resonance Elastography

    PubMed Central

    McGarry, Matthew; Weaver, John B.; Paulsen, Keith D.

    2015-01-01

    Poroelastic magnetic resonance elastography is an imaging technique that could recover mechanical and hydrodynamical material properties of in vivo tissue. To date, mechanical properties have been estimated while hydrodynamical parameters have been assumed homogeneous with literature-based values. Estimating spatially-varying hydraulic conductivity would likely improve model accuracy and provide new image information related to a tissue’s interstitial fluid compartment. A poroelastic model was reformulated to recover hydraulic conductivity with more appropriate fluid-flow boundary conditions. Simulated and physical experiments were conducted to evaluate the accuracy and stability of the inversion algorithm. Simulations were accurate (property errors were < 2%) even in the presence of Gaussian measurement noise up to 3%. The reformulated model significantly decreased variation in the shear modulus estimate (p≪0.001) and eliminated the homogeneity assumption and the need to assign hydraulic conductivity values from literature. Material property contrast was recovered experimentally in three different tofu phantoms and the accuracy was improved through soft-prior regularization. A frequency-dependence in hydraulic conductivity contrast was observed suggesting that fluid-solid interactions may be more prominent at low frequency. In vivo recovery of both structural and hydrodynamical characteristics of tissue could improve detection and diagnosis of neurological disorders such as hydrocephalus and brain tumors. PMID:24771571

  11. Island building in the South China Sea: detection of turbidity plumes and artificial islands using Landsat and MODIS data

    NASA Astrophysics Data System (ADS)

    Barnes, Brian B.; Hu, Chuanmin

    2016-09-01

    The South China Sea is currently in a state of intense geopolitical conflict, with six countries claiming sovereignty over some or all of the area. Recently, several countries have carried out island building projects in the Spratly Islands, converting portions of coral reefs into artificial islands. Aerial photography and high resolution satellites can capture snapshots of this construction, but such data are lacking in temporal resolution and spatial scope. In contrast, lower resolution satellite sensors with regular repeat sampling allow for more rigorous assessment and monitoring of changes to the reefs and surrounding areas. Using Landsat-8 data at ≥15-m resolution, we estimated that over 15 km2 of submerged coral reef area was converted to artificial islands between June 2013 and December 2015, mostly by China. MODIS data at ≥250-m resolution were used to locate previously underreported island building activities, as well as to assess resulting in-water turbidity plumes. The combined spatial extent of observed turbidity plumes for island building activities at Mischief, Subi, and Fiery Cross Reefs was over 4,300 km2, although nearly 40% of this area was only affected once. Together, these activities represent widespread damage to coral ecosystems through physical burial as well as indirect turbidity effects.

  12. Island building in the South China Sea: detection of turbidity plumes and artificial islands using Landsat and MODIS data.

    PubMed

    Barnes, Brian B; Hu, Chuanmin

    2016-09-15

    The South China Sea is currently in a state of intense geopolitical conflict, with six countries claiming sovereignty over some or all of the area. Recently, several countries have carried out island building projects in the Spratly Islands, converting portions of coral reefs into artificial islands. Aerial photography and high resolution satellites can capture snapshots of this construction, but such data are lacking in temporal resolution and spatial scope. In contrast, lower resolution satellite sensors with regular repeat sampling allow for more rigorous assessment and monitoring of changes to the reefs and surrounding areas. Using Landsat-8 data at ≥15-m resolution, we estimated that over 15 km(2) of submerged coral reef area was converted to artificial islands between June 2013 and December 2015, mostly by China. MODIS data at ≥250-m resolution were used to locate previously underreported island building activities, as well as to assess resulting in-water turbidity plumes. The combined spatial extent of observed turbidity plumes for island building activities at Mischief, Subi, and Fiery Cross Reefs was over 4,300 km(2), although nearly 40% of this area was only affected once. Together, these activities represent widespread damage to coral ecosystems through physical burial as well as indirect turbidity effects.

  13. POLLUTION DETECTION DOGS: PROOF OF CONCEPT

    EPA Science Inventory

    Dogs have been used extensively in law enforcement and military applications to detect narcotics and explosives for over thirty years. Dogs are regularly used in arson investigations to detect accelerants since they are much more accurate at discriminating between accelerants an...

  14. A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring.

    PubMed

    Takahashi, Kunihiko; Kulldorff, Martin; Tango, Toshiro; Yih, Katherine

    2008-04-11

    Early detection of disease outbreaks enables public health officials to implement disease control and prevention measures at the earliest possible time. A time periodic geographical disease surveillance system based on a cylindrical space-time scan statistic has been used extensively for disease surveillance along with the SaTScan software. In the purely spatial setting, many different methods have been proposed to detect spatial disease clusters. In particular, some spatial scan statistics are aimed at detecting irregularly shaped clusters which may not be detected by the circular spatial scan statistic. Based on the flexible purely spatial scan statistic, we propose a flexibly shaped space-time scan statistic for early detection of disease outbreaks. The performance of the proposed space-time scan statistic is compared with that of the cylindrical scan statistic using benchmark data. In order to compare their performances, we have developed a space-time power distribution by extending the purely spatial bivariate power distribution. Daily syndromic surveillance data in Massachusetts, USA, are used to illustrate the proposed test statistic. The flexible space-time scan statistic is well suited for detecting and monitoring disease outbreaks in irregularly shaped areas.

  15. Spatio-temporal variability of soil water content on the local scale in a Mediterranean mountain area (Vallcebre, North Eastern Spain). How different spatio-temporal scales reflect mean soil water content

    NASA Astrophysics Data System (ADS)

    Molina, Antonio J.; Latron, Jérôme; Rubio, Carles M.; Gallart, Francesc; Llorens, Pilar

    2014-08-01

    As a result of complex human-land interactions and topographic variability, many Mediterranean mountain catchments are covered by agricultural terraces that have locally modified the soil water content dynamic. Understanding these local-scale dynamics helps us grasp better how hydrology behaves on the catchment scale. Thus, this study examined soil water content variability in the upper 30 cm of the soil on a Mediterranean abandoned terrace in north-east Spain. Using a dataset of high spatial (regular grid of 128 automatic TDR probes at 2.5 m intervals) and temporal (20-min time step) resolution, gathered throughout a 84-day period, the spatio-temporal variability of soil water content at the local scale and the way that different spatio-temporal scales reflect the mean soil water content were investigated. Soil water content spatial variability and its relation to wetness conditions were examined, along with the spatial structuring of the soil water content within the terrace. Then, the ability of single probes and of different combinations of spatial measurements (transects and grids) to provide a good estimate of mean soil water content on the terrace scale was explored by means of temporal stability analyses. Finally, the effect of monitoring frequency on the magnitude of detectable daily soil water content variations was studied. Results showed that soil water content spatial variability followed a bimodal pattern of increasing absolute variability with increasing soil water content. In addition, a linear trend of decreasing soil water content as the distance from the inner part of the terrace increased was identified. Once this trend was subtracted, resulting semi-variograms suggested that the spatial resolution examined was too high to appreciate spatial structuring in the data. Thus, the spatial pattern should be considered as random. Of all the spatial designs tested, the 10 × 10 m mesh grid (9 probes) was considered the most suitable option for a good, time-stable estimate of mean soil water content, as no improvement was obtained with the 5 × 5 m mesh grid (30 probes). Finally, the results of temporal aggregation showed that decreasing the monitoring frequency down to 8 h during wetting-up periods and to 1 day during drying-down ones did not result in a loss of information on daily soil water content variations.

  16. Passive acoustic monitoring using a towed hydrophone array results in identification of a previously unknown beaked whale habitat.

    PubMed

    Yack, Tina M; Barlow, Jay; Calambokidis, John; Southall, Brandon; Coates, Shannon

    2013-09-01

    Beaked whales are diverse and species rich taxa. They spend the vast majority of their time submerged, regularly diving to depths of hundreds to thousands of meters, typically occur in small groups, and behave inconspicuously at the surface. These factors make them extremely difficult to detect using standard visual survey methods. However, recent advancements in acoustic detection capabilities have made passive acoustic monitoring (PAM) a viable alternative. Beaked whales can be discriminated from other odontocetes by the unique characteristics of their echolocation clicks. In 2009 and 2010, PAM methods using towed hydrophone arrays were tested. These methods proved highly effective for real-time detection of beaked whales in the Southern California Bight (SCB) and were subsequently implemented in 2011 to successfully detect and track beaked whales during the ongoing Southern California Behavioral Response Study. The three year field effort has resulted in (1) the successful classification and tracking of Cuvier's (Ziphius cavirostris), Baird's (Berardius bairdii), and unidentified Mesoplodon beaked whale species and (2) the identification of areas of previously unknown beaked whale habitat use. Identification of habitat use areas will contribute to a better understanding of the complex relationship between beaked whale distribution, occurrence, and preferred habitat characteristics on a relatively small spatial scale. These findings will also provide information that can be used to promote more effective management and conservation of beaked whales in the SCB, a heavily used Naval operation and training region.

  17. Grid scale drives the scale and long-term stability of place maps

    PubMed Central

    Mallory, Caitlin S; Hardcastle, Kiah; Bant, Jason S; Giocomo, Lisa M

    2018-01-01

    Medial entorhinal cortex (MEC) grid cells fire at regular spatial intervals and project to the hippocampus, where place cells are active in spatially restricted locations. One feature of the grid population is the increase in grid spatial scale along the dorsal-ventral MEC axis. However, the difficulty in perturbing grid scale without impacting the properties of other functionally-defined MEC cell types has obscured how grid scale influences hippocampal coding and spatial memory. Here, we use a targeted viral approach to knock out HCN1 channels selectively in MEC, causing grid scale to expand while leaving other MEC spatial and velocity signals intact. Grid scale expansion resulted in place scale expansion in fields located far from environmental boundaries, reduced long-term place field stability and impaired spatial learning. These observations, combined with simulations of a grid-to-place cell model and position decoding of place cells, illuminate how grid scale impacts place coding and spatial memory. PMID:29335607

  18. Towards adjoint-based inversion for rheological parameters in nonlinear viscous mantle flow

    NASA Astrophysics Data System (ADS)

    Worthen, Jennifer; Stadler, Georg; Petra, Noemi; Gurnis, Michael; Ghattas, Omar

    2014-09-01

    We address the problem of inferring mantle rheological parameter fields from surface velocity observations and instantaneous nonlinear mantle flow models. We formulate this inverse problem as an infinite-dimensional nonlinear least squares optimization problem governed by nonlinear Stokes equations. We provide expressions for the gradient of the cost functional of this optimization problem with respect to two spatially-varying rheological parameter fields: the viscosity prefactor and the exponent of the second invariant of the strain rate tensor. Adjoint (linearized) Stokes equations, which are characterized by a 4th order anisotropic viscosity tensor, facilitates efficient computation of the gradient. A quasi-Newton method for the solution of this optimization problem is presented, which requires the repeated solution of both nonlinear forward Stokes and linearized adjoint Stokes equations. For the solution of the nonlinear Stokes equations, we find that Newton’s method is significantly more efficient than a Picard fixed point method. Spectral analysis of the inverse operator given by the Hessian of the optimization problem reveals that the numerical eigenvalues collapse rapidly to zero, suggesting a high degree of ill-posedness of the inverse problem. To overcome this ill-posedness, we employ Tikhonov regularization (favoring smooth parameter fields) or total variation (TV) regularization (favoring piecewise-smooth parameter fields). Solution of two- and three-dimensional finite element-based model inverse problems show that a constant parameter in the constitutive law can be recovered well from surface velocity observations. Inverting for a spatially-varying parameter field leads to its reasonable recovery, in particular close to the surface. When inferring two spatially varying parameter fields, only an effective viscosity field and the total viscous dissipation are recoverable. Finally, a model of a subducting plate shows that a localized weak zone at the plate boundary can be partially recovered, especially with TV regularization.

  19. The role of multisensory interplay in enabling temporal expectations.

    PubMed

    Ball, Felix; Michels, Lara E; Thiele, Carsten; Noesselt, Toemme

    2018-01-01

    Temporal regularities can guide our attention to focus on a particular moment in time and to be especially vigilant just then. Previous research provided evidence for the influence of temporal expectation on perceptual processing in unisensory auditory, visual, and tactile contexts. However, in real life we are often exposed to a complex and continuous stream of multisensory events. Here we tested - in a series of experiments - whether temporal expectations can enhance perception in multisensory contexts and whether this enhancement differs from enhancements in unisensory contexts. Our discrimination paradigm contained near-threshold targets (subject-specific 75% discrimination accuracy) embedded in a sequence of distractors. The likelihood of target occurrence (early or late) was manipulated block-wise. Furthermore, we tested whether spatial and modality-specific target uncertainty (i.e. predictable vs. unpredictable target position or modality) would affect temporal expectation (TE) measured with perceptual sensitivity (d ' ) and response times (RT). In all our experiments, hidden temporal regularities improved performance for expected multisensory targets. Moreover, multisensory performance was unaffected by spatial and modality-specific uncertainty, whereas unisensory TE effects on d ' but not RT were modulated by spatial and modality-specific uncertainty. Additionally, the size of the temporal expectation effect, i.e. the increase in perceptual sensitivity and decrease of RT, scaled linearly with the likelihood of expected targets. Finally, temporal expectation effects were unaffected by varying target position within the stream. Together, our results strongly suggest that participants quickly adapt to novel temporal contexts, that they benefit from multisensory (relative to unisensory) stimulation and that multisensory benefits are maximal if the stimulus-driven uncertainty is highest. We propose that enhanced informational content (i.e. multisensory stimulation) enables the robust extraction of temporal regularities which in turn boost (uni-)sensory representations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Spatial Distribution of Soil Fauna In Long Term No Tillage

    NASA Astrophysics Data System (ADS)

    Corbo, J. Z. F.; Vieira, S. R.; Siqueira, G. M.

    2012-04-01

    The soil is a complex system constituted by living beings, organic and mineral particles, whose components define their physical, chemical and biological properties. Soil fauna plays an important role in soil and may reflect and interfere in its functionality. These organisms' populations may be influenced by management practices, fertilization, liming and porosity, among others. Such changes may reduce the composition and distribution of soil fauna community. Thus, this study aimed to determine the spatial variability of soil fauna in consolidated no-tillage system. The experimental area is located at Instituto Agronômico in Campinas (São Paulo, Brazil). The sampling was conducted in a Rhodic Eutrudox, under no tillage system and 302 points distributed in a 3.2 hectare area in a regular grid of 10.00 m x 10.00 m were sampled. The soil fauna was sampled with "Pitfall Traps" method and traps remained in the area for seven days. Data were analyzed using descriptive statistics to determine the main statistical moments (mean variance, coefficient of variation, standard deviation, skewness and kurtosis). Geostatistical tools were used to determine the spatial variability of the attributes using the experimental semivariogram. For the biodiversity analysis, Shannon and Pielou indexes and richness were calculated for each sample. Geostatistics has proven to be a great tool for mapping the spatial variability of groups from the soil epigeal fauna. The family Formicidae proved to be the most abundant and dominant in the study area. The parameters of descriptive statistics showed that all attributes studied showed lognormal frequency distribution for groups from the epigeal soil fauna. The exponential model was the most suited for the obtained data, for both groups of epigeal soil fauna (Acari, Araneae, Coleoptera, Formicidae and Coleoptera larva), and the other biodiversity indexes. The sampling scheme (10.00 m x 10.00 m) was not sufficient to detect the spatial variability for all groups of soil epigeal fauna found in this study.

  1. Boundary Regularity for the Porous Medium Equation

    NASA Astrophysics Data System (ADS)

    Björn, Anders; Björn, Jana; Gianazza, Ugo; Siljander, Juhana

    2018-05-01

    We study the boundary regularity of solutions to the porous medium equation {u_t = Δ u^m} in the degenerate range {m > 1} . In particular, we show that in cylinders the Dirichlet problem with positive continuous boundary data on the parabolic boundary has a solution which attains the boundary values, provided that the spatial domain satisfies the elliptic Wiener criterion. This condition is known to be optimal, and it is a consequence of our main theorem which establishes a barrier characterization of regular boundary points for general—not necessarily cylindrical—domains in {{R}^{n+1}} . One of our fundamental tools is a new strict comparison principle between sub- and superparabolic functions, which makes it essential for us to study both nonstrict and strict Perron solutions to be able to develop a fruitful boundary regularity theory. Several other comparison principles and pasting lemmas are also obtained. In the process we obtain a rather complete picture of the relation between sub/superparabolic functions and weak sub/supersolutions.

  2. Patch-based image reconstruction for PET using prior-image derived dictionaries

    NASA Astrophysics Data System (ADS)

    Tahaei, Marzieh S.; Reader, Andrew J.

    2016-09-01

    In PET image reconstruction, regularization is often needed to reduce the noise in the resulting images. Patch-based image processing techniques have recently been successfully used for regularization in medical image reconstruction through a penalized likelihood framework. Re-parameterization within reconstruction is another powerful regularization technique in which the object in the scanner is re-parameterized using coefficients for spatially-extensive basis vectors. In this work, a method for extracting patch-based basis vectors from the subject’s MR image is proposed. The coefficients for these basis vectors are then estimated using the conventional MLEM algorithm. Furthermore, using the alternating direction method of multipliers, an algorithm for optimizing the Poisson log-likelihood while imposing sparsity on the parameters is also proposed. This novel method is then utilized to find sparse coefficients for the patch-based basis vectors extracted from the MR image. The results indicate the superiority of the proposed methods to patch-based regularization using the penalized likelihood framework.

  3. On constraining pilot point calibration with regularization in PEST

    USGS Publications Warehouse

    Fienen, M.N.; Muffels, C.T.; Hunt, R.J.

    2009-01-01

    Ground water model calibration has made great advances in recent years with practical tools such as PEST being instrumental for making the latest techniques available to practitioners. As models and calibration tools get more sophisticated, however, the power of these tools can be misapplied, resulting in poor parameter estimates and/or nonoptimally calibrated models that do not suit their intended purpose. Here, we focus on an increasingly common technique for calibrating highly parameterized numerical models - pilot point parameterization with Tikhonov regularization. Pilot points are a popular method for spatially parameterizing complex hydrogeologic systems; however, additional flexibility offered by pilot points can become problematic if not constrained by Tikhonov regularization. The objective of this work is to explain and illustrate the specific roles played by control variables in the PEST software for Tikhonov regularization applied to pilot points. A recent study encountered difficulties implementing this approach, but through examination of that analysis, insight into underlying sources of potential misapplication can be gained and some guidelines for overcoming them developed. ?? 2009 National Ground Water Association.

  4. Application of Fourier-wavelet regularized deconvolution for improving image quality of free space propagation x-ray phase contrast imaging.

    PubMed

    Zhou, Zhongxing; Gao, Feng; Zhao, Huijuan; Zhang, Lixin

    2012-11-21

    New x-ray phase contrast imaging techniques without using synchrotron radiation confront a common problem from the negative effects of finite source size and limited spatial resolution. These negative effects swamp the fine phase contrast fringes and make them almost undetectable. In order to alleviate this problem, deconvolution procedures should be applied to the blurred x-ray phase contrast images. In this study, three different deconvolution techniques, including Wiener filtering, Tikhonov regularization and Fourier-wavelet regularized deconvolution (ForWaRD), were applied to the simulated and experimental free space propagation x-ray phase contrast images of simple geometric phantoms. These algorithms were evaluated in terms of phase contrast improvement and signal-to-noise ratio. The results demonstrate that the ForWaRD algorithm is most appropriate for phase contrast image restoration among above-mentioned methods; it can effectively restore the lost information of phase contrast fringes while reduce the amplified noise during Fourier regularization.

  5. Direct Regularized Estimation of Retinal Vascular Oxygen Tension Based on an Experimental Model

    PubMed Central

    Yildirim, Isa; Ansari, Rashid; Yetik, I. Samil; Shahidi, Mahnaz

    2014-01-01

    Phosphorescence lifetime imaging is commonly used to generate oxygen tension maps of retinal blood vessels by classical least squares (LS) estimation method. A spatial regularization method was later proposed and provided improved results. However, both methods obtain oxygen tension values from the estimates of intermediate variables, and do not yield an optimum estimate of oxygen tension values, due to their nonlinear dependence on the ratio of intermediate variables. In this paper, we provide an improved solution by devising a regularized direct least squares (RDLS) method that exploits available knowledge in studies that provide models of oxygen tension in retinal arteries and veins, unlike the earlier regularized LS approach where knowledge about intermediate variables is limited. The performance of the proposed RDLS method is evaluated by investigating and comparing the bias, variance, oxygen tension maps, 1-D profiles of arterial oxygen tension, and mean absolute error with those of earlier methods, and its superior performance both quantitatively and qualitatively is demonstrated. PMID:23732915

  6. A combined reconstruction-classification method for diffuse optical tomography.

    PubMed

    Hiltunen, P; Prince, S J D; Arridge, S

    2009-11-07

    We present a combined classification and reconstruction algorithm for diffuse optical tomography (DOT). DOT is a nonlinear ill-posed inverse problem. Therefore, some regularization is needed. We present a mixture of Gaussians prior, which regularizes the DOT reconstruction step. During each iteration, the parameters of a mixture model are estimated. These associate each reconstructed pixel with one of several classes based on the current estimate of the optical parameters. This classification is exploited to form a new prior distribution to regularize the reconstruction step and update the optical parameters. The algorithm can be described as an iteration between an optimization scheme with zeroth-order variable mean and variance Tikhonov regularization and an expectation-maximization scheme for estimation of the model parameters. We describe the algorithm in a general Bayesian framework. Results from simulated test cases and phantom measurements show that the algorithm enhances the contrast of the reconstructed images with good spatial accuracy. The probabilistic classifications of each image contain only a few misclassified pixels.

  7. Evaluating Middle School Students' Spatial-scientific Performance in Earth-space Science

    NASA Astrophysics Data System (ADS)

    Wilhelm, Jennifer; Jackson, C.; Toland, M. D.; Cole, M.; Wilhelm, R. J.

    2013-06-01

    Many astronomical concepts cannot be understood without a developed understanding of four spatial-mathematics domains defined as follows: a) Geometric Spatial Visualization (GSV) - Visualizing the geometric features of a system as it appears above, below, and within the system’s plane; b) Spatial Projection (SP) - Projecting to a different location and visualizing from that global perspective; c) Cardinal Directions (CD) - Distinguishing directions (N, S, E, W) in order to document an object’s vector position in space; and d) Periodic Patterns - (PP) Recognizing occurrences at regular intervals of time and/or space. For this study, differences were examined between groups of sixth grade students’ spatial-scientific development pre/post implementation of an Earth/Space unit. Treatment teachers employed a NASA-based curriculum (Realistic Explorations in Astronomical Learning), while control teachers implemented their regular Earth/Space units. A 2-level hierarchical linear model was used to evaluate student performance on the Lunar Phases Concept Inventory (LPCI) and four spatial-mathematics domains, while controlling for two variables (gender and ethnicity) at the student level and one variable (teaching experience) at the teacher level. Overall LPCI results show pre-test scores predicted post-test scores, boys performed better than girls, and Whites performed better than non-Whites. We also compared experimental and control groups’ by spatial-mathematics domain outcomes. For GSV, it was found that boys, in general, tended to have higher GSV post-scores. For domains CD and SP, no statistically significant differences were observed. PP results show Whites performed better than non-Whites. Also for PP, a significant cross-level interaction term (gender-treatment) was observed, which means differences in control and experimental groups are dependent on students’ gender. These findings can be interpreted as: (a) the experimental girls scored higher than the control girls and/or (b) the control group displayed a gender gap in favor of boys while no gender gap was displayed within the experimental group.

  8. Mapping the neglected space: gradients of detection revealed by virtual reality.

    PubMed

    Dvorkin, Assaf Y; Bogey, Ross A; Harvey, Richard L; Patton, James L

    2012-02-01

    Spatial neglect affects perception along different dimensions. However, there is limited availability of 3-dimensional (3D) methods that fully map out a patient's volume of deficit, although this could guide clinical management. To test whether patients with neglect exhibit simple contralesional versus complex perceptual deficits and whether deficits are best described using Cartesian (rectangular) or polar coordinates. Seventeen right-hemisphere persons with stroke (8 with a history of neglect) and 9 healthy controls were exposed to a 3D virtual environment. Targets placed in a dense array appeared one at a time in various locations. When tested using rectangular array of targets, subjects in the neglect group exhibited complex asymmetries across several dimensions in both reaction time and target detection rates. Paper-and-pencil tests only detected neglect in 4 of 8 of these patients. When tested using polar array of targets, 2 patients who initially appeared to perform poorly in both left and near space only showed a simple left-side asymmetry that depended almost entirely on the angle from the sagittal plane. A third patient exhibited left neglect irrespective of the arrangements of targets used. An idealized model with pure dependence on the polar angle demonstrated how such deficits could be misconstrued as near neglect if one uses a rectangular array. Such deficits may be poorly detected by paper-and-pencil tests and even by computerized tests that use regular screens. Assessments that incorporate 3D arrangements of targets enable precise mapping of deficient areas and detect subtle forms of neglect whose identification may be relevant to treatment strategies.

  9. Evolutionary modification of T-brain (tbr) expression patterns in sand dollar.

    PubMed

    Minemura, Keiko; Yamaguchi, Masaaki; Minokawa, Takuya

    2009-10-01

    The sand dollars are a group of irregular echinoids that diverged from other regular sea urchins approximately 200 million years ago. We isolated two orthologs of T-brain (tbr), Smtbr and Pjtbr, from the indirect developing sand dollar Scaphechinus mirabilis and the direct developing sand dollar Peronella japonica, respectively. The expression patterns of Smtbr and Pjtbr during early development were examined by whole mount in situ hybridization. The expression of Smtbr was first detected in micromere descendants in early blastula stage, similar to tbr expression in regular sea urchins. However, unlike in regular sea urchin, Smtbr expression in middle blastula stage was detected in micromere-descendent cells and a subset of macromere-descendant cells. At gastrula stage, expression of Smtbr was detected in part of the archenteron as well as primary mesenchyme cells. A similar pattern of tbr expression was observed in early Peronella embryos. A comparison of tbr expression patterns between sand dollars and other echinoderm species suggested that broader expression in the endomesoderm is an ancestral character of echinoderms. In addition to the endomesoderm, Pjtbr expression was detected in the apical organ, the animal-most part of the ectoderm.

  10. Designing efficient surveys: spatial arrangement of sample points for detection of invasive species

    Treesearch

    Ludek Berec; John M. Kean; Rebecca Epanchin-Niell; Andrew M. Liebhold; Robert G. Haight

    2015-01-01

    Effective surveillance is critical to managing biological invasions via early detection and eradication. The efficiency of surveillance systems may be affected by the spatial arrangement of sample locations. We investigate how the spatial arrangement of sample points, ranging from random to fixed grid arrangements, affects the probability of detecting a target...

  11. A class of renormalised meshless Laplacians for boundary value problems

    NASA Astrophysics Data System (ADS)

    Basic, Josip; Degiuli, Nastia; Ban, Dario

    2018-02-01

    A meshless approach to approximating spatial derivatives on scattered point arrangements is presented in this paper. Three various derivations of approximate discrete Laplace operator formulations are produced using the Taylor series expansion and renormalised least-squares correction of the first spatial derivatives. Numerical analyses are performed for the introduced Laplacian formulations, and their convergence rate and computational efficiency are examined. The tests are conducted on regular and highly irregular scattered point arrangements. The results are compared to those obtained by the smoothed particle hydrodynamics method and the finite differences method on a regular grid. Finally, the strong form of various Poisson and diffusion equations with Dirichlet or Robin boundary conditions are solved in two and three dimensions by making use of the introduced operators in order to examine their stability and accuracy for boundary value problems. The introduced Laplacian operators perform well for highly irregular point distribution and offer adequate accuracy for mesh and mesh-free numerical methods that require frequent movement of the grid or point cloud.

  12. On the space and time evolution of regular or irregular human heart or brain signals

    NASA Astrophysics Data System (ADS)

    Tuncay, Ç.

    2009-01-01

    A coupled map is suggested to investigate various spatial or temporal designs in biology: several cells (or tissues) in an organ are considered as connected to each other in terms of some molecular diffusions or electrical potential differences and so on. The biological systems (groups of cells) start from various initial conditions for spatial designs (or initial signals for temporal designs) and they evolve in time in terms of the mentioned interactions (connections) besides some individual feedings. The basic aim of the present contribution is to mimic various empirical data for the heart (in normal, quasi-stable, unstable and post operative physiological conditions) or brain (regular or irregular; for epilepsy) signals. The mentioned empirical data are borrowed from various works in the literature which are cited. The suggested model (to be used besides or instead of the artificial network models) involves simple mathematics and the related software is easy. The results may be considered as in good agreement with the mentioned real signals.

  13. A new method for skin color enhancement

    NASA Astrophysics Data System (ADS)

    Zeng, Huanzhao; Luo, Ronnier

    2012-01-01

    Skin tone is the most important color category in memory colors. Reproducing it pleasingly is an important factor in photographic color reproduction. Moving skin colors toward their preferred skin color center improves the skin color preference on photographic color reproduction. Two key factors to successfully enhance skin colors are: a method to detect original skin colors effectively even if they are shifted far away from the regular skin color region, and a method to morph skin colors toward a preferred skin color region properly without introducing artifacts. A method for skin color enhancement presented by the authors in the same conference last year applies a static skin color model for skin color detection, which may miss to detect skin colors that are far away from regular skin tones. In this paper, a new method using the combination of face detection and statistical skin color modeling is proposed to effectively detect skin pixels and to enhance skin colors more effectively.

  14. A regularized clustering approach to brain parcellation from functional MRI data

    NASA Astrophysics Data System (ADS)

    Dillon, Keith; Wang, Yu-Ping

    2017-08-01

    We consider a data-driven approach for the subdivision of an individual subject's functional Magnetic Resonance Imaging (fMRI) scan into regions of interest, i.e., brain parcellation. The approach is based on a computational technique for calculating resolution from inverse problem theory, which we apply to neighborhood selection for brain connectivity networks. This can be efficiently calculated even for very large images, and explicitly incorporates regularization in the form of spatial smoothing and a noise cutoff. We demonstrate the reproducibility of the method on multiple scans of the same subjects, as well as the variations between subjects.

  15. Existence, uniqueness and regularity of a time-periodic probability density distribution arising in a sedimentation-diffusion problem

    NASA Technical Reports Server (NTRS)

    Nitsche, Ludwig C.; Nitsche, Johannes M.; Brenner, Howard

    1988-01-01

    The sedimentation and diffusion of a nonneutrally buoyant Brownian particle in vertical fluid-filled cylinder of finite length which is instantaneously inverted at regular intervals are investigated analytically. A one-dimensional convective-diffusive equation is derived to describe the temporal and spatial evolution of the probability density; a periodicity condition is formulated; the applicability of Fredholm theory is established; and the parameter-space regions are determined within which the existence and uniqueness of solutions are guaranteed. Numerical results for sample problems are presented graphically and briefly characterized.

  16. Spatio-temporal filtering techniques for the detection of disaster-related communication.

    PubMed

    Fitzhugh, Sean M; Ben Gibson, C; Spiro, Emma S; Butts, Carter T

    2016-09-01

    Individuals predominantly exchange information with one another through informal, interpersonal channels. During disasters and other disrupted settings, information spread through informal channels regularly outpaces official information provided by public officials and the press. Social scientists have long examined this kind of informal communication in the rumoring literature, but studying rumoring in disrupted settings has posed numerous methodological challenges. Measuring features of informal communication-timing, content, location-with any degree of precision has historically been extremely challenging in small studies and infeasible at large scales. We address this challenge by using online, informal communication from a popular microblogging website and for which we have precise spatial and temporal metadata. While the online environment provides a new means for observing rumoring, the abundance of data poses challenges for parsing hazard-related rumoring from countless other topics in numerous streams of communication. Rumoring about disaster events is typically temporally and spatially constrained to places where that event is salient. Accordingly, we use spatio and temporal subsampling to increase the resolution of our detection techniques. By filtering out data from known sources of error (per rumor theories), we greatly enhance the signal of disaster-related rumoring activity. We use these spatio-temporal filtering techniques to detect rumoring during a variety of disaster events, from high-casualty events in major population centers to minimally destructive events in remote areas. We consistently find three phases of response: anticipatory excitation where warnings and alerts are issued ahead of an event, primary excitation in and around the impacted area, and secondary excitation which frequently brings a convergence of attention from distant locales onto locations impacted by the event. Our results demonstrate the promise of spatio-temporal filtering techniques for "tuning" measurement of hazard-related rumoring to enable observation of rumoring at scales that have long been infeasible. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Heteroskedasticity as a leading indicator of desertification in spatially explicit data.

    PubMed

    Seekell, David A; Dakos, Vasilis

    2015-06-01

    Regime shifts are abrupt transitions between alternate ecosystem states including desertification in arid regions due to drought or overgrazing. Regime shifts may be preceded by statistical anomalies such as increased autocorrelation, indicating declining resilience and warning of an impending shift. Tests for conditional heteroskedasticity, a type of clustered variance, have proven powerful leading indicators for regime shifts in time series data, but an analogous indicator for spatial data has not been evaluated. A spatial analog for conditional heteroskedasticity might be especially useful in arid environments where spatial interactions are critical in structuring ecosystem pattern and process. We tested the efficacy of a test for spatial heteroskedasticity as a leading indicator of regime shifts with simulated data from spatially extended vegetation models with regular and scale-free patterning. These models simulate shifts from extensive vegetative cover to bare, desert-like conditions. The magnitude of spatial heteroskedasticity increased consistently as the modeled systems approached a regime shift from vegetated to desert state. Relative spatial autocorrelation, spatial heteroskedasticity increased earlier and more consistently. We conclude that tests for spatial heteroskedasticity can contribute to the growing toolbox of early warning indicators for regime shifts analyzed with spatially explicit data.

  18. Meta-ecosystem dynamics and functioning on finite spatial networks

    PubMed Central

    Marleau, Justin N.; Guichard, Frédéric; Loreau, Michel

    2014-01-01

    The addition of spatial structure to ecological concepts and theories has spurred integration between sub-disciplines within ecology, including community and ecosystem ecology. However, the complexity of spatial models limits their implementation to idealized, regular landscapes. We present a model meta-ecosystem with finite and irregular spatial structure consisting of local nutrient–autotrophs–herbivores ecosystems connected through spatial flows of materials and organisms. We study the effect of spatial flows on stability and ecosystem functions, and provide simple metrics of connectivity that can predict these effects. Our results show that high rates of nutrient and herbivore movement can destabilize local ecosystem dynamics, leading to spatially heterogeneous equilibria or oscillations across the meta-ecosystem, with generally increased meta-ecosystem primary and secondary production. However, the onset and the spatial scale of these emergent dynamics depend heavily on the spatial structure of the meta-ecosystem and on the relative movement rate of the autotrophs. We show how this strong dependence on finite spatial structure eludes commonly used metrics of connectivity, but can be predicted by the eigenvalues and eigenvectors of the connectivity matrix that describe the spatial structure and scale. Our study indicates the need to consider finite-size ecosystems in meta-ecosystem theory. PMID:24403323

  19. Evaluating Descriptive Metrics of the Human Cone Mosaic

    PubMed Central

    Cooper, Robert F.; Wilk, Melissa A.; Tarima, Sergey; Carroll, Joseph

    2016-01-01

    Purpose To evaluate how metrics used to describe the cone mosaic change in response to simulated photoreceptor undersampling (i.e., cell loss or misidentification). Methods Using an adaptive optics ophthalmoscope, we acquired images of the cone mosaic from the center of fixation to 10° along the temporal, superior, inferior, and nasal meridians in 20 healthy subjects. Regions of interest (n = 1780) were extracted at regular intervals along each meridian. Cone mosaic geometry was assessed using a variety of metrics − density, density recovery profile distance (DRPD), nearest neighbor distance (NND), intercell distance (ICD), farthest neighbor distance (FND), percentage of six-sided Voronoi cells, nearest neighbor regularity (NNR), number of neighbors regularity (NoNR), and Voronoi cell area regularity (VCAR). The “performance” of each metric was evaluated by determining the level of simulated loss necessary to obtain 80% statistical power. Results Of the metrics assessed, NND and DRPD were the least sensitive to undersampling, classifying mosaics that lost 50% of their coordinates as indistinguishable from normal. The NoNR was the most sensitive, detecting a significant deviation from normal with only a 10% cell loss. Conclusions The robustness of cone spacing metrics makes them unsuitable for reliably detecting small deviations from normal or for tracking small changes in the mosaic over time. In contrast, regularity metrics are more sensitive to diffuse loss and, therefore, better suited for detecting such changes, provided the fraction of misidentified cells is minimal. Combining metrics with a variety of sensitivities may provide a more complete picture of the integrity of the photoreceptor mosaic. PMID:27273598

  20. USING CANINES IN SOURCE DETECTION OF INDOOR AIR POLLUTANTS

    EPA Science Inventory

    Dogs have been used extensively in law enforcement and military applications to detect narcotics and explosives for over thirty years. Dogs are regularly used in arson investigations to detect accelerants since they are much more accurate at discriminating between accelerants an...

  1. On extreme events for non-spatial and spatial branching Brownian motions

    NASA Astrophysics Data System (ADS)

    Avan, Jean; Grosjean, Nicolas; Huillet, Thierry

    2015-04-01

    We study the impact of having a non-spatial branching mechanism with infinite variance on some parameters (height, width and first hitting time) of an underlying Bienaymé-Galton-Watson branching process. Aiming at providing a comparative study of the spread of an epidemics whose dynamics is given by the modulus of a branching Brownian motion (BBM) we then consider spatial branching processes in dimension d, not necessarily integer. The underlying branching mechanism is either a binary branching model or one presenting infinite variance. In particular we evaluate the chance p(x) of being hit if the epidemics started away at distance x. We compute the large x tail probabilities of this event, both when the branching mechanism is regular and when it exhibits very large fluctuations.

  2. Single molecule tracking

    DOEpatents

    Shera, E. Brooks

    1988-01-01

    A detection system is provided for identifying individual particles or molecules having characteristic emission in a flow train of the particles in a flow cell. A position sensitive sensor is located adjacent the flow cell in a position effective to detect the emissions from the particles within the flow cell and to assign spatial and temporal coordinates for the detected emissions. A computer is then enabled to predict spatial and temporal coordinates for the particle in the flow train as a function of a first detected emission. Comparison hardware or software then compares subsequent detected spatial and temporal coordinates with the predicted spatial and temporal coordinates to determine whether subsequently detected emissions originate from a particle in the train of particles. In one embodiment, the particles include fluorescent dyes which are excited to fluoresce a spectrum characteristic of the particular particle. Photones are emitted adjacent at least one microchannel plate sensor to enable spatial and temporal coordinates to be assigned. The effect of comparing detected coordinates with predicted coordinates is to define a moving sample volume which effectively precludes the effects of background emissions.

  3. Single molecule tracking

    DOEpatents

    Shera, E.B.

    1987-10-07

    A detection system is provided for identifying individual particles or molecules having characteristic emission in a flow train of the particles in a flow cell. A position sensitive sensor is located adjacent the flow cell in a position effective to detect the emissions from the particles within the flow cell and to assign spatial and temporal coordinates for the detected emissions. A computer is then enabled to predict spatial and temporal coordinates for the particle in the flow train as a function of a first detected emission. Comparison hardware or software then compares subsequent detected spatial and temporal coordinates with the predicted spatial and temporal coordinates to determine whether subsequently detected emissions originate from a particle in the train of particles. In one embodiment, the particles include fluorescent dyes which are excited to fluoresce a spectrum characteristic of the particular particle. Photons are emitted adjacent at least one microchannel plate sensor to enable spatial and temporal coordinates to be assigned. The effect of comparing detected coordinates with predicted coordinates is to define a moving sample volume which effectively precludes the effects of background emissions. 3 figs.

  4. Diatom-sedimentation feedback generates a self-organized geomorphic landscape on intertidal mudflats (Invited)

    NASA Astrophysics Data System (ADS)

    van de Koppel, J.; Weerman, E.; Herman, P.

    2010-12-01

    During spring, intertidal flats can exhibit strikingly regular spatial patterns of diatom-covered hummocks alternating with almost bare, water-filled hollows. We hypothesize that 1) the formation of this geomorphic landscape is caused by a strong interaction between benthic diatoms and sediment dynamics, inducing spatial self-organization, and 2) that self-organization affects ecosystem functioning by increasing the net average sedimentation on the tidal flat. We present a combined empirical and mathematical study to test the first hypothesis. We determined how the sediment erosion threshold varied with diatom cover and elevation. Our results were incorporated into a mathematical model to investigate whether the proposed mechanism could explain the formation of the observed patterns. Our mathematical model confirmed that the interaction between sedimentation, diatom growth and water redistribution could induce the formation of regular patterns on the intertidal mudflat. The model predicts that areas exhibiting spatially-self-organized patterns have increased sediment accretion and diatom biomass compared with areas lacking spatial patterns. We tested this prediction by following the sediment elevation during the season on both patterned and unpatterned parts of the mudflat. The results of our study confirmed our model prediction, as more sediment was found to accumulate in patterned parts of the mudflat, revealing how self-organization affected the functioning of mudflat ecosystems. Our study on intertidal mudflats provides a simple but clear-cut example of how the interaction between biological and geomorphological processes, through the process of self-organization, induces a self-organized geomorphic landscape.

  5. Improving alignment in Tract-based spatial statistics: evaluation and optimization of image registration.

    PubMed

    de Groot, Marius; Vernooij, Meike W; Klein, Stefan; Ikram, M Arfan; Vos, Frans M; Smith, Stephen M; Niessen, Wiro J; Andersson, Jesper L R

    2013-08-01

    Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS establishes spatial correspondence using a combination of nonlinear registration and a "skeleton projection" that may break topological consistency of the transformed brain images. We therefore investigated feasibility of replacing the two-stage registration-projection procedure in TBSS with a single, regularized, high-dimensional registration. To optimize registration parameters and to evaluate registration performance in diffusion MRI, we designed an evaluation framework that uses native space probabilistic tractography for 23 white matter tracts, and quantifies tract similarity across subjects in standard space. We optimized parameters for two registration algorithms on two diffusion datasets of different quality. We investigated reproducibility of the evaluation framework, and of the optimized registration algorithms. Next, we compared registration performance of the regularized registration methods and TBSS. Finally, feasibility and effect of incorporating the improved registration in TBSS were evaluated in an example study. The evaluation framework was highly reproducible for both algorithms (R(2) 0.993; 0.931). The optimal registration parameters depended on the quality of the dataset in a graded and predictable manner. At optimal parameters, both algorithms outperformed the registration of TBSS, showing feasibility of adopting such approaches in TBSS. This was further confirmed in the example experiment. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Behavioral self-organization underlies the resilience of a coastal ecosystem.

    PubMed

    de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R; Herman, Peter M J; van de Koppel, Johan

    2017-07-25

    Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds ( Mytilus edulis ) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance.

  7. Behavioral self-organization underlies the resilience of a coastal ecosystem

    PubMed Central

    de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R.; Herman, Peter M. J.

    2017-01-01

    Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds (Mytilus edulis) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance. PMID:28696313

  8. A flexible spatial scan statistic with a restricted likelihood ratio for detecting disease clusters.

    PubMed

    Tango, Toshiro; Takahashi, Kunihiko

    2012-12-30

    Spatial scan statistics are widely used tools for detection of disease clusters. Especially, the circular spatial scan statistic proposed by Kulldorff (1997) has been utilized in a wide variety of epidemiological studies and disease surveillance. However, as it cannot detect noncircular, irregularly shaped clusters, many authors have proposed different spatial scan statistics, including the elliptic version of Kulldorff's scan statistic. The flexible spatial scan statistic proposed by Tango and Takahashi (2005) has also been used for detecting irregularly shaped clusters. However, this method sets a feasible limitation of a maximum of 30 nearest neighbors for searching candidate clusters because of heavy computational load. In this paper, we show a flexible spatial scan statistic implemented with a restricted likelihood ratio proposed by Tango (2008) to (1) eliminate the limitation of 30 nearest neighbors and (2) to have surprisingly much less computational time than the original flexible spatial scan statistic. As a side effect, it is shown to be able to detect clusters with any shape reasonably well as the relative risk of the cluster becomes large via Monte Carlo simulation. We illustrate the proposed spatial scan statistic with data on mortality from cerebrovascular disease in the Tokyo Metropolitan area, Japan. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Spatial and Temporal Monitoring Resolutions for CO2 Leakage Detection at Carbon Storage Sites

    NASA Astrophysics Data System (ADS)

    Yang, Y. M.; Dilmore, R. M.; Daley, T. M.; Carroll, S.; Mansoor, K.; Gasperikova, E.; Harbert, W.; Wang, Z.; Bromhal, G. S.; Small, M.

    2016-12-01

    Different leakage monitoring techniques offer different strengths in detection sensitivity, coverage, feedback time, cost, and technology availability, such that they may complement each other when applied together. This research focuses on quantifying the spatial coverage and temporal resolution of detection response for several geophysical remote monitoring and direct groundwater monitoring techniques for an optimal monitoring plan for CO2 leakage detection. Various monitoring techniques with different monitoring depths are selected: 3D time-lapse seismic survey, wellbore pressure, groundwater chemistry and soil gas. The spatial resolution in terms of leakage detectability is quantified through the effective detection distance between two adjacent monitors, given the magnitude of leakage and specified detection probability. The effective detection distances are obtained either from leakage simulations with various monitoring densities or from information garnered from field test data. These spatial leakage detection resolutions are affected by physically feasible monitoring design and detection limits. Similarly, the temporal resolution, in terms of leakage detectability, is quantified through the effective time to positive detection of a given size of leak and a specified detection probability, again obtained either from representative leakage simulations with various monitoring densities or from field test data. The effective time to positive detection is also affected by operational feedback time (associated with sampling, sample analysis and data interpretation), with values obtained mainly through expert interviews and literature review. In additional to the spatial and temporal resolutions of these monitoring techniques, the impact of CO2 plume migration speed and leakage detection sensitivity of each monitoring technique are also discussed with consideration of how much monitoring is necessary for effective leakage detection and how these monitoring techniques can be better combined in a time-space framework. The results of the spatial and temporal leakage detection resolutions for several geophysical monitoring techniques and groundwater monitoring are summarized to inform future monitoring designs at carbon storage sites.

  10. A composite likelihood approach for spatially correlated survival data

    PubMed Central

    Paik, Jane; Ying, Zhiliang

    2013-01-01

    The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory. PMID:24223450

  11. Nonparametric Bayesian models for a spatial covariance.

    PubMed

    Reich, Brian J; Fuentes, Montserrat

    2012-01-01

    A crucial step in the analysis of spatial data is to estimate the spatial correlation function that determines the relationship between a spatial process at two locations. The standard approach to selecting the appropriate correlation function is to use prior knowledge or exploratory analysis, such as a variogram analysis, to select the correct parametric correlation function. Rather that selecting a particular parametric correlation function, we treat the covariance function as an unknown function to be estimated from the data. We propose a flexible prior for the correlation function to provide robustness to the choice of correlation function. We specify the prior for the correlation function using spectral methods and the Dirichlet process prior, which is a common prior for an unknown distribution function. Our model does not require Gaussian data or spatial locations on a regular grid. The approach is demonstrated using a simulation study as well as an analysis of California air pollution data.

  12. A composite likelihood approach for spatially correlated survival data.

    PubMed

    Paik, Jane; Ying, Zhiliang

    2013-01-01

    The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory.

  13. Spatial cluster detection for repeatedly measured outcomes while accounting for residential history.

    PubMed

    Cook, Andrea J; Gold, Diane R; Li, Yi

    2009-10-01

    Spatial cluster detection has become an important methodology in quantifying the effect of hazardous exposures. Previous methods have focused on cross-sectional outcomes that are binary or continuous. There are virtually no spatial cluster detection methods proposed for longitudinal outcomes. This paper proposes a new spatial cluster detection method for repeated outcomes using cumulative geographic residuals. A major advantage of this method is its ability to readily incorporate information on study participants relocation, which most cluster detection statistics cannot. Application of these methods will be illustrated by the Home Allergens and Asthma prospective cohort study analyzing the relationship between environmental exposures and repeated measured outcome, occurrence of wheeze in the last 6 months, while taking into account mobile locations.

  14. Temporal Data-Driven Sleep Scheduling and Spatial Data-Driven Anomaly Detection for Clustered Wireless Sensor Networks

    PubMed Central

    Li, Gang; He, Bin; Huang, Hongwei; Tang, Limin

    2016-01-01

    The spatial–temporal correlation is an important feature of sensor data in wireless sensor networks (WSNs). Most of the existing works based on the spatial–temporal correlation can be divided into two parts: redundancy reduction and anomaly detection. These two parts are pursued separately in existing works. In this work, the combination of temporal data-driven sleep scheduling (TDSS) and spatial data-driven anomaly detection is proposed, where TDSS can reduce data redundancy. The TDSS model is inspired by transmission control protocol (TCP) congestion control. Based on long and linear cluster structure in the tunnel monitoring system, cooperative TDSS and spatial data-driven anomaly detection are then proposed. To realize synchronous acquisition in the same ring for analyzing the situation of every ring, TDSS is implemented in a cooperative way in the cluster. To keep the precision of sensor data, spatial data-driven anomaly detection based on the spatial correlation and Kriging method is realized to generate an anomaly indicator. The experiment results show that cooperative TDSS can realize non-uniform sensing effectively to reduce the energy consumption. In addition, spatial data-driven anomaly detection is quite significant for maintaining and improving the precision of sensor data. PMID:27690035

  15. Impacts of memory on a regular lattice for different population sizes with asynchronous update in spatial snowdrift game

    NASA Astrophysics Data System (ADS)

    Shu, Feng; Liu, Xingwen; Li, Min

    2018-05-01

    Memory is an important factor on the evolution of cooperation in spatial structure. For evolutionary biologists, the problem is often how cooperation acts can emerge in an evolving system. In the case of snowdrift game, it is found that memory can boost cooperation level for large cost-to-benefit ratio r, while inhibit cooperation for small r. Thus, how to enlarge the range of r for the purpose of enhancing cooperation becomes a hot issue recently. This paper addresses a new memory-based approach and its core lies in: Each agent applies the given rule to compare its own historical payoffs in a certain memory size, and take the obtained maximal one as virtual payoff. In order to get the optimal strategy, each agent randomly selects one of its neighbours to compare their virtual payoffs, which can lead to the optimal strategy. Both constant-size memory and size-varying memory are investigated by means of a scenario of asynchronous updating algorithm on regular lattices with different sizes. Simulation results show that this approach effectively enhances cooperation level in spatial structure and makes the high cooperation level simultaneously emerge for both small and large r. Moreover, it is discovered that population sizes have a significant influence on the effects of cooperation.

  16. High-rise construction in the Saint Petersburg agglomeration in 1703-1950s

    NASA Astrophysics Data System (ADS)

    Sementsov, Sergey; Akulova, Nadezhda; Kurakina, Severina

    2018-03-01

    Regularities of high-rise construction (implemented projects and developments) in Saint Petersburg and the Saint Petersburg agglomeration since the foundation of the city in 1703 till the 1950s are considered. Based on these regularities, a single spatially developed system of vertical dominants is formed. High-rise construction in the city and its suburbs started in the 1710s and continues up to the present time. In the considered decades (1703-1950s), high-rise construction mostly performed urban-planning functions (with vertical and symbolic dominants), relying on patterns of the visual perception of man-made landscapes under development. Since the 1710s, the construction of vertical dominants (mainly temples, spires of towers, lighthouses, etc.) of five ranks (depending on the altitude range and in relation to the background development) was conducted in territories of the entire agglomeration. These dominants were arranged in landscapes of the city and suburbs with almost mathematically precise accuracy and according to special regulations. Such dominants obtained particular descriptive and silhouette characteristics in accordance with the conditions of spatial perception. In some periods of city development, attempts were made to create monuments (symbolic dominants) of specific height and include those in the spatial system of high-rise dominants as significant elements of the city silhouette.

  17. In Situ formation of microstructures near live cells using spatially structured near-infrared laser microbeam

    NASA Astrophysics Data System (ADS)

    Ingle, Ninad; Gu, Ling; Mohanty, Samarendra K.

    2011-03-01

    Here, we report in situ formation of microstructures from the regular constituents of culture media near live cells using spatially-structured near infrared (NIR) laser beam. Irradiation with the continuous wave (cw) NIR laser microbeam for few seconds onto the regular cell culture media containing fetal bovine serum resulted in accumulation of dense material inside the media as evidenced by phase contrast microscopy. The time to form the phase dense material was found to depend on the laser beam power. Switching off the laser beam led to diffusion of phase dark material. However, the proteins could be stitched together by use of carbon nanoparticles and continuous wave (cw) Ti: Sapphire laser beam. Further, by use of spatially-structured beam profiles different structures near live cells could be formed. The microfabricated structure could be held by the Gravito-optical trap and repositioned by movement of the sample stage. Orientation of these microstructures was achieved by rotating the elliptical laser beam profile. Thus, multiple microstructures were formed and organized near live cells. This method would enable study of response of cells/axons to the immediate physical hindrance provided by such structure formation and also eliminate the biocompatibility requirement posed on artificial microstructure materials.

  18. Competitive intransitivity, population interaction structure, and strategy coexistence.

    PubMed

    Laird, Robert A; Schamp, Brandon S

    2015-01-21

    Intransitive competition occurs when competing strategies cannot be listed in a hierarchy, but rather form loops-as in the game rock-paper-scissors. Due to its cyclic competitive replacement, competitive intransitivity promotes strategy coexistence, both in rock-paper-scissors and in higher-richness communities. Previous work has shown that this intransitivity-mediated coexistence is strongly influenced by spatially explicit interactions, compared to when populations are well mixed. Here, we extend and broaden this line of research and examine the impact on coexistence of intransitive competition taking place on a continuum of small-world networks linking spatial lattices and regular random graphs. We use simulations to show that the positive effect of competitive intransitivity on strategy coexistence holds when competition occurs on networks toward the spatial end of the continuum. However, in networks that are sufficiently disordered, increasingly violent fluctuations in strategy frequencies can lead to extinctions and the prevalence of monocultures. We further show that the degree of disorder that leads to the transition between these two regimes is positively dependent on population size; indeed for very large populations, intransitivity-mediated strategy coexistence may even be possible in regular graphs with completely random connections. Our results emphasize the importance of interaction structure in determining strategy dynamics and diversity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. New discoveries on the biology and detection of human chorionic gonadotropin

    PubMed Central

    Cole, Laurence A

    2009-01-01

    Human chorionic gonadotropin (hCG) is a glycoprotein hormone comprising 2 subunits, alpha and beta joined non covalently. While similar in structure to luteinizing hormone (LH), hCG exists in multiple hormonal and non-endocrine agents, rather than as a single molecule like LH and the other glycoprotein hormones. These are regular hCG, hyperglycosylated hCG and the free beta-subunit of hyperglycosylated hCG. For 88 years regular hCG has been known as a promoter of corpus luteal progesterone production, even though this function only explains 3 weeks of a full gestations production of regular hCG. Research in recent years has explained the full gestational production by demonstration of critical functions in trophoblast differentiation and in fetal nutrition through myometrial spiral artery angiogenesis. While regular hCG is made by fused villous syncytiotrophoblast cells, extravillous invasive cytotrophoblast cells make the variant hyperglycosylated hCG. This variant is an autocrine factor, acting on extravillous invasive cytotrophoblast cells to initiate and control invasion as occurs at implantation of pregnancy and the establishment of hemochorial placentation, and malignancy as occurs in invasive hydatidiform mole and choriocarcinoma. Hyperglycosylated hCG inhibits apoptosis in extravillous invasive cytotrophoblast cells promoting cell invasion, growth and malignancy. Other non-trophoblastic malignancies retro-differentiate and produce a hyperglycosylated free beta-subunit of hCG (hCG free beta). This has been shown to be an autocrine factor antagonizing apoptosis furthering cancer cell growth and malignancy. New applications have been demonstrated for total hCG measurements and detection of the 3 hCG variants in pregnancy detection, monitoring pregnancy outcome, determining risk for Down syndrome fetus, predicting preeclampsia, detecting pituitary hCG, detecting and managing gestational trophoblastic diseases, diagnosing quiescent gestational trophoblastic disease, diagnosing placental site trophoblastic tumor, managing testicular germ cell malignancies, and monitoring other human malignancies. There are very few molecules with such wide and varying functions as regular hCG and its variants, and very few tests with such a wide spectrum of clinical applications as total hCG. PMID:19171054

  20. Collective stochastic coherence in recurrent neuronal networks

    NASA Astrophysics Data System (ADS)

    Sancristóbal, Belén; Rebollo, Beatriz; Boada, Pol; Sanchez-Vives, Maria V.; Garcia-Ojalvo, Jordi

    2016-09-01

    Recurrent networks of dynamic elements frequently exhibit emergent collective oscillations, which can show substantial regularity even when the individual elements are considerably noisy. How noise-induced dynamics at the local level coexists with regular oscillations at the global level is still unclear. Here we show that a combination of stochastic recurrence-based initiation with deterministic refractoriness in an excitable network can reconcile these two features, leading to maximum collective coherence for an intermediate noise level. We report this behaviour in the slow oscillation regime exhibited by a cerebral cortex network under dynamical conditions resembling slow-wave sleep and anaesthesia. Computational analysis of a biologically realistic network model reveals that an intermediate level of background noise leads to quasi-regular dynamics. We verify this prediction experimentally in cortical slices subject to varying amounts of extracellular potassium, which modulates neuronal excitability and thus synaptic noise. The model also predicts that this effectively regular state should exhibit noise-induced memory of the spatial propagation profile of the collective oscillations, which is also verified experimentally. Taken together, these results allow us to construe the high regularity observed experimentally in the brain as an instance of collective stochastic coherence.

  1. Terrain feature recognition for synthetic aperture radar (SAR) imagery employing spatial attributes of targets

    NASA Astrophysics Data System (ADS)

    Iisaka, Joji; Sakurai-Amano, Takako

    1994-08-01

    This paper describes an integrated approach to terrain feature detection and several methods to estimate spatial information from SAR (synthetic aperture radar) imagery. Spatial information of image features as well as spatial association are key elements in terrain feature detection. After applying a small feature preserving despeckling operation, spatial information such as edginess, texture (smoothness), region-likeliness and line-likeness of objects, target sizes, and target shapes were estimated. Then a trapezoid shape fuzzy membership function was assigned to each spatial feature attribute. Fuzzy classification logic was employed to detect terrain features. Terrain features such as urban areas, mountain ridges, lakes and other water bodies as well as vegetated areas were successfully identified from a sub-image of a JERS-1 SAR image. In the course of shape analysis, a quantitative method was developed to classify spatial patterns by expanding a spatial pattern through the use of a series of pattern primitives.

  2. Summer use of the tidal freshwaters of the River Seine by three estuarine fish: Coupling telemetry and GIS spatial analysis

    NASA Astrophysics Data System (ADS)

    Le Pichon, C.; Coustillas, J.; Zahm, A.; Bunel, M.; Gazeau-Nadin, C.; Rochard, E.

    2017-09-01

    Acoustic telemetry and GIS-based spatial analysis were used to investigate the summer habitat use and movement patterns of three fish species in the tidal freshwaters of the Seine estuary (France). Experimental displacement of tagged individuals of thin-lipped grey mullet (Liza ramada), European eel (Anguilla anguilla), and common bream (Abramis brama) were conducted to test for their spatial fidelity and home range establishment. Most tagged individuals (95%) successfully returned to their previously occupied capture site, showing spatial homing abilities. The studied upstream tidal freshwater segment of the Seine estuary was regularly used by grey mullet as a part of its larger summer home range, while European eel and common bream were resident in this segment. The fidelity of eel to small nocturnal refuges and the regular use of intertidal waterbodies at high tide by grey mullet and bream suggested that they possess a capacity of acquiring spatial memory of habitats in a fluctuating environment. Importantly, the scale of movements travelled by each species was positively related to tidal phase. Grey mullet and bream, both visual feeders, exhibited short-term tidal movements to known habitats, providing food resources and contiguous resting habitat suggesting that they have shown behavioural strategies adaptive to fluctuating environments. Eel, in contrast, was found to have a different strategy strongly related to diel dynamics: it stayed in subtidal habitats rich in refuges that remained available at low tide. The results of this study emphasize the importance of restoring intertidal waterbodies and the relevance of considering the availability of adjacent subtidal habitats providing refuge at low tides.

  3. Accelerated high-resolution photoacoustic tomography via compressed sensing

    NASA Astrophysics Data System (ADS)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  4. Advances in Spectral-Spatial Classification of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Fauvel, Mathieu; Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.

    2012-01-01

    Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation and contrast of the spatial structures present in the image. Then the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines using the available spectral information and the extracted spatial information. Spatial post-processing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple classifier system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral-spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.

  5. Application of High Resolution Air-Borne Remote Sensing Observations for Monitoring NOx Emissions

    NASA Astrophysics Data System (ADS)

    Souri, A.; Choi, Y.; Pan, S.; Curci, G.; Janz, S. J.; Kowalewski, M. G.; Liu, J.; Herman, J. R.; Weinheimer, A. J.

    2017-12-01

    Nitrogen oxides (NOx=NO+NO2) are one of the air pollutants, responsible for the formation of tropospheric ozone, acid rain and particulate nitrate. The anthropogenic NOx emissions are commonly estimated based on bottom-up inventories which are complicated by many potential sources of error. One way to improve the emission inventories is to use relevant observations to constrain them. Fortunately, Nitrogen dioxide (NO2) is one of the most successful detected species from remote sensing. Although many studies have shown the capability of using space-borne remote sensing observations for monitoring emissions, the insufficient sample number and footprint of current measurements have introduced a burden to constrain emissions at fine scales. Promisingly, there are several air-borne sensors collected for NASA's campaigns providing high spatial resolution of NO2 columns. Here, we use the well-characterized NO2 columns from the Airborne Compact Atmospheric Mapper (ACAM) onboard NASA's B200 aircraft into a 1×1 km regional model to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. Firstly, in order to incorporate the data, we convert the NO2 slant column densities to vertical ones using a joint of a radiative transfer model and the 1x1 km regional model constrained by P3-B aircraft measurements. After conducting an inverse modeling method using the Kalman filter, we find the ACAM observations are resourceful at mitigating the overprediction of model in reproducing NO2 on regular days. Moreover, the ACAM provides a unique opportunity to detect an anomaly in emissions leading to strong air quality degradation that is lacking in previous works. Our study provides convincing evidence that future geostationary satellites with high spatial and temporal resolutions will give us insights into uncertainties associated with the emissions at regional scales.

  6. Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system

    PubMed Central

    Lall, Ramona; Levin-Rector, Alison; Sell, Jessica; Paladini, Marc; Konty, Kevin J.; Olson, Don; Weiss, Don

    2017-01-01

    The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have been proposed for use in cluster detection. We evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic surveillance data spiked with simulated injections. The algorithms were compared on several metrics, including sensitivity, specificity, positive predictive value, coherence, and timeliness. We also evaluated each method’s implementation, programming time, run time, and the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters exponential smoother performed the best, detecting 19% of the simulated injects across all shapes and sizes, followed by an autoregressive moving average model (16%), a generalized linear model (15%), a modified version of the Early Aberration Reporting System’s C2 algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%). Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-time permutation scan statistic detected none at a specificity of 95%. Positive predictive value was low (<7%) for all methods. Overall, the detection methods we tested did not perform well in identifying the temporal and spatial clusters of cases in the inject dataset. The spatial scan statistic, our current method for spatial cluster detection, performed slightly better than the other tested methods across different inject magnitudes and types. Furthermore, we found the scan statistics, as applied in the SaTScan software package, to be the easiest to program and implement for daily data analysis. PMID:28886112

  7. Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system.

    PubMed

    Mathes, Robert W; Lall, Ramona; Levin-Rector, Alison; Sell, Jessica; Paladini, Marc; Konty, Kevin J; Olson, Don; Weiss, Don

    2017-01-01

    The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have been proposed for use in cluster detection. We evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic surveillance data spiked with simulated injections. The algorithms were compared on several metrics, including sensitivity, specificity, positive predictive value, coherence, and timeliness. We also evaluated each method's implementation, programming time, run time, and the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters exponential smoother performed the best, detecting 19% of the simulated injects across all shapes and sizes, followed by an autoregressive moving average model (16%), a generalized linear model (15%), a modified version of the Early Aberration Reporting System's C2 algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%). Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-time permutation scan statistic detected none at a specificity of 95%. Positive predictive value was low (<7%) for all methods. Overall, the detection methods we tested did not perform well in identifying the temporal and spatial clusters of cases in the inject dataset. The spatial scan statistic, our current method for spatial cluster detection, performed slightly better than the other tested methods across different inject magnitudes and types. Furthermore, we found the scan statistics, as applied in the SaTScan software package, to be the easiest to program and implement for daily data analysis.

  8. Auditory Stimulus Processing and Task Learning Are Adequate in Dyslexia, but Benefits from Regularities Are Reduced

    ERIC Educational Resources Information Center

    Daikhin, Luba; Raviv, Ofri; Ahissar, Merav

    2017-01-01

    Purpose: The reading deficit for people with dyslexia is typically associated with linguistic, memory, and perceptual-discrimination difficulties, whose relation to reading impairment is disputed. We proposed that automatic detection and usage of serial sound regularities for individuals with dyslexia is impaired (anchoring deficit hypothesis),…

  9. Minimum entropy deconvolution optimized sinusoidal synthesis and its application to vibration based fault detection

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhao, Qing

    2017-03-01

    In this paper, a minimum entropy deconvolution based sinusoidal synthesis (MEDSS) filter is proposed to improve the fault detection performance of the regular sinusoidal synthesis (SS) method. The SS filter is an efficient linear predictor that exploits the frequency properties during model construction. The phase information of the harmonic components is not used in the regular SS filter. However, the phase relationships are important in differentiating noise from characteristic impulsive fault signatures. Therefore, in this work, the minimum entropy deconvolution (MED) technique is used to optimize the SS filter during the model construction process. A time-weighted-error Kalman filter is used to estimate the MEDSS model parameters adaptively. Three simulation examples and a practical application case study are provided to illustrate the effectiveness of the proposed method. The regular SS method and the autoregressive MED (ARMED) method are also implemented for comparison. The MEDSS model has demonstrated superior performance compared to the regular SS method and it also shows comparable or better performance with much less computational intensity than the ARMED method.

  10. Lp-Norm Regularization in Volumetric Imaging of Cardiac Current Sources

    PubMed Central

    Rahimi, Azar; Xu, Jingjia; Wang, Linwei

    2013-01-01

    Advances in computer vision have substantially improved our ability to analyze the structure and mechanics of the heart. In comparison, our ability to observe and analyze cardiac electrical activities is much limited. The progress to computationally reconstruct cardiac current sources from noninvasive voltage data sensed on the body surface has been hindered by the ill-posedness and the lack of a unique solution of the reconstruction problem. Common L2- and L1-norm regularizations tend to produce a solution that is either too diffused or too scattered to reflect the complex spatial structure of current source distribution in the heart. In this work, we propose a general regularization with Lp-norm (1 < p < 2) constraint to bridge the gap and balance between an overly smeared and overly focal solution in cardiac source reconstruction. In a set of phantom experiments, we demonstrate the superiority of the proposed Lp-norm method over its L1 and L2 counterparts in imaging cardiac current sources with increasing extents. Through computer-simulated and real-data experiments, we further demonstrate the feasibility of the proposed method in imaging the complex structure of excitation wavefront, as well as current sources distributed along the postinfarction scar border. This ability to preserve the spatial structure of source distribution is important for revealing the potential disruption to the normal heart excitation. PMID:24348735

  11. An improved geographically weighted regression model for PM2.5 concentration estimation in large areas

    NASA Astrophysics Data System (ADS)

    Zhai, Liang; Li, Shuang; Zou, Bin; Sang, Huiyong; Fang, Xin; Xu, Shan

    2018-05-01

    Considering the spatial non-stationary contributions of environment variables to PM2.5 variations, the geographically weighted regression (GWR) modeling method has been using to estimate PM2.5 concentrations widely. However, most of the GWR models in reported studies so far were established based on the screened predictors through pretreatment correlation analysis, and this process might cause the omissions of factors really driving PM2.5 variations. This study therefore developed a best subsets regression (BSR) enhanced principal component analysis-GWR (PCA-GWR) modeling approach to estimate PM2.5 concentration by fully considering all the potential variables' contributions simultaneously. The performance comparison experiment between PCA-GWR and regular GWR was conducted in the Beijing-Tianjin-Hebei (BTH) region over a one-year-period. Results indicated that the PCA-GWR modeling outperforms the regular GWR modeling with obvious higher model fitting- and cross-validation based adjusted R2 and lower RMSE. Meanwhile, the distribution map of PM2.5 concentration from PCA-GWR modeling also clearly depicts more spatial variation details in contrast to the one from regular GWR modeling. It can be concluded that the BSR enhanced PCA-GWR modeling could be a reliable way for effective air pollution concentration estimation in the coming future by involving all the potential predictor variables' contributions to PM2.5 variations.

  12. Downscaling Satellite Precipitation with Emphasis on Extremes: A Variational ℓ1-Norm Regularization in the Derivative Domain

    NASA Astrophysics Data System (ADS)

    Foufoula-Georgiou, E.; Ebtehaj, A. M.; Zhang, S. Q.; Hou, A. Y.

    2014-05-01

    The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying rainfall fields. Of special interest is the reproduction of extreme precipitation intensities and gradients, as these are directly relevant to hazard prediction. In this paper, we present a new formalism for downscaling satellite precipitation observations, which explicitly allows for the preservation of some key geometrical and statistical properties of spatial precipitation. These include sharp intensity gradients (due to high-intensity regions embedded within lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall), and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we pose the downscaling problem as a discrete inverse problem and solve it via a regularized variational approach (variational downscaling) where the regularization term is selected to impose the desired smoothness in the solution while allowing for some steep gradients (called ℓ1-norm or total variation regularization). We demonstrate the duality between this geometrically inspired solution and its Bayesian statistical interpretation, which is equivalent to assuming a Laplace prior distribution for the precipitation intensities in the derivative (wavelet) space. When the observation operator is not known, we discuss the effect of its misspecification and explore a previously proposed dictionary-based sparse inverse downscaling methodology to indirectly learn the observation operator from a data base of coincidental high- and low-resolution observations. The proposed method and ideas are illustrated in case studies featuring the downscaling of a hurricane precipitation field.

  13. Downscaling Satellite Precipitation with Emphasis on Extremes: A Variational 1-Norm Regularization in the Derivative Domain

    NASA Technical Reports Server (NTRS)

    Foufoula-Georgiou, E.; Ebtehaj, A. M.; Zhang, S. Q.; Hou, A. Y.

    2013-01-01

    The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying rainfall fields. Of special interest is the reproduction of extreme precipitation intensities and gradients, as these are directly relevant to hazard prediction. In this paper, we present a new formalism for downscaling satellite precipitation observations, which explicitly allows for the preservation of some key geometrical and statistical properties of spatial precipitation. These include sharp intensity gradients (due to high-intensity regions embedded within lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall),and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we pose the downscaling problem as a discrete inverse problem and solve it via a regularized variational approach (variational downscaling) where the regularization term is selected to impose the desired smoothness in the solution while allowing for some steep gradients(called 1-norm or total variation regularization). We demonstrate the duality between this geometrically inspired solution and its Bayesian statistical interpretation, which is equivalent to assuming a Laplace prior distribution for the precipitation intensities in the derivative (wavelet) space. When the observation operator is not known, we discuss the effect of its misspecification and explore a previously proposed dictionary-based sparse inverse downscaling methodology to indirectly learn the observation operator from a database of coincidental high- and low-resolution observations. The proposed method and ideas are illustrated in case studies featuring the downscaling of a hurricane precipitation field.

  14. Topic Repetition in Conversations on Different Days as a Sign of Dementia.

    PubMed

    Shinkawa, Kaoru; Yamada, Yasunori

    2018-01-01

    Detecting early signs of dementia in everyday situations becomes more and more important in a rapidly aging society. Language dysfunctions are recognized as the prominent signs of dementia. Previous computational studies characterized these language dysfunctions by using acoustic and linguistic features for detecting dementia. However, they mainly investigated language dysfunctions collected from patients during neuropsychological tests. Language dysfunctions observed during regular conversations in everyday situations received little attention. One of the dysfunctions associated with dementia which is frequently observed in regular conversations is the repetition of a topic on different days. In this study, we propose a feature to characterize topic repetition in conversations on different days. We used conversational data obtained from a daily monitoring service of eight elderly people, two of whom had dementia. Through the analysis of topic extraction with latent Dirichlet allocation, we found that the frequency of topic repetition was significantly higher in people with dementia than in the control group. The results suggest that our proposed feature for identifying topic repetition in regular conversations on different days might be used for detecting dementia.

  15. A hierarchical model for estimating the spatial distribution and abundance of animals detected by continuous-time recorders

    USGS Publications Warehouse

    Dorazio, Robert; Karanth, K. Ullas

    2017-01-01

    MotivationSeveral spatial capture-recapture (SCR) models have been developed to estimate animal abundance by analyzing the detections of individuals in a spatial array of traps. Most of these models do not use the actual dates and times of detection, even though this information is readily available when using continuous-time recorders, such as microphones or motion-activated cameras. Instead most SCR models either partition the period of trap operation into a set of subjectively chosen discrete intervals and ignore multiple detections of the same individual within each interval, or they simply use the frequency of detections during the period of trap operation and ignore the observed times of detection. Both practices make inefficient use of potentially important information in the data.Model and data analysisWe developed a hierarchical SCR model to estimate the spatial distribution and abundance of animals detected with continuous-time recorders. Our model includes two kinds of point processes: a spatial process to specify the distribution of latent activity centers of individuals within the region of sampling and a temporal process to specify temporal patterns in the detections of individuals. We illustrated this SCR model by analyzing spatial and temporal patterns evident in the camera-trap detections of tigers living in and around the Nagarahole Tiger Reserve in India. We also conducted a simulation study to examine the performance of our model when analyzing data sets of greater complexity than the tiger data.BenefitsOur approach provides three important benefits: First, it exploits all of the information in SCR data obtained using continuous-time recorders. Second, it is sufficiently versatile to allow the effects of both space use and behavior of animals to be specified as functions of covariates that vary over space and time. Third, it allows both the spatial distribution and abundance of individuals to be estimated, effectively providing a species distribution model, even in cases where spatial covariates of abundance are unknown or unavailable. We illustrated these benefits in the analysis of our data, which allowed us to quantify differences between nocturnal and diurnal activities of tigers and to estimate their spatial distribution and abundance across the study area. Our continuous-time SCR model allows an analyst to specify many of the ecological processes thought to be involved in the distribution, movement, and behavior of animals detected in a spatial trapping array of continuous-time recorders. We plan to extend this model to estimate the population dynamics of animals detected during multiple years of SCR surveys.

  16. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Higher spatial harmonics of photorefractive gratings written by phase-locked detection

    NASA Astrophysics Data System (ADS)

    Dugin, A. V.; Zel'dovich, Boris Ya; Il'inykh, P. N.; Liberman, V. S.; Nesterkin, O. P.

    1992-11-01

    The higher spatial harmonics of the photorefractive response have been studied theoretically and experimentally for gratings written by phase-locked detection in an alternating external field. The conditions for writing higher spatial harmonics are derived analytically. The amplitude of the second spatial harmonic has been found experimentally as a function of the spatial frequency in two Bi12TiO20 crystals.

  17. Interplay between gravity and quintessence: a set of new GR solutions

    NASA Astrophysics Data System (ADS)

    Chernin, Arthur D.; Santiago, David I.; Silbergleit, Alexander S.

    2002-02-01

    A set of new exact analytical general relativity (GR) solutions with time-dependent and spatially inhomogeneous quintessence demonstrate (1) a static non-empty space-time with a horizon-type singular surface; (2) time-dependent spatially homogeneous `spheres' which are completely different in geometry from the Friedmann isotropic models; (3) infinitely strong anti-gravity at a `true' singularity where the density is infinitely large. It is also found that (4) the GR solutions allow for an extreme `density-free' form of energy that can generate regular space-time geometries.

  18. Mapping fields of 137Cs contamination in soils in the context of their stability and hierarchical spatial structure

    NASA Astrophysics Data System (ADS)

    Korobova, E.; Romanov, S.

    2009-04-01

    Technogenic radioisotopes now dispersed in the environment are involved in natural and technogenic processes forming specific geochemical fields and serving as tracers of modern mass migration and geofield transformation. Cs-137 radioisotopes having a comparatively long life time are known for a fast fixation by the top soil layer; radiocesium activity can be measured in the surface layer in field conditions. This makes 137Cs rather convenient for the study and modeling a behavior of toxic elements in soils [1-3, 5] and for the investigation of relative stability and hierarchical fractal structures of the soil contamination of the atmospheric origin [2]. The objective of the experimental study performed on the test site in Bryansk region was to find and prove polycentric regularities in the structure of 137Cs contamination field formed after the Chernobyl accident in natural conditions. Such a character of spatial variability can be seen on the maps showing different soil parameters and chemical element distribution measured in grids [3-5]. The research was undertaken to support our idea of the regular patterns in the contamination field structure that enables to apply a mathematical theory of the field to the geochemical fields modeling on the basis of a limited number of direct measurements sufficient to reproduce the configuration and main parameters of the geochemical field structure on the level of the elementary landscape geochemical system (top-slope-bottom). Cs-137 field measurements were verified by a direct soil sampling. Soil cores dissected into subsamples with increments of 2, 5 and 10 cm, were taken to the depth of 40 cm at points with various surface activity located at different elements of relief. According to laboratory measurements 137Cs inventory in soils varied from 344 to 3448 kBq/m2 (983 kBq/m2 on the average). From 95,1% to 98,0% to of the total inventory was retained in the top 20-cm soil layer. This confirmed that field gamma spectrometry could be used to investigate patterns of 137Cs spatial redistribution in the top soil layers. The portion of 137Cs conserved in top layers corresponded to the meso- and micro relief elements. The character and stability of 137Cs spatial structure was studied by measuring its activity within nested plots with different steps of 5, 2, 1 and 0,2 m (the latter was a minimum resolution step for the field NaI detector). Performed measurements showed that the contamination field of 137Cs had a regular structure of polycentric character and exhibited a decrease in spatial variability of contamination with the decrease of the measured area. Repeated measurements of soil contamination in successive years of 2005-2008 along and cross the slopes provided with topographic survey proved the stability of contamination field (r=0, 915, n=121, r=0,912, n=30) and its relation to the meso- and microrelief features. Variation 137Cs activity in lateral direction (along the slopes and thalweg of the hollow)showed a regular character also. In our opinion the regularity in 137Cs spatial structure in the soil cover may result from radionuclide redistribution with the surface and subsurface water flow highly sensitive to the changes in elevation of different scale, and to the slope length and inclination. Cs-137 lateral distribution pattern was likely to reflect alternation of lateral and vertical water mass migration along the slopes. The performed study showing regularity in 137Cs redistribution seems to open new possibilities to develop the deterministic strategy in the study of contamination fields and modeling toxic elements spatial distribution in the soil cover on different scales. The authors are much obliged to Dr. V. Samsonov and Dr. F. Moiseenko for participation in the field work and to S. Kirov for the performance of the laboratory measurement of the soil and plant samples. References 1. Khomutinin, Yu.V., Kashparov, V.A., Zhebrovskaya, E.I., 2001. Optimization of sampling and measurement of the specimen for radioecological monitoring. UkrNIISKHR, Kiev. 2. Korobova, E.M., Romanov, S.L., Samsonov, V.L., Kirov, S.S., 2006. Experimental study of spatial 137Cs redistribution in paragenetic elementary landscapes, in: Kasimov, N.S. et al (Eds.), Geochemistry of biosphere (devoted to 90-th anniversary of A.I. Perelman), MSU, IGEM, RFFI, Moscow-Smolensk, pp.157-159. 3. Linnik, V.G., Saveliev, A.A., Govorun, A.P., Ivanitsky, O.M., Sokolov, A.V., 2006. Analysis of the Cs-137 contamination field on micro-landscape scale within the virgin meadows in the western part of the Bryansk region, in: Kasimov, N.S. et al (Eds.), Geochemistry of biosphere (devoted to 90-th anniversary of A.I. Perelman), MSU, IGEM, RFFI, Moscow-Smolensk, pp. 201-204. 4. Samsonova V.P. Spatial variability of the soil parameters. On example of soddy-podozolic soils. Moscow, LKI, 2008, 156 p. 5.Shcheglov, A.I., Tsvetnova, O.B., Klyashtorin, A.I., 2001. Biogeochemical migration of technogenic radionuclides in forest ecosystems. Nauka, Moscow.

  19. On the Role of Working Memory in Spatial Contextual Cueing

    ERIC Educational Resources Information Center

    Travis, Susan L.; Mattingley, Jason B.; Dux, Paul E.

    2013-01-01

    The human visual system receives more information than can be consciously processed. To overcome this capacity limit, we employ attentional mechanisms to prioritize task-relevant (target) information over less relevant (distractor) information. Regularities in the environment can facilitate the allocation of attention, as demonstrated by the…

  20. An integrated approach to mapping forest conditions in the Southern Appalachians (North Carolina)

    Treesearch

    Weimin Xi; Lei Wang; Andrew G Birt; Maria D. Tchakerian; Robert N. Coulson; Kier D. Klepzig

    2009-01-01

    Accurate and continuous forest cover information is essential for forest management and restoration (SAMAB 1996, Xi et al. 2007). Ground-truthed, spatially explicit forest data, however, are often limited to federally managed land or large-scale commercial forestry operations where forest inventories are regularly collected. Moreover,...

  1. Modelling topographic potential for erosion and deposition using GIS

    Treesearch

    Helena Mitasova; Louis R. Iverson

    1996-01-01

    Modelling of erosion and deposition in complex terrain within a geographical information system (GIS) requires a high resolution digital elevation model (DEM), reliable estimation of topographic parameters, and formulation of erosion models adequate for digital representation of spatially distributed parameters. Regularized spline with tension was integrated within a...

  2. How Visual Displays Affect Cognitive Processing

    ERIC Educational Resources Information Center

    McCrudden, Matthew T.; Rapp, David N.

    2017-01-01

    We regularly consult and construct visual displays that are intended to communicate important information. The power of these displays and the instructional messages we attempt to comprehend when using them emerge from the information included in the display and by their spatial arrangement. In this article, we identify common types of visual…

  3. Calibrating electromagnetic induction conductivities with time-domain reflectometry measurements

    NASA Astrophysics Data System (ADS)

    Dragonetti, Giovanna; Comegna, Alessandro; Ajeel, Ali; Piero Deidda, Gian; Lamaddalena, Nicola; Rodriguez, Giuseppe; Vignoli, Giulio; Coppola, Antonio

    2018-02-01

    This paper deals with the issue of monitoring the spatial distribution of bulk electrical conductivity, σb, in the soil root zone by using electromagnetic induction (EMI) sensors under different water and salinity conditions. To deduce the actual distribution of depth-specific σb from EMI apparent electrical conductivity (ECa) measurements, we inverted the data by using a regularized 1-D inversion procedure designed to manage nonlinear multiple EMI-depth responses. The inversion technique is based on the coupling of the damped Gauss-Newton method with truncated generalized singular value decomposition (TGSVD). The ill-posedness of the EMI data inversion is addressed by using a sharp stabilizer term in the objective function. This specific stabilizer promotes the reconstruction of blocky targets, thereby contributing to enhance the spatial resolution of the EMI results in the presence of sharp boundaries (otherwise smeared out after the application of more standard Occam-like regularization strategies searching for smooth solutions). Time-domain reflectometry (TDR) data are used as ground-truth data for calibration of the inversion results. An experimental field was divided into four transects 30 m long and 2.8 m wide, cultivated with green bean, and irrigated with water at two different salinity levels and using two different irrigation volumes. Clearly, this induces different salinity and water contents within the soil profiles. For each transect, 26 regularly spaced monitoring soundings (1 m apart) were selected for the collection of (i) Geonics EM-38 and (ii) Tektronix reflectometer data. Despite the original discrepancies in the EMI and TDR data, we found a significant correlation of the means and standard deviations of the two data series; in particular, after a low-pass spatial filtering of the TDR data. Based on these findings, this paper introduces a novel methodology to calibrate EMI-based electrical conductivities via TDR direct measurements. This calibration strategy consists of a linear mapping of the original inversion results into a new conductivity spatial distribution with the coefficients of the transformation uniquely based on the statistics of the two original measurement datasets (EMI and TDR conductivities).

  4. A spatial scan statistic for compound Poisson data.

    PubMed

    Rosychuk, Rhonda J; Chang, Hsing-Ming

    2013-12-20

    The topic of spatial cluster detection gained attention in statistics during the late 1980s and early 1990s. Effort has been devoted to the development of methods for detecting spatial clustering of cases and events in the biological sciences, astronomy and epidemiology. More recently, research has examined detecting clusters of correlated count data associated with health conditions of individuals. Such a method allows researchers to examine spatial relationships of disease-related events rather than just incident or prevalent cases. We introduce a spatial scan test that identifies clusters of events in a study region. Because an individual case may have multiple (repeated) events, we base the test on a compound Poisson model. We illustrate our method for cluster detection on emergency department visits, where individuals may make multiple disease-related visits. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Separate first- and second-order processing is supported by spatial summation estimates at the fovea and eccentrically.

    PubMed

    Sukumar, Subash; Waugh, Sarah J

    2007-03-01

    We estimated spatial summation areas for the detection of luminance-modulated (LM) and contrast-modulated (CM) blobs at the fovea, 2.5, 5 and 10 deg eccentrically. Gaussian profiles were added or multiplied to binary white noise to create LM and CM blob stimuli and these were used to psychophysically estimate detection thresholds and spatial summation areas. The results reveal significantly larger summation areas for detecting CM than LM blobs across eccentricity. These differences are comparable to receptive field size estimates made in V1 and V2. They support the notion that separate spatial processing occurs for the detection of LM and CM stimuli.

  6. Characterization of St. Lawrence blue whale vocalizations and their correlation with field observations

    NASA Astrophysics Data System (ADS)

    Berchok, Catherine L.

    During four field seasons from 1998--2001, 115 hours of acoustic recordings were made in the presence of the well-studied St. Lawrence population of blue whales. The primary field site for this study was the estuary region of the St. Lawrence River (Quebec, Canada) with most recordings made between mid-August and late October. Effort was concentrated in the daylight hours, although occasionally extending past nightfall. An inexpensive and portable recording system was built that was easy to deploy and provided quality recordings in a variety of sea conditions. It consisted of a calibrated omni-directional hydrophone with a flat (+/-3dB) response from 5Hz to 800Hz; and a surface isolation buoy to minimize the vertical movement of the sensor. During the recording sessions detailed field notes were taken on all blue whales within sight, with individual identities confirmed through photo-identification work between sessions. Notes were also taken on all other species sighted during the recording sessions. Characterization of the more than one-thousand blue whale calls detected during this study revealed that the St. Lawrence repertoire is much more extensive than previously reported. Three infrasonic (<20Hz) and four audible range (30--200Hz) call types were detected in this study, with much time/frequency variation seen within each type. The infrasonic calls were long (5--30s) in duration and arranged into regularly patterned series. These calls were similar in call characteristics and spacing to those detected in the North Atlantic, but had much shorter and more variable patterned series. The audible call types were much shorter (1--4s), and occurred singly or in irregularly spaced clusters, although a special patterning was seen that contained both regular and irregular spaced components. Comparison of the daily, seasonal, and spatial distributions of calling behavior with those of several biological parameters revealed interesting differences between the three call types examined. The trends seen suggest a migratory, reproductive, or foraging context for the infrasonic calls. A closer-range social context is suggested for the audible downsweeps, which have been detected in foraging situations as well as in courtship displays. The audible mixed-pattern call type appears to have a primarily reproductive context.

  7. High-Speed Incoming Infrared Target Detection by Fusion of Spatial and Temporal Detectors

    PubMed Central

    Kim, Sungho

    2015-01-01

    This paper presents a method for detecting high-speed incoming targets by the fusion of spatial and temporal detectors to achieve a high detection rate for an active protection system (APS). The incoming targets have different image velocities according to the target-camera geometry. Therefore, single-target detector-based approaches, such as a 1D temporal filter, 2D spatial filter and 3D matched filter, cannot provide a high detection rate with moderate false alarms. The target speed variation was analyzed according to the incoming angle and target velocity. The speed of the distant target at the firing time is almost stationary and increases slowly. The speed varying targets are detected stably by fusing the spatial and temporal filters. The stationary target detector is activated by an almost zero temporal contrast filter (TCF) and identifies targets using a spatial filter called the modified mean subtraction filter (M-MSF). A small motion (sub-pixel velocity) target detector is activated by a small TCF value and finds targets using the same spatial filter. A large motion (pixel-velocity) target detector works when the TCF value is high. The final target detection is terminated by fusing the three detectors based on the threat priority. The experimental results of the various target sequences show that the proposed fusion-based target detector produces the highest detection rate with an acceptable false alarm rate. PMID:25815448

  8. Spatial, Temporal and Spatio-Temporal Patterns of Maritime Piracy.

    PubMed

    Marchione, Elio; Johnson, Shane D

    2013-11-01

    To examine patterns in the timing and location of incidents of maritime piracy to see whether, like many urban crimes, attacks cluster in space and time. Data for all incidents of maritime piracy worldwide recorded by the National Geospatial Intelligence Agency are analyzed using time-series models and methods originally developed to detect disease contagion. At the macro level, analyses suggest that incidents of pirate attacks are concentrated in five subregions of the earth's oceans and that the time series for these different subregions differ. At the micro level, analyses suggest that for the last 16 years (or more), pirate attacks appear to cluster in space and time suggesting that patterns are not static but are also not random. Much like other types of crime, pirate attacks cluster in space, and following an attack at one location the risk of others at the same location or nearby is temporarily elevated. The identification of such regularities has implications for the understanding of maritime piracy and for predicting the future locations of attacks.

  9. Terrestrial remote sensing science and algorithms planned for EOS/MODIS

    USGS Publications Warehouse

    Running, S. W.; Justice, C.O.; Salomonson, V.V.; Hall, D.; Barker, J.; Kaufmann, Y. J.; Strahler, Alan H.; Huete, A.R.; Muller, Jan-Peter; Vanderbilt, V.; Wan, Z.; Teillet, P.; Carneggie, David M. Geological Survey (U.S.) Ohlen

    1994-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) will be the primary daily global monitoring sensor on the NASA Earth Observing System (EOS) satellites, scheduled for launch on the EOS-AM platform in June 1998 and the EOS-PM platform in December 2000. MODIS is a 36 channel radiometer covering 0·415-14·235 μm wavelengths, with spatial resolution from 250 m to 1 km at nadir. MODIS will be the primary EOS sensor for providing data on terrestrial biospheric dynamics and process activity. This paper presents the suite of global land products currently planned for EOSDIS implementation, to be developed by the authors of this paper, the MODIS land team (MODLAND). These include spectral albedo, land cover, spectral vegetation indices, snow and ice cover, surface temperature and fire, and a number of biophysical variables that will allow computation of global carbon cycles, hydrologic balances and biogeochemistry of critical greenhouse gases. Additionally, the regular global coverage of these variables will allow accurate surface change detection, a fundamental determinant of global change.

  10. The first simultaneous mapping of four 7 mm SiO maser lines using the OCTAVE system

    NASA Astrophysics Data System (ADS)

    Oyama, Tomoaki; Kono, Yusuke; Suzuki, Syunsaku; Kanaguchi, Masahiro; Nishikawa, Takashi; Kawaguchi, Noriyuki; Hirota, Tomoya; Nagayama, Takumi; Kobayashi, Hideyuki; Imai, Hiroshi; Kuwahara, Sho; Kano, Amane; Oyadomari, Miyako; Chong, Sze Ning

    2016-12-01

    We report on simultaneous very long baseline interferometry (VLBI) mapping of 28SiO v = 1, 2, 3, and 29SiO v = 0 J = 1 → 0 maser lines at the 7 mm band toward the semi-regular variable star, W Hydrae (W Hya), using the new data acquisition system (OCTAVE-DAS), installed in the VLBI Exploration of Radio Astrometry (VERA) array and temporarily operated in the 45 m telescope of the Nobeyama Radio Observatory. Although these masers were spatially resolved, their compact maser spots were fortunately detected in the 1000 km baselines of VERA. We found the locations of the v = 3 maser emission which are unexpected from the currently proposed maser pumping models. Mapping of the 29SiO maser line in W Hya is the third result after those in WX Psc and R Leo. This paper shows the scientific implication of simultaneous VLBI observations of multiple SiO maser lines as realized by using the OCTAVE system.

  11. Characterising meso-marine ecosystems of the North Pacific

    NASA Astrophysics Data System (ADS)

    Batten, Sonia D.; David Hyrenbach, K.; Sydeman, William J.; Morgan, Ken H.; Henry, Michael F.; Yen, Peggy P. Y.; Welch, David W.

    2006-02-01

    To delineate mesoscale variability in marine ecosystems of the subarctic North Pacific and identify "hotspots" of biological activity, we conducted contemporaneous surveys of plankton and avifaunal communites in 2000-2003. Plankton samples were collected with a continuous plankton recorder (CPR) towed by a commercial vessel while a trained observer recorded marine bird distributions using strip-transect techniques. Near- and sub-surface physical oceanographic properties and productivity patterns were measured using a temperature data logger and satellite-derived chlorophyll a concentrations. We identified 10 distinct biological communities across the North Pacific, which we refer to as 'meso-marine ecosystems' (MME). We examined the characteristics of MME over multiple years to assess temporal persistence. MME were associated with different bathymetric domains and current systems. MME differed in the overall abundance and species composition of their fauna and, therefore, almost certainly in productivity. Regular monitoring of the spatial and temporal variability of MME will enhance our ability to detect and understand coupled climate-ecosystem responses, and, in turn, help guide ecosystem-based fisheries and wildlife management.

  12. Temporal and spatial variability in thalweg profiles of a gravel-bed river

    USGS Publications Warehouse

    Madej, Mary Ann

    1999-01-01

    This study used successive longitudinal thalweg profiles in gravel-bed rivers to monitor changes in bed topography following floods and associated large sediment inputs. Variations in channel bed elevations, distributions of residual water depths, percentage of channel length occupied by riffles, and a spatial autocorrelation coefficient (Moran's I) were used to quantify changes in morphological diversity and spatial structure in Redwood Creek basin, northwestern California. Bed topography in Redwood Creek and its major tributaries consists primarily of a series of pools and riffles. The size, frequency and spatial distribution of the pools and riffles have changed significantly during the past 20 years. Following large floods and high sediment input in Redwood Creek and its tributaries in 1975, variation in channel bed elevations was low and the percentage of the channel length occupied by riffles was high. Over the next 20 years, variation in bed elevations increased while the length of channel occupied by riffles decreased. An index [(standard deviation of residual water depth/bankfull depth) × 100] was developed to compare variations in bed elevation over a range of stream sizes, with a higher index being indicative of greater morphological diversity. Spatial autocorrelation in the bed elevation data was apparent at both fine and coarse scales in many of the thalweg profiles and the observed spatial pattern of bed elevations was found to be related to the dominant channel material and the time since disturbance. River reaches in which forced pools dominated, and in which large woody debris and bed particles could not be easily mobilized, exhibited a random distribution of bed elevations. In contrast, in reaches where alternate bars dominated, and both wood and gravel were readily transported, regularly spaced bed topography developed at a spacing that increased with time since disturbance. This pattern of regularly spaced bed features was reversed following a 12-year flood when bed elevations became more randomly arranged.

  13. Extinction threshold for spatial forest dynamics with height structure.

    PubMed

    Garcia-Domingo, Josep L; Saldaña, Joan

    2011-05-07

    We present a pair-approximation model for spatial forest dynamics defined on a regular lattice. The model assumes three possible states for a lattice site: empty (gap site), occupied by an immature tree, and occupied by a mature tree, and considers three nonlinearities in the dynamics associated to the processes of light interference, gap expansion, and recruitment. We obtain an expression of the basic reproduction number R(0) which, in contrast to the one obtained under the mean-field approach, uses information about the spatial arrangement of individuals close to extinction. Moreover, we analyze the corresponding survival-extinction transition of the forest and the spatial correlations among gaps, immature and mature trees close to this critical point. Predictions of the pair-approximation model are compared with those of a cellular automaton. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Threat captures attention but does not affect learning of contextual regularities.

    PubMed

    Yamaguchi, Motonori; Harwood, Sarah L

    2017-04-01

    Some of the stimulus features that guide visual attention are abstract properties of objects such as potential threat to one's survival, whereas others are complex configurations such as visual contexts that are learned through past experiences. The present study investigated the two functions that guide visual attention, threat detection and learning of contextual regularities, in visual search. Search arrays contained images of threat and non-threat objects, and their locations were fixed on some trials but random on other trials. Although they were irrelevant to the visual search task, threat objects facilitated attention capture and impaired attention disengagement. Search time improved for fixed configurations more than for random configurations, reflecting learning of visual contexts. Nevertheless, threat detection had little influence on learning of the contextual regularities. The results suggest that factors guiding visual attention are different from factors that influence learning to guide visual attention.

  15. Low-dose 4D cone-beam CT via joint spatiotemporal regularization of tensor framelet and nonlocal total variation

    NASA Astrophysics Data System (ADS)

    Han, Hao; Gao, Hao; Xing, Lei

    2017-08-01

    Excessive radiation exposure is still a major concern in 4D cone-beam computed tomography (4D-CBCT) due to its prolonged scanning duration. Radiation dose can be effectively reduced by either under-sampling the x-ray projections or reducing the x-ray flux. However, 4D-CBCT reconstruction under such low-dose protocols is prone to image artifacts and noise. In this work, we propose a novel joint regularization-based iterative reconstruction method for low-dose 4D-CBCT. To tackle the under-sampling problem, we employ spatiotemporal tensor framelet (STF) regularization to take advantage of the spatiotemporal coherence of the patient anatomy in 4D images. To simultaneously suppress the image noise caused by photon starvation, we also incorporate spatiotemporal nonlocal total variation (SNTV) regularization to make use of the nonlocal self-recursiveness of anatomical structures in the spatial and temporal domains. Under the joint STF-SNTV regularization, the proposed iterative reconstruction approach is evaluated first using two digital phantoms and then using physical experiment data in the low-dose context of both under-sampled and noisy projections. Compared with existing approaches via either STF or SNTV regularization alone, the presented hybrid approach achieves improved image quality, and is particularly effective for the reconstruction of low-dose 4D-CBCT data that are not only sparse but noisy.

  16. Iterative image reconstruction that includes a total variation regularization for radial MRI.

    PubMed

    Kojima, Shinya; Shinohara, Hiroyuki; Hashimoto, Takeyuki; Hirata, Masami; Ueno, Eiko

    2015-07-01

    This paper presents an iterative image reconstruction method for radial encodings in MRI based on a total variation (TV) regularization. The algebraic reconstruction method combined with total variation regularization (ART_TV) is implemented with a regularization parameter specifying the weight of the TV term in the optimization process. We used numerical simulations of a Shepp-Logan phantom, as well as experimental imaging of a phantom that included a rectangular-wave chart, to evaluate the performance of ART_TV, and to compare it with that of the Fourier transform (FT) method. The trade-off between spatial resolution and signal-to-noise ratio (SNR) was investigated for different values of the regularization parameter by experiments on a phantom and a commercially available MRI system. ART_TV was inferior to the FT with respect to the evaluation of the modulation transfer function (MTF), especially at high frequencies; however, it outperformed the FT with regard to the SNR. In accordance with the results of SNR measurement, visual impression suggested that the image quality of ART_TV was better than that of the FT for reconstruction of a noisy image of a kiwi fruit. In conclusion, ART_TV provides radial MRI with improved image quality for low-SNR data; however, the regularization parameter in ART_TV is a critical factor for obtaining improvement over the FT.

  17. Search for Spatially Extended Fermi-LAT Sources Using Two Years of Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lande, Joshua; Ackermann, Markus; Allafort, Alice

    2012-07-13

    Spatial extension is an important characteristic for correctly associating {gamma}-ray-emitting sources with their counterparts at other wavelengths and for obtaining an unbiased model of their spectra. We present a new method for quantifying the spatial extension of sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi). We perform a series of Monte Carlo simulations to validate this tool and calculate the LAT threshold for detecting the spatial extension of sources. We then test all sources in the second Fermi -LAT catalog (2FGL) for extension. We report the detection of sevenmore » new spatially extended sources.« less

  18. High-Frequency Subband Compressed Sensing MRI Using Quadruplet Sampling

    PubMed Central

    Sung, Kyunghyun; Hargreaves, Brian A

    2013-01-01

    Purpose To presents and validates a new method that formalizes a direct link between k-space and wavelet domains to apply separate undersampling and reconstruction for high- and low-spatial-frequency k-space data. Theory and Methods High- and low-spatial-frequency regions are defined in k-space based on the separation of wavelet subbands, and the conventional compressed sensing (CS) problem is transformed into one of localized k-space estimation. To better exploit wavelet-domain sparsity, CS can be used for high-spatial-frequency regions while parallel imaging can be used for low-spatial-frequency regions. Fourier undersampling is also customized to better accommodate each reconstruction method: random undersampling for CS and regular undersampling for parallel imaging. Results Examples using the proposed method demonstrate successful reconstruction of both low-spatial-frequency content and fine structures in high-resolution 3D breast imaging with a net acceleration of 11 to 12. Conclusion The proposed method improves the reconstruction accuracy of high-spatial-frequency signal content and avoids incoherent artifacts in low-spatial-frequency regions. This new formulation also reduces the reconstruction time due to the smaller problem size. PMID:23280540

  19. Swinger RNAs with sharp switches between regular transcription and transcription systematically exchanging ribonucleotides: Case studies.

    PubMed

    Seligmann, Hervé

    2015-09-01

    During RNA transcription, DNA nucleotides A,C,G, T are usually matched by ribonucleotides A, C, G and U. However occasionally, this rule does not apply: transcript-DNA homologies are detectable only assuming systematic exchanges between ribonucleotides. Nine symmetric (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric (X ↔ Y ↔ Z, e.g. A ↔ C ↔ G) exchanges exist, called swinger transcriptions. Putatively, polymerases occasionally stabilize in unspecified swinger conformations, possibly similar to transient conformations causing punctual misinsertions. This predicts chimeric transcripts, part regular, part swinger-transformed, reflecting polymerases switching to swinger polymerization conformation(s). Four chimeric Genbank transcripts (three from human mitochondrion and one murine cytosolic) are described here: (a) the 5' and 3' extremities reflect regular polymerization, the intervening sequence exchanges systematically between ribonucleotides (swinger rule G ↔ U, transcript (1), with sharp switches between regular and swinger sequences; (b) the 5' half is 'normal', the 3' half systematically exchanges ribonucleotides (swinger rule C ↔ G, transcript (2), with an intercalated sequence lacking homology; (c) the 3' extremity fits A ↔ G exchanges (10% of transcript length), the 5' half follows regular transcription; the intervening region seems a mix of regular and A ↔ G transcriptions (transcript 3); (d) murine cytosolic transcript 4 switches to A ↔ U + C ↔ G, and is fused with A ↔ U + C ↔ G swinger transformed precursor rRNA. In (c), each concomitant transcript 5' and 3' extremities match opposite genome strands. Transcripts 3 and 4 combine transcript fusions with partial swinger transcriptions. Occasional (usually sharp) switches between regular and swinger transcriptions reveal greater coding potential than detected until now, suggest stable polymerase swinger conformations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Object grouping based on real-world regularities facilitates perception by reducing competitive interactions in visual cortex

    PubMed Central

    Kaiser, Daniel; Stein, Timo; Peelen, Marius V.

    2014-01-01

    In virtually every real-life situation humans are confronted with complex and cluttered visual environments that contain a multitude of objects. Because of the limited capacity of the visual system, objects compete for neural representation and cognitive processing resources. Previous work has shown that such attentional competition is partly object based, such that competition among elements is reduced when these elements perceptually group into an object based on low-level cues. Here, using functional MRI (fMRI) and behavioral measures, we show that the attentional benefit of grouping extends to higher-level grouping based on the relative position of objects as experienced in the real world. An fMRI study designed to measure competitive interactions among objects in human visual cortex revealed reduced neural competition between objects when these were presented in commonly experienced configurations, such as a lamp above a table, relative to the same objects presented in other configurations. In behavioral visual search studies, we then related this reduced neural competition to improved target detection when distracter objects were shown in regular configurations. Control studies showed that low-level grouping could not account for these results. We interpret these findings as reflecting the grouping of objects based on higher-level spatial-relational knowledge acquired through a lifetime of seeing objects in specific configurations. This interobject grouping effectively reduces the number of objects that compete for representation and thereby contributes to the efficiency of real-world perception. PMID:25024190

  1. Dispersive estimates for massive Dirac operators in dimension two

    NASA Astrophysics Data System (ADS)

    Erdoğan, M. Burak; Green, William R.; Toprak, Ebru

    2018-05-01

    We study the massive two dimensional Dirac operator with an electric potential. In particular, we show that the t-1 decay rate holds in the L1 →L∞ setting if the threshold energies are regular. We also show these bounds hold in the presence of s-wave resonances at the threshold. We further show that, if the threshold energies are regular then a faster decay rate of t-1(log ⁡ t) - 2 is attained for large t, at the cost of logarithmic spatial weights. The free Dirac equation does not satisfy this bound due to the s-wave resonances at the threshold energies.

  2. Minimum Fisher regularization of image reconstruction for infrared imaging bolometer on HL-2A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, J. M.; Liu, Y.; Li, W.

    2013-09-15

    An infrared imaging bolometer diagnostic has been developed recently for the HL-2A tokamak to measure the temporal and spatial distribution of plasma radiation. The three-dimensional tomography, reduced to a two-dimensional problem by the assumption of plasma radiation toroidal symmetry, has been performed. A three-dimensional geometry matrix is calculated with the one-dimensional pencil beam approximation. The solid angles viewed by the detector elements are taken into account in defining the chord brightness. And the local plasma emission is obtained by inverting the measured brightness with the minimum Fisher regularization method. A typical HL-2A plasma radiation model was chosen to optimize amore » regularization parameter on the criterion of generalized cross validation. Finally, this method was applied to HL-2A experiments, demonstrating the plasma radiated power density distribution in limiter and divertor discharges.« less

  3. Increasing Accuracy of Tissue Shear Modulus Reconstruction Using Ultrasonic Strain Tensor Measurement

    NASA Astrophysics Data System (ADS)

    Sumi, C.

    Previously, we developed three displacement vector measurement methods, i.e., the multidimensional cross-spectrum phase gradient method (MCSPGM), the multidimensional autocorrelation method (MAM), and the multidimensional Doppler method (MDM). To increase the accuracies and stabilities of lateral and elevational displacement measurements, we also developed spatially variant, displacement component-dependent regularization. In particular, the regularization of only the lateral/elevational displacements is advantageous for the lateral unmodulated case. The demonstrated measurements of the displacement vector distributions in experiments using an inhomogeneous shear modulus agar phantom confirm that displacement-component-dependent regularization enables more stable shear modulus reconstruction. In this report, we also review our developed lateral modulation methods that use Parabolic functions, Hanning windows, and Gaussian functions in the apodization function and the optimized apodization function that realizes the designed point spread function (PSF). The modulations significantly increase the accuracy of the strain tensor measurement and shear modulus reconstruction (demonstrated using an agar phantom).

  4. Dimensional regularization of the IR divergences in the Fokker action of point-particle binaries at the fourth post-Newtonian order

    NASA Astrophysics Data System (ADS)

    Bernard, Laura; Blanchet, Luc; Bohé, Alejandro; Faye, Guillaume; Marsat, Sylvain

    2017-11-01

    The Fokker action of point-particle binaries at the fourth post-Newtonian (4PN) approximation of general relativity has been determined previously. However two ambiguity parameters associated with infrared (IR) divergencies of spatial integrals had to be introduced. These two parameters were fixed by comparison with gravitational self-force (GSF) calculations of the conserved energy and periastron advance for circular orbits in the test-mass limit. In the present paper together with a companion paper, we determine both these ambiguities from first principle, by means of dimensional regularization. Our computation is thus entirely defined within the dimensional regularization scheme, for treating at once the IR and ultra-violet (UV) divergencies. In particular, we obtain crucial contributions coming from the Einstein-Hilbert part of the action and from the nonlocal tail term in arbitrary dimensions, which resolve the ambiguities.

  5. Power-law regularities in human language

    NASA Astrophysics Data System (ADS)

    Mehri, Ali; Lashkari, Sahar Mohammadpour

    2016-11-01

    Complex structure of human language enables us to exchange very complicated information. This communication system obeys some common nonlinear statistical regularities. We investigate four important long-range features of human language. We perform our calculations for adopted works of seven famous litterateurs. Zipf's law and Heaps' law, which imply well-known power-law behaviors, are established in human language, showing a qualitative inverse relation with each other. Furthermore, the informational content associated with the words ordering, is measured by using an entropic metric. We also calculate fractal dimension of words in the text by using box counting method. The fractal dimension of each word, that is a positive value less than or equal to one, exhibits its spatial distribution in the text. Generally, we can claim that the Human language follows the mentioned power-law regularities. Power-law relations imply the existence of long-range correlations between the word types, to convey an especial idea.

  6. How is spatial context learning integrated over signal versus noise? A primacy effect in contextual cueing.

    PubMed

    Jungé, Justin A; Scholl, Brian J; Chun, Marvin M

    2007-01-01

    Over repeated exposure to particular visual search displays, subjects are able to implicitly extract regularities that then make search more efficient-a phenomenon known as contextual cueing. Here we explore how the learning involved in contextual cueing is formed, maintained, and updated over experience. During an initial training phase, a group of signal first subjects searched through a series of predictive displays (where distractor locations were perfectly correlated with the target location), followed with no overt break by a series of unpredictive displays (where repeated contexts were uncorrelated with target locations). A second noise first group of subjects encountered the unpredictive displays followed by the predictive displays. Despite the fact that both groups had the same overall exposure to signal and noise, only the signal first group demonstrated subsequent contextual cueing. This primacy effect indicates that initial experience can result in hypotheses about regularities in displays-or the lack thereof-which then become resistant to updating. The absence of regularities in early stages of training even blocked observers from learning predictive regularities later on.

  7. Collective dynamics of 'small-world' networks.

    PubMed

    Watts, D J; Strogatz, S H

    1998-06-04

    Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.

  8. How is spatial context learning integrated over signal versus noise? A primacy effect in contextual cueing

    PubMed Central

    Jungé, Justin A.; Scholl, Brian J.; Chun, Marvin M.

    2008-01-01

    Over repeated exposure to particular visual search displays, subjects are able to implicitly extract regularities that then make search more efficient—a phenomenon known as contextual cueing. Here we explore how the learning involved in contextual cueing is formed, maintained, and updated over experience. During an initial training phase, a group of signal first subjects searched through a series of predictive displays (where distractor locations were perfectly correlated with the target location), followed with no overt break by a series of unpredictive displays (where repeated contexts were uncorrelated with target locations). A second noise first group of subjects encountered the unpredictive displays followed by the predictive displays. Despite the fact that both groups had the same overall exposure to signal and noise, only the signal first group demonstrated subsequent contextual cueing. This primacy effect indicates that initial experience can result in hypotheses about regularities in displays—or the lack thereof—which then become resistant to updating. The absence of regularities in early stages of training even blocked observers from learning predictive regularities later on. PMID:18725966

  9. Evaluation of autonomous recording units for detecting 3 species of secretive marsh birds

    USGS Publications Warehouse

    Sidie-Slettehahl, Anna M.; Jensen, Kent C.; Johnson, Rex R.; Arnold, Todd W.; Austin, Jane; Stafford, Joshua D.

    2015-01-01

    Population status and habitat use of yellow rails (Coturnicops noveboracensis), Nelson's sparrows (Ammodramus nelsoni), and Le Conte's sparrows (A. leconteii) are poorly known, so standardized surveys of these species are needed to inform conservation planning and management. A protocol for monitoring secretive marsh birds exists; however, these species regularly call at night and may be missed during early morning surveys. We tested the effectiveness of autonomous recording units (hereafter, recording units) to survey these species by analyzing recorded vocalizations using bioacoustics software. We deployed 22 recording units at 54 sites in northern Minnesota and eastern North Dakota, USA, and conducted traditional broadcast surveys during May–June, 2010 and 2011. We compared detection probabilities between recording units and standard monitoring protocols using robust-design occupancy models. On average, recording units detected 0.59 (SE = 0.11) fewer Le Conte's sparrows, 0.76 (SE = 0.15) fewer Nelson's sparrows, and 1.01 (SE = 0.14) fewer yellow rails per survey than were detected using the standard protocol. Detection probabilities using the standard protocol averaged 0.95 (yellow rail; 95% CI = 0.86–0.98), 0.93 (Le Conte's sparrow; 95% CI = 0.78–0.98), and 0.89 (Nelson's sparrow; 95% CI = 0.56–0.98), but averaged 0.71 (yellow rail; 95% CI = 0.56–0.83), 0.61 (Le Conte's sparrow; 95% CI = 0.42–0.78), and 0.51 (Nelson's sparrow; 95% CI = 0.19–0.82) using recording units. Reduced detection by recording units was likely due to the ability of human listeners to identify birds calling at greater distances. Recording units may be effective for surveying nocturnal secretive marsh birds if investigators correct for differential detectability. Reduced detectability may be outweighed by the increased spatial and temporal coverage feasible with recording units.

  10. Spatial early warning signals in a lake manipulation

    USGS Publications Warehouse

    Butitta, Vince L.; Carpenter, Stephen R.; Loken, Luke; Pace, Michael L.; Stanley, Emily H.

    2017-01-01

    Rapid changes in state have been documented for many of Earth's ecosystems. Despite a growing toolbox of methods for detecting declining resilience or early warning indicators (EWIs) of ecosystem transitions, these methods have rarely been evaluated in whole-ecosystem trials using reference ecosystems. In this study, we experimentally tested EWIs of cyanobacteria blooms based on changes in the spatial structure of a lake. We induced a cyanobacteria bloom by adding nutrients to an experimental lake and mapped fine-resolution spatial patterning of cyanobacteria using a mobile sensor platform. Prior to the bloom, we detected theoretically predicted spatial EWIs based on variance and spatial autocorrelation, as well as a new index based on the extreme values. Changes in EWIs were not discernible in an unenriched reference lake. Despite the fluid environment of a lake where spatial heterogeneity driven by biological processes may be overwhelmed by physical mixing, spatial EWIs detected an approaching bloom suggesting the utility of spatial metrics for signaling ecological thresholds.

  11. A combined use of multispectral and SAR images for ship detection and characterization through object based image analysis

    NASA Astrophysics Data System (ADS)

    Aiello, Martina; Gianinetto, Marco

    2017-10-01

    Marine routes represent a huge portion of commercial and human trades, therefore surveillance, security and environmental protection themes are gaining increasing importance. Being able to overcome the limits imposed by terrestrial means of monitoring, ship detection from satellite has recently prompted a renewed interest for a continuous monitoring of illegal activities. This paper describes an automatic Object Based Image Analysis (OBIA) approach to detect vessels made of different materials in various sea environments. The combined use of multispectral and SAR images allows for a regular observation unrestricted by lighting and atmospheric conditions and complementarity in terms of geographic coverage and geometric detail. The method developed adopts a region growing algorithm to segment the image in homogeneous objects, which are then classified through a decision tree algorithm based on spectral and geometrical properties. Then, a spatial analysis retrieves the vessels' position, length and heading parameters and a speed range is associated. Optimization of the image processing chain is performed by selecting image tiles through a statistical index. Vessel candidates are detected over amplitude SAR images using an adaptive threshold Constant False Alarm Rate (CFAR) algorithm prior the object based analysis. Validation is carried out by comparing the retrieved parameters with the information provided by the Automatic Identification System (AIS), when available, or with manual measurement when AIS data are not available. The estimation of length shows R2=0.85 and estimation of heading R2=0.92, computed as the average of R2 values obtained for both optical and radar images.

  12. The costs of evaluating species densities and composition of snakes to assess development impacts in amazonia.

    PubMed

    Fraga, Rafael de; Stow, Adam J; Magnusson, William E; Lima, Albertina P

    2014-01-01

    Studies leading to decision-making for environmental licensing often fail to provide accurate estimates of diversity. Measures of snake diversity are regularly obtained to assess development impacts in the rainforests of the Amazon Basin, but this taxonomic group may be subject to poor detection probabilities. Recently, the Brazilian government tried to standardize sampling designs by the implementation of a system (RAPELD) to quantify biological diversity using spatially-standardized sampling units. Consistency in sampling design allows the detection probabilities to be compared among taxa, and sampling effort and associated cost to be evaluated. The cost effectiveness of detecting snakes has received no attention in Amazonia. Here we tested the effects of reducing sampling effort on estimates of species densities and assemblage composition. We identified snakes in seven plot systems, each standardised with 14 plots. The 250 m long centre line of each plot followed an altitudinal contour. Surveys were repeated four times in each plot and detection probabilities were estimated for the 41 species encountered. Reducing the number of observations, or the size of the sampling modules, caused significant loss of information on species densities and local patterns of variation in assemblage composition. We estimated the cost to find a snake as $ 120 U.S., but general linear models indicated the possibility of identifying differences in assemblage composition for half the overall survey costs. Decisions to reduce sampling effort depend on the importance of lost information to target-issues, and may not be the preferred option if there is the potential for identifying individual snake species requiring specific conservation actions. However, in most studies of human disturbance on species assemblages, it is likely to be more cost-effective to focus on other groups of organisms with higher detection probabilities.

  13. The Costs of Evaluating Species Densities and Composition of Snakes to Assess Development Impacts in Amazonia

    PubMed Central

    de Fraga, Rafael; Stow, Adam J.; Magnusson, William E.; Lima, Albertina P.

    2014-01-01

    Studies leading to decision-making for environmental licensing often fail to provide accurate estimates of diversity. Measures of snake diversity are regularly obtained to assess development impacts in the rainforests of the Amazon Basin, but this taxonomic group may be subject to poor detection probabilities. Recently, the Brazilian government tried to standardize sampling designs by the implementation of a system (RAPELD) to quantify biological diversity using spatially-standardized sampling units. Consistency in sampling design allows the detection probabilities to be compared among taxa, and sampling effort and associated cost to be evaluated. The cost effectiveness of detecting snakes has received no attention in Amazonia. Here we tested the effects of reducing sampling effort on estimates of species densities and assemblage composition. We identified snakes in seven plot systems, each standardised with 14 plots. The 250 m long centre line of each plot followed an altitudinal contour. Surveys were repeated four times in each plot and detection probabilities were estimated for the 41 species encountered. Reducing the number of observations, or the size of the sampling modules, caused significant loss of information on species densities and local patterns of variation in assemblage composition. We estimated the cost to find a snake as $ 120 U.S., but general linear models indicated the possibility of identifying differences in assemblage composition for half the overall survey costs. Decisions to reduce sampling effort depend on the importance of lost information to target-issues, and may not be the preferred option if there is the potential for identifying individual snake species requiring specific conservation actions. However, in most studies of human disturbance on species assemblages, it is likely to be more cost-effective to focus on other groups of organisms with higher detection probabilities. PMID:25147930

  14. Spatial cluster detection using dynamic programming.

    PubMed

    Sverchkov, Yuriy; Jiang, Xia; Cooper, Gregory F

    2012-03-25

    The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm.

  15. Spatial cluster detection using dynamic programming

    PubMed Central

    2012-01-01

    Background The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. Methods We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. Results When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. Conclusions We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm. PMID:22443103

  16. Community detection enhancement using non-negative matrix factorization with graph regularization

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Wei, Yi-Ming; Wang, Jian; Wang, Wen-Jun; He, Dong-Xiao; Song, Zhan-Jie

    2016-06-01

    Community detection is a meaningful task in the analysis of complex networks, which has received great concern in various domains. A plethora of exhaustive studies has made great effort and proposed many methods on community detection. Particularly, a kind of attractive one is the two-step method which first makes a preprocessing for the network and then identifies its communities. However, not all types of methods can achieve satisfactory results by using such preprocessing strategy, such as the non-negative matrix factorization (NMF) methods. In this paper, rather than using the above two-step method as most works did, we propose a graph regularized-based model to improve, specialized, the NMF-based methods for the detection of communities, namely NMFGR. In NMFGR, we introduce the similarity metric which contains both the global and local information of networks, to reflect the relationships between two nodes, so as to improve the accuracy of community detection. Experimental results on both artificial and real-world networks demonstrate the superior performance of NMFGR to some competing methods.

  17. Probabilistic Downscaling of Remote Sensing Data with Applications for Multi-Scale Biogeochemical Flux Modeling.

    PubMed

    Stoy, Paul C; Quaife, Tristan

    2015-01-01

    Upscaling ecological information to larger scales in space and downscaling remote sensing observations or model simulations to finer scales remain grand challenges in Earth system science. Downscaling often involves inferring subgrid information from coarse-scale data, and such ill-posed problems are classically addressed using regularization. Here, we apply two-dimensional Tikhonov Regularization (2DTR) to simulate subgrid surface patterns for ecological applications. Specifically, we test the ability of 2DTR to simulate the spatial statistics of high-resolution (4 m) remote sensing observations of the normalized difference vegetation index (NDVI) in a tundra landscape. We find that the 2DTR approach as applied here can capture the major mode of spatial variability of the high-resolution information, but not multiple modes of spatial variability, and that the Lagrange multiplier (γ) used to impose the condition of smoothness across space is related to the range of the experimental semivariogram. We used observed and 2DTR-simulated maps of NDVI to estimate landscape-level leaf area index (LAI) and gross primary productivity (GPP). NDVI maps simulated using a γ value that approximates the range of observed NDVI result in a landscape-level GPP estimate that differs by ca 2% from those created using observed NDVI. Following findings that GPP per unit LAI is lower near vegetation patch edges, we simulated vegetation patch edges using multiple approaches and found that simulated GPP declined by up to 12% as a result. 2DTR can generate random landscapes rapidly and can be applied to disaggregate ecological information and compare of spatial observations against simulated landscapes.

  18. Probabilistic Downscaling of Remote Sensing Data with Applications for Multi-Scale Biogeochemical Flux Modeling

    PubMed Central

    Stoy, Paul C.; Quaife, Tristan

    2015-01-01

    Upscaling ecological information to larger scales in space and downscaling remote sensing observations or model simulations to finer scales remain grand challenges in Earth system science. Downscaling often involves inferring subgrid information from coarse-scale data, and such ill-posed problems are classically addressed using regularization. Here, we apply two-dimensional Tikhonov Regularization (2DTR) to simulate subgrid surface patterns for ecological applications. Specifically, we test the ability of 2DTR to simulate the spatial statistics of high-resolution (4 m) remote sensing observations of the normalized difference vegetation index (NDVI) in a tundra landscape. We find that the 2DTR approach as applied here can capture the major mode of spatial variability of the high-resolution information, but not multiple modes of spatial variability, and that the Lagrange multiplier (γ) used to impose the condition of smoothness across space is related to the range of the experimental semivariogram. We used observed and 2DTR-simulated maps of NDVI to estimate landscape-level leaf area index (LAI) and gross primary productivity (GPP). NDVI maps simulated using a γ value that approximates the range of observed NDVI result in a landscape-level GPP estimate that differs by ca 2% from those created using observed NDVI. Following findings that GPP per unit LAI is lower near vegetation patch edges, we simulated vegetation patch edges using multiple approaches and found that simulated GPP declined by up to 12% as a result. 2DTR can generate random landscapes rapidly and can be applied to disaggregate ecological information and compare of spatial observations against simulated landscapes. PMID:26067835

  19. Statistical analyses of the results of 25 years of beach litter surveys on the south-eastern North Sea coast.

    PubMed

    Schulz, Marcus; Clemens, Thomas; Förster, Harald; Harder, Thorsten; Fleet, David; Gaus, Silvia; Grave, Christel; Flegel, Imme; Schrey, Eckart; Hartwig, Eike

    2015-08-01

    In the North Sea, the amount of litter present in the marine environment represents a severe environmental problem. In order to assess the magnitude of the problem and measure changes in abundance, the results of two beach litter monitoring programmes were compared and analysed for long-term trends applying multivariate techniques. Total beach litter pollution was persistently high. Spatial differences in litter abundance made it difficult to identify long-term trends: Partly more than 8000 litter items year(-1) were recorded on a 100 m long survey site on the island of Scharhörn, while the survey site on the beach on the island of Amrum revealed abundances lower by two orders of magnitude. Beach litter was dominated by plastic with mean proportions of 52%-91% of total beach litter. Non-parametric time series analyses detected many significant trends, which, however, did not show any systematic spatial patterns. Cluster analyses partly led to groupings of beaches according to their expositions to sources of litter, wind and currents. Surveys in short intervals of one to two weeks were found to give higher annual sums of beach litter than the quarterly surveys of the OSPAR method. Surveys at regular intervals of four weeks to five months would make monitoring results more reliable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Investigation of water imbibition in porous stone by thermal neutron radiography

    NASA Astrophysics Data System (ADS)

    Hassanein, R.; Meyer, H. O.; Carminati, A.; Estermann, M.; Lehmann, E.; Vontobel, P.

    2006-10-01

    The understanding and modelling of the process of water imbibition is important for various applications of physics (e.g. building or soil physics). To measure the spatial distribution of the water content at arbitrary times is not trivial. Neutron radiography provides an appropriate tool for such investigations with excellent time and spatial resolution. Because of the high sensitivity to hydrogen, even small amounts of water in a porous structure can be detected in samples with dimensions up to 40 cm. Three different porous stones found in Indiana, USA, have been investigated (Mansfield sandstone, Salem limestone and Hindustan whetstone). The imbibition of deionized water and a NaCl solution in up- and downwards directions has been tracked during several hours and radiographed at regular intervals. A correction method to reduce the disturbing effects due to neutron scattering is applied. This allows a quantitative evaluation of the water content in addition to the visualization of the water distribution. The results agree well with theoretical models describing water infiltration and reproduce the water content with a pixel resolution of 272 µm in time steps of 1 min. The comparison with the radiographed structure of the dry stone explains variations in the conduction or retention of the water, respectively. The experimental and correction procedures described here can be applied to other porous media and their uptake and loss of fluids.

  1. Single photon detection imaging of Cherenkov light emitted during radiation therapy

    NASA Astrophysics Data System (ADS)

    Adamson, Philip M.; Andreozzi, Jacqueline M.; LaRochelle, Ethan; Gladstone, David J.; Pogue, Brian W.

    2018-03-01

    Cherenkov imaging during radiation therapy has been developed as a tool for dosimetry, which could have applications in patient delivery verification or in regular quality audit. The cameras used are intensified imaging sensors, either ICCD or ICMOS cameras, which allow important features of imaging, including: (1) nanosecond time gating, (2) amplification by 103-104, which together allow for imaging which has (1) real time capture at 10-30 frames per second, (2) sensitivity at the level of single photon event level, and (3) ability to suppress background light from the ambient room. However, the capability to achieve single photon imaging has not been fully analyzed to date, and as such was the focus of this study. The ability to quantitatively characterize how a single photon event appears in amplified camera imaging from the Cherenkov images was analyzed with image processing. The signal seen at normal gain levels appears to be a blur of about 90 counts in the CCD detector, after going through the chain of photocathode detection, amplification through a microchannel plate PMT, excitation onto a phosphor screen and then imaged on the CCD. The analysis of single photon events requires careful interpretation of the fixed pattern noise, statistical quantum noise distributions, and the spatial spread of each pulse through the ICCD.

  2. Improving signal to noise in labeled biological specimens using energy-filtered TEM of sections with a drift correction strategy and a direct detection device.

    PubMed

    Ramachandra, Ranjan; Bouwer, James C; Mackey, Mason R; Bushong, Eric; Peltier, Steven T; Xuong, Nguyen-Huu; Ellisman, Mark H

    2014-06-01

    Energy filtered transmission electron microscopy techniques are regularly used to build elemental maps of spatially distributed nanoparticles in materials and biological specimens. When working with thick biological sections, electron energy loss spectroscopy techniques involving core-loss electrons often require exposures exceeding several minutes to provide sufficient signal to noise. Image quality with these long exposures is often compromised by specimen drift, which results in blurring and reduced resolution. To mitigate drift artifacts, a series of short exposure images can be acquired, aligned, and merged to form a single image. For samples where the target elements have extremely low signal yields, the use of charge coupled device (CCD)-based detectors for this purpose can be problematic. At short acquisition times, the images produced by CCDs can be noisy and may contain fixed pattern artifacts that impact subsequent correlative alignment. Here we report on the use of direct electron detection devices (DDD's) to increase the signal to noise as compared with CCD's. A 3× improvement in signal is reported with a DDD versus a comparably formatted CCD, with equivalent dose on each detector. With the fast rolling-readout design of the DDD, the duty cycle provides a major benefit, as there is no dead time between successive frames.

  3. Detecting chaos, determining the dimensions of tori and predicting slow diffusion in Fermi-Pasta-Ulam lattices by the Generalized Alignment Index method

    NASA Astrophysics Data System (ADS)

    Skokos, C.; Bountis, T.; Antonopoulos, C.

    2008-12-01

    The recently introduced GALI method is used for rapidly detecting chaos, determining the dimensionality of regular motion and predicting slow diffusion in multi-dimensional Hamiltonian systems. We propose an efficient computation of the GALIk indices, which represent volume elements of k randomly chosen deviation vectors from a given orbit, based on the Singular Value Decomposition (SVD) algorithm. We obtain theoretically and verify numerically asymptotic estimates of GALIs long-time behavior in the case of regular orbits lying on low-dimensional tori. The GALIk indices are applied to rapidly detect chaotic oscillations, identify low-dimensional tori of Fermi-Pasta-Ulam (FPU) lattices at low energies and predict weak diffusion away from quasiperiodic motion, long before it is actually observed in the oscillations.

  4. Implementation of 3D spatial indexing and compression in a large-scale molecular dynamics simulation database for rapid atomic contact detection.

    PubMed

    Toofanny, Rudesh D; Simms, Andrew M; Beck, David A C; Daggett, Valerie

    2011-08-10

    Molecular dynamics (MD) simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as a function of time. Taken in context with experimental data, atomic interactions from simulation provide insight into the mechanics of protein folding, dynamics, and function. The calculation of atomic interactions or contacts from an MD trajectory is computationally demanding and the work required grows exponentially with the size of the simulation system. We describe the implementation of a spatial indexing algorithm in our multi-terabyte MD simulation database that significantly reduces the run-time required for discovery of contacts. The approach is applied to the Dynameomics project data. Spatial indexing, also known as spatial hashing, is a method that divides the simulation space into regular sized bins and attributes an index to each bin. Since, the calculation of contacts is widely employed in the simulation field, we also use this as the basis for testing compression of data tables. We investigate the effects of compression of the trajectory coordinate tables with different options of data and index compression within MS SQL SERVER 2008. Our implementation of spatial indexing speeds up the calculation of contacts over a 1 nanosecond (ns) simulation window by between 14% and 90% (i.e., 1.2 and 10.3 times faster). For a 'full' simulation trajectory (51 ns) spatial indexing reduces the calculation run-time between 31 and 81% (between 1.4 and 5.3 times faster). Compression resulted in reduced table sizes but resulted in no significant difference in the total execution time for neighbour discovery. The greatest compression (~36%) was achieved using page level compression on both the data and indexes. The spatial indexing scheme significantly decreases the time taken to calculate atomic contacts and could be applied to other multidimensional neighbor discovery problems. The speed up enables on-the-fly calculation and visualization of contacts and rapid cross simulation analysis for knowledge discovery. Using page compression for the atomic coordinate tables and indexes saves ~36% of disk space without any significant decrease in calculation time and should be considered for other non-transactional databases in MS SQL SERVER 2008.

  5. Implementation of 3D spatial indexing and compression in a large-scale molecular dynamics simulation database for rapid atomic contact detection

    PubMed Central

    2011-01-01

    Background Molecular dynamics (MD) simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as a function of time. Taken in context with experimental data, atomic interactions from simulation provide insight into the mechanics of protein folding, dynamics, and function. The calculation of atomic interactions or contacts from an MD trajectory is computationally demanding and the work required grows exponentially with the size of the simulation system. We describe the implementation of a spatial indexing algorithm in our multi-terabyte MD simulation database that significantly reduces the run-time required for discovery of contacts. The approach is applied to the Dynameomics project data. Spatial indexing, also known as spatial hashing, is a method that divides the simulation space into regular sized bins and attributes an index to each bin. Since, the calculation of contacts is widely employed in the simulation field, we also use this as the basis for testing compression of data tables. We investigate the effects of compression of the trajectory coordinate tables with different options of data and index compression within MS SQL SERVER 2008. Results Our implementation of spatial indexing speeds up the calculation of contacts over a 1 nanosecond (ns) simulation window by between 14% and 90% (i.e., 1.2 and 10.3 times faster). For a 'full' simulation trajectory (51 ns) spatial indexing reduces the calculation run-time between 31 and 81% (between 1.4 and 5.3 times faster). Compression resulted in reduced table sizes but resulted in no significant difference in the total execution time for neighbour discovery. The greatest compression (~36%) was achieved using page level compression on both the data and indexes. Conclusions The spatial indexing scheme significantly decreases the time taken to calculate atomic contacts and could be applied to other multidimensional neighbor discovery problems. The speed up enables on-the-fly calculation and visualization of contacts and rapid cross simulation analysis for knowledge discovery. Using page compression for the atomic coordinate tables and indexes saves ~36% of disk space without any significant decrease in calculation time and should be considered for other non-transactional databases in MS SQL SERVER 2008. PMID:21831299

  6. Static sampling of dynamic processes - a paradox?

    NASA Astrophysics Data System (ADS)

    Mälicke, Mirko; Neuper, Malte; Jackisch, Conrad; Hassler, Sibylle; Zehe, Erwin

    2017-04-01

    Environmental systems monitoring aims at its core at the detection of spatio-temporal patterns of processes and system states, which is a pre-requisite for understanding and explaining their baffling heterogeneity. Most observation networks rely on distributed point sampling of states and fluxes of interest, which is combined with proxy-variables from either remote sensing or near surface geophysics. The cardinal question on the appropriate experimental design of such a monitoring network has up to now been answered in many different ways. Suggested approaches range from sampling in a dense regular grid using for the so-called green machine, transects along typical catenas, clustering of several observations sensors in presumed functional units or HRUs, arrangements of those cluster along presumed lateral flow paths to last not least a nested, randomized stratified arrangement of sensors or samples. Common to all these approaches is that they provide a rather static spatial sampling, while state variables and their spatial covariance structure dynamically change in time. It is hence of key interest how much of our still incomplete understanding stems from inappropriate sampling and how much needs to be attributed to an inappropriate analysis of spatial data sets. We suggest that it is much more promising to analyze the spatial variability of processes, for instance changes in soil moisture values, than to investigate the spatial variability of soil moisture states themselves. This is because wetting of the soil, reflected in a soil moisture increase, is causes by a totally different meteorological driver - rainfall - than drying of the soil. We hence propose that the rising and the falling limbs of soil moisture time series belong essentially to different ensembles, as they are influenced by different drivers. Positive and negative temporal changes in soil moisture need, hence, to be analyzed separately. We test this idea using the CAOS data set as a benchmark. Specifically, we expect the covariance structure of the positive temporal changes of soil moisture to be dominated by the spatial structure of rain- and through-fall and saturated hydraulic conductivity. The covariance in temporarily decreasing soil moisture during radiation driven conditions is expect to be dominated by the spatial structure of retention properties and plant transpiration. An analysis of soil moisture changes has furthermore the advantage that those are free from systematic measurement errors.

  7. Fast learning of simple perceptual discriminations reduces brain activation in working memory and in high-level auditory regions.

    PubMed

    Daikhin, Luba; Ahissar, Merav

    2015-07-01

    Introducing simple stimulus regularities facilitates learning of both simple and complex tasks. This facilitation may reflect an implicit change in the strategies used to solve the task when successful predictions regarding incoming stimuli can be formed. We studied the modifications in brain activity associated with fast perceptual learning based on regularity detection. We administered a two-tone frequency discrimination task and measured brain activation (fMRI) under two conditions: with and without a repeated reference tone. Although participants could not explicitly tell the difference between these two conditions, the introduced regularity affected both performance and the pattern of brain activation. The "No-Reference" condition induced a larger activation in frontoparietal areas known to be part of the working memory network. However, only the condition with a reference showed fast learning, which was accompanied by a reduction of activity in two regions: the left intraparietal area, involved in stimulus retention, and the posterior superior-temporal area, involved in representing auditory regularities. We propose that this joint reduction reflects a reduction in the need for online storage of the compared tones. We further suggest that this change reflects an implicit strategic shift "backwards" from reliance mainly on working memory networks in the "No-Reference" condition to increased reliance on detected regularities stored in high-level auditory networks.

  8. FIND: difFerential chromatin INteractions Detection using a spatial Poisson process

    PubMed Central

    Chen, Yang; Zhang, Michael Q.

    2018-01-01

    Polymer-based simulations and experimental studies indicate the existence of a spatial dependency between the adjacent DNA fibers involved in the formation of chromatin loops. However, the existing strategies for detecting differential chromatin interactions assume that the interacting segments are spatially independent from the other segments nearby. To resolve this issue, we developed a new computational method, FIND, which considers the local spatial dependency between interacting loci. FIND uses a spatial Poisson process to detect differential chromatin interactions that show a significant difference in their interaction frequency and the interaction frequency of their neighbors. Simulation and biological data analysis show that FIND outperforms the widely used count-based methods and has a better signal-to-noise ratio. PMID:29440282

  9. Efficient operator splitting algorithm for joint sparsity-regularized SPIRiT-based parallel MR imaging reconstruction.

    PubMed

    Duan, Jizhong; Liu, Yu; Jing, Peiguang

    2018-02-01

    Self-consistent parallel imaging (SPIRiT) is an auto-calibrating model for the reconstruction of parallel magnetic resonance imaging, which can be formulated as a regularized SPIRiT problem. The Projection Over Convex Sets (POCS) method was used to solve the formulated regularized SPIRiT problem. However, the quality of the reconstructed image still needs to be improved. Though methods such as NonLinear Conjugate Gradients (NLCG) can achieve higher spatial resolution, these methods always demand very complex computation and converge slowly. In this paper, we propose a new algorithm to solve the formulated Cartesian SPIRiT problem with the JTV and JL1 regularization terms. The proposed algorithm uses the operator splitting (OS) technique to decompose the problem into a gradient problem and a denoising problem with two regularization terms, which is solved by our proposed split Bregman based denoising algorithm, and adopts the Barzilai and Borwein method to update step size. Simulation experiments on two in vivo data sets demonstrate that the proposed algorithm is 1.3 times faster than ADMM for datasets with 8 channels. Especially, our proposal is 2 times faster than ADMM for the dataset with 32 channels. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Dynamic experiment design regularization approach to adaptive imaging with array radar/SAR sensor systems.

    PubMed

    Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart

    2011-01-01

    We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the "model-free" variational analysis (VA)-based image enhancement approach and the "model-based" descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations.

  11. Advances in Spectral-Spatial Classification of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Fauvel, Mathieu; Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.

    2012-01-01

    Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation, and contrast of the spatial structures present in the image. Then, the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines (SVMs) using the available spectral information and the extracted spatial information. Spatial postprocessing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple-classifier (MC) system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral–spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.

  12. Comparison of Bayesian clustering and edge detection methods for inferring boundaries in landscape genetics

    USGS Publications Warehouse

    Safner, T.; Miller, M.P.; McRae, B.H.; Fortin, M.-J.; Manel, S.

    2011-01-01

    Recently, techniques available for identifying clusters of individuals or boundaries between clusters using genetic data from natural populations have expanded rapidly. Consequently, there is a need to evaluate these different techniques. We used spatially-explicit simulation models to compare three spatial Bayesian clustering programs and two edge detection methods. Spatially-structured populations were simulated where a continuous population was subdivided by barriers. We evaluated the ability of each method to correctly identify boundary locations while varying: (i) time after divergence, (ii) strength of isolation by distance, (iii) level of genetic diversity, and (iv) amount of gene flow across barriers. To further evaluate the methods' effectiveness to detect genetic clusters in natural populations, we used previously published data on North American pumas and a European shrub. Our results show that with simulated and empirical data, the Bayesian spatial clustering algorithms outperformed direct edge detection methods. All methods incorrectly detected boundaries in the presence of strong patterns of isolation by distance. Based on this finding, we support the application of Bayesian spatial clustering algorithms for boundary detection in empirical datasets, with necessary tests for the influence of isolation by distance. ?? 2011 by the authors; licensee MDPI, Basel, Switzerland.

  13. Design of thin-film photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Silvestre, E.; Pottage, J. M.; Russell, P. St. J.; Roberts, P. J.

    2000-08-01

    We present numerical designs for single-mode leak-free photonic crystal waveguides exhibiting strongly anisotropic spatial and temporal dispersion. These structures may be produced quite simply by drilling regular arrays of holes into thin films of high refractive index, and permit the realization of highly compact optical elements and wavelength division multiplexing devices.

  14. Spatially multiplexed interferometric microscopy with partially coherent illumination

    NASA Astrophysics Data System (ADS)

    Picazo-Bueno, José Ángel; Zalevsky, Zeev; García, Javier; Ferreira, Carlos; Micó, Vicente

    2016-10-01

    We have recently reported on a simple, low cost, and highly stable way to convert a standard microscope into a holographic one [Opt. Express 22, 14929 (2014)]. The method, named spatially multiplexed interferometric microscopy (SMIM), proposes an off-axis holographic architecture implemented onto a regular (nonholographic) microscope with minimum modifications: the use of coherent illumination and a properly placed and selected one-dimensional diffraction grating. In this contribution, we report on the implementation of partially (temporally reduced) coherent illumination in SMIM as a way to improve quantitative phase imaging. The use of low coherence sources forces the application of phase shifting algorithm instead of off-axis holographic recording to recover the sample's phase information but improves phase reconstruction due to coherence noise reduction. In addition, a less restrictive field of view limitation (1/2) is implemented in comparison with our previously reported scheme (1/3). The proposed modification is experimentally validated in a regular Olympus BX-60 upright microscope considering a wide range of samples (resolution test, microbeads, swine sperm cells, red blood cells, and prostate cancer cells).

  15. Scaling of plane-wave functions in statistically optimized near-field acoustic holography.

    PubMed

    Hald, Jørgen

    2014-11-01

    Statistically Optimized Near-field Acoustic Holography (SONAH) is a Patch Holography method, meaning that it can be applied in cases where the measurement area covers only part of the source surface. The method performs projections directly in the spatial domain, avoiding the use of spatial discrete Fourier transforms and the associated errors. First, an inverse problem is solved using regularization. For each calculation point a multiplication must then be performed with two transfer vectors--one to get the sound pressure and the other to get the particle velocity. Considering SONAH based on sound pressure measurements, existing derivations consider only pressure reconstruction when setting up the inverse problem, so the evanescent wave amplification associated with the calculation of particle velocity is not taken into account in the regularized solution of the inverse problem. The present paper introduces a scaling of the applied plane wave functions that takes the amplification into account, and it is shown that the previously published virtual source-plane retraction has almost the same effect. The effectiveness of the different solutions is verified through a set of simulated measurements.

  16. Detecting regular sound changes in linguistics as events of concerted evolution

    DOE PAGES

    Hruschka, Daniel  J.; Branford, Simon; Smith, Eric  D.; ...

    2014-12-18

    Background: Concerted evolution is normally used to describe parallel changes at different sites in a genome, but it is also observed in languages where a specific phoneme changes to the same other phoneme in many words in the lexicon—a phenomenon known as regular sound change. We develop a general statistical model that can detect concerted changes in aligned sequence data and apply it to study regular sound changes in the Turkic language family. Results: Linguistic evolution, unlike the genetic substitutional process, is dominated by events of concerted evolutionary change. Our model identified more than 70 historical events of regular soundmore » change that occurred throughout the evolution of the Turkic language family, while simultaneously inferring a dated phylogenetic tree. Including regular sound changes yielded an approximately 4-fold improvement in the characterization of linguistic change over a simpler model of sporadic change, improved phylogenetic inference, and returned more reliable and plausible dates for events on the phylogenies. The historical timings of the concerted changes closely follow a Poisson process model, and the sound transition networks derived from our model mirror linguistic expectations. Conclusions: We demonstrate that a model with no prior knowledge of complex concerted or regular changes can nevertheless infer the historical timings and genealogical placements of events of concerted change from the signals left in contemporary data. Our model can be applied wherever discrete elements—such as genes, words, cultural trends, technologies, or morphological traits—can change in parallel within an organism or other evolving group.« less

  17. Detecting regular sound changes in linguistics as events of concerted evolution.

    PubMed

    Hruschka, Daniel J; Branford, Simon; Smith, Eric D; Wilkins, Jon; Meade, Andrew; Pagel, Mark; Bhattacharya, Tanmoy

    2015-01-05

    Concerted evolution is normally used to describe parallel changes at different sites in a genome, but it is also observed in languages where a specific phoneme changes to the same other phoneme in many words in the lexicon—a phenomenon known as regular sound change. We develop a general statistical model that can detect concerted changes in aligned sequence data and apply it to study regular sound changes in the Turkic language family. Linguistic evolution, unlike the genetic substitutional process, is dominated by events of concerted evolutionary change. Our model identified more than 70 historical events of regular sound change that occurred throughout the evolution of the Turkic language family, while simultaneously inferring a dated phylogenetic tree. Including regular sound changes yielded an approximately 4-fold improvement in the characterization of linguistic change over a simpler model of sporadic change, improved phylogenetic inference, and returned more reliable and plausible dates for events on the phylogenies. The historical timings of the concerted changes closely follow a Poisson process model, and the sound transition networks derived from our model mirror linguistic expectations. We demonstrate that a model with no prior knowledge of complex concerted or regular changes can nevertheless infer the historical timings and genealogical placements of events of concerted change from the signals left in contemporary data. Our model can be applied wherever discrete elements—such as genes, words, cultural trends, technologies, or morphological traits—can change in parallel within an organism or other evolving group. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Task-Driven Optimization of Fluence Field and Regularization for Model-Based Iterative Reconstruction in Computed Tomography.

    PubMed

    Gang, Grace J; Siewerdsen, Jeffrey H; Stayman, J Webster

    2017-12-01

    This paper presents a joint optimization of dynamic fluence field modulation (FFM) and regularization in quadratic penalized-likelihood reconstruction that maximizes a task-based imaging performance metric. We adopted a task-driven imaging framework for prospective designs of the imaging parameters. A maxi-min objective function was adopted to maximize the minimum detectability index ( ) throughout the image. The optimization algorithm alternates between FFM (represented by low-dimensional basis functions) and local regularization (including the regularization strength and directional penalty weights). The task-driven approach was compared with three FFM strategies commonly proposed for FBP reconstruction (as well as a task-driven TCM strategy) for a discrimination task in an abdomen phantom. The task-driven FFM assigned more fluence to less attenuating anteroposterior views and yielded approximately constant fluence behind the object. The optimal regularization was almost uniform throughout image. Furthermore, the task-driven FFM strategy redistribute fluence across detector elements in order to prescribe more fluence to the more attenuating central region of the phantom. Compared with all strategies, the task-driven FFM strategy not only improved minimum by at least 17.8%, but yielded higher over a large area inside the object. The optimal FFM was highly dependent on the amount of regularization, indicating the importance of a joint optimization. Sample reconstructions of simulated data generally support the performance estimates based on computed . The improvements in detectability show the potential of the task-driven imaging framework to improve imaging performance at a fixed dose, or, equivalently, to provide a similar level of performance at reduced dose.

  19. Detecting regular sound changes in linguistics as events of concerted evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hruschka, Daniel  J.; Branford, Simon; Smith, Eric  D.

    Background: Concerted evolution is normally used to describe parallel changes at different sites in a genome, but it is also observed in languages where a specific phoneme changes to the same other phoneme in many words in the lexicon—a phenomenon known as regular sound change. We develop a general statistical model that can detect concerted changes in aligned sequence data and apply it to study regular sound changes in the Turkic language family. Results: Linguistic evolution, unlike the genetic substitutional process, is dominated by events of concerted evolutionary change. Our model identified more than 70 historical events of regular soundmore » change that occurred throughout the evolution of the Turkic language family, while simultaneously inferring a dated phylogenetic tree. Including regular sound changes yielded an approximately 4-fold improvement in the characterization of linguistic change over a simpler model of sporadic change, improved phylogenetic inference, and returned more reliable and plausible dates for events on the phylogenies. The historical timings of the concerted changes closely follow a Poisson process model, and the sound transition networks derived from our model mirror linguistic expectations. Conclusions: We demonstrate that a model with no prior knowledge of complex concerted or regular changes can nevertheless infer the historical timings and genealogical placements of events of concerted change from the signals left in contemporary data. Our model can be applied wherever discrete elements—such as genes, words, cultural trends, technologies, or morphological traits—can change in parallel within an organism or other evolving group.« less

  20. Spatial gradient for unique-feature detection in patients with unilateral neglect: evidence from auditory and visual search.

    PubMed

    Eramudugolla, Ranmalee; Mattingley, Jason B

    2008-01-01

    Patients with unilateral spatial neglect following right hemisphere damage are impaired in detecting contralesional targets in both visual and haptic search tasks, and often show a graded improvement in detection performance for more ipsilesional spatial locations. In audition, multiple simultaneous sounds are most effectively perceived if they are distributed along the frequency dimension. Thus, attention to spectro-temporal features alone can allow detection of a target sound amongst multiple simultaneous distracter sounds, regardless of whether these sounds are spatially separated. Spatial bias in attention associated with neglect should not affect auditory search based on spectro-temporal features of a sound target. We report that a right brain damaged patient with neglect demonstrated a significant gradient favouring the ipsilesional side on a visual search task as well as an auditory search task in which the target was a frequency modulated tone amongst steady distractor tones. No such asymmetry was apparent in the auditory search performance of a control patient with a right hemisphere lesion but no neglect. The results suggest that the spatial bias in attention exhibited by neglect patients affects stimulus processing even when spatial information is irrelevant to the task.

  1. Temporal regularization of ultrasound-based liver motion estimation for image-guided radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Shea, Tuathan P., E-mail: tuathan.oshea@icr.ac.uk; Bamber, Jeffrey C.; Harris, Emma J.

    Purpose: Ultrasound-based motion estimation is an expanding subfield of image-guided radiation therapy. Although ultrasound can detect tissue motion that is a fraction of a millimeter, its accuracy is variable. For controlling linear accelerator tracking and gating, ultrasound motion estimates must remain highly accurate throughout the imaging sequence. This study presents a temporal regularization method for correlation-based template matching which aims to improve the accuracy of motion estimates. Methods: Liver ultrasound sequences (15–23 Hz imaging rate, 2.5–5.5 min length) from ten healthy volunteers under free breathing were used. Anatomical features (blood vessels) in each sequence were manually annotated for comparison withmore » normalized cross-correlation based template matching. Five sequences from a Siemens Acuson™ scanner were used for algorithm development (training set). Results from incremental tracking (IT) were compared with a temporal regularization method, which included a highly specific similarity metric and state observer, known as the α–β filter/similarity threshold (ABST). A further five sequences from an Elekta Clarity™ system were used for validation, without alteration of the tracking algorithm (validation set). Results: Overall, the ABST method produced marked improvements in vessel tracking accuracy. For the training set, the mean and 95th percentile (95%) errors (defined as the difference from manual annotations) were 1.6 and 1.4 mm, respectively (compared to 6.2 and 9.1 mm, respectively, for IT). For each sequence, the use of the state observer leads to improvement in the 95% error. For the validation set, the mean and 95% errors for the ABST method were 0.8 and 1.5 mm, respectively. Conclusions: Ultrasound-based motion estimation has potential to monitor liver translation over long time periods with high accuracy. Nonrigid motion (strain) and the quality of the ultrasound data are likely to have an impact on tracking performance. A future study will investigate spatial uniformity of motion and its effect on the motion estimation errors.« less

  2. Unsupervised Spatial Event Detection in Targeted Domains with Applications to Civil Unrest Modeling

    PubMed Central

    Zhao, Liang; Chen, Feng; Dai, Jing; Hua, Ting; Lu, Chang-Tien; Ramakrishnan, Naren

    2014-01-01

    Twitter has become a popular data source as a surrogate for monitoring and detecting events. Targeted domains such as crime, election, and social unrest require the creation of algorithms capable of detecting events pertinent to these domains. Due to the unstructured language, short-length messages, dynamics, and heterogeneity typical of Twitter data streams, it is technically difficult and labor-intensive to develop and maintain supervised learning systems. We present a novel unsupervised approach for detecting spatial events in targeted domains and illustrate this approach using one specific domain, viz. civil unrest modeling. Given a targeted domain, we propose a dynamic query expansion algorithm to iteratively expand domain-related terms, and generate a tweet homogeneous graph. An anomaly identification method is utilized to detect spatial events over this graph by jointly maximizing local modularity and spatial scan statistics. Extensive experiments conducted in 10 Latin American countries demonstrate the effectiveness of the proposed approach. PMID:25350136

  3. 3D undersampled golden-radial phase encoding for DCE-MRA using inherently regularized iterative SENSE.

    PubMed

    Prieto, Claudia; Uribe, Sergio; Razavi, Reza; Atkinson, David; Schaeffter, Tobias

    2010-08-01

    One of the current limitations of dynamic contrast-enhanced MR angiography is the requirement of both high spatial and high temporal resolution. Several undersampling techniques have been proposed to overcome this problem. However, in most of these methods the tradeoff between spatial and temporal resolution is constant for all the time frames and needs to be specified prior to data collection. This is not optimal for dynamic contrast-enhanced MR angiography where the dynamics of the process are difficult to predict and the image quality requirements are changing during the bolus passage. Here, we propose a new highly undersampled approach that allows the retrospective adaptation of the spatial and temporal resolution. The method combines a three-dimensional radial phase encoding trajectory with the golden angle profile order and non-Cartesian Sensitivity Encoding (SENSE) reconstruction. Different regularization images, obtained from the same acquired data, are used to stabilize the non-Cartesian SENSE reconstruction for the different phases of the bolus passage. The feasibility of the proposed method was demonstrated on a numerical phantom and in three-dimensional intracranial dynamic contrast-enhanced MR angiography of healthy volunteers. The acquired data were reconstructed retrospectively with temporal resolutions from 1.2 sec to 8.1 sec, providing a good depiction of small vessels, as well as distinction of different temporal phases.

  4. Detection of radial motion depends on spatial displacement.

    PubMed

    de la Malla, Cristina; López-Moliner, Joan

    2010-06-01

    Nakayama and Tyler (1981) disentangled the use of pure motion (speed) information from spatial displacement information for the detection of lateral motion. They showed that when positional cues were removed the contribution of motion or spatial information was dependent on the temporal frequency: for temporal frequencies lower than 1Hz the mechanism used to detect motion relied on speed information while for higher temporal frequencies a mechanism based on displacement information was used. Here we test whether the same dependency is also revealed in radial motion. In order to do so, we adapted the paradigm previously used by Nakayama and Tyler to obtain detection thresholds for lateral and radial motion by using a 2-IFC procedure. Subjects had to report which of the intervals contained the signal stimulus (33% coherent motion). We replicated the temporal frequency dependency for lateral motion but results indicate, however, that the detection of radial is always consistent with detecting a spatial displacement amplitude. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  5. Regularization of instabilities in gravity theories

    NASA Astrophysics Data System (ADS)

    Ramazanoǧlu, Fethi M.

    2018-01-01

    We investigate instabilities and their regularization in theories of gravitation. Instabilities can be beneficial since their growth often leads to prominent observable signatures, which makes them especially relevant to relatively low signal-to-noise ratio measurements such as gravitational wave detections. An indefinitely growing instability usually renders a theory unphysical; hence, a desirable instability should also come with underlying physical machinery that stops the growth at finite values, i.e., regularization mechanisms. The prototypical gravity theory that presents such an instability is the spontaneous scalarization phenomena of scalar-tensor theories, which feature a tachyonic instability. We identify the regularization mechanisms in this theory and show that they can be utilized to regularize other instabilities as well. Namely, we present theories in which spontaneous growth is triggered by a ghost rather than a tachyon and numerically calculate stationary solutions of scalarized neutron stars in these theories. We speculate on the possibility of regularizing known divergent instabilities in certain gravity theories using our findings and discuss alternative theories of gravitation in which regularized instabilities may be present. Even though we study many specific examples, our main point is the recognition of regularized instabilities as a common theme and unifying mechanism in a vast array of gravity theories.

  6. Efficient Lane Boundary Detection with Spatial-Temporal Knowledge Filtering

    PubMed Central

    Nan, Zhixiong; Wei, Ping; Xu, Linhai; Zheng, Nanning

    2016-01-01

    Lane boundary detection technology has progressed rapidly over the past few decades. However, many challenges that often lead to lane detection unavailability remain to be solved. In this paper, we propose a spatial-temporal knowledge filtering model to detect lane boundaries in videos. To address the challenges of structure variation, large noise and complex illumination, this model incorporates prior spatial-temporal knowledge with lane appearance features to jointly identify lane boundaries. The model first extracts line segments in video frames. Two novel filters—the Crossing Point Filter (CPF) and the Structure Triangle Filter (STF)—are proposed to filter out the noisy line segments. The two filters introduce spatial structure constraints and temporal location constraints into lane detection, which represent the spatial-temporal knowledge about lanes. A straight line or curve model determined by a state machine is used to fit the line segments to finally output the lane boundaries. We collected a challenging realistic traffic scene dataset. The experimental results on this dataset and other standard dataset demonstrate the strength of our method. The proposed method has been successfully applied to our autonomous experimental vehicle. PMID:27529248

  7. Self-similarity in nature

    NASA Astrophysics Data System (ADS)

    Timashev, S. F.

    2000-02-01

    A general phenomenological approach to the analysis of experimental temporal, spatial and energetic series for extracting truly physical non-model parameters ("passport data") is presented, which may be used to characterize and distinguish the evolution as well as the spatial and energetic structure of any open nonlinear dissipative system. This methodology is based on a postulate concerning the crucial information contained in the sequences of non-regularities of the measured dynamic variable (temporal, spatial, energetic). In accordance with this approach, multi-parametric formulas for dynamic variable power spectra as well as for structural functions of different orders are identical for every spatial-temporal-energetic level of the system under consideration. In effect, this entails the introduction of a new kind of self-similarity in Nature. An algorithm has been developed for obtaining as many "passport data" as are necessary for the characterization of a dynamic system. Applications of this approach in the analysis of various experimental series (temporal, spatial, energetic) demonstrate its potential for defining adequate phenomenological parameters of different dynamic processes and structures.

  8. Disruption of hierarchical predictive coding during sleep

    PubMed Central

    Strauss, Melanie; Sitt, Jacobo D.; King, Jean-Remi; Elbaz, Maxime; Azizi, Leila; Buiatti, Marco; Naccache, Lionel; van Wassenhove, Virginie; Dehaene, Stanislas

    2015-01-01

    When presented with an auditory sequence, the brain acts as a predictive-coding device that extracts regularities in the transition probabilities between sounds and detects unexpected deviations from these regularities. Does such prediction require conscious vigilance, or does it continue to unfold automatically in the sleeping brain? The mismatch negativity and P300 components of the auditory event-related potential, reflecting two steps of auditory novelty detection, have been inconsistently observed in the various sleep stages. To clarify whether these steps remain during sleep, we recorded simultaneous electroencephalographic and magnetoencephalographic signals during wakefulness and during sleep in normal subjects listening to a hierarchical auditory paradigm including short-term (local) and long-term (global) regularities. The global response, reflected in the P300, vanished during sleep, in line with the hypothesis that it is a correlate of high-level conscious error detection. The local mismatch response remained across all sleep stages (N1, N2, and REM sleep), but with an incomplete structure; compared with wakefulness, a specific peak reflecting prediction error vanished during sleep. Those results indicate that sleep leaves initial auditory processing and passive sensory response adaptation intact, but specifically disrupts both short-term and long-term auditory predictive coding. PMID:25737555

  9. Oil Spill Map for Indian Sea Region based on Bhuvan- Geographic Information System using Satellite Images

    NASA Astrophysics Data System (ADS)

    Vijaya kumar, L. J.; Kishore, J. K.; Kesava Rao, P.; Annadurai, M.; Dutt, C. B. S.; Hanumantha Rao, K.; Sasamal, S. K.; Arulraj, M.; Prasad, A. V. V.; Kumari, E. V. S. Sita; Satyanarayana, S. N.; Shenoy, H. P.

    2014-11-01

    Oil spills in the ocean are a serious marine disaster that needs regular monitoring for environmental risk assessment and mitigation. Recent use of Polarimetric SAR imagery in near real time oil spill detection systems is associated with attempts towards automatic and unambiguous oil spill detection based on decomposition methods. Such systems integrate remote sensing technology, geo information, communication system, hardware and software systems to provide key information for analysis and decision making. Geographic information systems (GIS) like BHUVAN can significantly contribute to oil spill management based on Synthetic Aperture Radar (SAR) images. India has long coast line from Gujarat to Bengal and hundreds of ports. The increase in shipping also increases the risk of oil spills in our maritime zone. The availability of RISAT-1 SAR images enhances the scope to monitor oil spills and develop GIS on Bhuvan which can be accessed by all the users, such as ships, coast guard, environmentalists etc., The GIS enables realization of oil spill maps based on integration of the geographical, remote sensing, oil & gas production/infrastructure data and slick signatures detected by SAR. SAR and GIS technologies can significantly improve the realization of oil spill footprint distribution maps. Preliminary assessment shows that the Bhuvan promises to be an ideal solution to understand spatial, temporal occurrence of oil spills in the marine atlas of India. The oil spill maps on Bhuvan based GIS facility will help the ONGC and Coast Guard organization.

  10. Detecting spatial regimes in ecosystems

    USGS Publications Warehouse

    Sundstrom, Shana M.; Eason, Tarsha; Nelson, R. John; Angeler, David G.; Barichievy, Chris; Garmestani, Ahjond S.; Graham, Nicholas A.J.; Granholm, Dean; Gunderson, Lance; Knutson, Melinda; Nash, Kirsty L.; Spanbauer, Trisha; Stow, Craig A.; Allen, Craig R.

    2017-01-01

    Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory-based method, on both terrestrial and aquatic animal data (U.S. Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning indicators, conventional ecoregion maps and multivariate analyses such as nMDS and cluster analysis. We successfully detected spatial regimes and transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher information provided explicit spatial information about community change that is absent from other multivariate approaches. Our results suggest that defining spatial regimes based on animal communities may better reflect ecological reality than do traditional ecoregion maps, especially in our current era of rapid and unpredictable ecological change.

  11. Collective behavior in the spatial spreading of obesity

    PubMed Central

    Gallos, Lazaros K.; Barttfeld, Pablo; Havlin, Shlomo; Sigman, Mariano; Makse, Hernán A.

    2012-01-01

    Obesity prevalence is increasing in many countries at alarming levels. A difficulty in the conception of policies to reverse these trends is the identification of the drivers behind the obesity epidemics. Here, we implement a spatial spreading analysis to investigate whether obesity shows spatial correlations, revealing the effect of collective and global factors acting above individual choices. We find a regularity in the spatial fluctuations of their prevalence revealed by a pattern of scale-free long-range correlations. The fluctuations are anomalous, deviating in a fundamental way from the weaker correlations found in the underlying population distribution indicating the presence of collective behavior, i.e., individual habits may have negligible influence in shaping the patterns of spreading. Interestingly, we find the same scale-free correlations in economic activities associated with food production. These results motivate future interventions to investigate the causality of this relation providing guidance for the implementation of preventive health policies. PMID:22822425

  12. Dynamic Analysis and Research on Environmental Pollution in China from 1992 to 2014

    NASA Astrophysics Data System (ADS)

    Sun, Fei; Yuan, Peng; Li, Huiting; Zhang, Moli

    2018-01-01

    The regular pattern of development of the environmental pollution events was analyzed from the perspective of statistical analysis of pollution events in recent years. The Moran, s I and spatial center-of-gravity shift curve of China, s environmental emergencies were calculated by ARCGIS software. And the method is global spatial analysis and spatial center of gravity shift. The results showed that the trend of China, s environmental pollution events from 1992 to 2014 was the first dynamic growth and then gradually reduced. Environmental pollution events showed spatial aggregation distribution in 1992-1994, 2001-2006, 2008-2014, and the rest of year was a random distribution of space. There were two stages in China, s environmental pollution events: The transition to the southwest from 1992 to 2006 and the transition to the northeast from the year of 2006 to 2014.

  13. Collective behavior in the spatial spreading of obesity

    NASA Astrophysics Data System (ADS)

    Gallos, Lazaros K.; Barttfeld, Pablo; Havlin, Shlomo; Sigman, Mariano; Makse, Hernán A.

    2012-06-01

    Obesity prevalence is increasing in many countries at alarming levels. A difficulty in the conception of policies to reverse these trends is the identification of the drivers behind the obesity epidemics. Here, we implement a spatial spreading analysis to investigate whether obesity shows spatial correlations, revealing the effect of collective and global factors acting above individual choices. We find a regularity in the spatial fluctuations of their prevalence revealed by a pattern of scale-free long-range correlations. The fluctuations are anomalous, deviating in a fundamental way from the weaker correlations found in the underlying population distribution indicating the presence of collective behavior, i.e., individual habits may have negligible influence in shaping the patterns of spreading. Interestingly, we find the same scale-free correlations in economic activities associated with food production. These results motivate future interventions to investigate the causality of this relation providing guidance for the implementation of preventive health policies.

  14. Spatial variability of isoproturon mineralizing activity within an agricultural field: geostatistical analysis of simple physicochemical and microbiological soil parameters.

    PubMed

    El Sebai, T; Lagacherie, B; Soulas, G; Martin-Laurent, F

    2007-02-01

    We assessed the spatial variability of isoproturon mineralization in relation to that of physicochemical and biological parameters in fifty soil samples regularly collected along a sampling grid delimited across a 0.36 ha field plot (40 x 90 m). Only faint relationships were observed between isoproturon mineralization and the soil pH, microbial C biomass, and organic nitrogen. Considerable spatial variability was observed for six of the nine parameters tested (isoproturon mineralization rates, organic nitrogen, genetic structure of the microbial communities, soil pH, microbial biomass and equivalent humidity). The map of isoproturon mineralization rates distribution was similar to that of soil pH, microbial biomass, and organic nitrogen but different from those of structure of the microbial communities and equivalent humidity. Geostatistics revealed that the spatial heterogeneity in the rate of degradation of isoproturon corresponded to that of soil pH and microbial biomass.

  15. Regularized quasinormal modes for plasmonic resonators and open cavities

    NASA Astrophysics Data System (ADS)

    Kamandar Dezfouli, Mohsen; Hughes, Stephen

    2018-03-01

    Optical mode theory and analysis of open cavities and plasmonic particles is an essential component of optical resonator physics, offering considerable insight and efficiency for connecting to classical and quantum optical properties such as the Purcell effect. However, obtaining the dissipative modes in normalized form for arbitrarily shaped open-cavity systems is notoriously difficult, often involving complex spatial integrations, even after performing the necessary full space solutions to Maxwell's equations. The formal solutions are termed quasinormal modes, which are known to diverge in space, and additional techniques are frequently required to obtain more accurate field representations in the far field. In this work, we introduce a finite-difference time-domain technique that can be used to obtain normalized quasinormal modes using a simple dipole-excitation source, and an inverse Green function technique, in real frequency space, without having to perform any spatial integrations. Moreover, we show how these modes are naturally regularized to ensure the correct field decay behavior in the far field, and thus can be used at any position within and outside the resonator. We term these modes "regularized quasinormal modes" and show the reliability and generality of the theory by studying the generalized Purcell factor of dipole emitters near metallic nanoresonators, hybrid devices with metal nanoparticles coupled to dielectric waveguides, as well as coupled cavity-waveguides in photonic crystals slabs. We also directly compare our results with full-dipole simulations of Maxwell's equations without any approximations, and show excellent agreement.

  16. A spatially offset Raman spectroscopy method for non-destructive detection of gelatin-encapsulated powders

    USDA-ARS?s Scientific Manuscript database

    Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS) method to detect and identify urea, ibuprofen, and...

  17. Temporal and Spatial Predictability of an Irrelevant Event Differently Affect Detection and Memory of Items in a Visual Sequence

    PubMed Central

    Ohyama, Junji; Watanabe, Katsumi

    2016-01-01

    We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition; it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time (RT) task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection RTs were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising) events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images. PMID:26869966

  18. Temporal and Spatial Predictability of an Irrelevant Event Differently Affect Detection and Memory of Items in a Visual Sequence.

    PubMed

    Ohyama, Junji; Watanabe, Katsumi

    2016-01-01

    We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition; it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time (RT) task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection RTs were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising) events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images.

  19. Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel.

    PubMed

    Qi, Litao; Nishii, Kazuhiro; Namba, Yoshiharu

    2009-06-15

    In this research, we studied the formation of laser-induced periodic surface structures on the stainless steel surface using femtosecond laser pulses. A 780 nm wavelength femtosecond laser, through a 0.2 mm pinhole aperture for truncating fluence distribution, was focused onto the stainless steel surface. Under different experimental condition, low-spatial-frequency laser-induced periodic surface structures with a period of 526 nm and high-spatial-frequency laser-induced periodic surface structures with a period of 310 nm were obtained. The mechanism of the formation of laser-induced periodic surface structures on the stainless steel surface is discussed.

  20. A spatial model of bird abundance as adjusted for detection probability

    USGS Publications Warehouse

    Gorresen, P.M.; Mcmillan, G.P.; Camp, R.J.; Pratt, T.K.

    2009-01-01

    Modeling the spatial distribution of animals can be complicated by spatial and temporal effects (i.e. spatial autocorrelation and trends in abundance over time) and other factors such as imperfect detection probabilities and observation-related nuisance variables. Recent advances in modeling have demonstrated various approaches that handle most of these factors but which require a degree of sampling effort (e.g. replication) not available to many field studies. We present a two-step approach that addresses these challenges to spatially model species abundance. Habitat, spatial and temporal variables were handled with a Bayesian approach which facilitated modeling hierarchically structured data. Predicted abundance was subsequently adjusted to account for imperfect detection and the area effectively sampled for each species. We provide examples of our modeling approach for two endemic Hawaiian nectarivorous honeycreepers: 'i'iwi Vestiaria coccinea and 'apapane Himatione sanguinea. ?? 2009 Ecography.

  1. Changes of the time-varying percentiles of daily extreme temperature in China

    NASA Astrophysics Data System (ADS)

    Li, Bin; Chen, Fang; Xu, Feng; Wang, Xinrui

    2017-11-01

    Identifying the air temperature frequency distributions and evaluating the trends in time-varying percentiles are very important for climate change studies. In order to get a better understanding of the recent temporal and spatial pattern of the temperature changes in China, we have calculated the trends in temporal-varying percentiles of the daily extreme air temperature firstly. Then we divide all the stations to get the spatial patterns for the percentile trends using the average linkage cluster analysis method. To make a comparison, the shifts of trends percentile frequency distribution from 1961-1985 to 1986-2010 are also examined. Important results in three aspects have been achieved: (1) In terms of the trends in temporal-varying percentiles of the daily extreme air temperature, the most intense warming for daily maximum air temperature (Tmax) was detected in the upper percentiles with a significant increasing tendency magnitude (>2.5 °C/50year), and the greatest warming for daily minimum air temperature (Tmin) occurred with very strong trends exceeding 4 °C/50year. (2) The relative coherent spatial patterns for the percentile trends were found, and stations for the whole country had been divided into three clusters. The three primary clusters were distributed regularly to some extent from north to south, indicating the possible large influence of the latitude. (3) The most significant shifts of trends percentile frequency distribution from 1961-1985 to 1986-2010 was found in Tmax. More than half part of the frequency distribution show negative trends less than -0.5 °C/50year in 1961-1985, while showing trends less than 2.5 °C/50year in 1986-2010.

  2. Localizing Circuits of Atrial Macro-Reentry Using ECG Planes of Coherent Atrial Activation

    PubMed Central

    Kahn, Andrew M.; Krummen, David E.; Feld, Gregory K.; Narayan, Sanjiv M.

    2007-01-01

    Background The complexity of ablation for atrial macro-reentry (AFL) varies significantly depending upon the circuit location. Presently, surface ECG analysis poorly separates left from right atypical AFL and from some cases of typical AFL, delaying diagnosis until invasive study. Objective To differentiate and localize the intra-atrial circuits of left atypical AFL, right atypical, and typical AFL using quantitative ECG analysis. Methods We studied 66 patients (54 M, age 59±14 years) with typical (n=35), reverse typical (n=4) and atypical (n=27) AFL. For each, we generated filtered atrial waveforms from ECG leads V5 (X-axis), aVF (Y) and V1 (Z) by correlating a 120 ms F-wave sample to successive ECG regions. Atrial spatial loops were plotted for 3 orthogonal planes (frontal, XY=V5/aVF; sagittal, YZ=aVF/V1; axial, XZ=V5/V1), then cross-correlated to measure spatial regularity (‘coherence’: range −1 to 1). Results Mean coherence was greatest in the XY plane (p<10−3 vs XZ or YZ). Atypical AFL showed lower coherence than typical AFL in XY (p<10−3), YZ (p<10−6) and XZ (p<10−5) planes. Atypical left AFL could be separated from atypical right AFL by lower XY coherence (p=0.02); for this plane coherence < 0.69 detected atypical left AFL with 84% specificity and 75% sensitivity. F-wave amplitude did not separate typical, atypical right or atypical left AFL (p=NS). Conclusions Atypical AFL shows lower spatial coherence than typical AFL, particularly in sagittal and axial planes. Coherence in the Cartesian frontal plane separated left and right atypical AFL. Such analyses may be used to plan ablation strategy from the bedside. PMID:17399632

  3. Spatial and space-time distribution of Plasmodium vivax and Plasmodium falciparum malaria in China, 2005-2014.

    PubMed

    Hundessa, Samuel H; Williams, Gail; Li, Shanshan; Guo, Jinpeng; Chen, Linping; Zhang, Wenyi; Guo, Yuming

    2016-12-19

    Despite the declining burden of malaria in China, the disease remains a significant public health problem with periodic outbreaks and spatial variation across the country. A better understanding of the spatial and temporal characteristics of malaria is essential for consolidating the disease control and elimination programme. This study aims to understand the spatial and spatiotemporal distribution of Plasmodium vivax and Plasmodium falciparum malaria in China during 2005-2009. Global Moran's I statistics was used to detect a spatial distribution of local P. falciparum and P. vivax malaria at the county level. Spatial and space-time scan statistics were applied to detect spatial and spatiotemporal clusters, respectively. Both P. vivax and P. falciparum malaria showed spatial autocorrelation. The most likely spatial cluster of P. vivax was detected in northern Anhui province between 2005 and 2009, and western Yunnan province between 2010 and 2014. For P. falciparum, the clusters included several counties of western Yunnan province from 2005 to 2011, Guangxi from 2012 to 2013, and Anhui in 2014. The most likely space-time clusters of P. vivax malaria and P. falciparum malaria were detected in northern Anhui province and western Yunnan province, respectively, during 2005-2009. The spatial and space-time cluster analysis identified high-risk areas and periods for both P. vivax and P. falciparum malaria. Both malaria types showed significant spatial and spatiotemporal variations. Contrary to P. vivax, the high-risk areas for P. falciparum malaria shifted from the west to the east of China. Further studies are required to examine the spatial changes in risk of malaria transmission and identify the underlying causes of elevated risk in the high-risk areas.

  4. Shapes on a plane: Evaluating the impact of projection distortion on spatial binning

    USGS Publications Warehouse

    Battersby, Sarah E.; Strebe, Daniel “daan”; Finn, Michael P.

    2017-01-01

    One method for working with large, dense sets of spatial point data is to aggregate the measure of the data into polygonal containers, such as political boundaries, or into regular spatial bins such as triangles, squares, or hexagons. When mapping these aggregations, the map projection must inevitably distort relationships. This distortion can impact the reader’s ability to compare count and density measures across the map. Spatial binning, particularly via hexagons, is becoming a popular technique for displaying aggregate measures of point data sets. Increasingly, we see questionable use of the technique without attendant discussion of its hazards. In this work, we discuss when and why spatial binning works and how mapmakers can better understand the limitations caused by distortion from projecting to the plane. We introduce equations for evaluating distortion’s impact on one common projection (Web Mercator) and discuss how the methods used generalize to other projections. While we focus on hexagonal binning, these same considerations affect spatial bins of any shape, and more generally, any analysis of geographic data performed in planar space.

  5. One new method for road data shape change detection

    NASA Astrophysics Data System (ADS)

    Tang, Luliang; Li, Qingquan; Xu, Feng; Chang, Xiaomeng

    2009-10-01

    Similarity is a psychological cognition; this paper defines the Difference Distance and puts forward the Similarity Measuring Model for linear spatial data (SMM-L) based on the integration of the Distance View and the Feature Set View which are the views for similarity cognition. Based on the study of the relationship between the spatial data change and the similarity, a change detection algorithm for linear spatial data is developed, and a test on road data change detection is realized.

  6. Einstein-Podolsky-Rosen entanglement and steering in two-well Bose-Einstein-condensate ground states

    NASA Astrophysics Data System (ADS)

    He, Q. Y.; Drummond, P. D.; Olsen, M. K.; Reid, M. D.

    2012-08-01

    We consider how to generate and detect Einstein-Podolsky-Rosen (EPR) entanglement and the steering paradox between groups of atoms in two separated potential wells in a Bose-Einstein condensate. We present experimental criteria for this form of entanglement and propose experimental strategies for detecting entanglement using two- or four-mode ground states. These approaches use spatial and/or internal modes. We also present higher-order criteria that act as signatures to detect the multiparticle entanglement present in this system. We point out the difference between spatial entanglement using separated detectors and other types of entanglement that do not require spatial separation. The four-mode approach with two spatial and two internal modes results in an entanglement signature with spatially separated detectors, conceptually similar to the original EPR paradox.

  7. FIND: difFerential chromatin INteractions Detection using a spatial Poisson process.

    PubMed

    Djekidel, Mohamed Nadhir; Chen, Yang; Zhang, Michael Q

    2018-02-12

    Polymer-based simulations and experimental studies indicate the existence of a spatial dependency between the adjacent DNA fibers involved in the formation of chromatin loops. However, the existing strategies for detecting differential chromatin interactions assume that the interacting segments are spatially independent from the other segments nearby. To resolve this issue, we developed a new computational method, FIND, which considers the local spatial dependency between interacting loci. FIND uses a spatial Poisson process to detect differential chromatin interactions that show a significant difference in their interaction frequency and the interaction frequency of their neighbors. Simulation and biological data analysis show that FIND outperforms the widely used count-based methods and has a better signal-to-noise ratio. © 2018 Djekidel et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Hierarchical spatial models of abundance and occurrence from imperfect survey data

    USGS Publications Warehouse

    Royle, J. Andrew; Kery, M.; Gautier, R.; Schmid, Hans

    2007-01-01

    Many estimation and inference problems arising from large-scale animal surveys are focused on developing an understanding of patterns in abundance or occurrence of a species based on spatially referenced count data. One fundamental challenge, then, is that it is generally not feasible to completely enumerate ('census') all individuals present in each sample unit. This observation bias may consist of several components, including spatial coverage bias (not all individuals in the Population are exposed to sampling) and detection bias (exposed individuals may go undetected). Thus, observations are biased for the state variable (abundance, occupancy) that is the object of inference. Moreover, data are often sparse for most observation locations, requiring consideration of methods for spatially aggregating or otherwise combining sparse data among sample units. The development of methods that unify spatial statistical models with models accommodating non-detection is necessary to resolve important spatial inference problems based on animal survey data. In this paper, we develop a novel hierarchical spatial model for estimation of abundance and occurrence from survey data wherein detection is imperfect. Our application is focused on spatial inference problems in the Swiss Survey of Common Breeding Birds. The observation model for the survey data is specified conditional on the unknown quadrat population size, N(s). We augment the observation model with a spatial process model for N(s), describing the spatial variation in abundance of the species. The model includes explicit sources of variation in habitat structure (forest, elevation) and latent variation in the form of a correlated spatial process. This provides a model-based framework for combining the spatially referenced samples while at the same time yielding a unified treatment of estimation problems involving both abundance and occurrence. We provide a Bayesian framework for analysis and prediction based on the integrated likelihood, and we use the model to obtain estimates of abundance and occurrence maps for the European Jay (Garrulus glandarius), a widespread, elusive, forest bird. The naive national abundance estimate ignoring imperfect detection and incomplete quadrat coverage was 77 766 territories. Accounting for imperfect detection added approximately 18 000 territories, and adjusting for coverage bias added another 131 000 territories to yield a fully corrected estimate of the national total of about 227 000 territories. This is approximately three times as high as previous estimates that assume every territory is detected in each quadrat.

  9. Vacuum polarization of the quantized massive fields in Friedman-Robertson-Walker spacetime

    NASA Astrophysics Data System (ADS)

    Matyjasek, Jerzy; Sadurski, Paweł; Telecka, Małgorzata

    2014-04-01

    The stress-energy tensor of the quantized massive fields in a spatially open, flat, and closed Friedman-Robertson-Walker universe is constructed using the adiabatic regularization (for the scalar field) and the Schwinger-DeWitt approach (for the scalar, spinor, and vector fields). It is shown that the stress-energy tensor calculated in the sixth adiabatic order coincides with the result obtained from the regularized effective action, constructed from the heat kernel coefficient a3. The behavior of the tensor is examined in the power-law cosmological models, and the semiclassical Einstein field equations are solved exactly in a few physically interesting cases, such as the generalized Starobinsky models.

  10. Linking landscape characteristics to local grizzly bear abundance using multiple detection methods in a hierarchical model

    USGS Publications Warehouse

    Graves, T.A.; Kendall, Katherine C.; Royle, J. Andrew; Stetz, J.B.; Macleod, A.C.

    2011-01-01

    Few studies link habitat to grizzly bear Ursus arctos abundance and these have not accounted for the variation in detection or spatial autocorrelation. We collected and genotyped bear hair in and around Glacier National Park in northwestern Montana during the summer of 2000. We developed a hierarchical Markov chain Monte Carlo model that extends the existing occupancy and count models by accounting for (1) spatially explicit variables that we hypothesized might influence abundance; (2) separate sub-models of detection probability for two distinct sampling methods (hair traps and rub trees) targeting different segments of the population; (3) covariates to explain variation in each sub-model of detection; (4) a conditional autoregressive term to account for spatial autocorrelation; (5) weights to identify most important variables. Road density and per cent mesic habitat best explained variation in female grizzly bear abundance; spatial autocorrelation was not supported. More female bears were predicted in places with lower road density and with more mesic habitat. Detection rates of females increased with rub tree sampling effort. Road density best explained variation in male grizzly bear abundance and spatial autocorrelation was supported. More male bears were predicted in areas of low road density. Detection rates of males increased with rub tree and hair trap sampling effort and decreased over the sampling period. We provide a new method to (1) incorporate multiple detection methods into hierarchical models of abundance; (2) determine whether spatial autocorrelation should be included in final models. Our results suggest that the influence of landscape variables is consistent between habitat selection and abundance in this system.

  11. Evaluation of the Gini Coefficient in Spatial Scan Statistics for Detecting Irregularly Shaped Clusters

    PubMed Central

    Kim, Jiyu; Jung, Inkyung

    2017-01-01

    Spatial scan statistics with circular or elliptic scanning windows are commonly used for cluster detection in various applications, such as the identification of geographical disease clusters from epidemiological data. It has been pointed out that the method may have difficulty in correctly identifying non-compact, arbitrarily shaped clusters. In this paper, we evaluated the Gini coefficient for detecting irregularly shaped clusters through a simulation study. The Gini coefficient, the use of which in spatial scan statistics was recently proposed, is a criterion measure for optimizing the maximum reported cluster size. Our simulation study results showed that using the Gini coefficient works better than the original spatial scan statistic for identifying irregularly shaped clusters, by reporting an optimized and refined collection of clusters rather than a single larger cluster. We have provided a real data example that seems to support the simulation results. We think that using the Gini coefficient in spatial scan statistics can be helpful for the detection of irregularly shaped clusters. PMID:28129368

  12. Research on Ultrasonic Flaw Detection of Steel Weld in Spatial Grid Structure

    NASA Astrophysics Data System (ADS)

    Du, Tao; Sun, Jiandong; Fu, Shengguang; Zhang, Changquan; Gao, Qing

    2017-06-01

    The welding quality of spatial grid member is an important link in quality control of steel structure. The paper analyzed the reasons that the welding seam of small-bore pipe with thin wall grid structure is difficult to be detected by ultrasonic wave from the theoretical and practical aspects. A series of feasible detection methods was also proposed by improving probe and operation approaches in this paper, and the detection methods were verified by project cases. Over the years, the spatial grid structure is widely used the engineering by virtue of its several outstanding characteristics such as reasonable structure type, standard member, excellent space integrity and quick installation. The wide application of spatial grid structure brings higher requirements on nondestructive test of grid structure. The implementation of new Code for Construction Quality Acceptance of Steel Structure Work GB50205-2001 strengthens the site inspection of steel structure, especially the site inspection of ultrasonic flaw detection in steel weld. The detection for spatial grid member structured by small-bore and thin-walled pipes is difficult due to the irregular influence of sound pressure in near-field region of sound field, sound beam diffusion generated by small bore pipe and reduction of sensitivity. Therefore, it is quite significant to select correct detecting conditions. The spatial grid structure of welding ball and bolt ball is statically determinate structure with high-order axial force which is connected by member bars and joints. It is welded by shrouding or conehead of member bars and of member bar and bolt-node sphere. It is obvious that to ensure the quality of these welding positions is critical to the quality of overall grid structure. However, the complexity of weld structure and limitation of ultrasonic detection method cause many difficulties in detection. No satisfactory results will be obtained by the conventional detection technology, so some special approaches must be used.

  13. Breast Cancer Basics and You: Detection and Diagnosis | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Breast Cancer Breast Cancer Basics and You: Detection and Diagnosis Past Issues / ... regular clinical breast exams and mammograms to find breast cancer early, when treatment is more likely to work ...

  14. Can Mismatch Negativity Be Linked to Synaptic Processes? A Glutamatergic Approach to Deviance Detection

    ERIC Educational Resources Information Center

    Strelnikov, Kuzma

    2007-01-01

    This article aims to provide a theoretical framework to elucidate the neurophysiological underpinnings of deviance detection as reflected by mismatch negativity. A six-step model of the information processing necessary for deviance detection is proposed. In this model, predictive coding of learned regularities is realized by means of long-term…

  15. The Cluster AgeS Experiment (CASE). Detecting Aperiodic Photometric Variability with the Friends of Friends Algorithm

    NASA Astrophysics Data System (ADS)

    Rozyczka, M.; Narloch, W.; Pietrukowicz, P.; Thompson, I. B.; Pych, W.; Poleski, R.

    2018-03-01

    We adapt the friends of friends algorithm to the analysis of light curves, and show that it can be succesfully applied to searches for transient phenomena in large photometric databases. As a test case we search OGLE-III light curves for known dwarf novae. A single combination of control parameters allows us to narrow the search to 1% of the data while reaching a ≍90% detection efficiency. A search involving ≍2% of the data and three combinations of control parameters can be significantly more effective - in our case a 100% efficiency is reached. The method can also quite efficiently detect semi-regular variability. In particular, 28 new semi-regular variables have been found in the field of the globular cluster M22, which was examined earlier with the help of periodicity-searching algorithms.

  16. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xue; Niu, Tianye; Zhu, Lei, E-mail: leizhu@gatech.edu

    2014-05-15

    Purpose: Dual-energy CT (DECT) is being increasingly used for its capability of material decomposition and energy-selective imaging. A generic problem of DECT, however, is that the decomposition process is unstable in the sense that the relative magnitude of decomposed signals is reduced due to signal cancellation while the image noise is accumulating from the two CT images of independent scans. Direct image decomposition, therefore, leads to severe degradation of signal-to-noise ratio on the resultant images. Existing noise suppression techniques are typically implemented in DECT with the procedures of reconstruction and decomposition performed independently, which do not explore the statistical propertiesmore » of decomposed images during the reconstruction for noise reduction. In this work, the authors propose an iterative approach that combines the reconstruction and the signal decomposition procedures to minimize the DECT image noise without noticeable loss of resolution. Methods: The proposed algorithm is formulated as an optimization problem, which balances the data fidelity and total variation of decomposed images in one framework, and the decomposition step is carried out iteratively together with reconstruction. The noise in the CT images from the proposed algorithm becomes well correlated even though the noise of the raw projections is independent on the two CT scans. Due to this feature, the proposed algorithm avoids noise accumulation during the decomposition process. The authors evaluate the method performance on noise suppression and spatial resolution using phantom studies and compare the algorithm with conventional denoising approaches as well as combined iterative reconstruction methods with different forms of regularization. Results: On the Catphan©600 phantom, the proposed method outperforms the existing denoising methods on preserving spatial resolution at the same level of noise suppression, i.e., a reduction of noise standard deviation by one order of magnitude. This improvement is mainly attributed to the high noise correlation in the CT images reconstructed by the proposed algorithm. Iterative reconstruction using different regularization, including quadratic orq-generalized Gaussian Markov random field regularization, achieves similar noise suppression from high noise correlation. However, the proposed TV regularization obtains a better edge preserving performance. Studies of electron density measurement also show that our method reduces the average estimation error from 9.5% to 7.1%. On the anthropomorphic head phantom, the proposed method suppresses the noise standard deviation of the decomposed images by a factor of ∼14 without blurring the fine structures in the sinus area. Conclusions: The authors propose a practical method for DECT imaging reconstruction, which combines the image reconstruction and material decomposition into one optimization framework. Compared to the existing approaches, our method achieves a superior performance on DECT imaging with respect to decomposition accuracy, noise reduction, and spatial resolution.« less

  17. Exploring the Role of Spatial Frequency Information during Neural Emotion Processing in Human Infants.

    PubMed

    Jessen, Sarah; Grossmann, Tobias

    2017-01-01

    Enhanced attention to fear expressions in adults is primarily driven by information from low as opposed to high spatial frequencies contained in faces. However, little is known about the role of spatial frequency information in emotion processing during infancy. In the present study, we examined the role of low compared to high spatial frequencies in the processing of happy and fearful facial expressions by using filtered face stimuli and measuring event-related brain potentials (ERPs) in 7-month-old infants ( N = 26). Our results revealed that infants' brains discriminated between emotional facial expressions containing high but not between expressions containing low spatial frequencies. Specifically, happy faces containing high spatial frequencies elicited a smaller Nc amplitude than fearful faces containing high spatial frequencies and happy and fearful faces containing low spatial frequencies. Our results demonstrate that already in infancy spatial frequency content influences the processing of facial emotions. Furthermore, we observed that fearful facial expressions elicited a comparable Nc response for high and low spatial frequencies, suggesting a robust detection of fearful faces irrespective of spatial frequency content, whereas the detection of happy facial expressions was contingent upon frequency content. In summary, these data provide new insights into the neural processing of facial emotions in early development by highlighting the differential role played by spatial frequencies in the detection of fear and happiness.

  18. A Comparison of Grizzly Bear Demographic Parameters Estimated from Non-Spatial and Spatial Open Population Capture-Recapture Models.

    PubMed

    Whittington, Jesse; Sawaya, Michael A

    2015-01-01

    Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal's home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786-1.071) for females, 0.844 (0.703-0.975) for males, and 0.882 (0.779-0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758-1.024) for females, 0.825 (0.700-0.948) for males, and 0.863 (0.771-0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth rates suggest that Banff National Park's population of grizzly bears requires continued conservation-oriented management actions.

  19. Phase correction and error estimation in InSAR time series analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Fattahi, H.; Amelung, F.

    2017-12-01

    During the last decade several InSAR time series approaches have been developed in response to the non-idea acquisition strategy of SAR satellites, such as large spatial and temporal baseline with non-regular acquisitions. The small baseline tubes and regular acquisitions of new SAR satellites such as Sentinel-1 allows us to form fully connected networks of interferograms and simplifies the time series analysis into a weighted least square inversion of an over-determined system. Such robust inversion allows us to focus more on the understanding of different components in InSAR time-series and its uncertainties. We present an open-source python-based package for InSAR time series analysis, called PySAR (https://yunjunz.github.io/PySAR/), with unique functionalities for obtaining unbiased ground displacement time-series, geometrical and atmospheric correction of InSAR data and quantifying the InSAR uncertainty. Our implemented strategy contains several features including: 1) improved spatial coverage using coherence-based network of interferograms, 2) unwrapping error correction using phase closure or bridging, 3) tropospheric delay correction using weather models and empirical approaches, 4) DEM error correction, 5) optimal selection of reference date and automatic outlier detection, 6) InSAR uncertainty due to the residual tropospheric delay, decorrelation and residual DEM error, and 7) variance-covariance matrix of final products for geodetic inversion. We demonstrate the performance using SAR datasets acquired by Cosmo-Skymed and TerraSAR-X, Sentinel-1 and ALOS/ALOS-2, with application on the highly non-linear volcanic deformation in Japan and Ecuador (figure 1). Our result shows precursory deformation before the 2015 eruptions of Cotopaxi volcano, with a maximum uplift of 3.4 cm on the western flank (fig. 1b), with a standard deviation of 0.9 cm (fig. 1a), supporting the finding by Morales-Rivera et al. (2017, GRL); and a post-eruptive subsidence on the same area, with a maximum of -3 +/- 0.9 cm (fig. 1c). Time-series displacement map (fig. 2) shows a highly non-linear deformation behavior, indicating the complicated magma propagation process during this eruption cycle.

  20. [Analysis of Cr in soil by LIBS based on conical spatial confinement of plasma].

    PubMed

    Lin, Yong-Zeng; Yao, Ming-Yin; Chen, Tian-Bing; Li, Wen-Bing; Zheng, Mei-Lan; Xu, Xue-Hong; Tu, Jian-Ping; Liu, Mu-Hua

    2013-11-01

    The present study is to improve the sensitivity of detection and reduce the limit of detection in detecting heavy metal of soil by laser induced breakdown spectroscopy (LIBS). The Cr element of national standard soil was regarded as the research object. In the experiment, a conical cavity with small diameter end of 20 mm and large diameter end of 45 mm respectively was installed below the focusing lens near the experiment sample to mainly confine the signal transmitted by plasma and to some extent to confine the plasma itself in the LIBS setup. In detecting Cr I 425.44 nm, the beast delay time gained from experiment is 1.3 micros, and the relative standard deviation is below 10%. Compared with the setup of non-spatial confinement, the spectral intensity of Cr in the soil sample was enhanced more than 7%. Calibration curve was established in the Cr concentration range from 60 to 400 microg x g(-1). Under the condition of spatial confinement, the liner regression coefficient and the limit of detection were 0.997 71 and 18.85 microg x g(-1) respectively, however, the regression coefficient and the limit of detection were 0.991 22 and 36.99 microg x g(-1) without spatial confinement. So, this shows that conical spatial confinement can/improve the sensitivity of detection and enhance the spectral intensity. And it is a good auxiliary function in detecting Cr in the soil by laser induced breakdown spectroscopy.

  1. Changing patterns of spatial clustering of schistosomiasis in Southwest China between 1999-2001 and 2007-2008: assessing progress toward eradication after the World Bank Loan Project.

    PubMed

    Hu, Yi; Xiong, Chenglong; Zhang, Zhijie; Luo, Can; Cohen, Ted; Gao, Jie; Zhang, Lijuan; Jiang, Qingwu

    2014-01-03

    We compared changes in the spatial clustering of schistosomiasis in Southwest China at the conclusion of and six years following the end of the World Bank Loan Project (WBLP), the control strategy of which was focused on the large-scale use of chemotherapy. Parasitological data were obtained through standardized surveys conducted in 1999-2001 and again in 2007-2008. Two alternate spatial cluster methods were used to identify spatial clusters of cases: Anselin's Local Moran's I test and Kulldorff's spatial scan statistic. Substantial reductions in the burden of schistosomiasis were found after the end of the WBLP, but the spatial extent of schistosomiasis was not reduced across the study area. Spatial clusters continued to occur in three regions: Chengdu Plain, Yangtze River Valley, and Lancang River Valley during the two periods, and regularly involved five counties. These findings suggest that despite impressive reductions in burden, the hilly and mountainous regions of Southwest China remain at risk of schistosome re-emergence. Our results help to highlight specific locations where integrated control programs can focus to speed the elimination of schistosomiasis in China.

  2. Detection of ultratrace phosphorus and sulfur by quadrupole ICPMS with dynamic reaction cell.

    PubMed

    Bandura, Dmitry R; Baranov, Vladimir I; Tanner, Scott D

    2002-04-01

    A method of detection of ultratrace phosphorus and sulfur that uses reaction with O2 in a dynamic reaction cell (DRC) to oxidize S+ and P+ to allow their detection as SO+ and PO+ is described. The method reduces the effect of polyatomic isobaric interferences at m/z = 31 and 32 by detecting P+ and S+ as the product oxide ions that are less interfered. Use of an axial field in the DRC improves transmission of the product oxide ions 4-6 times. With no axial field, detection limits (3sigma, 5-s integration) of 0.20 and 0.52 ng/mL, with background equivalent concentrations of 0.53 and 4.8 ng/mL, respectively, are achieved. At an optimum axial field potential (200 V), the detection limits are 0.06 ng/mL for P and 0.2 ng/mL for S, respectively. The method is used for determining the degree of phosphorylation of beta-casein, and regular and dephosphorylated alpha-caseins at 10-1000 fmol/microL concentration, with 5-10% v/v organic sample matrix (acetonitrile, formic acid, ammonium bicarbonate). The measured degree of phosphorylation for beta-casein (4.9 phosphorus atoms/molecule) and regular alpha-casein (8.8 phoshorus atoms/molecule) are in good agreement with the structural data for the proteins. The P/S ratio for regular alpha-casein (1.58) is in good agreement with the ratio of the number of phosphorylation sites to the number of sulfur-containing amino acid residues cysteine and methionine. The P/S ratio for commercially available dephosphorylated alpha-casein is measured at 0.41 (approximately 26% residual phosphate).

  3. Single image super-resolution via regularized extreme learning regression for imagery from microgrid polarimeters

    NASA Astrophysics Data System (ADS)

    Sargent, Garrett C.; Ratliff, Bradley M.; Asari, Vijayan K.

    2017-08-01

    The advantage of division of focal plane imaging polarimeters is their ability to obtain temporally synchronized intensity measurements across a scene; however, they sacrifice spatial resolution in doing so due to their spatially modulated arrangement of the pixel-to-pixel polarizers and often result in aliased imagery. Here, we propose a super-resolution method based upon two previously trained extreme learning machines (ELM) that attempt to recover missing high frequency and low frequency content beyond the spatial resolution of the sensor. This method yields a computationally fast and simple way of recovering lost high and low frequency content from demosaicing raw microgrid polarimetric imagery. The proposed method outperforms other state-of-the-art single-image super-resolution algorithms in terms of structural similarity and peak signal-to-noise ratio.

  4. Monitoring variable X-ray sources in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Kong, A. K. H.

    2010-12-01

    In the last decade, it has been possible to monitor variable X-ray sources in nearby galaxies. In particular, since the launch of Chandra, M31 has been regularly observed. It is perhaps the only nearby galaxy which is observed by an X-ray telescope regularly throughout operation. With 10 years of observations, the center of M31 has been observed with Chandra for nearly 1 Msec and the X-ray skies of M31 consist of many transients and variables. Furthermore, the X-ray Telescope of Swift has been monitoring several ultraluminous X-ray sources in nearby galaxies regularly. Not only can we detect long-term X-ray variability, we can also find spectral variation as well as possible orbital period. In this talk, I will review some of the important Chandra and Swift monitoring observations of nearby galaxies in the past 10 years. I will also present a "high-definition" movie of M31 and discuss the possibility of detecting luminous transients in M31 with MAXI.

  5. The SMAP mission combined active-passive soil moisture product at 9 km and 3km spatial resolutions

    USDA-ARS?s Scientific Manuscript database

    The NASA Soil Moisture Active Passive (SMAP) mission with onboard L-band radiometer and radar was launched on January 31st, 2015. The spacecraft provided high-resolution (3 km and 9 km) global soil moisture estimates at regular intervals by combining radiometer and radar observations for ~2.5 months...

  6. Applying spatial analysis tools in public health: an example using SaTScan to detect geographic targets for colorectal cancer screening interventions.

    PubMed

    Sherman, Recinda L; Henry, Kevin A; Tannenbaum, Stacey L; Feaster, Daniel J; Kobetz, Erin; Lee, David J

    2014-03-20

    Epidemiologists are gradually incorporating spatial analysis into health-related research as geocoded cases of disease become widely available and health-focused geospatial computer applications are developed. One health-focused application of spatial analysis is cluster detection. Using cluster detection to identify geographic areas with high-risk populations and then screening those populations for disease can improve cancer control. SaTScan is a free cluster-detection software application used by epidemiologists around the world to describe spatial clusters of infectious and chronic disease, as well as disease vectors and risk factors. The objectives of this article are to describe how spatial analysis can be used in cancer control to detect geographic areas in need of colorectal cancer screening intervention, identify issues commonly encountered by SaTScan users, detail how to select the appropriate methods for using SaTScan, and explain how method selection can affect results. As an example, we used various methods to detect areas in Florida where the population is at high risk for late-stage diagnosis of colorectal cancer. We found that much of our analysis was underpowered and that no single method detected all clusters of statistical or public health significance. However, all methods detected 1 area as high risk; this area is potentially a priority area for a screening intervention. Cluster detection can be incorporated into routine public health operations, but the challenge is to identify areas in which the burden of disease can be alleviated through public health intervention. Reliance on SaTScan's default settings does not always produce pertinent results.

  7. Clustering, randomness, and regularity in cloud fields. 4. Stratocumulus cloud fields

    NASA Astrophysics Data System (ADS)

    Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.

    1994-07-01

    To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (>900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.

  8. Pattern classification of fMRI data: applications for analysis of spatially distributed cortical networks.

    PubMed

    Yourganov, Grigori; Schmah, Tanya; Churchill, Nathan W; Berman, Marc G; Grady, Cheryl L; Strother, Stephen C

    2014-08-01

    The field of fMRI data analysis is rapidly growing in sophistication, particularly in the domain of multivariate pattern classification. However, the interaction between the properties of the analytical model and the parameters of the BOLD signal (e.g. signal magnitude, temporal variance and functional connectivity) is still an open problem. We addressed this problem by evaluating a set of pattern classification algorithms on simulated and experimental block-design fMRI data. The set of classifiers consisted of linear and quadratic discriminants, linear support vector machine, and linear and nonlinear Gaussian naive Bayes classifiers. For linear discriminant, we used two methods of regularization: principal component analysis, and ridge regularization. The classifiers were used (1) to classify the volumes according to the behavioral task that was performed by the subject, and (2) to construct spatial maps that indicated the relative contribution of each voxel to classification. Our evaluation metrics were: (1) accuracy of out-of-sample classification and (2) reproducibility of spatial maps. In simulated data sets, we performed an additional evaluation of spatial maps with ROC analysis. We varied the magnitude, temporal variance and connectivity of simulated fMRI signal and identified the optimal classifier for each simulated environment. Overall, the best performers were linear and quadratic discriminants (operating on principal components of the data matrix) and, in some rare situations, a nonlinear Gaussian naïve Bayes classifier. The results from the simulated data were supported by within-subject analysis of experimental fMRI data, collected in a study of aging. This is the first study that systematically characterizes interactions between analysis model and signal parameters (such as magnitude, variance and correlation) on the performance of pattern classifiers for fMRI. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Clustering, randomness, and regularity in cloud fields. 4: Stratocumulus cloud fields

    NASA Technical Reports Server (NTRS)

    Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.

    1994-01-01

    To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (more than 900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.

  10. Tsetse Fly (G.f. fuscipes) Distribution in the Lake Victoria Basin of Uganda

    PubMed Central

    Albert, Mugenyi; Wardrop, Nicola A; Atkinson, Peter M; Torr, Steve J; Welburn, Susan C

    2015-01-01

    Tsetse flies transmit trypanosomes, the causative agent of human and animal African trypanosomiasis. The tsetse vector is extensively distributed across sub-Saharan Africa. Trypanosomiasis maintenance is determined by the interrelationship of three elements: vertebrate host, parasite and the vector responsible for transmission. Mapping the distribution and abundance of tsetse flies assists in predicting trypanosomiasis distributions and developing rational strategies for disease and vector control. Given scarce resources to carry out regular full scale field tsetse surveys to up-date existing tsetse maps, there is a need to devise inexpensive means for regularly obtaining dependable area-wide tsetse data to guide control activities. In this study we used spatial epidemiological modelling techniques (logistic regression) involving 5000 field-based tsetse-data (G. f. fuscipes) points over an area of 40,000 km2, with satellite-derived environmental surrogates composed of precipitation, temperature, land cover, normalised difference vegetation index (NDVI) and elevation at the sub-national level. We used these extensive tsetse data to analyse the relationships between presence of tsetse (G. f. fuscipes) and environmental variables. The strength of the results was enhanced through the application of a spatial autologistic regression model (SARM). Using the SARM we showed that the probability of tsetse presence increased with proportion of forest cover and riverine vegetation. The key outputs are a predictive tsetse distribution map for the Lake Victoria basin of Uganda and an improved understanding of the association between tsetse presence and environmental variables. The predicted spatial distribution of tsetse in the Lake Victoria basin of Uganda will provide significant new information to assist with the spatial targeting of tsetse and trypanosomiasis control. PMID:25875201

  11. Narrowband signal detection in the SETI field test

    NASA Technical Reports Server (NTRS)

    Cullers, D. Kent; Deans, Stanley R.

    1986-01-01

    Various methods for detecting narrow-band signals are evaluated. The characteristics of synchronized and unsynchronized pulses are examined. Synchronous, square law, regular pulse, and the general form detections are discussed. The CW, single pulse, synchronous, and four pulse detections are analyzed in terms of false alarm rate and threshold relative to average noise power. Techniques for saving memory and retaining sensitivity are described. Consideration is given to nondrifting CW detection, asynchronous pulse detection, interpolative and extrapolative pulse detectors, and finite and infinite pulses.

  12. Auditory Stimulus Processing and Task Learning Are Adequate in Dyslexia, but Benefits From Regularities Are Reduced.

    PubMed

    Daikhin, Luba; Raviv, Ofri; Ahissar, Merav

    2017-02-01

    The reading deficit for people with dyslexia is typically associated with linguistic, memory, and perceptual-discrimination difficulties, whose relation to reading impairment is disputed. We proposed that automatic detection and usage of serial sound regularities for individuals with dyslexia is impaired (anchoring deficit hypothesis), leading to the formation of less reliable sound predictions. Agus, Carrión-Castillo, Pressnitzer, and Ramus, (2014) reported seemingly contradictory evidence by showing similar performance by participants with and without dyslexia in a demanding auditory task that contained task-relevant regularities. To carefully assess the sensitivity of participants with dyslexia to regularities of this task, we replicated their study. Thirty participants with and 24 without dyslexia performed the replicated task. On each trial, a 1-s noise stimulus was presented. Participants had to decide whether the stimulus contained repetitions (was constructed from a 0.5-s noise segment repeated twice) or not. It is implicit in this structure that some of the stimuli with repetitions were themselves repeated across trials. We measured the ability to detect within-noise repetitions and the sensitivity to cross-trial repetitions of the same noise stimuli. We replicated the finding of similar mean performance. However, individuals with dyslexia were less sensitive to the cross-trial repetition of noise stimuli and tended to be more sensitive to repetitions in novel noise stimuli. These findings indicate that online auditory processing for individuals with dyslexia is adequate but their implicit retention and usage of sound regularities is indeed impaired.

  13. Privacy protection versus cluster detection in spatial epidemiology.

    PubMed

    Olson, Karen L; Grannis, Shaun J; Mandl, Kenneth D

    2006-11-01

    Patient data that includes precise locations can reveal patients' identities, whereas data aggregated into administrative regions may preserve privacy and confidentiality. We investigated the effect of varying degrees of address precision (exact latitude and longitude vs the center points of zip code or census tracts) on detection of spatial clusters of cases. We simulated disease outbreaks by adding supplementary spatially clustered emergency department visits to authentic hospital emergency department syndromic surveillance data. We identified clusters with a spatial scan statistic and evaluated detection rate and accuracy. More clusters were identified, and clusters were more accurately detected, when exact locations were used. That is, these clusters contained at least half of the simulated points and involved few additional emergency department visits. These results were especially apparent when the synthetic clustered points crossed administrative boundaries and fell into multiple zip code or census tracts. The spatial cluster detection algorithm performed better when addresses were analyzed as exact locations than when they were analyzed as center points of zip code or census tracts, particularly when the clustered points crossed administrative boundaries. Use of precise addresses offers improved performance, but this practice must be weighed against privacy concerns in the establishment of public health data exchange policies.

  14. OGLE-IV Transient Search summary of season 2015b

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, L.; Kostrzewa-Rutkowska, Z.; Klencki, J.; Sitek, M.; Mroz, P.; Udalski, A.; Kozlowski, S.; Skowron, J.; Poleski, R.; Szymanski, M. K.; Pietrzynski, G.; Soszynski, I.; Ulaczyk, K.; Pietrukowicz, P.

    2015-12-01

    The OGLE-IV Transient Detection System (Wyrzykowski et al. 2014, AcA,64,197; Kozlowski et al. 2013) in the 2015b transient observing season (from August) has been operating in dual mode: regular as in previous years (detections every couple of days based on at least two positive detections), and rapid (automatised detections within 15 mins after the single frame was taken, details in Klencki et al. in prep.).

  15. Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part I--Theory and simulations.

    PubMed

    Pogue, Brian W; Song, Xiaomei; Tosteson, Tor D; McBride, Troy O; Jiang, Shudong; Paulsen, Keith D

    2002-07-01

    Near-infrared (NIR) diffuse tomography is an emerging method for imaging the interior of tissues to quantify concentrations of hemoglobin and exogenous chromophores non-invasively in vivo. It often exploits an optical diffusion model-based image reconstruction algorithm to estimate spatial property values from measurements of the light flux at the surface of the tissue. In this study, mean-squared error (MSE) over the image is used to evaluate methods for regularizing the ill-posed inverse image reconstruction problem in NIR tomography. Estimates of image bias and image standard deviation were calculated based upon 100 repeated reconstructions of a test image with randomly distributed noise added to the light flux measurements. It was observed that the bias error dominates at high regularization parameter values while variance dominates as the algorithm is allowed to approach the optimal solution. This optimum does not necessarily correspond to the minimum projection error solution, but typically requires further iteration with a decreasing regularization parameter to reach the lowest image error. Increasing measurement noise causes a need to constrain the minimum regularization parameter to higher values in order to achieve a minimum in the overall image MSE.

  16. Three-dimensional ionospheric tomography reconstruction using the model function approach in Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Wang, Sicheng; Huang, Sixun; Xiang, Jie; Fang, Hanxian; Feng, Jian; Wang, Yu

    2016-12-01

    Ionospheric tomography is based on the observed slant total electron content (sTEC) along different satellite-receiver rays to reconstruct the three-dimensional electron density distributions. Due to incomplete measurements provided by the satellite-receiver geometry, it is a typical ill-posed problem, and how to overcome the ill-posedness is still a crucial content of research. In this paper, Tikhonov regularization method is used and the model function approach is applied to determine the optimal regularization parameter. This algorithm not only balances the weights between sTEC observations and background electron density field but also converges globally and rapidly. The background error covariance is given by multiplying background model variance and location-dependent spatial correlation, and the correlation model is developed by using sample statistics from an ensemble of the International Reference Ionosphere 2012 (IRI2012) model outputs. The Global Navigation Satellite System (GNSS) observations in China are used to present the reconstruction results, and measurements from two ionosondes are used to make independent validations. Both the test cases using artificial sTEC observations and actual GNSS sTEC measurements show that the regularization method can effectively improve the background model outputs.

  17. Experimental/clinical evaluation of EIT image reconstruction with l1 data and image norms

    NASA Astrophysics Data System (ADS)

    Mamatjan, Yasin; Borsic, Andrea; Gürsoy, Doga; Adler, Andy

    2013-04-01

    Electrical impedance tomography (EIT) image reconstruction is ill-posed, and the spatial resolution of reconstructed images is low due to the diffuse propagation of current and limited number of independent measurements. Generally, image reconstruction is formulated using a regularized scheme in which l2 norms are preferred for both the data misfit and image prior terms due to computational convenience which result in smooth solutions. However, recent work on a Primal Dual-Interior Point Method (PDIPM) framework showed its effectiveness in dealing with the minimization problem. l1 norms on data and regularization terms in EIT image reconstruction address both problems of reconstruction with sharp edges and dealing with measurement errors. We aim for a clinical and experimental evaluation of the PDIPM method by selecting scenarios (human lung and dog breathing) with known electrode errors, which require a rigorous regularization and cause the failure of reconstructions with l2 norm. Results demonstrate the applicability of PDIPM algorithms, especially l1 data and regularization norms for clinical applications of EIT showing that l1 solution is not only more robust to measurement errors in clinical setting, but also provides high contrast resolution on organ boundaries.

  18. Detecting spatial regimes in ecosystems | Science Inventory ...

    EPA Pesticide Factsheets

    Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory based method, on both terrestrial and aquatic animal data (US Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning indicators, conventional ecoregion maps, and multivariate analysis such as nMDS (non-metric Multidimensional Scaling) and cluster analysis. We successfully detect spatial regimes and transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher information provided explicit spatial information about community change that is absent from other multivariate approaches. Our results suggest that defining spatial regimes based on animal communities may better reflect ecological reality than do traditional ecoregion maps, especially in our current era of rapid and unpredictable ecological change. Use an information theory based method to identify ecological boundaries and compare our results to traditional early warning

  19. Sample entropy and regularity dimension in complexity analysis of cortical surface structure in early Alzheimer's disease and aging.

    PubMed

    Chen, Ying; Pham, Tuan D

    2013-05-15

    We apply for the first time the sample entropy (SampEn) and regularity dimension model for measuring signal complexity to quantify the structural complexity of the brain on MRI. The concept of the regularity dimension is based on the theory of chaos for studying nonlinear dynamical systems, where power laws and entropy measure are adopted to develop the regularity dimension for modeling a mathematical relationship between the frequencies with which information about signal regularity changes in various scales. The sample entropy and regularity dimension of MRI-based brain structural complexity are computed for early Alzheimer's disease (AD) elder adults and age and gender-matched non-demented controls, as well as for a wide range of ages from young people to elder adults. A significantly higher global cortical structure complexity is detected in AD individuals (p<0.001). The increase of SampEn and the regularity dimension are also found to be accompanied with aging which might indicate an age-related exacerbation of cortical structural irregularity. The provided model can be potentially used as an imaging bio-marker for early prediction of AD and age-related cognitive decline. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. A reconstruction algorithm for three-dimensional object-space data using spatial-spectral multiplexing

    NASA Astrophysics Data System (ADS)

    Wu, Zhejun; Kudenov, Michael W.

    2017-05-01

    This paper presents a reconstruction algorithm for the Spatial-Spectral Multiplexing (SSM) optical system. The goal of this algorithm is to recover the three-dimensional spatial and spectral information of a scene, given that a one-dimensional spectrometer array is used to sample the pupil of the spatial-spectral modulator. The challenge of the reconstruction is that the non-parametric representation of the three-dimensional spatial and spectral object requires a large number of variables, thus leading to an underdetermined linear system that is hard to uniquely recover. We propose to reparameterize the spectrum using B-spline functions to reduce the number of unknown variables. Our reconstruction algorithm then solves the improved linear system via a least- square optimization of such B-spline coefficients with additional spatial smoothness regularization. The ground truth object and the optical model for the measurement matrix are simulated with both spatial and spectral assumptions according to a realistic field of view. In order to test the robustness of the algorithm, we add Poisson noise to the measurement and test on both two-dimensional and three-dimensional spatial and spectral scenes. Our analysis shows that the root mean square error of the recovered results can be achieved within 5.15%.

  1. Dictionary learning-based spatiotemporal regularization for 3D dense speckle tracking

    NASA Astrophysics Data System (ADS)

    Lu, Allen; Zontak, Maria; Parajuli, Nripesh; Stendahl, John C.; Boutagy, Nabil; Eberle, Melissa; O'Donnell, Matthew; Sinusas, Albert J.; Duncan, James S.

    2017-03-01

    Speckle tracking is a common method for non-rigid tissue motion analysis in 3D echocardiography, where unique texture patterns are tracked through the cardiac cycle. However, poor tracking often occurs due to inherent ultrasound issues, such as image artifacts and speckle decorrelation; thus regularization is required. Various methods, such as optical flow, elastic registration, and block matching techniques have been proposed to track speckle motion. Such methods typically apply spatial and temporal regularization in a separate manner. In this paper, we propose a joint spatiotemporal regularization method based on an adaptive dictionary representation of the dense 3D+time Lagrangian motion field. Sparse dictionaries have good signal adaptive and noise-reduction properties; however, they are prone to quantization errors. Our method takes advantage of the desirable noise suppression, while avoiding the undesirable quantization error. The idea is to enforce regularization only on the poorly tracked trajectories. Specifically, our method 1.) builds data-driven 4-dimensional dictionary of Lagrangian displacements using sparse learning, 2.) automatically identifies poorly tracked trajectories (outliers) based on sparse reconstruction errors, and 3.) performs sparse reconstruction of the outliers only. Our approach can be applied on dense Lagrangian motion fields calculated by any method. We demonstrate the effectiveness of our approach on a baseline block matching speckle tracking and evaluate performance of the proposed algorithm using tracking and strain accuracy analysis.

  2. Dynamic Experiment Design Regularization Approach to Adaptive Imaging with Array Radar/SAR Sensor Systems

    PubMed Central

    Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart

    2011-01-01

    We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the “model-free” variational analysis (VA)-based image enhancement approach and the “model-based” descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations. PMID:22163859

  3. Assessing cardiac function from total-variation-regularized 4D C-arm CT in the presence of angular undersampling

    NASA Astrophysics Data System (ADS)

    Taubmann, O.; Haase, V.; Lauritsch, G.; Zheng, Y.; Krings, G.; Hornegger, J.; Maier, A.

    2017-04-01

    Time-resolved tomographic cardiac imaging using an angiographic C-arm device may support clinicians during minimally invasive therapy by enabling a thorough analysis of the heart function directly in the catheter laboratory. However, clinically feasible acquisition protocols entail a highly challenging reconstruction problem which suffers from sparse angular sampling of the trajectory. Compressed sensing theory promises that useful images can be recovered despite massive undersampling by means of sparsity-based regularization. For a multitude of reasons—most notably the desired reduction of scan time, dose and contrast agent required—it is of great interest to know just how little data is actually sufficient for a certain task. In this work, we apply a convex optimization approach based on primal-dual splitting to 4D cardiac C-arm computed tomography. We examine how the quality of spatially and temporally total-variation-regularized reconstruction degrades when using as few as 6.9+/- 1.2 projection views per heart phase. First, feasible regularization weights are determined in a numerical phantom study, demonstrating the individual benefits of both regularizers. Secondly, a task-based evaluation is performed in eight clinical patients. Semi-automatic segmentation-based volume measurements of the left ventricular blood pool performed on strongly undersampled images show a correlation of close to 99% with measurements obtained from less sparsely sampled data.

  4. Image super-resolution via adaptive filtering and regularization

    NASA Astrophysics Data System (ADS)

    Ren, Jingbo; Wu, Hao; Dong, Weisheng; Shi, Guangming

    2014-11-01

    Image super-resolution (SR) is widely used in the fields of civil and military, especially for the low-resolution remote sensing images limited by the sensor. Single-image SR refers to the task of restoring a high-resolution (HR) image from the low-resolution image coupled with some prior knowledge as a regularization term. One classic method regularizes image by total variation (TV) and/or wavelet or some other transform which introduce some artifacts. To compress these shortages, a new framework for single image SR is proposed by utilizing an adaptive filter before regularization. The key of our model is that the adaptive filter is used to remove the spatial relevance among pixels first and then only the high frequency (HF) part, which is sparser in TV and transform domain, is considered as the regularization term. Concretely, through transforming the original model, the SR question can be solved by two alternate iteration sub-problems. Before each iteration, the adaptive filter should be updated to estimate the initial HF. A high quality HF part and HR image can be obtained by solving the first and second sub-problem, respectively. In experimental part, a set of remote sensing images captured by Landsat satellites are tested to demonstrate the effectiveness of the proposed framework. Experimental results show the outstanding performance of the proposed method in quantitative evaluation and visual fidelity compared with the state-of-the-art methods.

  5. Statistical regularities in art: Relations with visual coding and perception.

    PubMed

    Graham, Daniel J; Redies, Christoph

    2010-07-21

    Since at least 1935, vision researchers have used art stimuli to test human response to complex scenes. This is sensible given the "inherent interestingness" of art and its relation to the natural visual world. The use of art stimuli has remained popular, especially in eye tracking studies. Moreover, stimuli in common use by vision scientists are inspired by the work of famous artists (e.g., Mondrians). Artworks are also popular in vision science as illustrations of a host of visual phenomena, such as depth cues and surface properties. However, until recently, there has been scant consideration of the spatial, luminance, and color statistics of artwork, and even less study of ways that regularities in such statistics could affect visual processing. Furthermore, the relationship between regularities in art images and those in natural scenes has received little or no attention. In the past few years, there has been a concerted effort to study statistical regularities in art as they relate to neural coding and visual perception, and art stimuli have begun to be studied in rigorous ways, as natural scenes have been. In this minireview, we summarize quantitative studies of links between regular statistics in artwork and processing in the visual stream. The results of these studies suggest that art is especially germane to understanding human visual coding and perception, and it therefore warrants wider study. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Detection of movement intention from single-trial movement-related cortical potentials

    NASA Astrophysics Data System (ADS)

    Niazi, Imran Khan; Jiang, Ning; Tiberghien, Olivier; Feldbæk Nielsen, Jørgen; Dremstrup, Kim; Farina, Dario

    2011-10-01

    Detection of movement intention from neural signals combined with assistive technologies may be used for effective neurofeedback in rehabilitation. In order to promote plasticity, a causal relation between intended actions (detected for example from the EEG) and the corresponding feedback should be established. This requires reliable detection of motor intentions. In this study, we propose a method to detect movements from EEG with limited latency. In a self-paced asynchronous BCI paradigm, the initial negative phase of the movement-related cortical potentials (MRCPs), extracted from multi-channel scalp EEG was used to detect motor execution/imagination in healthy subjects and stroke patients. For MRCP detection, it was demonstrated that a new optimized spatial filtering technique led to better accuracy than a large Laplacian spatial filter and common spatial pattern. With the optimized spatial filter, the true positive rate (TPR) for detection of movement execution in healthy subjects (n = 15) was 82.5 ± 7.8%, with latency of -66.6 ± 121 ms. Although TPR decreased with motor imagination in healthy subject (n = 10, 64.5 ± 5.33%) and with attempted movements in stroke patients (n = 5, 55.01 ± 12.01%), the results are promising for the application of this approach to provide patient-driven real-time neurofeedback.

  7. Local Regularity Analysis with Wavelet Transform in Gear Tooth Failure Detection

    NASA Astrophysics Data System (ADS)

    Nissilä, Juhani

    2017-09-01

    Diagnosing gear tooth and bearing failures in industrial power transition situations has been studied a lot but challenges still remain. This study aims to look at the problem from a more theoretical perspective. Our goal is to find out if the local regularity i.e. smoothness of the measured signal can be estimated from the vibrations of epicyclic gearboxes and if the regularity can be linked to the meshing events of the gear teeth. Previously it has been shown that the decreasing local regularity of the measured acceleration signals can reveal the inner race faults in slowly rotating bearings. The local regularity is estimated from the modulus maxima ridges of the signal's wavelet transform. In this study, the measurements come from the epicyclic gearboxes of the Kelukoski water power station (WPS). The very stable rotational speed of the WPS makes it possible to deduce that the gear mesh frequencies of the WPS and a frequency related to the rotation of the turbine blades are the most significant components in the spectra of the estimated local regularity signals.

  8. Steerable sound transport in a 3D acoustic network

    NASA Astrophysics Data System (ADS)

    Xia, Bai-Zhan; Jiao, Jun-Rui; Dai, Hong-Qing; Yin, Sheng-Wen; Zheng, Sheng-Jie; Liu, Ting-Ting; Chen, Ning; Yu, De-Jie

    2017-10-01

    Quasi-lossless and asymmetric sound transports, which are exceedingly desirable in various modern physical systems, are almost always based on nonlinear or angular momentum biasing effects with extremely high power levels and complex modulation schemes. A practical route for the steerable sound transport along any arbitrary acoustic pathway, especially in a three-dimensional (3D) acoustic network, can revolutionize the sound power propagation and the sound communication. Here, we design an acoustic device containing a regular-tetrahedral cavity with four cylindrical waveguides. A smaller regular-tetrahedral solid in this cavity is eccentrically emplaced to break spatial symmetry of the acoustic device. The numerical and experimental results show that the sound power flow can unimpededly transport between two waveguides away from the eccentric solid within a wide frequency range. Based on the quasi-lossless and asymmetric transport characteristic of the single acoustic device, we construct a 3D acoustic network, in which the sound power flow can flexibly propagate along arbitrary sound pathways defined by our acoustic devices with eccentrically emplaced regular-tetrahedral solids.

  9. Image-guided spatial localization of heterogeneous compartments for magnetic resonance

    PubMed Central

    An, Li; Shen, Jun

    2015-01-01

    Purpose: Image-guided localization SPectral Localization Achieved by Sensitivity Heterogeneity (SPLASH) allows rapid measurement of signals from irregularly shaped anatomical compartments without using phase encoding gradients. Here, the authors propose a novel method to address the issue of heterogeneous signal distribution within the localized compartments. Methods: Each compartment was subdivided into multiple subcompartments and their spectra were solved by Tikhonov regularization to enforce smoothness within each compartment. The spectrum of a given compartment was generated by combining the spectra of the components of that compartment. The proposed method was first tested using Monte Carlo simulations and then applied to reconstructing in vivo spectra from irregularly shaped ischemic stroke and normal tissue compartments. Results: Monte Carlo simulations demonstrate that the proposed regularized SPLASH method significantly reduces localization and metabolite quantification errors. In vivo results show that the intracompartment regularization results in ∼40% reduction of error in metabolite quantification. Conclusions: The proposed method significantly reduces localization errors and metabolite quantification errors caused by intracompartment heterogeneous signal distribution. PMID:26328977

  10. Incompressible flow simulations on regularized moving meshfree grids

    NASA Astrophysics Data System (ADS)

    Vasyliv, Yaroslav; Alexeev, Alexander

    2017-11-01

    A moving grid meshfree solver for incompressible flows is presented. To solve for the flow field, a semi-implicit approximate projection method is directly discretized on meshfree grids using General Finite Differences (GFD) with sharp interface stencil modifications. To maintain a regular grid, an explicit shift is used to relax compressed pseudosprings connecting a star node to its cloud of neighbors. The following test cases are used for validation: the Taylor-Green vortex decay, the analytic and modified lid-driven cavities, and an oscillating cylinder enclosed in a container for a range of Reynolds number values. We demonstrate that 1) the grid regularization does not impede the second order spatial convergence rate, 2) the Courant condition can be used for time marching but the projection splitting error reduces the convergence rate to first order, and 3) moving boundaries and arbitrary grid distortions can readily be handled. Financial support provided by the National Science Foundation (NSF) Graduate Research Fellowship, Grant No. DGE-1148903.

  11. Viscous regularization of the full set of nonequilibrium-diffusion Grey Radiation-Hydrodynamic equations

    DOE PAGES

    Delchini, Marc O.; Ragusa, Jean C.; Ferguson, Jim

    2017-02-17

    A viscous regularization technique, based on the local entropy residual, was proposed by Delchini et al. (2015) to stabilize the nonequilibrium-diffusion Grey Radiation-Hydrodynamic equations using an artificial viscosity technique. This viscous regularization is modulated by the local entropy production and is consistent with the entropy minimum principle. However, Delchini et al. (2015) only based their work on the hyperbolic parts of the Grey Radiation-Hydrodynamic equations and thus omitted the relaxation and diffusion terms present in the material energy and radiation energy equations. Here in this paper, we extend the theoretical grounds for the method and derive an entropy minimum principlemore » for the full set of nonequilibrium-diffusion Grey Radiation-Hydrodynamic equations. This further strengthens the applicability of the entropy viscosity method as a stabilization technique for radiation-hydrodynamic shock simulations. Radiative shock calculations using constant and temperature-dependent opacities are compared against semi-analytical reference solutions, and we present a procedure to perform spatial convergence studies of such simulations.« less

  12. LIDT test coupled with gamma radiation degraded optics

    NASA Astrophysics Data System (ADS)

    IOAN, M.-R.

    2016-06-01

    A laser can operate in regular but also in nuclear ionizing radiation environments. This paper presents the results of a real time measuring method used to detect the laser induced damage threshold (LIDT) in the optical surfaces/volumes of TEMPAX borosilicate glasses operating in high gamma rays fields. The laser damage quantification technique is applied by using of an automated station intended to measure the damage threshold of optical components, according to the International Standard ISO 21254. Single and multiple pulses laser damage thresholds were determined. For an optical material, life time when it is subjected to multiple pulses of high power laser radiation can be predicted. A few ns pulses shooting laser, operating in regular conditions, inflects damage to a target by its intense electrical component but also in a lower manner by local absorption of its transported thermal energy. When the beam is passing thru optical glass elements affected by ionizing radiation fields, the thermal component is starting to have a more important role, because of the increased thermal absorption in the material's volume caused by the radiation induced color centers. LIDT results on TEMPAX optical glass windows, with the contribution due to the gamma radiation effects (ionization mainly by Compton effect in this case), are presented. This contribution was highlighted and quantified. Energetic, temporal and spatial beam characterizations (according to ISO 11554 standards) and LIDT tests were performed using a high power Nd: YAG laser (1064 nm), before passing the beam through each irradiated glass sample (0 kGy, 1.3 kGy and 21.2 kGy).

  13. Cone-beam CT of traumatic brain injury using statistical reconstruction with a post-artifact-correction noise model

    NASA Astrophysics Data System (ADS)

    Dang, H.; Stayman, J. W.; Sisniega, A.; Xu, J.; Zbijewski, W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.

    2015-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability. The current front-line imaging modality for TBI detection is CT, which reliably detects intracranial hemorrhage (fresh blood contrast 30-50 HU, size down to 1 mm) in non-contrast-enhanced exams. Compared to CT, flat-panel detector (FPD) cone-beam CT (CBCT) systems offer lower cost, greater portability, and smaller footprint suitable for point-of-care deployment. We are developing FPD-CBCT to facilitate TBI detection at the point-of-care such as in emergent, ambulance, sports, and military applications. However, current FPD-CBCT systems generally face challenges in low-contrast, soft-tissue imaging. Model-based reconstruction can improve image quality in soft-tissue imaging compared to conventional filtered back-projection (FBP) by leveraging high-fidelity forward model and sophisticated regularization. In FPD-CBCT TBI imaging, measurement noise characteristics undergo substantial change following artifact correction, resulting in non-negligible noise amplification. In this work, we extend the penalized weighted least-squares (PWLS) image reconstruction to include the two dominant artifact corrections (scatter and beam hardening) in FPD-CBCT TBI imaging by correctly modeling the variance change following each correction. Experiments were performed on a CBCT test-bench using an anthropomorphic phantom emulating intra-parenchymal hemorrhage in acute TBI, and the proposed method demonstrated an improvement in blood-brain contrast-to-noise ratio (CNR = 14.2) compared to FBP (CNR = 9.6) and PWLS using conventional weights (CNR = 11.6) at fixed spatial resolution (1 mm edge-spread width at the target contrast). The results support the hypothesis that FPD-CBCT can fulfill the image quality requirements for reliable TBI detection, using high-fidelity artifact correction and statistical reconstruction with accurate post-artifact-correction noise models.

  14. Registration of 4D cardiac CT sequences under trajectory constraints with multichannel diffeomorphic demons.

    PubMed

    Peyrat, Jean-Marc; Delingette, Hervé; Sermesant, Maxime; Xu, Chenyang; Ayache, Nicholas

    2010-07-01

    We propose a framework for the nonlinear spatiotemporal registration of 4D time-series of images based on the Diffeomorphic Demons (DD) algorithm. In this framework, the 4D spatiotemporal registration is decoupled into a 4D temporal registration, defined as mapping physiological states, and a 4D spatial registration, defined as mapping trajectories of physical points. Our contribution focuses more specifically on the 4D spatial registration that should be consistent over time as opposed to 3D registration that solely aims at mapping homologous points at a given time-point. First, we estimate in each sequence the motion displacement field, which is a dense representation of the point trajectories we want to register. Then, we perform simultaneously 3D registrations of corresponding time-points with the constraints to map the same physical points over time called the trajectory constraints. Under these constraints, we show that the 4D spatial registration can be formulated as a multichannel registration of 3D images. To solve it, we propose a novel version of the Diffeomorphic Demons (DD) algorithm extended to vector-valued 3D images, the Multichannel Diffeomorphic Demons (MDD). For evaluation, this framework is applied to the registration of 4D cardiac computed tomography (CT) sequences and compared to other standard methods with real patient data and synthetic data simulated from a physiologically realistic electromechanical cardiac model. Results show that the trajectory constraints act as a temporal regularization consistent with motion whereas the multichannel registration acts as a spatial regularization. Finally, using these trajectory constraints with multichannel registration yields the best compromise between registration accuracy, temporal and spatial smoothness, and computation times. A prospective example of application is also presented with the spatiotemporal registration of 4D cardiac CT sequences of the same patient before and after radiofrequency ablation (RFA) in case of atrial fibrillation (AF). The intersequence spatial transformations over a cardiac cycle allow to analyze and quantify the regression of left ventricular hypertrophy and its impact on the cardiac function.

  15. Uncertainties and implications of applying aggregated data for spatial modelling of atmospheric ammonia emissions.

    PubMed

    Hellsten, S; Dragosits, U; Place, C J; Dore, A J; Tang, Y S; Sutton, M A

    2018-05-09

    Ammonia emissions vary greatly at a local scale, and effects (eutrophication, acidification) occur primarily close to sources. Therefore it is important that spatially distributed emission estimates are located as accurately as possible. The main source of ammonia emissions is agriculture, and therefore agricultural survey statistics are the most important input data to an ammonia emission inventory alongside per activity estimates of emission potential. In the UK, agricultural statistics are collected at farm level, but are aggregated to parish level, NUTS-3 level or regular grid resolution for distribution to users. In this study, the Modifiable Areal Unit Problem (MAUP), associated with such amalgamation, is investigated in the context of assessing the spatial distribution of ammonia sources for emission inventories. England was used as a test area to study the effects of the MAUP. Agricultural survey data at farm level (point data) were obtained under license and amalgamated to different areal units or zones: regular 1-km, 5-km, 10-km grids and parish level, before they were imported into the emission model. The results of using the survey data at different levels of amalgamation were assessed to estimate the effects of the MAUP on the spatial inventory. The analysis showed that the size and shape of aggregation zones applied to the farm-level agricultural statistics strongly affect the location of the emissions estimated by the model. If the zones are too small, this may result in false emission "hot spots", i.e., artificially high emission values that are in reality not confined to the zone to which they are allocated. Conversely, if the zones are too large, detail may be lost and emissions smoothed out, which may give a false impression of the spatial patterns and magnitude of emissions in those zones. The results of the study indicate that the MAUP has a significant effect on the location and local magnitude of emissions in spatial inventories where amalgamated, zonal data are used. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Ladar imaging detection of salient map based on PWVD and Rényi entropy

    NASA Astrophysics Data System (ADS)

    Xu, Yuannan; Zhao, Yuan; Deng, Rong; Dong, Yanbing

    2013-10-01

    Spatial-frequency information of a given image can be extracted by associating the grey-level spatial data with one of the well-known spatial/spatial-frequency distributions. The Wigner-Ville distribution (WVD) has a good characteristic that the images can be represented in spatial/spatial-frequency domains. For intensity and range images of ladar, through the pseudo Wigner-Ville distribution (PWVD) using one or two dimension window, the statistical property of Rényi entropy is studied. We also analyzed the change of Rényi entropy's statistical property in the ladar intensity and range images when the man-made objects appear. From this foundation, a novel method for generating saliency map based on PWVD and Rényi entropy is proposed. After that, target detection is completed when the saliency map is segmented using a simple and convenient threshold method. For the ladar intensity and range images, experimental results show the proposed method can effectively detect the military vehicles from complex earth background with low false alarm.

  17. The influence of spatial resolution and smoothing on the detectability of resting-state and task fMRI.

    PubMed

    Molloy, Erin K; Meyerand, Mary E; Birn, Rasmus M

    2014-02-01

    Functional MRI blood oxygen level-dependent (BOLD) signal changes can be subtle, motivating the use of imaging parameters and processing strategies that maximize the temporal signal-to-noise ratio (tSNR) and thus the detection power of neuronal activity-induced fluctuations. Previous studies have shown that acquiring data at higher spatial resolutions results in greater percent BOLD signal changes, and furthermore that spatially smoothing higher resolution fMRI data improves tSNR beyond that of data originally acquired at a lower resolution. However, higher resolution images come at the cost of increased acquisition time, and the number of image volumes also influences detectability. The goal of our study is to determine how the detection power of neuronally induced BOLD fluctuations acquired at higher spatial resolutions and then spatially smoothed compares to data acquired at the lower resolutions with the same imaging duration. The number of time points acquired during a given amount of imaging time is a practical consideration given the limited ability of certain populations to lie still in the MRI scanner. We compare acquisitions at three different in-plane spatial resolutions (3.50×3.50mm(2), 2.33×2.33mm(2), 1.75×1.75mm(2)) in terms of their tSNR, contrast-to-noise ratio, and the power to detect both task-related activation and resting-state functional connectivity. The impact of SENSE acceleration, which speeds up acquisition time increasing the number of images collected, is also evaluated. Our results show that after spatially smoothing the data to the same intrinsic resolution, lower resolution acquisitions have a slightly higher detection power of task-activation in some, but not all, brain areas. There were no significant differences in functional connectivity as a function of resolution after smoothing. Similarly, the reduced tSNR of fMRI data acquired with a SENSE factor of 2 is offset by the greater number of images acquired, resulting in few significant differences in detection power of either functional activation or connectivity after spatial smoothing. © 2013.

  18. Small target detection using bilateral filter and temporal cross product in infrared images

    NASA Astrophysics Data System (ADS)

    Bae, Tae-Wuk

    2011-09-01

    We introduce a spatial and temporal target detection method using spatial bilateral filter (BF) and temporal cross product (TCP) of temporal pixels in infrared (IR) image sequences. At first, the TCP is presented to extract the characteristics of temporal pixels by using temporal profile in respective spatial coordinates of pixels. The TCP represents the cross product values by the gray level distance vector of a current temporal pixel and the adjacent temporal pixel, as well as the horizontal distance vector of the current temporal pixel and a temporal pixel corresponding to potential target center. The summation of TCP values of temporal pixels in spatial coordinates makes the temporal target image (TTI), which represents the temporal target information of temporal pixels in spatial coordinates. And then the proposed BF filter is used to extract the spatial target information. In order to predict background without targets, the proposed BF filter uses standard deviations obtained by an exponential mapping of the TCP value corresponding to the coordinate of a pixel processed spatially. The spatial target image (STI) is made by subtracting the predicted image from the original image. Thus, the spatial and temporal target image (STTI) is achieved by multiplying the STI and the TTI, and then targets finally are detected in STTI. In experimental result, the receiver operating characteristics (ROC) curves were computed experimentally to compare the objective performance. From the results, the proposed algorithm shows better discrimination of target and clutters and lower false alarm rates than the existing target detection methods.

  19. Learning-dependent plasticity with and without training in the human brain.

    PubMed

    Zhang, Jiaxiang; Kourtzi, Zoe

    2010-07-27

    Long-term experience through development and evolution and shorter-term training in adulthood have both been suggested to contribute to the optimization of visual functions that mediate our ability to interpret complex scenes. However, the brain plasticity mechanisms that mediate the detection of objects in cluttered scenes remain largely unknown. Here, we combine behavioral and functional MRI (fMRI) measurements to investigate the human-brain mechanisms that mediate our ability to learn statistical regularities and detect targets in clutter. We show two different routes to visual learning in clutter with discrete brain plasticity signatures. Specifically, opportunistic learning of regularities typical in natural contours (i.e., collinearity) can occur simply through frequent exposure, generalize across untrained stimulus features, and shape processing in occipitotemporal regions implicated in the representation of global forms. In contrast, learning to integrate discontinuities (i.e., elements orthogonal to contour paths) requires task-specific training (bootstrap-based learning), is stimulus-dependent, and enhances processing in intraparietal regions implicated in attention-gated learning. We propose that long-term experience with statistical regularities may facilitate opportunistic learning of collinear contours, whereas learning to integrate discontinuities entails bootstrap-based training for the detection of contours in clutter. These findings provide insights in understanding how long-term experience and short-term training interact to shape the optimization of visual recognition processes.

  20. s-SMOOTH: Sparsity and Smoothness Enhanced EEG Brain Tomography

    PubMed Central

    Li, Ying; Qin, Jing; Hsin, Yue-Loong; Osher, Stanley; Liu, Wentai

    2016-01-01

    EEG source imaging enables us to reconstruct current density in the brain from the electrical measurements with excellent temporal resolution (~ ms). The corresponding EEG inverse problem is an ill-posed one that has infinitely many solutions. This is due to the fact that the number of EEG sensors is usually much smaller than that of the potential dipole locations, as well as noise contamination in the recorded signals. To obtain a unique solution, regularizations can be incorporated to impose additional constraints on the solution. An appropriate choice of regularization is critically important for the reconstruction accuracy of a brain image. In this paper, we propose a novel Sparsity and SMOOthness enhanced brain TomograpHy (s-SMOOTH) method to improve the reconstruction accuracy by integrating two recently proposed regularization techniques: Total Generalized Variation (TGV) regularization and ℓ1−2 regularization. TGV is able to preserve the source edge and recover the spatial distribution of the source intensity with high accuracy. Compared to the relevant total variation (TV) regularization, TGV enhances the smoothness of the image and reduces staircasing artifacts. The traditional TGV defined on a 2D image has been widely used in the image processing field. In order to handle 3D EEG source images, we propose a voxel-based Total Generalized Variation (vTGV) regularization that extends the definition of second-order TGV from 2D planar images to 3D irregular surfaces such as cortex surface. In addition, the ℓ1−2 regularization is utilized to promote sparsity on the current density itself. We demonstrate that ℓ1−2 regularization is able to enhance sparsity and accelerate computations than ℓ1 regularization. The proposed model is solved by an efficient and robust algorithm based on the difference of convex functions algorithm (DCA) and the alternating direction method of multipliers (ADMM). Numerical experiments using synthetic data demonstrate the advantages of the proposed method over other state-of-the-art methods in terms of total reconstruction accuracy, localization accuracy and focalization degree. The application to the source localization of event-related potential data further demonstrates the performance of the proposed method in real-world scenarios. PMID:27965529

Top